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VIBRATION ANALYSIS OF SYSTEMS SUBJECTED TO MOVING LOADS 

BY USING THE FINITE ELEMENT METHOD 

 

ABSTRACT 

 

In this thesis, it was purposed to comprehend the dynamic response of beams and 

frames which are subjected to moving point loads. The finite element method and 

numerical time integration method (Newmark method) are employed in the vibration 

analysis. The effect of the speed of the moving load on the dynamic magnification 

factor which is defined as the ratio of the maximum dynamic displacement at the 

corresponding node in the time history to the static displacement when the load is at 

the mid – point of the structure is investigated. The effect of the spring stiffness 

attached to the frame at the conjunction points of beam and columns are also 

evaluated. Computer codes written in Matlab are developed to calculate the dynamic 

responses. The results obtained from the Matlab codes are compared with the results 

of a commercial finite element package Ansys and good agreement is found. 

Dynamic responses of the engineering structures and critical load velocities can be 

found with high accuracy by using the finite element method.   

 

 

Keywords: Frame vibrations, finite element method, moving load, dynamic 

magnification factor. 
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HAREKETLİ YÜKLERE MARUZ SİSTEMLERİN SONLU ELEMANLAR 

YÖNTEMİ İLE TİTREŞİM ANALİZİ 

 

ÖZET 

 

Bu tez çalışmasında hareketli tekil yüke maruz kiriş ve kafes yapıların dinamik 

cevaplarının kavranması amaçlanmıştır. Titreşim analizinde sonlu elemanlar yöntemi 

ve nümerik integrasyon yöntemi (Newmark metodu) kullanılmıştır. Yükün hareket 

hızının, yükün hareketi esnasında ilgili düğümdeki maksimum dinamik çökmenin 

yine aynı düğümde, yük yapının ortasında iken elde edilen statik çökmeye oranı 

olarak ifade edilen dinamik büyütme faktörüne etkileri incelenmiştir. Kafes tipi 

yapılarda kiriş ve kolonların birleşme noktalarına bağlanan yayların esnekliğinin 

dinamik harekete etkileri gözlemlenmiş ve değerlendirilmiştir. Dinamik analizler için 

Matlab kodları geliştirilmiştir. Matlab kodlarından alınan sonuçlar ticari bir sonlu 

elemanlar paketi olan Ansys ile karşılaştırılmış ve iyi bir uyumluluk gözlemlenmiştir. 

Mühendislik yapılarının dinamik cevapları ve kritik yük hızları sonlu elemanlar 

yöntemi kullanılarak yüksek hassasiyetle bulunabilir. 

 

Anahtar kelimeler: Kafes titreşimleri, sonlu eleman yöntemi, hareketli yük, dinamik 

büyütme faktörü.  
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Introduction 

 

Beam-type structures are widely used in many branches of modern civil, 

mechanical and aerospace engineering. Most of the engineering structures are 

subjected to time and space varying loads. Moving loads have considerable effects 

on the dynamic behavior of the engineering structures. The dynamic analysis of a 

structure subjected to a moving load is an old topic of research; hence a lot of 

literature exists. Olsson (1991) studied the dynamics of a beam subjected to a 

constant force moving at a constant speed and presented analytical and finite element 

solutions. Thambiratnam & Zhuge (1996) studied the dynamics of beams on an 

elastic foundation and subjected to moving loads by using the finite element method. 

They investigated the effect of the foundation stiffness, traveling speed and the span 

length of the beam on the dynamic magnification factor, which is defined as the ratio 

of the maximum displacement in the time history of the mid-point to the static mid-

point displacement. Wang (1997) analyzed the multi-span Timoshenko beams 

subjected to a concentrated moving force by using the mode superposition method 

and made a comparison between the Euler-Bernoulli beam and Timoshenko beam. 

Zheng et al.  (1998) analyzed the vibration of a multi span non uniform beam 

subjected to a moving load by using modified beam vibration functions as the 

assumed modes based on Hamilton’s principle. The modified beam vibration 

functions satisfy the zero deflection conditions at all the intermediate point supports 

as well as the boundary conditions at the two ends of the beam. Numerical results are 

presented for both uniform and non uniform beams under moving loads of various 

velocities. Wang & Lin (1998) studied the vibration of multi-span Timoshenko 

frames due to moving loads by using the modal analysis. Kadivar & Mohebpour 

(1998) analyzed the dynamic responses of unsymmetric composite laminated 

orthotropic beams under the action of moving loads. Hong & Kim (1999)
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presented the modal analysis of multi span Timoshenko beams connected or 

supported by resilient joints with damping. The results are compared with FEM. 

Ichikawa et al. (2000) investigated the dynamic behavior of the multi-span 

continuous beam traversed by a moving mass at a constant velocity, in which it is 

assumed that each span of the continuous beam obeys uniform Euler-Bernoulli beam 

theory. The solution to this system is simply obtained by using both eigenfunction 

expansion or the modal analysis method and the direct integration method in 

combination. The effects of the inertia and the moving load velocity on the dynamic 

response of the continuous beam are evaluated for three kinds of continuous beams 

having uniform span length. Zibdeh & Hilal (2000) investigated the vibration 

analysis of beams with generally boundary conditions traversed by a moving force. 

The moving load is assumed to move with accelerating, decelerating and constant 

velocity type of motions. They showed the effects of type of motion, boundary 

conditions and damping. Chen et al. (2001) calculated the response of an infinite 

Timoshenko beam on a viscoelastic foundation to a harmonic moving load. Wu et al. 

(2001) presented dynamic responses of the structures to moving bodies using 

combined finite element and analytical methods including inertia effects. Savin 

(2001) calculated the dynamic amplification factor and the characteristic response 

spectrum for weakly damped beams with various boundary conditions. Michaltsos 

(2002) investigated the dynamic behavior of a single span beam subjected to loads 

moving with variable speeds including the damping effect. Oniszczuk (2003) 

analyzed undamped forced transverse vibrations of an elastically connected double-

beam system. The problem is formulated and solved in the case of simply supported 

beams and the classical modal expansion method is applied. Zibdeh & Hilal (2003) 

investigated the random vibration of simply - supported laminated composite coated 

beam traversed by a random moving load. The moving load is assumed to move with 

accelerating, decelerating and constant velocity type of motions. Kim (2004) 

investigated the vibration and stability of an infinite Euler - Bernoulli beam resting 

on a Winkler foundation when the system is subjected to a static axial force and a 

moving load with either constant or harmonic amplitude variations. The effects of 

load speed, load frequency, damping on the deflected shape, maximum displacement 

and critical values of the velocity, frequency and axial force are also studied. 
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Kargarnovin & Younesian (2004) studied the response of a Timoshenko beam with 

uniform cross – section and infinite length supported by a generalized Pasternak – 

type viscoelastic foundation subjected to an arbitrary – distributed harmonic moving 

load. Bilello & Bergman (2004) presented a theoretical and experimental study on 

the response of a damaged Euler – Bernoulli beam traversed by a moving mass. 

Damage is modeled through rotational springs whose compliance is evaluated using 

linear elastic fracture mechanics. Law & Zhu (2004) studied the dynamic behavior of 

damaged reinforced concrete bridge structures under moving vehicular loads. The 

vehicle is modeled as a moving mass or by four - degree of freedom system with 

linear suspensions and tires flexibility, and the bridge is modeled as a continuous 

Euler-Bernoulli beam simply supported at both ends. Wu (2005) presented a 

technique for predicting the dynamic responses of a two dimensional (2-D) full-size 

rectangular plate undergoing a transverse moving line load by using the one 

dimensional (1-D) equivalent beam model. 

 

 

In this study, the finite element method is used for constituting the element 

matrices. The Newmark integration method is employed for the forced vibration 

analysis. Computer codes written in Matlab (Hanselman, 2001) are developed to 

calculate the dynamic responses of the considered structures. Euler-Bernoulli beam 

theory is used in the finite element vibration analysis. Three different boundary 

conditions are considered in beam vibrations (clamped - clamped, clamped - pinned, 

pinned - pinned). The clamped – clamped boundary condition is considered for the 

vibration analysis of the frame structure. A comprehensive study including the 

dynamic responses of the columns of frame structure is carried out. The effects of the 

speed of the moving load on the dynamic magnification factor and the effect of the 

spring stiffness attached to the frame at the conjunction points of columns and beam 

are investigated. The results obtained in this study are compared with the results 

obtained from the commercial finite element package Ansys  (Moevani, 1999). 
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 1.2 Objective 

 

The objective of this thesis is to develop a numerical procedure for evaluating the 

dynamic analysis of the beam and frame structures which are subjected to moving 

point loads. The finite element method is used for modeling the beam and frame 

elements. The equations of motion of the structure subjected to the moving load are 

derived by the application of standard method of structural dynamic. Furthermore, 

the procedure applies numerical integration method, namely, Newmark integration 

method, to obtain the dynamic response. This study is performed to evaluate the 

effect of the following parameters on the dynamic behavior of the beam and frame; 

 

1. The traveling speed of the load (dimensionless velocity parameterα ). 

2. Boundary conditions for the beam vibrations. 

3. Attached springs at the conjunction points of the beam and columns of the                      

frame. 

4. The stiffness of the springs. 

5. Viscous damping. 

 

1.3 Overview of the Thesis 

 

The solution of the moving load problem is achieved by developing computer 

programs to calculate the dynamic displacements of the beam and frame structures 

subjected to moving point loads. 

 

This chapter has presented a background of the problem. Chapter 2 presents a 

literature of numerical integration methods. Chapter 3 presents the theoretical 

development of mass and stiffness matrices and explains shortly the finite element 

method. The forced vibration response and the application of the Newmark method 

to the moving load problem are also evaluated in this chapter. Chapter 4 presents the 

results, discussions and interpretations of the figures. A list of the computer 

programs is included in the Appendices. 
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CHAPTER TWO 

NUMERICAL METHODS 

 

 

2.1 Introduction 

 

The most general approach for the solution of the dynamic response of structural 

systems is the direct numerical integration of the dynamic equilibrium equations. 

This involves, after the solution is defined at time zero, the attempt to satisfy 

dynamic equilibrium at discrete points in time. Most methods use equal time 

intervals at ∆t, 2∆t, 3∆t,… N∆t. Many different numerical techniques have 

previously been presented; however, all approaches can fundamentally be classified 

as either explicit or implicit integration methods. 

Explicit methods do not involve the solution of a set of linear equations at each 

step. Basically, these methods use the differential equation at time "t" to predict a 

solution at time "t + ∆t". For most real structures, which contain stiff elements, a 

very small time step is required in order to obtain a stable solution. Therefore, all 

explicit methods are conditionally stable with respect to the size of the time step. 

Implicit methods attempt to satisfy the differential equation at time "t" after the 

solution at time "t - ∆t" is found. These methods require the solution of a set of linear 

equations at each time step; however, larger time steps may be used. Implicit 

methods can be conditionally or unconditionally stable. 

There exist a large number of accurate, higher-order, multi-step methods that 

have been developed for the numerical solution of differential equations. These 

multi-step methods assume that the solution is a smooth function in which the higher 

derivatives are continuous. The exact solution of many nonlinear structures requires 

that the accelerations, the second derivative of the displacements, are not smooth 
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functions. This discontinuity of the acceleration is caused by the nonlinear hysteresis 

of most structural materials, contact between parts of the structure, and buckling of 

elements. Therefore, only single-step methods will be presented in this chapter. 

Based on a significant amount of experience, it is the conclusion that only single-

step, implicit, unconditional stable methods be used for the step-by-step analysis of 

practical engineering structures. 

 

2.2 Newmark Family of Methods 

 

The Newmark integration method is based on the assumption that the 

acceleration varies linearly between two instants of time. In 1959 Newmark 

presented a family of single-step integration methods for the solution of structural 

dynamic problems for both blast and seismic loading. During the past 45 years 

Newmark’s method has been applied to the dynamic analysis of many practical 

engineering structures. In addition, it has been modified and improved by many other 

researchers. In order to illustrate the use of this family of numerical integration 

methods, we considered the solution of the linear dynamic equilibrium equations 

written in the following form: 

 
[ ] [ ] [ ] tttt FuKuCuM =++ &&&                                                                                       (2.1) 

 

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix. 

uanduu &&& ,  are the acceleration, velocity and displacement vectors, respectively. Ft is 

the external loading vector. The direct use of Taylor’s series provides a rigorous 

approach to obtain the following two additional equations: 

 

...u
6

∆t
u

2

∆t
u∆tuu ∆tt

3

∆tt

2

∆tt∆ttt ++++= −−−−
&&&&&&                                                       (2.2) 

 

...u
2

t
utuu tt

2

ttttt +
∆

+∆+= ∆−∆−∆−
&&&&&&&                                                                          (2.3) 

 
Newmark truncated these equations and expressed them in the following form:  



 

 

7 

 

utu
2

t
utuu 3

tt

2

ttttt &&&&&& ∆β+
∆

+∆+= ∆−∆−∆−                                                                  (2.4) 

ututuu 2
ttttt &&&&&&& ∆γ+∆+= ∆−∆−                                                                                     (2.5) 

 
 
If the acceleration is assumed to be linear within the time step, the following 

equation can be written: 

 

t

uu
u ttt

∆

−
= ∆−

&&&&
&&&                                                                                                          (2.6) 

 

The substitution of equation (2.6) into Equations (2.4) and (2.5) produces 

Newmark’s equations in standard form 

 

t
2

tt
2

ttttt utut)
2

1
(utuu &&&&& ∆β+∆β−+∆+= ∆−∆−∆−                                                       (2.7) 

 

t∆tt∆ttt uγ∆tuγ)∆t1(uu &&&&&& +−+= −−                                                                            (2.8)                    

                                 
 
 

2.3 Stability of Newmark’s Method 

 

For zero damping Newmark’s method is conditionally stable if 

 

β−γω

≤∆≤β≥γ

2

1
tand

2

1
,

2

1

max

                                                                      (2.9) 

 
where ωmax is the maximum frequency in the structural system (Newmark, 1959). 

Newmark’s method is unconditionally stable if 

 

2

1
2 ≥γ≥β                                                                                                              (2.10) 

 
However, if γ is greater than 1/2, errors are introduced. These errors are 

associated with “numerical damping” and “period elongation”. For large multi-
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degree of freedom structural systems the time step limit, given by equation (2.9), can 

be written in a more usable form as 

 

β−γπ

≤
∆

22

1

T

t

min

                                                                                               (2.11) 

 
 
where Tmin is the minimum time period of the structure. Computer model of large 

real structures normally contain a large number of periods which are smaller than the 

integration time step; therefore, it is essential that one select a numerical integration 

method that is unconditionally stable for all time steps. Table 2.1 shows the summary 

of the Newmark method for direct integration.  
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Table 2.1 The Newmark integration scheme  

Initial Calculations: 
 
dof = Total degree of freedom of the system 
 
The initial displacement, velocity and acceleration vectors are 
 

0U  = 

0

0

.

.

.

0

 
 
 
 
 
 
 
 
 

         dof  ,       0U& = 

0

0

.

.

.

0

 
 
 
 
 
 
 
 
 

  ,       
00

0
)1(:, KUF

M
U

−
=&&    

 

∆ t=T20/20;  β  = 
4

1
, γ  = 

2

1
 

 

20
t

1
a

∆
=

β
, 

t
a1

∆
=

β

γ
, 

t

1
a 2

∆
=

β
, 1

2

1
a 3 −=

β
, 1a 4 −=

β

γ
, )2(

2

t
a 5 −

∆
=

β

γ
             

 
)1(ta 6 γ−∆= , ta 7 ∆= γ  

 
Form effective stiffness matrix K:  MaKK 0+=   

Triangularize K:  K = LDLT 
 

 
For each time step: 
 
 

Calculate effective loads at time  tt ∆+ : 
 

)(ˆ
320 UaUaUaMFF ttttttt &&& +++= ∆+∆+  

 
Solve for displacements at time tt ∆+ : 
 

FULDL ttttT ˆ∆+∆+ =  
 
 
Calculate accelerations and velocities at time  t + ∆t 
 

UaUaUUaU ttttttt &&&&&
320 )( −−−= ∆+∆+  

 

UaUaUU tttttt &&&&&& ∆+∆+ ++= 76  
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2.4 Newmark Integration Parameters 

 

• 
6

1
=β , 

2

1
=γ ; which lead to a linear acceleration approximation 

(conditionally stable scheme); 

• 
4

1
=β , 

2

1
=γ ; which lead to a constant average acceleration. This choice 

of parameters corresponds to a trapezoidal rule (unconditionally stable 

scheme in linear analyzes); 

• 
12

1
=β , 

2

1
=γ ; is  the Fox-Goodwin method which is fourth order 

accurate (conditionally stable). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2.1 Stability of Newmark time integration schemes 
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It is apparent that a large number of different direct numerical integration 

methods are possible by specifying different integration parameters. A few of the 

most commonly used methods are summarized. Figure 2.1 shows stability of 

Newmark time integration scheme. 

 

In this study, Newmark integration method is used with the integration 

parameters 1/ 4β =  and 1/ 2γ = , which lead to constant-average acceleration 

approximation. 

 

2.5 Application of Newmark Integration Method 

 

The computer codes written in Matlab are used for the vibration analysis of a two 

degree of freedom system shown in Figure 2.2. Two situations are considered for the 

external force vector, f0  

 

• Impuls function 

• Step function 

 

Figure 2.3 shows the free body diagram of the system. Dynamic responses of this 

system to impulse and step loadings are also evaluated by using Ansys and Laplace 

method. The results are given in figures 2.4 and 2.5. The computer codes written in 

Matlab and Ansys for impuls and step responses of this system are given in 

Appendix. 
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                                         Figure 2.2 Two - degree of freedom system 

 

 

 

 

 

 

 

 

 

   

                              Figure 2.3 Free body diagram of the system 

f0 

m2 

m1 

k1 

k2 

c2 

c1 

x1 

x2 

m1 m2 

11xm &&  22xm &&  

)xx(k 122 −  11xk  
11xc &  

)xx(k 122 −  

)xx(c 122 && −  

)xx(c 122 && −  f0 
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       2.5.1 Equations of Motion 

 

The application of the Newton’s second law yields the following equations, 

 

0xkxcx)kk(x)cc(xm 222212112111 =−−++++ &&&&                                             (2.12) 

 

01212222222 fxkxcxkxcxm =−−++ &&&&                                                                (2.13) 

 

By taking the Laplace transform 

 

)s(X)ksc()s(X)kks)cc(sm( 22212121
2

1 +=++++                                           (2.14) 

 

)s(X)ksc()s(f)s(X)kscsm( 1220222
2

2 ++=++                                                 (2.15) 

 

Rearranging Eqs. (2.14) and (2.15) 

 

2
222121

2
122

2
2

220
1

)ksc()kks)cc(sm)(kscsm(

)ksc)(s(f
)s(X

+−++++++

+
=                  (2.16) 

 

2
222121

2
122

2
2

2121
2

10
2

)ksc()kks)cc(sm)(kscsm(

)kks)cc(sm)(s(f
)s(X

+−++++++

++++
=                 (2.17) 

 

The following data are given; 

50mm 21 ==  kg;  1000cc 21 ==  Ns/m;  30000kk 21 == N/m 

 

• Case 1: 0f  is unit impulse excitation. Figure 2.4 shows the results of three 

codes. newmarkimp, ansysimp, matlabimp.  

• Case 2: 0f  is unit step excitation. Figure 2.5 shows the results of three   

codes. newmarkstep, ansysstep, matlabstep.  
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As shown in figures 2.4 and 2.5 newmark code is applicable to this system and there 

are no noteworthy differences between the newmark code, Ansys and Matlab 

(Laplace method) results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Impuls response of mass 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Step responses of mass 2 
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CHAPTER THREE 

THE FINITE ELEMENT METHOD 

 

 

3.1 Beam Element 

 

A straight beam element with uniform cross section is shown in Figure 3.1. The 

Euler-Bernoulli beam theory is used for constituting the finite element matrices. The 

longitudinal axis of the element lies along the x axis. The element has a constant 

moment of inertia I, modulus of elasticity E, density ρ and length l . Two degrees of 

freedom per node, translation along y-axis (y1, y2) and rotation about z-axis ( 21 , yy ′′ ) 

are considered. The beam is modeled with 20 equally sized elements.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Moving load on a straight beam element 

 

Strain energy of a single element is: 
 

dx)
x

y
(

2

EI
.E.S 2

2

2

0 ∂

∂
= ∫

l

                                                                                               (3.1) 

 
 Kinetic energy of a single element: 
 

dx)
t

y
(

2

A
.E.K 2

0 ∂

∂ρ
= ∫

l

                                                                                            (3.2) 

x 
element i 

E, I, A, ρ  

y 

F 
v  

l  
x 

1y′
2y ′

1y 2y
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A cubic function, y(x,t), is assumed for the transverse displacements as 

 

y(x,t) = a0(t) + a1(t)x + a2(t)x
2 + a3(t)x

3                                                                 (3.3)      

 

where a0(t), a1(t), a2(t) and a3(t) are obtained by applying the boundary conditions at 

the corresponding nodes, so the shape functions Eqs. (3.4) - (3.7) are represented as 

(Rao, 1995) 

 

2 3

1( ) 1- 3 2
x x

N x
   

= +   
   l l

                                                                                      (3.4) 

 
2 3

2

x
( ) - 2 +

x
N x x

   
=    

   
l l

l l
                                                                                 (3.5) 

 
2 3

3( ) 3 2
x x

N x
   

= −   
   l l

                                                                                          (3.6) 

 
 

2 3

4 ( )
x x

N x
   

= − +   
   

l l
l l

                                                                                        (3.7) 

 
at x=0     y1 = a0                                                11 ay =&  

at x= l     y2 = a0+a1 l +a2 l
2+a3 l

3                   2y& = a1+2a2 l +3a3 l
2 

 



















=



















2

32

2

2

1

1

3210

1

0010

0001

y

y

y

y

ll

lll

&

&
 



















3

2

1

0

a

a

a

a

                       

                
{ } [ ]{ }aCy =                                                                                                               (3.8)      

 

{ } [ ] { }yCa 1−
=                                                                                                            (3.9) 

 

 y = [x] {a} = [ ]32 xxx1    



















3

2

1

0

a

a

a

a

  =  [ ][ ] { }yCx 1−                                           (3.10) 
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[ ][ ] { }yCX
t

y 1
&

−
=

∂

∂
   and      









∂

∂









∂

∂
=









∂

∂

t

y

t

y

t

y
T

2

2

                                                 (3.11) 
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From equation (3.12) we find the mass matrix as follow: 
 

M  =   
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From equation (3.10); 
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And from equation (3.15) we find the stiffness matrix as follow: 
 

K=
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The overall mass and stiffness matrices of the structure, [M] and [K], are constituted 

by joining 20 element matrices using Matlab code. 
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3.2 Frame Element 

 

In this section, the moving load problem is extended to a frame structure. Axial 

displacement for longitudinal vibration of the frame element is assumed to be linear  

 

u(x, t) = e(t) + f(t)x                                                                                              (3.17)      

 

so the shape functions for the longitudinal vibration are, 

5 ( ) 1
x

N x
 

= − 
 l

                                                                                                   (3.18) 

6 ( )
x

N x =
l

                                                                                                            (3.19) 

Three degrees of freedom per node, translation along x-axis, translation along y-axis 

and rotation about z-axis is assumed for frame element as shown in Figure 3.2. The 

coupling between bending and longitudinal vibrations is neglected. The stiffness and 

mass matrices for the frame element are constructed by superimposing both the axial 

and bending matrices. 
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Figure 3.2 Modeling the frame elements 

 

The transformation matrices are used to form the mass and stiffness matrices for 

the columns of the frame structure. Both columns and beam of the frame structure 

are modeled with 10 equally sized elements. All the element mass and stiffness 

matrices    ( [K] and [M] )  are multiplied by the transformation matrix [T]. 

[K] = [ ] [ ][ ]T K T′ and [M] = [ ] [ ][ ]T M T′  where  
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 ,   θc  = cos(θ  ) , θs  = sin (θ  )                  (3.20) 

θ  for column 1 is 90o and θ  for column 2 is 270o as shown in Figure 3.2 

A spring is attached to the frame at the column and beam conjunction points in 

order to analyze the effect of the spring stiffness. Spring has a stiffness k in the x 

direction as shown in Figure 3.3. 

 

 

 

 

Figure 3.3 Spring attached frame  
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The effect of springs on the dynamic response of the frame structure is 

investigated. The stiffness of the spring k is added to column’s stiffness matrices as 

a constant term at the corresponding degree of freedom. 

 

3.3 Equations of Motion of the Beam and  Frame Structure 

 

The equation of motion for a multiple degree of freedom undamped structural 

system is represented as follows 

 
[ ]{ } [ ]{ } { })t(FyKyM =+&&                                                                                          (3.21) 

 
 
Where y&& and y are the respective acceleration and displacement vectors for the whole 

structure and {F(t)} is the external force vector. 

 

Under free vibration, the natural frequencies and the mode shapes of a multiple 

degree of freedom system are the solutions of the eigenvalue problem. 

 

[ ] [ ][ ]{ }φ− MωK 2 = 0                                                                                              (3.22) 

 

where ω is the angular natural frequency and φ  is the mode shape of the structure 

for the corresponding natural frequency.  

 

The dynamic analysis is performed for two geometry, beam and frame. A beam 

with a length L = 1m, a uniform cross section with 0.01m x 0.01m, modulus of 

elasticity E = 206 x 109 N/m2, mass density ρ = 7860 kg/m3 is considered and a 

constant force F = -100 N is used. The same properties are also valid for the 

columns of the frame structure. Isotropic material properties are assumed. Two 

different spring stiffness, k1 = 50000 N/m and k2 = 200000 N/m are used in order to 

show the effect of the varying stiffness on the dynamic responses. 
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The first three natural frequencies of the beam and frame structure are given for 

the comparison between Matlab and Ansys results in Table 3.1. There are negligible 

discrepancies between the results of the Matlab and Ansys as shown in the table. A 

longer beam implies a smaller first natural frequency for frame structure, similarly 

longer columns imply smaller natural frequencies. 

 

Table 3.1 The first three natural frequencies of the beam and the frame structure. 

 Matlab Results (Hz) Ansys Results (Hz) 

Modes 1 2 3 1 2 3 

BEAM 

Clamped-Clamped 52.62 145.06 284.39 52.62 145.07 284.54 

Clamped-Pinned 36.26 117.52 245.21 36.26 117.52 245.28 

Pinned-Pinned 23.21 92.86 208.93 23.21 92.85 280.96 

FRAME 

Frame 7.537 29.74 48.52 7.537 29.74 48.52 

Spring Attached (k1) 29.74 36.82 52.61 29.74 36.82 52.60 

Spring Attached (k2) 29.74 42.26 52.61 29.74 42.26 52.60 

 

 

3.4 The Effect of Viscous Damping 

 

A proportional damping is assumed to show the effect of damping ratio on the 

dynamic magnification factor. Rayleigh damping, in which the damping matrix is 

proportional to the combination of the mass and stiffness matrices, is used. 

 

[ ] [ ] [ ]KaMaC 10 +=                                                                                                (3.23)   

 

If the damping ratios ξm and ξn associated with two specific frequencies ωm, ωn, 

Rayleigh damping factors, a0 and a1 can be evaluated by the solution of the following 

equation (Clough, Penzien 1993). 
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The same damping ratio is applied to both control frequncies, ω1 and ω2; i.e., ξ = ξ1 = 

ξ2. Then the proportionality factors can be given in simplified form of Eq. 3.24 
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Two different damping ratios, ξ = 0.01 and ξ = 0.05 are used to show the effect of the 

damping ratio on the dynamic magnification factor. 

 

 

3.5 The Application of the Moving Force 

 

The transverse point load F has a constant velocity, v=L/τ , where τ  is the 

traveling time across the beam and L is the total length of the beam. 

 

For the forced vibration analysis an implicit time integration method, called as 

the Newmark integration method is used with the integration parameters β=1/4 and 

γ=1/2, which lead to constant-average acceleration approximation. The time step is 

chosen as ∆t = T20 /20 during the beam and frame vibration analysis in order to 

ensure that all the 20 modes contribute to the dynamic response, where T20 is the 

period of the 20th natural mode of the structure. 

 

The time history of the nodal force in the transverse direction is given in Figure 

3.4. The time for the load to arrive ith node, /
i i

x vτ = ,  where xi is the location of ith 

node. The nodal force on the ith node, Fi = 0 except 1 1i i
tτ τ− +< < . The force is applied 

all the nodes according to Figure 3.4. Moment effect of the force is ignored, only 

vertical degree of freedom is affected by this force. The Simple method in which Mi 

= 0 at any time (Wu, Whittaker & Cartmell, 2000) is used for the calculation of the 
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dynamic responses. A non-dimensional velocity parameter α  is used as 1 /Tα τ= , 

where 1T  is the period of the first natural frequency of the beam. To indicate the 

effect of the springs on the dynamic magnification factors of the frame structure, the 

same T1, which belongs to the first natural period of the frame structure is used for 

both frame and spring attached frames while evaluating the α  values. The computer 

codes written in Matlab and Ansys for the forced vibration of pinned – pinned beam 

(pinned_pinned.m, pinned_pinned.txt) and frame (frame.m, frame.txt) are given in 

Appendix. 

 

 

 

Figure 3.4 Moving load time history for the ith node 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

 

4.1 Results of the Dynamic Analyzes 

 

 

      Figure 4.1 (a-d) shows the dynamic responses of the mid-points of the beam and 

frame structure obtained from Matlab and Ansys for different boundary conditions 

and for various α  values. The Matlab results agree well with the results obtained 

using Ansys regardless of  α  value as shown in this figure. 

 

Figures 4.2-4.4 show the mid – point displacements versus the position of the 

moving load on the beam for different boundary conditions and various α  values 

for the beam structure. With small α  values (α =0.01) displacement curve is close 

to the static displacement curve for all boundary conditions. The moving load and 

the maximum dynamic displacements of the mid-point of the beam are not in the 

same phase at overcritical part as explained in a previous study (Kadivar and 

Mohebpour, 1998). The time at which the maximum mid – point displacement is 

observed shifts right with increasing α  values regardless of the boundary condition 

of the beam. The highest dynamic deflections occur for the pinned – pinned beam as 

expected.  

 

Figure 4.5 shows the dynamic magnification factor (Dd) of the mid - point of the 

beam versus α  for three different boundary conditions. The maximum dynamic 

magnification occurs for α  = 1.02 and Dd = 1.632 for clamped – clamped beam. 

For the clamped – pinned beam the maximum value of the dynamic magnification is 

1.662 and observed at α  = 1.31. For pinned – pinned beam, the maximum Dd = 

1.728 and recorded at α  = 1.22. For pinned – pinned boundary conditions the
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dynamic magnification values are greater than those obtained for clamped – 

clamped and clamped – pinned beams for low and high moving load speeds. The 

clamped – clamped boundary conditions generally gives the lower dynamic 

magnification values except in the middle speed region. 

 

Dynamic magnification factors for the mid – point of the beams are given for 

various α  values and different boundary conditions in Table 4.1. These values are 

only valid in the time interval that the moving load is on the beam. 

 

      Figure 4.6 shows the first three mode shapes of the frame and spring attached 

frame (k2). Attaching a spring to the frame at the conjunction points of the beam and 

columns makes the frame more rigid and shifts the mode shapes of the frame 

structure up. 

 

Figures 4.7 (a-c) show the effect of the springs on the mid – point displacements 

of beam and columns. Three critical load speeds shown in Figures 4.8b, 4.9b and 

4.10b are considered for columns and beam. υ = 4.522 m/s for column 1 (α = 0.6), υ 

= 34.67 m/s for beam (α = 4.6), υ = 45.22 m/s for column 2 (α = 6). Figure 4.7a 

shows that, springs have more effect on the dynamic response of the mid-point of 

column 1 for the critical load speed and reduce the maximum dynamic 

displacements. On the other hand, springs have no contribution for beam 

displacements as shown in Figure 4.7b and also no noteworthy contribution for the 

mid – point displacement of column 2 as shown in Figure 4.7c. 

 

Figures 4.8 – 4.10 show the effect of α  values on the dynamic magnification 

factor for different nodes of a normal and spring attached frame. Dynamic 

magnification factors are calculated for frame structure as calculated for beam. Dd is 

the ratio of the maximum dynamic displacement to the static displacement at the 

considered node. The static displacements for all the nodes of the beam and columns 

of the frame are calculated when the force acting on the mid – point of the beam. 

There is no noteworthy difference between frame and spring attached frame static 

displacements except conjunction points. Figures 4.8 - 4.10 also show the 
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contribution of springs to Dd. It can be said that for small α  values (α <1 = 7.537 

m/s) springs are very effective for all nodes. In this interval, higher Dd values are 

obtained with increasing spring stiffness. Figures 4.8 – 4.10 show the Dd values only 

when the moving load is on the beam, so the interpretations are based on this 

situation. The maximum Dd values occur in the neighborhood of α = 6 for nodes 2-

5. The attachment of the spring causes higher Dd values in the middle speed region. 

Lower Dd values are obtained with increasing spring stiffness in this region. The 

maximum Dd values for nodes 6-11 are observed close to α = 0.6. The springs are 

very effective especially in this low speed region, but higher Dd values are obtained 

with increasing spring stiffness in this interval. For beam (nodes 12-21) not a 

noteworthy difference is observed both by attaching a spring or increasing spring 

stiffness. The maximum Dd occurs at α = 4.5 for the mid – point of the beam. 

Similar to column 1, two critical moving load speeds are observed for column 2, 

α =1 and α = 6. The springs have no contribution to the Dd values for both beam 

and columns at high speed region (α >10). Lower Dd values are obtained by 

attaching spring for column 2 in the middle speed region.  

 

Dynamic magnification factors for the mid – point of the beam and columns of 

frame and spring attached frames are given for various α  values in Table 4.2. These 

values are only valid in the time interval that the moving load is on the beam.  

 

The dynamic analyses are also performed for the case that the moving load left 

the beam. Figure 4.11 (a-c) shows that the maximum Dd values are observed after 

the load leaves the beam both for columns and beam of the frame structure. The 

critical points for the frame structure shown in Figure 4.11 (a-c) are; α > 1 for 

column 1, α > 4.2 for column 2 and α > 5.4 for beam. For α  values greater than 

these values, maximum Dd occurs after the moving load left the beam. The critical 

α  values at which the maximum dynamic displacements occur are; α = 5.1 (Dd = 

3.936) for column 1, α = 7 (Dd = 4.246) for column 2 and α = 6 (Dd = 1.571) for 

beam. Figures 4.11 (a-c) also shows that by attaching a spring, Dd value increases 

both for the mid – point of column 1 and column 2 in the middle speed region. 
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There are no considerable discrepancies on the dynamic magnification factors for 

the mid-point of the beam.  

 

4.1.1. Effect of the Rayleigh Damping 

 

Dynamic analyzes are performed to show the effect of the Rayleigh damping on 

the magnification factors of beam and frame structures. Figure 4.12 shows the effect 

of damping ratio ξ on the magnification factor of a clamped – clamped beam. The 

maximum Dd value (1.632), which is observed at α = 1.02 for the undamped case is 

recorded at α = 1 (Dd = 1.608) for ξ = 0.01 and at α = 0.97 (Dd = 1.524) for ξ = 0.05. 

Dd values are decreased with increasing damping ratio as expected and the time at 

which the  maximum Dd occurs shifts left with increasing damping ratio. 

 

Figures 4.13 and 4.14 (a-c) show the effect of the Rayleigh damping on the 

dynamic magnification factor for the mid – point of both columns and beam of frame 

and spring attached (k2) frame. The maximum Dd values for the mid – points of 

columns and beam of the frame are; for ξ = 0.01, at α = 6.1 (Dd = 1.849) for column 

1, at α = 4.4 (Dd =1.534) for beam and at α = 6.1 (Dd = 3.595) for column 2. 

Similarly the maximum Dd values are observed at α = 0.7 (Dd = 1.691) for column 1, 

at α = 4.2 (Dd = 1.468) for beam and at α = 6.1 (Dd = 3.172) for column 2 for the 

damping ratio ξ = 0.05. Lower Dd values are observed with increasing damping ratio. 

The time at which the maximum Dd values occur shifts left for the mid – point of the 

beam of the frame with increasing damping ratio, but the maximum Dd values are 

obtained with higher α values for the columns of the frame with increasing damping 

ratio. The dynamic magnification factors for the frame structure for different 

damping ratios are given in Table 4.3. 

 

Table 4.4 shows the dynamic magnification factor values for the mid – points of 

beam and columns of spring attached (k2) frame with and without damping effect. 

Similar to frame structure, smaller dynamic displacements are observed with 

increasing damping ratio. Negligible difference is observed at the occuring time of 

the maximum Dd values for the columns of the spring attached frame. The occuring 
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time of maximum dynamic displacement shifts left for the beam of the spring 

attached frame similar to frame structure. 

 

4.2 Conclusions 

 

Moving load problem is generally studied for beam structures. In addition to the 

beam structures, dynamic responses of frames and spring attached frames subjected 

to the moving point load are also analyzed in this study. Euler-Bernoulli beam theory 

is used in the finite element method for constituting the element matrices. The 

Newmark integration method is employed for forced vibration analysis. The results 

obtained in this study are compared with Ansys results. The conclusions drawn can 

be summarized as follows: 

 

� The moving load and the maximum dynamic displacements for the mid-point of 

the beam are not in the same phase at overcritical part. The time at which the 

maximum mid – point displacement is observed shifts right with increasing α  

values regardless of the boundary condition of the beam.  

 

� The highest dynamic displacements occur for a pinned – pinned beam. For 

pinned – pinned boundary conditions the dynamic magnification values are 

greater than those obtained for clamped – clamped and clamped – pinned beams 

for low and high moving load speeds. The clamped – clamped boundary 

conditions generally gives the lower dynamic magnification values except the 

middle speed region. 

 

� Attaching a spring to the frame at the conjunction points of beam and columns 

makes the frame more rigid and shifts the mode shapes of the frame structure up. 

 

� A longer beam implies a smaller first natural frequency for frame structure, 

similarly longer columns imply smaller natural frequencies. 
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� With lower α  values (α <1 = 7.537 m/s) springs are very effective for all 

nodes. In this interval, higher Dd values are obtained with increasing spring 

stiffness.  In the middle and high speed region, attaching a spring to the frame is 

not an advisable solution due to the increasing Dd values. 

 

� Maximum Dd occurs after the moving load left the beam for both columns and 

beam of the frame structure when the α  value is greater than some critical 

values. 

 

� Lower Dd values are observed with increasing damping ratio for a clamped – 

clamped beam. The occuring time of maximum dynamic displacement shifts left 

with increasing damping ratio. 

 

� Maximum Dd values are observed at smaller α values both for the beam of the 

frame and spring attached frame with increasing damping ratio. 
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Figure 4.1 Comparison of Matlab and Ansys results for different boundary conditions and various α  

values for a) clamped – clamped beam b) clamped – pinned beam. 

 

clamped – clamped beam α  = 0.5 

(a) 

clamped – pinned beam α  = 1 

(b) 
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Figure 4.1 (continued) Comparison of Matlab and Ansys results for different boundary conditions 

and various α  values for c) pinned – pinned beam d) clamped – clamped frame. 

pinned – pinned beam α  = 2 

(c) 

clamped – clamped frame α  = 4.5 

(d) 
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Figure 4.2 Dynamic displacements of the mid – point of the clamped – clamped beam versus the 

position of the moving load on the beam for various α  values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Dynamic displacements of the mid – point of the clamped – pinned beam versus the 

position of the moving load on the beam for various α  values. 
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Figure 4.4 Dynamic displacements of the mid – point of the pinned – pinned beam versus the 

position of the moving load on the beam for various α  values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 . Dynamic magnification factors for the mid – point of the beam versus α  for three 

different boundary conditions. 
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Table 4.1 Dynamic magnification factors for the mid – point of the beams for various α  values.(*α  values 

which makes Dd maximum)  

BEAM 

αααα 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 *1.02 

Clamped-

Clamped 
1.000 0.993 1.045 1.097 1.299 1.445 1.543 1.598 1.623 *1.632 

Clamped-

Pinned 
1.022 1.042 1.087 1.035 1.213 1.365 1.474 1.549 1.599 1.632 

Pinned-

Pinned 
1.046 1.094 1.167 1.064 1.257 1.409 1.524 1.610 1.667 1.707 

BEAM 

αααα 1.1 *1.23 *1.31 1.4 1.5 1.6 1.7 1.8 1.9 2 

Clamped-

Clamped 
1.627 1.608 1.589 1.561 1.526 1.484 1.444 1.404 1.369 1.342 

Clamped-

Pinned 
1.647 1.659 *1.662 1.658 1.648 1.631 1.610 1.572 1.515 1.443 

Pinned-

Pinned 
1.719 *1.728 1.726 1.716 1.697 1.672 1.642 1.608 1.576 1.542 
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Figure 4.6 First three mod shapes of the frame and spring attached frame 
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Figure 4.7 The effect of the springs on the mid – point displacements of the a) column 1         

b) column 2 of the frame structure. 
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Figure 4.7 (continued) The effect of the springs on the mid – point displacements of the 

c) beam of the frame structure. 
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Figure 4.8 The effect of α  on the dynamic magnification factor of column 1 for normal and spring 

attached frame at different nodes. 
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Figure 4.8 (continued) The effect of α  on the dynamic magnification factor of column 1 for normal 

and spring attached frame at different nodes. 
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Figure 4.9 The effect of α  on the dynamic magnification factor of the beam for normal and spring 

attached frame at different nodes 
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Figure 4.9 (continued) The effect of α  on the dynamic magnification factor of the beam for normal 

and spring attached frame at different nodes. 
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Figure 4.10 The effect of α  on the dynamic magnification factor of column 2 for normal and spring 

attached frame at different nodes 
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Figure 4.10 (continued) The effect of α  on the dynamic magnification factor of column 2 for 

normal and spring attached frame at different nodes 
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Figure 4.11 Comparison of the time at which the maximum Dd values occur for the mid – points of 

the a) column 1 b) column 2 of the frame and spring attached frame. 

                 Dd values for the frame when the moving load is on the beam         

                 Dd values for the frame after the moving load leaves the beam  

……….    Dd values after the moving load leaves the beam for the spring attached frame with spring 

constant k2 
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Figure 4.11 (continued) Comparison of the time at which the maximum Dd values occur for the mid 

– points of the c) beam of the frame and spring attached frame. 

              Dd values for the frame when the moving load is on the beam         

              Dd values for the frame after the moving load leaves the beam  

………. Dd values after the moving load leaves the beam for the spring attached frame with spring 

constant k2 
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Table 4.2 Dynamic magnification factors for the mid – points of the beam and columns of the frame 

and spring attached frame for different α  values. (*α  values which makes Dd maximum when the 

moving load is on the beam 

FRAME (Column 1) 

α *0.6 1 1.5 2 4 *4.5 *6 8 10 16 

Frame *1.908 1.792 1.032 1.201 1.632 1.729 1.902 1.341 0.942 0.455 

Spring 

Attached(k1) 
1.149 1.202 1.358 1.576 2.052 2.125 2.253 1.540 1.005 0.451 

Spring 

Attached(k2) 
1.183 1.257 1.295 1.497 1.905 1.936 2.003 1.625 1.120 0.448 

FRAME (Beam) 

α *0.6 1 1.5 2 4 *4.5 *6 8 10 16 

Frame 1.011 1.073 1.015 1.184 1.542 *1.550 1.502 1.373 1.206 0.698 

Spring 

Attached(k1) 
1.011 1.073 1.015 1.184 1.542 1.550 1.502 1.373 1.206 0.698 

Spring 

Attached(k2) 
1.011 1.073 1.015 1.184 1.542 1.550 1.502 1.373 1.206 0.698 

FRAME (Column 2) 

α *0.6 1 1.5 2 4 *4.5 *6 8 10 16 

Frame 1.804 1.955 1.873 1.730 3.123 3.388 *3.710 2.770 1.433 0.230 

Spring 

Attached(k1) 
1.214 1.284 1.470 1.372 2.754 3.025 3.358 2.571 1.370 0.226 

Spring 

Attached(k2) 
1.203 1.209 1.424 1.504 3.028 3.312 3.630 2.486 1.256 0.220 

 

 

 



 

 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 The effect of Rayleigh damping on the magnification factor of  clamped – clamped beam 
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Figure 4.13 The effect of Rayleigh damping on the dynamic magnification factor for the midpoint of 

a) column 1  b) beam of the frame structure. 
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Figure 4.13 (continued) The effect of Rayleigh damping on the dynamic magnification factor for the 

midpoint of c) column 2 of the frame structure. 
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Figure 4.14 The effect of Rayleigh damping on the dynamic magnification factor for the midpoint of 

a) column 1 b) beam of  the spring attached (k2) frame structure. 
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Figure 4.14 (continued) The effect of Rayleigh damping on the dynamic magnification factor for the 

midpoint of c) column 2 of  the spring attached (k2) frame structure. 
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Table 4.3 Maximum Dd values for the mid – points of the columns and beam of the frame with the 

effect of damping 

 

 Undamped 

Column 1 Dd=1.908 at α=0.6 

Beam Dd=1.550 at α=4.5 

Column 2 Dd=3.710 at α=6.0 

 ξ=0.01 

Column 1 Dd=1.849 at α=6.1 

Beam Dd=1.534 at α=4.4 

Column 2 Dd=3.595 at α=6.1 

 ξ=0.05 

Column 1 Dd=1.691 at α=0.7 

Beam Dd=1.468 at α=4.2 

Column 2 Dd=3.172 at α=6.1 

 

Table 4.4 Maximum Dd values for the mid – points of the columns and beam of the spring attached 

(k2) frame with the effect of damping 

 

 Undamped 

Column 1 Dd=2.016 at α=1.6 

Beam Dd=1.550 at α=1.2 

Column 2 Dd=3.635 at α=1.5 

 ξ=0.01 

Column 1 Dd=1.969 at α=1.6 

Beam Dd=1.532 at α=1.1 

Column 2 Dd=3.538 at α=1.5 

 ξ=0.05 

Column 1 Dd=1.795 at α=1.6 

Beam Dd=1.465 at α=1.1 

Column 2 Dd=3.189 at α=1.5 
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APPENDICES 

 

Nomenclature 

 

A                   Cross-section area of beam and frame element 

1,0a                Rayleigh damping factors 

α                  T1/τ  (Non-dimensional velocity parameter) 

cθ                  Cos(θ ) 

C                   Proportional damping matrix 

∆ t                 Time step for dynamic analysis 

E                   Modulus of Elasticity 

F                   Moving force with constant velocity 

F0                 Force vector at time t = 0 

Fi                  Force on the ith node  

I                    Moment of Inertia about the z axis 

k1,2                Longitudinal stiffness of the springs attached to frame 

K                  Stiffness matrix of the overall system  

K.E.              Kinetic energy of a single beam element 

l                   Length of a single beam element 

L                  Total length of the beam and columns of the frame 

M                 Mass matrix of the overall system 

Mi                Moment on the ith node 

Ni(i=1-6)      Shape Functions 

sθ                  Sin(θ ) 

S.E.               Strain energy of a single beam element 



 

 

T                   Transformation matrix for the column elements of the frame 

T1                 Period of first natural frequency 

T20                Period of 20th natural frequency  

u(x,t)            Assumed displacement function for the longitudinal vibration of the 

frame 

0U                 Displacement vector at time t = 0 

0U&                Velocity vector at time t = 0 

0U&&                Acceleration vector at time t = 0   

 υ                   Velocity of the moving force 

x1                  Longitudinal degree of freedom of the first node of a frame element 

x2                  Longitudinal degree of freedom of the second node of a frame element 

xi                  Location of the ith node  

y1                       Vertical degree of freedom of the first node of a single beam element 

1y′                  Rotational degree of freedom of the first node of a single beam element 

y2                       Vertical degree of freedom of the second node of a single beam element 

2y′                  Rotational degree of freedom of the second node of a single beam 

element 

y(x,t)            Assumed displacement function for the bending vibration of the beam 

y                   Displacement vector for the whole structure 

y&&                  Acceleration vector for the whole structure 

n,mω              Two specific control frequencies for Rayleigh damping 

β                  Integration parameter for Newmark Integration method 

γ                   Integration parameter for Newmark Integration method 



 

 

θ                   Rotation angle for the element of column 1 and 2 

φ                   Eigenvectors of the structure 

ρ                  Mass density of the beam and frame element 

τ                   Traveling time of the F on a single beam element 

iτ                  The time for the load to arrive ith node 

n,mξ               Damping ratios for viscous damping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF COMPUTER PROGRAMS 

 

newmarkimp.m 

 

dt=0.001; tson=2; 

 dof=2; 

 beta=1/4; gama=0.5; 

   

 m1=50; 

 c1=1000; 

 k1=30000; 

 

 m2=50; 

 c2=1000; 

 k2=30000; 

 

 MM=[m1 0;0 m2]; 

 CC=[c1+c2 -c2;-c2 c2]; 

 KK=[k1+k2 -k2;-k2 k2]; 

 adimsay=tson/dt+1; 

 adimsay=int32(adimsay); 

 adimsay=double(adimsay); 

 

 dep=zeros(adimsay,dof); 

 hiz=zeros(adimsay,dof); 

 ivm=zeros(adimsay,dof); 

 zaman=zeros(adimsay,dof); 

 

 F0=[0;1/dt]; 

 u0=[0;0]; 

 ud0=[0;0]; 

 udd0=MM\(F0(:,1)-CC*ud0-KK*u0); 



 

 

 

dep(1,1:dof)=u0'; 

 hiz(1,1:dof)=ud0'; 

 ivm(1,1:dof)=udd0'; 

 zaman(1,1:dof)=0; 

 sayac=2; 

 t=dt; 

 

 a0=1/(beta*dt^2); a1=gama/(beta*dt); a2=1/(beta*dt); a3=1/(2*beta)-1; 

a4=gama/beta-1; 

 a5=(dt/2)*(gama/beta-2); a6=dt*(1-gama); a7=gama*dt; 

 

 KK=KK+a0*MM+a1*CC; 

 [L,U]=lu(KK); 

 ss=2; 

   while t<=tson;   

 F0=zeros(dof,adimsay); 

 F0(2,2)=0.5/dt;  

 F=F0(:,ss)+MM*(a0*u0+a2*ud0+a3*udd0)+CC*(a1*u0+a4*ud0+a5*udd0); 

 z=inv(L)*F; 

 u1=inv(U)*z; 

  

 udd1=a0*(u1-u0)-a2*ud0-a3*udd0; 

 ud1=ud0+a6*udd0+a7*udd1; 

  

 for i=1:dof 

   dep(sayac,i)=u1(i); 

   hiz(sayac,i)=ud1(i); 

   ivm(sayac,i)=udd1(i); 

 end 

  

 zaman(sayac,1)=t; 



 

 

  

  sayac=sayac+1; 

 t=t+dt; 

  

 u0=u1; 

 ud0=ud1; 

 udd0=udd1; 

 ss=ss+1; 

end     

 

plot(zaman(:,1),dep(:,2),'black') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

matlabimp.m 

 

m1=50; 

c1=1000; 

k1=30000; 

 

m2=50; 

c2=1000; 

k2=30000; 

 

s=sym('s'); 

num1=(c2*s+k2); 

den1=(m2*s^2+c2*s+k2)*(m1*s^2+(c1+c2)*s+k1+k2)-(c2*s+k2)^2; 

 

num2=(m1*s^2+(c1+c2)*s+k1+k2); 

den2=(m2*s^2+c2*s+k2)*(m1*s^2+(c1+c2)*s+k1+k2)-(c2*s+k2)^2; 

 

num1; 

den1; 

num2; 

den2; 

num1=expand(num1); 

den1=expand(den1); 

num2=expand(num2); 

den2=expand(den2); 

 

num1=[1000 30000]; 

den1=[2500 150000 5500000 60000000 900000000]; 

num2=[50 2000 60000]; 

den2=den1; 

impulse(num2,den2) 

%impulse(num1,den1) 



 

 

ansysimp.txt 

/prep7 

et,1,mass21 

et,2,combin14 

m=50 

c=1000 

k=30000 

 

r,1,0,m 

r,2,k,c 

 

n,1,0,0,0 

n,2,0,1,0 

n,3,0,2,0 

 

type,1 

real,1 

e,2 

e,3 

 

type,2 

real,2 

 

e,1,2 

e,2,3 

 

eplot 

 

/solu 

antype,2 

modopt,lanb,2 

 



 

 

d,all,ux,0 

d,all,uz,0 

d,1,uy,0 

 

solve 

 

*get,f1,mode,1,freq 

*get,f2,mode,2,freq 

 

finish 

 

dt=1/(20*f2) 

tson=2 

f0=1/dt 

 

/solu 

antype,4 

outres,all,all 

kbc,1 

deltim,dt 

 

f,3,fy,f0 

time,dt/100000 

solve 

 

f,3,fy,f0 

time,dt 

solve 

 

f,3,fy,0 

time,dt+dt/100000 

solve 



 

 

 

f,3,fy,0 

time,tson 

solve 

 

finish 

/post26 

nsol,2,3,u,y 

plvar,3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

newmarkstep.m 

 

beta=1/4; gama=0.5; 

 dt=0.001; tson=2.2; 

 dof=2; 

  

 m1=50; 

 c1=1000; 

 k1=30000; 

 

 m2=50; 

 c2=1000; 

 k2=30000; 

 

 MM=[m1 0;0 m2]; 

 CC=[c1+c2 -c2;-c2 c2]; 

 KK=[k1+k2 -k2;-k2 k2]; 

 adimsay=tson/dt+1; 

 adimsay=int32(adimsay); 

 adimsay=double(adimsay); 

 

 dep=zeros(adimsay,dof); 

 hiz=zeros(adimsay,dof); 

 ivm=zeros(adimsay,dof); 

 zaman=zeros(adimsay,dof); 

 F0=[0;1]; 

 u0=[0;0]; 

 ud0=[0;0]; 

 

 udd0=MM\(F0-CC*ud0-KK*u0); 

 

dep(1,1:dof)=u0'; 



 

 

 hiz(1,1:dof)=ud0'; 

 ivm(1,1:dof)=udd0'; 

 zaman(1,1:dof)=0; 

 sayac=2; 

 t=dt; 

 

 

 a0=1/(beta*dt^2); a1=gama/(beta*dt); a2=1/(beta*dt); a3=1/(2*beta)-1; 

a4=gama/beta-1; 

 a5=(dt/2)*(gama/beta-2); a6=dt*(1-gama); a7=gama*dt; 

 

 KK=KK+a0*MM+a1*CC; 

 [L,U]=lu(KK); 

 ss=2; 

   while t<=tson;   

 

 F=F0+MM*(a0*u0+a2*ud0+a3*udd0)+CC*(a1*u0+a4*ud0+a5*udd0); 

 z=inv(L)*F; 

 u1=inv(U)*z; 

  

 udd1=a0*(u1-u0)-a2*ud0-a3*udd0; 

 ud1=ud0+a6*udd0+a7*udd1; 

  

 for i=1:dof 

   dep(sayac,i)=u1(i); 

   hiz(sayac,i)=ud1(i); 

   ivm(sayac,i)=udd1(i); 

 end 

  

 zaman(sayac,1)=t; 

  

  sayac=sayac+1; 



 

 

 t=t+dt; 

  

 u0=u1; 

 ud0=ud1; 

 udd0=udd1; 

 ss=ss+1; 

end     

%subplot(2,1,1),plot(zaman(:,1),dep) 

%subplot(2,1,2),plot(zaman(:,2),dep) 

 

plot(zaman(:,1),dep(:,2),'black') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

matlabstep.m 

 

m1=50; 

c1=1000; 

k1=30000; 

 

m2=50; 

c2=1000; 

k2=30000; 

 

s=sym('s'); 

num1=(c2*s+k2); 

den1=(m2*s^2+c2*s+k2)*(m1*s^2+(c1+c2)*s+k1+k2)-(c2*s+k2)^2; 

 

num2=(m1*s^2+(c1+c2)*s+k1+k2); 

den2=(m2*s^2+c2*s+k2)*(m1*s^2+(c1+c2)*s+k1+k2)-(c2*s+k2)^2; 

 

num1; 

den1; 

num2; 

den2; 

num1=expand(num1); 

den1=expand(den1); 

num2=expand(num2); 

den2=expand(den2); 

 

num1=[1000 30000]; 

den1=[2500 150000 5500000 60000000 900000000]; 

num2=[50 2000 60000]; 

%den2=[2500 150000 5500000 60000000 900000000]; 

den2=den1; 

step(num2,den2) 



 

 

ansysstep.txt 

/prep7 

et,1,mass21 

et,2,combin14 

m=50 

c=1000 

k=30000 

 

r,1,0,m 

r,2,k,c 

 

n,1,0,0,0 

n,2,0,1,0 

n,3,0,2,0 

 

type,1 

real,1 

e,2 

e,3 

 

type,2 

real,2 

 

e,1,2 

e,2,3 

eplot 

 

/solu 

antype,2 

modopt,lanb,2 

 

d,all,ux,0 



 

 

d,all,uz,0 

d,1,uy,0 

 

solve 

 

*get,f1,mode,1,freq 

*get,f2,mode,2,freq 

 

finish 

 

dt=1/(20*f2) 

tson=2 

f0=1 

 

/solu 

antype,4 

outres,all,all 

kbc,1 

deltim,dt 

 

f,3,fy,f0 

time,dt/100000 

solve 

 

f,3,fy,f0 

time,tson 

solve 

 

finish 

/post26 

nsol,2,3,u,y 

plvar, 



 

 

pinned_pinned.m 

clc;clear 

tic; 

lenL=1;  %input('Kirisin Boyunu Giriniz='); 

b=0.01; %input('Kirisin genisligini giriniz='); 

h=0.01; %input('Kirisin yüksekligini giriniz='); 

n=20;    %input('Kiriste kullanilacak eleman sayisi='); 

%Ro=input('Kirisin yogunlugunu giriniz='); 

%E=input('Kirisin elastisite modülünü giriniz='); 

ksi1=0.05;%Birinci Doğal frekansın sönüm oranı 

ksi2=0.06;%İkinci doğal frekansın sönüm oranı 

 

Ro=7860; 

E=206e9; 

A=b*h; 

I=b*h^3/12; 

L=lenL/n; 

mcof=(Ro*A*L)/420; 

kcof=(E*I)/L^3; 

 

alfa=2;%input('alfa degerini giriniz='); 

 

M=zeros(2*(n+1)); 

K=zeros(2*(n+1)); 

 

ki1=[12 6*L -12 6*L; 

    6*L 4*L^2 -6*L 2*L^2; 

    -12 -6*L 12 -6*L; 

    6*L 2*L^2 -6*L 4*L^2]; 

 

k1=ki1(1:2,1:2); 

k2=ki1(1:2,3:4); 



 

 

k3=ki1(3:4,1:2); 

k4=ki1(3:4,3:4); 

 

 K(1:2,1:2)=k1; 

K(1:2,3:4)=k2; 

 

 for i=1:n 

   K(2*i+1:2*i+2,2*i-1:2*i)=k3; 

end 

 for i=1:n-1 

   K(2*i+1:2*i+2,2*i+3:2*i+4)=k2; 

   K(2*i+1:2*i+2,2*i+1:2*i+2)=k1+k4; 

end 

K(2*n+1:2*n+2,2*n+1:2*n+2)=k4; 

 

K; 

 

mi1=[156 22*L 54 -13*L; 

     22*L 4*L^2 13*L -3*L^2; 

     54 13*L 156 -22*L; 

     -13*L -3*L^2 -22*L 4*L^2]; 

 

 m1=mi1(1:2,1:2); 

m2=mi1(1:2,3:4); 

m3=mi1(3:4,1:2); 

m4=mi1(3:4,3:4); 

 

M(1:2,1:2)=m1; 

M(1:2,3:4)=m2; 

 

for i=1:n 

   M(2*i+1:2*i+2,2*i-1:2*i)=m3; 



 

 

end 

 

for i=1:n-1 

   M(2*i+1:2*i+2,2*i+3:2*i+4)=m2; 

   M(2*i+1:2*i+2,2*i+1:2*i+2)=m1+m4; 

end 

M(2*n+1:2*n+2,2*n+1:2*n+2)=m4; 

 

M; 

 

K=K*kcof; 

M=M*mcof; 

 

KK=K([2:2*n 2*n+2],[2:2*n 2*n+2]); 

MM=M([2:2*n 2*n+2],[2:2*n 2*n+2]); 

 

fr=sqrt(eig(KK,MM)); 

 

r=(2*fr(4)*fr(2)/(fr(4)^2-fr(2)^2))*[fr(4) -fr(2);-1/fr(4) 1/fr(2)]*[ksi1;ksi2]; 

CC=r(1)*MM+r(2)*KK; 

for i=1:2*n 

    ksi(i)=r(1)/(2*fr(i))+r(2)*fr(i)/2; 

end 

disp('Her Modun Sönüm Oranı') 

ksi' 

 

fr=sort(sqrt(eig(KK,MM)))/(2*pi); 

disp('Hertz cinsinden Doğal frekanslar') 

vpa(fr,5) 

 

CC=0; 

 



 

 

% Newmark Integration Method 

 

beta=1/4; gama=0.5; 

T1=1/fr(1); 

dt=1/(fr(20)*20); tson=T1/alfa; 

dof=2*n; 

 

adimsay=tson/dt+1; 

adimsay=int32(adimsay); 

adimsay=double(adimsay); 

 

dep=zeros(adimsay,dof); 

hiz=zeros(adimsay,dof); 

ivm=zeros(adimsay,dof); 

zaman=zeros(adimsay,dof); 

 

u0=zeros(dof,1); 

ud0=zeros(dof,1); 

 

% kuvvetler üretiliyor 

 

F0=zeros(dof,adimsay); 

FG=-100; 

dtnod=tson/n; 

 

adimsay1=dtnod/dt; 

adimsay1=int32(adimsay1); 

adimsay1=double(adimsay1); 

 

%Hareket eden yük tanımlanıyor 

zz=1; 

for i=2:2:dof-2; 



 

 

 k=1; 

 for stp=(zz*adimsay1-adimsay1)+1:zz*adimsay1+1;  

     F0(i,stp)=FG*(adimsay1-(adimsay1-(k-1)))/adimsay1; 

     k=k+1; 

 end    

 k=1; 

 for stp=zz*adimsay1+1:zz*adimsay1+adimsay1+1;  

     F0(i,stp)=FG*(adimsay1-(k-1))/adimsay1; 

     k=k+1; 

 end    

 zz=zz+1; 

end  

  

udd0=MM\(F0(:,1)-CC*ud0-KK*u0); 

 

 dep(1,1:dof)=u0'; 

 hiz(1,1:dof)=ud0'; 

 ivm(1,1:dof)=udd0'; 

 zaman(1,1:dof)=0; 

sayac=2; 

t=dt; 

 

a0=1/(beta*dt^2); a1=gama/(beta*dt); a2=1/(beta*dt); a3=1/(2*beta)-1; 

a4=gama/beta-1; 

a5=(dt/2)*(gama/beta-2); a6=dt*(1-gama); a7=gama*dt; 

 

KK=KK+a0*MM+a1*CC; 

 

[L,U]=lu(KK); 

ss=2; 

while t<=tson;   

 F=F0(:,ss)+MM*(a0*u0+a2*ud0+a3*udd0)+CC*(a1*u0+a4*ud0+a5*udd0); 



 

 

 z=inv(L)*F; 

 u1=inv(U)*z; 

  udd1=a0*(u1-u0)-a2*ud0-a3*udd0; 

 ud1=ud0+a6*udd0+a7*udd1; 

  

 for i=1:dof 

   dep(sayac,i)=u1(i); 

   hiz(sayac,i)=ud1(i); 

   ivm(sayac,i)=udd1(i); 

 end 

  

 zaman(sayac,1)=t; 

  sayac=sayac+1; 

 t=t+dt; 

  

 u0=u1; 

 ud0=ud1; 

 udd0=udd1; 

 ss=ss+1;  

end     

 

minx=min(dep(:,n))*1000; 

maxx=max(dep(:,n))*1000; 

 

plot(zaman(:,1),dep(:,n),'red') 

xlabel('Time(sec)') 

ylabel('Displacement (m)') 

 

minx 

bu=-12.13592233010; 

minx/bu 

toc 



 

 

pinned_pinned.txt 

 

/config,nres,20000 

b=0.01 

h=0.01 

a=b*h 

iz=b*h*h*h/12 

 

/prep7 

et,1,beam3 

r,1,a,iz,h 

mp,ex,1,2.06e11 

mp,dens,1,7860 

mp,nuxy,1,0.3 

 

l1=1 

n1=10 

ntoplam=n1+1 

dx1=l1/n1 

 

!Birinci Kısım Oluşturuluyor  

k=1 

*do,x,0,l1,dx1 

n,k,x,0 

k=k+1 

*enddo 

  

type,1 

real,1 

*do,k,1,n1,1 

e,k,k+1 

k=k+1 



 

 

*enddo 

eplot 

 

/solu 

antype,2 

modopt,lanb,10 

d,1,ux,0 

d,1,uy,0 

d,ntoplam,ux,0 

d,ntoplam,uy,0 

solve 

 

*get,f1,mode,1,freq 

*get,f2,mode,2,freq 

*get,f3,mode,3,freq 

*get,f4,mode,4,freq 

*get,f5,mode,5,freq 

*get,f6,mode,6,freq 

*get,f7,mode,7,freq 

*get,f8,mode,8,freq 

*get,f9,mode,9,freq 

*get,f10,mode,10,freq 

 

FINISH  

 

f0=-100 

alfa=2 

v=alfa*l1*f1 

tson=l1/v 

t10=1/f10 

dt=t10/10 

 



 

 

/solu 

antype,4 

outres,all,all 

kbc,0 

deltim,dt 

 

nbas=1 

f,nbas,fy,f0 

time,dt/100 

solve 

 

nbit=nbas+n1 

nort=nbas+(n1/2) 

 

dtnod=tson/n1 

 

*do,nd,nbas+1,nbit,1 

f,nd-1,fy,0 

f,nd,fy,f0 

time,(nd-1)*dtnod 

solve 

*enddo 

 

 

finish 

/post26 

nsol,2,nort,u,y 

plvar,2 

 

 

 

 



 

 

frame.m 

 

clc 

clear 

tic; 

             %Çubuklara ait Bilgiler----------------------------------- 

len1=1; 

len2=1; 

len3=1;              

 

%len1=input('Birinci cubugun Boyunu Giriniz='); 

%len2=input('Ikinci cubugun Boyunu Giriniz='); 

%len3=input('Üçüncü cubugun Boyunu Giriniz='); 

%n1=input('Ilk çubukta kullanilacak eleman sayisi='); 

%n2=input('Ikinci çubukta kullanilacak eleman sayisi='); 

%n3=input('Üçüncü çubukta kullanilacak eleman sayisi='); 

%Ro1=input('Ilk çubugun yogunlugunu giriniz='); 

%Ro2=input('Ikinci çubugun yogunlugunu giriniz='); 

%Ro3=input('Üçüncü çubugun yogunlugunu giriniz='); 

%E1=input('Ilk çubugun elastisite modülünü giriniz='); 

%E2=input('Ikinci çubugun elastisite modülünü giriniz='); 

%E3=input('Üçüncü çubugun elastisite modülünü giriniz='); 

Ro1=7860; 

Ro2=7860; 

Ro3=7860; 

n1=10; 

n2=n1*len2/len1; 

 

if rem(n2,2)~=0, 

   

disp('n2 kirisinin orta noktasinin olabilmesi için n1 için girdiginiz degeri 

degistiriniz!'); 



 

 

break; 

else 

n2=n2; 

 

n3=n1*len3/len1; 

E1=206e9; 

E2=206e9; 

E3=206e9; 

 

alfa=4.5;%input('alfa degerini giriniz='); 

 

%b1=input('Ilk çubugun genisligini giriniz='); 

%b2=input('Ikinci çubugun genisligini giriniz='); 

%b3=input('Üçüncü çubugun genisligini giriniz='); 

b1=0.01; 

b2=0.01; 

b3=0.01; 

%t1=input('Ilk çubugun yüksekligini giriniz='); 

%t2=input('Ikinci çubugun yüksekligini giriniz='); 

%t3=input('Üçüncü çubugun yüksekligini giriniz='); 

t1=0.01; 

t2=0.01; 

t3=0.01; 

 

A1=b1*t1; 

I1=b1*t1^3/12; 

 

%A1=(pi*0.04^2/4); 

%I1=(pi*0.04^4/64); 

 

A2=b2*t2; 

I2=b2*t2^3/12; 



 

 

 

%A2=(pi*0.04^2/4); 

%I2=(pi*0.04^4/64); 

 

A3=b3*t3; 

I3=b3*t3^3/12; 

 

%A3=(pi*0.04^2/4); 

%I3=(pi*0.04^4/64); 

 

q1=90; 

q2=0; 

q3=270; 

%q1=input('Ilk çubugun yatayla yaptigi açiyi giriniz(Derece olarak)='); 

%q2=input('Ikinci çubugun yatayla yaptigi açiyi giriniz(Derece olarak)='); 

%q3=input('Üçüncü çubugun yatayla yaptigi açiyi giriniz(Derece olarak)='); 

 

c1=cos(q1*pi/180); 

s1=sin(q1*pi/180); 

c2=cos(q2*pi/180); 

s2=sin(q2*pi/180); 

c3=cos(q3*pi/180); 

s3=sin(q3*pi/180); 

 

%1. Çubugun  rijitlik,kütle, ve geometrik matrisleri------------------------------- 

 

%E2=E1; 

%E3=E1; 

%Ro2=Ro1; 

%Ro3=Ro1; 

 

l1=len1/n1; 



 

 

mcof1=(Ro1*A1*l1)/420; 

kcof1=(E1*I1)/l1^3; 

R1=A1*l1^2/I1; 

 

m1=zeros(3*(n1+1)); 

k1=zeros(3*(n1+1)); 

 

ki1=[R1 0 0 -R1 0 0; 

     0 12 6*l1 0 -12 6*l1; 

     0 6*l1 4*l1^2 0 -6*l1 2*l1^2; 

   -R1 0 0 R1 0 0; 

     0 -12 -6*l1 0 12 -6*l1; 

     0 6*l1 2*l1^2 0 -6*l1 4*l1^2]; 

 

 db1=[c1 s1 0 0 0 0; 

   -s1 c1 0 0 0 0; 

   0 0 1 0 0 0 ; 

   0 0 0 c1 s1 0; 

   0 0 0  -s1 c1 0; 

   0 0 0 0 0 1]; 

    

    

kd1=db1'*ki1*db1; 

 

k11=kd1(1:3,1:3); 

k12=kd1(1:3,4:6); 

k13=kd1(4:6,1:3); 

k14=kd1(4:6,4:6); 

 

k1(1:3,1:3)=k11; 

k1(1:3,4:6)=k12; 

 



 

 

 for i=1:n1-1 

   k1(3*i+1:3*i+3,3*i-2:3*i)=k13; 

   k1(3*i+1:3*i+3,3*i+1:3*i+3)=k11+k14; 

   k1(3*i+1:3*i+3,3*i+4:3*i+6)=k12; 

 end    

     

k1(3*n1+1:3*n1+3,3*n1-2:3*n1)=k13; 

k1(3*n1+1:3*n1+3,3*n1+1:3*n1+3)=k14; 

 

k1; 

 

mi1=[140 0 0 70 0 0; 

   0 156 22*l1 0 54 -13*l1; 

   0 22*l1 4*l1^2 0 13*l1 -3*l1^2; 

   70 0 0 140 0 0; 

   0 54 13*l1 0 156 -22*l1; 

   0 -13*l1 -3*l1^2 0 -22*l1 4*l1^2]; 

 

md1=db1'*mi1*db1; 

m11=md1(1:3,1:3); 

m12=md1(1:3,4:6); 

m13=md1(4:6,1:3); 

m14=md1(4:6,4:6); 

 

m1(1:3,1:3)=m11; 

m1(1:3,4:6)=m12; 

 

 for i=1:n1-1 

   m1(3*i+1:3*i+3,3*i-2:3*i)=m13; 

   m1(3*i+1:3*i+3,3*i+1:3*i+3)=m11+m14; 

   m1(3*i+1:3*i+3,3*i+4:3*i+6)=m12; 

 end    



 

 

     

m1(3*n1+1:3*n1+3,3*n1-2:3*n1)=m13; 

m1(3*n1+1:3*n1+3,3*n1+1:3*n1+3)=m14; 

 

m1; 

 

k1=k1*kcof1; 

m1=m1*mcof1; 

 

%2. Çubugun  rijitlik,kütle, ve geometrik matrisleri------------------------------- 

  

l2=len2/n2; 

mcof2=(Ro2*A2*l2)/420; 

kcof2=(E2*I2)/l2^3; 

R2=A2*l2^2/I2; 

 

 

m2=zeros(3*(n2+1)); 

k2=zeros(3*(n2+1)); 

 

ki2=[R2 0 0 -R2 0 0; 

   0 12 6*l2 0 -12 6*l2; 

   0 6*l2 4*l2^2 0 -6*l2 2*l2^2; 

   -R2 0 0 R2 0 0; 

   0 -12 -6*l2 0 12 -6*l2; 

   0 6*l2 2*l2^2 0 -6*l2 4*l2^2]; 

 

db2=[c2 s2 0 0 0 0; 

   -s2 c2 0 0 0 0; 

   0 0 1 0 0 0 ; 

   0 0 0 c2 s2 0; 

   0 0 0  -s2 c2 0; 



 

 

   0 0 0 0 0 1]; 

 

kd2=db2'*ki2*db2; 

 

k21=kd2(1:3,1:3); 

k22=kd2(1:3,4:6); 

k23=kd2(4:6,1:3); 

k24=kd2(4:6,4:6); 

 

k2(1:3,1:3)=k21; 

k2(1:3,4:6)=k22; 

 

 for i=1:n2-1 

   k2(3*i+1:3*i+3,3*i-2:3*i)=k23; 

   k2(3*i+1:3*i+3,3*i+1:3*i+3)=k21+k24; 

   k2(3*i+1:3*i+3,3*i+4:3*i+6)=k22; 

 end    

     

k2(3*n2+1:3*n2+3,3*n2-2:3*n2)=k23; 

k2(3*n2+1:3*n2+3,3*n2+1:3*n2+3)=k24; 

 

k2; 

 

mi2=[140 0 0 70 0 0; 

   0 156 22*l2 0 54 -13*l2; 

   0 22*l2 4*l2^2 0 13*l2 -3*l2^2; 

   70 0 0 140 0 0; 

   0 54 13*l2 0 156 -22*l2; 

   0 -13*l2 -3*l2^2 0 -22*l2 4*l2^2]; 

 

md2=db2'*mi2*db2; 

m21=md2(1:3,1:3); 



 

 

m22=md2(1:3,4:6); 

m23=md2(4:6,1:3); 

m24=md2(4:6,4:6); 

 

m2(1:3,1:3)=m21; 

m2(1:3,4:6)=m22; 

 

 for i=1:n2-1 

   m2(3*i+1:3*i+3,3*i-2:3*i)=m23; 

   m2(3*i+1:3*i+3,3*i+1:3*i+3)=m21+m24; 

   m2(3*i+1:3*i+3,3*i+4:3*i+6)=m22; 

 end    

     

m2(3*n2+1:3*n2+3,3*n2-2:3*n2)=m23; 

m2(3*n2+1:3*n2+3,3*n2+1:3*n2+3)=m24; 

 

m2; 

 

k2=k2*kcof2; 

m2=m2*mcof2; 

 

%3. Çubugun  rijitlik,kütle, ve geometrik matrisleri------------------------------- 

  

l3=len3/n3; 

mcof3=(Ro3*A3*l3)/420; 

kcof3=(E3*I3)/l3^3; 

R3=A3*l3^2/I3; 

 

m3=zeros(3*(n3+1)); 

k3=zeros(3*(n3+1)); 

 

ki3=[R3 0 0 -R3 0 0; 



 

 

   0 12 6*l3 0 -12 6*l2; 

   0 6*l3 4*l3^2 0 -6*l3 2*l3^2; 

   -R3 0 0 R3 0 0; 

   0 -12 -6*l3 0 12 -6*l3; 

   0 6*l3 2*l3^2 0 -6*l3 4*l3^2]; 

 

db3=[c3 s3 0 0 0 0; 

   -s3 c3 0 0 0 0; 

   0 0 1 0 0 0 ; 

   0 0 0 c3 s3 0; 

   0 0 0 -s3 c3 0; 

   0 0 0 0 0 1]; 

    

 kd3=db3'*ki3*db3; 

 

k31=kd3(1:3,1:3); 

k32=kd3(1:3,4:6); 

k33=kd3(4:6,1:3); 

k34=kd3(4:6,4:6); 

 

k3(1:3,1:3)=k31; 

k3(1:3,4:6)=k32; 

 

 for i=1:n3-1 

   k3(3*i+1:3*i+3,3*i-2:3*i)=k33; 

   k3(3*i+1:3*i+3,3*i+1:3*i+3)=k31+k34; 

   k3(3*i+1:3*i+3,3*i+4:3*i+6)=k32; 

 end    

     

k3(3*n3+1:3*n3+3,3*n3-2:3*n3)=k33; 

k3(3*n3+1:3*n3+3,3*n3+1:3*n3+3)=k34; 

 



 

 

k3; 

 

mi3=[140 0 0 70 0 0; 

   0 156 22*l3 0 54 -13*l3; 

   0 22*l3 4*l3^2 0 13*l3 -3*l3^2; 

   70 0 0 140 0 0; 

   0 54 13*l3 0 156 -22*l3; 

   0 -13*l3 -3*l3^2 0 -22*l3 4*l3^2]; 

 

md3=db3'*mi3*db3; 

 

m31=md3(1:3,1:3); 

m32=md3(1:3,4:6); 

m33=md3(4:6,1:3); 

m34=md3(4:6,4:6); 

 

m3(1:3,1:3)=m31; 

m3(1:3,4:6)=m32; 

 

 for i=1:n3-1 

   m3(3*i+1:3*i+3,3*i-2:3*i)=m33; 

   m3(3*i+1:3*i+3,3*i+1:3*i+3)=m31+m34; 

   m3(3*i+1:3*i+3,3*i+4:3*i+6)=m32; 

 end    

     

m3(3*n3+1:3*n3+3,3*n3-2:3*n3)=m33; 

m3(3*n3+1:3*n3+3,3*n3+1:3*n3+3)=m34; 

 

m3; 

 

k3=k3*kcof3; 

m3=m3*mcof3; 



 

 

 

%Sistem matrisleri olusturuluyor----------------------------------- 

 

K=zeros(3*(n1+n2+n3+1)); 

M=zeros(3*(n1+n2+n3+1)); 

 

K(1:3*(n1+1),1:3*(n1+1))=k1; 

K(3*(n1+1)-2:3*(n1+n2+1),3*(n1+1)-2:3*(n1+n2+1))=k2; 

K(3*(n1+n2+1)-2:3*(n1+n2+n3+1),3*(n1+n2+1)-2:3*(n1+n2+n3+1))=k3; 

K(3*(n1+1)-2:3*(n1+1),3*(n1+1)-2:3*(n1+1))=k1(3*(n1+1)-2:3*(n1+1),3*(n1+1)-

2:3*(n1+1))+k2(1:3,1:3); 

K(3*(n1+n2+1)-2:3*(n1+n2+1),3*(n1+n2+1)-2:3*(n1+n2+1))=k2(3*(n2+1)-

2:3*(n2+1),3*(n2+1)-2:3*(n2+1))+k3(1:3,1:3); 

 

M(1:3*(n1+1),1:3*(n1+1))=m1; 

M(3*(n1+1)-2:3*(n1+n2+1),3*(n1+1)-2:3*(n1+n2+1))=m2; 

M(3*(n1+n2+1)-2:3*(n1+n2+n3+1),3*(n1+n2+1)-2:3*(n1+n2+n3+1))=m3; 

M(3*(n1+1)-2:3*(n1+1),3*(n1+1)-2:3*(n1+1))=m1(3*(n1+1)-2:3*(n1+1),3*(n1+1)-

2:3*(n1+1))+m2(1:3,1:3); 

M(3*(n1+n2+1)-2:3*(n1+n2+1),3*(n1+n2+1)-2:3*(n1+n2+1))=m2(3*(n2+1)-

2:3*(n2+1),3*(n2+1)-2:3*(n2+1))+m3(1:3,1:3); 

 

K; 

M; 

KK=K(4:3*(n1+n2+n3+1)-3,4:3*(n1+n2+n3+1)-3); 

MM=M(4:3*(n1+n2+n3+1)-3,4:3*(n1+n2+n3+1)-3); 

 

[V,D]=eig(KK,MM); 

 

fr=sort(sqrt(eig(KK,MM)))/(2*pi); 

vpa(fr,5) 

CC=0; 



 

 

 

% Newmark Integration Method 

 

beta=1/4; gama=0.5; 

T1=1/fr(1); 

dt=1/(fr(20)*20); tson=T1/alfa; 

dof=3*(n1+n2+n3)-3; 

 

adimsay=tson/dt+1; 

adimsay=int32(adimsay); 

adimsay=double(adimsay); 

 

dep=zeros(adimsay,dof); 

hiz=zeros(adimsay,dof); 

ivm=zeros(adimsay,dof); 

zaman=zeros(adimsay,dof); 

 

u0=zeros(dof,1); 

ud0=zeros(dof,1); 

 

% kuvvetler üretiliyor 

 

F0=zeros(dof,adimsay); 

FG=-100; 

dtnod=tson/n2; 

 

adimsay1=dtnod/dt; 

adimsay1=int32(adimsay1); 

adimsay1=double(adimsay1); 

 

%Hareket eden yük tanımlanıyor 

k=1; 



 

 

for stp=1:adimsay1+1; 

    F0(3*n1-1,stp)=FG*(adimsay1-(k-1))/adimsay1; 

    k=k+1; 

end 

zz=1; 

for i=3*n1+2:3:3*(n1+n2)-4; 

 k=1; 

 for stp=(zz*adimsay1-adimsay1)+1:zz*adimsay1+1;  

     F0(i,stp)=FG*(adimsay1-(adimsay1-(k-1)))/adimsay1; 

     k=k+1; 

 end    

 k=1; 

 for stp=zz*adimsay1+1:zz*adimsay1+adimsay1+1;  

     F0(i,stp)=FG*(adimsay1-(k-1))/adimsay1; 

     k=k+1; 

 end    

 zz=zz+1; 

end  

   

k=1; 

for stp=zz*adimsay1+1:zz*adimsay1+adimsay1+1; 

  F0(3*(n1+n2)-1,stp)=FG*(adimsay1-(adimsay1-(k-1)))/adimsay1; 

     k=k+1; 

 end 

udd0=MM\(F0(:,1)-CC*ud0-KK*u0); 

 

 dep(1,1:dof)=u0'; 

 hiz(1,1:dof)=ud0'; 

 ivm(1,1:dof)=udd0'; 

 zaman(1,1:dof)=0; 

sayac=2; 

t=dt; 



 

 

 

a0=1/(beta*dt^2); a1=gama/(beta*dt); a2=1/(beta*dt); a3=1/(2*beta)-1; 

a4=gama/beta-1; 

a5=(dt/2)*(gama/beta-2); a6=dt*(1-gama); a7=gama*dt; 

 

KK=KK+a0*MM+a1*CC; 

 

[L,U]=lu(KK); 

ss=2; 

 

while t<=tson;   

 

 F=F0(:,ss)+MM*(a0*u0+a2*ud0+a3*udd0)+CC*(a1*u0+a4*ud0+a5*udd0); 

 z=inv(L)*F; 

 u1=inv(U)*z; 

  

 udd1=a0*(u1-u0)-a2*ud0-a3*udd0; 

 ud1=ud0+a6*udd0+a7*udd1; 

  

 for i=1:dof 

   dep(sayac,i)=u1(i); 

   hiz(sayac,i)=ud1(i); 

   ivm(sayac,i)=udd1(i); 

 end 

  

 zaman(sayac,1)=t; 

   

 sayac=sayac+1; 

 t=t+dt; 

  

 u0=u1; 

 ud0=ud1; 



 

 

 udd0=udd1; 

 ss=ss+1;  

end     

on=3*n1-3+((n2+1)*3+1)/2; 

minx=min(dep(:,on))*1000; 

maxx=max(dep(:,on))*1000; 

 

plot(zaman(:,1),dep(:,on),'red') 

 %subplot(3,1,1),plot(zaman(:,1),dep(:,on)*1000,'b.-') 

%xlabel('Time(sn)') 

%ylabel('Displacement (mm)') 

%subplot(3,1,2),plot(zaman(:,1),hiz(:,on)*1000,'b.-') 

%xlabel('Time(sn)') 

%ylabel('Velocity (mm/sn)') 

%subplot(3,1,3),plot(zaman(:,1),ivm(:,on)*1000,'b.-') 

%xlabel('Time(sn)') 

%ylabel('Acceleration (mm/sn^2)') 

 

end 

 

toc 

 

 

 

 

 

 

 

 

 

 

 



 

 

frame.txt 

/config,nres,10000 

b=0.01 

h=0.01 

a=b*h 

iz=b*h*h*h/12 

 

/prep7 

et,1,beam3 

r,1,a,iz,h 

mp,ex,1,2.06e11 

mp,dens,1,7860 

mp,nuxy,1,0.3 

 

l1=1 

l2=1 

l3=1 

 

n1=10 

n2=10 

n3=10 

ntoplam=n1+n2+n3+1 

 

dx1=l1/n1 

dx2=l2/n2 

dx3=l3/n3 

 

!Birinci Kısım Oluşturuluyor  

k=1 

*do,y,0,l1,dx1 

n,k,0,y 

k=k+1 



 

 

*enddo 

!İkinci Kısım Oluşturuluyor  

*do,x,dx2,l2-dx2,dx2 

n,k,x,l1 

k=k+1 

*enddo 

!Üçüncü Kısım Oluşturuluyor  

*do,y,l3,0,-dx3 

n,k,l2,y 

k=k+1 

*enddo 

 

type,1 

real,1 

*do,k,1,n1+n2+n3,1 

e,k,k+1 

k=k+1 

*enddo 

eplot 

 

/solu 

antype,2 

modopt,lanb,10 

d,1,all,0 

d,ntoplam,all,0 

solve 

 

*get,f1,mode,1,freq 

*get,f2,mode,2,freq 

*get,f3,mode,3,freq 

*get,f4,mode,4,freq 

*get,f5,mode,5,freq 



 

 

*get,f6,mode,6,freq 

*get,f7,mode,7,freq 

*get,f8,mode,8,freq 

*get,f9,mode,9,freq 

*get,f10,mode,10,freq 

 

FINISH  

 

f0=-100 

alfa=1 

v=alfa*l2*f1 

tson=l2/v 

t10=1/f10 

dt=t10/20 

 

/solu 

antype,4 

outres,all,all 

kbc,0 

deltim,dt 

 

nbas=n1+1 

f,nbas,fy,f0 

time,dt/100 

solve 

 

nbit=nbas+n2 

nort=nbas+(n2/2) 

 

dtnod=tson/n2 

 

*do,nd,nbas+1,nbit,1 



 

 

f,nd-1,fy,0 

f,nd,fy,f0 

time,(nd-(n1+1))*dtnod 

solve 

*enddo 

finish 

/post26 

nsol,2,nort,u,y 

plvar,2 

 


