
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

NEURAL NETWORK BASED OPTIMIZATION IN
PRODUCTION SCHEDULING

by

Derya EREN AKYOL

September, 2006

İZMİR

NEURAL NETWORK BASED OPTIMIZATION IN
PRODUCTION SCHEDULING

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in

Industrial Engineering, Industrial Engineering Program

by

Derya EREN AKYOL

September, 2006

İZMİR

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “NEURAL NETWORK BASED OPTIMIZATION

IN PRODUCTION SCHEDULING” completed by DERYA EREN AKYOL under

supervision of PROF. DR. G. MİRAÇ BAYHAN and we certify that in our opinion it is

fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. G. Miraç BAYHAN

Supervisor

Prof. Dr. Semra TUNALI Prof. Dr. Cüneyt GÜZELİŞ

Thesis Committee Member Thesis Committee Member

Prof. Dr. Demir ASLAN Assoc. Prof. Tijen ERTAY

Examining Committee Member Examining Committee Member

Prof. Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 ii

ACKNOWLEDGMENTS

First and foremost I would like to express my deepest gratitude and thanks to my

supervisor Prof. Dr. G. Miraç Bayhan for her support, friendly encouragement,

guidance, and valuable advice throughout the progress of this dissertation.

 I would like to express my sincere thanks to Prof. Dr. Cüneyt Güzeliş, a member

of my dissertation committee, for generously sharing his time and valuable

knowledge. I would also like to thank, another member of my committee, Prof. Dr.

Semra Tunalı for her helpful comments and suggestions.

Special thanks go to Prof. Dr. Demir Aslan who introduced me the idea of using

neural networks in scheduling.

I would like to thank Dr. Hatice Doğan for her helps when I needed.

I would like to express my thanks to all the professors and colleagues in the

Department of Industrial Engineering for their support.

I would also like to thank my friends Dr. Gonca Tuncel, Özlem Uzun Araz,

Ceyhun Araz for their encouragement and friendship.

Finally, I would like to express my indebtedness and many thanks to my parents,

Metin Nami Eren and Müveddet Eren, my sister Oya, my brother Mete for their love,

confidence, encouragement and endless support in my whole life. I would like to

express my special thanks and deep appreciation to my husband Osman Altuğ Akyol

for his love, support, companion and patience who always turned difficult times into

joy with his smile and understanding.

 Derya Eren Akyol

 iii

NEURAL NETWORK BASED OPTIMIZATION IN PRODUCTION

SCHEDULING

ABSTRACT

Although a large number of approaches such as mathematical programming,

dispatching rules, expert systems, and neighborhood search to the modeling and

solution of scheduling problems have been reported in the literature, over the last

decade, there has been an explosion of interest in using artificial neural networks

(ANNs) for the solution of various scheduling problems.

The objective of this research is to utilize ANNs to deal with two different

scheduling problems. The first problem considered is the classical identical parallel

machine scheduling problem with makespan minimization. A dynamical gradient

type neural network, which employs a penalty function approach with time varying

coefficients, is proposed for the solution of the problem. Simulation outcomes of the

proposed approach are compared with those of the longest processing time (LPT)

rule and with the optimal solutions, for different sizes of scheduling problems. The

second problem is the scheduling of an independent jobs set with sequence-

dependent setups and distinct due dates on non-identical multi-machines to minimize

the total weighted earliness and tardiness. The original mixed integer formulation of

the problem is modified by adding one more constraint to the model to prevent the

assignment of two jobs at the same time to the first position. For this problem, an

interconnected neural network model which is composed of two maximum, three

piecewise linear and one log-sigmoid neural networks all of which interact with each

other is proposed. The proposed approach is tested on a scheduling problem and the

results are compared with optimum results of the linear programming solver.

Keywords: Scheduling, Artificial neural networks, Dynamical neural network,

Mixed integer formulation

 iv

ÜRETİM ÇİZELGELEMESİNDE YAPAY SİNİR AĞLARINA DAYALI EN

İYİLEME

ÖZ

Çizelgeleme problemlerinin çözümü ve modellenmesi için literatürde

matematiksel programlama, sevk etme kuralları, uzman sistemler ve komşu arama

yaklaşımları gibi çok sayıda yaklaşım rapor edilse de yapay sinir ağları son on yılda

çizelgeleme problemlerinin çözümü için kullanılma konusunda yoğun ilgi görmüştür.

Bu araştırmanın amacı, iki farklı çizelgeleme problemiyle uğraşmak için yapay

sinir ağlarından yararlanmaktır. Dikkate alınan ilk problem maksimum tamamlanma

süresini minimum yapma amacına sahip klasik özdeş makine çizelgeleme

problemidir. Problemin çözümü için zamanla değişen katsayılara sahip ceza

fonksiyonu yaklaşımı kullanan dinamik gradyan tip sinir ağı önerilmiştir. Önerilen

yaklaşım kullanılarak farklı boyuttaki çizelgeleme problemleri için elde edilen

benzetim sonuçları, en uzun işlem süresi kuralı sonuçları ve en iyi çözümler ile

karşılaştırılmıştır. İkinci problem, ağırlıklandırılmış erken bitirme ve gecikme

toplamını minimize etmek için özdeş olmayan makineler üzerinde sıra bağımlı

hazırlık süreleri ve farklı teslim süreleri içeren bağımsız işler setinin

çizelgelenmesidir. Problemin orijinal karışık tam sayı formülasyonu, ilk pozisyona

aynı anda iki iş atanmasının önlenmesi için bir kısıt eklenerek değiştirilmiştir. Bu

problem için birbirini etkileyen iki maksimum, 3 parçalı doğrusal, 1 tane log-sigmoid

sinir ağından oluşan birbirine bağlı sinir ağı modeli önerilmiştir. Önerilen yaklaşım

bir çizelgeleme probleminde test edilmiş ve sonuçlar doğrusal programlama

çözümleyicisinin en iyi sonuçları ile karşılaştırılmıştır.

Anahtar sözcükler: Çizelgeleme, Yapay sinir ağları, Dinamik sinir ağı, Karışık tam

sayı formülasyonu

 v

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE – INTRODUCTION .. 1

1.1 Background and Motivation.. 1

 1.2 Research Objective ... 2

1.3 Organization of the Thesis .. 4

CHAPTER TWO –OPTIMIZATION IN PRODUCTION SCHEDULING........ 6

2.1 Basic Concepts and Performance Criteria... 6

2.2 Optimization and Scheduling .. 10

2.3 Solution Approaches ... 11

2.3.1 Classical Methods.. 11

2.3.1.1 Mathematical Programming.. 12

2.3.1.2 Dynamic Programming ... 14

2.3.2 Constructive Heuristics.. 14

2.3.2.1 Dispatching Rules ... 14

2.3.2.2 Shifting Bottleneck Heuristic.. 16

2.3.3 Local Search Based Heuristics .. 16

2.3.3.1 Simulated Annealing.. 17

2.3.3.2 Tabu Search ... 17

2.3.3.3 Genetic Algorithms.. 18

 vi

2.3.3.4 Neural Networks .. 19

CHAPTER THREE – DYNAMICAL SYSTEMS FOR COMBINATORIAL

OPTIMIZATION... 21

3.1 Qualitative Analysis of Dynamical Systems ... 21

3.1.1 Liapunov’s First Method for the Stability of an Equilibrium Point 22

3.1.2 La Salle’s Invariance Theorem: Global Stability and Convergence 23

3.2 Dynamical Systems for Optimization ... 24

3.2.1 Gradient Based Systems .. 25

3.2.2 Hopfield Networks .. 26

3.2.2.1 Stability and convergence .. 28

CHAPTER FOUR – NEURAL NETWORKS IN PRODUCTION

SCHEDULING……………………………………………..………………………31

4.1 ANNs in Scheduling.. 31

4.2 Scheduling with Stand Alone Neural Networks.. 33

4.2.1 Hopfield Network and Its Extensions.. 33

4.2.2 Multilayer Perceptrons .. 40

4.2.3 Competitive Networks... 45

4.3 Scheduling with Hybrid Approaches .. 48

4.4 Scheduling with Evolutionary Artificial Neural Networks…………………..56

4.5 Summary and Future Research.. 60

 vii

CHAPTER FIVE – SOLUTION OF IDENTICAL PARALLEL MACHINE

SCHEDULING PROBLEM USING DYNAMICAL GRADIENT

NETWORKS……………………………………………………………………....69

5.1 Introduction ... 69

5.2 Problem Statement .. 72

5.3 Design of the Proposed Dynamical Gradient Network 73

5.3.1 The Network Architecture ... 73

5.3.2 The Energy Function ... 73

5.3.3 The Dynamics.. 77

5.3.4 Proof of Convergence .. 78

5.3.5 Selection of the Parameters ... 82

5.3.6 An example.. 85

5.4 Simulation Results... 86

5.5 Conclusions ... 97

CHAPTER SIX – SOLUTION OF MULTI-MACHINE EARLINESS AND

TARDINESS SCHEDULING PROBLEM USING AN INTERCONNECTED

NEURAL NETWORK APPROACH…………………………………………….99

6.1 Introduction ... 99

6.2 Problem Statement and Formulation... 102

6.3 Design of the Proposed Interconnected Neural Network.............................. 105

6.3.1 The Network Architecture ... 105

6.3.2 The Energy function .. 107

6.3.3 The Dynamics.. 112

 viii

6.3.4 Convergence .. 117

6.3.5 Selection of the Parameters ... 121

6.4 Simulation Results... 123

6.5 Conclusions ... 129

CHAPTER SEVEN – RESULTS ANALYSIS AND

DISCUSSION……………………….…………………………………………….131

CHAPTER EIGHT – CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS…………………………………………………………………….137

8.1 Conclusions ... 137

8.2 Future Research Directions ... 140

REFERENCES... 142

 ix

CHAPTER ONE

INTRODUCTION

In this chapter, the background, motivation and objectives of this work are stated,

and the organization of this dissertation is outlined.

1.1 Background and Motivation

Scheduling is one of the most important functions in manufacturing firms. It is the

allocation of available production resources to tasks over time to meet some set of

performance criteria. Typically the scheduling problem involves a set of jobs to be

completed, where each job comprises a set of operations to be performed (Rodammer

& White, 1989). These problems may arise in many fields of human activities such

as scheduling of machines in a workshop, activities of a project, classes at a

university, deliveries by a number of vehicles, flights of a fleet of airplanes,

applications in a computer system, and patients in an emergency room.

The machine scheduling involves two kinds of decisions: sequencing (the order in

which jobs are processed) and job-machine assignment. Machine scheduling

problems are grouped into several classes, and parallel machine scheduling is one of

these classes. In this thesis we will deal with this type of scheduling problem.

In the classical parallel machine scheduling problem, there are n jobs and m

machines. Each job needs to be executed on one of the machines during a fixed

processing time. Therefore, the aim is to find the schedule that optimizes a certain

performance measure. Many real life problems can be modeled as parallel machine

scheduling problems. Because, it is common to find more than one machine on

production lines each kind carrying out the production tasks (Mokotoff, 2001).

It is known that the scheduling problem which belongs to a class of combinatorial

optimization problems (COPs) is NP-hard. In the last decades, different solution

 1

 2

methods such as mathematical programming, dispatching rules, expert systems,

neighborhood search, and artificial neural networks (ANNs) have been proposed for

modeling and solution of scheduling problems. After the success of Hopfield & Tank

(1985), despite a vast amount of work existing in the literature, to find an efficient

method for obtaining optimal solutions in polynomial time motivated the researchers

to apply neural networks to scheduling problems and to compare their performance

with other techniques’. The motivation behind the Hopfield & Tank neural network

model was to take advantage of the great speed associated with the massively

parallel computing capabilities of neural networks for fast solution of combinatorial

optimization problems. Here, the motivation behind this research is to test the

success of ANNs in solving parallel machine scheduling problems and to conclude

about their performance. To the best of our knowledge, there are no previously

published works tried to solve these NP-hard problems using neural networks.

1.2 Research Objective

 In this thesis, we deal with two problems known to be NP hard. The first one is

the identical parallel machine scheduling problem with makespan minimization. For

the solution of this problem, we employ a dynamical gradient network. After the

appropriate energy function is constructed by using a penalty function approach, the

dynamics are defined by steepest gradient descent on the energy function. In this

approach, the integral constraints on the decision variables are relaxed during

computation and linear activation function is used to represent the continuous

variable in the model. In order to overcome the tradeoff problem encountered in

using the penalty function approach, a time varying penalty coefficient methodology

is proposed to be used during simulation experiments. We analyze the impact that the

initial conditions of the network have on the performance on 5 different data sets by

running each data set 20 times for different sizes of jobs and machines.

The second one is the problem of scheduling a set of independent jobs with

sequence-dependent setups and distinct due dates on non-identical multi-machines to

minimize the total weighted earliness and tardiness. The original mixed integer

 3

formulation of the problem given by Zhu & Heady (2000) is modified by adding one

more constraint to the model to prevent the assignment of two jobs at the same time

to the first position. An interconnected neural network is developed to solve the

problem. The proposed network is composed of two maximum neural networks,

three piecewise linear networks and one log-sigmoid network all of which interact

with each other. Since the model includes too many constraints to represent the

problem, the energy function obtained by the penalty function approach incorporates

many penalty terms corresponding to each constraint of the problem. Due to the

tradeoff problem among the penalty terms, it becomes very difficult to find the

values of the penalty parameters that result a feasible and a good solution. Some of

the penalty terms are tried to be eliminated by the proposed network. Therefore, log-

sigmoid and maximum networks are used to drop some of the penalty terms from the

energy function. By this way, it is aimed to reduce the network complexity and to

obtain a simplified energy function. Some of the binary constraints are satisfied

using log-sigmoid networks, some binary constraints and assignment constraints are

satisfied using maximum networks. A time varying penalty coefficient methodology

is also proposed to be used during simulation experiments to overcome the tradeoff

problem encountered in using the penalty function approach, and the proposed

approach is tested on a parallel machine scheduling problem.

The objectives of this thesis are listed below.

• To present a detailed evolutionary path of ANNs in production scheduling,

review the current research literature, classify the approaches according to

their architectures and to discuss several future research directions.

• To present a literature review on identical parallel machine scheduling and

earliness and tardiness scheduling models.

• To propose and evaluate dynamical gradient type neural network models for

solving two parallel machine scheduling problems namely the identical

parallel machine scheduling with makespan minimization, and the scheduling

 4

a set of independent jobs with sequence-dependent setups and distinct due

dates on non-identical multi-machines to minimize the total weighted

earliness and tardiness.

• To propose a penalty determination method in which the penalty parameters

vary with time, to overcome the tradeoff problem, the biggest drawback of

the penalty function approach used to construct the energy function of the

proposed gradient networks.

• To investigate the methods of reducing the complexity of the proposed

gradient network which is originally described by an energy function

including many penalty parameters.

• To provide the experiment results comparing the proposed neural network

method with dispatching rules and/or with the optimum solutions obtained by

a linear programming solver.

1.3 Organization of the Thesis

The organization of this dissertation is as follows.

Chapter 2 is an introduction to production scheduling. Some definitions and

concepts in scheduling theory are provided along with an overview of solution

approaches used for solving scheduling problems.

In Chapter 3, we consider a general continuous time dynamical system defined by

state equations and present the conditions for the global existence and uniqueness of

solutions. The definitions of equilibrium point, stable equilibrium point, asymptotic

stable equilibrium point are given followed by the explanation of stability analysis of

an equilibrium. La Salle’s invariance theorem which defines the conditions for

convergence of the solution are given and gradient based systems including Hopfield

networks are also described in this chapter.

 5

Chapter 4 presents an extensive review of the different neural network

implementations in solving the scheduling problems. A general overview of how

neural networks are used in solving scheduling problems and what makes them

appropriate tools for solving scheduling problems are given. Adopting a

chronological approach, the approaches are classified under three main categories:

(1) classical neural network approaches, (2) hybrid approaches, and (3) evolutionary

neural network approaches. The advantages, disadvantages and suitability of

approaches in each category for solving scheduling problems are discussed and

possible future research directions are given.

In Chapter 5, the problem of minimizing the maximum completion time

(makespan) of jobs on identical parallel machines is introduced and the relevant

literature review is given. The proposed dynamical gradient network is explained and

the convergence of the network is proved. The simulation results are given for

different sizes of problems on different data sets.

In Chapter 6, the problem of scheduling a set of independent jobs including

sequence dependent setup times, on non-identical multiple machines to minimize the

total weighted earliness and tardiness is studied and the relevant studies in the

literature are reviewed. The proposed interconnected network is presented and the

convergence of the network is discussed by extending La Salle’s invariance theorem

to systems with discontinuous right-hand sides. The proposed approach is illustrated

through the case of 8 jobs to be processed on 3 machines in a JIT manufacturing

environment.

In Chapter 7, in-depth discussion and analysis of our results is given.

Chapter 8 contains the concluding remarks of this research and identifies future

research directions.

CHAPTER TWO

OPTIMIZATION IN PRODUCTION SCHEDULING

In this chapter, we give an introduction to the area of scheduling, present some

terminology and concepts of scheduling theory with an overview of the optimization

techniques and heuristics used in solving scheduling problems.

2.1 Basic Concepts and Performance Criteria

Scheduling is concerned with the allocation of limited resources to perform a

collection of given tasks. The resources may be machines in a workshop, runways at

an airport, crews at a construction site, and processing units in a computing

environment. The tasks may be operations in a production process, take-offs and

landings at an airport, stages in a construction project, execution of computer

programs (Pinedo, 1995). In general, these tasks have to be accomplished with the

goal of minimizing or maximizing an objective. Each task may have different

priorities, different due dates and different arrival times, and the objectives may take

many forms such as the minimization of the total time required to complete the

processing of all jobs, minimization of the total tardiness, etc.

Generating a production schedule involves selecting a sequence of operations that

will result in the completion of a job, designating the resources needed to execute

each operation in the routing and assigning the times at which each operation in the

routing will start and finish execution (Rodammer & White, 1988). It is a decision-

making process and exists in most manufacturing and production systems as well as

in most information-processing environments. It also exists in transportation and

distribution settings and in other types of service industries (Pinedo, 1995). Extensive

reviews on scheduling can be found in (Rodammer & White, 1988; Reklaitis, 1992;

Zenter & Pekny, 1994). In a recent paper, Shah (1998) and Chen, Potts, &

Woeginger (1998) also provided a detailed review on the current status of single and

multisite scheduling and planning problems.

 6

 7

 The importance of scheduling comes from its wide applicability in manufacturing

as well as in services. It is concerned as one of the important application areas of

optimization (Pardalos & Resende, 2002). The general scheduling problem includes

a set of n jobs or tasks J={J1, J2, ..., Jn} and a set of m machines or processors

M={M1, M2,…,Mm} and is usually characterized by the machine environment, the

objective function, the processing restrictions, and the constraints. Usually, the three

field notation α|β|γ of Graham, Lawler, Lenstra, & Rinnooy Kan (1979) is used to

describe scheduling problems where α denotes the machine environment, β specifies

the job characteristics and γ corresponds to the performance measures used (Pardalos

& Resende, 2002). The two general rules that must be followed in scheduling theory

(Eiselt & Sandblom, 2004) are as follows:

• Each job is to be processed by at most one machine at a time.

• Each machine is capable of processing at most one task at a time.

The processing of the jobs may be subject to several types of restrictions and

constraints. For example, while preemption of jobs may be possible in some

environments, some may not involve preemptions. A schedule is non-preemptive if

each job runs uninterrupted on one machine from start to finish. In a preemptive

schedule, a job may be interrupted or may switch other machines at any time. There

may also be routing constraints that specify the route each job has to follow through

the shop (Pardalos & Resende, 2002).

In general, scheduling problems can be grouped into three main classes according

to machine environments.

• Single machine scheduling problems,

• Parallel machine scheduling problems,

• Shop scheduling problems

 -Flow shop scheduling problems

 -Job shop scheduling problems

 -Open shop scheduling problems.

 8

In single machine scheduling models, as its name implies, there is only one

machine and the routes consist of only one operation performed on this machine

(Artiba & Elmaghraby, 1997). The parallel machine scheduling problem is an

important generalization of the single machine problem which can be a subproblem

in many complex multi-machine problems (Hax & Candea, 1984). In parallel

machine environments, each task can be processed by any machine. There are several

machines which are distinguished depending on their speeds. If all the machines have

equal speeds, in other words if they are able to process the tasks with processing

times independent of the machines, they are called identical machines. Therefore,

processing of job i on any machine j takes the same time, i.e. pij ≡ pi. In the case of

uniform machines, the machines differ in their speeds but the speed of each machine

is constant and does not depend on the task it processes. In this case, the processing

times of a job on each machine may differ by speed factors, i.e. pij = pi/sj, where sj

reflects the speed of machine j, and pi is called the standard processing time of job i

(usually on the slowest machine). If the processing time of job i varies between

machines in an arbitrary fashion, they are called unrelated machines. For a detailed

literature review on parallel machine scheduling problems, one can refer to (Cheng &

Sin, 1990; Mokotoff, 2001).

In scheduling models, each job is characterized by some parameters that are given

below.

- Processing time (pij): It is the amount of time required by job i on machine j to

complete its processing.

-Arrival time or ready time or release date (rj): This is the time at which job j is

available for processing.

-Due date (di): It is the time at which job i should be completed.

-A weight or priority (wi): The weight of a job designates its importance relative

to other jobs present in the system. It is used to express the priority of job i.

 9

For any given schedule, the following primary output measures which are used to

determine other output measures can be calculated for each job i.

Completion time Ci: It is the time by which job i completes its processing.

Flowtime Fi: It is the amount of time job i spends in the system between its arrival

and its completion.

Fi=Ci-ri

Lateness Li: Lateness is expressed as the amount of time by which the completion of

job i exceeds its due date.

Li=Ci-di

Tardiness Ti: Tardiness can be calculated with respect to the lateness. The tardiness is

equal to the lateness of job i if lateness is positive, and the tardiness is equal to zero if

the lateness of job i is not positive.

 Ti =max{Ci-di, 0}= max{Li, 0}.

Earliness Ei: Earliness is the negative of the lateness of job i if the lateness is

negative, and the earliness is zero if the lateness is positive.

Ei=max{0, -Li}.

To evaluate any schedule, the following performance measures which are also

known as objective functions or performance criteria are used. They are generated

from the primary output measures.

Makespan Cmax: It refers to the time it takes to complete all n jobs, that is the overall

completion time, Cmax= max (C1,…, Cn).

Mean flow time ∑
=

=
n

j
jF

n
F

1

1

Weighted flow time ∑
=

=
n

j
jjw FwF

1

 10

Mean weighted flow time
∑

∑

=

== n

j
j

n

j
jj

w

w

Fw
F

1

1

Maximum flowtime Fmax = maxj{Fj}

Weighted lateness Lw
1

n

j j
j

w L
=

=∑

Maximum lateness Lmax =maxj{Lj}

Weighted tardiness ∑
=

=
n

j
jjw TwT

1

Maximum tardiness Tmax = maxj{Tj}

Mean tardiness ∑
=

=
n

j
jT

n
T

1

1

Mean weighted tardiness
∑

∑

=

== n

j
j

n

j
jj

w

w

Tw
T

1

1

Weighted number of tardy jobs)(
1

j

n

j
jw TwN δ∑

=

=

 where δ(Tj)=1 if Tj>0, and 0 otherwise.

Total weighted earliness and tardiness)(
1
∑
=

+=
n

j
jTjEw TwEwET

jj

2.2 Optimization and Scheduling

Optimization is the process of maximizing or minimizing a desired objective

function while satisfying the prevailing constraints (Belegundu & Chandrupatla,

 11

1999), and optimization problems in which the possible solutions form a finite set are

called combinatorial optimization problems. In other words, they are a general class

of optimization problems restricted to a finite and discrete solution space.

Combinatorial optimization problems in scheduling are the efficient allocation of

limited resources to meet desired objectives when the values of some or all of the

variables are restricted to be integer. Constraints on basic resources such as labor,

supplies or capital, restrict the possible alternatives that are considered to be feasible.

Scheduling problems form an important class of combinatorial optimization

problems. They execute a given set of jobs by utilizing several machines and other

resources subject to certain constraints such as priority and deadline constraints.

They are generally NP-hard, that is, it is probably impossible to secure optimal

solutions using fast algorithms (i.e. algorithms that run in polynomial time in the size

of the problem), though some problems, such as the single machine scheduling with

flow time minimization problem, are easy in the sense that they are solvable to

optimality by fast algorithms.

The amount of computational requirement for most combinatorial optimization

problems in scheduling is the factorial of the problem size. Hence, complete

enumeration to reach the optimal solution is not always possible as the number of

possible solutions increases as the factorial of the problem size (Cheung, 1994).

Therefore, in general, an approximation schema is constructed for the whole problem

without any guarantee of optimality. Besides exact methods that solve problems to

optimality, several methods and techniques such as constructive methods and local

search methods may be used to build an approximation schema.

2.3 Solution Approaches

2.3.1 Classical Methods

Classical methods use an appropriate mathematical description of the scheduling

problem. They do not try to investigate all of the possible feasible solutions, which

 12

would be practically impossible, and they reduce the search space and the CPU time

required to obtain a solution, while satisfying the constraints.

2.3.1.1 Mathematical Programming

In mathematical programming, scheduling decisions are modeled using integer

and continuous variables, and the scheduling problem is represented as an

optimization problem in which a mathematical function has to be minimized or

maximized subject to some linear and non-linear algebraic constraints. If the

objective function is linear and the constraints are a combination of linear equalities

or inequalities, the problem is called a linear programming problem. In a linear

programming problem, the decision variables involved in the problem are also

nonnegative (i.e., positive or zero). The simplex method developed by George

Dantzig in 1947 is an iterative procedure for generating and examining different

extreme points of a linear program, each one improving the current value of the

objective function until an optimum is found. If some of the variables in a linear

programming model are required to have integer values, this model is referred to as

mixed integer programming (MIP) and if all the variables are integers, it is called a

pure integer programming problem. The word integer programming (IP) often has

reference to both pure integer and mixed integer programming problems. Although

IP provides a lot of flexibility in formulating scheduling problems, integer variables

make an optimization problem non-convex, and consequently far more difficult to

solve. Memory and solution time may rise exponentially as more integer variables

are added. Even with highly sophisticated algorithms and modern supercomputers,

there are models of just a few hundred integer variables that have never been solved

to optimality. One can refer to Nemhauser & Wolsey (1988) for more information

about integer and combinatorial optimization. A recent detailed review on integer

modeling techniques for scheduling has been presented by Blazewicz, Dror, &

Weglarz (1991) and Pinto & Grossmann (1998).

The classical approach for solving IP problems is a branch-and bound algorithm.

Branch-and-Bound is a methodology developed for solving many types of

http://www.solver.com/probconvex.htm

 13

combinatorial optimization problems. The actual implementation of a branch-and-

bound algorithm is typically viewed as a tree search where the problem at the root

node of the tree is the original IP. It is based on the idea of enumerating all feasible

solutions and consists of two procedures; branching and bounding. By branching, the

problem is iteratively partitioned into subproblems of the original IP and is

represented by a node in its corresponding branch and bound tree. In the bounding

procedure, a lower bound is calculated on the optimal solution of a given subproblem

to shorten the enumeration process. Each subproblem can be partitioned in a similar

manner. When the lower bound given in the node is greater than or equal to the best

feasible solution, the node and its subproblems are not explored further and its

branch is said to be fathomed. In this procedure, certain schedules or classes of

schedules are discarded by showing that the values of the objective obtained with

schedules from this class are larger than a provable lower bound which is greater

than or equal to the value of the objective of a schedule obtained earlier (Pinedo,

1995). When a better feasible solution is obtained, it becomes the current best

feasible solution. If a node has not been eliminated, and its subproblems have not

been generated, it is called active node, and the branch-and-bound algorithm stops

when no active nodes remain.

Cutting plane algorithms are also known among other methods for solving IP

problems. These algorithms were first proposed by Gomory (1958, 1963), and in

recent years have been proven to be computationally useful especially when

combined with a branch and bound algorithm in a branch and cut framework. These

methods work by solving a sequence of linear programming relaxations of the

integer programming problem. The relaxations are gradually improved to give better

approximations to the IP problem, at least in the neighborhood of the optimal

solution. For hard instances that can not be solved to optimality, cutting plane

algorithms can produce approximations to the optimal solution in moderate

computation times. A survey of applications of cutting plane methods can be found

in Jünger, Reinelt, & Thienel (1995).

 14

2.3.1.2 Dynamic Programming

Dynamic programming introduced by Bellman (1957) is a mathematical technique

used for solving small and medium sized problems that are pseudo-polynomially

solvable. It is an enumeration method that uses a divide and conquer approach, and

finds optimal solutions to subproblems. Then, according to the principle of

optimality, it solves the problem recursively. Since it performs an intelligent

enumeration of all feasible points, it resembles the branch-and bound method.

2.3.2 Constructive Heuristics

Instead of trying to improve an initial solution using moves in a given

neighborhood, the constructive procedures build a schedule from scratch by inserting

unscheduled operations into a partial schedule until the schedule is complete.

2.3.2.1 Dispatching Rules

In the scheduling literature, terms such as scheduling rule, dispatching rule or

priority rule are often used synonymously. A dispatching rule prioritizes all the jobs

that are waiting for processing on a machine. In other words, a dispatching rule is

used to determine the next job waiting in front of a machine when the machine

becomes available. The prioritization scheme may take into account the jobs’

attributes, the machines’ attributes as well as the current time. Whenever a machine

has been freed, a dispatching rule selects among the jobs waiting, the job with the

highest priority. For several decades, many different rules have been developed and

studied in the literature for different scheduling objectives. Some of the dispatching

rules commonly used in scheduling are as follows:

First in First Out (FIFO) rule: With this rule, the job with the earliest release date is

chosen first for processing. It minimizes the maximum flowtime and the variation in

the waiting times of the jobs at a machine.

 15

Shortest Processing Time (SPT) rule: Using this rule, the job with the shortest

processing time is chosen fist for processing. This rule provides an optimal schedule

for the mean flow time criterion.

Longest Processing Time (LPT) rule: This rule arranges jobs in descending order of

processing times, such that p1≥p2≥…≥pn and assigns the first m jobs to the m

machines at time t = 0. After that, whenever a machine becomes available, the largest

unscheduled job is loaded on the machine. This rule tends to minimize makespan in

parallel machine scheduling environments.

The earliest due date (EDD) rule: Whenever a machine is freed, the job with the

earliest due date is selected to be processed next. It tends to minimize the maximum

lateness among the jobs waiting for processing.

The minimum slack (MS) rule: Whenever a machine is freed at time t, the remaining

slack of each job at that time, defined as max (dj-pj-t,0) is found and the job with the

minimum slack is scheduled next. This rule tends to minimize due date based

objectives.

The weighted shortest processing time first (WSPT) rule: According to this rule, the

jobs are ordered in decreasing order of wj / pj. It tends to minimize the weighted sum

of the completion times expressed as . ∑
=

n

j
jjCw

1

The main advantage of dispatching rules is that they are easy to understand, easy

to apply, and require relatively little computer time. Their primary disadvantage is

that they can’t guarantee an optimal solution. Panwalkar & Iskander (1977) and

Blackstone, Philips, & Hogg (1982) provide a good survey on dispatching rules.

 16

2.3.2.2 Shifting Bottleneck Heuristic

Shifting Bottleneck Heuristic is a decomposition method which was first proposed

by Adams, Balas, & Zawack (1988) and designed for the minimization of the

makespan in a job shop. Using this method, the job shop problem is decomposed into

single machine subproblems and the machines are scheduled iteratively one after

another. In each iteration, the next machine to be included is the one causing the

largest maximal lateness known to be the bottleneck machine and the schedule is

fixed for the current bottleneck machine. This method also involves a reoptimization

process, that is each time a new machine is scheduled, each of the machines

previously scheduled is considered again as an unscheduled machine by deleting the

disjunctive arcs that had been fixed before. The corresponding subproblem is

reformulated by recomputing the data necessary and the machine is then rescheduled

using the same branch-and bound algorithm.

Applications of shifting bottleneck heuristic for problems with other objectives,

Lmax, ∑
=

n

j
jjTw

1
,can be found in Ovacik & Uzsoy (1997), Pinedo & Singer (1997),

and Yang, Kreipl, & Pinedo (1997).

2.3.3 Local Search Based Heuristics

Local search is one of the basic methods used to find approximate solutions for

hard combinatorial optimization problems, known to be NP-hard. Since computing

exact optimal solutions is considered to be computationally intractable for some

combinatorial optimization problems, approximate (or heuristic) algorithms are

developed. One of the important tools is the local search that starts from an initial

solution x and repeatedly replaces it with a better solution in its neighborhood N(x)

until no better solution is found in N(x); where N(x) is a set of solutions obtainable

from x by slight perturbations. Local search methods do not guarantee an optimal

solution and usually attempt to find a better schedule than the current one in the

neighborhood of the current one (Pardalos & Resende, 2002).

 17

Local search consists in moving from a solution to another one in the

neighborhood according to some definite rules. The sequence of solutions can be

called a trajectory in the solution space. They depend heavily on initial solutions and

the neighbourhood generation mechanisms (Madureira, 1999).

Some of the principal local search based strategies are Tabu Search, Simulated

Annealing, Genetic Algorithms and Neural Networks.

2.3.3.1 Simulated Annealing

Simulated annealing proposed by Kirkpatrick, Gelatt, & Vecchi (1983) belongs to

a class of local search algorithms that are known as threshold algorithms. The idea of

simulated annealing stems from the physical annealing process. Annealing is a

physical process in which a solid is heated up to a maximum value at which all

particles of the solid randomly arrange themselves in the liquid phase, followed by a

process of cooling the solid slowly, until the solid reaches a stable state. It is a

stochastic approach that tries to find a good solution to an optimization problem by

trying random variations of the current solution. A worse solution is accepted as the

new solution with a probability that decreases as the computation proceeds. In other

words, not only downhill moves but uphill moves are also accepted probabilistically.

The slower the cooling schedule, the more likely the algorithm is to find an optimal

or near optimal solution. (Artiba & Elmaghraby, 1997).

Simulated annealing has received considerable attention in the last years and has

been applied to solve a variety of problems including scheduling (Osman & Potts,

1989; Van Laarhoven, Aarts, & Lenstra, 1992; Radhakrishnan & Ventura 2000;

Eglese, 1990).

2.3.3.2 Tabu Search

Tabu Search is a local search method guided by the use of adaptive memory

structures. It was first presented in its present form by Glover (1989, 1990) as a

 18

deterministic alternative to simulated annealing and has been successfully applied to

a variety of combinatorial optimization problems including scheduling. The basic

idea of the method is to explore the solution space by a sequence of moves made

from one solution to another better one, and it is possible to leave local optima by

accepting a degradation of the criterion value but without using previous visited

solutions which are stored in a list of forbidden or ‘tabu’ solutions (Artiba &

Elmaghraby, 1997). By this way, the cycling is prevented and search diversification

is encouraged ((Pardalos & Resende, 2002). The tabu list is dynamically updated

during the execution of the algorithm and the solutions defined by the tabu list are

not acceptable in the next iterations. However, a solution on the tabu list may be

accepted if its quality is in some sense good enough, in which case it is said to attain

a certain aspiration level (Aarts & Lenstra, 1997).

2.3.3.3 Genetic Algorithms

Genetic algorithms (GAs) introduced by John Holland (1975) are known as search

algorithms, which explore a solution space and try to mimic the natural evolution

process. Works in the area of GAs were summarized in Schaffer, Whitley, &

Eshelman (1992), Goldberg (1989), Schaffer (1989), Belew & Booker (1991) and

Forrest (1993). They proved to be very useful in many applications such as

mathematics, robotics, physics, and in many optimization problems including

scheduling. One can refer to Cheng, Gen, & Tsujimura (1996) and Cheng et al.

(1999) for a detailed survey on GA applications in job shop scheduling which is one

of the main scheduling fields GAs are applied to. Other examples of GA applications

can be found in Ahmed, Kwok, Ahmad, & Dhodhi (2001), Hou, Ansari, & Ren

(1994), Theys, Braun, Siegal, Maciejewski, & Kwok (2001) and Zomaya, Lee, &

Olariu (2001).

GA starts with the creation of an initial population of possible solutions to the

problem called individuals or chromosomes, and the genes within the chromosomes

determine the individual features of the child. Each chromosome is associated with a

fitness value, which represents the probability of a chromosome being selected to be

 19

a parent. From the individual population, a new population is generated using one of

the specific operators such as reproduction, crossover or mutation. By the

reproduction operator, the solutions in the old population are copied to the next

population with a probability depending on the fitness of the solution which

corresponds to the value of the objective function for that solution. Using the

crossover operator, new solutions are generated from pairs of individuals, and by

mutation one or more of the genes in a chromosome are altered in a random way

which helps the GA to explore a new, perhaps a better feasible region than the

previously considered. The process is repeated until some stopping rule is satisfied

and the individual with the most favorable fitness is the solution to the problem.

2.3.3.4 Neural Networks

 ANNs were originally designed for simulating the brain behaviour. They have

emerged as efficient approaches in a variety of engineering applications where

problems are difficult to formulate or hardly defined. They are computational

structures that implement simplified models of biological processes, and are

preferred for their robustness, massive parallelism and ability to learn. In

metaheuristics literature, neural networks are put into local-search based

metaheuristics category. The reason is their iterative master process characteristic,

that is, they guide and modify the operations of subordinate heuristics to efficiently

produce high quality solutions, and provide decision makers with fast and robust

tools for obtaining high quality solutions in reasonable computation times to many

real life problems.

From a modeling viewpoint, they are mathematical representations of biological

nervous systems that can carry out complex cognitive and computational tasks. They

are composed of many nonlinear interconnected processing elements that are

analogous to neurons, and connected via weights that are analogous to synapses. The

modern age of neurocomputing started with the work of McCulloch & Pitts (1943) in

which the first mathematical model of a single biological neuron was presented.

Although McCulloch and Pitts’ study showed that simple type of neural networks

 20

were able to learn arithmetic or logical functions, ANN algorithms have been

successful enough for many applications in the mid 1980s (Potvin & Smith, 2003).

The field attracted the attention of many researchers from different disciplines such

as engineering, physics, mathematics, computer science and medicine. In recent

years, ANNs have become popular in various real world applications including

prediction and forecasting, function approximation, clustering, speech recognition

and synthesis, pattern recognition and classification, and many others. Applications

of ANNs to manufacturing scheduling (for detailed survey see Sabuncuoglu, 1998)

are in accordance with using ANNs as a highly parallel model for general-purpose

computing and then applying them for different combinatorial optimization problems

(for detailed survey see Looi, 1992; Smith, 1999).

In the literature, although a large number of approaches such as mathematical

programming, dispatching rules, expert systems, and neighborhood search to the

modeling and solution of scheduling problems have been reported, over the last

decades, there has been an explosion of interest in using ANNs. Certainly, as the

ANNs evolve, solutions of scheduling problems will make progress. In this thesis,

Hopfield type dynamical gradient networks are used to solve the problems under

consideration. While details of the dynamical neural networks usage in solving

optimization problems will be given in the following chapter, a comprehensive

review on the applications of ANNs in scheduling will be given in Chapter 4.

CHAPTER THREE

DYNAMICAL SYSTEMS FOR COMBINATORIAL OPTIMIZATION

In this thesis, dynamical gradient based neural networks are proposed for solving

the problems under consideration and gradient systems are constructed utilizing the

concepts developed for stability analysis of dynamical systems. In this chapter,

qualitative analysis of dynamical systems followed by the explanation of dynamical

systems for optimization including gradient networks and Hopfield networks is given

parallel to the studies of Desoer (1970), Hirch & Smale (1974), Aggarwal &

Vidyasagar (1977), Chua & Wang (1978), Hopfield (1982), Hopfield (1984),

Hopfield & Tank (1985), Cakir (2002) and Dogan (2004).

3.1 Qualitative Analysis of Dynamical Systems

Suppose that a dynamical system is given as follows.

nn RRRfxtxttxftx →×== :(.,.),)(),),(()(00

.
 (3.1)

The following theorem explains the existence and uniqueness of a global solution

of (3.1).

Theorem 3.1 (Desoer, 1970) suppose the following conditions hold.

i) contains at most a finite number of points per unit interval, +⊂ RS

ii) For each x Є Rn, f(x,.) is continuous at t S∉

iii) For each ti , f(x,.) has a finite left-hand and right hand limits at t=tS∈ i

iv) f(.,t) : satisfies a global Lipschitz condition. That is, there exists a

piecewise continuous function k(.): such that

nn RR →
++ → RR

2121)(),(),(xxtktxftxf −≤− for all t Є R+ and for all points x1, x2 Є Rn.

Then, for each x0 Є Rn and t0 Є R+, there exists unique continuous solution

 satisfying that state equation and the initial condition:nRRxt →+:),(.; 00φ

 21

 22

(a))),,,((),,(0000

.
txttfxtt φφ =

(b) for all t0000

.
),,(xxtt =φ 0 Є R+ and t S∉

3.1.1 Liapunov’s First Method for the Stability of an Equilibrium Point

Liapunov stability is concerned with the behavior of solution when its initial state

is near the equilibrium. After sufficiently long time, if the solution remains near the

equilibrium point then we can say that the equilibrium is stable.

For the system given in (3.1) with t Є [t0,∞] formulation of Liapunov stability

analysis of an equilibrium point is given as follows

Definition 3.1 Equilibrium Point

A solution),;(0 exttφ is called an equilibrium point if it is constant for all times

and satisfies the state equations:

i)],[),;(00 ∞∈∀= ttxxtt eeφ

ii) 0)),,;((),;(00 == txttfxtt ee φφ&

Definition 3.2 Stability of an equilibrium point (Aggarwal and Vidyasagar, 1977)

An equilibrium state xe of a dynamical system given by (3.1) is stable in the sense

of Liapunov if for every real number ε > 0 there exists a real number δ(ε, t0) > 0 such

that δ≤− exx0 implies εφ ≤− exxtt),;(00 for all t ≥ t0 where),;(00 xttφ is a

solution at time t.

If the solutions initiated near the equilibrium point converge to the equilibrium,

we call this equilibrium as asymptotically stable.

 23

Definition 3.3 Asymptotic stability of an equilibrium

An equilibrium state xe of a dynamical system given in (3.1) is asymptotically

stable if it is stable and every solution starting in a sufficiently small neighborhood of

xe converges to xe as . ∞→t

3.1.2 La Salle’s Invariance Theorem: Global Stability and Convergence

In some systems, local stability of an equilibrium may not be enough. No matter

how large the perturbation is, it is desired that the system returns to its unique

equilibrium state. This property is called as global asymptotic stability. The

definitions of global asymptotic stability and convergence will be given below.

Definition 3.4 Convergency

A system with x є R),(txfx =& n is called convergent if any trajectory, namely

solution),;(00 xttφ ends at one of the equilibria depending on the initial state x0.

According to the definition, convergent systems don’t possess oscillatory or other

exotic dynamics but possess constant steady state behavior only.

Definition 3.5 Global Asymptotic Stability

An equilibrium point xe of a system),(txfx =& x є Rn is called globally

asymptotically stable if the system is convergent and the equilibrium point is unique.

The theorem of La Salle given below states that under certain conditions any solution

tends to an invariant set which might consist of a unique equilibrium point, a set of

equilibria, periodic solutions or other complicated solutions. It should be mentioned

that La Salle’s invariance theorem works with nonincreasing Lyapunov functions for

deciding asymptotic stability of an equilibrium point. Hence, it constitutes a useful

extension of Liapunov asymptotic stability result valid only for strictly decreasing

Lyapunov functions (Dogan, 2004).

 24

Theorem 3.2 La Salle’s invariance (Aggarwal and Vidyasagar, 1977)

Consider a system with f(.) Є C)(xfx =& 1. If there exists a continuously

differentiable Lyapunov function V (.): such that 1RR n →

i) the set })({ rxVRx n
r ≤∈=Ω is bounded for some r > 0,

ii) V(.) is bounded below over such a set rΩ , and

iii) , then any solution x(t,xrXV Ω∈∀≤ 0& 0,0), starting from x0=x(0) tends to

the largest invariant set contained in S: =

rΩ∈

rr xVx Ω⊂=Ω∈ }0)({ & .

The largest invariant set expressed in Theorem 3.2 consists of equilibrium points

if the conditions of Theorem 3.3 are satisfied.

Theorem 3.3 (Chua & Wang, 1978)

The autonomous system)(xfx =& with f(.) Є C1 is convergent, namely the invariant

set which the trajectories tend to is made up of the equilibrium points if

i) the solutions of the system are bounded,

ii) there exists a continuously differentiable Liapunov function V(.) such that

 along trajectories. Furthermore, V vanishes at equilibrium points

only.

nRXV ∈∀≤ 0& &

3.2 Dynamical Systems for Optimization

An optimization problem can be solved by using an analog network as a

dynamical solver whose equilibrium points correspond to the solutions of the

optimization problem. Although most of the combinatorial problems are

computationally intractable, an appropriate dynamical system may be used to find a

satisfactory solution in reasonable time. One of the methods used in designing

dynamical solvers is the construction of a set of differential equations such that their

equilibrium points correspond to the desired solutions, and then finding an

appropriate Liapunov function such that all trajectories of the system converge to

equilibrium points. Commonly used approach in designing dynamical solvers is

 25

based on gradient systems that use steepest descent method as a basis. In these

methods, the minimization problem is transformed into an associated system of first

order differential equations as follows.

)()(
.

xExx ∇= μ (3.2)

where, E(x) is the cost function of the unconstrained optimization problem.

Dynamical system obtained for)(
.

xEx −∇= Ix =)(μ is called a gradient system

(Cakir, 2002).

3.2.1 Gradient Based Systems

A gradient system on an open set U ⊂ Rn is a dynamical system of the form

)(
.

xVx −∇= (3.3)

where V(.): is usually a CRU → 2 function. These systems are convergent if

their solutions are bounded. To prove this, Theorem 3.3 can be considered, and then

the derivative of V along the trajectories of the system given by (3.3) can

be written as below.

RUV →:
.

0][][)(][)()(
.

≤∇∇−=∇=
∂

∂
= VV

dt
xdV

dt
dx

x
xVxV TT (3.4)

It is known that for an unconstrained optimization problem, if x* is a local

minimum point of f(.), then 0*)(=∇ xf , together with this information, it can be

concluded that any equilibrium point of (3.3) is an extremum point of the function V

(.). This fact together with the convergence implies that any trajectory of (3.3) ends

at one of the extrema of V (.).

Theorem 3.4 (Hirch & Smale, 1974) Let x* be a strict local minimum of V (.). Then

x* is an asymptotically stable equilibrium of the gradient system given in (3.3).

 26

Corollary 3.2:

x* is an equilibrium point of (3.3) if x* is an extremum of V(.).

Proof: Necessary conditions for x* to be an extremum of V (.) is 0*)(=∇ xV

So, x* is an equilibrium point of (3.3)

If it is possible to formulate the cost function such that its minima coincides with

the stable equilibrium points of a convergent dynamical system, the dynamical

system will solve the optimization problem since its steady state solutions will be the

minimum points of optimization problem.

3.2.2 Hopfield Networks

One of the well-known dynamic systems used for optimization problems are

Hopfield networks. The original Hopfield NNs introduced by Hopfield (1982)

consist of a fully connected network of neurons capable of performing computational

tasks. Using binary state neurons and a stochastic algorithm to update the neurons,

this network served as a content addressable memory that allows for the recall of

data based on the degree of similarity between the input pattern and the patterns

stored in the memory. This model is known as the discrete and stochastic Hopfield

model. In this non-layered recurrent network, the connection weights are assumed to

be fixed and symmetric (wij = wji), and they store information about the stable states

of the network. In the case of an excitatory connection, the weights will take positive

values; they will be negative in the case of an inhibitory connection or they will be

zero in the case of no interaction. Each neuron i is described by an internal and an

external state. The internal state (net input value) of each neuron is represented by ui,

while the external state (output value) by vi. In this model, the internal states are

continuous and the external states are binary. The input of each neuron comes from

two sources, external inputs Ii and inputs from other connected neurons. The

relationship between the internal and external states of the neurons is represented by

the following McCulloch and Pitts dynamics rule.

 27

∑
=

+=+
N

j
ijiji Itvwtu

1

1)()((3.5)

⎭
⎬
⎫

⎩
⎨
⎧

≤

〉
==+

00

01
1

i

i
ii uif

uif
uftv)()((3.6)

The internal state of a neuron is found by taking the weighted sum of the external

states of all connecting neurons with a constant external input to that neuron. In Eq.

(3.5), t is a discrete time, wij is the synaptic interconnection strength from neuron j to

i, f is the activation function between ui and vi and can take several forms. It can be

the unit step function as defined by the Eq. (3.6).

The states of the neurons are updated in a random manner. The objective function

and the problem constraints are mapped onto a quadratic function that represents the

energy of the system of neurons.

∑∑∑
== =

−
−

=
N

i
ii

N

i

N

j
jiij vIvvwE

11 12

1 (3.7)

Hopfield has proved that with symmetrical weight matrix and non-negative

elements on the diagonal of the weight matrix w, the energy function, by performing

gradient descent, minimizes until convergence to stable states, which represent the

local minimum values of the energy function.

After the original discrete stochastic model based on McCulloch-Pitts neurons

was introduced, in a later work, Hopfield (1984) proposed a deterministic model

based on continuous neurons. The idea was inspired by the fact that the neurons of

the original model were different than the real biological neurons and from the

realistic functioning of electronic circuits. So, by maintaining the important

properties such as content-addressable memory of the original model, a new model is

constructed. The continuous Hopfield model given in Hopfield (1984) is represented

by the following resistance-capacitance differential equation to model the

 28

capacitance and resistance of a real neuron’s cell membrane. In this model, the

dynamics of each neuron i may be defined as below.

i

n

j

i
jij

i I
u

vw
dt

du
+−= ∑

=1 τ
 (3.8)

))tanh(()(
T

u
ufv i

iii +== 1
2

1 (3.9)

RC=τ (3.10)

where t is a continuous time, f is a continuous sigmoidal transfer function that

determines the relationship between the internal state of a neuron and its output level,

R is the trans-membrane resistance, C is the input capacitance, T is a parameter to

control the slope of the transfer function and τ is the value of time constant of the

amplifiers. In this model, the external states are ranged between 0 and 1, and are

continuous.

3.2.2.1 Stability and Convergence

The energy function for this continuous model has the following form.

dvvfvIvvwE
n

i

n

j

n

i

v

iiijiij

i

)(∑∑ ∑ ∫
= = =

−+−
−

=
1 1 1 0

1

2

1 (3.11)

Provided that the inverse of fi exists, it is a Liapunov function and always

converges to a stable state. If the weight matrix is symmetric,

 29

21))(()(

))((

)(

dt
dv

vfC

dt
du

dt
dv

C

i
R
u

vW
dt
dv

dt
dE

i
i

i
ii

ii

i
i

i
i

i
j

j
ij

i

i

′−=

−=

+−−=

−∑

∑

∑∑

is the time derivative of E.

)(1
ii vf − is a monotonically increasing function and Ci is positive, therefore

0≤
dt
dE .

0=
dt
dE implies 0=

dt
dvi i∀ , and boundedness of the energy (E) proves that E

decreases and converges to a minimum where it stays.

When the slope (gain) of the activation function is very high (T is near zero), the

integral term vanishes and we will have the same energy function as in the discrete

model. In other words, the stable points of the very high gain, continuous,

deterministic model will correspond to the stable points of the original stochastic

model.

The idea of using ANNs to provide solutions to NP-hard optimization problems

was pioneered by Hopfield & Tank (1985) with the use of their network for solving

the Traveling Salesman Problem (TSP). In their paper, Hopfield & Tank (1985)

showed that if an optimization problem can be represented by an energy function,

then a Hopfield network that corresponds to this energy function can be used to

minimize this function and thus provides an optimal or near-optimal solution. Since

then, because of the advantages of using Hopfield networks, extensive research has

been carried out on the application of the Hopfield networks for solving different

optimization problems. Massive parallelism and convenient hardware

implementation of the network architecture are among the most important

advantages of Hopfield networks.

 30

In this network, objective function and the problem constraints are encoded in

terms of an appropriate energy function. The aim is to obtain a configuration

minimizing the energy function. Translation of the optimization problem into an

appropriate energy function is in general, a difficult task. It must be in a quadratic

form to meet the form of the energy function of the Hopfield network. Applying the

most common method, penalty function approach, the energy function of the network

is set equivalent to the objective function of the problem, and the problem is reduced

to an unconstrained form by including the constraints of the problem in the energy

function as penalty terms. By this way, the constraint violations are penalized. The

next step is to compare the energy function of the problem with the energy function

given by equation (3.7) to derive the weights and external inputs. Then, by random

initialization of the network and updating the neurons, the stable states will be

obtained.

However, Hopfield NNs have some shortcomings. They do not guarantee the

feasibility. By performing gradient descent on the energy function, the Hopfield

model gets easily trapped in local minimum states, and this causes decreasing

efficiency especially in large sized problems. Its performance is very sensitive to the

initial configuration of the network. Determining the penalty coefficients requires a

tedious trial and error process. It requires a large number of iterations to converge to

a solution.

In this thesis, we apply Hopfield like neural networks to solve the scheduling

problems addressed in this research. The following chapter presents a comprehensive

review about neural network applications in production scheduling. The studied

problems and the proposed dynamical networks are explained in Chapters 5 and 6 in

detail.

 31

CHAPTER FOUR

NEURAL NETWORK APPLICATIONS IN PRODUCTION SCHEDULING

Since the introduction of the first formalized model of a neuron in 1943 by

McCulloch and Pitts, there has been a great progress of neurobiology. This progress

allowed researchers to build mathematical models of neurons to simulate neural

behavior. ANNs can be defined as networks of elementary nodes called artificial

neurons or processing elements that are interconnected by direct links called

connections and the neurons cooperate to perform parallel distributed processing to

solve a desired computational task. Applications of ANNs to production scheduling

(for detailed survey see Sabuncuoglu, 1998; Akyol & Bayhan, 2006) are in

accordance with using them as a highly parallel model for general-purpose

computing and then applying for different combinatorial optimization problems (for

detailed survey see Looi, 1992; Smith, 1999). The purpose of this chapter is to give a

comprehensive survey of recent research on ANN applications in production

scheduling, and to identify some future research directions. We review the

scheduling studies with ANNs beginning from the Hopfield network method usage

to the probable practices of neural networks evolved with recent developments in

evolutionary algorithms.

4.1 ANNs in Scheduling

Artificial Neural Networks (ANNs) can be put into local search based

metaheuristics category which includes simulated annealing, noisy methods, guided

local search methods, iterated local search, tabu search, threshold accepting, and

variable neighborhood search (Osman, 2002). From a modeling viewpoint, they are

mathematical representations of biological nervous systems that can carry out

complex cognitive and computational tasks. They are composed of many nonlinear

interconnected processing elements that are analogous to neurons, and connected via

weights that are analogous to synapses.

32

The modern age of neurocomputing started with the work of McCulloch & Pitts

(1943) in which the first mathematical model of a single biological neuron was

presented. Although McCulloch and Pitts’ study showed that simple type of neural

networks were able to learn arithmetic or logical functions, ANN algorithms have

been successful enough for many applications in the mid 1980s (Potvin & Smith,

2003). The field attracted the attention of many researchers from different disciplines

such as engineering, physics, mathematics, computer science and medicine. In recent

years, ANNs have become popular in various real world applications including

prediction and forecasting, function approximation, clustering, speech recognition

and synthesis, pattern recognition and classification, and many others.

In the scheduling literature, ANNs have attracted much attention because of their

characteristics listed below.

• ANNs capture the complex relationship between the input and output variables

that are difficult or impossible to analytically relate after they are exposed to

examples of the relationship, that is, after they learned. After they learned the

unknown correlation between the input and output data, they can generalize to

predict or classify for cases they were not exposed to.

• In some cases of designing manufacturing systems, ANNs are preferred to time

consuming simulation approaches.

• As a schedule retrieval system, ANNs such as backpropagation networks

(BPNs) produce a schedule for a given set of input parameters but unlike the

Hopfield networks; they do not generally perform optimization.

• BPNs are also used to select scheduling rules or a manufacturing strategy to

achieve accurate estimations of parameters such as the values of the look ahead

parameters of scheduling rules. They are used to estimate the system performance

measures such as mean utilization, mean job tardiness, mean flow time, etc.

33

• In static scheduling environments, it is possible to obtain the optimal or near

optimal schedules by mathematical modeling, dynamic programming, branch and

bound or other advanced methods. But, since real manufacturing environments are

dynamic, flexible scheduling methods are needed to react any change in the system

that varies with time. So, in dynamic scheduling environments, ANNs are employed

to reduce the need for rescheduling.

• While optimizing networks such as Hopfield network and its extensions are

involved directly in the optimization by mapping the scheduling objective functions

to be optimized and constraints of the problems on to these networks, competitive

networks can detect regularities and correlations in input vectors and adapt future

responses accordingly (Min, Yih, & Kim, 1998).

In recent years, besides their advantages of parallelism, learning, generalization

capability, nonlinearity, and robustness, several limitations of ANNs such as

settlement into local minima, trial and error parameter determination process, long

learning time are perceived. To compensate their disadvantages, hybrid systems in

which ANNs are combined with traditional heuristics or metaheuristics and/or

evolutionary algorithms or different approaches, and evolutionary ANNs have been

proposed in ANN literature.

4.2 Scheduling with Stand Alone Neural Networks

4.2.1 Hopfield Network and Its Extensions

The original Hopfield NNs, which consist of a fully connected network of neurons

capable of performing computational tasks were introduced by Hopfield (1982).

Using binary state neurons and a stochastic algorithm to update the neurons, this

network served as a content addressable memory that allows for the recall of data

based on the degree of similarity between the input pattern and the patterns stored in

the memory. This model is known as the discrete and stochastic Hopfield model.

34

In a later work, Hopfield (1984) proposed a deterministic model based on

continuous neurons. The idea was inspired by the fact that the neurons of the

original model were different than the real biological neurons and from the realistic

functioning of electronic circuits. So by maintaining the important properties such as

content-addressable memory of the original model, a new model is constructed.

The idea of using ANNs to provide solutions to NP-hard optimization problems

was pioneered by Hopfield & Tank (1985) with the use of their network for solving

the Traveling Salesman Problem (TSP). In their paper, Hopfield & Tank showed that

if an optimization problem can be represented by an energy function, then a Hopfield

network that corresponds to this energy function can be used to minimize this

function and thus provides an optimal or near-optimal solution. Since then, because

of the advantages of using Hopfield networks, extensive research has been carried

out on the application of the Hopfield networks for solving different optimization

problems. Massive parallelism and convenient hardware implementation of the

network architecture are among the most important advantages of Hopfield

networks.

In this network, objective function and the problem constraints are encoded in

terms of an appropriate energy function. The aim is to obtain a configuration

minimizing the energy function. Translation of the optimization problem into an

appropriate energy function is in general, a difficult task. It must be in a quadratic

form to meet the form of the energy function of the Hopfield network. Applying the

most common method, penalty function approach, the energy function of the network

is set equivalent to the objective function of the problem, and the problem is reduced

to an unconstrained form by including the constraints of the problem in the energy

function as penalty terms. By this way, the constraint violations are penalized. The

next step is to compare the energy function of the problem with the energy function

of the Hopfield network to derive the weights and external inputs. Then, by random

initialization of the network and updating the neurons, the stable states will be

obtained.

35

The success in applying neural networks to the TSP motivated many scheduling

researchers to employ Hopfield networks. Foo & Takefuji (1988a,b) used a two

dimensional Hopfield TSP type matrix of neurons with mn+1 rows and mn columns

where m and n are the number of machines and the number of jobs, respectively, to

map their job shop scheduling problem on. To find the global minima of the energy

function that represents the objective function of the problem, they applied simulated

annealing (SA) which is a stochastic optimization technique and uses a stochastic

hill-climbing algorithm with the added ability to escape from local minima in the

state-space where conventional methods usually get trapped (Kirkpatrick, Gelatt, &

Vecchi, 1983). From the results obtained, it is seen that the proposed methodology

gives near optimal solutions rather than an optimum solution. In order to get better

results and to reduce the number of neurons required to solve the same problem, Foo

& Takefuji (1988c) introduced integer linear programming networks as extensions of

the original Hopfield network, and achieved better solutions. But, in his paper, Van

Hulle (1991) addressed that the network of Foo & Takefuji (1988c) generated

constraint-violating solutions. To overcome this drawback, the original job shop

scheduling problem was formulated again as a goal programming problem to be

mapped onto a goal programming network. The simulation results showed that

although the proposed approach yielded feasible solutions it could not guarantee

optimal solutions.

The limitations of the traditional Hopfield NNs based on the quadratic energy

function triggered the authors Zhou, Cherkassky, Baldwin, & Olson (1991) to

propose a neural network having a linear cost (energy) function rather than the

quadratic energy function of the Hopfield network. Doing so, they aimed to improve

the scaling properties of the Hopfield NNs. They compared their network with

integer linear programming neural network of Foo & Takefuji (1988c) and TSP type

Hopfield network method of Foo & Takefuji (1988a,b) in terms of the number of

neurons and interconnections required. The results obtained were very encouraging

for both criteria.

36

Due to the problems of Hopfield NNs in solving optimization problems, various

modifications are proposed to improve the convergence of the Hopfield network.

While several authors modified the energy function of the Hopfield network to

improve the convergence to valid solutions (Brandt, Wang, Laub, & Mitra, 1988;

Van Den Bout & Miller, 1988; Aiyer, Niranjan, & Fallside, 1990), many others

studied the same formulation with different penalty parameters (Hedge, Sweet, &

Levy, 1988; Kamgar- Parsi & Kamgar- Parsi, 1992; Lai & Coghill, 1992). But

although the modified versions of the Hopfield network could give valid solutions,

they may not converge to good quality solutions. In the following years, poor

solution quality of Hopfield networks was improved by integrating stochasticity into

the Hopfield network. Boltzmann machine, Gaussian machine, Cauchy machine and

mean field annealing approaches were obtained by embedding stochastic properties

into the Hopfield network.

A stochastic neural network for solving dynamic resource constrained scheduling

problems was proposed by Vaithyanathan & Ignizio (1992). The authors represented

their problem as a series of multidimensional knapsack problems, and used neural

networks to solve these problems. The network included the combination of a

Hopfield network and external neurons to give stochastic property. The experimental

results showed that the network was able to avoid local minimum. As mentioned

before, Gaussian machines developed by Akiyama, Yamashita, Kajiura, & Aiso

(1989) as another alternative approach of escaping local minima were proposed for

improving the efficiency and speed of the Boltzmann machine. Like continuous

Hopfield networks, they have continuous outputs with a deterministic activation

function but random noise is added to the external input of each neuron. In 1992,

Arizono, Yamamoto, & Ohta proposed a Gaussian machine model for solving the

single machine scheduling problem having the objective of total actual flowtime

minimization. Computational results showed that in most of the problems the

proposed network was successful in finding the optimal solutions.

Lo & Bavarian (1993) extended the gradient approach of two dimensional

Hopfield network to a three dimensional matrix, called neural box, in which the third

37

dimension was the time. They used this network to solve the job shop scheduling and

multiple traveling salesmen problem. Although the simulation results showed that

the presented approach yields feasible schedules, too many numbers of neurons and

interconnections are required for solving large sized problems.

Another extension of Hopfield network was proposed by Satake, Morikawa, &

Nakamura (1994) for minimizing the makespan of the job shop scheduling problems.

In the energy function, only one constraint is included, and the other constraints are

reflected in the threshold values. The difference between the proposed network and

the original Hopfield network was the revision of the threshold values of the network

at each transition of neurons, and the inclusion of the Boltzmann machine (Hinton &

Sejnowski, 1986) known as the integration of the dynamics of the discrete Hopfield

model with the simulated annealing methodology. The simulation experiments

showed that the presented network gives optimal or near optimal solutions.

Following this work, Foo, Takefuji, & Szu (1995) proposed a modified Hopfield and

Tank network for job shop scheduling problems. The presented network, used for

solving integer–linear programming problems, differs from the traditional Hopfield

and Tank network with the addition of nonlinear step function h amplifiers and with

the use of a linear energy function rather than the quadratic energy function of the

original Hopfield and Tank network. They examined the proposed approach, and

concluded that it requires more number of neurons and interconnections than those

needed by the approach in Zhou et al. (1991) that includes a linear energy function,

but does not need extensive calculations as in Zhou et al. (1991).

In another study, Willems & Brandts (1995) mapped the sequencing and resource

constraints of the integer linear programming representation of the job shop

scheduling problem on an extension of Hopfield network that includes general rules

of thumb as an optimization criterion. The comparison of the proposed approach

with heuristic rules showed that it produced better solutions than the traditional

heuristic approaches.

38

Besides its advantage of escaping from local minima, the Boltzmann machine

requires large computational times as the size of the problem increases (Aarts &

Korst, 1989). In order to reduce the excessive computation times of the Boltzmann

machines, Peterson & Anderson (1987) proposed mean field annealing by replacing

the stochastic bipolar state neurons of the Boltzmann machine with deterministic and

continuous neurons. The normalized mean field annealing (MFA) and the Hopfield

neural network method (HNN) were applied to the n job m machines scheduling

problem including resource and timing constraints in Huang & Chen (1999). To

solve the problem, neural net optimization algorithm was used. In other words, states

that both satisfy the constraints of the problem and minimize the energy function

were found. In this work, rather than using linear programming or the k out of N

rules to define the energy function, the objective function was formulated according

to the constraints involved, step by step. Then the total energy with all constraints

was obtained. The derived energy function was transformed into corresponding

neural network for both algorithms HNN and MFA. Simulations results showed that

the generated energy functions work successfully for multiprocessor problems.

Chen & Dong (1999) studied a production scheduling problem in a major surface

mount technology (SMT) factory in Western Canada to minimize the total setup cost

in producing different products in one of the SMT assembly lines. A nonlinear mixed

integer programming model was proposed to represent the problem with constraint

equations. In order to solve the optimization problem, Hopfield-Tank neural network

was used. The authors concluded that the computational times to reach optimal

solutions using the network approach were comparable to those required by

mathematical programming softwares, and believed that significant reduction could

be obtained in computational time if parallel computing were utilized.

Liansheng, Gang, & Shuchun (2000) developed an intelligent scheduling model

by implementing a unified neural network algorithm. Their network was based on

Hopfield neural network, and used to solve different schedule mode problems

including job-shop scheduling, priority scheduling, dynamic scheduling, and JIT

scheduling.

39

In a recent work, to deal with the earliness and tardiness multi machine

scheduling problem including sequence dependent setup times, Akyol & Bayhan

(2005) suggested a coupled gradient network approach which was the extension of

Hopfield (1984) and Hopfield & Tank (1985). The aim of their study was to

minimize the weighted sum of the earliness and tardiness penalties using a neural

network approach rather than the traditional approaches in scheduling. Using the

penalty function approach, the formulated problem was represented by an energy

function. After six recurrent networks were designed, the dynamics are defined by

gradient descent on the energy function. Although, the authors explained the

necessary steps to simulate their networks, to test the network was left to a further

study.

Any optimization problem of scheduling that can be defined by a quadratic form,

can be tackled with Hopfield networks. Then, a Hopfield network whose energy

function reaches its minima at the same points with the cost function that describes

the scheduling problem must be designed. However, by performing gradient descent

on the energy function, the Hopfield model gets easily trapped in local minimum

states, and this causes decreasing efficiency especially in large sized problems.

Additionally, determining the appropriate values of the penalty parameters, network

parameters and initial states are other critical issues associated with this model.

Solving scheduling problems represented by many constraints will cause a tradeoff

between the penalty terms to be minimized. Despite the promising results obtained

by the proposed methods, some aspects still need further studying. There is no exact

method that guarantees a global optimum solution. Even if it is achieved, the

proposed models will suffer from extremely large computation times. Moreover, few

studies are carried out for the comparison of the Hopfield network’s and its

extensions’ performance with best known heuristics’ or metaheuristics’. So, we

believe this issue will be given more importance in the near future.

40

4.2.2 Multilayer Perceptrons

One of the important types of networks used in scheduling applications is a

multilayer perceptron, a feedforward network including a set of neurons connected

by weighted links. It consists of an input layer, one or more hidden layers and an

output layer. Backpropagation, which was first introduced by Werbos (1974) and

was later rediscovered independently by Parker (1985), and Rumelhart, Hinton, &

Williams (1986), and then modified in various manners by numerous researchers in

order to overcome its deficiencies, is one of the most popular algorithms for training

multilayer perceptrons. This learning rule is a kind of gradient descent technique

with backward error propagation, used to adjust the neural weights of a multilayer

perceptron. Multilayered perceptrons trained with backpropagation learning

algorithm are generally referred to as backpropagation networks. The weights of the

network are randomly initialized before training starts. Then, a pair of patterns

including the input patterns and the desired patterns is applied to the network. By

propagating through the network layer by layer, a set of outputs is produced as the

actual outputs of the network. At the output layer, the actual outputs are compared to

the desired outputs, and an error signal is computed by subtracting the actual value

from the desired value. This error signal is propagated backward through the network

and the weight values are then adjusted by a magnitude proportional to the negative

gradient of the error function, which is generally equal to the sum of squared errors.

By this way, the difference between the actual and the desired outputs is minimized

(Haykin, 1994).

Backpropagation networks have been successfully used in modeling,

classification, forecasting, design, control, and pattern recognition. Their improved

generalization capabilities over competing machine learning tools and their easy

mechanism made them attractive to be utilized in production scheduling. A

successful use of a backpropagation network for job shop scheduling environments

can be found in Chryssolouris, Lee, & Domroese (1991) where they employed

simulation and a backpropagation network to establish adequate weights between the

operational policy of a work centre and performance measures such as the mean

41

costs, mean flow time and mean tardiness. This study is among the first examples to

the neural network based metamodels for the system design problems. A similar

application can be found in Philipoom, Rees, & Wiegmann (1994), where a

backpropagation network was proposed to determine due dates for job shops. In

order to see whether neural networks were successful in assigning due dates, the

assigned due dates were compared to regression based due date assignment rules.

The results of this study indicated that the neural network gives better results than

the six linear rules and the nonlinear regression model with respect to mean absolute

deviation and standard deviation of lateness criteria.

Because of their flexibility and adaptability properties, ANNs have been used not

only in static scheduling environments but also in dynamically changing

manufacturing environments where the values of the system attributes change

continually (Chen & Muraki, 1997; Chen, Huang, & Centeno, 1999; Arzi &

Iaroslavitz, 1999; Li, Chen, & Lin, 2003).

Geneste & Grabot (1997) showed how to consider the information based on the

workshop and the manufacturing orders structure and on the objectives of the

workshop manager in order to select a relevant scheduling strategy. They proposed

parameterized scheduling heuristics and suggested two methods to tune the heuristic

rule.

As pointed out by Jain & Meeran (1998) some of the main problems faced in the

application of traditional backpropagation networks and in Hopfield networks are the

lack of generalized learning capability to map inputs and outputs for NP hard

problems, and the growing network size for large size problems, respectively. To

overcome these shortcomings, the authors suggested a modified backpropagation

model and used it for makespan minimization. The main difference between the

proposed network and other backpropagation networks was that it performed

optimization itself. The modified backpropagation system was compared with three

priority dispatching rules; SPT, MWR, FCFS, and the Shifting Bottleneck Procedure

42

of Adams, Balas, & Zawack (1988). The proposed system offered shorter makespans

in considerable computational times than three dispatching rules.

For dealing with single machine sequencing problems, El-Bouri, Balakrishnan, &

Popplewell (2000) developed a backpropagation neural network approach where

they utilized a 11-9-1 three layered neural network in which each job is represented

by its specific information and the output unit determines where the corresponding

job lies in the sequence. The proposed network is evaluated for three performance

criteria; mean flow time, mean weighted flow time, and maximum job tardiness. The

network is successful in minimization of the mean flow time and the mean weighted

flow time. The network also allows the jobs to be sequenced in order to minimize the

maximum tardiness. For another performance criterion, minimization of the mean

job tardiness, the network’s capability was investigated and the results were

compared with two sorting rules. Although the network’s solutions are superior those

of the sorting rules, about 6-12 % difference from optima motivated the authors to

develop a Neural Job Classification and Sequencing System (NJCASS). The results

showed that NJCASS has many advantages, for instance, was flexible under different

performance criteria. The approach proposed by Hamad, Sanugi, & Salleh (2003)

bears some similarities to that of El Bouri et al. (2000), although the former is

applied to a single machine case. Hamad et al. (2003) dealt with the non-identical

parallel machines problem and proposed a way of representing the problem to be fed

into a backpropagation network, and tried to minimize the sum of earliness and

tardiness costs. In this study, the two-output representation is used instead of one-

output unit (representing the target values) representation proposed in El-Bouri et al.

(2000).

In their work, Park, Kim, & Lee (2000) presented a neural network approach for

solving identical parallel machine scheduling problems with sequence dependent set

up times to minimize weighted tardiness. Their work is an extension of Kim, Lee, &

Agnihotri (1995)’s approach to parallel machine situation. The difference between

them is the inclusion of an additional factor called set up time range factor. The

presented approach is also an extension of Lee, Bhaskaran, & Pinedo (1997)’s ATCS

43

(Apparent Tardiness Cost with Setups) rule in which four factors are used to quantify

the problem characteristics. The differences between them are that the proposed

approach includes an additional factor, and also trains a backpropagation network to

obtain the values of the look ahead parameters. The simulation experiments show

that proposed extended approach causes 4 % improvement over the original ATCS

rule.

Sabuncuoglu & Touhami (2002) used backpropagation networks as a simulation

metamodel, and tried to measure metamodel accuracy in estimating manufacturing

system performances in the job shop scheduling environments. The numerical results

showed that metamodelling with neural networks can be used effectively to estimate

the system performances. Another neural network based metamodel application can

be found in the study of Fonseca & Navaresse (2002) that shows the use of ANNs as

a valid alternative to the traditional job shop simulation approach. In order to

generate the training and test sets, the simulation software package Arena was used

and applied to a problem from Askin & Standridge (1993). From the simulation

analysis, average flowtimes were estimated when job types followed different

machine sequences. It is seen that the average flowtimes obtained from three

different simulation packages, i.e. Arena, SIMAN, and ProModel were almost

identical to the simulation outputs of the developed neural network models.

In another study, Raaymakers & Weijters (2003) also used backpropagation

networks to estimate the makespan of job sets in batch process industries. Because

the amount of job interaction depends on the mix of the jobs and the resource sets,

they use aggregate characteristics of the jobs and the resources to estimate the

amount of interaction. The authors applied both neural networks and regression

analysis to determine the relationship between the variables affecting the amount of

interaction and the amount of interaction at the scheduling level. Two kinds of

regression models were used in this study; the first one included only main effects,

and the other comprised main effects and also two way interactions. The

computational results showed that these regression models and neural networks give

44

satisfactory solutions, but the neural network’s estimation quality is significantly

better than these models.

Cha & Jung (2003) addressed the schedule assessment problems with the complex

and competing environment of manufacturing systems. In order to overcome this

problem, they introduced a methodology to provide a consistent and dimensionless

degree of satisfaction. They exploited fuzzy numbers to represent the final

assessment result of a schedule.

Feng, Li, Cen, & Huang (2003) applied multilayered perceptron networks to

design, develop and implement a production activity scheduling system to be used in

a job shop environment. They presented a different data encoding method to

represent the processing time and processing sequence of the jobs to be processed,

used backpropagation training algorithm to control local minimum solutions, and

introduced a heuristic method for revising the initial output. The implementation of

the developed scheduling system on a real life job shop problem helped to improve

the production measures of the manufacturing plant.

Cakar & Cil (2004) applied backpropagation networks for the design of

manufacturing systems. Performance measures such as mean flow time, mean

tardiness, maximum completion time, machine utilization rate of each work center

and percentage of late parts are fed as inputs into the neural network, and the number

of machines in each work center is obtained as output from the system. For each of

the priority rules, namely, earliest due date, shortest processing time, first come first

served and critical ratio rules, the shop is simulated and four different training sets

are formed. For four priority rules, four networks are trained by using these training

sets. Four different design alternatives are obtained and these design alternatives are

evaluated according to the performance measures, and the best alternative is chosen.

In addition to the above studies, Akyol (2004) exploited backpropagation

networks to model six different heuristic scheduling algorithms applied to a

makespan minimization problem of a flowshop. They incorporated fuzzy

45

representation into their preprocessing steps and then, trained their networks. The

results obtained from the comparison of proposed approach with the six heuristic

algorithms showed that the proposed method was successful to predict the makespan

of the n job m machine permutation flowshop environment.

When the articles reviewed above are considered, it can be said that

backpropagation networks, except the study of Jain & Meeran (1998), are not

directly involved in the optimization problem. That is, actual scheduling is not

performed. The success of most of the studies are the result of the good

generalization capabilities of backpropagation networks which are used to capture

the complex relationship between the input and output variables of the considered

scheduling problem. Additionally, as also pointed out by Sabuncuglu & Tohami

(2002), in recent years, for the design of manufacturing systems, the literature

includes different neural network based metamodels in which the training data is

provided by simulation. Despite the increase in the training time, integration of

simulation with neural networks will provide better results in less time compared to

time consuming stand alone simulation approach. Although the popularity of

backpropagation networks has grown significantly in the past few years, some

problems still exist with the application of the backpropagation networks. That is,

these networks are trained by a gradient based search technique which has the risk of

getting stuck in local optimum and the starting point of the connection weights

becomes an important issue to reduce the possibility of being trapped in local

optimum. Another difficulty with the construction of these types of networks is the

necessity of generating a training set which is time consuming. Therefore, in recent

years, the performance of these networks is tried to be enhanced by combining them

with different heuristics or metaheuristics.

4.2.3 Competitive Networks

The works by Grossberg (1972), von der Malsburg (1973), Fukushima (1975),

Willshaw & von der Malsburg (1976), and Grossberg (1976a,b) are the first in the

area of competitive learning. Unlike Hopfield networks, the winner take all strategy

46

forms the base of the competitive networks. In this unsupervised network, there is a

single layer of output neurons fully connected to the input neurons of the network. In

this output layer known as the competitive layer, lateral inhibition occurs among the

neurons, and each neuron tries to inhibit the neuron to which it is laterally connected.

For an input pattern presented to the network, the neuron with the weight vector at

the least distance from the input vector is called the winner and its output is set to

one.

In order to apply competitive networks to solve optimization problems, the

equations of motion for the problem constraints and an energy function that

converges to stable states must be defined. For detailed information one can refer to

Fang & Li (1990). Fang & Li (1990) obtained equations of motion for the 0-1

knapsack problem, the generalized assignment problem and the single machine total

tardiness scheduling problem including unit processing times and different deadlines.

Although their study generated good results, the literature on the application of

competitive networks to scheduling is sparse. More work has to be done in deriving

the equations of motion to represent different constraints present in different types of

scheduling problems.

A neural network model including a three dimensional structure as in the work of

Lo & Bavarian (1993) was proposed by Sabuncuoglu & Gurgun (1996). It is very

similar to the Hopfield network but includes an external processor for monitoring

and controlling the network evolution. The difference between the Hopfield network

and the proposed network is that the proposed network involves a competition

property. In other words, the neurons (jobs) compete with each other to be in the first

available position in the sequence. This network was employed for solving the single

machine mean tardiness problem, and job shop scheduling with makespan

minimization. The performance of the proposed network was compared with the

Wilkerson and Irwin (WI) algorithm, in terms of mean tardiness and the computation

time, and gave better solutions than WI. Then, the performance of the proposed

approach for job shop scheduling was tested on a number of job shop scheduling

47

problems, and the proposed network found optimal solutions in most of the

problems.

Chen & Huang (2001) applied a competitive neural network in order to obtain

solutions to the multiprocessor job scheduling problem with multiprocesses. The

problem involves time and resource constraints, and is depicted by an energy

function proved to be converging. This function is mapped onto the competitive

Hopfield neural network (CHNN) known as a Hopfield neural network (HNN) with a

winner-take-all learning mechanism. In other words, in competitive Hopfield neural

network, instead of conventional deterministic learning rules, a competitive learning

mechanism is used to update the neuron states so that the time required in obtaining

coefficients is reduced and effective results are obtained. The simulation experiments

showed that the method was successful.

Based on competitive learning, Kohonen (1982) proposed an unsupervised,

clustering network known as self-organizing map in which only one neuron per

group is on at a time. McMullen (2001) developed a neural network approach of the

Kohonen self-organizing map (SOM) for solving a JIT production-sequencing

problem with setups minimization and material usage stability. The experimental

results based on various test problems from the literature shows that SOM approach

gives near optimal solutions with respect to the objectives considered, and its overall

performance is competitive with the search heuristics such as simulated annealing,

tabu search and genetic algorithms (GAs). But the proposed method needs more

efforts to handle the CPU time problem.

In their later work, Min & Yih (2003) integrated simulation and a competitive

neural network trained with the Kohonen learning rule, and developed a multi-

objective scheduler to select dispatching rules for both machine and vehicle initiated

dispatching decision variables, and to obtain the desired performance measures at the

end of short production intervals. Extensive simulation experiments were conducted

to collect the data including the relationships among the change of decision rule set

and current system status and the performance measures of a semiconductor wafer

48

fabrication system. A competitive network was used to group all instances of

simulation outputs.

4.3 Scheduling with Hybrid Approaches

Several shortcomings of ANNs motivated the researchers to integrate neural

networks with different computing techniques. As a result, to enhance the

performance of the neural networks, there has been an explosive growth in the

successful use of hybrid neural networks in scheduling. In this section, we review the

scheduling studies exploiting the combinations of neural networks with different

approaches.

Rabelo & Alptekin (1990) introduced a hybrid approach using expert systems and

backpropagation neural networks, and applied their hybrid system to find solutions

for the FMS scheduling/rescheduling problem. To choose the best scheduling rules

with respect to different criteria, ANNs were used to identify patterns in the tasks to

be solved, and expert systems were used to monitor the performance of the system

and to automate the learning process of the ANN.

ANNs are combined with GAs, first proposed and studied by Holland (1975), to

handle trapping in local minima, one of the important shortcomings of ANNs. Works

in the area of GAs were summarized in Schaffer, Whitley, & Eshelman (1992).

Dagli & Sittisathanchai (1993) also proposed a hybrid approach combining GAs

with neural networks. Firstly, they tested their approach using a problem from Foo &

Takefuji (1988), and showed that the hybrid method found the optimum solution in a

few iterations. Then, even the number of machines and jobs were increased, the

results were also encouraging. Furthermore, the genetic neuro-scheduler proposed by

these authors produced better solutions than the shortest processing time (SPT) rule

for different sizes of problems. Another GA including hybrid approach system for

selecting candidate scheduling rules, which minimize the maximum tardiness and

mean flow time, from a larger list of rules was developed by Rabelo, Yih, Jones, &

49

Tsai (1993) where backpropagation neural networks, parallel Monte Carlo

simulation and inductive machine learning mechanism were integrated. The test

results proved the success of the approach.

In recent years, the development of artificial intelligence techniques has provided

a powerful way of dealing with dynamic scheduling problems. In the study of Sim,

Yeo, & Lee (1994), the backpropagation neural network is integrated with an expert

system for solving dynamic job shop scheduling problems, and by this way, the

weakness of each stand alone method is tried to be overcome. The integrated method

exploits the advantages of both techniques, that is, the expert system helps to reduce

the training time of the neural network by training sub-networks separately, while the

neural network learns about and handles the complex interactions of the scheduling

considerations without the need for the long knowledge acquisition and development

time of expert systems. The authors showed that the proposed network has better

performance than priority dispatching rules, and could tackle with the adaptive

scheduling problems.

One of the major drawbacks encountered with neural networks is their lack of

explanation power. It is difficult to explain how the networks arrive at their solutions

due to the complex non-linear mapping of the input data by the networks. In many

applications, to gain better understanding of the problems at hand it is desirable to

induce knowledge from trained neural networks. In the literature, applying machine

learning techniques to extract dynamic scheduling knowledge has been a successful

method. In their work, Li, Wu, & Torng (1997) combined an adaptive neural

network classifier and a decision tree technique to obtain scheduling knowledge for

flexible manufacturing systems. System performance data are fed into the adaptive

resonance theory neural network model (Carpenter & Grossberg, 1987) as inputs,

and classified according to the similarities between them. In order to find a definition

for each class, a decision tree method is performed and then this is converted into a

set of rules to be used as the real time scheduling knowledge.

50

In the same year, in order to overcome the problems of convergence, stability and

sensitivity to the initial inputs belonging to Hopfield networks, Jeng & Chang (1997)

presented a non-energy based neural network architecture that implements a heuristic

rule, combination of most-valid operation first and shortest operation first rule. They

used this network to solve job shop scheduling problems with makespan

minimization, and obtained optimal or near optimal schedules.

Lee & Dagli (1997) designed a parallel genetic-neuro scheduler including six

different modules, for solving large size job shop scheduling problems, and tested it

on different size of job shop scheduling problems. The results show that the

developed approach is able to reach to the optimum solution in a few iterations, and

has superior solutions to SPT, EDD, SLACK for minimizing the lead time.

Min, Yih, & Kim (1998) designed a dynamic and real time FMS scheduler by

combining the competitive neural network and search algorithm to meet the multiple

objectives given by the FMS operator. Based on the current decision rules, current

system status and performance measures, the competitive network generates the next

decision rules. The simulation results indicate that the FMS scheduler is able to

satisfy multiple objectives given by the operator. Another multiple objective flexible

manufacturing system (FMS) scheduler was developed by Kim, Min, & Yih (1998)

with the same objective. Their approach is the integration of inductive learning,

competitive neural network and simulation. They compare, for different objectives,

the competitive network approach with the proposed integrated approach. The results

show that the use of inductive learning is effective to refine the rough scheduling

knowledge.

Rather than the usual non-adaptive neural networks proposed in the literature,

Yang & Wang (2000) proposed a constraint adaptive neural network (CSANN) for

the generalized job shop scheduling problem that is more complex than the

traditional job shop scheduling problem. The problem is represented by the integer

mathematical programming models, and then mapped onto a neural network that

consists of two layers. In this study, three different heuristic algorithms are combined

51

with the proposed CSANN. From the simulation experiments conducted, it is seen

that the performance of CSANN is improved by combining CSANN with the

proposed heuristics. Later, Yang & Wang (2001) extended the work of Yang &

Wang (2000). In the latter approach, a new heuristic based on obtaining a non-delay

schedule, and one of the heuristics in Yang & Wang (2000) used to increase the

speed of the solving process of CSANN, are combined with CSANN to form a new

hybrid approach for job shop scheduling problems. According to the simulation

experiments, the new hybrid approach is efficient in obtaining the minimum

makespan, and is fast in making calculations. Another constraint neural network was

introduced by Yu & Liang (2001) where they again try to solve the expanded job

shop scheduling problem (EJSSP), which is more difficult to solve than the original

job shop scheduling problem, by involving additional constraints such as job

delivery due dates and available time of the resources. They propose a hybrid

approach of neural networks and GAs. In order to describe the processing constraints

and resolve the conflicts, three types of neurons are described. Then a constraint

neural network (CNN) formed by these neurons is developed. To optimize the

starting time of the EJSSP, a gradient CNN is constructed. This gradient CNN is

combined with GA for optimizing the sequence of the scheduling problem. The

results of the study show that the hybrid approach is effective for complex

scheduling problems.

To deal with fuzzy and random production disturbances faced commonly in

manufacturing systems, Li, Li, Li, & Hu (2000) presented a production rescheduling

expert simulation system based on Chinese manufacturing. It combines many

different techniques and methods, including simulation, backpropagation neural

network, expert knowledge and dispatching rules. The simulation module provides

training patterns for the network. Simulation results showed that the production

rescheduling expert system is practical and increases production efficiency.

Another use of GA- neural network combination can be found in Lee & Shaw

(2000) where they proposed a two level neural network for a real time flow shop

sequencing problem of a printed circuit board (PCB) manufacturing environment.

52

Firstly, they compare the performance of their pure neural network with two

constructive heuristics: the deterministic greedy search and the NEH heuristic

(Nawaz, Enscore, & Ham, 1983). For this reason, they construct a total of 10

problem sets including different number of machines and different number of jobs.

Simulation results from 30 runs for each problem set are averaged. The comparison

of the makespan and computational times by the neural network approach and

constructive heuristics indicate that the neural network approach is superior. Then,

the neural network approach’s performance is also compared with GAs. The results

show that the neural network’s performance are within 3.4% of those of GAs but the

computational time needed by the neural network is only less than 0.2 % of that of

GAs. The last implementation of this work is the combination of the neural network

approach with GAs, and the simulation results indicate that the combined algorithm

improves the solution quality and computational time of the GAs.

From optimization viewpoint, the Hopfield neural network and its extensions

belong to the penalty method for solving the constrained real optimization into which

a combinatorial optimization is converted. The penalty function requires the

weighting factors for the penalty terms to be sufficiently large in order to converge to

a feasible solution. But as the penalty terms become stronger, the original objective

function becomes weaker, and as they become larger and larger, the problem

becomes ill conditioned. To deal with this problem, Li (1996) combined the

augmented Lagrange multiplier method and the penalty methods of the Hopfield

networks to obtain the augmented Lagrange Hopfield network. By this way, both the

solution quality and the convergence properties of the Hopfield network are

improved. Thus, the proposed approach helps to overcome the problems associated

with the penalty method or the Lagrange multiplier method when used alone (Li,

1996). Following this work, Luh, Zhao, & Wang (2000) proved the convergence of

Lagrangian Relaxation Neural Networks (LRNN) for separable convex problems,

and constructed LRNN for separable integer programming problems. They applied

LRNN to separable job shop scheduling problems. By using Lagrange multipliers,

the machine capacity constraints are relaxed, and the relaxed problem is decomposed

into sub problems each of which is solved by dynamic programming. The results

53

indicate that the performance of the method is much better than those of the existing

neural network approaches in scheduling.

In another study, Liebowitz, Rodens, Zeide, & Suen (2000) incorporated a

Hopfield neural network approach into the generically used expert scheduling system

(GUESS). GUESS is an intelligent scheduling toolkit developed by Liebowitz,

Krishnamurthy, Rodens, Houston, Liebowitz, & Zeide (1997) including a heuristic

based approach, a hill-climbing algorithm and a GA approach to scheduling. The

performance of the neural network is compared with the other approaches used by

GUESS. From the results, it is seen that the neural network approach produces good

solutions for scheduling problems.

An altogether different approach was presented by Chen & Huang (2001) for

solving the multiprocessor scheduling problem involving non-preemptive

multitasking with timing constraints. The proposed network known as a fuzzy

Hopfield NN (FHNN), was different from the standard Hopfield network in the sense

that a fuzzy c-means clustering algorithm is incorporated into it. In this method, each

processor (job) is regarded as a data sample and every processor as a cluster. The

objective function to be minimized is defined as the Euclidean distance between the

data samples and the cluster sample, and the goal is to find the best set of clusters.

The simulation results showed that the modified energy function of the network

converges rapidly into a minimum value, and the penalty parameter determination

problem, a major shortcoming of Hopfield NNs, is overcome.

Another neural network approach to adaptive scheduling can be found in the

study of Shiue & Su (2002). In this approach, the aim is to develop a neural network

based adaptive scheduling system to identify the important attributes of the system

status and generate scheduling knowledge bases for an FMS system. The authors

point out that by selecting important system attributes in manufacturing systems,

better performance could be achieved in prediction. They develop an attribute

selection algorithm based on the weights of backpropagation networks, to measure

the importance of system attributes in a neural network based adaptive scheduling

54

(NNAS) system. Then, they combine their algorithm with the (NNAS) system and

obtain an attribute selection neural network based adaptive scheduling (ASNNAS)

system. In order to test the efficiency of the (ASNNAS) system, its performance is

compared with the (NNAS) system’s performance and with some dispatching rules

for different criteria. The results show that the ASNNAS system gives better

solutions than the NNAS system for all the performance criteria, and requires less

computational effort.

Similar to their previous work, Shiue & Su (2003) developed an attribute

selection decision tree (ASDT) based adaptive scheduling system by combining

backpropagation networks with a decision tree learning (C4.5 algorithm) approach.

This approach differs from Shiue & Su (2002)’s approach in using the decision tree

learning algorithm in constructing the scheduling system. The authors compare the

classical DT-based approach with ASDT-based approach under different

performance criteria. The experimental results show that using an attribute selection

algorithm improves the generalization ability of knowledge bases, and causes less

computational effort. In a similar work, Priore, Fuente, Pino, & Puente (2003)

applied backpropagation networks and inductive learning (C4.5 algorithm) to acquire

the scheduling knowledge by which the most appropriate dispatching rule in flexible

manufacturing systems is determined. To improve the performance of the scheduling

systems, they also propose a module used for generating new control attributes.

Wang, Jacob, & Roland (2003) addressed some limitations associated with

traditional neural network models. Among these limitations were the requirement of

excessive number of neurons, finding unfeasible solutions and the computational

effort required for obtaining a solution. They propose a hybrid neural network

approach to solve the flexible flow shop scheduling problem, which is a

generalization of flow shop and parallel machine scheduling problems, with the

objective of makespan minimization. In this study, the authors exploit the structure

of optimization problems and heuristic information, and compare their hybrid

network with Ding & Kittichartphayak (1994) heuristics with respect to the

computational time and solution quality which is measured by percentage of absolute

55

difference between the solution and the lower bound (or the optimal solution) for

some small problems. The results of the study show that the proposed hybrid

approach outperform all the heuristics on average and succeeds in dealing with the

mentioned limitations.

A different application can be found in Agarwal, Pirkul, & Jacob (2003) where an

Augmented Neural Network (AugNN) has been proposed for solving the task

scheduling problem. The proposed approach is a hybrid of the heuristic and the

neural network approaches, and is used to minimize the makespan for scheduling n

tasks on m identical machines. The heuristics used in this study were: Highest Level

First, Highest Level with Estimated Time First, Critical Path with most Immediate

Successors First, Shortest Path Time, Longest Processing Time and Random. These

six heuristics and AugNN (including these six heuristics and two learning rules) are

compared based on three criteria- a) reduction in gap between lower bound solution

and heuristic solution, b) number of cases with known optimum solutions, c) number

of cases where improvement in makespan occurs over heuristic. 570 problems of

various sizes, ranging from 10 to 100 tasks, and from 2 to 5 machines are used for

testing the performance of the AugNN over the six single pass heuristics. The results

indicate that the suggested network outperforms the single pass heuristics with

respect to all the three criteria.

Although, the gradient based search techniques such as the back-propagation are

currently the most widely used optimization techniques for training neural networks,

it has been shown that these gradient techniques are severely limited in their ability

to find global solutions. Global search techniques have been identified as a potential

solution to this problem. Glover (1986) proposed a meta heuristic approach, tabu

search (TS), as a global search technique. Its popularity has grown significantly in

the past few years (Sexton, Allidae, Dorsey, & Johnson, 1998). The work done by

Solimanpur, Vrat, & Shankar (2004) is a good example to this integration. The

authors proposed a neural network based tabu search method for solving the flow

shop scheduling problems and the initial permutation obtained from NEH algorithm

is tried to be improved. This method is tested on 23 problems proposed by Taillard

56

(1993) and compared with the BF–TS approach of Ben Daya & Al-Fawzan (1998) in

terms of makespan and computational time. The results show that the proposed

neuro-tabu search approach is effective over the BF–TS approach in both criteria,

and the tabu effect is reduced exponentially.

4.4 Scheduling with Evolutionary Artificial Neural Networks

In recent years, the design of neural networks by evolutionary algorithms has been

given great attention by researchers to develop adaptive systems that can change

architectures and learning rules according to dynamic environments (Cho &

Shimohara, 1998).

ANNs’ performance is closely related with their architecture designs. Therefore,

obtaining an optimal architecture design has been an important issue in the ANN

field. But, since the basic principles governing the processing of information in

neural networks is not well understood, optimal architecture design has been a very

difficult task depending strongly on human experts having sufficient knowledge

about ANNs and the problem to be solved. A trial and error method is used for the

manual design that becomes more difficult and unmanageable as ANN complexity

increases. Since the selection of the appropriate topology of a network and the best

learning algorithm and its parameters are problem dependent, in the literature there

have been many attempts to automate the design of ANN architectures. Constructive

and destructive approaches are important classes of approaches used. In the former

approach, after starting with a small network, neurons or connections are gradually

added to the network in order to satisfy the requirements. On the other hand, the

latter approach starts with a large network, and then neurons or connections between

neurons are pruned to obtain a suitable network. But the neural network structures

obtained by these two approaches are constrained to the predefined subsets. Thus,

the given task will be performed with a structure from an assumed architectural class

rather than an appropriate one (Fang & Xi, 1997).

57

There has been a growing interest in using evolutionary search algorithms to

eliminate the tedious trial and error work of manual design of ANNs. Evolutionary

algorithms include evolution strategies (ESs) (Schwefel, 1981; Schwefel, 1995),

evolutionary programming (EP) (Fogel, Owens, & Walsh, 1966), GAs (Holland,

1975; Holland, 1992; Jong, 1975; Goldberg, 1989), and a class of population-based

stochastic search algorithms based on the ideas and principles of natural evolution.

One important characteristic of these algorithms is that individuals in a population

compete and exchange information with each other in order to perform certain tasks

(Yao, 1999). Similar to ANNs, they have some advantages of robustness and

parallelism. But they differ from ANNs in having global search capabilities that

make them an applicable and an appealing approach. By maintaining diversity in the

population, EAs can tackle large complex problems that generate many local optima.

In contrast to gradient-based search algorithms, they do not use the gradient

information. They are less likely to fall into local minima, and can be applied to

problems for which little prior knowledge is available (Yao, 1997).

The ANNs designed by the evolutionary process are referred to as evolutionary

ANNs (EANNs). In other words, they belong to a special class of ANNs in which

evolution is another essential form of adaptation in addition to learning. Using two

forms of adaptation, EANNs can adapt to a dynamic environment efficiently and

effectively (for more detailed information about evolution of ANNs see Yao, 1999).

In EANNs, evolution is employed at different levels to perform several tasks. At

the lowest level, evolution can be employed to evolve weight training. In ANNs,

weight training is usually formulated as minimization of an error function, such as

the mean square error between target and actual outputs averaged over all examples.

Connection weights are iteratively adjusted using training algorithms, such as BP

and conjugate gradient algorithms based on gradient descent (Alvarez, 2002).

Gradient descent based training algorithms have some disadvantages of getting stuck

into a local minimum of the error function when the error function is multimodal

and/or nondifferentiable. To overcome this drawback, evolution is introduced to find

a near optimal set of connection weights without computing the gradient information

58

(Fogel, Fogel, & Porto, 1990; Porto, Fogel, & Fogel, 1995; Yao, Wei, & He, 1996;

Greenwood, 1997; Köppen, Teunis, & Nickolay, 1997; Islam, Akita, Shahjahan, &

Murase, 2000; Mandischer, 2002; Cortez, Rocha, & Neves, 2002; Lu, Fan, & Lo,

2003; Ilonen, Kamarainen, & Lampinen, 2003).

At the next higher level, evolution can be employed to evolve the architecture of

ANNs that strongly affects the information processing capabilities of ANNs. (Koza

& Rice, 1991; Bornholdt & Graudenz, 1992; Tang, Chan, Man, & Kwong, 1995;

Mandischer, 1995; Cho & Shimohara, 1998; Sendhoff & Kreutz, 1999; Schmitz &

Aldrich, 1999; Kaikhah & Garlick, 2000; Macleod & Maxwell, 2001; Alvarez, 2002;

Wicker, Rizki, & Tamburino, 2002; Igel & Kreutz, 2003) This helps to automate the

design of ANNs which is a human experience dependent tedious trial and error work.

At the highest level, evolution can be employed to evolve ANN learning rule,

which specifies how to adjust weights in weight training. Because the weight training

has traditionally been regarded as a learning process, the evolution of learning rules

can be considered as a process of learning to learn weights (Yao & Liu, 1998). For

different types of architectures of ANNs under consideration, the ANN training

algorithm may have different performance. When there is little prior knowledge

about the architecture of ANNs, it becomes very difficult to design an optimal

learning rule. By adapting a learning rule through evolution it is assumed that ANN’s

adaptivity will be enhanced in a dynamic environment. By this way, the relationship

between learning and evolution will be modeled. Evolution of learning rules differs

from the evolution of connection weights and architectures. While the evolution of

learning rules works on the dynamic behavior of ANNs, evolution of connection

weights and architectures only deal with static objects in an ANN, i.e. weights and

architectures. Research dealing with the evolution of learning rules is still in its early

stages. Various studies have been proposed on the evolution of learning rules

(Chalmers, 1990; Fontanari & Meir, 1991; Baxter, 1992; Merelo, Pat´on, Ca˜nas,

Prieto, & Mor´an, 1993; Crosher, 1993; Kim, Jung, Kim, & Park, 1996; Patel, 1996;

Moriarty & Mikkulainen, 1996; Kim, Ahn, & Kang, 2000).

59

Two major problems with the evolution of architectures without considering

weights are noisy fitness evaluation and the permutation problem. In addition to the

evolutionary procedures explained above, simultaneous evolution of ANN

architectures and connection weights generally produces better results and lessens

the impact of fitness evaluation and permutation problem (Fang & Xi, 1997; Pujol &

Poli, 1998; Yao & Liu, 1998; Liu & Yao, 2001; Gao, 2003).

Although the researchers deal with combining GAs, a branch of EAs, with ANNs,

to the best of our knowledge there has not been any scheduling application including

the integration of other evolutionary algorithms with neural networks. It is doubtless

that ANN researchers will benefit from the advantages of EAs by complementing

and compensating each other’s strengths and weakness to tackle the problems of

scheduling.

The evolutionary training method can deal with the global search problem of

ANNs without computing the gradient information. It will be useful to employ them

in solving production scheduling problems for which ANNs are incapable of finding

a global minimum. Their application is not restricted to overcome the disadvantages

of the backpropagation learning algorithm. EAs can also be used for optimizing

recurrent neural networks such as Hopfield networks that possess the weakness of

proving a local optimal solution to combinatorial optimization problems including

scheduling. The applicability of the same evolutionary algorithm to train different

types of networks reduces the human effort needed in developing different training

algorithms. Besides having many advantages, EAs are not good at local fine-tuned

search. In order to overcome this drawback, they are combined with local search

algorithms such as simulated annealing, tabu search, backpropagation algorithm, etc.

This kind of hybridization can improve the performance of EAs (Yao, 1991;

Mühlenbein, Schomisch, & Born, 1991; Kido, Takagi, & Nakanishi, 1994).

60

4.5. Summary and Future Research

 Over the last decade, ANNs have been applied to an increasing number of real-

world problems of considerable complexity and to the theoretical test problems. In

this chapter, we tried to provide an extensive literature review on the applications of

ANNs to different production scheduling problems. In order to see the gradual

development in these works, the recent research studies are summarized in a

chronological order. Our survey is limited with the publications appearing in

refereed journals and conference proceedings between 1987 and 2005. Table 4.1

summarizes the scheduling applications considered in this paper.

Table 4.1 Evolution of ANNs in scheduling

Year Author(s) Approach Application area

1988

a,b,c
Foo & Takefuji Hopfield networks Job-shop scheduling problem

1990 Rabelo & Alptekin

Hybrid of expert systems and

backpropagation neural

networks

FMS scheduling/rescheduling

problem

1990 Fang & Li Competitive networks Single machine scheduling

1991 Zhou et al.

An extension of Hopfield

networks (has a linear energy

function)

Job-shop scheduling problem

1991 Chryssolouris et al. Multi layer perceptrons Job-shop scheduling problem

1991 Van Hulle Hopfield networks Job-shop scheduling problem

1992
Vaithyanathan &

Ignizio
Hopfield networks

Dynamic resource constrained

scheduling problem

1992 Arizono et al.

An extension of Hopfield

network (A Gaussian

machine model)

Single machine scheduling

1993 Lo & Bavarian
An extension of Hopfield

network

Job-shop scheduling problem and

multiple travelling salesmen

problem

61

1993
Dagli &

Sittisathanchai

a hybrid approach combining

GAs and neural networks
Job-shop scheduling problems

1993 Rabelo et al.

(a hybrid approach)

Integration of

backpropagation neural

networks, parallel Monte

Carlo simulation and

inductive machine learning

mechanism

Job-shop scheduling problem

1994 Satake et al.
An extension of Hopfield

network
Job-shop scheduling problem

1994 Philipoom et al. backpropagation networks Job-shop scheduling problem

1994 Sim et al.

(a hybrid approach)

backpropagation networks

integrated with an expert

system

Job-shop scheduling problem

1995 Foo et al.
An extension of Hopfield

network
Job-shop scheduling problem

1995 Willems & Brandts
An extension of Hopfield

network
Job-shop scheduling problem

1995 Kim et al.
A hybrid approach using

heuristic rules and ANNs
Single machine scheduling

1996
Sabuncuoglu &

Gurgun
Competitive networks

Single machine and job shop

scheduling problems

1997 Chen & Muraki backpropagation networks
Online scheduling in batch process

management

1997 Geneste & Grabot backpropagation networks Job-shop scheduling problem

1997 Li et al.

(a hybrid approach)

Adaptive resonance theory

neural network combined

with a decision tree technique

FMS scheduling

1997 Jeng & Chang

(a hybrid approach)

Non energy based neural

network

Job-shop scheduling problems

62

(that implemented a heuristic

rule)

1997 Lee & Dagli

(a hybrid approach)

Artificial neural network

(type is not reported) + GAs

Job-shop scheduling problems

1998 Jain & Meeran
Modified backpropagation

network
Job-shop scheduling problem

1998 Min et al.

(a hybrid approach)

Competitive networks +

search algorithm

FMS scheduling

1998 Kim et al.

(a hybrid approach)

Inductive learning +

competitive network +

simulation

FMS scheduling

1999 Chen et al.
backpropagation

network

Scheduling of material handling

system (FMS scheduling)

1999 Huang & Chen

Hopfield network and the

normalized mean field

annealing method (obtained

by embedding simulated

annealing into the Hopfield

network)

Job-shop scheduling problem

1999 Chen & Dong. Hopfield network Job-shop scheduling problem

1999 Arzi & Iaroslavitz backpropagation network

ANN based Production Control

System for a Flexible

Manufacturing Cell is presented for

choosing the most appropriate

scheduling rule out of several

predetermined ones.

2000 El-Bouri et al. backpropagation network Single machine scheduling

2000 Liansheng et al.
An extension of Hopfield

network

Different schedule mode problems

including job-shop scheduling,

priority scheduling, dynamic

scheduling and JIT scheduling.

63

2000 Park et al. backpropagation network

Parallel machine scheduling

problems with sequence dependent

set up times

2000 Yang & Wang

(a hybrid approach)

Constraint adaptive neural

network (CSANN) combined

with three different heuristic

algorithms

Generalized job shop scheduling

problem

2000 Lee & Shaw

(a hybrid approach)

Combination of the neural

network approach with GAs

Flow shop scheduling

2000 Li et al. backpropagation network Production rescheduling problems

2000 Liebowitz et al.

(a hybrid approach)

Hopfield network

incorporated into the

generically used expert

scheduling system

Different scheduling problems

2000 Luh et al.

(a hybrid approach)

Combination of lagrangian

relaxation with Hopfield N.

Job-shop scheduling problem

2001 Chen & Huang

(a hybrid approach)

Combination of Hopfield

network with fuzzy c-means

clustering algorithm

Multiprocessor scheduling problem

2001 Chen & Huang Competitive networks Job-shop scheduling problem

2001 McMullen Kohonen self-organizing map JIT production scheduling problem

2001 Yang & Wang

(a hybrid approach)

Constraint adaptive neural

network (CSANN) combined

with two different heuristic

algorithms

Job-shop scheduling problems

2001 Yu & Liang

(a hybrid approach)

A hybrid approach of

constraint NNs and GAs

Expanded job-shop scheduling

problem

64

algorithms

2002 Li & Ye Hopfield network Flow shop scheduling problem

2002
Sabuncuoglu &

Touhami
backpropagation network Job-shop scheduling problem

2002
Fonseca &

Navaresse
backpropagation network Job-shop scheduling problem

2002 Shiue & Su

(a hybrid approach)

Neural network based

adaptive scheduling system

Flexible Manufacturing Systems

2003
Raaymakers &

Weijters
backpropagation network Batch process industries

2003 Feng et al. backpropagation network Job-shop scheduling problem

2003 Hamad et al. backpropagation network
Non-identical parallel machine

scheduling problems

2003 Cha & Jung backpropagation network Job-shop scheduling problem

2003 Li et al. backpropagation network Flexible Manufacturing Systems

2003 Min & Yih Competitive networks
Semiconductor wafer fabrication

system

2003 Shiue & Su

(a hybrid approach)

Backpropagation networks

combined with a decision tree

learning approach

Flexible Manufacturing Systems

2003 Wang et al.

(a hybrid approach)

Artificial neural network

combined with the structure

of the optimization problem

Flexible Flow shop scheduling

problem

2003 Priore et al.

(a hybrid approach)

backpropagation networks

and inductive learning

Flexible Manufacturing Systems

2003 Agarwal et al.

(a hybrid approach)

Neural networks combined

with heuristic approaches

Task scheduling problem

2004 Cakar & Cil backpropagation network
Design of manufacturing systems

using different priority rules

65

2004 Solimanpur et al.

(a hybrid approach)

A neural network based tabu

search method

Flow shop scheduling

2004 Akyol backpropagation network Flow shop scheduling problem

2005 Akyol & Bayhan
An extension of Hopfield

network

Parallel machine scheduling

problem

The conclusions drawn from this detailed review are summarized below.

• Most of the approaches proposed in the reviewed articles are based on

Hopfield networks and backpropagation networks, and a great emphasis has been

given on the job shop scheduling problem, one of the hardest combinatorial

optimization problems encountered in real scheduling environments. The literature

presents many variants of traditional ANN approaches to improve their performance

by trying to escape from the local minima, by reducing the computational effort

required, by speeding convergence and by decreasing the number of neurons and

interconnections.

• Although widely preferred in the literature because of their highly parallel

computational capabilities, one of the major problems in the application of Hopfield

networks to optimization problems is the penalty parameter determination. Due to

many constraints needed to express scheduling problems, the energy function will

include too many penalty terms that result too many local minima. To satisfy all of

the constraints while minimizing the objective function is very difficult and a

tradeoff exists between the constraint penalty terms and the objective function term.

Thus, we believe that an important direction of future research is to search for the

methods to overcome this tradeoff problem. In this regard, rather than using constant

penalty parameters during simulations, employing time varying penalty parameters

may be offered as a potential solution to this problem. In this thesis, we also used

time varying penalty coefficients to solve the problems considered.

66

• In the last years, ANNs have either been combined with artificial intelligence

techniques such as expert systems, with metaheuristics such as GAs, tabu search,

simulated annealing or with some heuristic procedures to form hybrid approaches

providing superior solutions. As a global search technique, the combination of GAs

with ANNs is widely used in obtaining optimal solutions, and considerable success is

achieved by overcoming the slow convergence property of GAs and the local minima

problem of ANNs. Future research should continue this trend by extending these

works.

• In recent years, following the need to solve real world dynamic scheduling

problems, rather than non-adaptive neural networks whose connection weights and

biases must be prescribed before the networks start to work, adaptive neural

networks are developed and their performance is improved by combining them with

several heuristic algorithms.

• In the neural network design, setting of the parameters, initialization of the

weights, configuration of the network are often problem specific and the correct

value of these parameters however is not known a priori. Therefore, for any given

problem, a wide variety of parameters must be tried to generate confidence that a

best solution has been found. Sensitivity of the ANNs to their initial configuration

and inability of the gradient based search techniques to find global solutions

motivated the researchers to employ EAs together with ANNs for the automatic

adjustment of the parameters and the topology of the ANNs.

• In the dynamic scheduling environments faced in real world manufacturing

systems, scheduling and rescheduling problems can be handled by EANN’s

adaptation and learning properties. While several researchers develop new EAs for

ANNS, some try to find remedies for these algorithms’ shortcomings such as heavy

computational loads, and time-consuming fitness evaluation (Hong, Lee, & Tahk,

2003; Palmes, Hayasaka, & Usui, 2003).

67

• Together with its advantages, the hybrid approach of EAs and ANNs brings

together unsolved problems from two complex areas. While there are many questions

that need to be answered, many empirical studies on EANN approaches are being

reported for solving different kinds of problems. However, most of the studies have

focused on small sized problems, and there are few studies comparing the

performance of EANNs with their counterparts. In addition, it is not clearly known at

present how performance of EANNs in scheduling is. In order to provide a common

platform for comparison, benchmark problems must be generated for different

objective functions.

• The review of the EANN literature shows us that evolutionary optimization

research area is not fully developed but is growing so fast.

• Not only in the ANN field, the role of local search in the field of EANNs is

important. Combining EANNs with local search based metaheuristics which have an

important feature of flexibility, will make them more effective and an important

alternative to ANNs.

• Last years have witnessed the development of efficient and effective stochastic

optimization algorithms such as particle swarm optimization (PSO) algorithm which

was first introduced by Kennedy & Eberhart (1995). It is an evolutionary algorithm

that simulates the social behavior of organisms such as bird flocking and fish

schooling. Due to its easy implementation and effectiveness in performing difficult

optimization problems, PSO gained considerable attention among researchers and

has been applied to a wide range of problems such as multi-objective optimization

problems (Ray & Liew, 2002; Mostaghim & Teich, 2003; Coello Coello & Lechuga,

2002), constrained optimization problems (Hu & Eberhart, 2002; El-Gallad, El-

Hawary, & Sallam, 2001; Parsopoulos & Vrahatis, 2002), minimax problems, power

and voltage control (Yoshida, Kawata, Fukuyama, & Nakanishi, 1999) and task

assignment problems (Salman, Ahmad, & Al-Madani, 2002). Few papers

(Tasgetiren, Sevkli, Liang, & Gencyilmaz, 2004; Cagnina, Esquivel, & Gallard,

2004; Allahverdi & Anzi, 2005) report the application of this new emerging

68

algorithm in production scheduling. But due to its advantages over other heuristic

methods, it is certain that PSO will be more attractive in the area of scheduling. In

the last years, PSO is successfully utilized in evolving ANNs to find optimal

weights, appropriate topology and transfer functions. Since standard ANNs need to

be customized for each system, integration of ANNs with PSO will make possible to

design ANNs automatically, and to obtain good generalization capabilities. Of

course, it is unavoidable to see their reflections in the area of scheduling.

We believe that in the near future the researchers will benefit from the use of the

recent advances in EAs, ANNs, metaheuristics, and their combinations. It can be

concluded that, the future of ANNs not only lies in their explicit use but also lies in

its conjunction with other advanced technologies.

 69

CHAPTER FIVE

SOLUTION OF IDENTICAL PARALLEL MACHINE SCHEDULING

PROBLEM USING DYNAMICAL GRADIENT NETWORKS

5.1 Introduction

The classical identical parallel machine scheduling problem, given n jobs and m

machines, is to assign each job on one of the identical machines during a fixed

processing time so that the schedule that optimizes a certain performance measure

can be obtained. Having numerous potential applications in real life, in recent years,

various research works have been carried out to deal with the parallel scheduling

problems.

The literature of parallel machine scheduling problems has been extensively

reviewed by Cheng & Sin (1990) and Mokotoff (2001). Among many criteria,

minimizing makespan (maximum completion time) has been one of the most widely

studied objectives in the literature. Using the three-field classification introduced in

Graham, Lawler, Lenstra, & Rinnooy Kan (1979), the problem is denoted in the

scheduling literature as P||Cmax where P designates the identical parallel machines,

Cmax denotes the makespan. We assume, as is usual, that the processing times are

positive and that 1<m<n. The problem is known to be NP-hard in the strong sense

(Garey & Johnson, 1979; Sethi, 1977).

Although traditional techniques such as complete enumeration, dynamic

programming, integer programming, and branch and bound were used to find the

optimal solutions for small and medium sized problems, they do not provide efficient

solutions for the problems with large size. Having found no efficient polynomial

algorithm to find the optimal solution led many researchers to develop heuristics to

obtain near optimal solutions. Though, efficient heuristics can not guarantee optimal

solutions, they provide approximate solutions as good as the optimal solutions. These

can be broadly classified into constructive heuristics and improvement heuristics.

70

Most of the algorithms belong to the first category and have known worst case

performance ratio (Coffman, Garey, & Johnson, 1978; Friesen & Langston, 1986;

Friesen, 1987; Graham, 1969; Hochbaum & Shmoys, 1987; Leung, 1989; Sahni,

1976). The LPT rule of Graham, one of the most popular constructive heuristics, has

been shown to perform well for the makespan criterion. This rule arranges jobs in

descending order of processing times, such that p1≥p2≥…≥pn, and then successively

assigns jobs to the least loaded machine. The MULTIFIT algorithm, a classical

constructive heuristic developed by Coffman et al. (1978), determines the smallest

machine capacity to find a feasible solution using the LPT scheme. This is achieved

by solving heuristically a series of bin packing problems. Although MULTIFIT is not

guaranteed to perform better than LPT, it has been shown that it has a worst case

bound better than LPT.

Improvement based algorithms are based upon local search in a neighbourhood in

which a feasible solution is taken as a starting point and then tried to be improved by

iterative changes. Application of these algorithms to the P||Cmax problem can be

found in Frangioni, Scutelle, & Necciari (1999), Hübscher & Glover (1994),

Jozefowska, Milka, Rozycki, Waligora, & Weglarz (1998).

Although a large number of approaches such as mathematical programming,

dispatching rules, expert systems, and neighborhood search to the modeling and

solution of scheduling problems have been reported in the literature, over the last

decades, there has been an explosion of interest in using Artificial Neural Networks

(ANNs) for the solution of various scheduling problems. This is mainly after the

success of the use of Hopfield & Tank (1985)’s network in solving the Traveling

Salesman Problem. The authors showed that if an optimization problem can be

represented by an energy function, then a Hopfield network that corresponds to this

energy function can be used to minimize this function to provide an optimal or near-

optimal solution. Since then, a variety of scheduling problems are solved using

Hopfield type networks (Chen & Dong, 1999; Foo, Takefuji, & Szu, 1995;

Liansheng, Gang, & Shuchun, 2000; Lo & Bavarian, 1993; Satake, Morikawa, &

71

Nakamura, 1994; Vaithyanathan & Ignizio, 1992; Willems & Brandts, 1995; Zhou,

Cherkassy, Baldwin, & Olson, 1991).

But a few papers are proposed for the solution of parallel machine scheduling

problem using ANNs. Park, Kim, & Lee (2000) presented a backpropagation

network for solving identical parallel machine scheduling problems with sequence

dependent set up times. They tried to find the sequence of jobs processed on each

machine with the objective of minimizing weighted tardiness. Hamad, Sanugi, &

Salleh (2003) dealt with the non-identical parallel machines problem with the sum of

earliness and tardiness cost minimization and proposed a way of representing the

problem to be fed into a backpropagation network. Akyol &Bayhan (2005) proposed

a coupled gradient network approach for solving the earliness and tardiness

scheduling problem involving sequence dependent setup times.

The objective of this research is to apply ANNs to the identical parallel machine

scheduling problem for minimizing the makespan. To the best of our knowledge, this

study will be the first attempt to solve the considered problem using neural networks.

We employ in this chapter a dynamical gradient network approach to attack the

problem. After the appropriate energy function is constructed by using a penalty

function approach, the dynamics are defined by steepest gradient descent on the

energy function. In order to overcome the tradeoff problem encountered in using the

penalty function approach, a time varying penalty coefficient methodology is

proposed to be used during simulation experiments. We analyze the impact that the

initial conditions of the network have on the performance on 5 different data sets by

running each data set 20 times for different sizes of jobs and machines.

A general outline of this chapter is as follows. We give a mixed integer

programming (MIP) formulation for the identical parallel machine scheduling

problem in Section 2, and describe the proposed network in Section 3. Section 4

provides the computational results, and the conclusions with future research

directions are given in Section 5.

72

5.2 Problem Statement

Consider a set J of n jobs Ji ,i=1,...,n to be processed, each of them on one

machine, on a set M of m machines Mj , j=1,...,m. All the jobs can be processed on

any of the m machines. We consider identical machines models, for which the

processing times of each job, pi, are machine independent. The objective is to find an

appropriate allocation of jobs to machines that would optimize a performance

criterion. We are interested in the makespan criterion (maximum completion time),

Cmax.

 The following notations are used throughout the rest of this chapter.

Ji : job i, i Є N={1,...,n}

Mj : machine j, j Є M={1,...,m}

pi: processing time of Ji

Ci: completion time of Ji

Cmax: makespan, the maximum completion time of all jobs

Cmax = max{C1, C2, ...,Cn}

xij : 0/1 assignment variable =
⎭
⎬
⎫

⎩
⎨
⎧

otherwise
jmachinetoassignedisijobif

0
1

A MIP formulation of the minimum makespan problem can be defined as follows:

min Cmax

subject to

nix
m

j
ij ≤≤=∑

=

11
1

 (5.1)

mjxpC ij

n

i
i ≤≤≥−∑

=

10
1

max (5.2)

The first constraint given in (5.1) ensures that each job is assigned to only one

machine. The second constraint given in (5.2) ensures that the makespan is at least

the completion time of each machine.

73

5.3 Design of the Proposed Dynamical Gradient Network

In this section, we describe how dynamical gradient networks can be used to solve

the considered problem presented in the previous section. The proposed approach is

an extension of the original formulation given in Hopfield (1984, 1985). Firstly the

network architecture is explained, and then derivation of the energy function

representing the proposed network, and dynamics and proof of the convergence of

the proposed network are given. Finally, the proposed penalty parameter

determination method is illustrated with an example.

5.3.1 The Network Architecture

The proposed gradient network has two types of neurons: a continuous type

neuron to represent real valued variable Cmax, and discrete types of neurons to

represent binary valued variables X11,…, X1m; X21,…, X2m; Xn1,…,Xnm. UXij

symbolizes the input to the neuron for job i and resource j, and UCmax denotes the

input to the neuron representing Cmax. The dynamics of the gradient net will be

defined in terms of these input variables.

VXij designates the output of the neuron for job i and resource j. This neuron will

be activated if job i is allocated to resource j. VCmax depicts the output of the neuron

representing Cmax. We use a linear type activation function for neuron Cmax.

Neurons with sigmoidal nonlinearity are used to represent discrete variables Xij, so

that the activation function for discrete neurons can take the usual sigmoidal form

with slopes λX. Here, we use a log-sigmoid function to convert discrete neurons to

continuous ones. Its functional form is shown in Figure 5.2.

5.3.2 The Energy Function

Instead of using linear programming or the k-out-of-N rules to develop the energy

function, we directly formulate the cost function according to the constraints term by

term. The energy function for this network is constructed using a penalty function

approach. That is the energy function E consists of the objective function Cmax plus a

74

penalty function to enforce the constraints. For the problem considered, the penalty

function P(X, Cmax) will include three penalty terms: P1, P2 and P3.

The first term P1 adds a positive penalty if the solution does not satisfy any of the

equality constraints given in (5.3). In other words, the first term attempts to ensure

that each job is allocated to only one machine.

nix
m

j
ij ≤≤=∑

=

11
1

 (5.3)

In this case, P1 = ∑∑
==

−
m

j
ij

n

i
X

1

2

1
)1(. This term yields zero when these equality

constraints are satisfied.

P2 adds a positive penalty if the solution does not satisfy any of the inequality

constraints given in (5.4).

mjxpC ij

n

i
i ≤≤≥−∑

=

10
1

max . (5.4)

In accordance with this constraint, P2 will take the following form

∑ ∑
= =

−
m

j

n

i
iji CXpv

1 1
max)(where v represents the penalty function.

00)(0)(2 ≤=>= εεεεε allforvandallforv (Watta & Hassoun, 1996), and the

functional form of this function is given in Figure 5.1.

75

Figure 5.1 Penalty function for enforcing inequality constraints

Figure 5.2 Activation function for discrete neurons

UXij

VXij

υ(ε)

ε

76

Figure 5.3 Penalty function for enforcing the 0,1 constraints

We require that Xij є{0,1}. These constraints will be captured by P3 which adds a

positive penalty if the binary constraints Xij є{0,1} are violated. In Figure 5.3, the

functional form of this penalty term is shown. It can be seen that the penalty will be

zero at either Xij = 0 or Xij = 1.

P3 =∑∑
= =

−
n

i

m

j
ijij XX

1 1
)1(and correspondingly, the total penalty function P (X, Cmax)

with all constraints can be induced as follows.

∑∑∑ ∑ ∑∑
= == = ==

−+−+−
n

i

m

j
ijij

m

j

m

j

n

i
ijiij

n

i
XXDCXpvCXB

1 11 1 1
max

2

1
)1()()1(min

The complete energy function can thus be written as:

∑∑∑ ∑ ∑∑
= == = ==

−+−+−+
n

i

m

j
ijij

m

j

m

j

n

i
ijiij

n

i
XXDCXpvCXBAC

1 11 1 1
max

2

1
max)1()()1(min

Xij

 Xij(1-Xij)

77

We can write the energy function in terms of output variables as follows:

∑∑∑ ∑ ∑∑
= == = ==

−+−+−+
n

i

m

j
ijij

m

j

m

j

n

i
ijiij

n

i
VXVXDVCVXpvCVXBAVC

1 11 1 1
max

2

1
max)1()()1(min

where A, B, C and D are positive penalty coefficients.

5.3.3 The Dynamics

In addition to defining the energy function to be employed, we need to consider

the equation of motion of the neuron input. The dynamics for the gradient network

are obtained by gradient descent on the energy function. The equations of motion are

obtained as follows.

∑ ∑
= =

−′−−−=

∂
∂

−=

m

j

n

i
iji VCVXPCA

VC
E

dt
dUC

1 1
max

max

max

][)1(υ
 (5.5)

)21(][)(]1[2
1

max
1

ij

n

l
ljl

m

k
ik

ij

ij

VXDVCVXpPiCVXB

VX
E

dt
dUX

−−−′−−−=

∂
∂

−=

∑∑
==

υ
 (5.6)

where ηCmax and ηX are positive coefficients which will be used to scale the dynamics

of the network, and ν’ is the derivative of the penalty function ν.

00)(02)(≤=′〉=′ εευεεευ allforandallfor

The computation is performed in all neurons at the same time so that the network

operates in a fully parallel mode. The solution of equations of motion may be

accomplished via the use of Euler’s approximation. The states of the neurons are

updated at iteration k as follows.

78

dt
dUCUCUC C

kk max
max

1
maxmax η+= − (5.7)

dt
dUX

UXUX ij
X

k
ij

k
ij η+= −1 (5.8)

Neuron outputs are calculated by V=g (U), where g (.) is the activation function,

U is the input and V is the output of the neuron.

VCmax=g(UCmax) = UCmax (a linear function)

VXij = g(UXij) = logsig (λX×UXij) (a log-sigmoid function)

where λX is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)).

5.3.4 Proof of Convergence

In order to use the proposed Hopfield-like dynamical network for the solution of

the problem, we have to prove the convergence of the network. To do so, we have to

show that energy does not increase along the trajectories, energy is bounded below,

the solutions are bounded and time derivative of the energy is equal to zero only at

equilibria.

Consider the time derivative of the energy function E given below.

 (5.9)

1 1

1 1

1 1

2

max
max

max
max

max max

max

n m
ij

i j ij

n m
ij ij

i j

n m
ij ij

i j ij

ij ij

ij

VXdE E E VC
dt VX dt VC dt

dUX dVX E VC
dt dt VC dt

dVX dVXdUXij dUC dUC
dt dVX dt dt dt

dVX dUX dVC
dt dVX dt

= =

= =

= =

∂∂ ∂ ∂
= +

∂ ∂

∂ ∂
= − +

∂

⎛ ⎞ ⎛ ⎞ −⎛ ⎞= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜
⎝⎝ ⎠

∑∑

∑∑

∑∑
2

1 1

n m

i j= =
⎟
⎠

∑∑

79

Since 0])([1 ≥′= −
ij

ij

ij VXg
dVX
dUX

 (monotone increasing) for log-sigmoid function,

the right-hand side of the equation given in (5.9) will be obviously negative. This

ensures that the energy does not increase along trajectories, so we can write 0≤
dt
dE .

0=
dt
dE implies that jiallfor

dt
dVX ij ,0= and 0max

=
dt

dVC . In other words,

0=
dt
dE at the equilibrium points.

Since Xijs are binary variables, they are bounded but we have to check the

boundedness of Cmax. If we rewrite the motion equation for Cmax, we obtain the

following:

∑ ∑
= =

−′−−−=

∂
∂

−=

m

j

n

i
iji VCVXPCA

VC
E

dt
dUC

1 1
max

max

max

][)1(υ

There may be different possible cases

Case 1: Assume that →=−∑
=

0max
1

VCVXP
n

i
iji A

dt
dUC

−=max

which means that UCmax=VCmax will decrease. This will cause

0max
1

>−∑
=

VCVXP
n

i
iji .

Case 2: Assume that →<−∑
=

0max
1

VCVXP
n

i
iji A

dt
dUC

−=max

which means that UCmax=VCmax will decrease. This will cause

0max
1

>−∑
=

VCVXP
n

i
iji .

Therefore we have to consider Case 3 in which we assume 0max
1

>−∑
=

VCVXP
n

i
iji

80

If 0max
1

>−∑
=

VCVXP
n

i
iji

∑

∑ ∑

=

= =

+−−=

−′−−−=

∂
∂

−=

n

i
iji

m

j

n

i
iji

VXPCCVCA

VCVXPCA

VC
E

dt
dVC

dt
dUC

1
max

1 1
max

max

maxmax

22

][)1(υ

Let r(z) ij

n

i
iVXPCA ∑

=

+−=
1

2

)(2 max
max zrCVC

dt
dVC

+−=

If we multiply both sides by eCt,

 we get CtCtCt ezreCVC
dt

dVC
e ⋅+⋅−=⋅)(2 max

max

CtCt

CtCtCt

etrVCe
dt
d

etreCVC
dt

dVC
e

)(][

)(2

max

max
max

==

⋅=⋅+⋅

dzzreeVCe

dzzreeVCe

dzzreeVCetVC

dzzreeVCe

dzzreeVCetVC

dzzreVCetVC

dzzreetVCd

t
CzCtCt

t
CzCtCt

t
CzCtCt

t
CzCtCt

Cz
t

CtCt

t
CzCt

t
Cz

etVC

eVC

Ct

Ct

C

)()0(

)()0(

)()0()(

)()0(

)()0()(

)()0()(

)()).((

0
max

0
max

0
maxmax

0
max

0
maxmax

0
maxmax

0

)max(

)0max(
max

.0

∫

∫

∫

∫

∫

∫

∫∫

⋅+≤

⋅+⋅≤

+=

+=

+==

=−=

=

−−

−−

−−

−−

−−

81

We can write

dzzreeVCe

dzzreeVCetVC

t
CzCtCt

t
CzCtCt

)()0(

)()0()(

0
max

0
maxmax

∫

∫

⋅+≤

⋅+≤

−−

−−

Assume that ∞<≤ Mzr)(

]1[)0(

]1[1)0(

)0()(

max

max

0
maxmax

CtCt

CtCtCt

t
CzCtCt

e
c

MVCe

e
c

MeVCe

dzeMeVCetVC

−−

−−

−−

−+≤

−⋅⋅+≤

⋅+≤ ∫

Since 1≤−Cte and 0→−Cte as ∞→t , then

∞≤)(max tVC

∑

∑

∑

∑

=

=

=

=

+≤

+−≤

+−=

+−=

n

i
iji

n

i
iji

n

i
iji

ij

n

i
i

VXPCA

VXPCA

VXPCAzr

VXPCAzr

1

1

1

1

2

2

2)(

2)(

Since A>0 and 02
1

>∑
=

n

i
ijiVXPC

∞<)(zr and ∞<
dt

dUCmax

and we can conclude that the solutions are bounded.

Combining this fact with the fact that the energy E is bounded (since the cost is

always greater than zero), we conclude that the network converges to a stable state

which is a local minimum of E(X,Cmax). In other words, the time evolution of the

network is a motion in space tends to that minimum point as t goes to infinity.

82

5.3.5 Selection of the Parameters

In order to simulate the proposed network for solving the problem described by

the dynamics given in Section 5.3.3, some parameters should be determined. These

are the penalty parameters A, B, C and D; the activation slopes λX; the step sizes

ηCmax, ηX and the initial conditions.

Because there is no theoretically established method for choosing the values of the

penalty coefficients for an arbitrary optimization problem, the appropriate values for

these coefficients can be determined empirically. That is simulation runs are

conducted, and optimality and/or feasibility of the resulting equilibrium points of the

system are observed. The network can be initialized to small random values, and then

synchronous or asynchronous updating of the network will allow a minimum energy

state to be attained. In order to ensure smooth convergence, step size must be

selected carefully (Watta & Hassoun, 1996).

The dynamics of the proposed Hopfield-like gradient network will converge to

local minima of the energy function E. Since the energy function includes four terms,

competing to be minimized, there are many local minima and a tradeoff among the

terms. An infeasible solution may be obtained when at least one of the constraint

penalty terms is non-zero. In this case, the objective function term will generally be

quite small but the solution will not be feasible. Alternatively, a local minimum,

which causes a feasible but not a good solution, may be encountered even if all the

constraints are satisfied. In order to satisfy the each penalty term, its associated

penalty parameter can be increased but this results an increase in other penalty terms

and a tradeoff occurs. The penalty parameters that result a feasible and a good

solution, which minimizes the objective function, should be found.

Determining the appropriate values of the penalty parameters, network parameters

and initial states are so critical issues associated with gradient type networks that by

adjusting the parameters, the convergence performance to valid solutions can be

83

improved. It is clear that solving scheduling problems represented by many

constraints will cause a tradeoff among the penalty terms to be minimized.

Due to the problems of Hopfield like NNs in solving optimization problems,

various modifications are proposed to improve the convergence of the Hopfield

network. While several authors modified the energy function of the Hopfield

network to improve the convergence to valid solutions (Aiyer, Niranjan, & Fallside,

1990; Brandt, Wang, Laub & Mitra, 1988; Van Den Bout & Miller, 1988), many

others studied the same formulation with different penalty parameters (Hedge,

Sweet, & Levy, 1988; Kamgar-Parsi & Kamgar-Parsi, 1992; Lai & Coghill, 1992). In

recent years, time based penalty parameters are proposed to overcome the tradeoff

problems encountered in using penalty function approach. Wang (1991) used

monotonically time-varying penalty parameters for solving convex programming

problems. Dogan & Guzelis (2006) proposed linearly increasing time-varying

penalty parameters for solving clustering problems. Here, we propose to use time

varying penalty parameters that take zero values as a starting value and then are

increased in a linear fashion in a stepwise manner to reduce the feasible region and

also by updating all the neurons synchronously, better simulation results are

obtained.

The proposed gradient network algorithm can be summarised by the following

pseudo-code.

Step 1. Construct an energy function for the considered problem using a penalty

function approach.

Step 2. Initialize all neuron states to random values.

Step 3. Select the slope of the activation function (λ) and step sizes (η).

Step 4. Determine penalty parameters

84

Step 4.1 Select C (the coefficient of the inequality constraint) and assign zero

as initial value to other penalty parameters A, B and D. If the constraint associated

with parameter C is satisfied, proceed to Step 4.2 otherwise go back to Step 4.1.

Step 4.2 Select D (a higher value than C to increase the effect of equality

constraint), and use the predetermined value of C (without taking into

consideration of the effect of parameter A and B) to check whether both of the

constraints associated with these terms are satisfied. If yes go to step 4.3,

otherwise to step 4.4.

Step 4.3. Select B (a higher value than D), assign 1 to A, and use the

predetermined values of C, D together with B to check whether all of the

constraints associated with these terms are satisfied. If yes go to step 5, otherwise

to step 4.4.

Step 4.4. Increase the value of parameter whose associated constraint is not

satisfied.

Step 5. Repeat n times:

Step 5.1. Update U using equations (5.7) and (5.8), and then compute V by

V=g (U).

Step 6. If the energy has converged to local minimum proceed to step 7, otherwise

go back to step 5.

Step 7. Examine the final solution to determine feasibility and optimality.

Step 8. Adjust parameters A, B, C, D if necessary to obtain a satisfactory solution,

reinitialize neuron states and repeat from step 5.

85

5.3.6 An example

We explain the procedure with a 5-job 3-machine identical parallel machine

scheduling problem. After constructing the energy function for this problem, all

neuron states are initialized to random values chosen uniformly from the interval

[0,1]. In the proposed approach, we firstly suggest to satisfy the inequality constraint

by penalizing it. In the first phase of the simulation (for the first 2000 iterations),

initial value of the penalty parameter C is chosen as 8. Because other penalty

parameters are not taken into consideration, they are equal to zero. Since this

inequality constraint is satisfied after 2000 iterations, it is decided to proceed to the

next phase. In the second phase (for iterations from 2001 to 4000), one of the

equality constraints (binary constraints) is taken into consideration, and its associated

parameter D is chosen as 20, a value greater than C. The predetermined value of C,

8, is used to penalize the inequality constraint. Both of the constraints are satisfied.

Thus, it is decided to proceed to the next phase (for iterations from 4001 to 5000). In

this phase, all of the constraints are tried to be satisfied. Together with the

predetermined values of C and D, the penalty parameter B belonging to the

assignment constraint is chosen as 100 (a value greater than other parameters). Since

A belongs to the original objective function, it is not penalized, and we assign 1 to A.

After running simulations with all these 4 penalty terms, the feasibility and

optimality of the final solution is checked. It is seen that except the inequality

constraint, being violated with a small percentage error, all of the constraints are

satisfied. Therefore, it is decided to enhance the weight of this constraint, and then

value of its parameter, C, is increased to 600. Optimal solution is found at iteration

5100. All of the constraints were met satisfactorily, and the cost value is 3.1. In Table

5.1, values of penalty parameters used during the solution of the problem considered

are displayed. Figure 5.4 illustrates the evolution of the energy of the network during

simulation and the penalty parameter values in four phases of simulation. As it is

shown in this figure, in each phase of the simulation, the values of the parameters

that result a cost value of zero is tried to be found. By increasing the penalty

coefficient of each constraint in a stepwise manner, the feasibility region is aimed to

be narrowed. Since all the constraints are taken into consideration during iterations

86

4001 to 5000, at the beginning of the simulation, the cost value increases from zero

to higher values. But after an oscillation process the states of the network converge,

however, a small cost value of 0.03 comes from the violation of the inequality

constraint whose satisfaction ensures that the makespan is at least the completion

time of each machine. Therefore, by only penalizing this inequality with a high value

of 600, an optimal solution is obtained.

Table 5.1 Penalty parameter values in four phases of simulation

 Penalty Coef.

 Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

5.4 Simulation Results

A simulation experiment was conducted to test the effectiveness of the proposed

gradient network approach in terms of solution quality. The initial conditions of the

Figure 5.4 Energy evolution during simulation

A=B=D=0; C=8 A=B=0;C=8; D=20

A=1; B=100; C=8; D=20

A=1;B=1;
C=600; D=1

87

network and the processing times of jobs were chosen randomly from uniform

distributions on [0,1], and [1,3], respectively. In tables 5.2-5.12, penalty coefficients

of the proposed gradient network and in table 5.13, other parameters which were

determined empirically by running trial simulations are given, respectively.

For each problem size, the gradient network was run for 20 different initial

conditions on 5 different datasets. It is to be noted that the same set of penalty

parameters are tried to be found for all the test sets of each problem size during

simulations. By tuning the parameters for each dataset, it is possible to improve the

performance of the proposed network.

Table 5.2 Penalty coefficients during four phases of simulations for n=5, m=3

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5.3 Penalty coefficients during four phases of simulations for n=10, m=3

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5.4 Penalty coefficients during four phases of simulations for n=20, m=3

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

88

Table 5.5 Penalty coefficients during four phases of simulations for n=50, m=3

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5.6 Penalty coefficients during four phases of simulations for n=100, m=3

 Penalty Coef.

 Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5.7 Penalty coefficients during four phases of simulations for n=500, m=3

 Penalty Coef.

 Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 80

4001:5000 1 450 8 80

5001:5100 1 1 500 1

Table 5.8 Penalty coefficients during four phases of simulations for n=10, m=5

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5.9 Penalty coefficients during four phases of simulations for n=20, m=5

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 10 0
2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

89

Table 5.10 Penalty coefficients during four phases of simulations for n=50, m=5

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 10 0
2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 5.11 Penalty coefficients during four phases of simulations for n=100, m=5

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 10 0
2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 5.12 Penalty coefficients during four phases of simulations for n=500, m=5

 Penalty Coef.

Iterations
A B C D

1:2000 0 0 8 0
2001:4000 0 0 8 70

4001:5000 1 300 8 70

5001:5100 1 1 400 1

Table 5.13 Other Parameters used in the simulation

m n ηCmax ηX λX

3 5 0.001 0.1 1

3 10 0.001 0.1 1

3 20 0.001 0.1 1

3 50 0.001 0.1 1

3 100 0.001 0.1 1

3 500 0.0008 0.1 1

5 10 0.001 0.01 1

5 20 0.0008 0.01 1

5 50 0.0008 0.1 1

5 100 0.0008 0.1 1

5 500 0.0008 0.1 1

90

The proposed procedure was implemented in Matlab language (Version 6.5) and

run on a PC with a Pentium IV, 2.6 GHz processor having a 512 MB of RAM. In

tables 5.14-5.24, the solutions obtained by the gradient network using the determined

parameters are compared with those of the well known LPT heuristic and with the

optimum solutions found by Lingo (version 8.0), a linear programming software

package, in terms of Best Cmax (cost of the best solution obtained by the gradient

network), Avg. Cmax (cost of the average solution obtained by the gradient

network), Worst Cmax (cost of the worst solution obtained by the gradient network),

and % deviations. In these tables, columns (6) and (7) represent the % deviations of

the proposed gradient network solution from the LPT rule solution and from the

optimal solution, respectively. The % deviations are given by

%100*
)max(

)max()max(.%
LPTC

LPTCnetworkGradientCAvgLPTfromdeviation −
=

%100*
)max(

)max()max(.%
optimalC

optimalCnetworkGradientCAvgoptimalthefromdeviation −
=

where Avg. Cmax(Gradient network) is the average gradient network solution of the

20 runs, Cmax(LPT) is the LPT solution, and Cmax(optimal) is the optimal solution

obtained by the linear programming solver. The percentage of times, which resulted

in a feasible solution by the network, was also displayed in the last columns of these

tables. It is obvious that the negative % deviation values from the LPT dispatching

rule represent the % improvement realized by the gradient network.

As our primary goal was to compare the proposed network solution with the LPT

rule and with the optimal solutions, in terms of solution quality, the CPU times

required for solving each data set are not given. But from the simulation experiments,

it is seen that when compared with the very long solution times needed to obtain the

optimal solutions by the Lingo software, the proposed network could converge to

valid solutions in reasonable times in 13.18 seconds for n=3, m=5 and in 406.27

seconds for n=500 m=5. Obviously, by the implementation of parallel neural

processing, significant reductions can be obtained in computational time.

91

Table 5.14 Results for m=3, n=5 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

3.1 3.1 3.1 3.1 3.1 0.00 0.00 100%

4.69 4.69 4.69 4.69 4.69 0.00 0.00 100%

3.55 3.55 3.55 3.55 3.55 0.00 0.00 100%

2.98 2.98 2.98 2.98 2.98 0.00 0.00 100%

3.02 3.02 3.02 3.02 3.02 0.00 0.00 100%

Table 5.15 Results for m=3, n=10 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

7.33 7.54 7.67 7.59 7.21 -0.66 4.57 100 %

6.97 7.21 7.47 7.45 6.92 -3.22 4.19 100 %

7.28 7.56 7.72 7.69 7.2 -1.69 5.00

100 %

6.79 7.11 7.30 7.46 6.72 -4.69 5.80 100 %

 6.77 7.01 7.31 7.44 6.72 -5.78 4.31 100 %

92

Table 5.16 Results for m=3, n=20 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

13.24 13.53 13.85 13.37 13.05 1.19 3.68 100 %

13.84 14.24 14.46 14.01 13.74 1.64 3.64 100 %

13.03 13.42 13.63 13.40 12.92 0.15 3.87 100 %

14.25 14.54 14.76 14.60 14.05 -0.41 3.48 100 %

13.35 13.60 13.82 13.46 13.12 1.04 3.66 100 %

Table 5.17 Results for m=3, n=50 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

33.53 33.84 34.07 33.70 33.34 0.41 1.50 100 %

30.58 30.95 31.14 30.75 30.36 0.65 1.94 100 %

31.47 31.85 32.15 31.65 31.38 0.63

1.49 100 %

34.53 35.41 35.77 35.32 34.92 0.25 1.40 100 %

34.68 35.10 35.30 34.88 34.51 0.63 1.71 100 %

93

Table 5.18 Results for m=3, n=100 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

70.00 70.28 70.58 70.55 69.91 -0.38 0.53 100 %

66.65 66.94 67.14 67.09 66.45 -0.22 0.73 100 %

68.42 68.85 69.10 69.04 68.39 -0.27 0.67 100 %

66.11 66.73 66.52 66.73 66.09 0.00 0.97 100 %

65.85 66.15 66.33 66.35 65.69 -0.30 0.70 100 %

Table 5.19 Results for m=3, n=500 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

338.22

338.22

338.22

338.51 338.18 -0.0856 0.012 95 %

329.80 330.59 331.28 330.11 329.78 0.145 0.245 100 %

332.91 333.80 334.66 332.91 332.58 0.267 0.367 100 %

330.02 331.06 332.07 330.28 329.95 0.236 0.336 100 %

332.45 333.48 334.43 332.78 332.45 0.21 0.309 100 %

94

Table 5.20 Results for m=5, n=10 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

3.43 3.53 3.68 3.43 3.43 2.91 2.91 100 %

3.38 3.76 3.97 3.79 3.38 -0.79 11.24 100 %

3.64 3.85 3.97 3.68 3.57 4.35 7.56 100 %

4.03 4.16 4.24 4.03 4.03 3.22 3.22 100 %

3.57 3.67 3.73 3.53 3.53 3.97 3.97 100 %

Table 5.21 Results for m=5, n=20 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

7.43 7.78 7.91 7.37 7.28 5.56 6.87 100 %

7.68 7.95 8.08 7.62 7.49 4.33 6.14 100 %

8.13 8.24 8.37 7.8 7.76 5.64 6.18 100 %

7.79 7.98 8.13 7.69 7.51 3.77 6.26 100 %

8.55 8.77 8.92 8.29 8.18 5.79 7.21 100 %

95

Table 5.22 Results for m=5, n=50 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

20.49 20.86 21.09 20.28 20.22 2. 86 3.16 100 %

21.70 22.17 22.42 21.55 21.49 2.88 3.16 100 %

18.69 18.94 19.15 18.42 18.40 2.82 2.93 100 %

20.71 21.11 21.33 20.37 20.33 3.63 3.83 100 %

19.79 20.01 20.24 19.43 19.41 2.98 3.09 100 %

Table 5.23 Results for m=5, n=100 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

41.65 41.87 42.06 41.24 41.20 1.53 1.63 100 %

40.16 40.56 40.74 39.78 39.77 1.96 1.99 100 %

41.90 42.12 42.28 41.36 41.34 1.84 1.89 100 %

40.20 40.55 40.69 39.83 39.82 1.80 1.83 100 %

41.54 41.89 42.06 41.19 41.15 1.70 1.8 100 %

96

Table 5.24 Results for m=5, n=500 over 5 problems

Gradient Network

Best

Cmax

(1)

Avg.

Cmax

(2)

Worst

Cmax

(3)

LPT

(4)

Optimum

(5)

Percent

Deviation

from the

LPT

solution

(6)

Percent

Deviation

from the

optimal

solution

(7)

Percent

Feasibility

of

Computed

Solutions

(8)

199.54 200.15 200.61 200.77 198.97 -0.3088 0.59 95 %

199.54 200.02 200.33 200.77 199.04 -0.37 0.49 100 %

206.42 206.69 207.34 206.33 204.58 0.174 1.03 100 %

197.14 198.18 198.8 198.62 196.85 -0.22 0.676 100 %

194.56 195.32 196.38 195.58 193.86 -0.13 0.753 100 %

To interpret the findings in a table, Table 5.14 is considered. For all the 5 data

sets, 20 out of the 20 runs of the proposed network resulted in a feasible solution,

hence percent feasibility is 100 %. The average, worst and the best cost of the 20

feasible solutions for the first dataset are equal to the value of the global optimal

solution, 3.1. Similarly, if we consider Table 5.23, for the first dataset, again, 100 %

of the runs conducted by the proposed network resulted in a feasible solution. The

average Cmax of the feasible solutions is 41.87. It is 1.53 % more costly than the

result of LPT rule, and 1.63 % more costly than the global optimal solution. The best

makespan value produced by the gradient network is 41.65, which is 0.99 %

([(41.65-41.24)*100]/41.24) above the LPT result and 1.09 % ([(41.65-

41.20)*100]/41.20) above the global optimal solution.

According to these findings, it is clear that the initial conditions of the network

appear to have a serious impact on the solution quality. For example in Table 5.20,

for n=10 and m=5, although the proposed network results in gaps between 2.91 and

4.35 % from the LPT solution, on average, it outperforms the LPT heuristic for one

of the datasets. In the same table, if the results obtained using the first data set are

considered, it is seen that although the average makespan from the 20 different initial

runs is found as 3.53, the best makespan out of the 20 runs, produced by the

proposed network is equal to the optimal solution, 3.43. In addition, although the

97

average Cmax results obtained by the proposed network are above the LPT results

for the 4 data sets, the best Cmax results outperform the LPT rule in 4 data sets.

In all the simulations carried out to show the performance of the network,

convergence to valid schedules is achieved and better results are obtained for small

number of machines and large number of jobs. If all the test cases are considered, the

proposed network is, on average, able to produce a solution with a makespan value,

which is 1.07 % above the LPT result. By tuning the penalty coefficients for each

dataset, it is possible to improve the convergence and the optimality of the solutions.

On the other hand, besides its convergence to valid schedules, convergence to good

quality solutions of the proposed network points out its general applicability in other

scheduling environments.

5.5 Conclusions

This study has presented a dynamical gradient network for solving the identical

parallel machine scheduling problem with the makespan criterion which is known to

be NP-hard even for the case of two identical parallel machines. Focus of this chapter

has been on demonstrating the optimization capabilities of the proposed network by

solving a set of randomly generated problems. The proposed Hopfield-like network

uses time-varying penalty parameters that start from zero and increase in a stepwise

manner during iterations to overcome the tradeoff problem of the penalty function

method, one of the important drawbacks of the penalty function approach. To

analyze the performance of the network, it is compared with the well-known LPT

heuristic commonly used to solve the problem under study, and also with the optimal

solutions in terms of the solution quality. The simulation experiments demonstrated

that the proposed network generated feasible solutions in all the cases, and in some

of the data sets it found smaller makespan compared to LPT. In general, for all the

instances, the average deviation percentage of the proposed network is 1.07 % above

the LPT heuristic.

98

By conducting several simulation experiments, the influence of different

initializations schemes was investigated on the solutions of the problem considered.

The analysis results showed that the percent error of the network is very sensitive to

the selection of the starting points and the choice of the parameters used in

simulation.

The contribution of this study is two fold. We propose to use a novel time varying

penalty method that guarantees feasible and near optimal solutions for solving the

identical parallel machine scheduling problem with the makespan criterion. Although

a large body of literature exists for solving identical parallel machine scheduling

problem with the makespan minimization criterion, to the best of our knowledge,

there is no previously published article that tried to solve this NP-hard problem using

neural networks. Therefore, this study will also make a contribution to the scheduling

literature.

Several issues are worthy of future investigations. First, further studies will be

focused on selecting the parameters of the network automatically rather than

choosing by trial and error, which is one of the drawbacks of neural networks.

Second, extension of the results to large size problems will be worthwhile. Finally,

extension of the results to different manufacturing scheduling environments is

important for industrial applications, and implementation of the network in hardware

can make progress in computational efficiency.

 99

CHAPTER SIX

SOLUTION of MULTI-MACHINE EARLINESS AND TARDINESS

SCHEDULING PROBLEM USING AN INTERCONNECTED NEURAL

NETWORK APPROACH

6.1 Introduction

With the successful implementation of the Just-in-Time concept in

inventory/production management in today’s manufacturing environments, it is

needed to complete the jobs as close as possible to their due dates. In other words,

finishing jobs earlier than the due dates is considered as undesirable as finishing jobs

late. Therefore, both early and tardy completion of a job with respect to its due date

is penalized. If the jobs are completed earlier than their due dates, an earliness

penalty will be incurred which can be regarded as a holding cost for finished goods,

deterioration of perishable goods and opportunity costs. If the jobs are completed

later than their due dates, a tardiness penalty which can be regarded as the

backlogging cost including the cost of customer compensation for missing the due

date or the loss of goodwill will be incurred. These costs motivated researchers to

consider both earliness and tardiness (E/T) as penalties in the objective function of a

schedule. In recent years, majority of scheduling studies on E/T have dealt with

single machine scheduling problems. While Kanet (1981), Sundararaghavan &

Ahmed (1984), Hall (1986), Bagchi, Sullivan, & Chang (1986) studied single

machine models with common due dates for all jobs, Abdul-Razaq & Potts (1988),

Ow & Morton (1988), Ow & Morton (1989) considered distinct due dates for each

job.

The single machine E/T problem introduced by Kanet (1981) and Sidney (1977),

in its simplest form, is to schedule N jobs on a single machine to minimize the

weighted differences between job completion times and due dates. Since then, many

researchers worked on various extensions of the problem. For a detailed survey of

the earlier applications, refer to Rachavachari (1988) and Baker & Scudder (1990).

100

However, the E/T literature becomes scarce when we consider the problem of

scheduling jobs on multiple machines. Sundararaghavan & Ahmed (1984), Arkin &

Roundy (1991), De, Ghosh, & Wells (1994) are known to be the first researchers

dealing with the problem of scheduling N jobs on M identical parallel machines with

the objective of minimizing the total penalty costs for E/T.

Heady & Zhu (1998) studied the problem of scheduling N jobs, with sequence

dependent setup times, on identical parallel machines to minimize the sum of

weighted E/T, and proposed a heuristic algorithm to solve it. For the same objective,

Sivrikaya-Serifoglu & Ulusoy (1999) presented two different genetic algorithm

approaches to solve the problem of scheduling jobs with sequence dependent setup

times on two types of parallel machines; uniform and identical. Balakrishan, Kanet,

& Sridharan (1999) proposed a compact mixed integer formulation for scheduling

jobs with sequence dependent setup times on uniform parallel machines, and

evaluated its performance on small sized problems. In another study, Radhakrishnan

& Ventura (2000) employed simulated annealing to schedule jobs with sequence

dependent setup times on identical parallel machines to obtain near optimal

solutions. Following this work, Sun & Wang (2003) proposed a dynamic

programming algorithm and two heuristics to minimize the total weighted earliness

and tardiness for identical parallel machine scheduling problem.

In this chapter, we study the problem of scheduling N jobs with non-common due

dates and sequence-dependent set-up times on M non-identical machines. This is an

NP-hard problem since the special case with a single machine is even known to be

NP-hard (Garey, Tarjan, & Wilfong, 1988). In most of the machine scheduling

researches sequence-dependent set-up times were not considered, and the set-up

times were assumed to be sequence independent and to be a part of the job

processing times. Scheduling problems with E/T measures of performance in the

presence of sequence-dependent set-up times are mathematically complex to solve,

and optimal solutions cannot be obtained even for problems of reasonable size,

therefore heuristics have to be utilized to provide good near optimal solutions.

Despite a large number of approaches existing in the literature, to find an efficient

101

method to obtain optimal solutions in polynomial time motivated the researchers to

apply neural networks as a promising approach to scheduling problems and over the

last decades, there has been an explosion of interest in using Artificial Neural

Networks (ANNs) for the solution of various scheduling problems. Most of the

scheduling problems are solved using Hopfield-like networks. However, by

performing gradient descent on the energy function, the Hopfield model gets easily

trapped in local minimum states, and this causes decreasing efficiency especially in

large sized problems. Additionally, determining the appropriate values of the penalty

parameters, network parameters and initial states are other critical issues associated

with this model.

To lessen the burden of computations for determining the proper values for the

penalty parameters and to obtain feasible results, Takefuji, Lee, & Aiso (1992) and

Lee, Funabiki, & Takefuji (1992) introduced a neural network called the maximum

neural network. This network is based on a competitive Hopfield-type network. The

significant advantage of using the maximum neural network is that it does not

demand fine-tuning of parameters, as most Hopfield networks do. In this network,

which is composed of groups of neurons, a competitive winner-take-all rule is

imposed for updating the neurons. Thus, the neuron with the maximum input per

group is the only one that has nonzero output. This model has shown to provide

powerful approaches for combinatorial optimization problems (Lee, Funabiki, &

Takefuji, 1992; Lee & Takefuji, 1992; Takefuji, 1992; Funabiki, Takenaka, &

Nishikawa, 1997) and for polygonal approximation (Chung, Tsai, Chen, & Sun,

1994).

Recently, new maximum neural models are proposed by Galan-Marin & Munoz

Perez (2001) for the n-queens and the bipartite subgraph problems, and by Galan-

Marin, Merida-Casermeiro, & Munoz-Perez (2003) for solving the maximum clique

problem. From the literature reviewed, it is seen that neural networks seldom include

competitive architecture into the network for solving the scheduling problems.

102

The objective of this research is to utilize ANNs to tackle the problem of

scheduling a set of independent jobs including sequence dependent setup times, on

non-identical multiple machines to minimize the total weighted earliness and

tardiness. Here, by non-identical machines, we mean unrelated machines, where each

job on each machine has a different processing time and complicates the problem. In

addition, the due dates of the jobs are distinct which complicates the problem further.

To the best of our knowledge, there are no published articles in the literature that

tried to solve this problem except the study of Zhu & Heady (2000) where they

provided a mixed integer programming formulation to represent the problem. Thus,

this study will be the first attempt to solve the problem considered using neural

networks. We employ in this chapter a dynamical gradient network approach to

attack the problem. The proposed Hopfield-like system is composed of two

maximum neural networks, three piecewise linear and one log-sigmoid network, all

of which are connected to each other. The aim of using maximum networks is to

reduce the network complexity and to obtain a simplified energy function. After the

appropriate energy function was constructed by using a penalty function approach,

the dynamics are defined by steepest gradient descent on the energy function and the

proposed approach is illustrated through the case of an 8 jobs to be processed on 3

machines in a JIT manufacturing environment. The rest of the chapter is organized as

follows. In Section 2, a mixed integer programming formulation is presented for the

problem addressed in this chapter. Section 3 describes the proposed coupled network.

Section 4 discusses the computational experience and the proposed penalty

determination process. Finally, Section 5 concludes the chapter with directions for

future work

6.2 Problem Statement and Formulation

In this section, we deal with the problem of job scheduling on non-identical

multiple machines to minimize the total penalty costs for earliness and tardiness with

sequence dependent setup times. The problem includes non-common due dates and

non-uniform cost penalties. We are given N independent jobs J = {J1,…,JN} to be

scheduled on M non-identical machines where N ≥ M.

103

We use the notation of N/M/ET with sequence-dependent setups to designate this

problem.

The notation for the problem:

β: a large number

di: due date for job i

ei: earliness cost for job i

Ei: Earliness of job i

pim: processing time for job i using machine m

sji: setup time for job i when it immediately follows job j

s0i: setup time for job i when it is the first in queue

ti: tardiness cost for job i

Ti: Tardiness of job i

Xi: completion time of job i

Yijm: 1 if job i precedes job j on machine m, 0 otherwise

Zim: 1 if job i is processed on machine m, 0 otherwise

The multi-machine earliness-tardiness problem can be formulated by using the

following mixed integer programming (MIP) model (Zhu & Heady, 2000).

Objective function:

)(min
1

iii

N

i
i TtEe +∑

=

 (6.1)

Subject to:

NidETX iiii ,...,1==+− (6.2)

NiZ
M

m
im ,...,11

1
==∑

=

(6.3)

MmNiijZY im

N

j
ijm ,...1,,...,1,

1
==≠≤∑

=

 (6.4)

104

MmNjijZY jm

N

i
ijm ,...1,,...,1,

0

==≠=∑
=

 (6.5)

MmNjNiijspYXX jiimjimji ,...,1,...,1,0,,...,1, ===≠−+≥−− ββ (6.6)

∑
=

==
N

j
ojm MmY

1
,...,11 (6.7)

{ } MmNiZim ,...,1;,...,11,0 ==∈ (6.8)

{ } MmNjNiYijm ,...,1;,...,1;,...,01,0 ===∈ (6.9)

NiETX iii ,...,10,, =≥ (6.10)

where the processing times on each job pim are deterministic and known in

advance, preemption of jobs is not allowed. Let Xi be the completion time and di the

due date of job i. Job i is early if Xi<di; it is tardy if Xi>di; and it is on time if Xi=di.

The earliness and tardiness of job i are defined by Ei= max(0; di−Xi) and Ti= max

(0; Xi−di), respectively.

All decision variables are non-negative and Yijm and Zim are binary valued

variables. It is assumed that a dummy job 0 which is always at the first position on

each machine is present. Obviously, we can write Z0m=1 and X0 = 0. The objective

function to be minimized given in (6.1) was built by the sum of cost-weighted

deviations in job completion times from the job due dates. The first constraint

defines the relationship between the completion time, the due date, and earliness and

tardiness of each job. The second constraint states that each job is processed on one

and only one machine. The third and fourth constraints ensure that each job (but not

the last scheduled job) must come immediately before, and each job (but not the first

scheduled job) must come immediately after, only one other job. The fifth constraint

guarantees that the completion time of job i is far enough after that of job j to include

the processing time and setup time for job i. By the inclusion of constraint given in

(6.7), the set-up time for the real job assigned to the first position in the sequence on

each machine will be taken into consideration. While the constraints given in (6.8)

and (6.9) correspond to the integrality constraints, the last constraint given in (6.10)

imposes the variables to be positive.

105

6.3 Design of the Proposed Interconnected Neural Network

In this section, we describe how the proposed dynamical network can be used to

solve the considered problem presented in the previous section. The proposed

approach is an extension of the original formulation given in Hopfield & Tank

(1985) and Hopfield (1984). Firstly, the network architecture is explained, and then it

is followed by the derivation of the energy function representing the proposed

network. Then, the dynamics are obtained and the convergence of the proposed

network is discussed. Finally, the proposed network is explained with an example.

6.3.1 The Network Architecture

The proposed coupled gradient network consists of six interconnected sub-

networks: two maximum neural networks; an N×M, Z and a 1×N×M YO network,

three N×1 piecewise linear; namely E, T and X networks and one N×N×M log-

sigmoid Y network where N and M are the number of jobs and the number of

machines, respectively. One of the maximum neural networks (Z network) is used to

assign each job on only one machine and the other one (YO network) to assign a

dummy job 0 at the beginning of the sequence before all the real jobs on each

machine. Three piecewise linear networks called the E, T and X networks are used to

represent continuous variables Ei, Ti and Xi for i=1,…,N. The log-sigmoid network Y

is used to represent binary valued variables, Yijm for i=1,…,N; j=1,…,N; m=1,…,M.

The input-output scheme for each of the neural sub-networks is shown in Figure

6.1. The input to the ith node will be denoted by UEi in the E network, by UTi in the

T network, by UXi in the X network, by UZim for the (i,m)th neuron in the Z

network, UY0jm for the (j,m)th neuron in the YO network, and by UYijm for the

(i,j,m)th neuron in the Y network. The dynamics of the coupled net will be defined in

terms of these input variables.

106

Similarly, node outputs (states) of the E, T, X, and Z networks will be the

variables VE1, VE2,…,VEN; VT1, VT2,…,VTN; VX1, VX2,…,VXN; and VZ11,

VZ12,…,VZNM, respectively. It is to be noted that rather than using network Y to

represent variables VY0jm, here, we use network YO to represent the dummy jobs at

the beginning of the sequence before job j on machine m. Therefore, the variables

VY0jm for j=1,2,..,N ; m=1,2,...,M, and VYijm for i=1,2,...,N ; j=1,2,...,N; and

m=1,2,...,M will demonstrate node outputs of the YO network and Y network,

respectively. Figure 6.2 given below shows the arrangement of the precedence units

and Figure 6.3 depicts the connections of the precedence units, Yijm on different

machines. Other types of units are arranged in similar ways, but are not represented

as multidimensional arrays.

Figure 6.1 The input-output scheme for the neurons representing each unit

 UEi

VEi

 UTi

VTi

 UXi

VXi

 UZim

VZim

UYijm

VYijm

 UY0jm

 VY0jm

107

6.3.2 The Energy function

The energy function for this network is constructed using a penalty function

approach. That is, the energy function E consists of the objective function

Figure 6.2 Arrangement of precedence units

Row

Column Precedence units on machine m-1

Precedence units on machine m

Precedence units in column j
on machine m-1

Precedence units in column j
on machine m

Figure 6.3 Connections of precedence units Yijm on different machines

row 1

row 2

 row n

Y2jm

Ynjm

 Y1jm

w1j(m-1),1jm

108

)(
1

iii

N

i
i TtEe +∑

=

 plus a penalty function P(E, T, X, Z,Y, YO) to enforce the constraints.

The penalty function involves the sum of the penalty terms each of which

corresponds to each constraint of the problem.

The first penalty term, P1= 2

1
)(iii

N

i
i dETX −+−∑

=

, will add a positive penalty if

the solution does not satisfy any of the equality constraints given in (6.2), and will

yield zero when these equality constraints are satisfied.

To prevent the assignment of each job on more than one machine, the second

penalty term, P2= 2

1 1
)1(−∑ ∑

= =

N

i

M

m
imZ , which will add a positive penalty if the solution

does not satisfy any of the equality constraints given in (6.3), is included in the

energy function.

The third penalty term, P3, will add a positive penalty if the solution does not

satisfy any of the inequality constraints given in (6.4). In accordance with this

constraint, P3 will take the following form, P3=)(
1 1 ,1

im

N

i

M

m

N

jij
ijm ZY −∑∑ ∑

= = ≠=

ν , where v

represents the penalty function. 00)(0)(2 ≤=>= εεεεε allforvandallforv and

the functional form of this function is shown in Figure 6.4.

109

Figure 6.4 Penalty function for enforcing inequality constraints

The fourth term P4 will add a positive penalty if any of the equality constraints

given in (6.5) is violated. Therefore, P4 should be defined by

P4 = 2

1 1 ,0
)(∑∑ ∑

= = ≠=

−
N

j

M

m

N

jii
jmijm ZY .

The fifth penalty term, P5, is responsible for satisfying the inequality constraints

given in (6.6). Therefore it will yield zero when all these inequalities are satisfied. P5

may be written as

P5=))1((
,1 0 1

jiimjim

N

jii

N

j

M

m
ij spYXX ++−+−∑ ∑∑

≠= = =

βν .

To deal with the introduction of a dummy job 0 at the beginning of the sequence

before all the real jobs on each machine, the sixth penalty term P6 is to be defined as

∑ ∑
= =

−=
M

m

N

j
jmYP

1 1

2
0)1(6 .

)(εν

 ε

110

This term will add a positive penalty if any of the equality constraints given in

(6.7) is violated.

We require that Yijm and Zim є{0,1}. These constraints will be captured by the

seventh and the eighth terms, P7 and P8, which will add a positive penalty if the

binary constraints given in (6.8) and (6.9) are violated. Hence,

P7 =)1(
1 1

−∑∑
= =

im

N

i

M

m
im ZZ and

P8 =)1(
0 1 1

ijm

N

i

N

j

M

m
ijm YY −∑∑∑

= = =

=)1()1(
1 1 1

0
1 1

0 ijm

N

i

N

j

M

m
ijmjm

N

j

M

m
jm YYYY −+− ∑∑∑∑∑

= = == =

The non-negativity constraints given in (6.10) are not added to the energy

function as penalty terms since these constraints will be captured by using an input-

output function, g, where 00)(0)(<=≥= εεεεε allforgandallforg . Its

functional form is given in Figure 6.5. In other words, for zero and positive input

values, the activation function will be linear, and so the outputs will be equal to the

inputs of the neurons, and for the negative values the output values will be zero.

Therefore, the penalty function for the coupled gradient network can be written as

follows:

)11.6()1()1()1(

)1())1((

)()(

)1()(

1 1 1
0

1 1
0

1 1

1 1

2
0

1 0 1

2

1 1 ,01 1 ,1

1 1

22

1

ijm

N

i

N

j

M

m
ijmjm

N

j

M

m
jmim

N

i

M

m
im

M

m

N

i
imjiimjimij

N

i

N

j

M

m

jm

N

j

M

m

N

jii
ijm

N

i

M

m

N

jij
imijm

N

i

M

m
imiii

N

i
i

YYJYYIZZH

YGspYXXF

ZYEZYD

ZCdETXBP

−+−+−+

−+++−+−+

−+−+

−+−+−=

∑∑∑∑∑∑∑

∑ ∑∑∑∑

∑∑ ∑∑∑ ∑

∑ ∑∑

= = == == =

= == = =

= = ≠== = ≠=

= ==

βν

ν

If we sum the objective function given in (6.1) and the penalty function, we will

have the following energy function to be minimized:

111

)12.6()1()1()1(

)1())1((

)()(

)1()()(

1 1 1
0

1 1
0

1 1

1 1

2
0

1 0 1

2

1 1 ,01 1 ,1

1 1

22

11

ijm

N

i

N

j

M

m
ijmjm

N

j

M

m
jmim

N

i

M

m
im

M

m

N

i
imjiimjimij

N

i

N

j

M

m

jm

N

j

M

m

N

jii
ijm

N

i

M

m

N

jij
imijm

N

i

M

m
imiii

N

i
iii

N

i
ii

YYJYYIZZH

YGspYXXF

ZYEZYD

ZCdETXBTtEeA

−+−+−+

−+++−+−+

−+−+

−+−+−++

∑∑∑∑∑∑∑

∑ ∑∑∑∑

∑∑ ∑∑∑ ∑

∑ ∑∑∑

= = == == =

= == = =

= = ≠== = ≠=

= ===

βν

ν

where A,B,C,D,E,F,G,H,I and J are positive penalty coefficients.

If we rewrite the energy function in terms of the output variables, we may obtain

)13.6()1()1()1(

)1())1((

)()()1(

)()(),,,,,(

1 1 1
0

1 1
0

1 1

1 1

2
0

1 0 1

2

1 1 ,01 1 ,11 1

2

2

11

ijm

N

i

N

j

M

m
ijmjm

N

j

M

m
jmim

N

i

M

m
im

M

m

N

j
jmjiimjimij

N

i

N

j

M

m

jm

N

j

M

m

N

jii
ijm

N

i

M

m

N

jij
imijm

N

i

M

m
im

iii

N

i
iii

N

i
ii

VYVYJVYVYIVZVZH

VYGspVYVXVXF

VZVYEVZVYDVZC

dVEVTVXBVTtVEeAVYOVYVZVXVTVEE

−+−+−+

−+++−+−+

−+−+−+

−+−++=

∑∑∑∑∑∑∑

∑ ∑∑∑∑

∑∑ ∑∑∑ ∑∑ ∑

∑∑

= = == == =

= == = =

= = ≠== = ≠== =

==

βν

ν

Applying a winner take all (WTA) mechanism to the network, the energy terms

with weighting factors C, G, H and I can be omitted from the energy function. The

WTA learning rule guarantees the satisfaction of Eq. (6.3), that is, assignment of each

job to only one machine. In addition, it ensures the binary constraint Zim є{0,1}.

Similarly, by imposing WTA rule, the constraint ∑
=

=∀=
N

j
ojm mmY

1

,...,11 and

the binary constraint Y0jm є{0,1} will also be satisfied. The energy terms for these

constraints are also dropped from the energy function. By this way, these energy

terms will be handled explicitly. Therefore, the energy function takes the following

form:

112

)1())1((

)()(

)()(),,,,,(

1 1 11 0 1

2

1 1 ,01 1 ,1

2

11

ijm

N

i

N

j

M

m
ijmjiimjimij

N

i

N

j

M

m

jm

N

j

M

m

N

jii
ijm

N

i

M

m

N

jij
imijm

iii

N

i
iii

N

i
ii

VYVYJspVYVXVXF

VZVYEVZVYD

dVEVTVXBVTtVEeAVYOVYVZVXVTVEE

−+++−+−+

−+−+

−+−++=

∑∑∑∑∑∑

∑∑ ∑∑∑ ∑

∑∑

= = == = =

= = ≠== = ≠=

==

βν

ν

The penalty term)1(
1 1 1

ijm

N

i

N

j

M

m
ijm VYVYJ −∑∑∑

= = =

 can also be eliminated from the energy

function because these integrality constraints may be satisfied by using a sigmoidal

type activation function for variables Yijm in obtaining the output values. Final form

of the energy function can be written as follows.

)14.6())1((

)()(

)()(),,,,,(

1 0 1

2

1 1 ,01 1 ,1

2

11

jiimjimij

N

i

N

j

M

m

jm

N

j

M

m

N

jii
ijm

N

i

M

m

N

jij
imijm

iii

N

i
iii

N

i
ii

spVYVXVXF

VZVYEVZVYD

dVEVTVXBVTtVEeAVYOVYVZVXVTVEE

++−+−+

−+−+

−+−++=

∑∑∑

∑∑ ∑∑∑ ∑

∑∑

= = =

= = ≠== = ≠=

==

βν

ν

Although the original energy function given by (6.13) includes many penalty

terms to be minimized using a difficult trial-and error procedure, by imposing a

competitive WTA rule for the updating of the neurons, we get rid of the trouble of

determining the proper values for some of the weighting factors. We can see from the

above equation that except the weighting factor of the original objective function, the

resulting energy function includes only 4 penalty parameters to be determined.

6.3.3 The Dynamics

The dynamics for the coupled gradient network are obtained by gradient descent

on the energy function. The motion equations for the neurons are obtained as

follows:

113

For the E network

)(2[iiiii
i

i dVTVXVEBAe
VE
E

dt
dUE

−−++−=
∂
∂

−= (6.15)

For the T network

[]2 ()i
i i i i i

i

dUT E At B VT VX VE d
dt VT

∂
= − = − + − − +

∂
 (6.16)

For the X network

)17.6(

))1((

))1((

)(2

,1 1

0 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−+−′+

++−+−′−+

−−+

−=
∂
∂

−=

∑ ∑

∑∑

≠= =

= =

lmililml

N

ill

M

m
i

N

j

M

m
imjijimij

iiii

i

i

psVYVXVXvF

psVYVXVXF

VTdVEVXB

VX
E

dt
dUX

β

βν

For the Z network

)18.6()(2)()1(2
,01 ,1

⎥
⎦

⎤
⎢
⎣

⎡
−+−′−−−=

∂
∂

−= ∑∑ ∑
≠== ≠=

N

jij
jimim

M

m

N

jij
imijmim

im

im VYVZEVZVYDVZC
VZ

E
dt

dUZ
ν

For the Y network

)19.6(
)))1(((

)(2)(
,0,1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−+−′+

−+−′
−=

∂
∂

−=
∑∑

≠=≠=

jmijjiijm

N

jkk
jmkjmim

N

lil
ilm

ijm

ijm

psVXVXVYvF

VZVYEVZVYD

VY
E

dt
dUY

ββ

ν

114

For the YO network

)20.6(
)))1(((

)(2
,1

0

0

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−+−′+

⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
∂
∂

−= ∑
≠=

jmijjiijm

N

jii
jmijmjm

jm

jm

psVXVXVYvF

VZVYVYE
VY

E
dt

dUY

ββ

where ν’ is the derivative of the penalty function ν, and

00)(02)(≤=′〉=′ εευεεευ allforandallfor .

The states of the neurons are updated at iteration k by using the first-order Euler

method as follows:

dt
dUEUEUE i

E
k

i
k

i η+= −1 (6.21)

dt
dUTUTUT i

Ti
k

i η+= 1-k (6.22)

dt
dUXUXUX i

Xi
k

i η+= 1-k (6.23)

dt
dUY

UYUY ijm
Y

k
ijm

k
ijm η+= −1 (6.24)

dt
dUY

UYUY jm
Y

k
jm

k
jm

0
0

1
00 η+= − (6.25)

dt
dUZ

UZUZ im
Z

k
im

k
im η+= −1 (6.26)

where ηE, ηT, ηX, ηZ, ηY and ηY0 are positive coefficients which will be used to

scale the dynamics of the six networks.

Since the computation is performed in all neurons at the same time, the network

operates in a fully parallel mode. Neuron outputs are calculated by V=g (U), where g

(.) is the activation function, U is the input and V is the output of a neuron. For the

nodes in the E, T and X network, the activation function, g, will be given by a

piecewise linear function displayed in Figure 6.5, where

00)(0)(<=≥= εεεεε allforgandallforg . In other words,

115

VEi=g(UEi) = UEi for UEi ≥ 0; otherwise VEi=0 (6.27)

VTi=g(UTi) = UTi for UTi ≥ 0; otherwise VTi=0 (6.28)

VXi=g(UXi) = UXi for UXi ≥ 0; otherwise VXi=0 (6.29)

The activation function for the nodes of the Y network will take the usual

sigmoidal form. In other words, continuous relaxation is used for handling discrete

variables in the Y network as follows:

VYijm = g(UYijm) = logsig (λY×UYijm) (a log-sigmoid function) (6.30)

where λY is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)). The

functional form of this activation function is given in Figure 6.6.

Figure 6.5 Activation function for continuous neurons of E, T and X networks

 g(ε)

ε

116

Figure 6.6 Activation function for neurons of the Y network

 UYijm

 VYijm

Figure 6.7 Activation function for neurons of the Z network when there are two inputs

117

The neuron outputs of the Z and YO networks are updated by the maximum

neuron model of Takefuji, Lee, & Aiso (1992) as below and its functional form is

given in Figure 6.7.

)31.6(
0

),...,,(max1 21

⎩
⎨
⎧ =

=
otherwise

UZUZUZUZif
VZ imiiim

im

)32.6(
0

),...,,(max1 020100
0

⎩
⎨
⎧ =

=
otherwise

UYUYUYUYif
VY jmjjjm

jm

6.3.4 Convergence

In order to use the proposed Hopfield-like network for the solution of the

problem, we have to prove the convergence of the network. To do so, we have to

show that energy does not increase along the trajectories, energy is bounded below,

solutions are bounded and time derivative of the energy is equal to zero only at

equilibria. In the proposed network, although VEis, VTis, VXis, VZims and VY0jms

are not differentiable functions of time t, they have right-hand derivatives.

To prove the convergence of the proposed network, an extension of the La Salle’s

invariance principle can be used (Sengor, Cakir, Guzelis, Pekergin, & Morgul, 1999).

The Lemma below, which is needed for taking the time derivative of the energy,

states that the chain rule is valid also for the right derivative.

Definition: The right derivative of a function x(.) : nRR → is defined as

Δ
−Δ+

=
+

+→Δ

)()(lim:)(
0

txtx
dt

tdx where +→Δ 0 means that Δ approaches zero

throughout positive values only (Sengor, Cakir, Guzelis, Pekergin, & Morgul, 1999).

Lemma: Consider the functions () .:(.)),0[:. RDgandRDD g
n

g →⊂→∞⊂ψψ

Let)(ψDIntt ∈ with Int stands for the set of interior points. Assume that g(.) is

118

continuously differentiable at ψ(t), and ψ(.) is right differentiable at t. Then, g ο ψ is

right differentiable at t and ++ ∇=
dt

tdg
dt

tgd)()]([))((ψψψ
ψ

o (Sengor et al.,1999).

Using the Lemma given above, the time derivative of the energy function E can

be found as follows:

dt
dUY

UY

VY
dt

dUY
dt

dVY
dt

dVY
VY
UY

dt
dUZ

UZ
VZ

dt
dUZ

dt
dUX

UX
VX

dt
dUX

dt
dUT

UT
VT

dt
dUT

dt
dUE

UE
VE

dt
dUE

dt
dVY

dt
dUY

dt
dVY

dt
dUY

dt
dVZ

dt
dUZ

dt
dVX

dt
dUX

dt
dVT

dt
dUT

dt
dVEi

dt
dUE

dt
dVY

VY
E

dt
dVY

VY
E

dt
dVZ

VZ
E

dt
dVX

VX
E

dt
dVT

VT
E

dt
dVE

VE
E

dt
dE

jm

jm

jm
N

i

M

m

jm

ijmijm
N

i

N

j

M

m ijm

ijmim

im

im
N

i

M

m

im

i

i

i
N

i

ii

i

i
N

i

ii

i

i
N

i

i

jm
N

j

M

m

jm

ijm
N

i

N

j

M

m

ijmim
N

i

M

m

im

i
N

i

ii
N

i

i
N

i

i

N

j

M

m

jm

jm

ijm
N

i

N

j

M

m ijm

N

i

M

m

im

im

i
N

i i

i
N

i i

i
N

i i

0

0

0

1 1

0

1 1 11 1

111

0

1 1

0

1 1 11 1

111

1 1

0

0

1 1 11 1

111

+
= =

= = =
+

= =

+
=

+
=

+
=

+
= =

= = =
+

= =

+
=

+
=

+
=

= =
+

= = == =
+

+
=

+
=

+
=

+

∂

∂−
+

∂

∂−
+

∂

∂−
+

∂

∂−
+

∂

∂−
+

∂

∂−
=

−
+

−
+

−
+

−
+

−
+

−
=

∂
∂

+

∂
∂

+
∂
∂

+

∂
∂

+
∂
∂

+
∂
∂

=

∑∑

∑∑∑∑∑

∑∑∑

∑∑

∑∑∑∑∑

∑∑∑

∑∑

∑∑∑∑∑

∑∑∑

)33.6(
0

0

1 1

2
0

2

1 1 11 1

2

1

2

1

2

1

2

+
= =

= = =
+

= =

+
=

+
=

+
=

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂−
+

∂

∂
⎟
⎠
⎞

⎜
⎝
⎛−

∂

∂
⎟
⎠
⎞

⎜
⎝
⎛−

∂

∂
⎟
⎠
⎞

⎜
⎝
⎛−

∂

∂
⎟
⎠
⎞

⎜
⎝
⎛−=

∑∑

∑∑∑∑∑

∑∑∑

jm

jm
N

i

M

m

jm

ijm
N

i

N

j

M

m ijm

ijm

im

im
N

i

M

m

im

i

i
N

i

i

i

i
N

i

i

i

i
N

i

i

UY

VY
dt

dUY

dt
dVY

VY
UY

UZ
VZ

dt
dUZ

UX
VX

dt
dUX

UT
VT

dt
dUT

UE
VE

dt
dUE

119

where
V
E
∂
∂ is replaced by

dt
dU− . For the neurons using a piecewise linear

function, although the outputs of the neurons are not differentiable functions of time,

the right derivative of the outputs with respect to the input variables exists. For

example for the neurons of the E network, the time derivative of the neuron output i,

dt
dVEi can be written as

dt
dUE

UE
VE

dt
dVE i

i

ii
+∂

∂
= . Here +∂

∂

i

i

UE
VE

will be equal to one for

positive or zero inputs, and will be equal to zero for negative inputs. Therefore, the

right derivative of the neuron output represented by VEi with respect to neuron input

UEi can be written as below.

⎩
⎨
⎧ ≥

=
∂

∂
+ otherwise

UEif
UE
VE i

i

i

0
01

It is equal to heaviside or the unit step function of UEi represented by U(UEi), and

is shown in Figure 6.8.

Figure 6.8 Unit step function of UEi

UEi

U(UEi)

120

As the same relation holds for the neurons of T and X networks which are also

using a piecewise linear function, we can write

⎩
⎨
⎧ ≥

==
∂

∂
+ otherwise

UTif
UTU

UT
VT i

i
i

i

0
01

)(

and

⎩
⎨
⎧ ≥

==
∂

∂
+ otherwise

UXif
UXU

UX
VX i

i
i

i

0
01

)(

Therefore, it is obvious that the first three terms in equation (6.33) will be less

than or equal to zero.

Similarly, although the outputs of the Z and YO network are not differentiable

functions of time, they have right-derivatives, and, for the neurons of the maximum

neural network Z, we can write the right-derivative of the energy function with

respect to time t as follows:

dt
dUZ

UZ
VZ

dt
dUZ

dt
dVZ

dt
dUZ

dt
dE

im

im

im
N

i

M

m

im

im
N

i

M

m

im

+
= =

= =
+

∂

∂−
=

−
=

∑∑

∑∑

1 1

1 1

Since VZims are piecewise constant functions of UZims, 0=
∂

∂
+

im

im

UZ
VZ

. Therefore,

the fourth term in equation (6.33) will be zero. For the YO network, we can write

dt
dUY

UY

VY
dt

dUY
dt

dVY
dt

dUY
dt
dE

jm

jm

jm
N

j

M

m

jm

jm
N

j

M

m

jm

0

0

0

1 1

0

0

1 1

0

+
= =

= =
+

∂

∂−
=

−
=

∑∑

∑∑

121

In the same fashion, 0
0

0 =
∂

∂
+

jm

jm

UY

VY
and the sixth term in (6.33) will be zero.

The fifth term
dt

dVY
VY
UY

dt
dVY ijm

ijm

ijm
N

i

N

j

M

m

ijm

∂

∂−
∑∑∑
= = =1 1 1

 can be written as

ijm

ijm
N

i

N

j

M

m

ijm

dVY
dUY

dt
dVY

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1 1 1

2

 and since 0])([1 ≥′= −
ijm

ijm

ijm VYg
dVY
dUY

 for log-sigmoid

function,
ijm

ijm
N

i

N

j

M

m

ijm

dVY
dUY

dt
dVY

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1 1 1

2

≤ 0 so that the right-hand side of the equation

given in (6.33) will be obviously negative. Combining this fact with the fact that the

energy E is bounded below (since the cost is always greater than or equal to zero) we

can conclude that the energy does not increase along trajectories, so we can write

0≤+dt
dE . All trajectories go to the points where 0=+dt

dE . Here, it should be noted

that if the points are equilibrium points then it can be seen that 0=+dt
dE .

But for some points, even if 0=+dt
dE there is a possibility that

;0≠
dt

dUEi ;0≠
dt

dUTi ;0≠
dt

dUX i ;0≠
dt

dUZ mi 00 ≠
dt

dUY jm so the trajectories may

not reach equilibrium points.

Because VZims, VYijms and VY0jms are binary, they will be bounded. But there is

no need to check whether VEis, VTis and VXis are bounded or not, since the

trajectories may not reach equilibrium points. But this case is never observed during

simulation.

6.3.5 Selection of the Parameters

In order to simulate the proposed network for solving the E/T problem described

by the dynamics given in Section 6.3.3, some parameters should be determined by

122

trial and error. These are the penalty parameters A, B, D, E and F; the activation

slope λY; the step sizes ηE, ηT, ηX, ηZ, ηY, ηYO, and the initial conditions.

Because there is no theoretically established method for choosing the values of the

penalty coefficients for an arbitrary optimization problem, the appropriate values for

these coefficients can be determined empirically. That is simulation runs are

conducted, and optimality and/or feasibility of the resulting equilibrium points of the

system are observed. The network can be initialized to small random values, and then

synchronous or asynchronous updating of the network may allow a minimum energy

state to be attained. In order to ensure smooth convergence, step size must be

selected carefully (Watta, 1996).

The dynamics of the proposed Hopfield-like gradient network will converge to

local minima of the energy function E. Since the energy function includes five terms,

competing to be minimized, there are many local minima and a tradeoff exists among

the terms. An infeasible solution may be obtained when at least one of the constraint

penalty terms is non-zero. In this case, the objective function term will generally be

quite small but the solution will not be feasible. Alternatively, a local minimum,

which causes a feasible but not a good solution, may be encountered even if all the

constraints are satisfied. In order to satisfy the each penalty term, its associated

penalty parameter can be increased. But this causes an increase in other penalty

terms and a tradeoff occurs. The penalty parameters that result a feasible and a good

solution, which minimizes the objective function, should be found (Smith, 1999).

Due to the problems of Hopfield like NNs in solving optimization problems,

various modifications are proposed to improve the convergence of the Hopfield

network. While several authors modified the energy function of the Hopfield

network to improve the convergence to valid solutions (Aiyer, Niranjan, & Fallside,

1990; Brandt, Wang, Laub, & Mitra, 1988; Van Den Bout & Miller, 1988), many

others studied the same formulation with different penalty parameters (Hedge,

Sweet, & Levy, 1988; Kamgar-Parsi & Kamgar-Parsi, 1992; Lai & Coghill, 1992). In

a different study, Wang (1991) used monotonically time-varying penalty parameters

123

for solving convex programming problems. Here, we propose to use time varying

penalty parameters that take zero values as a starting value and then to increase them

in a linear fashion step by step to reduce the feasible region, and also to update all the

neurons synchronously for obtaining better simulation results.

The proposed gradient network algorithm can be summarized by the following

pseudo-code.

Step 1. Construct an energy function for the considered problem using a penalty

function approach.

Step 2. Initialize all neuron states to random values.

Step 3. Select the slope of the activation function (λ) and step sizes (η) and

determine the penalty parameters evolving with time.

Step 4. Compute the motion equations by (6.15)-(6.20). Update neurons inputs U

by the first-order Euler method which is explained through (6.21)-(6.26), and then

update the neuron output of variables V using equations (6.27)-(6.32).

Step 5. Repeat the iterations n times and check the cost terms of the energy

function penalized. If the required criterion is met, go back to Step 3 to pass to other

phase of the simulation. If the work is in the part of the simulation where all the

constraints are taken into consideration, check whether the energy has converged to a

local minimum. If yes, proceed to step 6 otherwise go back to Step 5.

Step 6. If the energy has converged to local minimum, examine the final solution

to determine feasibility and optimality.

Step 7. Adjust parameters A, B, D, E, F if necessary to obtain a satisfactory

solution, reinitialize neuron states and repeat from step 3.

6.4 Simulation results

In this section, a simulation experiment is conducted to test the effectiveness of

the proposed gradient network approach on an example problem in terms of solution

quality. Assume that we are given 8 jobs to be processed on 3 machines in a JIT

manufacturing environment. Table 6.1 shows the processing times of each job on

each machine. The setup time matrix S represents the setup time incurred between

124

the two jobs. For example S12=1.1 shows the setup time for job 2 when it

immediately follows job 1. The setup time vector SO includes the setup times for

each job when they are in the first position. While the due dates are denoted by the

elements of vector d, vectors e and t depict early and tardy costs for each job.

Table 6.1 Processing times on each machine
Job\Machine M1 M2 M3

JI 0.53 1.15 0.80

J2 1.19 1.06 0.91

J3 1.12 1.21 0.82

J4 0.98 1.07 0.74

J5 0.63 1.13 1.2

J6 1.14 0.9 0.92

J7 1.26 0.84 0.45

J8 1.38 0.88 0.79

0 1.11 1.29 1.21 1.11 1.02 0.91 0.77
1.23 0 1.16 1.07 1.16 1.22 0.89 1.13
0.91 1.05 0 1.10 0.98 0.74 1.13 1.08
1.45 0.88 1.05 0 1.13 1.16 0.88 1.12
0.98 0.92 0.85 0.91 0 0.85 1.13 1.21
0.56 1.10 1.09 1.30 0.69 0 1.09 1.24
0.82 1.17 0.59 0.89 1.13 1.14

=S

0 0.65
1.22 0.95 1.14 1.08 1.16 0.73 1.27 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

SO=[0.44 0.88 0.78 1.09 1.34 0.69 0.9 0.9]

e=[3.31 1.26 0.76 3.74 3.79 4.79 1.12 4.0]

t=[3.31 1.26 0.76 3.74 3.79 4.79 1.12 4.0]

d=[12.95 9.02 13.83 15.03 15.03 11.49 11.44 16.45]

125

The proposed procedure was implemented in Matlab language (Version 6.5) and

the initial conditions of the network were chosen randomly from uniform distribution

on the interval [0,1]. A time-varying penalty parameter method is proposed to be

used during simulation experiments.

In the following paragraph, we solve the problem applying the steps of the
proposed approach given in the previous section.

Step 1. For the problem considered we have the following energy function

obtained in (6.14) using a penalty function approach.

))1((

)()(

)()(),,,,,(

1 0 1

2

1 1 ,01 1 ,1

2

11

jiimjimij

N

i

N

j

M

m

jm

N

j

M

m

N

jii
ijm

N

i

M

m

N

jij
imijm

iii

N

i
iii

N

i
ii

spVYVXVXF

VZVYEVZVYD

dVEVTVXBVTtVEeAVYOVYVZVXVTVEE

++−+−+

−+−+

−+−++=

∑∑∑

∑∑ ∑∑∑ ∑

∑∑

= = =

= = ≠== = ≠=

==

βν

ν

Step 2. All the neuron inputs are randomly chosen from uniform distribution on

the interval [0,1], and the initial values of the neuron outputs are fixed using

equations (6.27)-(6.32).

Step 3. For the first phase of the simulation, the activation slope and step sizes are

chosen as λY =300, ηE = 0.001, ηT = 0.005, ηX = 0.001, ηZ =1.0, ηY = 0.0005, and ηY0

=1.

We have 5 penalty parameters in the energy function given in (6.14). But, since

the penalty parameter A belongs to the original objective function, here, we will only

deal with the satisfaction of the constraints and try to determine the values of the

penalty parameters enforcing the constraints which will guarantee a feasible solution.

In the first phase of the simulation, it is decided to penalize both the inequality

constraints and the equality constraints by using their associated parameters D and E.

At this first stage, value of zero is assigned to the other parameters A, B and F. In this

stage, our aim is to find the values of the penalty parameters D and E such that the

126

jobs assigned to the first position on each machine represented by the elements of the

YO matrix with values 1, are also assigned to the same position on the job

assignment matrix Z. We will stop running the iterations when this criterion is met.

Step 4. The motion equations are computed by (6.15)-(6.20) and the neuron inputs

U are updated by the first-order Euler method which is explained by the equations

through (6.21)-(6.26), and then the neuron output of variables V are updated using

equations (6.27)-(6.32).

Step 5. After performing 1000 iterations, it is seen that this criterion is met and the

best values of D and E are found as 3 and 0.1, respectively. Since we did not take

into consideration all the constraints during this part of the simulation experiment,

we continue the procedure starting from Step 3.

In the second stage of the simulation experiment, it is decided to see the impact of

the predetermined values of D and E on the results when other constraints and the

original objective function are taken into consideration by weighting them with a

value of 1. Smaller step sizes are used for updating the neurons of the Z and YO

network and a larger step size value is used for updating the neurons of the Y

network, which are determined empirically, not to cause a move up to a different

region that violates the assignment of the jobs on the first position on each machine

to the same machines on the Z matrix. In this part of the simulation experiment, the

activation slope and the step sizes are chosen as λY =300, ηE = 0.001, ηT = 0.005, ηX =

0.001, ηZ = 0.001, ηY = 0.05, and ηY0 = 1×10-6.

Then we proceed to Step 4. The motion equations are computed, neuron inputs U

are updated by the first-order Euler method, and the neuron outputs V are updated

using equations (6.27)-(6.32)

Proceeding to Step 5, we repeat the iterations n times using the determined

parameters. In addition to the 1000 iterations performed in the previous stage, 1000

more iterations are made in this stage. It is seen that although the criterion satisfied in

127

the first stage is not violated, a cost of 21.65 is obtained. This cost implies that the

terms, weighted with A and B in the energy function, are not satisfied.

Since the necessary criterion of the cost function is still met in this stage and no

local minimum is obtained, we again go back to step 3.

At the beginning of this step, one important thing to be paid attention is assuring

the satisfaction of the binary constraint YijmЄ {0,1}, which is included in the energy

function. Therefore, the satisfaction of the binary constraints belonging to Yijms is

checked, and it is seen that some of the Yijms are not binary. Since Yijms determine

the precedence relationships among jobs, the next step should be to penalize the term

associated with F to satisfy these constraints. Also, to ensure that Yijms are binary, a

kind of mean field annealing is incorporated into the coupled network by slowly

increasing the slope of the activation function during the running of the network. By

this way, the slope of the activation function becomes time-varying and can be

expressed as λ=λ(t)=λ0+λ1t where t is the computational time, λ0 and λ1 are constants

which are determined empirically. Here, in our experiments, we use λ0=300, λ1=0.5

and t represents the iteration number divided by 1500. Therefore, the time varying

slope becomes λ(t)= 300+0.5×(iteration number/1500). By running trial simulation

experiments using penalty terms of 1 for other terms, the best value for F that

satisfies its related constraints is found as 5. Then we proceed to Step 4 and again

compute the motion equations. We update neurons inputs U by the first-order Euler

method, and then update the neuron output of variables V.

In Step 5, 3000 more iterations were needed until all the cost terms are satisfied.

Then, the energy function is checked, and since a cost of zero is obtained, work

continues from step 6.

In Step 6, we examine the final solution to determine feasibility and optimality.

This is the optimum solution, since all the constraints are satisfied and a cost value of

zero is obtained.

128

An optimal set of penalty parameters found for the proposed network are given in

Table 6.2. The best values of the step sizes, which were determined empirically and

used in all stages of the simulations and the slope values of the logsigmoid activation

function, are given in Tables 6.3 and 6.4, respectively.

Table 6.2 Penalty parameter values in three phases of simulation

Iterations\ Penalty Coef. A B D E F

1:1000 0 0 3 0.1 0
1001:2000 1 1 3 0.1 1
2001:5000 1 1 1 1 5

The evolution of the energy during the simulation of the network is given in

Figure 6.9. As it is seen from this figure, after an oscillation process, the network

converges to an optimal solution where the cost value is zero.

 Figure 6.9 Energy evolution of the network during simulation

A=B=F=0;
D=3; E=0.1

A=B=F=1;
D=3; E=0.1

A=B=D=E=1;F=5

129

Table 6.3 Step size values in three phases of the simulation experiment

Iterations\Parameters ηE ηT ηX ηZ ηY ηYO

1:1000 0.001 0.005 0.001 1 0.0005 1
1001:2000 0.001 0.005 0.001 0.001 0.05 0.000001
2001:5000 0.001 0.005 0.001 0.005 0.09 0.000001

Table 6.4 Slope values in three phases of the simulation experiment

Iterations\Parameters λY

1:1000 300
1001:2000 300
2001:5000 300+0.5×(iteration/1500)

From the simulation results Z11=Z23=Z32=Z43=Z51=Z61=Z72=Z82=1. According to

the values of the assignment variables, job 1, job 5 and job 6 are performed on the

first, job 3, job 7 and job 8 are performed on the second, and job 2, job 4 are

performed on the third machine respectively. Y023=Y061=Y072=1 implies that job 6 is

the first job to be performed on the first machine, job 7 is the first job to be

performed on the second machine, and job 2 is the first job to be performed on the

third machine. Since the variables that determine the precedence relations between

the jobs are Y151=Y611=Y382=Y732=Y243=1, the first job precedes job 5 on machine 1,

job 6 precedes job 1 on machine 1, job 3 precedes job 8 on machine 2, job 7 precedes

job 3 on machine 2, and job 2 precedes job 4 on machine 3.

6.5 Conclusions

In this chapter, the problem of scheduling a set of independent jobs with sequence

dependent setups and distinct due dates, on non-identical multi-machines to

minimize the sum of weighted earliness and tardiness was studied. A dynamical

coupled network composed of two maximum, three piecewise linear and one log-

sigmoid sub-neural networks all of which interact with each other was proposed for

the solution of the problem known to be NP-hard. By using the proposed

interconnected network approach, the complexity of the considered problem which is

130

expressed with too many constraints was reduced. While some of the constraints

were eliminated from the energy function using maximum networks, some were

satisfied using a log-sigmoid network. By this way, the effort of finding some

penalty parameters was diminished, and by incorporating a kind of mean field

annealing into the network, the performance of the network was improved.

Implementation of the network in hardware will make significant progress in its

computational efficiency.

Although a large body of literature exists for solving single machine scheduling

problems involving earliness and tardiness penalties, there are few papers aim to

minimize the sum of weighted earliness and tardiness and dealing with non-identical

multi machine scheduling problems involving sequence dependent setup times and

distinct due dates. To the best of our knowledge, there is no previously published

article that tried to solve this NP-hard problem using neural networks. In addition,

the application of competitive type networks to scheduling problems is scarce. So,

we believe that this attempt to solve the problem considered will make a contribution

to the relevant literature. Furthermore, the proposed Hopfield-like network uses time-

varying penalty parameters to overcome the tradeoff problem, one of the important

drawbacks of the penalty function approach. Obtaining an optimal solution using the

proposed approach makes it attractive for applications of problems with larger size.

Future research should consider the hybridization of ANNs with other

metaheuristics for the problems considered. In addition, extension of the results to

large sized problems and implementation of parallel neural processing will also be

worthwhile.

 131

CHAPTER SEVEN

RESULTS ANALYSIS and DISCUSSION

In this thesis, we have applied Hopfield type neural networks to solve the

problems considered. In general, we can summarize the entire procedure of

employing Hopfield type dynamical neural networks to solve scheduling problems as

follows.

Firstly the problem has to be modeled using linear or non linear programming

techniques. Then, using the penalty function approach, the constrained problem is

converted into an unconstrained problem. In other words, using this approach, the

constraints of the problem are included in the energy function as penalty terms which

can be considered as a Lagrangian relaxation of the constraints. Therefore, the

energy function of the network will include the original objective function of the

problem and the penalty terms corresponding to each constraint. To summarize the

approach, let us consider the following minimization problem which includes both

equality and inequality constraints.

{ }
mjRy

kjlix

mjyxb
niyxa

yxf

j

ij

j

i

,...,2,1

,...1;,...,11,0

,...,2,10),(
,...,2,10),(

),(min

=∈

==∈

==
=≤

The penalty terms,

)],([(),(
1

yxayxA
m

i
i∑

=

= ν ,

corresponding to the constraints represented by equalities, and the penalty terms,

),(),(
1

2 yxbyxB
m

j
j∑

=

=

corresponding to the constraints represented by inequalities are obtained.

132

Here, v represents the penalty function and 2)(εεν = for all ε > 0 and 0)(=εν for

all ε ≤ 0 or εεν =)(for all ε > 0 and 0)(=εν for all ε ≤ 0 can be used.

The penalty terms corresponding to the binary constraints

∑∑
= =

−=
l

i

k

j
ijij xxxX

1 1
)1()(,

and the energy function of the problem

4),(3)],([(2),(1),(
1

2

1
PyxbPyxaPyxfPyxE

m

j
j

m

i
i +++= ∑∑

==

ν ∑∑
= =

−
l

i

k

j
ijij xx

1 1
)1(

can be written. In the energy function, P1, P2, P3 and P4 are penalty coefficients.

In addition to the objective function f(x,y), the energy function E(x,y) also

includes penalty terms, and when any constraint is violated, a cost value which

causes a high energy appears. In a valid schedule, the penalty terms corresponding to

constraints become zero. That is, the penalty coefficients will have no effect in the

energy function.

After defining the energy function to be employed, the dynamics for the gradient

network are obtained by gradient descent on the energy function.

kjli
dVx

E
dt

dUx

ij

ij ,...,1;,...,1 ==
∂

−=

mj
dVy

E
dt

dUy

j

j ,...,1=∂
−=

The solution of equations of motion may be accomplished via the use of Euler’s

approximation. Then, neuron outputs are calculated by V=g (U), where g (.) is the

activation function, U is the input and V is the output of the neuron. In words, an

optimization problem is first mapped onto a neural network in such a way that the

network configurations correspond to possible solutions to the problem. A function

of neuronal states, called the energy function, is constructed. This function is

133

proportional to the cost function of the problem. The dynamics of the network is

determined so that the energy function (cost function) is minimized as the neurons

update (Wang, 1997).

Generally, scheduling problems represented by mathematical models involve

many constraints due to the complexity of the problem. The more constraints the

model includes, the more difficult it becomes to solve the problem using neural

networks, since a tradeoff occurs between the terms to be minimized. We propose

below alternative ways to simplify the energy function and eliminate the effort of

searching for the values of some of the penalty parameters.

• Since each job has to be processed on only one machine at a time, scheduling

problems are generally subject to typical constraints such as,

lix
k

j
ij ≤≤=∑

=

11
1

When a job is assigned to a machine, the assignment variable takes the value of 1,

otherwise it becomes 0. For instance, if the schedule is represented by a 2-D l ×k

network, the binary output of the ijth neuron VXij=1 if a job is assigned in the ith row

and the jth column, and VXij=0 otherwise. These binary constraints can be satisfied

using a log-sigmoid activation function and by increasing the slope of the activation

function when these constraints are violated.

The following maximum function satisfies both the assignment of one job to only

one machine and also the binary constraint { }1,0∈ijx . Here, the neuron outputs are

represented by V’s and the inputs by U’s respectively.

⎩
⎨
⎧ =

=
otherwise

UxUxUxUxif
Vx ikiiij

ij 0
),...,,(max1 21

• To represent real (continuous) valued variables linear activation functions can

be used. If these variables must be greater than or equal to zero, then a piecewise

134

linear function can be employed. By this way, there will be no need to consider the

penalty term corresponding to this constraint. To represent binary (discrete)

variables, a log-sigmoid function such as logsig(n) = 1 / (1 + exp(-n)), can be

suggested. It should be noted that the convergence of the network, which means that

the trajectories of the dynamical network end at one of the equilibria, should be

proved before the use of dynamical gradient networks. However, although

employing log-sigmoid functions do not cause convergence problems, in solving

optimization problems using maximum functions and piecewise linear functions the

convergence of the network should be analyzed carefully.

In the light of the procedure explained above, in this thesis, we have studied two

different parallel machine scheduling problems. The first one was identical parallel

machine scheduling problem with the objective of the makespan minimization, and

the second one was the scheduling of a set of independent jobs with sequence-

dependent setups and distinct due dates on non-identical multi-machines to minimize

the total weighted earliness and tardiness. Both of the problems considered were NP-

hard. Since the first problem includes fewer constraints than the second one, its

energy function involved fewer penalty terms to enforce the constraints. Therefore,

although a tradeoff exists between the penalty terms to be minimized in both of the

problems, solving the first problem was easier than solving the second problem. For

these problems, time dependent penalty parameters were used. For the solution of the

first problem, the proposed gradient network included two types of neurons: a

continuous type neuron to represent variable denoting makespan, and discrete types

of neurons to represent binary valued assignment variables. Linear type activation

function was used to model the relation between the output and the input of the

continuous type neuron, and a log-sigmoid function was employed for the discrete

type neuron.

From the simulation results, it was seen that the gradient network results were

closer to the LPT results and in all the simulation runs for different initialization

schemes, the network converged to feasible solutions. In other words, the

convergence rate was 100 %. The performance of the network was also tested for

135

large values of n (n = 500). The network produced better results for large values of n

and small values of m, and only for n=500, it resulted one non-feasible solution in

one of the 20 initialization schemes for one data set.

In the second application, inclusion of non-identical machines, sequence-

dependent setup times, distinct due dates made the problem more complex, therefore

many constraints were needed to represent the problem by using a mixed integer

programming formulation. Due to the complicated structure of the problem, the

energy function involved many penalty terms corresponding to each constraint of the

problem. However, the quality of the final solution was very sensitive to the values

of the penalty coefficients used and the effort of performing a search for the proper

values for these coefficients was onerous (Van den Bout & Miller, 1988). Although

some of the constraints such as assignment and binary constraints were tried to be

satisfied by using maximum networks and log-sigmoid networks respectively, the

problem still involved many constraints which resulted a greater tradeoff problem

than the first problem. Another difficulty in solving this problem was that some

variables were included in more than one constraint which made all constraints

dependent to each other. Using a trial end error procedure, the proper values of the

penalty parameters were found and an optimum solution which makes the approach

attractive for solving larger instances was obtained for an example problem.

It should be emphasized that the choice of appropriate parameters always plays an

important role in obtaining satisfactory solution quality. The performance of the

neural network is very sensitive to penalty parameter values. If the parameters are

chosen very small, an infeasible solution may be obtained. On the other hand, large

values of the penalty parameters will ensure a feasible solution, but may create a

poor local minimum solution. In order to satisfy each penalty term, its associated

penalty parameter can be increased but this results an increase in other penalty terms

and a tradeoff occurs. In our applications, the tradeoff problem was also one of the

main problems we faced and we proposed to use time varying penalty parameters to

solve this problem. By this method, we have obtained satisfactory solutions in the

first application. However, the solutions obtained were generally local minimums

136

instead of global optimum solutions. In addition to this, although the use of time

varying penalty parameters during simulation experiments relieved some difficulty in

solving the second problem, finding an optimal solution required too much trial and

error efforts due to the complex nature of the problem.

Other parameters, the initial states of the network, the step sizes, and the slope of

the activation functions used had also a great influence on the solutions of our

problems and need to be carefully selected. In our first application, it is seen that

even for the same datasets, different initial states of the gradient network generated

different results some of which were better, some of which were worse than the LPT

rule result and in the second application, it was very difficult to find the initial states

that result a feasible solution. The step sizes and the slopes of the activation functions

in both of the applications were determined by a trial and error process and in the

second application, a kind of mean field annealing is incorporated into the network to

slowly increase the slope of the log-sigmoid activation function used and by this way

the slope of the activation function became time-varying and the binary constraints

on the precedence units are satisfied.

In the following chapter, we summarize the entire thesis and point out possible

directions for future research.

 137

CHAPTER EIGHT

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this concluding chapter, we summarize what has been accomplished in this

thesis, and describe some potential future work to extend the present results for the

discussed problems.

8.1 Conclusions

Scheduling refers to the assignment of limited resources over time to accomplish

certain tasks. Since most of the scheduling problems are known to be NP-hard,

approximate or heuristic approaches have been developed for solving these

problems. During the last decades, many researchers have investigated the use of

neural networks for solving scheduling problems.

In the thesis, first, an overview of scheduling together with the methods used in

scheduling was given. A literature review of artificial neural network applications in

production scheduling was provided after dynamical systems for combinatorial

optimization were explained. Then, we developed dynamical neural networks to deal

with two parallel machine scheduling problems. Our objective was two fold; to solve

these problems using neural networks and to compare its performance with other

techniques’. Although neural network approach has been admitted as a promising

alternative to solving a variety of combinatorial optimization problems, few works

relate neural network to applications of parallel machine scheduling problems. From

the theoretical viewpoint, the parallel machine scheduling problem is a generalization

of the single machine, and a special case of the flexible flow. It is also important

from the practical point since the occurrence of resources in parallel is very common

in real world (Pinedo, 1995). To the best of our knowledge, this study will be the first

attempt to solve the considered NP hard problems using neural networks.

138

For the solution of the first problem, the identical parallel machine scheduling

problem with the objective of minimizing makespan, we employed a dynamical

gradient network. After the appropriate energy function was constructed by using a

penalty function approach, the dynamics were defined by steepest gradient descent

on the energy function. In order to overcome the tradeoff problem encountered in

using the penalty function approach, a time varying penalty coefficient methodology

was proposed to be used during simulation experiments. We analyzed the effect that

the initial conditions of the network have on the performance on 5 different data sets

by running each data set 20 times for different sizes of jobs and machines. The

results of the simulation experiments indicated that applying the proposed method

generated good results comparable with that of Longest Processing Time dispatching

rule. The network converged to feasible solutions in all the simulation runs for

different initialization schemes except in one of the 20 initialization schemes for one

data set for n=500 and better results were obtained for large number of jobs and

small number of machines.

The second problem was the scheduling of a set of independent jobs with

sequence-dependent setups and distinct due dates on non-identical multi-machines to

minimize the total weighted earliness and tardiness. In relevant literature, most of the

researches on earliness and tardiness were conducted in a single machine setting.

However, multi machines exist in many real world situations, and the regular

performance measures, such as minimizing the total tardiness, number of tardy jobs,

maximum tardiness and flowtime, can not meet the needs of many practical

problems. The motivation behind this study is that although many researchers have

focused on the parallel machine problems, there is a lack of research on the multi-

machine scheduling problem with the non-regular performance measure of

minimizing the earliness and tardiness. Firstly, the original mixed integer

formulation of the problem was modified by adding one more constraint to the model

to prevent the assignment of two jobs at the same time to the first position. Then, an

interconnected neural network was developed to solve the problem. The proposed

network is composed of two maximum networks, three piecewise linear networks

and one log-sigmoid network all of which interact with each other.

139

The motivation for using maximum networks was to reduce the network

complexity by incorporating competitive mechanism into the network and to obtain a

simplified energy function. Additionally, the log-sigmoid network helps us to get rid

of some of the binary constraints. Convergence of the network was analyzed by

using the extension of the La Salle’s invariance principle developed for the systems

with discontinuous right hand sides. Again, in this application, a time varying penalty

coefficient methodology was proposed to be used during simulation experiments to

overcome the tradeoff problem encountered in using the penalty function approach.

The proposed approach was tested on a scheduling problem. An optimal solution

which may be promising for the applications of large size problems was obtained.

In general, we can say that the results obtained using the proposed neural network

models were acceptable in terms of solution quality. However, with the

implementation of parallel processing, full benefits of the neural network approach

can be explored and assessed. The main benefit one can expect from using the neural

networks in performing task optimization is the additional efficiency gained from

implementation of parallel neural processing. Parallel processing and parallel

computation has been well accepted as a legitimate and effective way for speed

improvement in solving many combinatorial optimization problems (Censor &

Zenios, 1997; Migdalas, Pardalos, & Story, 1997). However, a challenge with the

parallel approaches is that many tasks cannot be easily or possibly broken down into

a parallel structure so that the parallel processing can be performed. Because of the

neural network’s inherent parallel nature of processing units and network structure,

once a problem is formulated into a neural network model, it will be in a ready mode

to realize parallel processing. In other words, the neural network can be viewed as a

natural vehicle to convert a problem into a parallel format. For full exploration of the

neural network’s potential in optimization, we need to firstly formulate a problem

into a neural network model and then implement the neural network algorithms on a

multiple processor machine or on a parallel-computing platform. Although we can

find a quite number of studies that aim to implement parallel computation in using

neural networks (Salleh & Zomaya, 1999; Saratchandran, Dundararajan, & Foo,

1996), most reported works in the literature have fulfilled only the first half of the

140

process. Since the neural network computation in our experiments works also in

serial mode, the experimental results reported do not reflect the potential of the true

benefit of the neural network approach. With fast advance of high technology,

parallel processing facilities will become inevitably more popular and easy to access.

To this extent, we can expect a great improvement in computation time using the

neural network approach (Hao, Lai, & Tan, 2004).

8.2 Future Research Directions

The followings which are possible extensions of this study are suggested for

future research.

• One of the major shortcomings of the proposed networks was determination

of the parameters required for the simulation of the proposed networks, such

as the penalty parameters, the slope of the activation functions, the number of

iterations and the step sizes, by trial and error. This is a tedious process, and

the parameter values obtained might not be the optimal values for this study.

The methodology for obtaining appropriate parameters for the development

of a neural network that will yield more precise results should be considered

in a future study.

• There exists a great potential for application of neural networks in

conjunction with other optimization techniques. A number of different

techniques and metaheuristics can be combined with neural networks to

tackle the problems considered.

• Much work has to be done to compare the performance of neural network

models with the performance of other existing methods.

• Hopfield like dynamical networks were chosen to map our problems since

they facilitated easy mapping of the problem. Likewise, these networks can

be implemented in hardware for making them attractive alternatives to

classical heuristic approaches. It is obvious that if the proposed networks can

141

be implemented in hardware, there will be a tremendous reduction in

computational times.

• Dynamical gradient networks suffer from serious problems of getting stuck at

local minima, having high sensitivity to parametric changes and tradeoff

problem among these parameters. Several problems still exist although a

penalty function approach whose coefficients vary with time were used to

alleviate the tradeoff problem in this study. To overcome the local minima,

stochastic methods such as simulated annealing can be integrated with ANNs.

By introducing a probability for the acceptance of a new state, the network

occasionally accepts transitions to states with higher energy and thus can

escape from local minima. Replacing sigmoidal activation function with a

stochastic decision type activation function, adding noise to the weights of

the network or to the biases of the network are some of the main methods

used to embed stochasticity into the Hopfield network (Smith, 1999).

• One of the other issues for future research may be to introduce evolution to

adjust the topology and the parameters of ANNs automatically or to search

for the ways of developing automatic parameter controlling methods to

overcome the need of tuning the parameters by a trial and error.

• The performance of the proposed networks depends on the choice of the

initial states. Another area on which future research has to focus may be to

propose new neural network models that are less sensitive to the initial states.

• Other scheduling objectives, setup times, the mean flow times or the

weighted number of tardy jobs minimization, in parallel machine scheduling

can be studied. Especially for the first application, non-identical parallel

machine case is worthy of exploration.

• It may also be interesting to evaluate the proposed networks’ performance for

real time scheduling systems.

 142

REFERENCES

Aarts, E., & Korst, J. (1989). Simulated annealing and Boltzmann machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing.

Chichester: John Wiley & Sons.

Aarts, E., & Lenstra, J.K. (Eds.). (1997). Local Search in Combinatorial

Optimization. Chichester: John Wiley & Sons.

Abdul-Razaq, T., & Potts, C. (1988). Dynamic programming state-space relaxation

for single-machine scheduling. Journal of the Operational Research Society, 39,

141–152.

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job

shop scheduling. Management Science, 34 (3), 391- 401.

Agarwal, A., Pirkul, H., & Jacob, V.S. (2003). Augmented neural networks for task

scheduling. European Journal of Operational Research, 151 (3), 481-502.

Aggarwal, J.K., & Vidyasagar, M. (1977). Nonlinear systems: stability analysis,

Dowden, Hutchinson and Ross, Inc. Stroudsburg, Pennsylvannia.

Ahmed, I., Kwok, Y.-K., Ahmad, I., & Dhodhi, M. (2001). Scheduling parallel

programs using genetic algorithms. In A. Y. Zomaya, F. Ercal, and S. Olariu,

editors. Solutions to Parallel and Distributed Computing Problems, 231-254. New

York: John Wiley and Sons.

Aiyer, S.V.B., Niranjan, M. & Fallside, F. (1990). A theoretical investigation into the

performance of the Hopfield model. IEEE Transactions on Neural Networks, 1,

204–215.

 143

Akiyama, Y., Yamashita, A., Kajiura, M., & Aiso, H. (1989). Combinatorial

Optimization with Gaussian Machines. Proceedings IEEE International Joint

Conference on Neural Networks, 1, 533–540.

Akyol, D.E. (2004). Application of neural networks to heuristic scheduling

algorithms. Computers & Industrial Engineering, 46, 679-696.

Akyol, D.E., & Bayhan, G.M. (2005). A Coupled Gradient Network Approach for

the Multi Machine Earliness and Tardiness Scheduling Problem. In Gervasi, O.,

Gavrilova, M.L., Kumar, V., Lagana, A., Lee, H.P., Mun, Y., Taniar, D., & Tan

C.J.K. (Eds.). Lecture Notes in Computer Science, LNCS 3483 (596-605). Berlin:

Springer.

Akyol, D.E., & Bayhan, G.M. (2006). A Review on Evolution of Scheduling with

Neural Networks. Computers & Industrial Engineering. (under review)

Allahverdi, A., & Al-Anzi, F.S. (2005). A PSO and a Tabu search heuristics for the

assembly scheduling problem of the two-stage distributed database application.

Computers & Operations Research, 33 (4), 1056-1080.

Alvarez, A. (2002). A neural network with evolutionary neurons. Neural Processing

Letters, 16, 43–52.

Arizono, I., Yamamoto, A., & Ohta, H. (1992). Scheduling for minimizing total

actual flow time by neural networks. International Journal of Production

Research, 30 (3), 503-511.

Arkin, E., & Roundy, R.O. (1991). Weighted-tardiness scheduling on parallel

machines with proportional weights. Operations Research, 39, 64-81.

Artiba, A., & Elmaghraby, S.E. (1997). The Planning and Scheduling of Production

Systems: Methodologies and applications. London: Chapman & Hall.

 144

Arzi, Y., & Iaroslavitz, L. (1999). Neural network-based adaptive production control

system for a flexible manufacturing cell under a random environment. IIE

Transactions, 31, 217-230.

Askin, R., & Standridge, C. (1993). Modeling and analysis of manufacturing

systems. New York: John Wiley & Sons.

Bagchi, U., Sullivan, R.S., & Chang, Y.L. (1986). Minimizing mean absolute

deviation of completion times about a common due date. Naval Research

Logistics Quarterly, 33, 227–240.

Baker, K.R. (1974). Introduction to Sequencing and Scheduling. New York: Wiley.

Baker, K.R., & Scudder, G.D. (1990). Sequencing with earliness and tardiness

penalties: a review. Operations Research, 38, 22-36.

Balakrishan, N., Kanet, J.J., & Sridharan, S.V. (1999). Early/tardy scheduling with

sequence dependent setups on uniform parallel machines. Computers &

Operations Research, 26, 127-141.

Baxter, J. (1992). The evolution of learning algorithms for artificial neural networks.

Complex Systems. In D. Green, & T. Bossomaier. (Eds.). (313-326). IOS Press.

Belegundu, A.D., & Chandrupatla, T.R. (1999). Optimization Concepts and

Applications in Engineering. New Jersey: Prentice-Hall

Belew, R.K., & Booker L.B. (Eds.) (1991). Proceedings of the Fourth International

Conference on Genetic Algorithms. San Mateo, California: Morgan Kaufmann

Bellman, R. (1957). Dynamic Programming. Princeton, N.J.: Princeton University

Press.

 145

Ben-Daya, M., & Al-Fawzan, M. (1998). A tabu search approach for the flow shop

scheduling problem. European Journal of Operational Research, 109, 88-95.

Blackstone, J.H., Philips, D.T. & Hogg, G.L. (1982). The state of the art survey of

dispatching rules for manufacturing job shop operations. International Journal of

Production Research, 20 (1), 27-45.

Blazewicz, J., Dror, M., & Weglarz, J. (1991). Mathematical programming

formulations for machine scheduling: a survey. European Journal of Operational

Research, 51, 283–300.

Bornholdt, S., & Graudenz, D. (1992). General asymmetric neural networks and

structure design by genetic algorithms. Neural Networks, 5 (2), 327–334.

Brandt, R.D., Wang, Y., Laub, A.J., & Mitra, S.K. (1988). Alternative Networks for

Solving the Travelling Salesman Problem and the List-Matching Problem.

Proceedings of the International Conference on Neural Networks, 2, 333-340.

Brucker, P. (2003). Scheduling Algorithms. New York: Springer Verlag.

Cagnina, L., Esquivel, S., & Gallard, R. (2004). Particle swarm optimization for

sequencing problems: a case study. Proceedings of the Congress on Evolutionary

Computation, 1, 536–541.

Cakar T., & Cil, I. (2004). Artificial neural networks for design of manufacturing

systems and selection of priority rules. International Journal of Computer

Integrated Manufacturing, 17 (3), 195-211.

Cakir, Y. (2002). Dynamical Solvers for Linear and Quadratic Optimization. Ph.D.

Thesis, Istanbul Technical University.

 146

Carpenter, G. A., & Grossberg, S. (1987). ART: 2 self-organization of stable

category recognition codes for analog input patterns. Applied Optics, 26, 4919-

4930.

Censor, Y., & Zenios, S.A. (1997). Parallel Optimization: Theory, Algorithms and

Applications. New York: Oxford University Press.

Cha, Y., & Jung, M. (2003). Satisfaction assessment of multi-objective schedules

using neural fuzzy methodology. International Journal of Production Research,

41 (8), 1831-1849.

Chalmers, D.J., 1990. The evolution of learning: An experiment in genetic

connectionism. Proceedings of the 1990 Connectionist Summer School Workshop,

81–90.

Chen, B., Potts, C.N., & Woeginger, G.J. (1998). A review of machine scheduling:

complexity, algorithms and approximation. In D.-Z. Du, & P. M. Pardalos, (Eds.).

Handbook of Combinatorial Optimization (21-169). Dordrecht: Kluwer Academic

Publishers.

Chen, F.F., Huang, J., & Centeno, M.A. (1999). Intelligent scheduling and control of

rail-guided vehicles and load/unload operations in a flexible manufacturing

system. Journal of Intelligent Manufacturing, 10, 405-421.

Chen, M., & Y. Dong, Y. (1999). Applications of neural networks to solving SMT

scheduling problems-a case study. International Journal of Production Research,

37, 4007-4020.

Chen, R.M, & Huang, Y.M. (2001). Competitive neural network to solve scheduling

problems. Neurocomputing, 37, 177-196.

 147

Chen, R.M., & Huang, Y.M. (2001). Multiprocessor Task Assignment with Fuzzy

Hopfield Neural Network Clustering Technique. Neural Computing &

Applications, 10, 12-21.

Chen, W., & Muraki, M. (1997). An action strategy generation framework for an on-

line scheduling and control system in batch processes with neural networks.

International Journal of Production Research, 35 (12), 3483-3507.

Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop

scheduling problems using genetic algorithms: Part I. Representation. Computers

and Industrial Engineering, 30, 983-997.

Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of job-shop

scheduling problems using genetic algorithms: Part II. Hybrid Genetic Search.

Computers and Industrial Engineering, 36, 343-364.

Cheng, T., & Sin, C. (1990). A State-of-the-Art Review of Parallel-Machine

Scheduling Research. European Journal of Operation Research, 47, 271-292.

Cheung, J.Y. (1994). Scheduling. In C. Dagli, (Ed.). Artificial Neural Networks for

Intelligent Manufacturing (159-193). London: Chapman & Hall.

Cho, S.B., & Shimohara, K. (1998). Evolutionary Learning of Modular Neural

Networks with Genetic Programming. Applied Intelligence, 9, 191-200.

Chryssolouris, G., Lee, M., & Domroese, M. (1991). The use of neural networks in

determining operatioal policies for manufacturing systems. Journal of

Manufacturing Systems, 10 (2), 166-175.

Chung, P.C., Tsai, C.T., Chen, E.L., & Sun, Y.N. (1994). Polygonal approximation

using a competitive Hopfield neural network. Pattern Recognition, 27 (11), 1505–

1512.

 148

Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: a proposal for multiple

objective particle swarm optimization. Proceedings of the IEEE Congress on

Evolutionary Computation, 1051-1056.

Coffman, E.G., Garey, M.R., & Johnson, D.S. (1978). An application of bin-packing

to multi-processor scheduling. SIAM Journal of Computing, 7, 1-17.

Cortez, P., Rocha, M., & Neves, J. (2002). A Lamarckian approach for neural

network training. Neural Processing Letters, 15, 105-116.

Crosher, D. (1993). The artificial evolution of a generalized class of adaptive

processes. Proceedings of AI’93 Workshop on Evolutionary Computation, 18-36.

Dagli, C., & Sittisathanchai, S. (1993). Genetic neuro-scheduler for job shop

scheduling. Computers and Industrial Engineering, 25 (1-4), 267-270.

De, P., Ghosh, J.B, & Wells, C.E. (1994). Due dates and early/tardy scheduling on

identical parallel machines. Naval Research Logistics, 41, 17-32.

Deoser, C.A. (1970). Notes for a second course on linear systems. Berkeley: Van

Nostraund Reinhold Company.

Ding, F.Y., & Kittichartphayak, D. (1994). Heuristics for scheduling flexible flow

lines. Computers and Industrial Engineering, 26, 27-34.

Dogan, H. (2004). Gradient networks design for clustering in novel optimization

frameworks. Ph.D. Thesis, Dokuz Eylul University.

Dogan, H., & Guzelis, C. (2006) Robust and Fuzzy Spherical Clustering by a Penalty

Parameter Approach. IEEE Transactions on Circuits and Systems-II, 53(8), 637-

641.

 149

Eglese, R.W. (1990). Simulated annealing: A tool for operational research. European

Journal of Operational Research, 46, 271-281.

Eiselt, H.A., & Sandblom, C.-L. (2004). Decision Analysis, Location Models, and

Scheduling Problems. Berlin Heidelberg: Springer-Verlag.

El-Bouri, A., Balakrishnan, S., & Popplewell, N. (2000). Sequencing jobs on a single

machine: A neural network approach. European Journal of Operational Research,

126, 474-490.

El-Gallad, A. I., El-Hawary, M. E., & Sallam, A. A. (2001). Swarming of intelligent

particles for solving the nonlinear constrained optimization problem. Engineering

Intelligent Systems for Electrical Engineering and Communications, 9, 155-163.

Fang, J., & Xi, Y. (1997). Neural network design based on evolutionary

programming. Artificial intelligence in Engineering, 11, 155-161.

Fang, L., & Li, T. (1990). Design of competition based neural networks for

combinatorial optimization. International Journal of Neural Systems, 1(3), 221-

235.

Feng, S., Li, L., Cen, L., & Huang, J. (2003). Using MLP networks to design a

production scheduling system. Computers and Operations Research, 30, 821–832.

Fogel, D.B., Fogel, L.J., & Porto, V.W. (1990). Evolving neural networks. Biological

Cybernetics, 63 (6), 487-493.

Fogel, L.J., Owens, A.J., & Walsh, M.J. (1966). Artificial Intelligence Through

Simulated Evolution. New York: John Wiley & Sons.

 150

Fonseca, D.J., & Navaresse, D. (2002). Artificial neural networks for job shop

simulation. Advanced Engineering Informatics, 16, 241-246.

Fontanari J.F., & Meir, R. (1991). Evolving a learning algorithm for the binary

perceptron. Network: Computation in Neural Systems, 2 (4), 353–359.

Foo, S.Y., & Takefuji, Y., & Szu, H. (1995). Scaling properties of neural networks

for job-shop scheduling. Neurocomputing, 8, 79–91.

Foo, Y.P.S., & Takefuji, Y. (1988a). Stochastic neural networks for solving job-shop

scheduling: Part 1, problem presentation. Proceedings of Joint International

Conference on Neural Networks, 2, 275-282.

Foo, Y.P.S., & Takefuji, Y. (1988b). Stochastic neural networks for solving job-shop

scheduling: Part 2, architecture and simulations. Proceedings of Joint

International Conference on Neural Networks, 2, 283–290.

Foo, Y.P.S., & Takefuji,Y. (1988c). Integer linear programming neural networks for

job-shop scheduling. Proceedings of Joint International Conference on Neural

Networks, 2, 341–348.

Forrest, S. (Ed.) (1993). Proceedings of the Fifth International Conference on

Genetic Algorithms. California: Morgan Kaufmann Publishers.

Frangioni, A., Scutella, M.G., & Necciari, E. (1999). Multi-exchange algorithms for

the minimum makespan machine scheduling problem. Technical Report: TR-99-

22.

Friesen, D.K., & Langston, M.A. (1986). Evaluation of a MULTIFIT based

scheduling algorithm, J. Algorithm, 7, 35-59.

 151

Friesen, D.K. (1987). Tighter bounds for LPT scheduling on uniform processors.

SIAM J. Computing, 16, 554-560.

Fukushima, K. (1975). Cognitrion: A self-organizing multilayered neural network.

Biological Cybernetics, 20, 121-136.

Funabiki, N., Takenaka, Y., & Nishikawa, S. (1997). A maximum neural network

approach for N-queens problem. Biol. Cybern., 76, 251–255.

Galan-Marin, G., & Munoz-Perez, J. (2001). Design and Analysis of Maximum

Hopfield Networks. IEEE Transactions on Neural Networks, 12 (2), 329-339.

Galan-Marin, G., Merida-Casermeiro, E., & Munoz-Perez, J. (2003). Modelling

Competitive Hopfield Networks for the maximum clique problem. Computers &

Operations Research, 30, 603-624.

Gao, W. (2003). Study on new evolutionary neural network. Proceedings of the

Second International Conference on Machine Learning and Cybernetics, 1287-

1292.

Garey, M.R., & Johnson, D.S. (1979). Computer and intractability: a guide to the

theory of NP completeness. San Francisco: W.H Freeman.

Garey, M.R., Tarjan, R.E., & Wilfong, G.T. (1988). One-processor scheduling with

symmetric earliness and tardiness penalties. Mathematics of Operations Research,

13, 330-348.

Geneste, L., & Grabot, B. (1997). Implicit versus explicit knowledge representation

in a job shop scheduling decision support system. International Journal of Expert

Systems, 10 (1), 37-52.

 152

Glover F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13, 533-549.

Glover, F. (1989). Tabu Search-Part-I. ORSA J. Comput., 1, 190-206.

Glover, F. (1990). Tabu Search-Part-II. ORSA J. Comput., 2, 4-32.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. MA: Addison-Wesley.

Gomory, R.E.(1958). Outline of an algorithm for integer solutions to linear

programs. Bulletin of the American Mathematical Society, 64, 275-278.

Gomory, R.E. (1963). An algorithm for integer solutions to linear programs. In R. L.

Graves & P. Wolfe, (Eds.). Recent advances in Mathematical Programming (269-

302). New York: McGrawHill.

Graham, R.L. (1969). Bounds on multiprocessor timing anomalies. SIAM Journal of

Applied Mathematics, 17, 416-429.

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979).

Optimization and approximation in deterministic sequencing and scheduling: A

survey. Annals of Discrete Mathematics, 5, 287-326.

Greenwood, G.W. (1997). Training partially recurrent neural networks using

evolutionary strategies. IEEE Transactions on Speech & Audio Processing, 5 (2),

192–194.

Grossberg, S. (1972). Neural expectation: Cerebellar and retinal analogs of cells fired

by learnable or unlearned pattern classes. Kybernetik, 10, 49-57.

 153

Grossberg, S. (1976a). Adaptive pattern classification and universal recording: I.

Parallel development and coding of neural detectors. Biological Cybernetics, 23,

121-134.

Grossberg, S. (1976b). Adaptive pattern classification and universal recording: II.

Feedback, expectation, olfaction, illusions. Biological Cybernetics, 23, 187-202.

Hall, N.G. (1986). Single and multiple-processor models for minimizing completion

time variance. Naval Research Logistics Quarterly, 33, 49-54.

Hamad, A., Sanugi, B., & Salleh, S. (2003). A neural network model for the common

due date job scheduling on unrelated parallel machines. International Journal of

Computer Mathematics, 80 (7), 845-851.

Hao, G., Lai, K.K., & Tan, M. (2004). A Neural Network Application in Personnel

Scheduling. Annals of Operations Research, 128, 65-90.

Hax, A., & Candea, D. (1984). Production and Inventory Management. Englewood

Cliffs, NJ : Prentice Hall.

Haykin, S. (1994). Neural Networks: A comprehensive foundation. New Jersey:

Prentice-Hall.

Heady, R., Zhu, Z. (1998). Minimizing the Sum of Job Earliness and Tardiness in a

Multimachine System. International Journal of Production Research, 36, 1619-

1632.

Hedge, S., Sweet, J., & Levy, W. (1988). Determination of parameters in a

Hopfield/Tank computational network. Proceedings of the IEEE International

Conference on Neural Networks, 2, 291-298.

 154

Hinton, G.E., & Sejnowski, T.J. (1986). Learning and relearning in Boltzmann

machines. In: D.E. Rumelhart, & J.L. McClelland, Parallel Distributed

Processing: Explorations in Microstructure of Cognition. Cambridge: MIT Press.

Hirsch, M. W., & Smale, S. (1974). Differential equations, dynamical systems and

linear algebra. Academic Press.

Hochbaum, D.S., & Shmoys, D. B. (1987). Using dual approximation algorithms for

scheduling problems: Practical and theoretical results. Journal of the Association

for Computing Machinery, 34, 144-162.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Michigan: The

University of Michigan Press.

Holland, J.H. (1992). Adaptation in Natural and Artificial Systems. Cambridge: The

MIT Press.

Hong, Y.S., Lee, H., & Tahk, M.J. (2003). Acceleration of the convergence speed of

evolutionary algorithms using multi-layer neural networks. Engineering

Optimization, 35 (1), 91-102.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proceedings of National Academy of Sciences, 79, 2554-

2558.

Hopfield, J. (1984). Neurons with graded response have collective computational

properties like of two-state neurons. Proceedings of the National Academy of

Sciences of the USA, 81, 3088-3092.

Hopfield, J., & Tank, T.W. (1985). Neural computation of decisions in optimization

problems. Biological Cybernetics, 52, 141–152.

 155

Hou, E., Ansari, N., & Ren, H. (1994). A genetic algorithm for multiprocessor

scheduling. IEEE Transactions on Parallel and Distributed systems, 5 (2); 113-

120.

Hu, X., & Eberhart, R. C. (2002). Solving constrained nonlinear optimization

problems with particle swarm optimization. Proceedings of the Sixth World

Multiconference on Systemics, Cybernetics and Informatics, 203-206.

Huang, Y.M., & Chen, R.M. (1999). Scheduling multiprocessor job with resource

and timing constraints using neural networks. IEEE Transactions on Systems,

Man and Cybernetics-Part B: Cybernetics, 29 (4), 490-502.

Hübscher, R., & Glover, F. (1994). Applying Tabu Search with influential

diversification to multiprocessor scheduling. Computers and Operations

Research, 8, 877-884.

Iazewicz, J.B., Domschke, W., & Pesch, E. (1996). The job shop scheduling

problem: conventional and new solution techniques. European Journal of

Operational Research, 93, 1-33.

Igel, C., & Kreutz, M. (2003). Operator adaptation in evolutionary computation and

its application to structure optimization of neural networks. Neurocomputing, 55,

347-361.

Ilonen, J., Kamarainen, J.K., & Lampinen, J. (2003). Diffential Evolution Training

Algorithm for Feed-Forward Neural Networks. Neural Processing Letters, 17, 93-

105.

Islam, Md.M., Akita, H., Shahjahan, Md., & Murase, K. (2000). Representative

Evolution: A simple and efficient algorithm for artificial neural network

evolution. Proceedings of the International Joint Conference on Neural Networks,

585-590.

 156

Jain, A.S., & Meeran, S. (1998). Job shop scheduling using neural networks.

International Journal of Production Research, 36 (5), 1249-1272.

Jeng, M.D., & Chang, C.Y. (1997). Non-energy based neural networks for job shop

scheduling. Electronics Letters, 33 (5), 399-400.

Jong, K.A.D. (1975). An analysis of the behavior of a class genetic adaptive systems.

PhD thesis, Ann Arbor : University of Michigan.

Jozefowska, J., Milka, M., Rozycki, R., Waligora, G., & Weglarz, J. (1998). Local

search metaheuristics for discrete-continuous problems. European Journal of

Operational Research, 107, 354-370.

Jünger, M., Reinelt, G., & Thienel, S. (1995). Practical problem solving with cutting

plane algorithms in combinatorial optimization. Combinatorial Optimization:

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 111-

152.

Kaikhah, K., & Garlick, R. (2000). Variable hidden layer sizing in Elman recurrent

neuro-evolution. Applied Intelligence, 12, 193-205.

Kamgar-Parsi, B., & Kamgar-Parsi, B. (1992). Dynamical Stability and Parameter

Selection in Neural Optimization. Proceedings of International Joint Conference

on Neural Networks, 4, 566-571.

Kanet, J.J. (1981). Minimizing the Average Deviation of Job Completion Times

about a Common Due Date. Naval Research Logistics Quarterly, 28, 643-651.

Kenneddy, J., & Eberhart, R.C. (1995). Particle swarm optimization. Proceedings of

IEEE International Conference on Neural Networks, 4, 1942-1948.

 157

Kido, T., Takagi, K., & Nakanishi, M. (1994). Analysis and comparisons of genetic

algorithm, simulated annealing, tabu search and evolutionary combination

algorithm. Informatica, 18, 399-410.

Kim, C.O., Min, H.S., & Yih, Y. (1998). Integration of inductive learning and neural

networks for multi-objective FMS scheduling. International Journal of

Production Research, 36 (9), 2497-2509.

Kim, H.B., Jung, S.H., Kim, T.G., & Park, K.H. (1996). Fast learning method for

backpropagation neural network by evolutionary adaptation of learning rates.

Neurocomputing, 11 (1), 101-106.

Kim, S., Lee, Y.H., & Agnihotri, D. (1995). A hybrid approach to sequencing jobs

using heuristic rules and neural network. Production Planning and Control, 6,

445-454.

Kim. D., Ahn, S., & Kang, D.S. (2000). Co-adaptation of self-organizing maps by

evolution and learning. Neurocomputing, 30, 249-272.

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by Simulated

Annealing. Science, 220, 671-680.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43, 59-69.

Köppen, M., Teunis, M., & Nickolay, B. (1997). A neural network that uses

evolutionary learning. Proceedings of the 1997 IEEE Conference on Evolutionary

Computation, 635-639.

Koza, J.R., & Rice, J.P. (1991). Genetic generation of both weights and architecture

for a neural network. Proceedings of the International Joint Conference on Neural

Networks, 2, 397-404.

 158

Lai, W.K., & Coghill, G.G. (1992). Genetic Breeding of Control Parameters for the

Hopfield/Tank Neural Net. Proceedings of the International Joint Conference on

Neural Networks, 4, 618-623.

Lee, H.C., & Dagli, C.H. (1997). A parallel genetic neuro scheduler for job shop

scheduling problems. International Journal of Production Economics, 51, 115-

122.

Lee, I., & Shaw, M.J. (2000). A neural-net approach to real time flow-shop

sequencing. Computers and Industrial Engineering, 38, 125-147.

Lee, K.C., & Takefuji, Y. (1992). A generalized maximum neural network for the

module orientation problem. International Journal of Electronics, 72 (3), 331–

355.

Lee, K.C., Funabiki, N., & Takefuji, Y. (1992). A parallel improvement algorithm

for the bipartite subgraph problem. IEEE Trans. Neural Networks, 3, 139–145.

Lee, Y.H., Bhaskaran, K., & Pinedo, M. (1997). A heuristic to minimize the total

weighted tardiness with sequence dependent setups. IIE Transactions, 29, 45-52.

Leung, J.Y.-T. (1989). Bin packing with restricted piece sizes. Information

Processing Letters, 31(3), 145-149.

Li, D.C., Chen, L.S., & Lin, Y.S. (2003). Using Functional Virtual Population as

assistance to learn scheduling knowledge in dynamic manufacturing

environments. International Journal of Production Research, 41 (17), 4011-4024.

Li, D.C., Wu, C., & Torng, K.Y. (1997). Using an unsupervised neural network and

decision tree as knowledge acquisition tools for FMS scheduling. International

Journal of Systems Science, 28 (10), 977-985.

 159

Li, H., Li, Z., Li, L.X., & Hu, B. (2000). A production rescheduling expert

simulation system. European Journal of Operational Research, 124, 283-293.

Li, Z. (1996). Improving convergence and solution quality of Hopfield-type neural

networks with augmented Lagrange multipliers. IEEE Transactions on Neural

Networks, 7, 1507-1516.

Liansheng, G., Gang, S., Shuchun, W. (2000). Intelligent scheduling model and

algorithm for manufacturing. Production Planning and Control, 11, 234-243.

Liebowitz, J., Krishnamurthy, V., Rodens, I., Houston, C., Liebowitz, A., & Zeide, J.

(1997). Intelligent scheduling with GUESS: development and testing results.

Expert Systems, 14, 119-128.

Liebowitz, J., Rodens, I., Zeide, J., & Suen, C. (2000). Developing a neural network

approach for intelligent scheduling in GUESS. Expert Systems, 17 (4), 185-190.

Liu, Y., & Yao, X. (2001). Evolving neural networks for Hang Seng stock index

forecast. Proceedings of the 2001 IEEE Congress on Evolutionary Computation,

256-260.

Lo, Z.P., & Bavarian, B. (1993). Multiple job scheduling with artificial neural

Networks. Computers and Electrical Engineering, 19, 87-101.

Looi, C. (1992). Neural network methods in combinatorial optimization. Computers

and Operations Research, 19 (3/4), 818-823.

Lu, W.Z., Fan, H.Y., & Lo, S.M. (2003). Application of evolutionary neural network

method in predicting pollutant levels in downtown area of Hong Kong.

Neurocomputing, 51, 387-400.

 160

Luh, P. B., Zhao, X., & Wang, Y. (2000). Lagrangian Relaxation Neural Networks

for Job Shop Scheduling. IEEE Transactions on Robotics and Automation, 16, 78-

88.

Macleod, C., & Maxwell, G.M. (2001). Incremental Evolution in ANNs: Neural Nets

which Grow. Artificial Intelligence Review, 16, 201-224.

Madureira, A.M. (1999). Meta-heuristics for the Single-Machine Scheduling Total

Weighted Tardiness Problem. Proceedings of the IEEE International Symposium

on Assembly and Task Planning, 405-411.

Mandischer, M. (1995). Evolving recurrent neural networks with nonbinary

encoding. Proceedings of the International Conference on Evolutionary

Computation, 584-589.

Mandischer, M. (2002). A comparison of evolution strategies and backpropagation

for neural network training. Neurocomputing, 42, 87-117.

McCulloch, W.S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

McMullen, P.R. (2001). A Kohonen self organizing map approach to addressing a

multiple objective, mixed model JIT sequencing problem. International Journal

of Production Economics, 72, 59-71.

Merelo, J.J., Pat´on, M., Ca˜nas, A., Prieto, A., & Mor´an, F. (1993). Optimization of

a competitive learning neural network by genetic algorithms. Proceedings of the

International Workshop on Artificial Neural Networks, Lecture Notes in

Computer Science, 686, 185-192.

Migdalas, A., Pardalos, P.M., & Story, S. (Eds.). (1997). Parallel Computation in

Optimization. New York: Kluwer Academic.

 161

Min, H.S., & Yih, Y. (2003). Selection of dispatching rules on multiple dispatching

decision points in real-time scheduling of a semiconductor wafer fabrication

system. International Journal of Production Research, 41 (16), 3921-3941.

Min, H.S., Yih, Y., & Kim, C.O. (1998). A competitive neural network approach to

multi-objective FMS scheduling. International Journal of Production Research,

36 (7), 1749-1765.

Mokotoff, E. (2001). Paralel Machine Scheduling Problems: A Survey. Asia-Pacific

Journal of Operational Research, 18, 193-242.

Moriarty, D.E., & Miikkulainen, R. (1996). Efficient Reinforcement Learning

through Symbiotic Evolution. Machine learning, 22, 11-32.

Mostaghim, S., & Teich, J. R. (2003). Strategies for finding local guides in multi-

objective particle swarm optimization. Proceedings of the IEEE Swarm

Intelligence Symposium, 26-33.

Murtadi, A. M. (2001). Scheduling of jobs on parallel machines using genetic

algorithms. Ph.D. Dissertation, University of Windsor, Canada.

Mühlenbein, H., Schomisch, M., & Born, J. (1991). The parallel genetic algorithm as

function optimizer. Parallel Computing, 17, 619-632.

Nawaz, M., Enscore, E., & Ham, I. (1983). A heuristic algorithm for the n-job, m-

machine flowshop sequencing problem. Omega, 11, 91-95.

Nemhauser, G.L., & Wolsey, L.A. (1988). Integer and Combinatorial Optimization,

New York: Wiley.

 162

Osman, I.H. (2002). Preface, Focused issue on applied meta-heuristics. Computers

and Industrial Engineering, 205-207.

Osman, I.H., & Potts, C.N. (1989). Simulated annealing for permutation flow-shop

scheduling. Omega, 17, 551-557.

Ovacık, I., & Uzsoy, R. (1997). Decomposition Methods in Large Scale Job Shops.

Boston: Wiley and Sons.

Ow, P.S, & Morton, T.E. (1988). Filtered beam search in scheduling. International

Journal of Production Research, 26, 35–62.

Ow, P.S, & Morton, T.E. (1989). The single machine early/tardy problem.

Management Science, 35, 177–191.

Palmes, P.P., Hayasaka, T., & Usui, S. (2003). Evolution and Adaptation of Neural

Networks. Proceedings of the International Joint Conference on Neural

Networks, 1, 478-483.

Panwalkar, S.S., & Iskander, W. (1977). A Survey of Scheduling Rules. Operations

Research, 25 (1), 45-61.

Papadimitriou, C.H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms

and Complexity. New York: Dover Publications.

Pardalos, P. M., & Resende, M.G. (Eds.). (2002). Handbook of Applied

Optimization. Oxford University Press.

Park, Y., Kim, S., & Lee, Y.H. (2000). Scheduling jobs on parallel machines

applying neural network and heuristic rules. Computers and Industrial

Engineering, 38, 189-202.

 163

Parker, D.B. (1985). Learning logic: Casting the cortex of the human brain in

silicon. Technical Report, TR-47. Center for Computational Research in

Economics and Management Science, Cambridge, MA: MIT Press.

Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method

for constrained optimization problems. Proceedings of the Euro International

Symposium on Computational Intelligence. In P. Sincak, J. Vascak, V. Kvasnicka,

& J. Pospichal, (Eds.). Intelligent Technologies - Theory and Applications: New

Trends in Intelligent Technologies. (214-220). IOS Press.

Patel, D. (1996). Using genetic algorithms to construct a network for financial

prediction. Proceedings of SPIE: Applications of Artificial Neural Networks in

Image Processing, 204-213.

Peterson, C., & Anderson, J.R. (1987). A mean field theory learning algorithm for

neural networks. Complex Systems, 1, 995-1019.

Philipoom, P.R., Rees, L.R., & Wiegmann, L. (1994). Using neural networks to

determine internally-set due date assignments for shop scheduling. Decision

Sciences, 25 (5/6), 825-851.

Pinedo, M. (1995). Scheduling Theory, Algorithms, and Systems. New Jersey, USA:

Prentice Hall.

Pinedo, M., & Singer, M. (1997). A shifting bottleneck heuristic for minimizing the

total weighted tardiness in a job shop. Naval Research Logistics, 46, 1-17.

Pinto, J.M., & Grossmann, I.E. (1998). Assignment and Sequencing Models for the

Scheduling of Chemical Processes. Annals of Operations Research, 81, 433-466.

Porto, V.W., Fogel, D.B., & Fogel, L.J. (1995). Alternative neural network training

methods. IEEE Expert: Intelligent Systems and Their Applications, 10, 16-22.

 164

Potvin, J.Y., & Smith, K.A. (2003). Artificial Neural Networks for Combinatorial

Optimization. In: F. Glover, & G. Kochenberger, Handbook of Metaheuristics

(429-455). Boston: Kluwer Academic Publishers.

Priore, P., Fuente, D., Pino, R., & Puente, J. (2003). Dynamic scheduling of flexible

manufacturing systems using neural networks and inductive learning. Integrated

Manufacturing Systems, 14 (2), 160-168.

Pujol, J.C.F., & Poli, R. (1998). Evolving the topology and the weights of neural

networks using a dual representation. Applied Intelligence, 8, 73-84.

Raaymakers, W.H.M., & Weijters, A.J. M. M. (2003). Makespan estimation in batch

process industries: A comparison between regression analysis and neural

networks. European Journal of Operational Research, 145, 14-30.

Rabelo, L., & Alptekin, S. (1990). Adaptive scheduling and control using artificial

neural networks and expert systems for a hierarchical/distributed FMS

architecture. Proceedings of the Second International Conference on Computer

Integrated Manufacturing, 538-545.

Rabelo, L., Yih, Y., Jones, A., & Tsai, J.S. (1993). Intelligent scheduling for flexible

manufacturing systems. Proceedings of the IEEE International Conference on

Robotics and Automation, 810-815.

Rachavachari, M. (1988) Scheduling problems with non-regular penalty functions –

a review. Opsearch. 25, 144-164.

Radhakrishnan, S., & Ventura, J.A. (2000). Simulated annealing for parallel machine

scheduling with earliness-tardiness penalties and sequence dependent setup times.

International Journal of Operational Research, 8, 2233-2252.

 165

Ray, T., & Liew, K. M. (2002). A swarm metaphor for multiobjective design

optimization. Engineering Optimization, 34, 141-153.

Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing

research: a statistical review of the literature, 1995-1994. IEEE Transactions on

Engineering Management, 44 (3), 316-329.

Reklaitis, G.V. (1992). Overview of scheduling and planning of batch process

operations. Proceeding NATO advanced study institute on batch processing

systems engineering, 31, 660-705.

Rodammer, F.A., & White, K.P. (1988). A Recent Survey of Production Scheduling.

IEEE Transactions on Systems, Man and Cybernetics, 18 (6), 841-851.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning international

representations by error propogation. In: D.E. Rumelhart, & J.L. McClelland,

(Eds.). Parallel Distributed : Explorations in the Microstructure of Cognition.

Cambridge: MIT Press.

Sabuncuoglu, I., & Gurgun, B. (1996). A neural network model for scheduling

problems. European Journal of Operational Research, 93, 288-299.

Sabuncuoglu, I. (1998). Scheduling with neural networks: a review of the literature

and new research directions. Production Planning and Control, 9 (1), 2-12.

Sabuncuoglu, I., & Touhami, S. (2002). Simulation metamodelling with neural

networks: an experimental investigation. International Journal of Production

Research, 40 (11), 2483-2505.

Sahni, S.K. (1976). Algorithms for scheduling independent tasks. J. Assoc. Comput

mach., 23, 116-127.

 166

Salleh, S., & Zomaya, A.Y. (1999). Scheduling in Parallel Computing Systems-

Fuzzy and Annealing Techniques. Massachusetts: Kluwer Academic Publishers.

Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task

assignment problem. Microprocessors and Microsystems, 26, 363-371.

Saratchandran, P., Dundararajan, N., & Foo, S.K. (1996). Parallel Implementation of

Backpropagation Neural Networks on Transputers. World Scientific.

Satake, T., Morikawa K., & Nakamura, N. (1994). Neural network approach for

minimizing the makespan of the general job-shop. International Journal of

Production Economics, 33, 67-74.

Schaffer, J.D. (Ed.) (1989). Proceedings of the Third International Conference on

Genetic Algorithms. California: Morgan Kaufmann Publishers.

Schaffer, J.D., Whitley, D., & Eshelman, L.J. (1992). Combinations of genetic

algorithms and neural networks : a survey of the state of the art. Proceedings of

International Workshop on Combinations of Genetic Algorithms and Neural

Networks, 1-37.

Schmitz, G.P.J., & Aldrich, C. (1999). Combinatorial evolution of regression nodes

in feedforward neural networks. Neural Networks, 12, 175-189.

Schwefel, H.P. (1981). Numerical Optimization of Computer Models. Chichester:

John Wiley & Sons.

Schwefel, H.P. (1995). Evolution and Optimum Seeking. New York : John Wiley &

Sons.

Sellers, D.W. (1996). A survey of approaches to the job shop scheduling problems.

Proceedings of the 28th Southeastern Symposium on System Theory, 396-400.

 167

Sendhoff, B., & Kreutz, M. (1999). A model for the dynamic interaction between

evolution and learning. Neural Processing Letters, 10, 181-193.

Sengor, N.S., Cakir, Y., Guzelis, C., Pekergin, F., & Morgul, O. (1999). An analysis

of maximum clique formulations and saturated linear dynamical network. ARI, 51,

268-276.

Sethi, R. (1977). On the complexity of mean flow time scheduling. Mathematics of

Operations Research, 2, 320-330.

Sexton, R., Allidae, B., Dorsey, R., & Johnson, J. (1998). Global optimization for

artificial neural networks: A tabu search application. European Journal of

Operational Research, 106 (2-3), 570-584.

Shah, N. (1998). Single and multisite planning and scheduling: Current status and

future challenges. Foundations of Computer Aided Process Operations

Proceedings, 75-90.

Shiue, Y.R., & Su, C.T. (2002). Attribute selection for neural network based adaptive

scheduling systems in flexible manufacturing systems. International Journal of

Advanced Manufacturing Technology, 20, 532-544.

Shiue, Y.R., & Su, C.T. (2003). An enhanced knowledge representation for decision

tree based learning adaptive scheduling. International Journal of Computer

Integrated Manufacturing, 16 (1), 48-60.

Sidney, J.B. (1977). Optimal Single Machine Scheduling with Earliness and

Tardiness Penalties. Operations Research, 25(1), 62-69.

Sim, S.K., Yeo, K.T., & Lee, W.H. (1994). An expert neural network system for

dynamic job shop scheduling. International Journal of Production Research, 32

(8), 1759-1773.

 168

Sivrikaya-Serifoglu, F.,& Ulusoy, G. (1999). Parallel machine scheduling with

earliness and tardiness penalties. Computers & Operations Research, 26, 773-787.

Smith, K. (1999). Neural Networks for Combinatorial Optimization: A Review of

More Than a Decade of Research. Informs Journal on Computing, 11, 15-34.

Solimanpur, M., Vrat, P., & Shankar, R. (2004). A neuro-tabu search heuristic for the

flow shop scheduling problem. Computers and Operations Research, 31, 2151-

2164.

Sun, H., & Wang, G. (2003). Parallel machine earliness and tardiness scheduling

with proportional weights. Computers & Operations Research, 30, 801-808.

Sundararaghavan, P., & Ahmed, M.U. (1984). Minimizing the sum of absolute

lateness in single-machine and multimachine scheduling. Naval Research

Logistics Quarterly, 31, 25-33.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64, 278-285.

Takefuji, Y. (1992). Neural Network Parallel Computing. Boston, MA: Kluwer.

Takefuji, Y., Lee, K-C., & Aiso, H. (1992). An artificial maximum neural network: a

winner-take-all neuron model forcing the state of the system in a solution domain.

Biological Cybernetics, 67 (3), 243-251.

Tang, K.S., Chan, C.Y., Man, K.F., & Kwong, S. (1995). Genetic structure for NN

topology and weights optimization. Proceedings of the 1st IEE/IEEE

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, 250–255.

 169

Tasgetiren, M. F., Sevkli, M., Liang, Y. C., & Gencyilmaz, G. (2004). Particle

Swarm Optimization Algorithm for Single Machine Total Weighted Tardiness

Problem. Proceedings of the Congress on Evolutionary Computation, 2, 1412-

1419.

Theys, M.D., Braun, T.D., Siegal, H.J., Maciejewski, A.A., & Kwok, Y.-K. (2001).

Mapping Tasks onto Distributed Heterogeneous Computing Systems Using a

Genetic Algorithm Approach. New York: John Wiley and Sons.

Vaithyanathan, S., & Ignizio, J.P. (1992). A stochastic neural network for resource

constrained scheduling. Computers and Operations Research, 19 (3/4), 241-254.

Van Den Bout, D.E., & Miller, T.K. (1988). A Traveling Salesman Objective

Function that Works. Proceedings of IEEE International Conference on Neural

Networks, 2, 299-303.

Van Hulle, M.M. (1991). A goal programming network for mixed integer linear

programming: A case study for the job shop scheduling problem. International

Journal of Neural Systems, 2 (3), 201-209.

Van, Laarhoven, P.J.M., Aarts, E.H.L., & Lenstra, J.K. (1992). Job shop scheduling

by simulated annealing. Operations Research, 40, 113-125.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the

striate cortex. Kybernetik, 15, 85-100.

Wang, H., Jacob, V., & Roland, E. (2003). Design of efficient hybrid neural

networks for flexible flow shop scheduling. Expert Systems, 20 (4), 208- 231.

Wang, J. (1991). A Time-Varying Recurrent Neural System for Convex

Programming. Proceedings of IJCNN-91-Seattle International Joint Conference

on Neural Networks, 147-152.

 170

Wang, L. (1997). Discrete-Time Convergence Theory and Updating Rules for Neural

Networks with Energy Functions. IEEE Transactions on Neural Networks, 8 (2),

445-447.

Watta, P.B., & Hassoun, M.H. (1996). A Coupled Gradient Network Approach for

Static and Temporal Mixed-Integer Optimization. IEEE Transactions on Neural

Networks, 7, 578-593.

Werbos, P.J. (1974). Beyond regression: New tools for prediction and analysis in the

behavioral sciences. Ph.D. thesis, Cambridge, MA: Harvard University.

Wicker, D., Rizki, M.M., & Tamburino, L.A. (2002). E-Net: Evolutionary neural

network synthesis. Neurocomputing, 42, 171-196.

Willems, T. M., & Brandts, E.M.W. (1995). Implementing heuristics as an

optimization criterion in neural networks for job-shop scheduling. Journal of

Intelligent Manufacturing, 6, 377-387.

Willshaw, D.J., & von der Malsburg, C. (1976). How patterned neural connections

can be set up by self-organization. Proceedings of the Royal Society of London,

B194, 431-445.

Yang, S., & Wang, D. (2000). Constraint satisfaction adaptive neural network and

heuristics combined approaches for generalized job shop scheduling. IEEE

Transactions on Neural Networks, 11 (2), 474-486.

Yang, S., & Wang, D. (2001). A new adaptive neural network and heuristics hybrid

approach for job-shop scheduling. Computers and Operations Research, 28, 955-

971.

 171

Yang, Y., Kreipl, S., & Pinedo, M. (1997). Heuristics for minimizing the total

weighted tardiness in flexible flow shops. Technical Report. New York: Stern

School of Business, New York University.

Yao, S., Wei, C.J., & He, Z.Y. (1996). Evolving wavelet neural networks for

function approximation. Electronic Letters, 32 (4), 360–361.

Yao, X. (1991). Optimization by genetic annealing. Proceedings of Second

Australian Conference on Neural Networks, 94-97.

Yao, X. (1997). Global Optimization by evolutionary algorithms. Proceedings of the

IEEE, 282-291.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87,

1423-1445.

Yao, X., & Liu, Y. (1998). Towards designing artificial neural networks by

evolution. Applied Mathematics and Computation, 91, 83-90.

Yoshida, H., Kawata, K.., Fukuyama, Y., & Nakanishi, Y. (1999). A particle swarm

optimization for reactive power and voltage control considering voltage stability.

Proceedings of the International Conference on Intelligent System Application to

Power System, 117-121.

Yu, H., & Liang, W. (2001). Neural network and genetic algorithm-based hybrid

approach to expanded job-shop scheduling. Computers and Industrial

Engineering, 39, 337-356.

Zenter, M.G., & Pekny, J.F. (1994). Learning to solve process scheduling problems:

The role of rigorous knowledge acquisition frameworks. In D.W.T. Rippin, J.C.

Hale, & J.F.Davis, (Eds.). Foundations of Computer Aided Process Operations.

CACHE: Austin, TX, 275-309.

 172

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning international

representations by error propogation. In D.E. Rumelhart, & J.L. McClelland,

(Eds.). Parallel Distributed : Explorations in the Microstructure of Cognition.

Cambridge: MIT Press.

Zhou, D.N., Cherkassy, V., Baldwin, T.R., & Olson, D.E. (1991). A Neural Network

Approach to Job-Shop Scheduling. IEEE Transactions on Neural Networks, 2,

175-179.

Zhu, Z., Heady, R.B. (2000). Minimizing the sum of earliness/tardiness in multi-

machine scheduling: a mixed integer programming approach. Computers &

Industrial Engineering, 38, 297-305.

Zomaya, A.Y., Lee, R.C., & Olariu, S. (2001). An introduction to genetic based

scheduling in parallel processor systems. In A.Y. Zomaya, F. Ercal, & S. Olariu,

(Eds.). Solutions to Parallel and Distributed Computing Problems (231-254). New

York: John Wiley and Sons.

	tez kapaklarDERYASONSONNNNNN.doc
	CHAPTER1.doc
	CHAPTERTWO.doc
	CHAPTERTHREE.doc
	CHAPTERFOUR.pdf
	CHAPTERFIVE.pdf
	CHAPTERSIX.pdf
	CHAPTER SEVEN.pdf
	CHAPTEREIGHT.pdf
	REFERENCES.pdf

