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Çetin DİŞİBÜYÜK
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RATIONAL BÉZIER CURVES

ABSTRACT

In this thesis, we introduce a generalization of rational Bézier curves using

q-Bernstein Bézier polynomilas. We generate these curves by a de Casteljau

algorithm, which is a generalization of that relating to classical case. The explicit

formula of intermediate points of de Casteljau algorithm is obtained. These points

of de Casteljau algorithm are expressed in terms of q-differences. In the process

of subdivision, the change of basis matrix between Bernstein Bézier basis and

q-Bernstein Bézier basis is used. We study degree elevation of rational q-Bernstein

Bézier curves. Finally, it is shown that rational q-Bernstein Bézier curves can be

represented in matrix form.

Keywords: q-Bernstein polynomials, Rational q-Bernstein Bézier curves, de

Casteljau algorithm, subdivision, degree elevation.
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RASYONEL BÉZİER EĞRİLERİ

ÖZ

q-Bernstein Bézier polinomları kullanılarak rasyonel Bézier eğrileri genelleştirildi.

Bu eğriler genelleştirilmiş de Casteljau algoritması kullanılarak elde edildi. de

Casteljau algoritmasının ara noktaları q-farklar ile ifade edildi. Bernstein Bézier

tabanı ve q-Bernstein Bézier tabanı arasında dönüşüm matrisi kullanarak

subdivision yapıldı. q-Bernstein Bézier eğrilerinin derecesi yükseltildi. Son olarak,

q-Bernstein Bézier eğrileri matris formunda gösterildi.

Anahtar sözcükler: q-Bernstein polinomları, Rasyonel q-Bernstein Bézier

eğrileri, de Casteljau algoritması, subdivision, derece yükseltme.
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2.1 q-BERNSTEIN BÉZIER POLYNOMIALS . . . . . . . . . . . . . 12

2.2 ONE PARAMETER FAMILY of BÉZIER CURVES . . . . . . . . 14
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CHAPTER ONE

INTRODUCTION

We first give some basics of Bernstein Bézier polynomials which may be found

in (Farin, 2002). We investigate certain properties of Bézier curves and rational

Bézier curves.

1.1 BERNSTEIN BÉZIER POLYNOMIALS

In Computer Aided Design (CAD) and Computer Aided Geometric Design (CAGD)

systems, it is important to have information about the shape of the curve we use.

In general, it is not possible to talk about the shape of the curve represented in

the form
∑

bit
i by investigating the coefficients bi’s. However, it is possible for

the curve which has the form

n∑
i=0

bi

(
n

i

)
ti(1− t)n−i, t ∈ [0, 1], bi ∈ E2 or E3.

This representation is known as Bézier representation. The points bi’s give

information about the shape of the curve. We first give some of the basics of

this representation. The basis functions

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, . . . , n, (1.1.1)

is called Bernstein Bézier polynomials of degree n. It can easily be verified that

Bernstein Bézier polynomials satisfy the recurrence relation

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t). (1.1.2)

1
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The Bernstein Bézier polynomials have partition of unity property which follows

from the Binomial Theorem

1 = ((1− t) + t)n =
n∑

i=0

(
n

i

)
ti(1− t)n−i,

the endpoint condition

Bn
i (0) = δi,0, Bn

i (1) = δi,n

and symmetry property

Bn
i (t) = Bn

n−i(1− t). (1.1.3)

These properties are significant for design purpose. Figure 1.1 shows the graphs

of cubic Bernstein Bézier polynomials for t ∈ [0, 1].

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1.1: Cubic Bernstein Bézier polynomials.
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1.2 BÉZIER CURVES

A parametric Bézier curve is defined by

P (t) =
n∑

i=0

biB
n
i (t). (1.2.1)

The points bi ∈ E2 or E3 are called Bézier points, or control points and the

polygon formed by connecting bi with bi+1 for all i is called Bézier polygon, or

control polygon. Figure 1.2 illustrates a Bézier polygon and its quantic Bézier

curve P (t).

b0

b1

b2

b3

b4

Figure 1.2: A Bézier polygon and its quantic Bézier curve.

The properties of Bézier curves:

1. Convex hull property: Convex hull of a point set is the convex region formed

by all convex combinations of points. Since Bernstein Bézier polynomials have

partition of unity and nonnegative for all t ∈ [0, 1], the Bézier curve lies in the

convex hull of Bézier polygon.
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2. Affine invariance property: Bézier curves are invariant under affine maps. This

means that the following procedures give the same result:

i) Compute P (t) and then apply an affine map to it.

ii) Apply the map to the control points then evaluate Bézier curve.

These two curves are the same.

3. Endpoint interpolation property: The curve passes through the points b0 and

bn. That is,

P (0) = b0, P (1) = bn

4. Variation diminishing property: The number of times any straight line intersect

the curve is bounded by the number of times the line intersect the control polygon.

Namely, the curve does not oscillate about any straight line more often than the

control polygon.

5. Symmetry property: Let P1(t) be a Bézier curve with the control points

b0, . . . , bn and P2(t) be a Bézier curve with the control points ci = bn−i,

i = 0, . . . , n. These two curves that correspond to the two different ordering

of polygons look the same. They differ only in the direction in which they are

traversed,
n∑

i=0

biB
n
i (t) =

n∑
i=0

bn−iB
n
n−i(1− t).

As a result of these properties, the shape of the curve mimics the shape of the

control polygon.

One of the shortcomings of this simple but powerful Bézier curve technique is

that making a change in a control point globally changes the curve. If a Bézier

point bi is moved to a new position b̃i, then all points on the Bézier curve move

towards b̃i in a direction parallel to b̃i− bi. Figure 1.3 shows the effect of moving

one point of the Bézier points.
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b0

b1

b2

b3
b*

b4

Figure 1.3: Effect of moving the point b2 to the point b∗.

1.2.1 The de Casteljau Algorithm

Given the points b0, b1, . . . , bn and t ∈ R, set

br
i (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t),

{
r = 1, . . . , n

i = 0, . . . , n− r
(1.2.2)

and b0
i (t) = bi for all i. Then it can be shown by induction on n that bn

0 (t) is the

point with the parameter value t on the Bézier curve P (t). Hence by continuity

bn
0 (t) = P (t). The intermediate points br

i (t) can be put in a triangular array of

points.

b0

b1

.

.

bn

b1
0

.

.

b1
n−1

.

.

.

.

. bn
0
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The intermediate points of the de Casteljau algorithm obtained explicitly as

br
i (t) =

r∑
j=0

bi+jB
r
j (t) (1.2.3)

which are also Bézier curves.

1.2.2 Subdivision

Using the de Casteljau algorithm we can subdivide a Bézier curve into two Bézier

curve segments which join together at a point t0 ∈ (0, 1). The part of the curve

that corresponds to the interval [0, t0] can be defined by a control polygon whose

vertices b
l(l)
i are b

(l)
i = bi

0(t0). It follows from the symmetry property that the

control points b
(r)
i for the part corresponding to [t0, 1] are given by b

(r)
i = bn−i

i (t0).

b0

b1 b2

b3

b
1
0

b
1
1

b
1
2

b
2
0

b
2
1

b
3
0

Figure 1.4: Subdivision of cubic Bézier curve in the de Casteljau algorithm.
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Thus the curve segments are

P[0,t0](t) =
n∑

i=0

b
(l)
i Bn

i (t), P[t0,1](t) =
n∑

i=0

b
(r)
i Bn

i (t)

and

P[0,1](t) = P[0,t0](t) ∪ P[t0,1](t) =
n∑

i=0

biB
n
i (t).

For further investigation of Bézier curves and surfaces (See Farin, 2002)

1.2.3 Degree elevation

One of the methods to make Bézier curve more flexible is to represent the same

curve using a higher degree Bernstein Bézier polynomials associated with a

different set of control points. This process is called degree elevation.

For this purpose we write P (t) = (1− t)P (t) + tP (t). Since

(1− t)Bn
i (t) = n+1−i

n+1
Bn+1

i (t) and tBn
i (t) = i+1

n+1
Bn+1

i+1 (t) we have

P (t) =
n∑

i=0

n + 1− i

n + 1
biB

n+1
i (t) +

n∑
i=0

i + 1

n + 1
biB

n+1
i+1 (t).

Extending the upper limit of the first sum to n + 1, shifting the index of the

second sum to the limits 1 to n + 1 and then extending the lower limit to 0 we

obtain

P (t) =
n+1∑
i=0

n + 1− i

n + 1
biB

n+1
i (t) +

n+1∑
i=0

i

n + 1
bi−1B

n+1
i (t).

Then

P (t) =
n+1∑
i=0

(
n + 1− i

n + 1
bi +

i

n + 1
bi−1

)
Bn+1

i (t). (1.2.4)

Thus, the new control points denoted by b1
i are

b1
i =

i

n + 1
bi−1 +

(
1− i

n + 1

)
bi, i = 0, . . . , n + 1. (1.2.5)
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Notice that control points b1
0, . . . , b

1
n+1 and b0, . . . , bn describe the same Bézier

curve with the basis Bn+1
i (t) and Bn

i (t) respectively and degree elevation

interpolates the end points, that is b1
0 = b0 and b1

n+1 = bn.

1.3 RATIONAL BÉZIER CURVES

Bézier curves can be used to represent a wide variety of curves. But the conic

sections cannot be represented in Bézier form. In order to be able to include conic

sections in the set of representable curves in Bézier form, we turn to Rational

Bézier curves.

The motivating idea is to take an nth degree Rational Bézier curve in E3 as the

projection of an nth degree Bézier curve in E4 into the hyperplane w = 1.

Rational Bézier curve R(t) is defined by

R(t) =

∑n
i=0 wibiB

n
i (t)∑n

i=0 wiBn
i (t)

R(t), bi ∈ E3 (1.3.1)

The positive real values wi are called weights and the points bi are the control

points which is the projection of the 4D control points [wibi wi]
T . If the weights

are set to wi = 1 for all i, then we obtain polynomial Bézier curves.

Rational Bézier curves have the following properties

1. Convex hull property holds when all wi > 0 and the Bézier polygon

approximately describe the shape of the curve.

2. Endpoint interpolation: The first and the last points of the curve coincide

with the control points b0, bn respectively.

3. if all wi > 0 then variation diminishing property holds.

4. Rational Bézier curves are affinely and projectively invariant. Projectively

invariant means that the following procedure gives the same result:
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i) Compute P (t) and then project it to the hyperplane w = 1.

ii) Project the control polygon points [wibi wi]
T to the hyperplane and then

evaluate Bézier curve.

If we increase the weight wi then all points on the curve move towards the

control point bi, if we decrease the weight wi then all point of the curve move

away from bi.

Figure 1.5 shows rational Bézier curves with different weights and the same

Bézier polygon

w0=w1=w2=w3=1 w0=w1=w3=1,w2=10 w0=w1=w3=1,w2=0.5

b0

b1 b2

b3 b0

b1 b2

b3 b0

b1 b2

b3

Figure 1.5: Rational Bézier curves with different weights and the same Bézier polygon.

1.3.1 The de Casteljau Algorithm

We now show that the de Casteljau algorithm can be extended to compute

rational Bézier curves. By applying it to the homogeneous coordinates [wibi wi]
T .

Namely, compute the de Casteljau algorithm for the weights and the weighted

control points.
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Let ci = [wibi wi]
T be the control points of a 4D curve. Then by (1.2.2)

cr
i (t) = (1− t)cr−1

i (t) + tcr−1
i+1 (t). (1.3.2)

with c0
i = ci in E4 which we can write

wr
i (t)b

r
i (t) = (1− t)wr−1

i (t)br−1
i (t) + twr−1

i+1 (t)br−1
i+1 (t) (1.3.3)

where

wr
i (t) = (1− t)wr−1

i (t) + twr−1
i+1 (t) (1.3.4)

with b0
i = bi, w0

i = wi for all i. Then we see by induction on n that

cn
0 (t) = P (t) and bn

0 (t) = R(t).

The explicit form of the intermediate point br
i (t) is given by

br
i (t) =

∑r
j=0 wi+jbi+jB

r
j (t)∑r

j=0 wi+jBr
j (t)

(1.3.5)

which are also rational Bézier curves.

As in the standard Bézier curves, de Casteljau algorithm maybe used to

subdivide a rational Bézier curve into two curve segments. The control points

and the weights corresponding to the interval [0, t0] are respectively given by

b
(l)
i = bi

0(t0), w
(l)
i = wi

0(t0) i = 0, 1, . . . , n.

The control points and the weights corresponding to the interval [t0, 1] are

b
(r)
i = bn−i

i (t0), w
(r)
i = wn−i

i (t0) i = 0, 1, . . . , n.

We may also represent a rational Bézier curve of degree n by a rational Bézier

curve of degree n + 1 to increase the flexibility of the curve. One can do this

by degree elevating the 4D control polygon with vertices [wibi wi]
T and then

projecting it into hyperplane w = 1. Using a similar technique as in the Bézier
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curves, the control points b1
i of degree elevated curve are

b1
i =

i
n+1

wi−1bi−1 +
(
1− i

n+1

)
wibi

i
n+1

wi−1 +
(
1− i

n+1

)
wi

, i = 0, 1, . . . , n + 1. (1.3.6)

The weights w1
i of the new control points are

w1
i =

i

n + 1
wi−1 +

(
1− i

n + 1

)
wi, i = 0, 1, . . . , n + 1. (1.3.7)



CHAPTER TWO

GENERALIZATION of BÉZIER CURVES

In this chapter, following the papers (Goodman, Oruç & Phillips (1999); Oruç

& Phillips (1999); Phillips (1996)) we outline geometric properties of q-Bernstein

Bézier curves which is a generalization of Bernstein Bézier curves.

2.1 q-BERNSTEIN BÉZIER POLYNOMIALS

q-Bernstein Bézier polynomial are first introduced in (See Phillips, 1997) as a

generalization of Bernstein polynomial and studied in (Goodman, Oruç & Phillips

(1999); Oruç & Phillips (1999); Phillips (1996)) in view of geometric modelling.

One parameter family (q, the parameter) of Bernstein Bézier polynomials (called

q-Bernstein Bézier polynomials) are defined by

Bn,q
i (t) =

[
n

i

]
ti

n−i−1∏
s=0

(1− qst), t ∈ [0, 1], 0 6 i 6 n, (2.1.1)

where an empty product denotes 1 and the parameter q is a positive real number.

For the sake of simplicity, we denote Bn,q
i (t) by Bn

i (t) unless the parameter q

is emphasized. The q-binomial coefficient
[
n
i

]
, which is also called a Gaussian

polynomial see (See Andrews, 1998), is defined as

[
n

i

]
=

[n][n− 1] · · · [n− i + 1]

[i][i− 1] · · · [1]
(2.1.2)

for 0 6 i 6 n, and has the value 1 when i = 0 and the value 0 otherwise. Here [i]

denotes a q-integer, defined by

[i] =

{
(1− qi)/(1− q), q 6= 1,

i, q = 1.
(2.1.3)

12
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When q=1 the q-binomial coefficients reduces to the usual binomial coefficients.

The q-binomial coefficient satisfies the following recurrence relations

[
n

i

]
= qn−i

[
n− 1

i− 1

]
+

[
n− 1

i

]
(2.1.4)

and [
n

i

]
=

[
n− 1

i− 1

]
+ qi

[
n− 1

i

]
(2.1.5)

Using (2.1.4) it is easily shown by induction on n that

(1− t)(1− qt) · · · (1− qn−1t) =
n∑

i=0

(−1)iqi(i−1)/2

[
n

i

]
ti (2.1.6)

It follows by using (2.1.4) in (2.1.1) that Bn
i (t) can be computed recursively

by

Bn
i (t) = qn−itBn−1

i−1 (t) + (1− qn−i−1t)Bn−1
i (t). (2.1.7)

Similarly on using (2.1.5) in (2.1.1) we have

Bn
i (t) = tBn−1

i−1 (t) + (qi − qn−1t)Bn−1
i (t), (2.1.8)

(See Oruç & Phillips, 2003).

q-Bernstein Bézier polynomials have partition of unity property and endpoint

condition but do not hold the symmetry property (1.1.3).

The following new result will be needed to prove subdivision formula for

q-Bernstein Bézier curves.

Lemma 2.1.1. Let Bn
i (t) be q-Bernstein Bézier polynomial and let c ∈ (0, 1) be

a fixed real. Then

Bn
i (ct) =

n∑
j=0

Bj
i (c)B

n
j (t) (2.1.9)

Proof. Let M be a (n + 1) × (n + 1) matrix and its elements be Mi,j = Bi
j(ct)

i = 0, . . . , n and j = 0, . . . , n.
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It is clear that the matrix M is lower triangular matrix with nonzero diagonal

elements. It follows that each diagonal element of M is an eigenvalue of M . Since

the eigenvalues are distinct the matrix M can be written as M = PDP−1 where D

is diagonal matrix whose elements Di,i are the eigenvalues of M , Di,i = citi. It is

computed from the product that the elements Pi,j of the matrix P are Pi,j =

[
i

j

]

and the elements of the matrix P−1 are (P−1)i,j = (−1)i−jq(i−j−1)(i−j)/2

[
i

j

]
. These

matrices are obtained in the factorization of the Vandermonde matrix at the

q-integer nodes (See Oruç & Akmaz, 2004). Now we can write

M = PDP−1 = PD1D2P
−1, where D1 and D2 are diagonal matrices with

elements (D1)i,i = ti and (D2)i,i = ci, i = 0, 1, . . . , n. Then it follow from

M = PD1P
−1PD2P

−1 = TC

that the matrices T and C have the elements Ti,j = Bi
j(t) and Ci,j = Bi

j(c)

respectively. Thus by multiplication rule of two matrices we obtain

Mn,i = Bn
i (ct) =

n∑
j=0

Tn,jCj,i =
n∑

j=0

Bn
j (t)Bj

i (c),

which completes the proof.

2.2 ONE PARAMETER FAMILY of BÉZIER CURVES

One parameter family of Bézier curves (called q-Bernstein Bézier curves) of degree

n is defined by

P (t) =
n∑

i=0

bi

[
n

i

]
ti

n−i−1∏
j=0

(1− qjt). (2.2.1)

Note that if we set the parameter q to the value 1, we obtain ordinary Bézier

curve.

The properties of q-Bernstein Bézier curve:
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1. Convex hull property holds when 0 < q 6 1 and the Bézier polygon

approximately describe the shape of the curve.

2. Affine invariance property holds.

3. The curve passes through the endpoints b0 and bn.

P (0) = b0, P (1) = bn

4. If q ∈ (0, 1] then the variation diminishing property holds.

Figure 2.6 depicts two q-Bernstein Bézier curves with the same control polygon

but different values of q.

b0

b1 b2

b3

q=.1

q=.9

Figure 2.6: Two q-Bernstein Bézier curves with different values of q.

The q-Bernstein Bézier curve can be expressed in terms of q-differences. We

define q-differences by

∆0bi = bi
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for i = 0, 1, . . . , n and, recursively

∆k+1bi = ∆kbi+1 − qk∆kbi. (2.2.2)

for k = 0, 1, . . . , n − i − 1. When q = 1, these q-differences reduces to ordinary

forward differences. It is easily established by induction that

∆kbi =
k∑

r=0

(−1)rqr(r−1)/2

[
k

r

]
bi+k−r. (2.2.3)

Then one may obtain the q-difference form

P (t) =
n∑

r=0

[
n

r

]
∆rb0 tr. (2.2.4)

(See Phillips, 1997)

2.2.1 The de Casteljau Algorithm

A generalization of the de Casteljau algorithm to compute q-Bernstein Bézier

curves, is given in (Phillips, 1996)

br
i (t) = (qi − qr−1t)br−1

i + tbr−1
i+1 ,

{
r = 0, 1, . . . , n

i = 0, 1, . . . , n− r
(2.2.5)

The intermediate points of the de Casteljau type algorithm obtained explicitly as

br
i (t) =

r∑
j=0

bi+j

[
r

j

]
tj

r−j−1∏
s=0

(qi − qst). (2.2.6)

These points may be written in terms of q-differences as

br
i (t) =

r∑
j=0

q(r−j)i

[
r

j

]
tj∆jbi (2.2.7)
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(See Phillips, 1996). Note that the parameter value q = 1 reduces to the usual

de Casteljau algorithm.

2.2.2 Degree Elevation

This process for the q-Bernstein Bézier curve is studied in (Oruç & Phillips,

2003).The formulas

(1− qn−it)Bn
i (t) =

[n + 1− i]

[n + 1]
Bn+1

i (2.2.8)

and

(qn−it)Bn
i (t) =

(
1− [n− i]

[n + 1]

)
Bn+1

i+1 (t) (2.2.9)

which follow from (2.1.1) will be useful.

First write the curve P (t) in the form

P (t) = (1− qn−it)P (t) + qn−itP (t)

and then use the identities (2.2.8) and (2.2.9) to obtain

P (t) =
n∑

i=0

[n + 1− i]

[n + 1]
biB

n+1
i (t) +

n∑
i=0

(
1− [n− i]

[n + 1]

)
biB

n+1
i+1 (t)

Now, we may write these two summation by shifting their limits

P (t) =
n+1∑
i=0

[n + 1− i]

[n + 1]
biB

n+1
i (t) +

n+1∑
i=0

(
1− [n + 1− i]

[n + 1]

)
bi−1B

n+1
i (t)

where b−1 is set to zero vector. Comparing coefficients of both sides of the last

equation, the new control points b1
i are obtained as follows:

b1
i =

(
1− [n + 1− i]

[n + 1]

)
bi−1 +

[n + 1− i]

[n + 1]
bi, i = 0, 1 . . . , n + 1. (2.2.10)



CHAPTER THREE

GENERALIZATION of RATIONAL BÉZIER CURVES

In this chapter, we generalize rational Bézier curves. A de Casteljau algorithm

is obtained to compute q-Bernstein Bézier curves. We give explicit formulas for

the intermediate points of the de Casteljau algorithm. Subdivision and degree

elevation of rational q-Bernstein Bézier curves are also studied. Finally, we

represent this curve in matrix form by using a change of basis matrix.

3.1 ONE PARAMETER FAMILY of RATIONAL BÉZIER CURVES

We introduce a generalization of q-Bernstein Bézier curves via rational approach.

An analogues technique is used as in the section (2.2). One may consider a one

parameter family of rational q-Bernstein curve of degree n in E3 as the projection

of nth degree q-Bernstein Bézier curve in E4 into hyperplane w = 1.

Let R(t) ∈ E3 be a point of nth degree rational q-Bernstein Bézier curve. We

may identify R(t) ∈ E3 with [R(t), 1]T ∈ E4. This point for t ∈ [0, 1] is the

projection of a point [w(t)R(t) w(t)]T which lies on the curve of degree n in 4D.

The fourth component w(t) of this point must be nth degree polynomial in t, and

may be expressed in terms of q-Bernstein Bézier polynomials by

w(t) =
n∑

i=0

wiB
n
i (t), where wi ∈ R.

We now may write

w(t)

[
R(t)

1

]
=

[
R(t)

∑n
i=0 wiB

n
i (t)∑n

i=0 wiB
n
i (t)

]
.

18
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The left hand side of the equation is an nth degree rational curve, and we have

n∑
i=0

[
pi

wi

]
Bn

i (t) =

[
R(t)

∑n
i=0 wiB

n
i (t)∑n

i=0 wiB
n
i (t)

]

with the some points pi ∈ E3. Thus,

n∑
i=0

piB
n
i (t) = R(t)

n∑
i=0

wiB
n
i (t)

and hence

R(t) =

∑n
i=0 piB

n
i (t)∑n

i=0 wiBn
i (t)

.

Setting pi = wibi gives

R(t) =

∑n
i=0 wibiB

n
i (t)∑n

i=0 wiBn
i (t)

. (3.1.1)

The points bi form the control points of the rational curve R(t). The numbers wi

are called weights associated with bi. Here wi > 0 for all values of i.

3.1.1 The de Casteljau Algorithm

The usual de Casteljau algorithm may be adopted to rational q-Bernsetein Bézier

curves by projecting each intermediate de Casteljau point [wr
i b

r
i wr

i ]
T into E3.

The de Casteljau type algorithm for a 4D polynomial Bézier curve is

cr
i (t) = (qi − qr−1t)cr−1

i (t) + tcr−1
i+1 (t),

{
r = 1, 2, . . . , n

i = 0, 1, . . . , n− r

where ci are the points of control polygon vertices of 4D curve in homogeneous

form

ci =

[
pi

wi

]
=

[
wibi

wi

]
.
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Hence,

cr
i (t) =

[
wr

i b
r
i

wr
i

]
= (qi − qr−1t)

[
wr−1

i br−1
i

wr−1
i

]
+ t

[
wr−1

i+1 br−1
i+1

wr−1
i+1

]
.

and

wr
i = (qi − qr−1t)wr−1

i + twr−1
i+1 .

Since the projection of the points gives intermediate de Casteljau points for

rational q-Bernstein Bézier curve we obtain

br
i (t) =

(qi − qr−1t)wr−1
i br−1

i + twr−1
i+1 br−1

i+1

wr
i

,

{
r = 1, 2, . . . , n

i = 0, 1, . . . , n− r
(3.1.2)

where,

wr
i = (qi − qr−1t)wr−1

i + twr−1
i+1 ,

{
r = 1, 2, . . . , n

i = 0, 1, . . . , n− r

Theorem 3.1.1. Each intermediate point br
i (t) of the de Casteljau algorithm

(3.1.2) can be expressed as

br
i (t) =

∑r
j=0 wi+jbi+j

[
r
j

]
tj

∏r−j−1
s=0 (qi − qst)

∑r
j=0 wi+j

[
r
j

]
tj

∏r−j−1
s=0 (qi − qst)

,

{
r = 1, 2, . . . , n

i = 0, 1, . . . , n− r
(3.1.3)

Proof. We use induction on r. First denote the expression
[
r
j

]
tj

∏r−j−1
s=0 (qi − qst)

by Cr
i,j. It is easily seen from (3.1.3) that

br
i (t) =

∑r
j=0 wi+jbi+jC

r
i,j∑r

j=0 wi+jCr
i,j

For r = 0 it is clear that b0
i (t) = b0

i , the control points.

Let us assume that (3.1.3) holds for a given r, 0 6 r < n and for 0 6 i 6 n− r.

The proof is complete if we show (3.1.3) is true for r + 1, 0 6 r + 1 < n and for

0 6 i 6 n− r − 1. By (3.1.2) we have

br+1
i (t) =

(qi − qrt)wr
i b

r
i + twr

i+1b
r
i+1

wr+1
i

, i = 0, 1, . . . , n− r − 1
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It follows from the fact wr
i (t) =

∑r
j=0 wi+jC

r
i,j (See Phillips, 1996) that the last

equation yields

br+1
i (t) =

(qi − qrt)
∑r

j=0 wi+jbi+jC
r
i,j + t

∑r
j=0 wi+j+1bi+j+1C

r
i+1,j∑r+1

j=0 wi+jC
r+1
i,j

Shifting the index of the second summation of the numerator we have

br+1
i =

∑r
j=0(q

i − qrt)wi+jbi+jC
r
i,j +

∑r+1
j=1 twi+jbi+jC

r
i+1,j−1∑r+1

j=0 wi+jC
r+1
i,j

(3.1.4)

Note that

r−j∏
s=0

(qi+1 − qst) = (qi+1 − t)

r−j∏
s=1

(qi+1 − qst) = (qi+1 − t)qr−j

r−j∏
s=1

(qi − qs−1t)

= (qi+1 − t)qr−j

r−j−1∏
s=0

(qi − qst).

Then using the last equation in (3.1.4) we have

br+1
i (t) =

wibi(q
i − qr)Cr+1

i,0 +
∑r

j=1 wi+jbi+jt
j
∏r−j−1

s=0 (qi − qst)Ar,j + wi+r+1bi+r+1t
r+1

∑r+1
j=0 wi+jC

r+1
i,j

where

Ar,j =
([

r
j

]
(qi − qrt) +

[
r

j−1

]
(qi+1 − t)qr−j

)
.

Rearranging Ar,j and using the identities (2.1.4) and (2.1.5) we obtain

Ar,j = qi

([
r

j

]
+ qr+1−j

[
r

j − 1

])
−qr−jt

(
qj

[
r

j

]
+

[
r

j − 1

])
= (qi−qr−jt)

[
r + 1

j

]
.

Thus,

br+1
i (t) =

wibiC
r+1
i,0 +

∑r
j=1 wi+jbi+jC

r+1
i,j + wi+r+1bi+r+1t

r+1

∑r+1
j=0 wi+jC

r+1
i,j
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and

br+1
i (t) =

∑r+1
j=0 wi+jbi+j

[
r+1

j

]
tj

∏r−j
s=0(q

i − qst)
∑r+1

j=0 wi+j

[
r+1

j

]
tj

∏r−j
s=0(q

i − qst)
,

which completes the induction.

Corollary 3.1.1. The intermediate point bn
0 (t) of the de Casteljau algorithm, with

a value t is on the rational q-Bernstein Bézier curve R(t). Hence by continuity

bn
0 (t) = R(t).

Another way to deduce the above formula is to find the intermediate points of

de Casteljau type algorithm of nth degree curve in 4D and project them into the

hyperplane w = 1.

We can also show that br
i (t) can be expressed in terms of q-differences.

Theorem 3.1.2. The intermediate points of the de Casteljau type algorithm can

be expressed as

br
i (t) =

∑r
j=0 q(r−j)i

[
r
j

]
Mj (wibi)t

j

∑r
j=0 q(r−j)i

[
r
j

]
Mj witj

where Mj (wibi) =Mj−1 (wi+1bi+1)− qj−1 Mj−1 (wibi).

Proof. It is proved in (Phillips, 1996) that

wr
i (t) =

r∑
j=0

wi+jC
r
i,j =

r∑
j=0

q(r−j)i

[
r

j

]
Mj wit

j,

{
r = 1, 2, . . . , n

i = 0, 1, . . . , n− r
(3.1.5)

From the equation (3.1.3) we have

br
i (t) =

∑r
j=0 wi+jbi+jC

r
i,j∑r

j=0 wi+jCr
i,j

.

Setting ci+j = wi+jbi+j and writing (3.1.5) in the numerator and the dominator

of the last equation gives

br
i (t) =

∑r
j=0 ci+jC

r
i,j∑r

j=0 wi+jCr
i,j

=

∑r
j=0 q(r−j)i

[
r
j

]
Mj ci t

j

∑r
j=0 q(r−j)i

[
r
j

]
Mj wi tj

=

∑r
j=0 q(r−j)i

[
r
j

]
Mj (wibi) tj

∑r
j=0 q(r−j)i

[
r
j

]
Mj wi tj

,
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and this completes the proof.

As a consequence of the above theorem we have the following result.

Corollary 3.1.2. The rational q-Bernstein Bézier curve can be expressed in

q-differences

bn
0 (t) =

∑n
j=0

[
n
j

]
Mj (w0b0) tj

∑n
j=0

[
n
j

]
Mj w0 tj

.

3.1.2 Subdivision

In standard rational Bézier curves, in the first step of subdivision we use the

intermediate points of the de Casteljau algorithm to have two different new curves

which join together at the some point t0 ∈ (0, 1) to form the original curve. The

curve with the control points bi
0(t0) is the left part of the rational curve with the

weights wi
0(t). The curve with the control points bn−i

i (t0) gives the right part of

the rational curve with the weights wn−i
i (t). In general the simplest choice is to

take t0 = 1/2.

In the second step we use the same procedure to both curves and have four

control polygons. If this procedure is repeated k times we have 2k curve segments

and the corresponding control polygons. As k → ∞ all points of the control

polygons lies on the original curve, (Micchelli, 1995).

Theorem 3.1.3. Let R(t) be a rational q-Bernstein Bézier curve of degree n with

control points bi, i = 0, 1, . . . , n. Then the part of the curve that correspond to the

interval [0, c], c ∈ (0, 1) denoted by R[0,c](t) is

R[0,c](t) =

∑n
j=0 wj

0(c)b
j
0(c)B

n
j (t)

∑n
j=0 wj

0(c)B
n
j (t)

, t ∈ [0, 1] (3.1.6)

where bj
0(c) and wj

0(c) are evaluated from the de Casteljau type algorithm (3.1.2).
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Proof. From (3.1.1) we have

R[0,1](t) =

∑n
i=0 wibiB

n
i (t)∑n

i=0 wiBn
i (t)

, t ∈ [0, 1].

Note that if t ∈ [0, 1] then ct ∈ [0, c] where c ∈ (0, 1). So we can find the part of

the curve that correspond to the part [0, c] as

R[0,c](t) =

∑n
i=0 wibiB

n
i (ct)∑n

i=0 wiBn
i (ct)

, t ∈ [0, 1].

By using (2.1.9) we obtain

R[0,c](t) =

∑n
i=0 wibi

∑n
j=0 Bj

i (c)B
n
j (t)

∑n
i=0 wi

∑n
j=0 Bj

i (c)B
n
j (t)

,

and equivalently

R[0,c](t) =

∑n
j=0

∑n
i=0 wibiB

j
i (c)B

n
j (t)

∑n
j=0

∑n
i=0 wiB

j
i (c)B

n
j (t)

.

Since, Bj
i (c) = 0 for i > j we have

R[0,c](t) =

∑n
j=0

∑j
i=0 wibiB

j
i (c)B

n
j (t)

∑n
j=0

∑j
i=0 wiB

j
i (c)B

n
j (t)

.

It follows from (3.1.3) and (2.2.6) that

R[0,c](t) =

∑n
j=0 wj

0(c)b
j
0(c)B

n
j (t)

∑n
j=0 wj

0(c)B
n
j (t)

, t ∈ [0, 1].

However, the q-analogue of the de Casteljau type algorithm (3.1.2) does not

lead to clear subdivision formula for the curve that correspond to the part [c, 1]

because of the lack of the symmetry property (1.1.3). It may be too complicated

to compute a q-Bernstein Bézier curve except the interval [0, t0]. We cope with

this difficulty as follows.
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Let φ = {φ0, φ1, . . . , φn} and ψ = {ψ0, ψ1, . . . , ψn} with elements

φi =
(

n
i

)
ti(1 − t)n−i, ψi =

[
n
i

]
ti

∏n−i−1
s=0 (1 − qst), i = 0, 1, . . . , n represent the

bases for polynomials of degree at most n.

The change of basis matrix M satisfying ψT = MφT is obtained in (Oruç &

Phillips, 2003) and the elements Mi,j of M are

Mi,j =

[
n
i

]
(

n
j

)(1− q)j−iS(n− i− 1, j − i),

where S(n, k) = 0 for k < 0 and k > n, S(n, 0) = 1 for n > −1 and S(n, k)

satisfies the recurrence relation

S(n, k) = S(n− 1, k) + [n]S(n− 1, k − 1).

So, for any rational q-Bernstein Bézier curve with 0 < q < 1 to find

new control polygon and new weights we transform the control polygon of

projected non-rational Bézier curve by multiplying by the matrix M . That is

(c0, c1, . . . , cn)M = (c̃0, c̃1, . . . , c̃n)

where ci =

[
wibi

wi

]
, c̃i =

[
w̃ib̃i

w̃i

]
. Here b̃i are new control points and w̃i

are corresponding new weights. Now we can find subdivision formulas for the

curves that correspond to the part [0, c] and [c, 1]. After finding curve segments

and associated control polygons we transform these polygons by multiplying the

matrix M−1 to represent the curve segments as q-Bernstein Bézier curves.

Example 3.1.1. Let us have rational q-Bernstein Bézier curve with q = 1/2,

Bézier points

b0 =

[
0

0

]
, b1 =

[
1

1

]
, b2 =

[
2

0

]
, b3 =

[
3

1

]

with the weights w0 = 1, w1 = 2, w2 = 2, w3 = 1 respectively.

Let us subdivide this rational q-Bernstein Bézier curve into two q-rational
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Bézier curve segments which join together at the point corresponding to t = 1/2.

After transformation of rational q-Bernstein Bézier curve to the rational Bézier

curve we get new control points and corresponding weights as:

b̃0 =

[
0

0

]
, b̃1 =

[
14/19

14/19

]
, b̃2 =

[
14/9

14/45

]
, b̃3 =

[
3

1

]

w̃0 = 1, w̃1 = 19/12, w̃2 = 15/8, w̃3 = 1

now we can use standard subdivision procedure to get new control polygons these

are

b̃l
0 =

[
0

0

]
, b̃l

1 =

[
14/31

14/31

]
, b̃l

2 =

[
126/145

14/29

]
, b̃l

3 =

[
122/99

50/99

]

with the weights

w̃l
0 = 1, w̃l

1 = 31/24, w̃l
2 = 145/96, w̃l

3 = 99/64

and

b̃r
0 =

[
122/99

50/99

]
, b̃r

1 =

[
30/19

10/19

]
, b̃r

2 =

[
142/69

38/69

]
, b̃r

3 =

[
3

1

]

with the weights

w̃r
0 = 99/64, w̃r

1 = 19/12, w̃r
2 = 23/16, w̃r

3 = 1

respectively.

Here b̃l
i’s denote the control point of left rational Bézier curve and b̃r

i ’s

denote the control points of the right rational Bézier curve. It is remain to

transform these rational Bézier curves to the rational q-Bernstein Bézier curves.

After transformation we get the control points for the left q-rational Bézier curve

as:

bl
0 =

[
0

0

]
, bl

1 =

[
2/3

2/3

]
, bl

2 =

[
14/13

6/13

]
, bl

3 =

[
122/99

50/99

]
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with the weights

wl
0 = 1, wl

1 = 3/2, wl
2 = 13/8, wl

3 = 99/64

respectively, and the control points for the right rational q-Bernstein Bézier curve

are

br
0 =

[
122/99

50/99

]
, br

1 =

[
1310/721

390/721

]
, br

2 =

[
1434/595

338/595

]
, br

3 =

[
3

1

]

with the weights

wr
0 = 99/64, wr

1 = 103/64, wr
2 = 85/64, wr

3 = 1

The graph of these two curves are shown in the following figure

Figure 3.7: The dashed curve is curve segment corresponding to the interval [0, 1/2]
and the other curve segment is corresponding to the interval [1/2, 1].
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3.1.3 Degree Elevation

Degree elevation can be extended to rational q-Bernstein Bézier curves.

Theorem 3.1.4. An nth degree rational q-Bernstein Bézier curve R(t) can be

represented as a rational q-Bernstein Bézier curve of degree n + 1.

R(t) =

∑n
i=0 wibiB

n
i (t)∑n

i=0 wiBn
i (t)

=

∑n+1
i=0 w1

i b
1
i B

n+1
i (t)∑n+1

i=0 w1
i B

n+1
i (t)

where

w1
i b

1
i =

(
1− [n + 1− i]

[n + 1]

)
wi−1bi−1 +

[n + 1− i]

[n + 1]
wibi

w1
i =

(
1− [n + 1− i]

[n + 1]

)
wi−1 +

[n + 1− i]

[n + 1]
wi

for i = 0, 1, . . . , n + 1

Proof. For the q-Bernstein Bézier curve it is shown in section (2.2) that

n∑
i=0

biB
n
i (t) =

n+1∑
i=0

b1
i B

n+1
i (t)

where

b1
i =

(
1− [n + 1− i]

[n + 1]

)
bi−1 +

[n + 1− i]

[n + 1]
bi, i = 0, 1, . . . , n + 1

Since both the numerator and the denominator express q-Bernstein Bézier curve,

we degree elevate them separetely giving

∑n
i=0 wibiB

n
i (t)∑n

i=0 wiBn
i (t)

=

∑n+1
i=0 w1

i b
1
i B

n+1
i (t)∑n

i=0 w1
i B

n+1
i (t)

,

where

w1
i b

1
i =

(
1− [n + 1− i]

[n + 1]

)
wi−1bi−1 +

[n + 1− i]

[n + 1]
wibi.



29

3.1.4 Matrix Representation of Rational q-Bernstein Bézier Curves

We follow the work (Oruç & Phillips, 2003). Let Ψ = (Bn
0 (t), . . . , Bn

n(t)) and

Φ = (1, t, . . . , tn). Both Ψ and Φ form a basis for the space of the polynomials

of degree at most n. Thus we can find a transformation matrix M such that

ΨT = MΦT . Since

Bn
j (t) =

[
n

j

]
tj

n−j−1∏
s=0

(1− qst),

from (2.1.6), we obtain

Bn
j (t) =

n−j∑

k=0

(−1)kqk(k−1)/2

[
n

j

][
n− j

k

]
tj+k.

Shifting the limits of the above sum and writing

[
n− j

k − j

]
=

[
n
k

][
k
j

]
[
n
j

] ,

we deduce that

Bn
j (t) =

n∑

k=j

(−1)k−jq(k−j)(k−j−1)/2

[
n

k

][
k

j

]
tk.

Since
[
k
j

]
= 0 for k < j we can write

Bn
j (t) =

n∑

k=0

(−1)k−jq(k−j)(k−j−1)/2

[
n

k

][
k

j

]
tk.

Thus the elements Mi,j of M are

Mj,k = (−1)k−jq(k−j)(k−j−1)/2

[
n

k

][
k

j

]
tk.

The rational q-Bernstein Bézier curve of the form

R(t) =

∑n
i=0 wibiB

n
i (t)∑n

i=0 wiBn
i (t)
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can be interpreted as

R(t) =
[w0b0, . . . , wnbn]ΨT

[w0, . . . , wn]ΨT
.

Thus we deduce that

R(t) =
[w0b0, . . . , wnbn]MΦT

[w0, . . . , wn]MΦT
. (3.1.7)

If we set q = 1 then this representation reduce to the matrix representation of

rational Bézier curves.

Another approach to find matrix representation of rational q-Bernstein Bézier

curve R(t) is to use homogeneous coordinates ci = [wibi wi]
T which are control

points of projected q-Bernstein Bézier curve P (t) of degree n in 4D. The matrix

representation of this curve is P (t) = [c0, . . . , cn]ΨT = [c0, . . . , cn]MΦT , if P (t) is

projected into the hyperplane w = 1 we obtain (3.1.7).
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