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NEURAL NETWORK BASED OPTIMIZATION IN PRODUCTION 

SCHEDULING 

 

ABSTRACT 

 

Although a large number of approaches such as mathematical programming, 

dispatching rules, expert systems, and neighborhood search to the modeling and 

solution of scheduling problems have been reported in the literature, over the last 

decade, there has been an explosion of interest in using artificial neural networks 

(ANNs) for the solution of various scheduling problems.  

 

The objective of this research is to utilize ANNs to deal with two different 

scheduling problems. The first problem considered is the classical identical parallel 

machine scheduling problem with makespan minimization. A dynamical gradient 

type neural network, which employs a penalty function approach with time varying 

coefficients, is proposed for the solution of the problem. Simulation outcomes of the 

proposed approach are compared with those of the longest processing time (LPT) 

rule and with the optimal solutions, for different sizes of scheduling problems. The 

second problem is the scheduling of an independent jobs set with sequence-

dependent setups and distinct due dates on non-identical multi-machines to minimize 

the total weighted earliness and tardiness. The original mixed integer formulation of 

the problem is modified by adding one more constraint to the model to prevent the 

assignment of two jobs at the same time to the first position. For this problem, an 

interconnected neural network model which is composed of two maximum, three 

piecewise linear and one log-sigmoid neural networks all of which interact with each 

other is proposed. The proposed approach is tested on a scheduling problem and the 

results are compared with optimum results of the linear programming solver. 

 

Keywords: Scheduling, Artificial neural networks, Dynamical neural network, 

Mixed integer formulation 
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ÜRETİM ÇİZELGELEMESİNDE YAPAY SİNİR AĞLARINA DAYALI EN 

İYİLEME 

 

ÖZ 

 

Çizelgeleme problemlerinin çözümü ve modellenmesi için literatürde 

matematiksel programlama, sevk etme kuralları, uzman sistemler ve komşu arama 

yaklaşımları gibi çok sayıda yaklaşım rapor edilse de yapay sinir ağları son on yılda 

çizelgeleme problemlerinin çözümü için kullanılma konusunda yoğun ilgi görmüştür.  

 

Bu araştırmanın amacı, iki farklı çizelgeleme problemiyle uğraşmak için yapay 

sinir ağlarından yararlanmaktır. Dikkate alınan ilk problem maksimum tamamlanma 

süresini minimum yapma amacına sahip klasik özdeş makine çizelgeleme 

problemidir. Problemin çözümü için zamanla değişen katsayılara sahip ceza 

fonksiyonu yaklaşımı kullanan dinamik gradyan tip sinir ağı önerilmiştir. Önerilen 

yaklaşım kullanılarak farklı boyuttaki çizelgeleme problemleri için elde edilen 

benzetim sonuçları, en uzun işlem süresi kuralı sonuçları ve en iyi çözümler ile 

karşılaştırılmıştır. İkinci problem, ağırlıklandırılmış erken bitirme ve gecikme 

toplamını minimize etmek için özdeş olmayan makineler üzerinde sıra bağımlı 

hazırlık süreleri ve farklı teslim süreleri içeren bağımsız işler setinin 

çizelgelenmesidir. Problemin orijinal karışık tam sayı formülasyonu, ilk pozisyona 

aynı anda iki iş atanmasının önlenmesi için bir kısıt eklenerek değiştirilmiştir. Bu 

problem için birbirini etkileyen iki maksimum, 3 parçalı doğrusal, 1 tane log-sigmoid 

sinir ağından oluşan birbirine bağlı sinir ağı modeli önerilmiştir. Önerilen yaklaşım 

bir çizelgeleme probleminde test edilmiş ve sonuçlar doğrusal programlama 

çözümleyicisinin en iyi sonuçları ile karşılaştırılmıştır. 

 

Anahtar sözcükler: Çizelgeleme, Yapay sinir ağları, Dinamik sinir ağı, Karışık tam 

sayı formülasyonu 
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CHAPTER ONE 

INTRODUCTION 

 

 

In this chapter, the background, motivation and objectives of this work are stated, 

and the organization of this dissertation is outlined. 

 

1.1 Background and Motivation 

 

Scheduling is one of the most important functions in manufacturing firms. It is the 

allocation of available production resources to tasks over time to meet some set of 

performance criteria. Typically the scheduling problem involves a set of jobs to be 

completed, where each job comprises a set of operations to be performed (Rodammer 

& White, 1989). These problems may arise in many fields of human activities such 

as scheduling of machines in a workshop, activities of a project, classes at a 

university, deliveries by a number of vehicles, flights of a fleet of airplanes, 

applications in a computer system, and patients in an emergency room.  

 
The machine scheduling involves two kinds of decisions: sequencing (the order in 

which jobs are processed) and job-machine assignment. Machine scheduling 

problems are grouped into several classes, and parallel machine scheduling is one of 

these classes. In this thesis we will deal with this type of scheduling problem.  

 

In the classical parallel machine scheduling problem, there are n jobs and m 

machines. Each job needs to be executed on one of the machines during a fixed 

processing time. Therefore, the aim is to find the schedule that optimizes a certain 

performance measure. Many real life problems can be modeled as parallel machine 

scheduling problems. Because, it is common to find more than one machine on 

production lines each kind carrying out the production tasks (Mokotoff, 2001).  

 

It is known that the scheduling problem which belongs to a class of combinatorial 

optimization  problems  (COPs) is  NP-hard.  In  the last  decades, different  solution 
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methods such as mathematical programming, dispatching rules, expert systems, 

neighborhood search, and artificial neural networks (ANNs) have been proposed for 

modeling and solution of scheduling problems. After the success of Hopfield & Tank 

(1985), despite a vast amount of work existing in the literature, to find an efficient 

method for obtaining optimal solutions in polynomial time motivated the researchers 

to apply neural networks to scheduling problems and to compare their performance 

with other techniques’. The motivation behind the Hopfield & Tank neural network 

model was to take advantage of the great speed associated with the massively 

parallel computing capabilities of neural networks for fast solution of combinatorial 

optimization problems. Here, the motivation behind this research is to test the 

success of ANNs in solving parallel machine scheduling problems and to conclude 

about their performance. To the best of our knowledge, there are no previously 

published works tried to solve these NP-hard problems using neural networks.  

 

1.2 Research Objective 

 

 In this thesis, we deal with two problems known to be NP hard. The first one is 

the identical parallel machine scheduling problem with makespan minimization. For 

the solution of this problem, we employ a dynamical gradient network. After the 

appropriate energy function is constructed by using a penalty function approach, the 

dynamics are defined by steepest gradient descent on the energy function. In this 

approach, the integral constraints on the decision variables are relaxed during 

computation and linear activation function is used to represent the continuous 

variable in the model. In order to overcome the tradeoff problem encountered in 

using the penalty function approach, a time varying penalty coefficient methodology 

is proposed to be used during simulation experiments. We analyze the impact that the 

initial conditions of the network have on the performance on 5 different data sets by 

running each data set 20 times for different sizes of jobs and machines.  

 

The second one is the problem of scheduling a set of independent jobs with 

sequence-dependent setups and distinct due dates on non-identical multi-machines to 

minimize the total weighted earliness and tardiness. The original mixed integer 
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formulation of the problem given by Zhu & Heady (2000) is modified by adding one 

more constraint to the model to prevent the assignment of two jobs at the same time 

to the first position. An interconnected neural network is developed to solve the 

problem. The proposed network is composed of two maximum neural networks, 

three piecewise linear networks and one log-sigmoid network all of which interact 

with each other. Since the model includes too many constraints to represent the 

problem, the energy function obtained by the penalty function approach incorporates 

many penalty terms corresponding to each constraint of the problem. Due to the 

tradeoff problem among the penalty terms, it becomes very difficult to find the 

values of the penalty parameters that result a feasible and a good solution. Some of 

the penalty terms are tried to be eliminated by the proposed network. Therefore, log-

sigmoid and maximum networks are used to drop some of the penalty terms from the 

energy function. By this way, it is aimed to reduce the network complexity and to 

obtain a simplified energy function. Some of the binary constraints are satisfied 

using log-sigmoid networks, some binary constraints and assignment constraints are 

satisfied using maximum networks. A time varying penalty coefficient methodology 

is also proposed to be used during simulation experiments to overcome the tradeoff 

problem encountered in using the penalty function approach, and the proposed 

approach is tested on a parallel machine scheduling problem.  

 

The objectives of this thesis are listed below. 

 

• To present a detailed evolutionary path of ANNs in production scheduling, 

review the current research literature, classify the approaches according to 

their architectures and to discuss several future research directions. 

 
• To present a literature review on identical parallel machine scheduling and 

earliness and tardiness scheduling models. 

 

• To propose and evaluate dynamical gradient type neural network models for 

solving two parallel machine scheduling problems namely the identical 

parallel machine scheduling with makespan minimization, and the scheduling 
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a set of independent jobs with sequence-dependent setups and distinct due 

dates on non-identical multi-machines to minimize the total weighted 

earliness and tardiness. 

 
• To propose a penalty determination method in which the penalty parameters 

vary with time, to overcome the tradeoff problem, the biggest drawback of 

the penalty function approach used to construct the energy function of the 

proposed gradient networks.  

 
• To investigate the methods of reducing the complexity of the proposed 

gradient network which is originally described by an energy function 

including many penalty parameters. 

 
• To provide the experiment results comparing the proposed neural network 

method with dispatching rules and/or with the optimum solutions obtained by 

a linear programming solver. 

 
1.3 Organization of the Thesis 

 
The organization of this dissertation is as follows.  

 
Chapter 2 is an introduction to production scheduling. Some definitions and 

concepts in scheduling theory are provided along with an overview of solution 

approaches used for solving scheduling problems. 

 
In Chapter 3, we consider a general continuous time dynamical system defined by 

state equations and present the conditions for the global existence and uniqueness of 

solutions. The definitions of equilibrium point, stable equilibrium point, asymptotic 

stable equilibrium point are given followed by the explanation of stability analysis of 

an equilibrium. La Salle’s invariance theorem which defines the conditions for 

convergence of the solution are given and gradient based systems including Hopfield 

networks are also described in this chapter.  
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Chapter 4 presents an extensive review of the different neural network 

implementations in solving the scheduling problems. A general overview of how 

neural networks are used in solving scheduling problems and what makes them 

appropriate tools for solving scheduling problems are given. Adopting a 

chronological approach, the approaches are classified under three main categories: 

(1) classical neural network approaches, (2) hybrid approaches, and (3) evolutionary 

neural network approaches. The advantages, disadvantages and suitability of 

approaches in each category for solving scheduling problems are discussed and 

possible future research directions are given. 

 
In Chapter 5, the problem of minimizing the maximum completion time 

(makespan) of jobs on identical parallel machines is introduced and the relevant 

literature review is given. The proposed dynamical gradient network is explained and 

the convergence of the network is proved. The simulation results are given for 

different sizes of problems on different data sets.  

 
In Chapter 6, the problem of scheduling a set of independent jobs including 

sequence dependent setup times, on non-identical multiple machines to minimize the 

total weighted earliness and tardiness is studied and the relevant studies in the 

literature are reviewed. The proposed interconnected network is presented and the 

convergence of the network is discussed by extending La Salle’s invariance theorem 

to systems with discontinuous right-hand sides. The proposed approach is illustrated 

through the case of 8 jobs to be processed on 3 machines in a JIT manufacturing 

environment. 

 

In Chapter 7, in-depth discussion and analysis of our results is given. 

 

Chapter 8 contains the concluding remarks of this research and identifies future 

research directions. 

 



  

CHAPTER TWO 

OPTIMIZATION IN PRODUCTION SCHEDULING 

 

 

In this chapter, we give an introduction to the area of scheduling, present some 

terminology and concepts of scheduling theory with an overview of the optimization 

techniques and heuristics used in solving scheduling problems. 

 

2.1 Basic Concepts and Performance Criteria 

  

Scheduling is concerned with the allocation of limited resources to perform a 

collection of given tasks. The resources may be machines in a workshop, runways at 

an airport, crews at a construction site, and processing units in a computing 

environment. The tasks may be operations in a production process, take-offs and 

landings at an airport, stages in a construction project, execution of computer 

programs (Pinedo, 1995). In general, these tasks have to be accomplished with the 

goal of minimizing or maximizing an objective. Each task may have different 

priorities, different due dates and different arrival times, and the objectives may take 

many forms such as the minimization of the total time required to complete the 

processing of all jobs, minimization of the total tardiness, etc.   

 

Generating a production schedule involves selecting a sequence of operations that 

will result in the completion of a job, designating the resources needed to execute 

each operation in the routing and assigning the times at which each operation in the 

routing will start and finish execution (Rodammer & White, 1988). It is a decision-

making process and exists in most manufacturing and production systems as well as 

in most information-processing environments. It also exists in transportation and 

distribution settings and in other types of service industries (Pinedo, 1995). Extensive 

reviews on scheduling can be found in (Rodammer & White, 1988; Reklaitis, 1992; 

Zenter & Pekny, 1994). In a recent paper, Shah (1998) and Chen, Potts, & 

Woeginger (1998) also provided a detailed review on the current status of single and 

multisite scheduling and planning problems. 
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 The importance of scheduling comes from its wide applicability in manufacturing 

as well as in services. It is concerned as one of the important application areas of 

optimization (Pardalos & Resende, 2002). The general scheduling problem includes 

a set of n jobs or tasks J={J1, J2, ..., Jn} and a set of m machines or processors 

M={M1, M2,…,Mm} and is usually characterized by the machine environment, the 

objective function, the processing restrictions, and the constraints. Usually, the three 

field notation α|β|γ of Graham, Lawler, Lenstra, & Rinnooy Kan (1979) is used to 

describe scheduling problems where α denotes the machine environment, β specifies 

the job characteristics and γ corresponds to the performance measures used (Pardalos 

& Resende, 2002). The two general rules that must be followed in scheduling theory 

(Eiselt & Sandblom, 2004) are as follows: 

 

• Each job is to be processed by at most one machine at a time. 

• Each machine is capable of processing at most one task at a time. 

 

The processing of the jobs may be subject to several types of restrictions and 

constraints. For example, while preemption of jobs may be possible in some 

environments, some may not involve preemptions. A schedule is non-preemptive if 

each job runs uninterrupted on one machine from start to finish. In a preemptive 

schedule, a job may be interrupted or may switch other machines at any time. There 

may also be routing constraints that specify the route each job has to follow through 

the shop (Pardalos & Resende, 2002).  

 

In general, scheduling problems can be grouped into three main classes according 

to machine environments. 

 

• Single machine scheduling problems, 

• Parallel machine scheduling problems, 

• Shop scheduling problems 

      -Flow shop scheduling problems 

      -Job shop scheduling problems 

            -Open shop scheduling problems. 

 



 8
 

In single machine scheduling models, as its name implies, there is only one 

machine and the routes consist of only one operation performed on this machine 

(Artiba & Elmaghraby, 1997). The parallel machine scheduling problem is an 

important generalization of the single machine problem which can be a subproblem 

in many complex multi-machine problems (Hax & Candea, 1984). In parallel 

machine environments, each task can be processed by any machine. There are several 

machines which are distinguished depending on their speeds. If all the machines have 

equal speeds, in other words if they are able to process the tasks with processing 

times independent of the machines, they are called identical machines. Therefore, 

processing of job i on any machine j takes the same time, i.e. pij ≡ pi.  In the case of 

uniform machines, the machines differ in their speeds but the speed of each machine 

is constant and does not depend on the task it processes. In this case, the processing 

times of a job on each machine may differ by speed factors, i.e. pij = pi/sj, where sj 

reflects the speed of machine j, and pi is called the standard processing time of job i 

(usually on the slowest machine). If the processing time of job i varies between 

machines in an arbitrary fashion, they are called unrelated machines.  For a detailed 

literature review on parallel machine scheduling problems, one can refer to (Cheng & 

Sin, 1990; Mokotoff, 2001).   

 

In scheduling models, each job is characterized by some parameters that are given 

below. 

 

- Processing time (pij): It is the amount of time required by job i on machine j to 

complete its processing.  

 

-Arrival time or ready time or release date (rj): This is the time at which job j is 

available for processing. 

 

-Due date (di): It is the time at which job i should be completed.  

 

-A weight or priority (wi): The weight of a job designates its importance relative 

to other jobs present in the system. It is used to express the priority of job i.  
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For any given schedule, the following primary output measures which are used to 

determine other output measures can be calculated for each job i. 

 

Completion time Ci: It is the time by which job i completes its processing.  

 

Flowtime Fi: It is the amount of time job i spends in the system between its arrival 

and its completion. 

Fi=Ci-ri 

 

Lateness Li: Lateness is expressed as the amount of time by which the completion of 

job i exceeds its due date. 

Li=Ci-di  

 

Tardiness Ti: Tardiness can be calculated with respect to the lateness. The tardiness is 

equal to the lateness of job i if lateness is positive, and the tardiness is equal to zero if 

the lateness of job i is not positive. 

 Ti =max{Ci-di, 0}= max{Li, 0}. 

 

Earliness Ei: Earliness is the negative of the lateness of job i if the lateness is 

negative, and the earliness is zero if the lateness is positive. 

Ei=max{0, -Li}. 

 

To evaluate any schedule, the following performance measures which are also 

known as objective functions or performance criteria are used. They are generated 

from the primary output measures. 

 

Makespan Cmax: It refers to the time it takes to complete all n jobs, that is the overall 

completion time, Cmax= max (C1,…, Cn). 

Mean flow time ∑
=

=
n

j
jF

n
F

1

1  

Weighted flow time  ∑
=

=
n

j
jjw FwF

1
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Mean weighted flow time 
∑

∑
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== n

j
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n
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Maximum flowtime Fmax = maxj{Fj} 

 

Weighted lateness Lw  
1
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j

w L
=
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Maximum lateness Lmax =maxj{Lj} 

 

Weighted tardiness  ∑
=
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n
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Maximum tardiness Tmax = maxj{Tj} 

 

Mean tardiness ∑
=

=
n
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Mean weighted tardiness 
∑

∑

=

== n

j
j

n

j
jj

w

w

Tw
T

1

1  

Weighted number of tardy jobs   )(
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j

n

j
jw TwN δ∑

=

=

 where δ(Tj)=1 if Tj>0, and 0 otherwise.  

 

Total weighted earliness and tardiness  )(
1
∑
=

+=
n

j
jTjEw TwEwET

jj

 

2.2 Optimization and Scheduling  

 

Optimization is the process of maximizing or minimizing a desired objective 

function while satisfying the prevailing constraints (Belegundu & Chandrupatla, 
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1999), and optimization problems in which the possible solutions form a finite set are 

called combinatorial optimization problems. In other words, they are a general class 

of optimization problems restricted to a finite and discrete solution space. 

Combinatorial optimization problems in scheduling are the efficient allocation of 

limited resources to meet desired objectives when the values of some or all of the 

variables are restricted to be integer. Constraints on basic resources such as labor, 

supplies or capital, restrict the possible alternatives that are considered to be feasible.  

 

Scheduling problems form an important class of combinatorial optimization 

problems. They execute a given set of jobs by utilizing several machines and other 

resources subject to certain constraints such as priority and deadline constraints. 

They are generally NP-hard, that is, it is probably impossible to secure optimal 

solutions using fast algorithms (i.e. algorithms that run in polynomial time in the size 

of the problem), though some problems, such as the single machine scheduling with 

flow time minimization problem, are easy in the sense that they are solvable to 

optimality by fast algorithms. 

 

The amount of computational requirement for most combinatorial optimization 

problems in scheduling is the factorial of the problem size. Hence, complete 

enumeration to reach the optimal solution is not always possible as the number of 

possible solutions increases as the factorial of the problem size (Cheung, 1994). 

Therefore, in general, an approximation schema is constructed for the whole problem 

without any guarantee of optimality. Besides exact methods that solve problems to 

optimality, several methods and techniques such as constructive methods and local 

search methods may be used to build an approximation schema. 

 

2.3 Solution Approaches 

 

2.3.1 Classical Methods  

 

Classical methods use an appropriate mathematical description of the scheduling 

problem. They do not try to investigate all of the possible feasible solutions, which 
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would be practically impossible, and they reduce the search space and the CPU time 

required to obtain a solution, while satisfying the constraints.  

 

2.3.1.1 Mathematical Programming  

 

In mathematical programming, scheduling decisions are modeled using integer 

and continuous variables, and the scheduling problem is represented as an 

optimization problem in which a mathematical function has to be minimized or 

maximized subject to some linear and non-linear algebraic constraints. If the 

objective function is linear and the constraints are a combination of linear equalities 

or inequalities, the problem is called a linear programming problem. In a linear 

programming problem, the decision variables involved in the problem are also 

nonnegative (i.e., positive or zero). The simplex method developed by George 

Dantzig in 1947 is an iterative procedure for generating and examining different 

extreme points of a linear program, each one improving the current value of the 

objective function until an optimum is found. If some of the variables in a linear 

programming model are required to have integer values, this model is referred to as 

mixed integer programming (MIP) and if all the variables are integers, it is called a 

pure integer programming problem. The word integer programming (IP) often has 

reference to both pure integer and mixed integer programming problems. Although 

IP provides a lot of flexibility in formulating scheduling problems, integer variables 

make an optimization problem non-convex, and consequently far more difficult to 

solve.  Memory and solution time may rise exponentially as more integer variables 

are added.  Even with highly sophisticated algorithms and modern supercomputers, 

there are models of just a few hundred integer variables that have never been solved 

to optimality. One can refer to Nemhauser & Wolsey (1988) for more information 

about integer and combinatorial optimization. A recent detailed review on integer 

modeling techniques for scheduling has been presented by Blazewicz, Dror, & 

Weglarz (1991) and Pinto & Grossmann (1998). 

 

The classical approach for solving IP problems is a branch-and bound algorithm. 

Branch-and-Bound is a methodology developed for solving many types of 

 

http://www.solver.com/probconvex.htm
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combinatorial optimization problems. The actual implementation of a branch-and-

bound algorithm is typically viewed as a tree search where the problem at the root 

node of the tree is the original IP. It is based on the idea of enumerating all feasible 

solutions and consists of two procedures; branching and bounding. By branching, the 

problem is iteratively partitioned into subproblems of the original IP and is 

represented by a node in its corresponding branch and bound tree. In the bounding 

procedure, a lower bound is calculated on the optimal solution of a given subproblem 

to shorten the enumeration process. Each subproblem can be partitioned in a similar 

manner. When the lower bound given in the node is greater than or equal to the best 

feasible solution, the node and its subproblems are not explored further and its 

branch is said to be fathomed. In this procedure, certain schedules or classes of 

schedules are discarded by showing that the values of the objective obtained with 

schedules from this class are larger than a provable lower bound which is greater 

than or equal to the value of the objective of a schedule obtained earlier (Pinedo, 

1995). When a better feasible solution is obtained, it becomes the current best 

feasible solution. If a node has not been eliminated, and its subproblems have not 

been generated, it is called active node, and the branch-and-bound algorithm stops 

when no active nodes remain.  

 

Cutting plane algorithms are also known among other methods for solving IP 

problems. These algorithms were first proposed by Gomory (1958, 1963), and in 

recent years have been proven to be computationally useful especially when 

combined with a branch and bound algorithm in a branch and cut framework. These 

methods work by solving a sequence of linear programming relaxations of the 

integer programming problem. The relaxations are gradually improved to give better 

approximations to the IP problem, at least in the neighborhood of the optimal 

solution. For hard instances that can not be solved to optimality, cutting plane 

algorithms can produce approximations to the optimal solution in moderate 

computation times. A survey of applications of cutting plane methods can be found 

in Jünger, Reinelt, & Thienel (1995). 
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2.3.1.2 Dynamic Programming 

 

Dynamic programming introduced by Bellman (1957) is a mathematical technique 

used for solving small and medium sized problems that are pseudo-polynomially 

solvable. It is an enumeration method that uses a divide and conquer approach, and 

finds optimal solutions to subproblems. Then, according to the principle of 

optimality, it solves the problem recursively. Since it performs an intelligent 

enumeration of all feasible points, it resembles the branch-and bound method.  

 

2.3.2 Constructive Heuristics 

 

Instead of trying to improve an initial solution using moves in a given 

neighborhood, the constructive procedures build a schedule from scratch by inserting 

unscheduled operations into a partial schedule until the schedule is complete. 

 

2.3.2.1 Dispatching Rules  

 

In the scheduling literature, terms such as scheduling rule, dispatching rule or 

priority rule are often used synonymously. A dispatching rule prioritizes all the jobs 

that are waiting for processing on a machine. In other words, a dispatching rule is 

used to determine the next job waiting in front of a machine when the machine 

becomes available. The prioritization scheme may take into account the jobs’ 

attributes, the machines’ attributes as well as the current time. Whenever a machine 

has been freed, a dispatching rule selects among the jobs waiting, the job with the 

highest priority. For several decades, many different rules have been developed and 

studied in the literature for different scheduling objectives. Some of the dispatching 

rules commonly used in scheduling are as follows: 

 

First in First Out (FIFO) rule: With this rule, the job with the earliest release date is 

chosen first for processing. It minimizes the maximum flowtime and the variation in 

the waiting times of the jobs at a machine. 
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Shortest Processing Time (SPT) rule: Using this rule, the job with the shortest 

processing time is chosen fist for processing. This rule provides an optimal schedule 

for the mean flow time criterion.  

 

Longest Processing Time (LPT) rule: This rule arranges jobs in descending order of 

processing times, such that p1≥p2≥…≥pn and assigns the first m jobs to the m 

machines at time t = 0. After that, whenever a machine becomes available, the largest 

unscheduled job is loaded on the machine. This rule tends to minimize makespan in 

parallel machine scheduling environments. 

 

The earliest due date (EDD) rule: Whenever a machine is freed, the job with the 

earliest due date is selected to be processed next. It tends to minimize the maximum 

lateness among the jobs waiting for processing.  

 

The minimum slack (MS) rule: Whenever a machine is freed at time t, the remaining 

slack of each job at that time, defined as max (dj-pj-t,0) is found and the job with the 

minimum slack is scheduled next. This rule tends to minimize due date based 

objectives. 

 

The weighted shortest processing time first (WSPT) rule: According to this rule, the 

jobs are ordered in decreasing order of wj / pj. It tends to minimize the weighted sum 

of the completion times expressed as . ∑
=

n

j
jjCw

1

 

The main advantage of dispatching rules is that they are easy to understand, easy 

to apply, and require relatively little computer time. Their primary disadvantage is 

that they can’t guarantee an optimal solution. Panwalkar & Iskander (1977) and 

Blackstone, Philips, & Hogg (1982) provide a good survey on dispatching rules.  
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2.3.2.2 Shifting Bottleneck Heuristic 

 

Shifting Bottleneck Heuristic is a decomposition method which was first proposed 

by Adams, Balas, & Zawack (1988) and designed for the minimization of the 

makespan in a job shop. Using this method, the job shop problem is decomposed into 

single machine subproblems and the machines are scheduled iteratively one after 

another. In each iteration, the next machine to be included is the one causing the 

largest maximal lateness known to be the bottleneck machine and the schedule is 

fixed for the current bottleneck machine. This method also involves a reoptimization 

process, that is each time a new machine is scheduled, each of the machines 

previously scheduled is considered again as an unscheduled machine by deleting the 

disjunctive arcs that had been fixed before. The corresponding subproblem is 

reformulated by recomputing the data necessary and the machine is then rescheduled 

using the same branch-and bound algorithm.  

 

Applications of shifting bottleneck heuristic for problems with other objectives, 

Lmax, ∑
=

n

j
jjTw

1
,can be found in Ovacik & Uzsoy (1997), Pinedo & Singer (1997), 

and Yang, Kreipl, & Pinedo (1997). 

 

2.3.3 Local Search Based Heuristics 

 

Local search is one of the basic methods used to find approximate solutions for 

hard combinatorial optimization problems, known to be NP-hard. Since computing 

exact optimal solutions is considered to be computationally intractable for some 

combinatorial optimization problems, approximate (or heuristic) algorithms are 

developed. One of the important tools is the local search that starts from an initial 

solution x and repeatedly replaces it with a better solution in its neighborhood N(x) 

until no better solution is found in N(x); where N(x) is a set of solutions obtainable 

from x by slight perturbations. Local search methods do not guarantee an optimal 

solution and usually attempt to find a better schedule than the current one in the 

neighborhood of the current one (Pardalos & Resende, 2002).  
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Local search consists in moving from a solution to another one in the 

neighborhood according to some definite rules. The sequence of solutions can be 

called a trajectory in the solution space.  They depend heavily on initial solutions and 

the neighbourhood generation mechanisms (Madureira, 1999). 

 

Some of the principal local search based strategies are Tabu Search, Simulated 

Annealing, Genetic Algorithms and Neural Networks.  

 

2.3.3.1 Simulated Annealing 

 

Simulated annealing proposed by Kirkpatrick, Gelatt, & Vecchi (1983) belongs to 

a class of local search algorithms that are known as threshold algorithms. The idea of 

simulated annealing stems from the physical annealing process. Annealing is a 

physical process in which a solid is heated up to a maximum value at which all 

particles of the solid randomly arrange themselves in the liquid phase, followed by a 

process of cooling the solid slowly, until the solid reaches a stable state. It is a 

stochastic approach that tries to find a good solution to an optimization problem by 

trying random variations of the current solution. A worse solution is accepted as the 

new solution with a probability that decreases as the computation proceeds. In other 

words, not only downhill moves but uphill moves are also accepted probabilistically. 

The slower the cooling schedule, the more likely the algorithm is to find an optimal 

or near optimal solution. (Artiba & Elmaghraby, 1997). 

 

Simulated annealing has received considerable attention in the last years and has 

been applied to solve a variety of problems including scheduling (Osman & Potts, 

1989; Van Laarhoven, Aarts, & Lenstra, 1992; Radhakrishnan & Ventura 2000; 

Eglese, 1990). 

 

2.3.3.2 Tabu Search 

 

Tabu Search is a local search method guided by the use of adaptive memory 

structures. It was first presented in its present form by Glover (1989, 1990) as a 
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deterministic alternative to simulated annealing and has been successfully applied to 

a variety of combinatorial optimization problems including scheduling. The basic 

idea of the method is to explore the solution space by a sequence of moves made 

from one solution to another better one, and it is possible to leave local optima by 

accepting a degradation of the criterion value but without using previous visited 

solutions which are stored in a list of forbidden or ‘tabu’ solutions (Artiba & 

Elmaghraby, 1997). By this way, the cycling is prevented and search diversification 

is encouraged ((Pardalos & Resende, 2002). The tabu list is dynamically updated 

during the execution of the algorithm and the solutions defined by the tabu list are 

not acceptable in the next iterations. However, a solution on the tabu list may be 

accepted if its quality is in some sense good enough, in which case it is said to attain 

a certain aspiration level (Aarts & Lenstra, 1997). 

 

2.3.3.3 Genetic Algorithms 

 

Genetic algorithms (GAs) introduced by John Holland (1975) are known as search 

algorithms, which explore a solution space and try to mimic the natural evolution 

process. Works in the area of GAs were summarized in Schaffer, Whitley, & 

Eshelman (1992), Goldberg (1989), Schaffer (1989), Belew & Booker (1991) and 

Forrest (1993). They proved to be very useful in many applications such as 

mathematics, robotics, physics, and in many optimization problems including 

scheduling. One can refer to Cheng, Gen, & Tsujimura (1996) and Cheng et al. 

(1999) for a detailed survey on GA applications in job shop scheduling which is one 

of the main scheduling fields GAs are applied to. Other examples of GA applications 

can be found in Ahmed, Kwok, Ahmad, & Dhodhi (2001), Hou, Ansari, & Ren 

(1994), Theys, Braun, Siegal, Maciejewski, & Kwok (2001) and Zomaya, Lee, & 

Olariu (2001).  

 

GA starts with the creation of an initial population of possible solutions to the 

problem called individuals or chromosomes, and the genes within the chromosomes 

determine the individual features of the child. Each chromosome is associated with a 

fitness value, which represents the probability of a chromosome being selected to be 
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a parent. From the individual population, a new population is generated using one of 

the specific operators such as reproduction, crossover or mutation. By the 

reproduction operator, the solutions in the old population are copied to the next 

population with a probability depending on the fitness of the solution which 

corresponds to the value of the objective function for that solution. Using the 

crossover operator, new solutions are generated from pairs of individuals, and by 

mutation one or more of the genes in a chromosome are altered in a random way 

which helps the GA to explore a new, perhaps a better feasible region than the 

previously considered. The process is repeated until some stopping rule is satisfied 

and the individual with the most favorable fitness is the solution to the problem.     

 

2.3.3.4 Neural Networks 

 

   ANNs were originally designed for simulating the brain behaviour. They have 

emerged as efficient approaches in a variety of engineering applications where 

problems are difficult to formulate or hardly defined. They are computational 

structures that implement simplified models of biological processes, and are 

preferred for their robustness, massive parallelism and ability to learn. In 

metaheuristics literature, neural networks are put into local-search based 

metaheuristics category. The reason is their iterative master process characteristic, 

that is, they guide and modify the operations of subordinate heuristics to efficiently 

produce high quality solutions, and provide decision makers with fast and robust 

tools for obtaining high quality solutions in reasonable computation times to many 

real life problems.  

 

From a modeling viewpoint, they are mathematical representations of biological 

nervous systems that can carry out complex cognitive and computational tasks. They 

are composed of many nonlinear interconnected processing elements that are 

analogous to neurons, and connected via weights that are analogous to synapses. The 

modern age of neurocomputing started with the work of McCulloch & Pitts (1943) in 

which the first mathematical model of a single biological neuron was presented. 

Although McCulloch and Pitts’ study showed that simple type of neural networks 
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were able to learn arithmetic or logical functions, ANN algorithms have been 

successful enough for many applications in the mid 1980s (Potvin & Smith, 2003). 

The field attracted the attention of many researchers from different disciplines such 

as engineering, physics, mathematics, computer science and medicine. In recent 

years, ANNs have become popular in various real world applications including 

prediction and forecasting, function approximation, clustering, speech recognition 

and synthesis, pattern recognition and classification, and many others. Applications 

of ANNs to manufacturing scheduling (for detailed survey see Sabuncuoglu, 1998) 

are in accordance with using ANNs as a highly parallel model for general-purpose 

computing and then applying them for different combinatorial optimization problems 

(for detailed survey see Looi, 1992; Smith, 1999).  

 

In the literature, although a large number of approaches such as mathematical 

programming, dispatching rules, expert systems, and neighborhood search to the 

modeling and solution of scheduling problems have been reported, over the last 

decades, there has been an explosion of interest in using ANNs. Certainly, as the 

ANNs evolve, solutions of scheduling problems will make progress.  In this thesis, 

Hopfield type dynamical gradient networks are used to solve the problems under 

consideration. While details of the dynamical neural networks usage in solving 

optimization problems will be given in the following chapter, a comprehensive 

review on the applications of ANNs in scheduling will be given in Chapter 4. 

 



 

CHAPTER THREE 

DYNAMICAL SYSTEMS FOR COMBINATORIAL OPTIMIZATION 

 

 

In this thesis, dynamical gradient based neural networks are proposed for solving 

the problems under consideration and gradient systems are constructed utilizing the 

concepts developed for stability analysis of dynamical systems. In this chapter, 

qualitative analysis of dynamical systems followed by the explanation of dynamical 

systems for optimization including gradient networks and Hopfield networks is given 

parallel to the studies of Desoer (1970), Hirch & Smale (1974), Aggarwal & 

Vidyasagar (1977), Chua & Wang (1978), Hopfield (1982), Hopfield (1984), 

Hopfield & Tank (1985), Cakir (2002) and Dogan (2004).  

 

3.1 Qualitative Analysis of Dynamical Systems 

 

Suppose that a dynamical system is given as follows. 

 

nn RRRfxtxttxftx →×== :(.,.),)(),),(()( 00

.
          (3.1) 

The following theorem explains the existence and uniqueness of a global solution 

of (3.1). 

 

Theorem 3.1 (Desoer, 1970) suppose the following conditions hold. 

i)  contains at most a finite number of points per unit interval, +⊂ RS

ii) For each x Є Rn, f(x,.) is continuous at t S∉  

iii) For each ti , f(x,.) has a finite left-hand and right hand limits at t=tS∈ i 

iv) f(.,t) :  satisfies a global Lipschitz condition. That is, there exists a 

piecewise continuous function k(.):  such that 

nn RR →
++ → RR

2121 )(),(),( xxtktxftxf −≤−  for all t Є R+ and for all points x1, x2 Є Rn. 

 

Then, for each x0 Є Rn and t0 Є R+, there exists unique continuous solution 

 satisfying that state equation and the initial condition:nRRxt →+:),(.; 00φ
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(a)  )),,,((),,( 0000

.
txttfxtt φφ =

(b)  for all t0000

.
),,( xxtt =φ 0 Є R+ and t S∉  

 

3.1.1 Liapunov’s First Method for the Stability of an Equilibrium Point 

 

Liapunov stability is concerned with the behavior of solution when its initial state 

is near the equilibrium. After sufficiently long time, if the solution remains near the 

equilibrium point then we can say that the equilibrium is stable.  

 

For the system given in (3.1) with t Є [t0,∞ ] formulation of Liapunov stability 

analysis of an equilibrium point is given as follows 

 

Definition 3.1 Equilibrium Point  

 

A solution ),;( 0 exttφ is called an equilibrium point if it is constant for all times 

and satisfies the state equations: 

i) ],[),;( 00 ∞∈∀= ttxxtt eeφ  

ii)  0)),,;((),;( 00 == txttfxtt ee φφ&

 

Definition 3.2 Stability of an equilibrium point (Aggarwal and Vidyasagar, 1977)  

 

An equilibrium state xe of a dynamical system given by (3.1) is stable in the sense 

of Liapunov if for every real number ε > 0 there exists a real number δ(ε, t0) > 0 such 

that δ≤− exx0  implies εφ ≤− exxtt ),;( 00  for all t ≥ t0 where ),;( 00 xttφ is a 

solution at time t.  

 

If the solutions initiated near the equilibrium point converge to the equilibrium, 

we call this equilibrium as asymptotically stable. 
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Definition 3.3 Asymptotic stability of an equilibrium 

 

An equilibrium state xe of a dynamical system given in (3.1) is asymptotically 

stable if it is stable and every solution starting in a sufficiently small neighborhood of 

xe converges to xe as . ∞→t

 

3.1.2 La Salle’s Invariance Theorem: Global Stability and Convergence 

 

In some systems, local stability of an equilibrium may not be enough. No matter 

how large the perturbation is, it is desired that the system returns to its unique 

equilibrium state. This property is called as global asymptotic stability. The 

definitions of global asymptotic stability and convergence will be given below. 

 

Definition 3.4 Convergency 

 

A system with x є R),( txfx =& n is called convergent if any trajectory, namely 

solution ),;( 00 xttφ ends at one of the equilibria depending on the initial state x0.  

According to the definition, convergent systems don’t possess oscillatory or other 

exotic dynamics but possess constant steady state behavior only.  

 

Definition 3.5 Global Asymptotic Stability 

 

An equilibrium point xe of a system ),( txfx =&  x є Rn is called globally 

asymptotically stable if the system is convergent and the equilibrium point is unique.  

The theorem of La Salle given below states that under certain conditions any solution 

tends to an invariant set which might consist of a unique equilibrium point, a set of 

equilibria, periodic solutions or other complicated solutions. It should be mentioned 

that La Salle’s invariance theorem works with nonincreasing Lyapunov functions for 

deciding asymptotic stability of an equilibrium point. Hence, it constitutes a useful 

extension of Liapunov asymptotic stability result valid only for strictly decreasing 

Lyapunov functions (Dogan, 2004). 
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Theorem 3.2 La Salle’s invariance (Aggarwal and Vidyasagar, 1977)  

 

Consider a system with f(.) Є C)(xfx =& 1. If there exists a continuously 

differentiable Lyapunov function V (.):  such that  1RR n →

i) the set })({ rxVRx n
r ≤∈=Ω is bounded for some r > 0, 

ii) V(.) is bounded below over such a set rΩ , and  

iii) , then any solution x(t,xrXV Ω∈∀≤ 0& 0,0), starting from x0=x(0)  tends to 

the largest invariant set contained in S: = 

rΩ∈

rr xVx Ω⊂=Ω∈ }0)({ & . 

 

The largest invariant set expressed in Theorem 3.2 consists of equilibrium points 

if the conditions of Theorem 3.3 are satisfied. 

 

Theorem 3.3 (Chua & Wang, 1978)  

The autonomous system )(xfx =& with f(.) Є C1 is convergent, namely the invariant 

set which the trajectories tend to is made up of the equilibrium points if 

i) the solutions of the system are bounded, 

ii) there exists a continuously differentiable Liapunov function V(.) such that 

 along trajectories. Furthermore, V vanishes at equilibrium points 

only.  

nRXV ∈∀≤ 0& &

 

3.2 Dynamical Systems for Optimization 

 

An optimization problem can be solved by using an analog network as a 

dynamical solver whose equilibrium points correspond to the solutions of the 

optimization problem. Although most of the combinatorial problems are 

computationally intractable, an appropriate dynamical system may be used to find a 

satisfactory solution in reasonable time. One of the methods used in designing 

dynamical solvers is the construction of a set of differential equations such that their 

equilibrium points correspond to the desired solutions, and then finding an 

appropriate Liapunov function such that all trajectories of the system converge to 

equilibrium points. Commonly used approach in designing dynamical solvers is 
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based on gradient systems that use steepest descent method as a basis. In these 

methods, the minimization problem is transformed into an associated system of first 

order differential equations as follows.  

)()(
.

xExx ∇= μ        (3.2) 

where, E(x) is the cost function of the unconstrained optimization problem. 

Dynamical system obtained for )(
.

xEx −∇= Ix =)(μ is called a gradient system 

(Cakir, 2002). 

 

3.2.1 Gradient Based Systems 

 

A gradient system on an open set U ⊂  Rn is a dynamical system of the form 

)(
.

xVx −∇=                 (3.3) 

where V(.):  is usually a CRU → 2 function. These systems are convergent if 

their solutions are bounded. To prove this, Theorem 3.3 can be considered, and then 

the derivative  of V along the trajectories of the system given by (3.3) can 

be written as below. 

RUV →:
.

 

0][][)(][)()(
.

≤∇∇−=∇=
∂

∂
= VV

dt
xdV

dt
dx

x
xVxV TT          (3.4) 

 

It is known that for an unconstrained optimization problem, if x* is a local 

minimum point of f(.), then 0*)( =∇ xf , together with this information, it can be 

concluded that any equilibrium point of (3.3) is an extremum point of the function V 

(.).  This fact together with the convergence implies that any trajectory of (3.3) ends 

at one of the extrema of V (.).   

 

Theorem 3.4 (Hirch & Smale, 1974) Let x* be a strict local minimum of V (.). Then 

x* is an asymptotically stable equilibrium of the gradient system given in (3.3). 
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Corollary 3.2:  

x* is an equilibrium point of (3.3) if x* is an extremum of V(.). 

 

Proof: Necessary conditions for x* to be an extremum of V (.) is  0*)( =∇ xV

So, x* is an equilibrium point of (3.3) 

If it is possible to formulate the cost function such that its minima coincides with 

the stable equilibrium points of a convergent dynamical system, the dynamical 

system will solve the optimization problem since its steady state solutions will be the 

minimum points of optimization problem. 

 

3.2.2 Hopfield Networks 

 

One of the well-known dynamic systems used for optimization problems are 

Hopfield networks. The original Hopfield NNs introduced by Hopfield (1982) 

consist of a fully connected network of neurons capable of performing computational 

tasks. Using binary state neurons and a stochastic algorithm to update the neurons, 

this network served as a content addressable memory that allows for the recall of 

data based on the degree of similarity between the input pattern and the patterns 

stored in the memory. This model is known as the discrete and stochastic Hopfield 

model. In this non-layered recurrent network, the connection weights are assumed to 

be fixed and symmetric (wij = wji), and they store information about the stable states 

of the network. In the case of an excitatory connection, the weights will take positive 

values; they will be negative in the case of an inhibitory connection or they will be 

zero in the case of no interaction. Each neuron i is described by an internal and an 

external state. The internal state (net input value) of each neuron is represented by ui, 

while the external state (output value) by vi. In this model, the internal states are 

continuous and the external states are binary. The input of each neuron comes from 

two sources, external inputs Ii and inputs from other connected neurons. The 

relationship between the internal and external states of the neurons is represented by 

the following McCulloch and Pitts dynamics rule. 
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The internal state of a neuron is found by taking the weighted sum of the external 

states of all connecting neurons with a constant external input to that neuron. In Eq. 

(3.5), t is a discrete time, wij is the synaptic interconnection strength from neuron j to 

i, f is the activation function between ui and vi and can take several forms. It can be 

the unit step function as defined by the Eq. (3.6).   

 

The states of the neurons are updated in a random manner.  The objective function 

and the problem constraints are mapped onto a quadratic function that represents the 

energy of the system of neurons. 
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Hopfield has proved that with symmetrical weight matrix and non-negative 

elements on the diagonal of the weight matrix w, the energy function, by performing 

gradient descent, minimizes until convergence to stable states, which represent the 

local minimum values of the energy function.   

 

After the original discrete stochastic model based on McCulloch-Pitts neurons 

was introduced, in a later work, Hopfield (1984) proposed a deterministic model 

based on continuous neurons. The idea was inspired by the fact that the neurons of 

the original model were different than the real biological neurons and from the 

realistic functioning of electronic circuits. So, by maintaining the important 

properties such as content-addressable memory of the original model, a new model is 

constructed. The continuous Hopfield model given in Hopfield (1984) is represented 

by the following resistance-capacitance differential equation to model the 
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capacitance and resistance of a real neuron’s cell membrane. In this model, the 

dynamics of each neuron i may be defined as below. 

 

i
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dt
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                      (3.8) 
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RC=τ                 (3.10) 

 

where t is a continuous time, f is a continuous sigmoidal transfer function that 

determines the relationship between the internal state of a neuron and its output level, 

R is the trans-membrane resistance, C is the input capacitance, T is a parameter to 

control the slope of the transfer function and τ is the value of time constant of the 

amplifiers. In this model, the external states are ranged between 0 and 1, and are 

continuous.  

 

3.2.2.1 Stability and Convergence 

 

The energy function for this continuous model has the following form. 
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Provided that the inverse of fi exists, it is a Liapunov function and always 

converges to a stable state. If the weight matrix is symmetric, 
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is the time derivative of E. 

)(1
ii vf − is a monotonically increasing function and Ci is positive, therefore 

0≤
dt
dE . 

0=
dt
dE  implies 0=

dt
dvi  i∀ , and boundedness of the energy (E) proves that E 

decreases and converges to a minimum where it stays.  

 

When the slope (gain) of the activation function is very high (T is near zero), the 

integral term vanishes and we will have the same energy function as in the discrete 

model. In other words, the stable points of the very high gain, continuous, 

deterministic model will correspond to the stable points of the original stochastic 

model.  

 

The idea of using ANNs to provide solutions to NP-hard optimization problems 

was pioneered by Hopfield & Tank (1985) with the use of their network for solving 

the Traveling Salesman Problem (TSP). In their paper, Hopfield & Tank (1985) 

showed that if an optimization problem can be represented by an energy function, 

then a Hopfield network that corresponds to this energy function can be used to 

minimize this function and thus provides an optimal or near-optimal solution. Since 

then, because of the advantages of using Hopfield networks, extensive research has 

been carried out on the application of the Hopfield networks for solving different 

optimization problems. Massive parallelism and convenient hardware 

implementation of the network architecture are among the most important 

advantages of Hopfield networks.    
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In this network, objective function and the problem constraints are encoded in 

terms of an appropriate energy function. The aim is to obtain a configuration 

minimizing the energy function. Translation of the optimization problem into an 

appropriate energy function is in general, a difficult task. It must be in a quadratic 

form to meet the form of the energy function of the Hopfield network. Applying the 

most common method, penalty function approach, the energy function of the network 

is set equivalent to the objective function of the problem, and the problem is reduced 

to an unconstrained form by including the constraints of the problem in the energy 

function as penalty terms. By this way, the constraint violations are penalized. The 

next step is to compare the energy function of the problem with the energy function 

given by equation (3.7) to derive the weights and external inputs. Then, by random 

initialization of the network and updating the neurons, the stable states will be 

obtained.  

 

However, Hopfield NNs have some shortcomings. They do not guarantee the 

feasibility. By performing gradient descent on the energy function, the Hopfield 

model gets easily trapped in local minimum states, and this causes decreasing 

efficiency especially in large sized problems. Its performance is very sensitive to the 

initial configuration of the network. Determining the penalty coefficients requires a 

tedious trial and error process. It requires a large number of iterations to converge to 

a solution. 

 

In this thesis, we apply Hopfield like neural networks to solve the scheduling 

problems addressed in this research. The following chapter presents a comprehensive 

review about neural network applications in production scheduling. The studied 

problems and the proposed dynamical networks are explained in Chapters 5 and 6 in 

detail.  
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CHAPTER FOUR 

NEURAL NETWORK APPLICATIONS IN PRODUCTION SCHEDULING 

 

 

Since the introduction of the first formalized model of a neuron in 1943 by 

McCulloch and Pitts, there has been a great progress of neurobiology. This progress 

allowed researchers to build mathematical models of neurons to simulate neural 

behavior. ANNs can be defined as networks of elementary nodes called artificial 

neurons or processing elements that are interconnected by direct links called 

connections and the neurons cooperate to perform parallel distributed processing to 

solve a desired computational task. Applications of ANNs to production scheduling 

(for detailed survey see Sabuncuoglu, 1998; Akyol & Bayhan, 2006) are in 

accordance with using them as a highly parallel model for general-purpose 

computing and then applying for different combinatorial optimization problems (for 

detailed survey see Looi, 1992; Smith, 1999). The purpose of this chapter is to give a 

comprehensive survey of recent research on ANN applications in production 

scheduling, and to identify some future research directions. We review the 

scheduling studies with ANNs beginning from the Hopfield network method usage 

to the probable practices of neural networks evolved with recent developments in 

evolutionary algorithms.  

 

4.1 ANNs in Scheduling 

 

Artificial Neural Networks (ANNs) can be put into local search based 

metaheuristics category which includes simulated annealing, noisy methods, guided 

local search methods, iterated local search, tabu search, threshold accepting, and 

variable neighborhood search (Osman, 2002). From a modeling viewpoint, they are 

mathematical representations of biological nervous systems that can carry out 

complex cognitive and computational tasks. They are composed of many nonlinear 

interconnected processing elements that are analogous to neurons, and connected via 

weights that are analogous to synapses. 
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The modern age of neurocomputing started with the work of McCulloch & Pitts 

(1943) in which the first mathematical model of a single biological neuron was 

presented. Although McCulloch and Pitts’ study showed that simple type of neural 

networks were able to learn arithmetic or logical functions, ANN algorithms have 

been successful enough for many applications in the mid 1980s (Potvin & Smith, 

2003). The field attracted the attention of many researchers from different disciplines 

such as engineering, physics, mathematics, computer science and medicine. In recent 

years, ANNs have become popular in various real world applications including 

prediction and forecasting, function approximation, clustering, speech recognition 

and synthesis, pattern recognition and classification, and many others. 

     

In the scheduling literature, ANNs have attracted much attention because of their 

characteristics listed below. 

 

•    ANNs capture the complex relationship between the input and output variables 

that are difficult or impossible to analytically relate after they are exposed to 

examples of the relationship, that is, after they learned. After they learned the 

unknown correlation between the input and output data, they can generalize to 

predict or classify for cases they were not exposed to. 

   

•    In some cases of designing manufacturing systems, ANNs are preferred to time 

consuming simulation approaches. 

 

•    As a schedule retrieval system, ANNs such as backpropagation networks 

(BPNs) produce a schedule for a given set of input parameters but unlike the 

Hopfield networks; they do not generally perform optimization.  

 

•    BPNs are also used to select scheduling rules or a manufacturing strategy to 

achieve accurate estimations of parameters such as the values of the look ahead 

parameters of scheduling rules. They are used to estimate the system performance 

measures such as mean utilization, mean job tardiness, mean flow time, etc.    
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•    In static scheduling environments, it is possible to obtain the optimal or near 

optimal schedules by mathematical modeling, dynamic programming, branch and 

bound or other advanced methods. But, since real manufacturing environments are 

dynamic, flexible scheduling methods are needed to react any change in the system 

that varies with time. So, in dynamic scheduling environments, ANNs are employed 

to reduce the need for rescheduling. 

 

•    While optimizing networks such as Hopfield network and its extensions are 

involved directly in the optimization by mapping the scheduling objective functions 

to be optimized and constraints of the problems on to these networks, competitive 

networks can detect regularities and correlations in input vectors and adapt future 

responses accordingly (Min, Yih, & Kim, 1998). 

     

In recent years, besides their advantages of parallelism, learning, generalization 

capability, nonlinearity, and robustness, several limitations of ANNs such as 

settlement into local minima, trial and error parameter determination process, long 

learning time are perceived. To compensate their disadvantages, hybrid systems in 

which ANNs are combined with traditional heuristics or metaheuristics and/or 

evolutionary algorithms or different approaches, and evolutionary ANNs have been 

proposed in ANN literature.  

      

4.2 Scheduling with Stand Alone Neural Networks  

   

4.2.1 Hopfield Network and Its Extensions 

 

The original Hopfield NNs, which consist of a fully connected network of neurons 

capable of performing computational tasks were introduced by Hopfield (1982). 

Using binary state neurons and a stochastic algorithm to update the neurons, this 

network served as a content addressable memory that allows for the recall of data 

based on the degree of similarity between the input pattern and the patterns stored in 

the memory. This model is known as the discrete and stochastic Hopfield model.  
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In a later work, Hopfield (1984) proposed a deterministic model based on 

continuous neurons.  The idea was inspired by the fact that the neurons of the 

original model were different than the real biological neurons and from the realistic 

functioning of electronic circuits. So by maintaining the important properties such as 

content-addressable memory of the original model, a new model is constructed.  

 

The idea of using ANNs to provide solutions to NP-hard optimization problems 

was pioneered by Hopfield & Tank (1985) with the use of their network for solving 

the Traveling Salesman Problem (TSP). In their paper, Hopfield & Tank showed that 

if an optimization problem can be represented by an energy function, then a Hopfield 

network that corresponds to this energy function can be used to minimize this 

function and thus provides an optimal or near-optimal solution. Since then, because 

of the advantages of using Hopfield networks, extensive research has been carried 

out on the application of the Hopfield networks for solving different optimization 

problems. Massive parallelism and convenient hardware implementation of the 

network architecture are among the most important advantages of Hopfield 

networks.    

 

In this network, objective function and the problem constraints are encoded in 

terms of an appropriate energy function. The aim is to obtain a configuration 

minimizing the energy function. Translation of the optimization problem into an 

appropriate energy function is in general, a difficult task. It must be in a quadratic 

form to meet the form of the energy function of the Hopfield network. Applying the 

most common method, penalty function approach, the energy function of the network 

is set equivalent to the objective function of the problem, and the problem is reduced 

to an unconstrained form by including the constraints of the problem in the energy 

function as penalty terms. By this way, the constraint violations are penalized. The 

next step is to compare the energy function of the problem with the energy function 

of the Hopfield network to derive the weights and external inputs. Then, by random 

initialization of the network and updating the neurons, the stable states will be 

obtained.  
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The success in applying neural networks to the TSP motivated many scheduling 

researchers to employ Hopfield networks. Foo & Takefuji (1988a,b) used a two 

dimensional Hopfield TSP type matrix of neurons with mn+1 rows and mn columns 

where m and n are the number of machines and the number of jobs, respectively, to 

map their job shop scheduling problem on. To find the global minima of the energy 

function that represents the objective function of the problem, they applied simulated 

annealing (SA) which is a stochastic optimization technique and uses a stochastic 

hill-climbing algorithm with the added ability to escape from local minima in the 

state-space where conventional methods usually get trapped (Kirkpatrick, Gelatt, & 

Vecchi, 1983). From the results obtained, it is seen that the proposed methodology 

gives near optimal solutions rather than an optimum solution. In order to get better 

results and to reduce the number of neurons required to solve the same problem, Foo 

& Takefuji (1988c) introduced integer linear programming networks as extensions of 

the original Hopfield network, and achieved better solutions. But, in his paper, Van 

Hulle (1991) addressed that the network of Foo & Takefuji (1988c) generated 

constraint-violating solutions. To overcome this drawback, the original job shop 

scheduling problem was formulated again as a goal programming problem to be 

mapped onto a goal programming network. The simulation results showed that 

although the proposed approach yielded feasible solutions it could not guarantee 

optimal solutions. 

 

The limitations of the traditional Hopfield NNs based on the quadratic energy 

function triggered the authors Zhou, Cherkassky, Baldwin, & Olson (1991) to 

propose a neural network having a linear cost (energy) function rather than the 

quadratic energy function of the Hopfield network. Doing so, they aimed to improve 

the scaling properties of the Hopfield NNs. They compared their network with 

integer linear programming neural network of Foo & Takefuji (1988c) and TSP type 

Hopfield network method of  Foo & Takefuji (1988a,b) in terms of the number of 

neurons and interconnections required. The results obtained were very encouraging 

for both criteria.  
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Due to the problems of Hopfield NNs in solving optimization problems, various 

modifications are proposed to improve the convergence of the Hopfield network. 

While several authors modified the energy function of the Hopfield network to 

improve the convergence to valid solutions (Brandt, Wang, Laub, & Mitra, 1988; 

Van Den Bout & Miller, 1988; Aiyer, Niranjan, & Fallside, 1990), many others 

studied the same formulation with different penalty parameters (Hedge, Sweet, & 

Levy, 1988; Kamgar- Parsi & Kamgar- Parsi, 1992; Lai & Coghill, 1992). But 

although the modified versions of the Hopfield network could give valid solutions, 

they may not converge to good quality solutions. In the following years, poor 

solution quality of Hopfield networks was improved by integrating stochasticity into 

the Hopfield network. Boltzmann machine, Gaussian machine, Cauchy machine and 

mean field annealing approaches were obtained by embedding stochastic properties 

into the Hopfield network. 

 

A stochastic neural network for solving dynamic resource constrained scheduling 

problems was proposed by Vaithyanathan & Ignizio (1992). The authors represented 

their problem as a series of multidimensional knapsack problems, and used neural 

networks to solve these problems. The network included the combination of a 

Hopfield network and external neurons to give stochastic property. The experimental 

results showed that the network was able to avoid local minimum. As mentioned 

before, Gaussian machines developed by Akiyama, Yamashita, Kajiura, & Aiso 

(1989) as another alternative approach of escaping local minima were proposed for 

improving the efficiency and speed of the Boltzmann machine. Like continuous 

Hopfield networks, they have continuous outputs with a deterministic activation 

function but random noise is added to the external input of each neuron. In 1992, 

Arizono, Yamamoto, & Ohta proposed a Gaussian machine model for solving the 

single machine scheduling problem having the objective of total actual flowtime 

minimization. Computational results showed that in most of the problems the 

proposed network was successful in finding the optimal solutions. 

 

Lo & Bavarian (1993) extended the gradient approach of two dimensional 

Hopfield network to a three dimensional matrix, called neural box, in which the third 
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dimension was the time. They used this network to solve the job shop scheduling and 

multiple traveling salesmen problem. Although the simulation results showed that 

the presented approach yields feasible schedules, too many numbers of neurons and 

interconnections are required for solving large sized problems. 

 

Another extension of Hopfield network was proposed by Satake, Morikawa, & 

Nakamura (1994) for minimizing the makespan of the job shop scheduling problems. 

In the energy function, only one constraint is included, and the other constraints are 

reflected in the threshold values. The difference between the proposed network and 

the original Hopfield network was the revision of the threshold values of the network 

at each transition of neurons, and the inclusion of the Boltzmann machine (Hinton & 

Sejnowski, 1986) known as the integration of the dynamics of the discrete Hopfield 

model with the simulated annealing methodology. The simulation experiments 

showed that the presented network gives optimal or near optimal solutions. 

Following this work, Foo, Takefuji, & Szu (1995) proposed a modified Hopfield and 

Tank network for job shop scheduling problems. The presented network, used for 

solving integer–linear programming problems, differs from the traditional Hopfield 

and Tank network with the addition of nonlinear step function h amplifiers and with 

the use of a linear energy function rather than the quadratic energy function of the 

original Hopfield and Tank network. They examined the proposed approach, and 

concluded that it requires more number of neurons and interconnections than those 

needed by the approach in Zhou et al. (1991) that includes a linear energy function, 

but does not need extensive calculations as in Zhou et al. (1991). 

 

In another study, Willems & Brandts (1995) mapped the sequencing and resource 

constraints of the integer linear programming representation of the job shop 

scheduling problem on an extension of Hopfield network that includes general rules 

of thumb as an optimization criterion. The comparison of the proposed approach 

with heuristic rules showed that it produced better solutions than the traditional 

heuristic approaches. 
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Besides its advantage of escaping from local minima, the Boltzmann machine 

requires large computational times as the size of the problem increases (Aarts & 

Korst, 1989). In order to reduce the excessive computation times of the Boltzmann 

machines, Peterson & Anderson (1987) proposed mean field annealing by replacing 

the stochastic bipolar state neurons of the Boltzmann machine with deterministic and 

continuous neurons. The normalized mean field annealing (MFA) and the Hopfield 

neural network method (HNN) were applied to the n job m machines scheduling 

problem including resource and timing constraints in Huang & Chen (1999). To 

solve the problem, neural net optimization algorithm was used. In other words, states 

that both satisfy the constraints of the problem and minimize the energy function 

were found. In this work, rather than using linear programming or the k out of N 

rules to define the energy function, the objective function was formulated according 

to the constraints involved, step by step. Then the total energy with all constraints 

was obtained. The derived energy function was transformed into corresponding 

neural network for both algorithms HNN and MFA. Simulations results showed that 

the generated energy functions work successfully for multiprocessor problems. 

 

Chen & Dong (1999) studied a production scheduling problem in a major surface 

mount technology (SMT) factory in Western Canada to minimize the total setup cost 

in producing different products in one of the SMT assembly lines. A nonlinear mixed 

integer programming model was proposed to represent the problem with constraint 

equations. In order to solve the optimization problem, Hopfield-Tank neural network 

was used. The authors concluded that the computational times to reach optimal 

solutions using the network approach were comparable to those required by 

mathematical programming softwares, and believed that significant reduction could 

be obtained in computational time if parallel computing were utilized. 

 

Liansheng, Gang, & Shuchun (2000) developed an intelligent scheduling model 

by implementing a unified neural network algorithm. Their network was based on 

Hopfield neural network, and used to solve different schedule mode problems 

including job-shop scheduling, priority scheduling, dynamic scheduling, and JIT 

scheduling.  
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In a recent work, to deal with the earliness and tardiness multi machine 

scheduling problem including sequence dependent setup times, Akyol & Bayhan 

(2005) suggested a coupled gradient network approach which was the extension of 

Hopfield (1984) and Hopfield & Tank (1985). The aim of their study was to 

minimize the weighted sum of the earliness and tardiness penalties using a neural 

network approach rather than the traditional approaches in scheduling. Using the 

penalty function approach, the formulated problem was represented by an energy 

function. After six recurrent networks were designed, the dynamics are defined by 

gradient descent on the energy function. Although, the authors explained the 

necessary steps to simulate their networks, to test the network was left to a further 

study. 

 

Any optimization problem of scheduling that can be defined by a quadratic form, 

can be tackled with Hopfield networks. Then, a Hopfield network whose energy 

function reaches its minima at the same points with the cost function that describes 

the scheduling problem must be designed. However, by performing gradient descent 

on the energy function, the Hopfield model gets easily trapped in local minimum 

states, and this causes decreasing efficiency especially in large sized problems. 

Additionally, determining the appropriate values of the penalty parameters, network 

parameters and initial states are other critical issues associated with this model. 

Solving scheduling problems represented by many constraints will cause a tradeoff 

between the penalty terms to be minimized. Despite the promising results obtained 

by the proposed methods, some aspects still need further studying. There is no exact 

method that guarantees a global optimum solution. Even if it is achieved, the 

proposed models will suffer from extremely large computation times. Moreover, few 

studies are carried out for the comparison of the Hopfield network’s and its 

extensions’ performance with best known heuristics’ or metaheuristics’. So, we 

believe this issue will be given more importance in the near future. 
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4.2.2 Multilayer Perceptrons 

 

One of the important types of networks used in scheduling applications is a 

multilayer perceptron, a feedforward network including a set of neurons connected 

by weighted links. It consists of an input layer, one or more hidden layers and an 

output layer. Backpropagation, which was first introduced by Werbos (1974) and 

was later rediscovered independently by Parker (1985), and Rumelhart, Hinton, & 

Williams (1986), and then modified in various manners by numerous researchers in 

order to overcome its deficiencies, is one of the most popular algorithms for training 

multilayer perceptrons. This learning rule is a kind of gradient descent technique 

with backward error propagation, used to adjust the neural weights of a multilayer 

perceptron. Multilayered perceptrons trained with backpropagation learning 

algorithm are generally referred to as backpropagation networks. The weights of the 

network are randomly initialized before training starts. Then, a pair of patterns 

including the input patterns and the desired patterns is applied to the network. By 

propagating through the network layer by layer, a set of outputs is produced as the 

actual outputs of the network. At the output layer, the actual outputs are compared to 

the desired outputs, and an error signal is computed by subtracting the actual value 

from the desired value. This error signal is propagated backward through the network 

and the weight values are then adjusted by a magnitude proportional to the negative 

gradient of the error function, which is generally equal to the sum of squared errors. 

By this way, the difference between the actual and the desired outputs is minimized 

(Haykin, 1994).  

      

Backpropagation networks have been successfully used in modeling, 

classification, forecasting, design, control, and pattern recognition. Their improved 

generalization capabilities over competing machine learning tools and their easy 

mechanism made them attractive to be utilized in production scheduling. A 

successful use of a backpropagation network for job shop scheduling environments 

can be found in Chryssolouris, Lee, & Domroese (1991) where they employed 

simulation and a backpropagation network to establish adequate weights between the 

operational policy of a work centre and performance measures such as the mean 
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costs, mean flow time and mean tardiness. This study is among the first examples to 

the neural network based metamodels for the system design problems. A similar 

application can be found in Philipoom, Rees, & Wiegmann (1994), where a 

backpropagation network was proposed to determine due dates for job shops. In 

order to see whether neural networks were successful in assigning due dates, the 

assigned due dates were compared to regression based due date assignment rules. 

The results of this study indicated that the neural network gives better results than 

the six linear rules and the nonlinear regression model with respect to mean absolute 

deviation and standard deviation of lateness criteria. 

 

Because of their flexibility and adaptability properties, ANNs have been used not 

only in static scheduling environments but also in dynamically changing 

manufacturing environments where the values of the system attributes change 

continually (Chen & Muraki, 1997; Chen, Huang, & Centeno, 1999; Arzi & 

Iaroslavitz, 1999; Li, Chen, & Lin, 2003).  

 

Geneste & Grabot (1997) showed how to consider the information based on the 

workshop and the manufacturing orders structure and on the objectives of the 

workshop manager in order to select a relevant scheduling strategy. They proposed 

parameterized scheduling heuristics and suggested two methods to tune the heuristic 

rule. 

 

As pointed out by Jain & Meeran (1998) some of the main problems faced in the 

application of traditional backpropagation networks and in Hopfield networks are the 

lack of generalized learning capability to map inputs and outputs for NP hard 

problems, and the growing network size for large size problems, respectively. To 

overcome these shortcomings, the authors suggested a modified backpropagation 

model and used it for makespan minimization. The main difference between the 

proposed network and other backpropagation networks was that it performed 

optimization itself. The modified backpropagation system was compared with three 

priority dispatching rules; SPT, MWR, FCFS, and the Shifting Bottleneck Procedure 
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of Adams, Balas, & Zawack (1988). The proposed system offered shorter makespans 

in considerable computational times than three dispatching rules.   

 

For dealing with single machine sequencing problems, El-Bouri, Balakrishnan, & 

Popplewell (2000) developed a backpropagation neural network approach where 

they utilized a 11-9-1 three layered neural network in which each job is represented 

by its specific information and the output unit determines where the corresponding 

job lies in the sequence. The proposed network is evaluated for three performance 

criteria; mean flow time, mean weighted flow time, and maximum job tardiness. The 

network is successful in minimization of the mean flow time and the mean weighted 

flow time. The network also allows the jobs to be sequenced in order to minimize the 

maximum tardiness. For another performance criterion, minimization of the mean 

job tardiness, the network’s capability was investigated and the results were 

compared with two sorting rules. Although the network’s solutions are superior those 

of the sorting rules, about 6-12 % difference from optima motivated the authors to 

develop a Neural Job Classification and Sequencing System (NJCASS). The results 

showed that NJCASS has many advantages, for instance, was flexible under different 

performance criteria. The approach proposed by Hamad, Sanugi, & Salleh (2003) 

bears some similarities to that of El Bouri et al. (2000), although the former is 

applied to a single machine case. Hamad et al. (2003) dealt with the non-identical 

parallel machines problem and proposed a way of representing the problem to be fed 

into a backpropagation network, and tried to minimize the sum of earliness and 

tardiness costs. In this study, the two-output representation is used instead of one-

output unit (representing the target values) representation proposed in El-Bouri et al. 

(2000).  

 

In their work, Park, Kim, & Lee (2000) presented a neural network approach for 

solving identical parallel machine scheduling problems with sequence dependent set 

up times to minimize weighted tardiness. Their work is an extension of Kim, Lee, & 

Agnihotri (1995)’s approach to parallel machine situation. The difference between 

them is the inclusion of an additional factor called set up time range factor. The 

presented approach is also an extension of Lee, Bhaskaran, & Pinedo (1997)’s ATCS 
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(Apparent Tardiness Cost with Setups) rule in which four factors are used to quantify 

the problem characteristics. The differences between them are that the proposed 

approach includes an additional factor, and also trains a backpropagation network to 

obtain the values of the look ahead parameters. The simulation experiments show 

that proposed extended approach causes 4 % improvement over the original ATCS 

rule. 

 

Sabuncuoglu & Touhami (2002) used backpropagation networks as a simulation 

metamodel, and tried to measure metamodel accuracy in estimating manufacturing 

system performances in the job shop scheduling environments. The numerical results 

showed that metamodelling with neural networks can be used effectively to estimate 

the system performances. Another neural network based metamodel application can 

be found in the study of Fonseca & Navaresse (2002) that shows the use of ANNs as 

a valid alternative to the traditional job shop simulation approach. In order to 

generate the training and test sets, the simulation software package Arena was used 

and applied to a problem from Askin & Standridge (1993). From the simulation 

analysis, average flowtimes were estimated when job types followed different 

machine sequences. It is seen that the average flowtimes obtained from three 

different simulation packages, i.e. Arena, SIMAN, and ProModel were almost 

identical to the simulation outputs of the developed neural network models. 

 

In another study, Raaymakers & Weijters (2003) also used backpropagation 

networks to estimate the makespan of job sets in batch process industries. Because 

the amount of job interaction depends on the mix of the jobs and the resource sets, 

they use aggregate characteristics of the jobs and the resources to estimate the 

amount of interaction. The authors applied both neural networks and regression 

analysis to determine the relationship between the variables affecting the amount of 

interaction and the amount of interaction at the scheduling level. Two kinds of 

regression models were used in this study; the first one included only main effects, 

and the other comprised main effects and also two way interactions. The 

computational results showed that these regression models and neural networks give 
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satisfactory solutions, but the neural network’s estimation quality is significantly 

better than these models.  

 

Cha & Jung (2003) addressed the schedule assessment problems with the complex 

and competing environment of manufacturing systems. In order to overcome this 

problem, they introduced a methodology to provide a consistent and dimensionless 

degree of satisfaction. They exploited fuzzy numbers to represent the final 

assessment result of a schedule.  

 

Feng, Li, Cen, & Huang (2003) applied multilayered perceptron networks to 

design, develop and implement a production activity scheduling system to be used in 

a job shop environment. They presented a different data encoding method to 

represent the processing time and processing sequence of the jobs to be processed, 

used backpropagation training algorithm to control local minimum solutions, and 

introduced a heuristic method for revising the initial output. The implementation of 

the developed scheduling system on a real life job shop problem helped to improve 

the production measures of the manufacturing plant.   

 

Cakar & Cil (2004) applied backpropagation networks for the design of 

manufacturing systems. Performance measures such as mean flow time, mean 

tardiness, maximum completion time, machine utilization rate of each work center 

and percentage of late parts are fed as inputs into the neural network, and the number 

of machines in each work center is obtained as output from the system. For each of 

the priority rules, namely, earliest due date, shortest processing time, first come first 

served and critical ratio rules, the shop is simulated and four different training sets 

are formed. For four priority rules, four networks are trained by using these training 

sets. Four different design alternatives are obtained and these design alternatives are 

evaluated according to the performance measures, and the best alternative is chosen. 

 

In addition to the above studies, Akyol (2004) exploited backpropagation 

networks to model six different heuristic scheduling algorithms applied to a 

makespan minimization problem of a flowshop. They incorporated fuzzy 
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representation into their preprocessing steps and then, trained their networks. The 

results obtained from the comparison of proposed approach with the six heuristic 

algorithms showed that the proposed method was successful to predict the makespan 

of the n job m machine permutation flowshop environment. 

 

When the articles reviewed above are considered, it can be said that 

backpropagation networks, except the study of Jain & Meeran (1998), are not 

directly involved in the optimization problem. That is, actual scheduling is not 

performed. The success of most of the studies are the result of the good 

generalization capabilities of backpropagation networks which are used to capture 

the complex relationship between the input and output variables of the considered 

scheduling problem. Additionally, as also pointed out by Sabuncuglu & Tohami 

(2002), in recent years, for the design of manufacturing systems, the literature 

includes different neural network based metamodels in which the training data is 

provided by simulation. Despite the increase in the training time, integration of 

simulation with neural networks will provide better results in less time compared to 

time consuming stand alone simulation approach. Although the popularity of 

backpropagation networks has grown significantly in the past few years, some 

problems still exist with the application of the backpropagation networks. That is, 

these networks are trained by a gradient based search technique which has the risk of 

getting stuck in local optimum and the starting point of the connection weights 

becomes an important issue to reduce the possibility of being trapped in local 

optimum. Another difficulty with the construction of these types of networks is the 

necessity of generating a training set which is time consuming.  Therefore, in recent 

years, the performance of these networks is tried to be enhanced by combining them 

with different heuristics or metaheuristics. 

 

4.2.3 Competitive Networks 

      

The works by Grossberg (1972), von der Malsburg (1973), Fukushima (1975), 

Willshaw & von der Malsburg (1976), and Grossberg (1976a,b) are the first in the 

area of competitive learning. Unlike Hopfield networks, the winner take all strategy 
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forms the base of the competitive networks. In this unsupervised network, there is a 

single layer of output neurons fully connected to the input neurons of the network. In 

this output layer known as the competitive layer, lateral inhibition occurs among the 

neurons, and each neuron tries to inhibit the neuron to which it is laterally connected.  

For an input pattern presented to the network, the neuron with the weight vector at 

the least distance from the input vector is called the winner and its output is set to 

one.  

 

In order to apply competitive networks to solve optimization problems, the 

equations of motion for the problem constraints and an energy function that 

converges to stable states must be defined. For detailed information one can refer to 

Fang & Li (1990). Fang & Li (1990) obtained equations of motion for the 0-1 

knapsack problem, the generalized assignment problem and the single machine total 

tardiness scheduling problem including unit processing times and different deadlines. 

Although their study generated good results, the literature on the application of 

competitive networks to scheduling is sparse. More work has to be done in deriving 

the equations of motion to represent different constraints present in different types of 

scheduling problems.  

 

A neural network model including a three dimensional structure as in the work of 

Lo & Bavarian (1993) was proposed by Sabuncuoglu & Gurgun (1996). It is very 

similar to the Hopfield network but includes an external processor for monitoring 

and controlling the network evolution. The difference between the Hopfield network 

and the proposed network is that the proposed network involves a competition 

property. In other words, the neurons (jobs) compete with each other to be in the first 

available position in the sequence. This network was employed for solving the single 

machine mean tardiness problem, and job shop scheduling with makespan 

minimization. The performance of the proposed network was compared with the 

Wilkerson and Irwin (WI) algorithm, in terms of mean tardiness and the computation 

time, and gave better solutions than WI. Then, the performance of the proposed 

approach for job shop scheduling was tested on a number of job shop scheduling 
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problems, and the proposed network found optimal solutions in most of the 

problems. 

 

Chen & Huang (2001) applied a competitive neural network in order to obtain 

solutions to the multiprocessor job scheduling problem with multiprocesses. The 

problem involves time and resource constraints, and is depicted by an energy 

function proved to be converging. This function is mapped onto the competitive 

Hopfield neural network (CHNN) known as a Hopfield neural network (HNN) with a 

winner-take-all learning mechanism. In other words, in competitive Hopfield neural 

network, instead of conventional deterministic learning rules, a competitive learning 

mechanism is used to update the neuron states so that the time required in obtaining 

coefficients is reduced and effective results are obtained. The simulation experiments 

showed that the method was successful. 

 

Based on competitive learning, Kohonen (1982) proposed an unsupervised, 

clustering network known as self-organizing map in which only one neuron per 

group is on at a time. McMullen (2001) developed a neural network approach of the 

Kohonen self-organizing map (SOM) for solving a JIT production-sequencing 

problem with setups minimization and material usage stability. The experimental 

results based on various test problems from the literature shows that SOM approach 

gives near optimal solutions with respect to the objectives considered, and its overall 

performance is competitive with the search heuristics such as simulated annealing, 

tabu search and genetic algorithms (GAs). But the proposed method needs more 

efforts to handle the CPU time problem. 

 

In their later work, Min & Yih (2003) integrated simulation and a competitive 

neural network trained with the Kohonen learning rule, and developed a multi-

objective scheduler to select dispatching rules for both machine and vehicle initiated 

dispatching decision variables, and to obtain the desired performance measures at the 

end of short production intervals. Extensive simulation experiments were conducted 

to collect the data including the relationships among the change of decision rule set 

and current system status and the performance measures of a semiconductor wafer 
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fabrication system. A competitive network was used to group all instances of 

simulation outputs.  

 

4.3 Scheduling with Hybrid Approaches  

 

Several shortcomings of ANNs motivated the researchers to integrate neural 

networks with different computing techniques. As a result, to enhance the 

performance of the neural networks, there has been an explosive growth in the 

successful use of hybrid neural networks in scheduling. In this section, we review the 

scheduling studies exploiting the combinations of neural networks with different 

approaches. 

 

Rabelo & Alptekin (1990) introduced a hybrid approach using expert systems and 

backpropagation neural networks, and applied their hybrid system to find solutions 

for the FMS scheduling/rescheduling problem. To choose the best scheduling rules 

with respect to different criteria, ANNs were used to identify patterns in the tasks to 

be solved, and expert systems were used to monitor the performance of the system 

and to automate the learning process of the ANN. 

 

ANNs are combined with GAs, first proposed and studied by Holland (1975), to 

handle trapping in local minima, one of the important shortcomings of ANNs. Works 

in the area of GAs were summarized in Schaffer, Whitley, & Eshelman (1992).   

 

Dagli & Sittisathanchai (1993) also proposed a hybrid approach combining GAs 

with neural networks. Firstly, they tested their approach using a problem from Foo & 

Takefuji (1988), and showed that the hybrid method found the optimum solution in a 

few iterations. Then, even the number of machines and jobs were increased, the 

results were also encouraging. Furthermore, the genetic neuro-scheduler proposed by 

these authors produced better solutions than the shortest processing time (SPT) rule 

for different sizes of problems. Another GA including hybrid approach system for 

selecting candidate scheduling rules, which minimize the maximum tardiness and 

mean flow time, from a larger list of rules was developed by Rabelo, Yih, Jones, & 
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Tsai (1993) where backpropagation neural networks, parallel Monte Carlo 

simulation and inductive machine learning mechanism were integrated. The test 

results proved the success of the approach. 

 

In recent years, the development of artificial intelligence techniques has provided 

a powerful way of dealing with dynamic scheduling problems. In the study of Sim, 

Yeo, & Lee (1994), the backpropagation neural network is integrated with an expert 

system for solving dynamic job shop scheduling problems, and by this way, the 

weakness of each stand alone method is tried to be overcome. The integrated method 

exploits the advantages of both techniques, that is, the expert system helps to reduce 

the training time of the neural network by training sub-networks separately, while the 

neural network learns about and handles the complex interactions of the scheduling 

considerations without the need for the long knowledge acquisition and development 

time of expert systems. The authors showed that the proposed network has better 

performance than priority dispatching rules, and could tackle with the adaptive 

scheduling problems.     

 

One of the major drawbacks encountered with neural networks is their lack of 

explanation power. It is difficult to explain how the networks arrive at their solutions 

due to the complex non-linear mapping of the input data by the networks. In many 

applications, to gain better understanding of the problems at hand it is desirable to 

induce knowledge from trained neural networks. In the literature, applying machine 

learning techniques to extract dynamic scheduling knowledge has been a successful 

method. In their work, Li, Wu, & Torng (1997) combined an adaptive neural 

network classifier and a decision tree technique to obtain scheduling knowledge for 

flexible manufacturing systems. System performance data are fed into the adaptive 

resonance theory neural network model (Carpenter & Grossberg, 1987) as inputs, 

and classified according to the similarities between them. In order to find a definition 

for each class, a decision tree method is performed and then this is converted into a 

set of rules to be used as the real time scheduling knowledge. 
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In the same year, in order to overcome the problems of convergence, stability and 

sensitivity to the initial inputs belonging to Hopfield networks, Jeng & Chang (1997) 

presented a non-energy based neural network architecture that implements a heuristic 

rule, combination of most-valid operation first and shortest operation first rule. They 

used this network to solve job shop scheduling problems with makespan 

minimization, and obtained optimal or near optimal schedules.  

 

Lee & Dagli (1997) designed a parallel genetic-neuro scheduler including six 

different modules, for solving large size job shop scheduling problems, and tested it 

on different size of job shop scheduling problems. The results show that the 

developed approach is able to reach to the optimum solution in a few iterations, and 

has superior solutions to SPT, EDD, SLACK for minimizing the lead time. 

 

Min, Yih, & Kim (1998) designed a dynamic and real time FMS scheduler by 

combining the competitive neural network and search algorithm to meet the multiple 

objectives given by the FMS operator. Based on the current decision rules, current 

system status and performance measures, the competitive network generates the next 

decision rules. The simulation results indicate that the FMS scheduler is able to 

satisfy multiple objectives given by the operator. Another multiple objective flexible 

manufacturing system (FMS) scheduler was developed by Kim, Min, & Yih (1998) 

with the same objective. Their approach is the integration of inductive learning, 

competitive neural network and simulation. They compare, for different objectives, 

the competitive network approach with the proposed integrated approach. The results 

show that the use of inductive learning is effective to refine the rough scheduling 

knowledge. 

 

Rather than the usual non-adaptive neural networks proposed in the literature, 

Yang & Wang (2000) proposed a constraint adaptive neural network (CSANN) for 

the generalized job shop scheduling problem that is more complex than the 

traditional job shop scheduling problem. The problem is represented by the integer 

mathematical programming models, and then mapped onto a neural network that 

consists of two layers. In this study, three different heuristic algorithms are combined 
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with the proposed CSANN. From the simulation experiments conducted, it is seen 

that the performance of CSANN is improved by combining CSANN with the 

proposed heuristics. Later, Yang & Wang (2001) extended the work of Yang & 

Wang (2000). In the latter approach, a new heuristic based on obtaining a non-delay 

schedule, and one of the heuristics in Yang & Wang (2000) used to increase the 

speed of the solving process of CSANN, are combined with CSANN to form a new 

hybrid approach for job shop scheduling problems. According to the simulation 

experiments, the new hybrid approach is efficient in obtaining the minimum 

makespan, and is fast in making calculations. Another constraint neural network was 

introduced by Yu & Liang (2001) where they again try to solve the expanded job 

shop scheduling problem (EJSSP), which is more difficult to solve than the original 

job shop scheduling problem, by involving additional constraints such as job 

delivery due dates and available time of the resources. They propose a hybrid 

approach of neural networks and GAs. In order to describe the processing constraints 

and resolve the conflicts, three types of neurons are described. Then a constraint 

neural network (CNN) formed by these neurons is developed. To optimize the 

starting time of the EJSSP, a gradient CNN is constructed. This gradient CNN is 

combined with GA for optimizing the sequence of the scheduling problem. The 

results of the study show that the hybrid approach is effective for complex 

scheduling problems. 

    

To deal with fuzzy and random production disturbances faced commonly in 

manufacturing systems, Li, Li, Li, & Hu (2000) presented a production rescheduling 

expert simulation system based on Chinese manufacturing. It combines many 

different techniques and methods, including simulation, backpropagation neural 

network, expert knowledge and dispatching rules. The simulation module provides 

training patterns for the network. Simulation results showed that the production 

rescheduling expert system is practical and increases production efficiency. 

      

Another use of GA- neural network combination can be found in Lee & Shaw 

(2000) where they proposed a two level neural network for a real time flow shop 

sequencing problem of a printed circuit board (PCB) manufacturing environment. 



 

 

52

Firstly, they compare the performance of their pure neural network with two 

constructive heuristics: the deterministic greedy search and the NEH heuristic 

(Nawaz, Enscore, & Ham, 1983). For this reason, they construct a total of 10 

problem sets including different number of machines and different number of jobs. 

Simulation results from 30 runs for each problem set are averaged. The comparison 

of the makespan and computational times by the neural network approach and 

constructive heuristics indicate that the neural network approach is superior. Then, 

the neural network approach’s performance is also compared with GAs. The results 

show that the neural network’s performance are within 3.4% of those of GAs but the 

computational time needed by the neural network is only less than 0.2 % of that of 

GAs. The last implementation of this work is the combination of the neural network 

approach with GAs, and the simulation results indicate that the combined algorithm 

improves the solution quality and computational time of the GAs. 

  

From optimization viewpoint, the Hopfield neural network and its extensions 

belong to the penalty method for solving the constrained real optimization into which 

a combinatorial optimization is converted. The penalty function requires the 

weighting factors for the penalty terms to be sufficiently large in order to converge to 

a feasible solution. But as the penalty terms become stronger, the original objective 

function becomes weaker, and as they become larger and larger, the problem 

becomes ill conditioned. To deal with this problem, Li (1996) combined the 

augmented Lagrange multiplier method and the penalty methods of the Hopfield 

networks to obtain the augmented Lagrange Hopfield network. By this way, both the 

solution quality and the convergence properties of the Hopfield network are 

improved. Thus, the proposed approach helps to overcome the problems associated 

with the penalty method or the Lagrange multiplier method when used alone (Li, 

1996). Following this work, Luh, Zhao, & Wang (2000) proved the convergence of 

Lagrangian Relaxation Neural Networks (LRNN) for separable convex problems, 

and constructed LRNN for separable integer programming problems. They applied 

LRNN to separable job shop scheduling problems. By using Lagrange multipliers, 

the machine capacity constraints are relaxed, and the relaxed problem is decomposed 

into sub problems each of which is solved by dynamic programming. The results 
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indicate that the performance of the method is much better than those of the existing 

neural network approaches in scheduling. 

 

In another study, Liebowitz, Rodens, Zeide, & Suen (2000) incorporated a 

Hopfield neural network approach into the generically used expert scheduling system 

(GUESS). GUESS is an intelligent scheduling toolkit developed by Liebowitz, 

Krishnamurthy, Rodens, Houston, Liebowitz, & Zeide (1997) including a heuristic 

based approach, a hill-climbing algorithm and a GA approach to scheduling. The 

performance of the neural network is compared with the other approaches used by 

GUESS. From the results, it is seen that the neural network approach produces good 

solutions for scheduling problems. 

  

An altogether different approach was presented by Chen & Huang (2001) for 

solving the multiprocessor scheduling problem involving non-preemptive 

multitasking with timing constraints.  The proposed network known as a fuzzy 

Hopfield NN (FHNN), was different from the standard Hopfield network in the sense 

that a fuzzy c-means clustering algorithm is incorporated into it. In this method, each 

processor (job) is regarded as a data sample and every processor as a cluster. The 

objective function to be minimized is defined as the Euclidean distance between the 

data samples and the cluster sample, and the goal is to find the best set of clusters.  

The simulation results showed that the modified energy function of the network 

converges rapidly into a minimum value, and the penalty parameter determination 

problem, a major shortcoming of Hopfield NNs, is overcome. 

 

Another neural network approach to adaptive scheduling can be found in the 

study of Shiue & Su (2002). In this approach, the aim is to develop a neural network 

based adaptive scheduling system to identify the important attributes of the system 

status and generate scheduling knowledge bases for an FMS system. The authors 

point out that by selecting important system attributes in manufacturing systems, 

better performance could be achieved in prediction. They develop an attribute 

selection algorithm based on the weights of backpropagation networks, to measure 

the importance of system attributes in a neural network based adaptive scheduling 
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(NNAS) system. Then, they combine their algorithm with the (NNAS) system and 

obtain an attribute selection neural network based adaptive scheduling (ASNNAS) 

system. In order to test the efficiency of the (ASNNAS) system, its performance is 

compared with the (NNAS) system’s performance and with some dispatching rules 

for different criteria. The results show that the ASNNAS system gives better 

solutions than the NNAS system for all the performance criteria, and requires less 

computational effort. 

 

Similar to their previous work, Shiue & Su (2003) developed an attribute 

selection decision tree (ASDT) based adaptive scheduling system by combining 

backpropagation networks with a decision tree learning (C4.5 algorithm) approach. 

This approach differs from Shiue & Su (2002)’s approach in using the decision tree 

learning algorithm in constructing the scheduling system. The authors compare the 

classical DT-based approach with ASDT-based approach under different 

performance criteria. The experimental results show that using an attribute selection 

algorithm improves the generalization ability of knowledge bases, and causes less 

computational effort. In a similar work, Priore, Fuente, Pino, & Puente (2003) 

applied backpropagation networks and inductive learning (C4.5 algorithm) to acquire 

the scheduling knowledge by which the most appropriate dispatching rule in flexible 

manufacturing systems is determined. To improve the performance of the scheduling 

systems, they also propose a module used for generating new control attributes. 

 

Wang, Jacob, & Roland (2003) addressed some limitations associated with 

traditional neural network models. Among these limitations were the requirement of 

excessive number of neurons, finding unfeasible solutions and the computational 

effort required for obtaining a solution. They propose a hybrid neural network 

approach to solve the flexible flow shop scheduling problem, which is a 

generalization of flow shop and parallel machine scheduling problems, with the 

objective of makespan minimization. In this study, the authors exploit the structure 

of optimization problems and heuristic information, and compare their hybrid 

network with Ding & Kittichartphayak (1994) heuristics with respect to the 

computational time and solution quality which is measured by percentage of absolute 
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difference between the solution and the lower bound (or the optimal solution) for 

some small problems. The results of the study show that the proposed hybrid 

approach outperform all the heuristics on average and succeeds in dealing with the 

mentioned limitations. 

 

A different application can be found in Agarwal, Pirkul, & Jacob (2003) where an 

Augmented Neural Network (AugNN) has been proposed for solving the task 

scheduling problem. The proposed approach is a hybrid of the heuristic and the 

neural network approaches, and is used to minimize the makespan for scheduling n 

tasks on m identical machines. The heuristics used in this study were: Highest Level 

First, Highest Level with Estimated Time First, Critical Path with most Immediate 

Successors First, Shortest Path Time, Longest Processing Time and Random. These 

six heuristics and AugNN (including these six heuristics and two learning rules) are 

compared based on three criteria- a) reduction in gap between lower bound solution 

and heuristic solution, b) number of cases with known optimum solutions, c) number 

of cases where improvement in makespan occurs over heuristic. 570 problems of 

various sizes, ranging from 10 to 100 tasks, and from 2 to 5 machines are used for 

testing the performance of the AugNN over the six single pass heuristics. The results 

indicate that the suggested network outperforms the single pass heuristics with 

respect to all the three criteria. 

 

Although, the gradient based search techniques such as the back-propagation are 

currently the most widely used optimization techniques for training neural networks, 

it has been shown that these gradient techniques are severely limited in their ability 

to find global solutions. Global search techniques have been identified as a potential 

solution to this problem. Glover (1986) proposed a meta heuristic approach, tabu 

search (TS), as a global search technique. Its popularity has grown significantly in 

the past few years (Sexton, Allidae, Dorsey, & Johnson, 1998). The work done by 

Solimanpur, Vrat, & Shankar (2004) is a good example to this integration. The 

authors proposed a neural network based tabu search method for solving the flow 

shop scheduling problems and the initial permutation obtained from NEH algorithm 

is tried to be improved. This method is tested on 23 problems proposed by Taillard 



 

 

56

(1993) and compared with the BF–TS approach of Ben Daya & Al-Fawzan (1998) in 

terms of makespan and computational time. The results show that the proposed 

neuro-tabu search approach is effective over the BF–TS approach in both criteria, 

and the tabu effect is reduced exponentially. 

 

4.4 Scheduling with Evolutionary Artificial Neural Networks 

      

In recent years, the design of neural networks by evolutionary algorithms has been 

given great attention by researchers to develop adaptive systems that can change 

architectures and learning rules according to dynamic environments (Cho & 

Shimohara, 1998). 

 

ANNs’ performance is closely related with their architecture designs. Therefore, 

obtaining an optimal architecture design has been an important issue in the ANN 

field. But, since the basic principles governing the processing of information in 

neural networks is not well understood, optimal architecture design has been a very 

difficult task depending strongly on human experts having sufficient knowledge 

about ANNs and the problem to be solved. A trial and error method is used for the 

manual design that becomes more difficult and unmanageable as ANN complexity 

increases. Since the selection of the appropriate topology of a network and the best 

learning algorithm and its parameters are problem dependent, in the literature there 

have been many attempts to automate the design of ANN architectures. Constructive 

and destructive approaches are important classes of approaches used. In the former 

approach, after starting with a small network, neurons or connections are gradually 

added to the network in order to satisfy the requirements. On the other hand, the 

latter approach starts with a large network, and then neurons or connections between 

neurons are pruned to obtain a suitable network. But the neural network structures 

obtained by these two approaches are constrained to the predefined subsets. Thus, 

the given task will be performed with a structure from an assumed architectural class 

rather than an appropriate one (Fang & Xi, 1997).  
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There has been a growing interest in using evolutionary search algorithms to 

eliminate the tedious trial and error work of manual design of ANNs. Evolutionary 

algorithms include evolution strategies (ESs) (Schwefel, 1981; Schwefel, 1995), 

evolutionary programming (EP) (Fogel, Owens, & Walsh, 1966), GAs (Holland, 

1975; Holland, 1992; Jong, 1975; Goldberg, 1989), and a class of population-based 

stochastic search algorithms based on the ideas and principles of natural evolution. 

One important characteristic of these algorithms is that individuals in a population 

compete and exchange information with each other in order to perform certain tasks 

(Yao, 1999). Similar to ANNs, they have some advantages of robustness and 

parallelism. But they differ from ANNs in having global search capabilities that 

make them an applicable and an appealing approach. By maintaining diversity in the 

population, EAs can tackle large complex problems that generate many local optima. 

In contrast to gradient-based search algorithms, they do not use the gradient 

information. They are less likely to fall into local minima, and can be applied to 

problems for which little prior knowledge is available (Yao, 1997). 

 

The ANNs designed by the evolutionary process are referred to as evolutionary 

ANNs (EANNs). In other words, they belong to a special class of ANNs in which 

evolution is another essential form of adaptation in addition to learning. Using two 

forms of adaptation, EANNs can adapt to a dynamic environment efficiently and 

effectively (for more detailed information about evolution of ANNs see Yao, 1999). 

   

In EANNs, evolution is employed at different levels to perform several tasks. At 

the lowest level, evolution can be employed to evolve weight training. In ANNs, 

weight training is usually formulated as minimization of an error function, such as 

the mean square error between target and actual outputs averaged over all examples. 

Connection weights are iteratively adjusted using training algorithms, such as BP 

and conjugate gradient algorithms based on gradient descent (Alvarez, 2002). 

Gradient descent based training algorithms have some disadvantages of getting stuck 

into a local minimum of the error function when the error function is multimodal 

and/or nondifferentiable. To overcome this drawback, evolution is introduced to find 

a near optimal set of connection weights without computing the gradient information 
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(Fogel, Fogel, & Porto, 1990; Porto, Fogel, & Fogel, 1995; Yao, Wei, & He, 1996; 

Greenwood, 1997; Köppen, Teunis, & Nickolay, 1997; Islam, Akita, Shahjahan, & 

Murase, 2000; Mandischer, 2002; Cortez, Rocha, & Neves, 2002; Lu, Fan, & Lo, 

2003; Ilonen, Kamarainen, & Lampinen, 2003). 

 

At the next higher level, evolution can be employed to evolve the architecture of 

ANNs that strongly affects the information processing capabilities of ANNs. (Koza 

& Rice, 1991; Bornholdt & Graudenz, 1992; Tang, Chan, Man, & Kwong, 1995; 

Mandischer, 1995; Cho & Shimohara, 1998; Sendhoff & Kreutz, 1999; Schmitz & 

Aldrich, 1999; Kaikhah & Garlick, 2000; Macleod & Maxwell, 2001; Alvarez, 2002; 

Wicker, Rizki, & Tamburino, 2002; Igel & Kreutz, 2003) This helps to automate the 

design of ANNs which is a human experience dependent tedious trial and error work.  

 

At the highest level, evolution can be employed to evolve ANN learning rule, 

which specifies how to adjust weights in weight training. Because the weight training 

has traditionally been regarded as a learning process, the evolution of learning rules 

can be considered as a process of learning to learn weights (Yao & Liu, 1998). For 

different types of architectures of ANNs under consideration, the ANN training 

algorithm may have different performance. When there is little prior knowledge 

about the architecture of ANNs, it becomes very difficult to design an optimal 

learning rule. By adapting a learning rule through evolution it is assumed that ANN’s 

adaptivity will be enhanced in a dynamic environment. By this way, the relationship 

between learning and evolution will be modeled. Evolution of learning rules differs 

from the evolution of connection weights and architectures. While the evolution of 

learning rules works on the dynamic behavior of ANNs,  evolution of connection 

weights and architectures only deal with static objects in an ANN, i.e. weights and 

architectures. Research dealing with the evolution of learning rules is still in its early 

stages. Various studies have been proposed on the evolution of learning rules 

(Chalmers, 1990; Fontanari & Meir, 1991; Baxter, 1992; Merelo, Pat´on, Ca˜nas, 

Prieto, & Mor´an, 1993; Crosher, 1993; Kim, Jung, Kim, & Park, 1996; Patel, 1996; 

Moriarty & Mikkulainen, 1996; Kim, Ahn, & Kang, 2000). 
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Two major problems with the evolution of architectures without considering 

weights are noisy fitness evaluation and the permutation problem. In addition to the 

evolutionary procedures explained above, simultaneous evolution of ANN 

architectures and connection weights generally produces better results and lessens 

the impact of fitness evaluation and permutation problem (Fang & Xi, 1997; Pujol & 

Poli, 1998; Yao & Liu, 1998; Liu & Yao, 2001; Gao, 2003).  

  

Although the researchers deal with combining GAs, a branch of EAs, with ANNs, 

to the best of our knowledge there has not been any scheduling application including 

the integration of other evolutionary algorithms with neural networks. It is doubtless 

that ANN researchers will benefit from the advantages of EAs by complementing 

and compensating each other’s strengths and weakness to tackle the problems of 

scheduling. 

   

The evolutionary training method can deal with the global search problem of 

ANNs without computing the gradient information. It will be useful to employ them 

in solving production scheduling problems for which ANNs are incapable of finding 

a global minimum. Their application is not restricted to overcome the disadvantages 

of the backpropagation learning algorithm. EAs can also be used for optimizing 

recurrent neural networks such as Hopfield networks that possess the weakness of 

proving a local optimal solution to combinatorial optimization problems including 

scheduling. The applicability of the same evolutionary algorithm to train different 

types of networks reduces the human effort needed in developing different training 

algorithms. Besides having many advantages, EAs are not good at local fine-tuned 

search. In order to overcome this drawback, they are combined with local search 

algorithms such as simulated annealing, tabu search, backpropagation algorithm, etc. 

This kind of hybridization can improve the performance of EAs (Yao, 1991; 

Mühlenbein, Schomisch, & Born, 1991; Kido, Takagi, & Nakanishi, 1994).  
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4.5. Summary and Future Research  

 

     Over the last decade, ANNs have been applied to an increasing number of real-

world problems of considerable complexity and to the theoretical test problems. In 

this chapter, we tried to provide an extensive literature review on the applications of 

ANNs to different production scheduling problems. In order to see the gradual 

development in these works, the recent research studies are summarized in a 

chronological order. Our survey is limited with the publications appearing in 

refereed journals and conference proceedings between 1987 and 2005. Table 4.1 

summarizes the scheduling applications considered in this paper. 

 
 

Table 4.1 Evolution of ANNs in scheduling 

Year Author(s) Approach Application area 

1988 

a,b,c 
Foo & Takefuji Hopfield networks Job-shop scheduling problem 

1990 Rabelo & Alptekin 

Hybrid of expert systems and 

backpropagation neural 

networks 

FMS scheduling/rescheduling 

problem 

1990 Fang & Li Competitive networks Single machine scheduling 

1991 Zhou et al. 

An extension of Hopfield 

networks (has a linear energy 

function) 

Job-shop scheduling problem 

1991 Chryssolouris et al. Multi layer perceptrons Job-shop scheduling problem 

1991 Van Hulle Hopfield networks Job-shop scheduling problem 

1992 
Vaithyanathan & 

Ignizio 
Hopfield networks 

Dynamic resource constrained 

scheduling problem 

1992 Arizono et al. 

An extension of Hopfield 

network (A Gaussian 

machine model) 

Single machine scheduling 

1993 Lo & Bavarian 
An extension of Hopfield 

network 

Job-shop scheduling problem and 

multiple travelling salesmen 

problem 
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1993 
Dagli & 

Sittisathanchai 

a hybrid approach combining 

GAs and neural networks 
Job-shop scheduling problems 

1993 Rabelo et al. 

(a hybrid approach) 

Integration of 

backpropagation neural 

networks, parallel Monte 

Carlo simulation and 

inductive machine learning 

mechanism 

Job-shop scheduling problem 

1994 Satake et al. 
An extension of Hopfield 

network 
Job-shop scheduling problem 

1994 Philipoom et al. backpropagation  networks Job-shop scheduling problem 

1994 Sim et al. 

(a hybrid approach) 

backpropagation  networks 

integrated with an expert 

system 

Job-shop scheduling problem 

1995 Foo et al. 
An extension of Hopfield 

network 
Job-shop scheduling problem 

1995 Willems & Brandts 
An extension of Hopfield 

network 
Job-shop scheduling problem 

1995 Kim et al. 
A hybrid approach using 

heuristic rules and ANNs 
Single machine scheduling 

1996 
Sabuncuoglu & 

Gurgun 
Competitive networks 

Single machine and job shop 

scheduling problems 

1997 Chen & Muraki backpropagation  networks 
Online scheduling in batch process 

management 

1997 Geneste & Grabot backpropagation  networks Job-shop scheduling problem 

1997 Li et al. 

(a hybrid approach) 

Adaptive resonance theory 

neural network combined 

with a decision tree technique 

FMS scheduling 

1997 Jeng & Chang 

(a hybrid approach) 

Non energy based neural 

network 

Job-shop scheduling problems 
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(that implemented a heuristic 

rule) 

1997 Lee & Dagli 

(a hybrid approach) 

Artificial neural network 

(type is not reported) + GAs 

Job-shop scheduling problems 

1998 Jain & Meeran 
Modified backpropagation 

network 
Job-shop scheduling problem 

1998 Min et al. 

(a hybrid approach) 

Competitive networks + 

search algorithm 

FMS scheduling 

1998 Kim et al. 

(a hybrid approach) 

Inductive learning + 

competitive network + 

simulation 

FMS scheduling 

1999 Chen et al. 
backpropagation 

network 

Scheduling of material handling 

system (FMS scheduling) 

1999 Huang & Chen 

Hopfield network and the 

normalized mean field 

annealing method (obtained 

by embedding simulated 

annealing into the Hopfield 

network) 

Job-shop scheduling problem 

1999 Chen & Dong. Hopfield network Job-shop scheduling problem 

1999 Arzi & Iaroslavitz backpropagation  network 

ANN based Production Control 

System for a Flexible 

Manufacturing Cell is presented for 

choosing the most appropriate 

scheduling rule out of several 

predetermined ones. 

2000 El-Bouri et al. backpropagation  network Single machine scheduling 

2000 Liansheng et al. 
An extension of Hopfield 

network 

Different schedule mode problems 

including job-shop scheduling, 

priority scheduling, dynamic 

scheduling and JIT scheduling. 
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2000 Park et al. backpropagation  network 

Parallel machine scheduling 

problems with sequence dependent 

set up times 

2000 Yang & Wang 

(a hybrid approach) 

Constraint adaptive neural 

network (CSANN) combined 

with three different heuristic 

algorithms 

Generalized job shop scheduling 

problem 

2000 Lee & Shaw 

(a hybrid approach) 

Combination of the neural 

network approach with GAs 

Flow shop scheduling 

2000 Li et al. backpropagation  network Production rescheduling problems 

2000 Liebowitz et al. 

(a hybrid approach) 

Hopfield network 

incorporated into the 

generically used expert 

scheduling system 

Different scheduling problems 

2000 Luh et al. 

(a hybrid approach) 

Combination of lagrangian 

relaxation with Hopfield N. 

Job-shop scheduling problem 

2001 Chen & Huang 

(a hybrid approach) 

Combination of Hopfield 

network with fuzzy c-means 

clustering algorithm  

Multiprocessor scheduling problem 

2001 Chen & Huang Competitive networks Job-shop scheduling problem 

2001 McMullen Kohonen self-organizing map JIT production scheduling problem 

2001 Yang & Wang 

(a hybrid approach) 

Constraint adaptive neural 

network (CSANN) combined 

with two different heuristic 

algorithms 

Job-shop scheduling problems 

2001 Yu & Liang 

(a hybrid approach) 

A hybrid approach of 

constraint NNs and GAs 

Expanded job-shop scheduling 

problem 
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algorithms 

2002 Li & Ye Hopfield network Flow shop scheduling problem 

2002 
Sabuncuoglu & 

Touhami 
backpropagation  network Job-shop scheduling problem 

2002 
Fonseca & 

Navaresse 
backpropagation  network Job-shop scheduling problem 

2002 Shiue & Su 

(a hybrid approach) 

Neural network based 

adaptive scheduling system 

Flexible Manufacturing Systems 

2003 
Raaymakers & 

Weijters 
backpropagation  network Batch process industries 

2003 Feng et al. backpropagation  network Job-shop scheduling problem 

2003 Hamad et al. backpropagation  network 
Non-identical parallel machine 

scheduling problems 

2003 Cha & Jung backpropagation  network Job-shop scheduling problem 

2003 Li et al. backpropagation  network Flexible Manufacturing Systems 

2003 Min & Yih Competitive networks 
Semiconductor wafer fabrication 

system 

2003 Shiue & Su 

(a hybrid approach) 

Backpropagation networks 

combined with a decision tree 

learning approach 

Flexible Manufacturing Systems 

2003 Wang et al. 

(a hybrid approach) 

Artificial neural network 

combined with the structure 

of the optimization problem 

Flexible Flow shop scheduling 

problem 

2003 Priore et al. 

(a hybrid approach) 

backpropagation networks 

and inductive learning 

Flexible Manufacturing Systems 

2003 Agarwal et al. 

(a hybrid approach) 

Neural networks combined 

with heuristic approaches 

Task scheduling problem 

2004 Cakar & Cil backpropagation  network 
Design of manufacturing systems 

using different priority rules 
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2004 Solimanpur et al. 

(a hybrid approach) 

A neural network based tabu 

search method 

Flow shop scheduling 

2004 Akyol backpropagation  network Flow shop scheduling problem 

2005 Akyol & Bayhan 
An extension of Hopfield 

network 

Parallel machine scheduling 

problem 

  

The conclusions drawn from this detailed review are summarized below.  

 

•    Most of the approaches proposed in the reviewed articles are based on 

Hopfield networks and backpropagation networks, and a great emphasis has been 

given on the job shop scheduling problem, one of the hardest combinatorial 

optimization problems encountered in real scheduling environments. The literature 

presents many variants of traditional ANN approaches to improve their performance 

by trying to escape from the local minima, by reducing the computational effort 

required, by speeding convergence and by decreasing the number of neurons and 

interconnections.  

 

•    Although widely preferred in the literature because of their highly parallel 

computational capabilities, one of the major problems in the application of Hopfield 

networks to optimization problems is the penalty parameter determination. Due to 

many constraints needed to express scheduling problems, the energy function will 

include too many penalty terms that result too many local minima. To satisfy all of 

the constraints while minimizing the objective function is very difficult and a 

tradeoff exists between the constraint penalty terms and the objective function term. 

Thus, we believe that an important direction of future research is to search for the 

methods to overcome this tradeoff problem. In this regard, rather than using constant 

penalty parameters during simulations, employing time varying penalty parameters 

may be offered as a potential solution to this problem. In this thesis, we also used 

time varying penalty coefficients to solve the problems considered.  
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•    In the last years, ANNs have either been combined with artificial intelligence 

techniques such as expert systems, with metaheuristics such as GAs, tabu search, 

simulated annealing or with some heuristic procedures to form hybrid approaches 

providing superior solutions. As a global search technique, the combination of GAs 

with ANNs is widely used in obtaining optimal solutions, and considerable success is 

achieved by overcoming the slow convergence property of GAs and the local minima 

problem of ANNs. Future research should continue this trend by extending these 

works. 

     

•    In recent years, following the need to solve real world dynamic scheduling 

problems, rather than non-adaptive neural networks whose connection weights and 

biases must be prescribed before the networks start to work, adaptive neural 

networks are developed and their performance is improved by combining them with 

several heuristic algorithms. 

  

•    In the neural network design, setting of the parameters, initialization of the 

weights, configuration of the network are often problem specific and the correct 

value of these parameters however is not known a priori. Therefore, for any given 

problem, a wide variety of parameters must be tried to generate confidence that a 

best solution has been found. Sensitivity of the ANNs to their initial configuration 

and inability of the gradient based search techniques to find global solutions 

motivated the researchers to employ EAs together with ANNs for the automatic 

adjustment of the parameters and the topology of the ANNs.  

 

•    In the dynamic scheduling environments faced in real world manufacturing 

systems, scheduling and rescheduling problems can be handled by EANN’s 

adaptation and learning properties. While several researchers develop new EAs for 

ANNS, some try to find remedies for these algorithms’ shortcomings such as heavy 

computational loads, and time-consuming fitness evaluation (Hong, Lee, & Tahk, 

2003; Palmes, Hayasaka, & Usui, 2003).  
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•    Together with its advantages, the hybrid approach of EAs and ANNs brings 

together unsolved problems from two complex areas. While there are many questions 

that need to be answered, many empirical studies on EANN approaches are being 

reported for solving different kinds of problems. However, most of the studies have 

focused on small sized problems, and there are few studies comparing the 

performance of EANNs with their counterparts. In addition, it is not clearly known at 

present how performance of EANNs in scheduling is. In order to provide a common 

platform for comparison, benchmark problems must be generated for different 

objective functions.  

 

•    The review of the EANN literature shows us that evolutionary optimization 

research area is not fully developed but is growing so fast. 

 

•    Not only in the ANN field, the role of local search in the field of EANNs is 

important. Combining EANNs with local search based metaheuristics which have an 

important feature of flexibility, will make them more effective and an important 

alternative to ANNs.  

      

•    Last years have witnessed the development of efficient and effective stochastic 

optimization algorithms such as particle swarm optimization (PSO) algorithm which 

was first introduced by Kennedy & Eberhart (1995). It is an evolutionary algorithm 

that simulates the social behavior of organisms such as bird flocking and fish 

schooling. Due to its easy implementation and effectiveness in performing difficult 

optimization problems, PSO gained considerable attention among researchers and 

has been applied to a wide range of problems such as multi-objective optimization 

problems (Ray & Liew, 2002; Mostaghim & Teich, 2003; Coello Coello & Lechuga, 

2002), constrained optimization problems (Hu & Eberhart, 2002; El-Gallad, El-

Hawary, & Sallam, 2001; Parsopoulos & Vrahatis, 2002), minimax problems, power 

and voltage control (Yoshida, Kawata, Fukuyama, & Nakanishi, 1999) and task 

assignment problems (Salman, Ahmad, & Al-Madani, 2002). Few papers 

(Tasgetiren, Sevkli, Liang, & Gencyilmaz, 2004; Cagnina, Esquivel, & Gallard, 

2004; Allahverdi & Anzi, 2005) report the application of this new emerging 
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algorithm in production scheduling. But due to its advantages over other heuristic 

methods, it is certain that PSO will be more attractive in the area of scheduling. In 

the last years, PSO is successfully utilized in evolving ANNs to find optimal 

weights, appropriate topology and transfer functions. Since standard ANNs need to 

be customized for each system, integration of ANNs with PSO will make possible to 

design ANNs automatically, and to obtain good generalization capabilities. Of 

course, it is unavoidable to see their reflections in the area of scheduling.  

 

We believe that in the near future the researchers will benefit from the use of the 

recent advances in EAs, ANNs, metaheuristics, and their combinations. It can be 

concluded that, the future of ANNs not only lies in their explicit use but also lies in 

its conjunction with other advanced technologies.   
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CHAPTER FIVE  

SOLUTION OF IDENTICAL PARALLEL MACHINE SCHEDULING 

PROBLEM USING DYNAMICAL GRADIENT NETWORKS 

 

 

5.1 Introduction 

 

The classical identical parallel machine scheduling problem, given n jobs and m 

machines, is to assign each job on one of the identical machines during a fixed 

processing time so that the schedule that optimizes a certain performance measure 

can be obtained. Having numerous potential applications in real life, in recent years, 

various research works have been carried out to deal with the parallel scheduling 

problems.  

 

The literature of parallel machine scheduling problems has been extensively 

reviewed by Cheng & Sin (1990) and Mokotoff (2001). Among many criteria, 

minimizing makespan (maximum completion time) has been one of the most widely 

studied objectives in the literature. Using the three-field classification introduced in 

Graham, Lawler, Lenstra, & Rinnooy Kan (1979), the problem is denoted in the 

scheduling literature as P||Cmax where P designates the identical parallel machines, 

Cmax denotes the makespan. We assume, as is usual, that the processing times are 

positive and that 1<m<n. The problem is known to be NP-hard in the strong sense 

(Garey & Johnson, 1979; Sethi, 1977).  

 

Although traditional techniques such as complete enumeration, dynamic 

programming, integer programming, and branch and bound were used to find the 

optimal solutions for small and medium sized problems, they do not provide efficient 

solutions for the problems with large size. Having found no efficient polynomial 

algorithm to find the optimal solution led many researchers to develop heuristics to 

obtain near optimal solutions. Though, efficient heuristics can not guarantee optimal 

solutions, they provide approximate solutions as good as the optimal solutions. These 

can be broadly classified into constructive heuristics and improvement heuristics.
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Most of the algorithms belong to the first category and have known worst case 

performance ratio (Coffman, Garey, & Johnson, 1978; Friesen & Langston, 1986; 

Friesen, 1987; Graham, 1969; Hochbaum & Shmoys, 1987; Leung, 1989; Sahni, 

1976). The LPT rule of Graham, one of the most popular constructive heuristics, has 

been shown to perform well for the makespan criterion. This rule arranges jobs in 

descending order of processing times, such that p1≥p2≥…≥pn, and then successively 

assigns jobs to the least loaded machine. The MULTIFIT algorithm, a classical 

constructive heuristic developed by Coffman et al. (1978), determines the smallest 

machine capacity to find a feasible solution using the LPT scheme. This is achieved 

by solving heuristically a series of bin packing problems. Although MULTIFIT is not 

guaranteed to perform better than LPT, it has been shown that it has a worst case 

bound better than LPT.  

 

Improvement based algorithms are based upon local search in a neighbourhood in 

which a feasible solution is taken as a starting point and then tried to be improved by 

iterative changes. Application of these algorithms to the P||Cmax problem can be 

found in Frangioni, Scutelle, & Necciari (1999), Hübscher & Glover (1994), 

Jozefowska, Milka, Rozycki, Waligora, & Weglarz (1998).  

 

Although a large number of approaches such as mathematical programming, 

dispatching rules, expert systems, and neighborhood search to the modeling and 

solution of scheduling problems have been reported in the literature, over the last 

decades, there has been an explosion of interest in using Artificial Neural Networks 

(ANNs) for the solution of various scheduling problems. This is mainly after the 

success of the use of Hopfield & Tank (1985)’s network in solving the Traveling 

Salesman Problem. The authors showed that if an optimization problem can be 

represented by an energy function, then a Hopfield network that corresponds to this 

energy function can be used to minimize this function to provide an optimal or near-

optimal solution. Since then, a variety of scheduling problems are solved using 

Hopfield type networks (Chen & Dong, 1999; Foo, Takefuji, & Szu, 1995; 

Liansheng, Gang, & Shuchun, 2000; Lo & Bavarian, 1993; Satake, Morikawa, & 
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Nakamura, 1994; Vaithyanathan & Ignizio, 1992; Willems & Brandts, 1995; Zhou, 

Cherkassy, Baldwin, & Olson, 1991).  

 

But a few papers are proposed for the solution of parallel machine scheduling 

problem using ANNs. Park, Kim, & Lee (2000) presented a backpropagation 

network for solving identical parallel machine scheduling problems with sequence 

dependent set up times. They tried to find the sequence of jobs processed on each 

machine with the objective of minimizing weighted tardiness. Hamad, Sanugi, & 

Salleh (2003) dealt with the non-identical parallel machines problem with the sum of 

earliness and tardiness cost minimization and proposed a way of representing the 

problem to be fed into a backpropagation network. Akyol &Bayhan (2005) proposed 

a coupled gradient network approach for solving the earliness and tardiness 

scheduling problem involving sequence dependent setup times.  

 

The objective of this research is to apply ANNs to the identical parallel machine 

scheduling problem for minimizing the makespan. To the best of our knowledge, this 

study will be the first attempt to solve the considered problem using neural networks. 

We employ in this chapter a dynamical gradient network approach to attack the 

problem. After the appropriate energy function is constructed by using a penalty 

function approach, the dynamics are defined by steepest gradient descent on the 

energy function. In order to overcome the tradeoff problem encountered in using the 

penalty function approach, a time varying penalty coefficient methodology is 

proposed to be used during simulation experiments. We analyze the impact that the 

initial conditions of the network have on the performance on 5 different data sets by 

running each data set 20 times for different sizes of jobs and machines.  

 

A general outline of this chapter is as follows. We give a mixed integer 

programming (MIP) formulation for the identical parallel machine scheduling 

problem in Section 2, and describe the proposed network in Section 3. Section 4 

provides the computational results, and the conclusions with future research 

directions are given in Section 5. 
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5.2 Problem Statement 

 

Consider a set J of n jobs Ji ,i=1,...,n  to be processed, each of them on one 

machine, on a set M of m machines Mj , j=1,...,m. All the jobs can be processed on 

any of the m machines. We consider identical machines models, for which the 

processing times of each job, pi, are machine independent. The objective is to find an 

appropriate allocation of jobs to machines that would optimize a performance 

criterion. We are interested in the makespan criterion (maximum completion time), 

Cmax.  

 

 The following notations are used throughout the rest of this chapter. 

 

Ji : job i, i Є N={1,...,n} 

Mj : machine j, j Є M={1,...,m} 

pi: processing time of Ji 

Ci: completion time of Ji 

Cmax: makespan, the maximum completion time of all jobs 

Cmax = max{C1, C2, ...,Cn} 

xij : 0/1 assignment variable = 
⎭
⎬
⎫

⎩
⎨
⎧

otherwise
jmachinetoassignedisijobif

0
1

 

 

A MIP formulation of the minimum makespan problem can be defined as follows: 

min Cmax 

subject to  

nix
m

j
ij ≤≤=∑

=

11
1

                  (5.1) 

mjxpC ij

n

i
i ≤≤≥−∑

=

10
1

max               (5.2) 

 

The first constraint given in (5.1) ensures that each job is assigned to only one 

machine. The second constraint given in (5.2) ensures that the makespan is at least 

the completion time of each machine.  
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5.3 Design of the Proposed Dynamical Gradient Network 

 

In this section, we describe how dynamical gradient networks can be used to solve 

the considered problem presented in the previous section. The proposed approach is 

an extension of the original formulation given in Hopfield (1984, 1985). Firstly the 

network architecture is explained, and then derivation of the energy function 

representing the proposed network, and dynamics and proof of the convergence of 

the proposed network are given. Finally, the proposed penalty parameter 

determination method is illustrated with an example. 
 

5.3.1 The Network Architecture 
 

The proposed gradient network has two types of neurons: a continuous type 

neuron to represent real valued variable Cmax, and discrete types of neurons to 

represent binary valued variables X11,…, X1m;  X21,…, X2m; Xn1,…,Xnm. UXij 

symbolizes the input to the neuron for job i and resource j, and UCmax denotes the 

input to the neuron representing Cmax. The dynamics of the gradient net will be 

defined in terms of these input variables. 

 

VXij designates the output of the neuron for job i and resource j. This neuron will 

be activated if job i is allocated to resource j. VCmax depicts the output of the neuron 

representing Cmax. We use a linear type activation function for neuron Cmax. 

Neurons with sigmoidal nonlinearity are used to represent discrete variables Xij, so 

that the activation function for discrete neurons can take the usual sigmoidal form 

with slopes λX. Here, we use a log-sigmoid function to convert discrete neurons to 

continuous ones. Its functional form is shown in Figure 5.2. 
 

5.3.2 The Energy Function 

 

Instead of using linear programming or the k-out-of-N rules to develop the energy 

function, we directly formulate the cost function according to the constraints term by 

term. The energy function for this network is constructed using a penalty function 

approach. That is the energy function E consists of the objective function Cmax plus a 
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penalty function to enforce the constraints. For the problem considered, the penalty 

function P(X, Cmax) will include three penalty terms: P1, P2 and P3. 
 

The first term P1 adds a positive penalty if the solution does not satisfy any of the 

equality constraints given in (5.3).  In other words, the first term attempts to ensure 

that each job is allocated to only one machine. 

 

nix
m

j
ij ≤≤=∑

=

11
1

                                                                   (5.3) 

 

In this case, P1 = ∑∑
==

−
m

j
ij

n

i
X

1

2

1
)1( . This term yields zero when these equality 

constraints are satisfied.  

 

P2 adds a positive penalty if the solution does not satisfy any of the inequality 

constraints given in (5.4). 

mjxpC ij

n

i
i ≤≤≥−∑

=

10
1

max .                                                                (5.4)  

 

In accordance with this constraint, P2 will take the following form 

∑ ∑
= =

−
m

j

n

i
iji CXpv

1 1
max )(  where v represents the penalty function.  

 

00)(0)( 2 ≤=>= εεεεε allforvandallforv  (Watta & Hassoun, 1996), and the 

functional form of this function is given in Figure 5.1.  
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Figure 5.1 Penalty function for enforcing inequality constraints 

 

 

Figure 5.2 Activation function for discrete neurons 

 

 

UXij 

  
VXij 

υ(ε) 

ε 
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Figure 5.3 Penalty function for enforcing the 0,1 constraints 

 

We require that Xij є{0,1}. These constraints will be captured by P3 which adds a 

positive penalty if the binary constraints Xij є{0,1} are violated. In Figure 5.3, the 

functional form of this penalty term is shown. It can be seen that the penalty will be 

zero at either Xij = 0 or Xij = 1.   

 

P3 =∑∑
= =

−
n

i

m

j
ijij XX

1 1
)1( and correspondingly, the total penalty function P (X, Cmax) 

with all constraints can be induced as follows.  
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−+−+−
n

i

m

j
ijij

m

j

m

j

n

i
ijiij

n
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1 11 1 1
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2

1
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The complete energy function can thus be written as: 

 

∑∑∑ ∑ ∑∑
= == = ==

−+−+−+
n

i

m

j
ijij

m

j

m

j

n

i
ijiij
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Xij 

 Xij(1-Xij) 
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We can write the energy function in terms of output variables as follows: 

 

∑∑∑ ∑ ∑∑
= == = ==

−+−+−+
n

i

m

j
ijij

m

j

m

j

n

i
ijiij

n

i
VXVXDVCVXpvCVXBAVC

1 11 1 1
max

2

1
max )1()()1(min

 

where A, B, C and D are positive penalty coefficients. 

 

5.3.3 The Dynamics 

 

In addition to defining the energy function to be employed, we need to consider 

the equation of motion of the neuron input. The dynamics for the gradient network 

are obtained by gradient descent on the energy function. The equations of motion are 

obtained as follows.  

 

∑ ∑
= =

−′−−−=

∂
∂

−=

m

j

n

i
iji VCVXPCA
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E

dt
dUC

1 1
max

max

max

][)1( υ
                                                                (5.5) 

 

)21(][)(]1[2
1

max
1

ij

n

l
ljl

m

k
ik

ij

ij
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dUX
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∂
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∑∑
==

υ
                      (5.6) 

where ηCmax and ηX are positive coefficients which will be used to scale the dynamics 

of the network, and ν’ is the derivative of the penalty function ν.   

 

00)(02)( ≤=′〉=′ εευεεευ allforandallfor  

 

The computation is performed in all neurons at the same time so that the network 

operates in a fully parallel mode. The solution of equations of motion may be 

accomplished via the use of Euler’s approximation. The states of the neurons are 

updated at iteration k as follows. 
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dt
dUCUCUC C

kk max
max

1
maxmax η+= −                                                           (5.7) 

dt
dUX

UXUX ij
X

k
ij

k
ij η+= −1                                                                                (5.8) 

 

Neuron outputs are calculated by V=g (U), where g (.) is the activation function, 

U is the input and V is the output of the neuron. 

 

VCmax=g(UCmax) = UCmax  (a linear function) 

VXij = g(UXij) = logsig (λX×UXij)  (a log-sigmoid function) 

where λX is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)). 

 

5.3.4 Proof of Convergence 

 

In order to use the proposed Hopfield-like dynamical network for the solution of 

the problem, we have to prove the convergence of the network. To do so, we have to 

show that energy does not increase along the trajectories, energy is bounded below, 

the solutions are bounded and time derivative of the energy is equal to zero only at 

equilibria. 

 

Consider the time derivative of the energy function E given below. 
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Since 0])([ 1 ≥′= −
ij

ij

ij VXg
dVX
dUX

 (monotone increasing) for log-sigmoid function, 

the right-hand side of the equation given in (5.9) will be obviously negative. This 

ensures that the energy does not increase along trajectories, so we can write 0≤
dt
dE .  

0=
dt
dE  implies that jiallfor

dt
dVX ij ,0=   and 0max

=
dt

dVC . In other words, 

0=
dt
dE  at the equilibrium points.  

 

Since Xijs are binary variables, they are bounded but we have to check the 

boundedness of Cmax. If we rewrite the motion equation for Cmax, we obtain the 

following: 
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There may be different possible cases 
 

Case 1: Assume that →=−∑
=

0max
1

VCVXP
n

i
iji A

dt
dUC

−=max  

 
which means that UCmax=VCmax will decrease. This will cause  
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1

>−∑
=

VCVXP
n

i
iji . 

 

Case 2: Assume that →<−∑
=
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1
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n

i
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dt
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which means that UCmax=VCmax will decrease. This will cause  
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i
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Therefore we have to consider Case 3 in which we assume 0max
1

>−∑
=
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i
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If we multiply both sides by eCt,  
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We can write 
 

dzzreeVCe

dzzreeVCetVC

t
CzCtCt

t
CzCtCt

)()0(

)()0()(

0
max

0
maxmax

∫

∫

⋅+≤

⋅+≤

−−

−−

 

Assume that ∞<≤ Mzr )(  

]1[)0(

]1[1)0(

)0()(

max

max

0
maxmax

CtCt

CtCtCt

t
CzCtCt

e
c

MVCe

e
c

MeVCe

dzeMeVCetVC

−−

−−

−−

−+≤

−⋅⋅+≤

⋅+≤ ∫

 

 
Since 1≤−Cte and 0→−Cte as ∞→t , then 

∞≤)(max tVC  

 

∑

∑

∑

∑

=

=

=

=

+≤

+−≤

+−=

+−=

n

i
iji

n

i
iji

n

i
iji

ij

n

i
i

VXPCA

VXPCA

VXPCAzr

VXPCAzr

1

1

1

1

2

2

2)(

2)(

 

Since A>0 and 02
1

>∑
=

n

i
ijiVXPC  

∞<)(zr  and ∞<
dt

dUCmax  

 
and we can conclude that the solutions are bounded. 
 

Combining this fact with the fact that the energy E is bounded (since the cost is 

always greater than zero), we conclude that the network converges to a stable state 

which is a local minimum of E(X,Cmax). In other words, the time evolution of the 

network is a motion in space tends to that minimum point as t goes to infinity.  
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5.3.5 Selection of the Parameters 

 

In order to simulate the proposed network for solving the problem described by 

the dynamics given in Section 5.3.3, some parameters should be determined. These 

are the penalty parameters A, B, C and D; the activation slopes λX; the step sizes 

ηCmax, ηX and the initial conditions.  

 

Because there is no theoretically established method for choosing the values of the 

penalty coefficients for an arbitrary optimization problem, the appropriate values for 

these coefficients can be determined empirically. That is simulation runs are 

conducted, and optimality and/or feasibility of the resulting equilibrium points of the 

system are observed. The network can be initialized to small random values, and then 

synchronous or asynchronous updating of the network will allow a minimum energy 

state to be attained. In order to ensure smooth convergence, step size must be 

selected carefully (Watta & Hassoun, 1996).  

 

The dynamics of the proposed Hopfield-like gradient network will converge to 

local minima of the energy function E. Since the energy function includes four terms, 

competing to be minimized, there are many local minima and a tradeoff among the 

terms. An infeasible solution may be obtained when at least one of the constraint 

penalty terms is non-zero. In this case, the objective function term will generally be 

quite small but the solution will not be feasible. Alternatively, a local minimum, 

which causes a feasible but not a good solution, may be encountered even if all the 

constraints are satisfied. In order to satisfy the each penalty term, its associated 

penalty parameter can be increased but this results an increase in other penalty terms 

and a tradeoff occurs. The penalty parameters that result a feasible and a good 

solution, which minimizes the objective function, should be found.  

 

Determining the appropriate values of the penalty parameters, network parameters 

and initial states are so critical issues associated with gradient type networks that by 

adjusting the parameters, the convergence performance to valid solutions can be 
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improved. It is clear that solving scheduling problems represented by many 

constraints will cause a tradeoff among the penalty terms to be minimized. 

 

Due to the problems of Hopfield like NNs in solving optimization problems, 

various modifications are proposed to improve the convergence of the Hopfield 

network. While several authors modified the energy function of the Hopfield 

network to improve the convergence to valid solutions (Aiyer, Niranjan, & Fallside, 

1990; Brandt, Wang, Laub & Mitra, 1988; Van Den Bout & Miller, 1988), many 

others studied the same formulation with different penalty parameters (Hedge, 

Sweet, & Levy, 1988; Kamgar-Parsi & Kamgar-Parsi, 1992; Lai & Coghill, 1992). In 

recent years, time based penalty parameters are proposed to overcome the tradeoff 

problems encountered in using penalty function approach. Wang (1991) used 

monotonically time-varying penalty parameters for solving convex programming 

problems. Dogan & Guzelis (2006) proposed linearly increasing time-varying 

penalty parameters for solving clustering problems. Here, we propose to use time 

varying penalty parameters that take zero values as a starting value and then are 

increased in a linear fashion in a stepwise manner to reduce the feasible region and 

also by updating all the neurons synchronously, better simulation results are 

obtained.  

 

The proposed gradient network algorithm can be summarised by the following 

pseudo-code. 

 

Step 1. Construct an energy function for the considered problem using a penalty 

function approach. 

 

Step 2. Initialize all neuron states to random values. 

 

Step 3. Select the slope of the activation function (λ) and step sizes (η). 

 

Step 4. Determine penalty parameters  
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Step 4.1 Select C (the coefficient of the inequality constraint) and assign zero 

as initial value to other penalty parameters A, B and D. If the constraint associated 

with parameter C is satisfied, proceed to Step 4.2 otherwise go back to Step 4.1. 

 

Step 4.2 Select D (a higher value than C to increase the effect of equality 

constraint), and use the predetermined value of C (without taking into 

consideration of the effect of parameter A and B) to check whether both of the 

constraints associated with these terms are satisfied. If yes go to step 4.3, 

otherwise to step 4.4. 

 

Step 4.3. Select B (a higher value than D), assign 1 to A, and use the 

predetermined values of C, D together with B to check whether all of the 

constraints associated with these terms are satisfied. If yes go to step 5, otherwise 

to step 4.4.  

 

Step 4.4. Increase the value of parameter whose associated constraint is not 

satisfied. 

 

Step 5. Repeat n times: 

    

Step 5.1. Update U using equations (5.7) and (5.8), and then compute V by 

V=g (U). 

 

Step 6. If the energy has converged to local minimum proceed to step 7, otherwise 

go back to step 5. 

 

Step 7. Examine the final solution to determine feasibility and optimality. 

 

Step 8. Adjust parameters A, B, C, D if necessary to obtain a satisfactory solution, 

reinitialize neuron states and repeat from step 5. 
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5.3.6 An example 

 

We explain the procedure with a 5-job 3-machine identical parallel machine 

scheduling problem. After constructing the energy function for this problem, all 

neuron states are initialized to random values chosen uniformly from the interval 

[0,1]. In the proposed approach, we firstly suggest to satisfy the inequality constraint 

by penalizing it.  In the first phase of the simulation (for the first 2000 iterations), 

initial value of the penalty parameter C is chosen as 8. Because other penalty 

parameters are not taken into consideration, they are equal to zero. Since this 

inequality constraint is satisfied after 2000 iterations, it is decided to proceed to the 

next phase. In the second phase (for iterations from 2001 to 4000), one of the 

equality constraints (binary constraints) is taken into consideration, and its associated 

parameter D is chosen as 20, a value greater than C.  The predetermined value of C, 

8, is used to penalize the inequality constraint. Both of the constraints are satisfied. 

Thus, it is decided to proceed to the next phase (for iterations from 4001 to 5000). In 

this phase, all of the constraints are tried to be satisfied. Together with the 

predetermined values of C and D, the penalty parameter B belonging to the 

assignment constraint is chosen as 100 (a value greater than other parameters). Since 

A belongs to the original objective function, it is not penalized, and we assign 1 to A. 

After running simulations with all these 4 penalty terms, the feasibility and 

optimality of the final solution is checked. It is seen that except the inequality 

constraint, being violated with a small percentage error, all of the constraints are 

satisfied. Therefore, it is decided to enhance the weight of this constraint, and then 

value of its parameter, C, is increased to 600. Optimal solution is found at iteration 

5100. All of the constraints were met satisfactorily, and the cost value is 3.1. In Table 

5.1, values of penalty parameters used during the solution of the problem considered 

are displayed. Figure 5.4 illustrates the evolution of the energy of the network during 

simulation and the penalty parameter values in four phases of simulation. As it is 

shown in this figure, in each phase of the simulation, the values of the parameters 

that result a cost value of zero is tried to be found. By increasing the penalty 

coefficient of each constraint in a stepwise manner, the feasibility region is aimed to 

be narrowed. Since all the constraints are taken into consideration during iterations 
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4001 to 5000, at the beginning of the simulation, the cost value increases from zero 

to higher values. But after an oscillation process the states of the network converge, 

however, a small cost value of 0.03 comes from the violation of the inequality 

constraint whose satisfaction ensures that the makespan is at least the completion 

time of each machine. Therefore, by only penalizing this inequality with a high value 

of 600, an optimal solution is obtained. 

 
Table 5.1 Penalty parameter values in four phases of simulation 

   Penalty Coef. 

 Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

 

 
 

 

5.4 Simulation Results  

 

A simulation experiment was conducted to test the effectiveness of the proposed 

gradient network approach in terms of solution quality. The initial conditions of the 

Figure 5.4 Energy  evolution during simulation 

A=B=D=0; C=8 A=B=0;C=8; D=20 

A=1; B=100; C=8; D=20 

A=1;B=1; 
C=600; D=1 
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network and the processing times of jobs were chosen randomly from uniform 

distributions on [0,1], and [1,3], respectively. In tables 5.2-5.12, penalty coefficients 

of the proposed gradient network and in table 5.13, other parameters which were 

determined empirically by running trial simulations are given, respectively. 

 

For each problem size, the gradient network was run for 20 different initial 

conditions on 5 different datasets. It is to be noted that the same set of penalty 

parameters are tried to be found for all the test sets of each problem size during 

simulations. By tuning the parameters for each dataset, it is possible to improve the 

performance of the proposed network.  

 
Table 5.2 Penalty coefficients during four phases of simulations for n=5, m=3 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

 
Table 5.3 Penalty coefficients during four phases of simulations for n=10, m=3 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

 
Table 5.4 Penalty coefficients during four phases of simulations for n=20, m=3 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 
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Table 5.5 Penalty coefficients during four phases of simulations for n=50, m=3 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

 

Table 5.6 Penalty coefficients during four phases of simulations for n=100, m=3 

   Penalty Coef. 

 Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

 
Table 5.7 Penalty coefficients during four phases of simulations for n=500, m=3 

   Penalty Coef. 

 Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 80 

4001:5000 1 450 8 80 

5001:5100 1 1 500 1 

 
Table 5.8 Penalty coefficients during four phases of simulations for n=10, m=5 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

 
Table 5.9 Penalty coefficients during four phases of simulations for n=20, m=5 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 10 0 
2001:4000 0 0 10 30 

4001:5000 1 100 10 30 

5001:5100 1 1 600 1 
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Table 5.10  Penalty coefficients during four phases of simulations for n=50, m=5 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 10 0 
2001:4000 0 0 10 30 

4001:5000 1 100 10 30 

5001:5100 1 1 600 1 

 

Table 5.11 Penalty coefficients during four phases of simulations for n=100, m=5 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 10 0 
2001:4000 0 0 10 30 

4001:5000 1 100 10 30 

5001:5100 1 1 600 1 

 
Table 5.12 Penalty coefficients during four phases of simulations for n=500, m=5 

    Penalty Coef. 

Iterations 
A B C D 

1:2000 0 0 8 0 
2001:4000 0 0 8 70 

4001:5000 1 300 8 70 

5001:5100 1 1 400 1 

 
Table 5.13 Other Parameters used in the simulation 

m n ηCmax ηX λX 

3 5 0.001 0.1 1 

3 10 0.001 0.1 1 

3 20 0.001 0.1 1 

3 50 0.001 0.1 1 

3 100 0.001 0.1 1 

3 500 0.0008 0.1 1 

5 10 0.001 0.01 1 

5 20 0.0008 0.01 1 

5 50 0.0008 0.1 1 

5 100 0.0008 0.1 1 

5 500 0.0008 0.1 1 
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The proposed procedure was implemented in Matlab language (Version 6.5) and 

run on a PC with a Pentium IV, 2.6 GHz processor having a 512 MB of RAM. In 

tables 5.14-5.24, the solutions obtained by the gradient network using the determined 

parameters are compared with those of the well known LPT heuristic and with the 

optimum solutions found by Lingo (version 8.0), a linear programming software 

package, in terms of Best Cmax (cost of the best solution obtained by the gradient 

network), Avg. Cmax (cost of the average solution obtained by the gradient 

network), Worst Cmax (cost of the worst solution obtained by the gradient network), 

and % deviations. In these tables, columns (6) and (7) represent the % deviations of 

the proposed gradient network solution from the LPT rule solution and from the 

optimal solution, respectively. The % deviations are given by 

 

%100*
)max(

)max()max(.%
LPTC

LPTCnetworkGradientCAvgLPTfromdeviation −
=  

%100*
)max(

)max()max(.%
optimalC

optimalCnetworkGradientCAvgoptimalthefromdeviation −
=

 
where Avg. Cmax(Gradient network) is the average gradient network solution of the 

20 runs, Cmax(LPT) is the LPT solution, and Cmax(optimal) is the optimal solution 

obtained by the linear programming solver. The percentage of times, which resulted 

in a feasible solution by the network, was also displayed in the last columns of these 

tables. It is obvious that the negative % deviation values from the LPT dispatching 

rule represent the % improvement realized by the gradient network. 

 

As our primary goal was to compare the proposed network solution with the LPT 

rule and with the optimal solutions, in terms of solution quality, the CPU times 

required for solving each data set are not given. But from the simulation experiments, 

it is seen that when compared with the very long solution times needed to obtain the 

optimal solutions by the Lingo software, the proposed network could converge to 

valid solutions in reasonable times in 13.18 seconds for n=3, m=5 and in 406.27 

seconds for n=500 m=5. Obviously, by the implementation of parallel neural 

processing, significant reductions can be obtained in computational time.  
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Table 5.14 Results for m=3, n=5 over 5 problems  

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

3.1 3.1 3.1 3.1 3.1 0.00 0.00 100% 

4.69 4.69 4.69 4.69 4.69 0.00 0.00 100% 

3.55 3.55 3.55 3.55 3.55 0.00 0.00 100% 

2.98 2.98 2.98 2.98 2.98 0.00 0.00 100% 

3.02 3.02 3.02 3.02 3.02 0.00 0.00 100% 

 
Table 5.15 Results for m=3, n=10 over 5 problems  

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

7.33 7.54 7.67 7.59 7.21 -0.66 4.57 100 % 

6.97 7.21 7.47 7.45 6.92 -3.22 4.19 100 % 

7.28 7.56 7.72 7.69 7.2 -1.69 5.00 

 

100 % 

6.79 7.11 7.30 7.46 6.72 -4.69 5.80 100  % 

 6.77 7.01 7.31 7.44 6.72 -5.78 4.31 100 % 
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Table 5.16 Results for m=3, n=20 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent 

Deviation  

from the 

LPT 

solution 

(6) 

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

13.24 13.53 13.85 13.37 13.05 1.19 3.68 100 % 

13.84 14.24 14.46 14.01 13.74 1.64 3.64 100 % 

13.03 13.42 13.63 13.40 12.92 0.15 3.87 100 % 

14.25 14.54 14.76 14.60 14.05 -0.41 3.48 100  % 

13.35 13.60 13.82 13.46 13.12 1.04 3.66 100 % 

 
 

Table 5.17 Results for m=3, n=50 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

33.53 33.84 34.07 33.70 33.34 0.41 1.50 100 % 

30.58 30.95 31.14 30.75 30.36 0.65 1.94 100 % 

31.47 31.85 32.15 31.65 31.38 0.63 

 

1.49 100 % 

34.53 35.41 35.77 35.32 34.92 0.25 1.40 100  % 

34.68 35.10 35.30 34.88 34.51 0.63 1.71 100  % 
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Table 5.18 Results for m=3, n=100 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

70.00 70.28 70.58 70.55 69.91 -0.38 0.53 100 % 

66.65 66.94 67.14 67.09 66.45 -0.22 0.73 100 % 

68.42 68.85 69.10 69.04 68.39 -0.27 0.67 100 % 

66.11 66.73 66.52 66.73 66.09 0.00 0.97 100  % 

65.85 66.15 66.33 66.35 65.69 -0.30 0.70 100  % 

 
Table 5.19 Results for m=3, n=500 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

338.22 

 

338.22 

 

338.22 

 

338.51 338.18 -0.0856 0.012 95 % 

329.80 330.59 331.28 330.11 329.78 0.145 0.245 100 % 

332.91 333.80 334.66 332.91 332.58 0.267 0.367 100 % 

330.02 331.06 332.07 330.28 329.95 0.236 0.336 100 % 

332.45 333.48 334.43 332.78 332.45 0.21 0.309 100 % 
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Table 5.20 Results for m=5, n=10 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

3.43 3.53 3.68 3.43 3.43 2.91 2.91 100 % 

3.38 3.76 3.97 3.79 3.38 -0.79 11.24 100 % 

3.64 3.85 3.97 3.68 3.57 4.35 7.56 100 % 

4.03 4.16 4.24 4.03 4.03 3.22 3.22 100 % 

3.57 3.67 3.73 3.53 3.53 3.97 3.97 100 % 

 

Table 5.21 Results for m=5, n=20 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

7.43 7.78 7.91 7.37 7.28 5.56 6.87 100 % 

7.68 7.95 8.08 7.62 7.49 4.33 6.14 100 % 

8.13 8.24 8.37 7.8 7.76 5.64 6.18 100 % 

7.79 7.98 8.13 7.69 7.51 3.77 6.26 100 % 

8.55 8.77 8.92 8.29 8.18 5.79 7.21 100 % 
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Table 5.22 Results for m=5, n=50 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

20.49 20.86 21.09 20.28 20.22 2. 86 3.16 100 % 

21.70 22.17 22.42 21.55 21.49 2.88 3.16 100 % 

18.69 18.94 19.15 18.42 18.40 2.82 2.93 100 % 

20.71 21.11 21.33 20.37 20.33 3.63 3.83 100 % 

19.79 20.01 20.24 19.43 19.41 2.98 3.09 100 % 

 
Table 5.23 Results for m=5, n=100 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent  

Deviation  

from the 

LPT 

solution 

(6)   

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

41.65 41.87 42.06 41.24 41.20 1.53 1.63 100 % 

40.16 40.56 40.74 39.78 39.77 1.96 1.99 100 % 

41.90 42.12 42.28 41.36 41.34 1.84 1.89 100 % 

40.20 40.55 40.69 39.83 39.82 1.80 1.83 100 % 

41.54 41.89 42.06 41.19 41.15 1.70 1.8 100 % 
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Table 5.24 Results for m=5, n=500 over 5 problems 

Gradient Network 

Best 

Cmax 

(1) 

Avg. 

Cmax 

(2) 

Worst 

Cmax 

(3) 

LPT 

(4) 

Optimum 

(5) 

Percent 

Deviation  

from the 

LPT 

solution 

(6) 

Percent 

Deviation  

from the 

optimal 

solution 

(7) 

Percent 

Feasibility 

of 

Computed 

Solutions 

(8) 

199.54 200.15 200.61 200.77 198.97 -0.3088 0.59 95 % 

199.54 200.02 200.33 200.77 199.04 -0.37 0.49 100 % 

206.42 206.69 207.34 206.33 204.58 0.174 1.03 100 % 

197.14 198.18 198.8 198.62 196.85 -0.22 0.676 100 % 

194.56 195.32 196.38 195.58 193.86 -0.13 0.753 100 % 

 

To interpret the findings in a table, Table 5.14 is considered. For all the 5 data 

sets, 20 out of the 20 runs of the proposed network resulted in a feasible solution, 

hence percent feasibility is 100 %. The average, worst and the best cost of the 20 

feasible solutions for the first dataset are equal to the value of the global optimal 

solution, 3.1. Similarly, if we consider Table 5.23, for the first dataset, again, 100 % 

of the runs conducted by the proposed network resulted in a feasible solution. The 

average Cmax of the feasible solutions is 41.87. It is 1.53 % more costly than the 

result of LPT rule, and 1.63 % more costly than the global optimal solution. The best 

makespan value produced by the gradient network is 41.65, which is 0.99 % 

([(41.65-41.24)*100]/41.24) above the LPT result and 1.09 % ([(41.65-

41.20)*100]/41.20) above the global optimal solution. 

 

According to these findings, it is clear that the initial conditions of the network 

appear to have a serious impact on the solution quality. For example in Table 5.20, 

for n=10 and m=5, although the proposed network results in gaps between 2.91 and 

4.35 % from the LPT solution, on average, it outperforms the LPT heuristic for one 

of the datasets. In the same table, if the results obtained using the first data set are 

considered, it is seen that although the average makespan from the 20 different initial 

runs is found as 3.53, the best makespan out of the 20 runs, produced by the 

proposed network is equal to the optimal solution, 3.43. In addition, although the 
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average Cmax results obtained by the proposed network are above the LPT results 

for the 4 data sets, the best Cmax results outperform the LPT rule in 4 data sets. 

 

In all the simulations carried out to show the performance of the network, 

convergence to valid schedules is achieved and better results are obtained for small 

number of machines and large number of jobs. If all the test cases are considered, the 

proposed network is, on average, able to produce a solution with a makespan value, 

which is 1.07 % above the LPT result. By tuning the penalty coefficients for each 

dataset, it is possible to improve the convergence and the optimality of the solutions. 

On the other hand, besides its convergence to valid schedules, convergence to good 

quality solutions of the proposed network points out its general applicability in other 

scheduling environments.   

 

5.5 Conclusions 

 

This study has presented a dynamical gradient network for solving the identical 

parallel machine scheduling problem with the makespan criterion which is known to 

be NP-hard even for the case of two identical parallel machines. Focus of this chapter 

has been on demonstrating the optimization capabilities of the proposed network by 

solving a set of randomly generated problems. The proposed Hopfield-like network 

uses time-varying penalty parameters that start from zero and increase in a stepwise 

manner during iterations to overcome the tradeoff problem of the penalty function 

method, one of the important drawbacks of the penalty function approach. To 

analyze the performance of the network, it is compared with the well-known LPT 

heuristic commonly used to solve the problem under study, and also with the optimal 

solutions in terms of the solution quality. The simulation experiments demonstrated 

that the proposed network generated feasible solutions in all the cases, and in some 

of the data sets it found smaller makespan compared to LPT. In general, for all the 

instances, the average deviation percentage of the proposed network is 1.07 % above 

the LPT heuristic. 
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By conducting several simulation experiments, the influence of different 

initializations schemes was investigated on the solutions of the problem considered. 

The analysis results showed that the percent error of the network is very sensitive to 

the selection of the starting points and the choice of the parameters used in 

simulation.   

 

The contribution of this study is two fold. We propose to use a novel time varying 

penalty method that guarantees feasible and near optimal solutions for solving the 

identical parallel machine scheduling problem with the makespan criterion. Although 

a large body of literature exists for solving identical parallel machine scheduling 

problem with the makespan minimization criterion, to the best of our knowledge, 

there is no previously published article that tried to solve this NP-hard problem using 

neural networks. Therefore, this study will also make a contribution to the scheduling 

literature.  

 

Several issues are worthy of future investigations. First, further studies will be 

focused on selecting the parameters of the network automatically rather than 

choosing by trial and error, which is one of the drawbacks of neural networks. 

Second, extension of the results to large size problems will be worthwhile. Finally, 

extension of the results to different manufacturing scheduling environments is 

important for industrial applications, and implementation of the network in hardware 

can make progress in computational efficiency.  
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CHAPTER SIX 

SOLUTION of MULTI-MACHINE EARLINESS AND TARDINESS 

SCHEDULING PROBLEM USING AN INTERCONNECTED NEURAL 

NETWORK APPROACH 

 

 

6.1 Introduction 

 

With the successful implementation of the Just-in-Time concept in 

inventory/production management in today’s manufacturing environments, it is 

needed to complete the jobs as close as possible to their due dates. In other words, 

finishing jobs earlier than the due dates is considered as undesirable as finishing jobs 

late. Therefore, both early and tardy completion of a job with respect to its due date 

is penalized. If the jobs are completed earlier than their due dates, an earliness 

penalty will be incurred which can be regarded as a holding cost for finished goods, 

deterioration of perishable goods and opportunity costs. If the jobs are completed 

later than their due dates, a tardiness penalty which can be regarded as the 

backlogging cost including the cost of customer compensation for missing the due 

date or the loss of goodwill will be incurred. These costs motivated researchers to 

consider both earliness and tardiness (E/T) as penalties in the objective function of a 

schedule. In recent years, majority of scheduling studies on E/T have dealt with 

single machine scheduling problems. While Kanet (1981), Sundararaghavan & 

Ahmed (1984), Hall (1986), Bagchi, Sullivan, & Chang (1986) studied single 

machine models with common due dates for all jobs, Abdul-Razaq & Potts (1988), 

Ow & Morton (1988), Ow & Morton (1989) considered distinct due dates for each 

job.  

 

The single machine E/T problem introduced by Kanet (1981) and Sidney (1977), 

in its simplest form, is to schedule N jobs on a single machine to minimize the 

weighted differences between job completion times and due dates. Since then, many 

researchers worked on various extensions of the problem. For a detailed survey of 

the earlier applications, refer to Rachavachari (1988) and Baker & Scudder (1990).
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However, the E/T literature becomes scarce when we consider the problem of 

scheduling jobs on multiple machines. Sundararaghavan & Ahmed (1984), Arkin & 

Roundy (1991), De, Ghosh, & Wells (1994) are known to be the first researchers 

dealing with the problem of scheduling N jobs on M identical parallel machines with 

the objective of minimizing the total penalty costs for E/T.   

 

Heady & Zhu (1998) studied the problem of scheduling N jobs, with sequence 

dependent setup times, on identical parallel machines to minimize the sum of 

weighted E/T, and proposed a heuristic algorithm to solve it. For the same objective, 

Sivrikaya-Serifoglu & Ulusoy (1999) presented two different genetic algorithm 

approaches to solve the problem of scheduling jobs with sequence dependent setup 

times on two types of parallel machines; uniform and identical. Balakrishan, Kanet, 

& Sridharan (1999) proposed a compact mixed integer formulation for scheduling 

jobs with sequence dependent setup times on uniform parallel machines, and 

evaluated its performance on small sized problems. In another study, Radhakrishnan 

& Ventura (2000) employed simulated annealing to schedule jobs with sequence 

dependent setup times on identical parallel machines to obtain near optimal 

solutions. Following this work, Sun & Wang (2003) proposed a dynamic 

programming algorithm and two heuristics to minimize the total weighted earliness 

and tardiness for identical parallel machine scheduling problem. 

 

In this chapter, we study the problem of scheduling N jobs with non-common due 

dates and sequence-dependent set-up times on M non-identical machines. This is an 

NP-hard problem since the special case with a single machine is even known to be 

NP-hard (Garey, Tarjan, & Wilfong, 1988). In most of the machine scheduling 

researches sequence-dependent set-up times were not considered, and the set-up 

times were assumed to be sequence independent and to be a part of the job 

processing times. Scheduling problems with E/T measures of performance in the 

presence of sequence-dependent set-up times are mathematically complex to solve, 

and optimal solutions cannot be obtained even for problems of reasonable size, 

therefore heuristics have to be utilized to provide good near optimal solutions. 

Despite a large number of approaches existing in the literature, to find an efficient 
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method to obtain optimal solutions in polynomial time motivated the researchers to 

apply neural networks as a promising approach to scheduling problems and over the 

last decades, there has been an explosion of interest in using Artificial Neural 

Networks (ANNs) for the solution of various scheduling problems. Most of the 

scheduling problems are solved using Hopfield-like networks. However, by 

performing gradient descent on the energy function, the Hopfield model gets easily 

trapped in local minimum states, and this causes decreasing efficiency especially in 

large sized problems. Additionally, determining the appropriate values of the penalty 

parameters, network parameters and initial states are other critical issues associated 

with this model.  

 

To lessen the burden of computations for determining the proper values for the 

penalty parameters and to obtain feasible results, Takefuji, Lee, & Aiso (1992) and 

Lee, Funabiki, & Takefuji (1992) introduced a neural network called the maximum 

neural network. This network is based on a competitive Hopfield-type network. The 

significant advantage of using the maximum neural network is that it does not 

demand fine-tuning of parameters, as most Hopfield networks do. In this network, 

which is composed of groups of neurons, a competitive winner-take-all rule is 

imposed for updating the neurons. Thus, the neuron with the maximum input per 

group is the only one that has nonzero output. This model has shown to provide 

powerful approaches for combinatorial optimization problems (Lee, Funabiki, & 

Takefuji, 1992; Lee & Takefuji, 1992; Takefuji, 1992; Funabiki, Takenaka, & 

Nishikawa, 1997) and for polygonal approximation (Chung, Tsai, Chen, & Sun, 

1994).  

 

Recently, new maximum neural models are proposed by Galan-Marin & Munoz 

Perez (2001) for the n-queens and the bipartite subgraph problems, and by Galan-

Marin, Merida-Casermeiro, & Munoz-Perez (2003) for solving the maximum clique 

problem. From the literature reviewed, it is seen that neural networks seldom include 

competitive architecture into the network for solving the scheduling problems.  
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The objective of this research is to utilize ANNs to tackle the problem of 

scheduling a set of independent jobs including sequence dependent setup times, on 

non-identical multiple machines to minimize the total weighted earliness and 

tardiness. Here, by non-identical machines, we mean unrelated machines, where each 

job on each machine has a different processing time and complicates the problem. In 

addition, the due dates of the jobs are distinct which complicates the problem further. 

To the best of our knowledge, there are no published articles in the literature that 

tried to solve this problem except the study of Zhu & Heady (2000) where they 

provided a mixed integer programming formulation to represent the problem. Thus, 

this study will be the first attempt to solve the problem considered using neural 

networks. We employ in this chapter a dynamical gradient network approach to 

attack the problem. The proposed Hopfield-like system is composed of two 

maximum neural networks, three piecewise linear and one log-sigmoid network, all 

of which are connected to each other. The aim of using maximum networks is to 

reduce the network complexity and to obtain a simplified energy function. After the 

appropriate energy function was constructed by using a penalty function approach, 

the dynamics are defined by steepest gradient descent on the energy function and the 

proposed approach is illustrated through the case of an 8 jobs to be processed on 3 

machines in a JIT manufacturing environment. The rest of the chapter is organized as 

follows. In Section 2, a mixed integer programming formulation is presented for the 

problem addressed in this chapter. Section 3 describes the proposed coupled network. 

Section 4 discusses the computational experience and the proposed penalty 

determination process. Finally, Section 5 concludes the chapter with directions for 

future work  

6.2 Problem Statement and Formulation 

 

In this section, we deal with the problem of job scheduling on non-identical 

multiple machines to minimize the total penalty costs for earliness and tardiness with 

sequence dependent setup times. The problem includes non-common due dates and 

non-uniform cost penalties. We are given N independent jobs J = {J1,…,JN} to be 

scheduled on M non-identical machines where N ≥ M.  
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We use the notation of N/M/ET with sequence-dependent setups to designate this 

problem. 

 

The notation for the problem: 

 

β: a large number 

di: due date for job i 

ei: earliness cost for job i 

Ei: Earliness of job i 

pim: processing time for job i using machine m 

sji: setup time for job i when it immediately follows job j 

s0i: setup time for job i when it is the first in queue 

ti: tardiness cost for job i 

Ti: Tardiness of job i 

Xi: completion time of job i 

Yijm: 1 if job i precedes job j on machine m, 0 otherwise 

Zim: 1 if job i is processed on machine m, 0 otherwise 

 

The multi-machine earliness-tardiness problem can be formulated by using the 

following mixed integer programming (MIP) model (Zhu & Heady, 2000). 

 

Objective function: 

)(min
1

iii

N

i
i TtEe +∑

=

                    (6.1) 
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NiZ
M

m
im ,...,11

1
==∑

=

(6.3) 

MmNiijZY im

N

j
ijm ,...1,,...,1,

1
==≠≤∑

=

     (6.4) 



 

 

104 

MmNjijZY jm

N

i
ijm ,...1,,...,1,

0

==≠=∑
=

                                             (6.5) 

MmNjNiijspYXX jiimjimji ,...,1,...,1,0,,...,1, ===≠−+≥−− ββ    (6.6) 

∑
=

==
N

j
ojm MmY

1
,...,11            (6.7) 
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NiETX iii ,...,10,, =≥           (6.10) 

 

where the processing times on each job pim are deterministic and known in 

advance, preemption of jobs is not allowed. Let Xi be the completion time and di the 

due date of job i. Job i is early if Xi<di; it is tardy if Xi>di; and it is on time if Xi=di. 

The earliness and tardiness of job i are defined by Ei= max(0; di−Xi) and  Ti= max 

(0; Xi−di), respectively.  

 

All decision variables are non-negative and Yijm and Zim are binary valued 

variables. It is assumed that a dummy job 0 which is always at the first position on 

each machine is present. Obviously, we can write Z0m=1 and X0 = 0. The objective 

function to be minimized given in (6.1) was built by the sum of cost-weighted 

deviations in job completion times from the job due dates. The first constraint 

defines the relationship between the completion time, the due date, and earliness and 

tardiness of each job. The second constraint states that each job is processed on one 

and only one machine. The third and fourth constraints ensure that each job (but not 

the last scheduled job) must come immediately before, and each job (but not the first 

scheduled job) must come immediately after, only one other job. The fifth constraint 

guarantees that the completion time of job i is far enough after that of job j to include 

the processing time and setup time for job i. By the inclusion of constraint given in 

(6.7), the set-up time for the real job assigned to the first position in the sequence on 

each machine will be taken into consideration. While the constraints given in (6.8) 

and (6.9) correspond to the integrality constraints, the last constraint given in (6.10) 

imposes the variables to be positive. 
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6.3 Design of the Proposed Interconnected Neural Network  

 

In this section, we describe how the proposed dynamical network can be used to 

solve the considered problem presented in the previous section. The proposed 

approach is an extension of the original formulation given in Hopfield & Tank 

(1985) and Hopfield (1984). Firstly, the network architecture is explained, and then it 

is followed by the derivation of the energy function representing the proposed 

network. Then, the dynamics are obtained and the convergence of the proposed 

network is discussed. Finally, the proposed network is explained with an example. 

 

6.3.1 The Network Architecture 

 

The proposed coupled gradient network consists of six interconnected sub-

networks: two maximum neural networks; an N×M, Z and a 1×N×M YO network, 

three N×1 piecewise linear; namely E, T and X networks and one N×N×M log-

sigmoid Y network where N and M are the number of jobs and the number of 

machines, respectively. One of the maximum neural networks (Z network) is used to 

assign each job on only one machine and the other one (YO network) to assign a 

dummy job 0 at the beginning of the sequence before all the real jobs on each 

machine. Three piecewise linear networks called the E, T and X networks are used to 

represent continuous variables Ei, Ti and Xi for i=1,…,N. The log-sigmoid network Y 

is used to represent binary valued variables, Yijm for i=1,…,N; j=1,…,N; m=1,…,M.  

 

The input-output scheme for each of the neural sub-networks is shown in Figure 

6.1. The input to the ith node will be denoted by UEi in the E network, by UTi in the 

T network, by UXi in the X network, by UZim for the (i,m)th neuron in the Z 

network, UY0jm for the (j,m)th neuron in the YO network, and by UYijm for the 

(i,j,m)th neuron in the Y network. The dynamics of the coupled net will be defined in 

terms of these input variables. 
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Similarly, node outputs (states) of the E,  T,  X, and Z networks will be the 

variables VE1, VE2,…,VEN; VT1, VT2,…,VTN; VX1, VX2,…,VXN; and VZ11, 

VZ12,…,VZNM, respectively. It is to be noted that rather than using network Y to 

represent variables VY0jm, here, we use network YO to represent the dummy jobs at 

the beginning of the sequence before job j on machine m. Therefore, the variables 

VY0jm for j=1,2,..,N ; m=1,2,...,M, and VYijm for i=1,2,...,N ; j=1,2,...,N; and 

m=1,2,...,M will demonstrate node outputs of the YO network and Y network, 

respectively. Figure 6.2 given below shows the arrangement of the precedence units 

and Figure 6.3 depicts the connections of the precedence units, Yijm on different 

machines. Other types of units are arranged in similar ways, but are not represented 

as multidimensional arrays.  

 

 

 

 

 

 

 

 

Figure 6.1 The input-output scheme for the neurons representing each unit 
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6.3.2 The Energy function 

 

The energy function for this network is constructed using a penalty function 

approach. That is, the energy function E consists of the objective function 

 

 
 

 
 

 

Figure 6.2 Arrangement of precedence units 

Row 

Column  Precedence units on machine m-1

Precedence units on machine m
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on machine m

Figure 6.3 Connections of precedence units Yijm on different machines 
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 plus a penalty function P(E, T, X, Z,Y, YO) to enforce the constraints. 

The penalty function involves the sum of the penalty terms each of which 

corresponds to each constraint of the problem.  

 

The first penalty term, P1= 2

1
)( iii

N

i
i dETX −+−∑

=

, will add a positive penalty if 

the solution does not satisfy any of the equality constraints given in (6.2), and will 

yield zero when these equality constraints are satisfied.  

 

To prevent the assignment of each job on more than one machine, the second 

penalty term, P2= 2

1 1
)1( −∑ ∑

= =

N

i

M

m
imZ , which will add a positive penalty if the solution 

does not satisfy any of the equality constraints given in (6.3), is included in the 

energy function.     

 

The third penalty term, P3, will add a positive penalty if the solution does not 

satisfy any of the inequality constraints given in (6.4). In accordance with this 

constraint, P3 will take the following form, P3= )(
1 1 ,1

im

N

i

M

m

N

jij
ijm ZY −∑∑ ∑

= = ≠=

ν , where v 

represents the penalty function. 00)(0)( 2 ≤=>= εεεεε allforvandallforv  and 

the functional form of this function is shown in Figure 6.4.  
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Figure 6.4 Penalty function for enforcing inequality constraints 

 

The fourth term P4 will add a positive penalty if any of the equality constraints 

given in (6.5) is violated. Therefore, P4 should be defined by  
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The fifth penalty term, P5, is responsible for satisfying the inequality constraints 

given in (6.6). Therefore it will yield zero when all these inequalities are satisfied. P5 

may be written as  
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To deal with the introduction of a dummy job 0 at the beginning of the sequence 

before all the real jobs on each machine, the sixth penalty term P6 is to be defined as 
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This term will add a positive penalty if any of the equality constraints given in 

(6.7) is violated. 

 

We require that Yijm and Zim є{0,1}. These constraints will be captured by the 

seventh and the eighth terms, P7 and P8, which will add a positive penalty if the 

binary constraints given in (6.8) and (6.9) are violated. Hence,  
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The non-negativity constraints given in (6.10) are not added to the energy 

function as penalty terms since these constraints will be captured by using an input-

output function, g, where 00)(0)( <=≥= εεεεε allforgandallforg . Its 

functional form is given in Figure 6.5. In other words, for zero and positive input 

values, the activation function will be linear, and so the outputs will be equal to the 

inputs of the neurons, and for the negative values the output values will be zero.  

 

Therefore, the penalty function for the coupled gradient network can be written as 

follows: 
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If we sum the objective function given in (6.1) and the penalty function, we will 

have the following energy function to be minimized: 
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where A,B,C,D,E,F,G,H,I and J are positive penalty coefficients. 

 

If we rewrite the energy function in terms of the output variables, we may obtain 
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Applying a winner take all (WTA) mechanism to the network, the energy terms 

with weighting factors C, G, H and I can be omitted from the energy function. The 

WTA learning rule guarantees the satisfaction of Eq. (6.3), that is, assignment of each 

job to only one machine. In addition, it ensures the binary constraint Zim є{0,1}.  

 

Similarly, by imposing WTA rule, the constraint ∑
=

=∀=
N

j
ojm mmY

1

,...,11  and 

the binary constraint Y0jm є{0,1} will also be satisfied. The energy terms for these 

constraints are also dropped from the energy function. By this way, these energy 

terms will be handled explicitly. Therefore, the energy function takes the following 

form: 
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The penalty term )1(
1 1 1

ijm
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 can also be eliminated from the energy 

function because these integrality constraints may be satisfied by using a sigmoidal 

type activation function for variables Yijm in obtaining the output values. Final form 

of the energy function can be written as follows. 
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Although the original energy function given by (6.13) includes many penalty 

terms to be minimized using a difficult trial-and error procedure, by imposing a 

competitive WTA rule for the updating of the neurons, we get rid of the trouble of 

determining the proper values for some of the weighting factors. We can see from the 

above equation that except the weighting factor of the original objective function, the 

resulting energy function includes only 4 penalty parameters to be determined.  

 

6.3.3 The Dynamics 

 

The dynamics for the coupled gradient network are obtained by gradient descent 

on the energy function. The motion equations for the neurons are obtained as 

follows:  
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For the E network 
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For the T network 
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For the Z network 
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For the Y network 

)19.6(
)))1(((

)(2)(
,0,1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−+−′+

−+−′
−=

∂
∂

−=
∑∑

≠=≠=

jmijjiijm

N

jkk
jmkjmim

N

lil
ilm

ijm

ijm

psVXVXVYvF

VZVYEVZVYD

VY
E

dt
dUY

ββ

ν

 

 



 

 

114 

For the YO network 
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where ν’ is the derivative of the penalty function ν, and 

00)(02)( ≤=′〉=′ εευεεευ allforandallfor .  

 

The states of the neurons are updated at iteration k by using the first-order Euler 

method as follows: 

dt
dUEUEUE i

E
k

i
k

i η+= −1                                                                          (6.21) 

dt
dUTUTUT i

Ti
k

i η+=   1-k                             (6.22) 

dt
dUXUXUX i

Xi
k

i η+=   1-k                        (6.23) 

dt
dUY

UYUY ijm
Y

k
ijm

k
ijm η+= −1                          (6.24) 

dt
dUY

UYUY jm
Y

k
jm

k
jm

0
0

1
00 η+= −           (6.25) 

dt
dUZ

UZUZ im
Z

k
im

k
im η+= −1           (6.26) 

 

where ηE, ηT,  ηX,  ηZ, ηY and ηY0 are positive coefficients which will be used to 

scale the dynamics of the six networks. 

 

Since the computation is performed in all neurons at the same time, the network 

operates in a fully parallel mode. Neuron outputs are calculated by V=g (U), where g 

(.) is the activation function, U is the input and V is the output of a neuron. For the 

nodes in the E, T and X network, the activation function, g, will be given by a 

piecewise linear function displayed in Figure 6.5, where 

00)(0)( <=≥= εεεεε allforgandallforg . In other words, 
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VEi=g(UEi) = UEi  for UEi ≥ 0; otherwise VEi=0                      (6.27) 

VTi=g(UTi) = UTi  for UTi ≥ 0; otherwise VTi=0                    (6.28) 

VXi=g(UXi) = UXi  for UXi ≥ 0; otherwise VXi=0                                    (6.29) 

 

The activation function for the nodes of the Y network will take the usual 

sigmoidal form. In other words, continuous relaxation is used for handling discrete 

variables in the Y network as follows: 

 

VYijm = g(UYijm) = logsig (λY×UYijm)  (a log-sigmoid function)     (6.30) 

where λY is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)). The 

functional form of this activation function is given in Figure 6.6. 

 

 

Figure 6.5 Activation function for continuous neurons of E, T and X networks 
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Figure 6.6 Activation function for neurons of the Y network 

 

 

 
                
 

 

 

 UYijm 

 VYijm 

Figure 6.7 Activation function for neurons of the Z network when there are two inputs 
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The neuron outputs of the Z and YO networks are updated by the maximum 

neuron model of Takefuji, Lee, & Aiso (1992) as below and its functional form is 

given in Figure 6.7. 
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6.3.4 Convergence 

 

In order to use the proposed Hopfield-like network for the solution of the 

problem, we have to prove the convergence of the network. To do so, we have to 

show that energy does not increase along the trajectories, energy is bounded below, 

solutions are bounded and time derivative of the energy is equal to zero only at 

equilibria. In the proposed network, although VEis, VTis, VXis, VZims and VY0jms 

are not differentiable functions of time t, they have right-hand derivatives.  

 

To prove the convergence of the proposed network, an extension of the La Salle’s 

invariance principle can be used (Sengor, Cakir, Guzelis, Pekergin, & Morgul, 1999). 

The Lemma below, which is needed for taking the time derivative of the energy, 

states that the chain rule is valid also for the right derivative. 

 

Definition: The right derivative of a function x(.) : nRR →  is defined as  

Δ
−Δ+

=
+

+→Δ

)()(lim:)(
0

txtx
dt

tdx  where +→Δ 0  means that Δ approaches zero 

throughout positive values only (Sengor, Cakir, Guzelis, Pekergin, & Morgul, 1999).  

 

Lemma: Consider the functions ( ) .:(.)),0[:. RDgandRDD g
n

g →⊂→∞⊂ψψ  

Let )( ψDIntt ∈ with Int stands for the set of interior points. Assume that g(.) is 
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continuously differentiable at ψ(t), and ψ(.) is right differentiable at t. Then, g ο ψ is 

right differentiable at t and ++ ∇=
dt

tdg
dt

tgd )()]([))(( ψψψ
ψ

o  (Sengor et al.,1999). 

 

Using the Lemma given above, the time derivative of the energy function E can 

be found as follows: 
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where 
V
E
∂
∂  is replaced by 

dt
dU− . For the neurons using a piecewise linear 

function, although the outputs of the neurons are not differentiable functions of time, 

the right derivative of the outputs with respect to the input variables exists. For 

example for the neurons of the E network, the time derivative of the neuron output i, 

dt
dVEi can be written as

dt
dUE

UE
VE

dt
dVE i

i

ii
+∂

∂
= . Here +∂

∂

i

i

UE
VE

will be equal to one for 

positive or zero inputs, and will be equal to zero for negative inputs. Therefore, the 

right derivative of the neuron output represented by VEi with respect to neuron input 

UEi can be written as below. 

 

⎩
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⎧ ≥

=
∂

∂
+ otherwise

UEif
UE
VE i

i

i

0
01  

 

It is equal to heaviside or the unit step function of UEi  represented by U(UEi), and 

is shown in Figure 6.8.  

 

 

Figure 6.8 Unit step function of UEi 
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As the same relation holds for the neurons of T and X networks which are also 

using a piecewise linear function, we can write  

⎩
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⎧ ≥

==
∂

∂
+ otherwise
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UTU
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i
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Therefore, it is obvious that the first three terms in equation (6.33) will be less 

than or equal to zero.  

 

Similarly, although the outputs of the Z and YO network are not differentiable 

functions of time, they have right-derivatives, and, for the neurons of the maximum 

neural network Z, we can write the right-derivative of the energy function with 

respect to time t as follows:  

 

dt
dUZ

UZ
VZ

dt
dUZ

dt
dVZ

dt
dUZ

dt
dE

im

im

im
N

i

M

m

im

im
N

i

M

m

im

+
= =

= =
+

∂

∂−
=

−
=

∑∑

∑∑

1 1

1 1  

 

Since VZims are piecewise constant functions of UZims, 0=
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. Therefore, 

the fourth term in equation (6.33) will be zero. For the YO network, we can write 
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In the same fashion, 0
0

0 =
∂

∂
+

jm

jm

UY

VY
and the sixth term in (6.33) will be zero.  
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≤ 0 so that the right-hand side of the equation 

given in (6.33) will be obviously negative. Combining this fact with the fact that the 

energy E is bounded below (since the cost is always greater than or equal to zero) we 

can conclude that the energy does not increase along trajectories, so we can write 

0≤+dt
dE . All trajectories go to the points where 0=+dt

dE . Here, it should be noted 

that if the points are equilibrium points then it can be seen that 0=+dt
dE .  

 

But for some points, even if 0=+dt
dE  there is a possibility that 

;0≠
dt

dUEi ;0≠
dt

dUTi ;0≠
dt

dUX i ;0≠
dt

dUZ mi 00 ≠
dt

dUY jm so the trajectories may 

not reach equilibrium points. 

 

Because VZims, VYijms and VY0jms are binary, they will be bounded. But there is 

no need to check whether VEis, VTis and VXis are bounded or not, since the 

trajectories may not reach equilibrium points. But this case is never observed during 

simulation. 

 

6.3.5 Selection of the Parameters 
 

In order to simulate the proposed network for solving the E/T problem described 

by the dynamics given in Section 6.3.3, some parameters should be determined by 
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trial and error. These are the penalty parameters A, B, D, E and F; the activation 

slope λY; the step sizes ηE, ηT, ηX, ηZ, ηY, ηYO, and the initial conditions.  

 

Because there is no theoretically established method for choosing the values of the 

penalty coefficients for an arbitrary optimization problem, the appropriate values for 

these coefficients can be determined empirically. That is simulation runs are 

conducted, and optimality and/or feasibility of the resulting equilibrium points of the 

system are observed. The network can be initialized to small random values, and then 

synchronous or asynchronous updating of the network may allow a minimum energy 

state to be attained. In order to ensure smooth convergence, step size must be 

selected carefully (Watta, 1996). 

 

The dynamics of the proposed Hopfield-like gradient network will converge to 

local minima of the energy function E. Since the energy function includes five terms, 

competing to be minimized, there are many local minima and a tradeoff exists among 

the terms. An infeasible solution may be obtained when at least one of the constraint 

penalty terms is non-zero. In this case, the objective function term will generally be 

quite small but the solution will not be feasible. Alternatively, a local minimum, 

which causes a feasible but not a good solution, may be encountered even if all the 

constraints are satisfied. In order to satisfy the each penalty term, its associated 

penalty parameter can be increased. But this causes an increase in other penalty 

terms and a tradeoff occurs. The penalty parameters that result a feasible and a good 

solution, which minimizes the objective function, should be found (Smith, 1999).  

 

Due to the problems of Hopfield like NNs in solving optimization problems, 

various modifications are proposed to improve the convergence of the Hopfield 

network. While several authors modified the energy function of the Hopfield 

network to improve the convergence to valid solutions (Aiyer, Niranjan, & Fallside, 

1990; Brandt, Wang, Laub, & Mitra, 1988; Van Den Bout & Miller, 1988), many 

others studied the same formulation with different penalty parameters (Hedge, 

Sweet, & Levy, 1988; Kamgar-Parsi & Kamgar-Parsi, 1992; Lai & Coghill, 1992). In 

a different study, Wang (1991) used monotonically time-varying penalty parameters 
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for solving convex programming problems. Here, we propose to use time varying 

penalty parameters that take zero values as a starting value and then to increase them 

in a linear fashion step by step to reduce the feasible region, and also to update all the 

neurons synchronously for obtaining better simulation results. 

 

The proposed gradient network algorithm can be summarized by the following 

pseudo-code. 

Step 1. Construct an energy function for the considered problem using a penalty 

function approach. 

Step 2. Initialize all neuron states to random values. 

Step 3. Select the slope of the activation function (λ) and step sizes (η) and 

determine the penalty parameters evolving with time. 

Step 4. Compute the motion equations by (6.15)-(6.20). Update neurons inputs U 

by the first-order Euler method which is explained through (6.21)-(6.26), and then 

update the neuron output of variables V using equations (6.27)-(6.32).  

Step 5. Repeat the iterations n times and check the cost terms of the energy 

function penalized. If the required criterion is met, go back to Step 3 to pass to other 

phase of the simulation. If the work is in the part of the simulation where all the 

constraints are taken into consideration, check whether the energy has converged to a 

local minimum. If yes, proceed to step 6 otherwise go back to Step 5. 

Step 6. If the energy has converged to local minimum, examine the final solution 

to determine feasibility and optimality.  

Step 7. Adjust parameters A, B, D, E, F if necessary to obtain a satisfactory 

solution, reinitialize neuron states and repeat from step 3. 

 

6.4 Simulation results 

 

In this section, a simulation experiment is conducted to test the effectiveness of 

the proposed gradient network approach on an example problem in terms of solution 

quality. Assume that we are given 8 jobs to be processed on 3 machines in a JIT 

manufacturing environment. Table 6.1 shows the processing times of each job on 

each machine. The setup time matrix S represents the setup time incurred between 
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the two jobs. For example S12=1.1 shows the setup time for job 2 when it 

immediately follows job 1. The setup time vector SO includes the setup times for 

each job when they are in the first position. While the due dates are denoted by the 

elements of vector d, vectors e and t depict early and tardy costs for each job.  

 

Table 6.1 Processing times on each machine 
Job\Machine M1 M2 M3 

JI 0.53 1.15 0.80 

J2 1.19 1.06 0.91 

J3 1.12 1.21 0.82 

J4 0.98 1.07 0.74 

J5 0.63 1.13 1.2 

J6 1.14 0.9 0.92 

J7 1.26 0.84 0.45 

J8 1.38 0.88 0.79 

 

0 1.11 1.29 1.21 1.11 1.02 0.91 0.77
1.23 0 1.16 1.07 1.16 1.22 0.89 1.13
0.91 1.05 0 1.10 0.98 0.74 1.13 1.08
1.45 0.88 1.05 0 1.13 1.16 0.88 1.12
0.98 0.92 0.85 0.91 0 0.85 1.13 1.21
0.56 1.10 1.09 1.30 0.69 0 1.09 1.24
0.82 1.17 0.59 0.89 1.13 1.14

=S

0 0.65
1.22 0.95 1.14 1.08 1.16 0.73 1.27 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

SO=[0.44 0.88 0.78 1.09 1.34 0.69 0.9 0.9] 

 

e=[3.31 1.26 0.76 3.74 3.79 4.79 1.12 4.0] 

 

t=[3.31 1.26 0.76 3.74 3.79 4.79 1.12 4.0] 

 

d=[12.95 9.02 13.83 15.03 15.03 11.49 11.44 16.45] 
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The proposed procedure was implemented in Matlab language (Version 6.5) and 

the initial conditions of the network were chosen randomly from uniform distribution 

on the interval [0,1]. A time-varying penalty parameter method is proposed to be 

used during simulation experiments. 

 

In the following paragraph, we solve the problem applying the steps of the 
proposed approach given in the previous section. 

 

Step 1. For the problem considered we have the following energy function 

obtained in (6.14) using a penalty function approach. 
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Step 2. All the neuron inputs are randomly chosen from uniform distribution on 

the interval [0,1], and the initial values of the neuron outputs are fixed using 

equations (6.27)-(6.32). 

 

Step 3. For the first phase of the simulation, the activation slope and step sizes are 

chosen as λY =300, ηE = 0.001, ηT = 0.005, ηX = 0.001, ηZ =1.0, ηY = 0.0005, and ηY0 

=1.  

 

We have 5 penalty parameters in the energy function given in (6.14). But, since 

the penalty parameter A belongs to the original objective function, here, we will only 

deal with the satisfaction of the constraints and try to determine the values of the 

penalty parameters enforcing the constraints which will guarantee a feasible solution. 

In the first phase of the simulation, it is decided to penalize both the inequality 

constraints and the equality constraints by using their associated parameters D and E. 

At this first stage, value of zero is assigned to the other parameters A, B and F. In this 

stage, our aim is to find the values of the penalty parameters D and E such that the 
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jobs assigned to the first position on each machine represented by the elements of the 

YO matrix with values 1, are also assigned to the same position on the job 

assignment matrix Z. We will stop running the iterations when this criterion is met.  

 

Step 4. The motion equations are computed by (6.15)-(6.20) and the neuron inputs 

U are updated by the first-order Euler method which is explained by the equations 

through (6.21)-(6.26), and then the neuron output of variables V are updated using 

equations (6.27)-(6.32). 

 

Step 5. After performing 1000 iterations, it is seen that this criterion is met and the 

best values of D and E are found as 3 and 0.1, respectively. Since we did not take 

into consideration all the constraints during this part of the simulation experiment, 

we continue the procedure starting from Step 3. 

 

In the second stage of the simulation experiment, it is decided to see the impact of 

the predetermined values of D and E on the results when other constraints and the 

original objective function are taken into consideration by weighting them with a 

value of 1. Smaller step sizes are used for updating the neurons of the Z and YO 

network and a larger step size value is used for updating the neurons of the Y 

network, which are determined empirically, not to cause a move up to a different 

region that violates the assignment of the jobs on the first position on each machine 

to the same machines on the Z matrix. In this part of the simulation experiment, the 

activation slope and the step sizes are chosen as λY =300, ηE = 0.001, ηT  = 0.005, ηX = 

0.001, ηZ  = 0.001, ηY = 0.05, and ηY0 = 1×10-6.  

 

Then we proceed to Step 4.  The motion equations are computed, neuron inputs U 

are updated by the first-order Euler method, and the neuron outputs V are updated 

using equations (6.27)-(6.32)  

 

Proceeding to Step 5, we repeat the iterations n times using the determined 

parameters. In addition to the 1000 iterations performed in the previous stage, 1000 

more iterations are made in this stage. It is seen that although the criterion satisfied in 
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the first stage is not violated, a cost of 21.65 is obtained. This cost implies that the 

terms, weighted with A and B in the energy function, are not satisfied. 

 

Since the necessary criterion of the cost function is still met in this stage and no 

local minimum is obtained, we again go back to step 3. 

 

At the beginning of this step, one important thing to be paid attention is assuring 

the satisfaction of the binary constraint YijmЄ {0,1}, which is included in the energy 

function. Therefore, the satisfaction of the binary constraints belonging to Yijms is 

checked, and it is seen that some of the Yijms are not binary. Since Yijms determine 

the precedence relationships among jobs, the next step should be to penalize the term 

associated with F to satisfy these constraints. Also, to ensure that Yijms are binary, a 

kind of mean field annealing is incorporated into the coupled network by slowly 

increasing the slope of the activation function during the running of the network. By 

this way, the slope of the activation function becomes time-varying and can be 

expressed as λ=λ(t)=λ0+λ1t where t is the computational time, λ0 and λ1 are constants 

which are determined empirically. Here, in our experiments, we use λ0=300, λ1=0.5 

and t represents the iteration number divided by 1500. Therefore, the time varying 

slope becomes λ(t)= 300+0.5×(iteration number/1500). By running trial simulation 

experiments using penalty terms of 1 for other terms, the best value for F that 

satisfies its related constraints is found as 5. Then we proceed to Step 4 and again 

compute the motion equations. We update neurons inputs U by the first-order Euler 

method, and then update the neuron output of variables V. 

 

In Step 5, 3000 more iterations were needed until all the cost terms are satisfied. 

Then, the energy function is checked, and since a cost of zero is obtained, work 

continues from step 6. 

 

In Step 6, we examine the final solution to determine feasibility and optimality. 

This is the optimum solution, since all the constraints are satisfied and a cost value of 

zero is obtained.   
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An optimal set of penalty parameters found for the proposed network are given in 

Table 6.2. The best values of the step sizes, which were determined empirically and 

used in all stages of the simulations and the slope values of the logsigmoid activation 

function, are given in Tables 6.3 and 6.4, respectively.  

 
Table 6.2 Penalty parameter values in three phases of simulation 

Iterations\ Penalty Coef. A B D E F 

1:1000 0 0 3 0.1 0
1001:2000 1 1 3 0.1 1 
2001:5000 1 1 1 1 5 

 

The evolution of the energy during the simulation of the network is given in 

Figure 6.9. As it is seen from this figure, after an oscillation process, the network 

converges to an optimal solution where the cost value is zero. 

 

 
 

 

 

 

 

 Figure 6.9 Energy evolution of the network during simulation 

A=B=F=0;
D=3; E=0.1 

A=B=F=1;
D=3; E=0.1 

A=B=D=E=1;F=5 
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Table 6.3 Step size values in three phases of the simulation experiment 

Iterations\Parameters ηE ηT ηX ηZ ηY ηYO 

1:1000 0.001 0.005 0.001 1 0.0005 1 
1001:2000 0.001 0.005 0.001 0.001 0.05 0.000001 
2001:5000 0.001 0.005 0.001 0.005 0.09 0.000001 

 
Table 6.4 Slope values in three phases of the simulation experiment 

Iterations\Parameters λY 

1:1000 300 
1001:2000 300 
2001:5000 300+0.5×(iteration/1500) 

 

From the simulation results Z11=Z23=Z32=Z43=Z51=Z61=Z72=Z82=1. According to 

the values of the assignment variables, job 1, job 5 and job 6 are performed on the 

first, job 3, job 7 and job 8 are performed on the second, and job 2, job 4 are 

performed on the third machine respectively. Y023=Y061=Y072=1 implies that job 6 is 

the first job to be performed on the first machine, job 7 is the first job to be 

performed on the second machine, and job 2 is the first job to be performed on the 

third machine. Since the variables that determine the precedence relations between 

the jobs are  Y151=Y611=Y382=Y732=Y243=1, the first job precedes job 5 on machine 1, 

job 6 precedes job 1 on machine 1, job 3 precedes job 8 on machine 2, job 7 precedes 

job 3 on machine 2, and job 2 precedes job 4 on machine 3. 

 

6.5 Conclusions 

 

In this chapter, the problem of scheduling a set of independent jobs with sequence 

dependent setups and distinct due dates, on non-identical multi-machines to 

minimize the sum of weighted earliness and tardiness was studied. A dynamical 

coupled network composed of two maximum, three piecewise linear and one log-

sigmoid sub-neural networks all of which interact with each other was proposed for 

the solution of the problem known to be NP-hard. By using the proposed 

interconnected network approach, the complexity of the considered problem which is 
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expressed with too many constraints was reduced. While some of the constraints 

were eliminated from the energy function using maximum networks, some were 

satisfied using a log-sigmoid network.  By this way, the effort of finding some 

penalty parameters was diminished, and by incorporating a kind of mean field 

annealing into the network, the performance of the network was improved. 

Implementation of the network in hardware will make significant progress in its 

computational efficiency. 

 

Although a large body of literature exists for solving single machine scheduling 

problems involving earliness and tardiness penalties, there are few papers aim to 

minimize the sum of weighted earliness and tardiness and dealing with non-identical 

multi machine scheduling problems involving sequence dependent setup times and 

distinct due dates. To the best of our knowledge, there is no previously published 

article that tried to solve this NP-hard problem using neural networks. In addition, 

the application of competitive type networks to scheduling problems is scarce. So, 

we believe that this attempt to solve the problem considered will make a contribution 

to the relevant literature. Furthermore, the proposed Hopfield-like network uses time-

varying penalty parameters to overcome the tradeoff problem, one of the important 

drawbacks of the penalty function approach. Obtaining an optimal solution using the 

proposed approach makes it attractive for applications of problems with larger size. 

 

Future research should consider the hybridization of ANNs with other 

metaheuristics for the problems considered.  In addition, extension of the results to 

large sized problems and implementation of parallel neural processing will also be 

worthwhile.  
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CHAPTER SEVEN 

RESULTS ANALYSIS and DISCUSSION 

 

 

In this thesis, we have applied Hopfield type neural networks to solve the 

problems considered. In general, we can summarize the entire procedure of 

employing Hopfield type dynamical neural networks to solve scheduling problems as 

follows.  

 

Firstly the problem has to be modeled using linear or non linear programming 

techniques. Then, using the penalty function approach, the constrained problem is 

converted into an unconstrained problem. In other words, using this approach, the 

constraints of the problem are included in the energy function as penalty terms which 

can be considered as a Lagrangian relaxation of the constraints. Therefore, the 

energy function of the network will include the original objective function of the 

problem and the penalty terms corresponding to each constraint. To summarize the 

approach, let us consider the following minimization problem which includes both 

equality and inequality constraints. 
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Here, v represents the penalty function and 2)( εεν = for all ε > 0 and 0)( =εν  for 

all ε ≤ 0 or εεν =)(  for all ε > 0 and 0)( =εν  for all ε ≤ 0 can be used.  
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can be written. In the energy function, P1, P2, P3 and P4 are penalty coefficients.  

 

In addition to the objective function f(x,y), the energy function E(x,y) also 

includes penalty terms, and when any constraint is violated, a cost value which 

causes a high energy appears. In a valid schedule, the penalty terms corresponding to 

constraints become zero. That is, the penalty coefficients will have no effect in the 

energy function.  

 

After defining the energy function to be employed, the dynamics for the gradient 

network are obtained by gradient descent on the energy function.  
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The solution of equations of motion may be accomplished via the use of Euler’s 

approximation. Then, neuron outputs are calculated by V=g (U), where g (.) is the 

activation function, U is the input and V is the output of the neuron. In words, an 

optimization problem is first mapped onto a neural network in such a way that the 

network configurations correspond to possible solutions to the problem. A function 

of neuronal states, called the energy function, is constructed. This function is 
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proportional to the cost function of the problem. The dynamics of the network is 

determined so that the energy function (cost function) is minimized as the neurons 

update (Wang, 1997). 

 

Generally, scheduling problems represented by mathematical models involve 

many constraints due to the complexity of the problem. The more constraints the 

model includes, the more difficult it becomes to solve the problem using neural 

networks, since a tradeoff occurs between the terms to be minimized. We propose 

below alternative ways to simplify the energy function and eliminate the effort of 

searching for the values of some of the penalty parameters. 

  

• Since each job has to be processed on only one machine at a time, scheduling 

problems are generally subject to typical constraints such as,  
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When a job is assigned to a machine, the assignment variable takes the value of 1, 

otherwise it becomes 0. For instance, if the schedule is represented by a 2-D l ×k 

network, the binary output of the ijth neuron VXij=1 if a job is assigned in the ith row 

and the jth column, and VXij=0 otherwise. These binary constraints can be satisfied 

using a log-sigmoid activation function and by increasing the slope of the activation 

function when these constraints are violated.  

 

The following maximum function satisfies both the assignment of one job to only 

one machine and also the binary constraint { }1,0∈ijx . Here, the neuron outputs are 

represented by V’s and the inputs by U’s respectively.  
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• To represent real (continuous) valued variables linear activation functions can 

be used. If these variables must be greater than or equal to zero, then a piecewise 
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linear function can be employed. By this way, there will be no need to consider the 

penalty term corresponding to this constraint. To represent binary (discrete) 

variables, a log-sigmoid function such as logsig(n) = 1 / (1 + exp(-n)), can be 

suggested. It should be noted that the convergence of the network, which means that 

the trajectories of the dynamical network end at one of the equilibria, should be 

proved before the use of dynamical gradient networks. However, although 

employing log-sigmoid functions do not cause convergence problems, in solving 

optimization problems using maximum functions and piecewise linear functions the 

convergence of the network should be analyzed carefully.  

 

In the light of the procedure explained above, in this thesis, we have studied two 

different parallel machine scheduling problems. The first one was identical parallel 

machine scheduling problem with the objective of the makespan minimization, and 

the second one was the scheduling of a set of independent jobs with sequence-

dependent setups and distinct due dates on non-identical multi-machines to minimize 

the total weighted earliness and tardiness. Both of the problems considered were NP-

hard. Since the first problem includes fewer constraints than the second one, its 

energy function involved fewer penalty terms to enforce the constraints. Therefore, 

although a tradeoff exists between the penalty terms to be minimized in both of the 

problems, solving the first problem was easier than solving the second problem. For 

these problems, time dependent penalty parameters were used. For the solution of the 

first problem, the proposed gradient network included two types of neurons: a 

continuous type neuron to represent variable denoting makespan, and discrete types 

of neurons to represent binary valued assignment variables. Linear type activation 

function was used to model the relation between the output and the input of the 

continuous type neuron, and a log-sigmoid function was employed for the discrete 

type neuron. 

 

From the simulation results, it was seen that the gradient network results were 

closer to the LPT results and in all the simulation runs for different initialization 

schemes, the network converged to feasible solutions. In other words, the 

convergence rate was 100 %. The performance of the network was also tested for 
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large values of n (n = 500). The network produced better results for large values of n 

and small values of m, and only for n=500, it resulted one non-feasible solution in 

one of the 20 initialization schemes for one data set.  

 

In the second application, inclusion of non-identical machines, sequence-

dependent setup times, distinct due dates made the problem more complex, therefore 

many constraints were needed to represent the problem by using a mixed integer 

programming formulation. Due to the complicated structure of the problem, the 

energy function involved many penalty terms corresponding to each constraint of the 

problem. However, the quality of the final solution was very sensitive to the values 

of the penalty coefficients used and the effort of performing a search for the proper 

values for these coefficients was onerous (Van den Bout & Miller, 1988). Although 

some of the constraints such as assignment and binary constraints were tried to be 

satisfied by using maximum networks and log-sigmoid networks respectively, the 

problem still involved many constraints which resulted a greater tradeoff problem 

than the first problem. Another difficulty in solving this problem was that some 

variables were included in more than one constraint which made all constraints 

dependent to each other. Using a trial end error procedure, the proper values of the 

penalty parameters were found and an optimum solution which makes the approach 

attractive for solving larger instances was obtained for an example problem. 

 

It should be emphasized that the choice of appropriate parameters always plays an 

important role in obtaining satisfactory solution quality. The performance of the 

neural network is very sensitive to penalty parameter values. If the parameters are 

chosen very small, an infeasible solution may be obtained. On the other hand, large 

values of the penalty parameters will ensure a feasible solution, but may create a 

poor local minimum solution. In order to satisfy each penalty term, its associated 

penalty parameter can be increased but this results an increase in other penalty terms 

and a tradeoff occurs. In our applications, the tradeoff problem was also one of the 

main problems we faced and we proposed to use time varying penalty parameters to 

solve this problem. By this method, we have obtained satisfactory solutions in the 

first application. However, the solutions obtained were generally local minimums 
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instead of global optimum solutions. In addition to this, although the use of time 

varying penalty parameters during simulation experiments relieved some difficulty in 

solving the second problem, finding an optimal solution required too much trial and 

error efforts due to the complex nature of the problem.  

 

Other parameters, the initial states of the network, the step sizes, and the slope of 

the activation functions used had also a great influence on the solutions of our 

problems and need to be carefully selected. In our first application, it is seen that 

even for the same datasets, different initial states of the gradient network generated 

different results some of which were better, some of which were worse than the LPT 

rule result and in the second application, it was very difficult to find the initial states 

that result a feasible solution. The step sizes and the slopes of the activation functions 

in both of the applications were determined by a trial and error process and in the 

second application, a kind of mean field annealing is incorporated into the network to 

slowly increase the slope of the log-sigmoid activation function used and by this way 

the slope of the activation function became time-varying and the binary constraints 

on the precedence units are satisfied. 

 

In the following chapter, we summarize the entire thesis and point out possible 

directions for future research. 
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CHAPTER EIGHT 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

 

In this concluding chapter, we summarize what has been accomplished in this 

thesis, and describe some potential future work to extend the present results for the 

discussed problems. 

 

8.1 Conclusions 

 

Scheduling refers to the assignment of limited resources over time to accomplish 

certain tasks. Since most of the scheduling problems are known to be NP-hard, 

approximate or heuristic approaches have been developed for solving these 

problems.  During the last decades, many researchers have investigated the use of 

neural networks for solving scheduling problems.  

 

In the thesis, first, an overview of scheduling together with the methods used in 

scheduling was given. A literature review of artificial neural network applications in 

production scheduling was provided after dynamical systems for combinatorial 

optimization were explained. Then, we developed dynamical neural networks to deal 

with two parallel machine scheduling problems. Our objective was two fold; to solve 

these problems using neural networks and to compare its performance with other 

techniques’. Although neural network approach has been admitted as a promising 

alternative to solving a variety of combinatorial optimization problems, few works 

relate neural network to applications of parallel machine scheduling problems. From 

the theoretical viewpoint, the parallel machine scheduling problem is a generalization 

of the single machine, and a special case of the flexible flow. It is also important 

from the practical point since the occurrence of resources in parallel is very common 

in real world (Pinedo, 1995). To the best of our knowledge, this study will be the first 

attempt to solve the considered NP hard problems using neural networks.
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For the solution of the first problem, the identical parallel machine scheduling 

problem with the objective of minimizing makespan, we employed a dynamical 

gradient network. After the appropriate energy function was constructed by using a 

penalty function approach, the dynamics were defined by steepest gradient descent 

on the energy function. In order to overcome the tradeoff problem encountered in 

using the penalty function approach, a time varying penalty coefficient methodology 

was proposed to be used during simulation experiments. We analyzed the effect that 

the initial conditions of the network have on the performance on 5 different data sets 

by running each data set 20 times for different sizes of jobs and machines. The 

results of the simulation experiments indicated that applying the proposed method 

generated good results comparable with that of Longest Processing Time dispatching 

rule. The network converged to feasible solutions in all the simulation runs for 

different initialization schemes except in one of the 20 initialization schemes for one 

data set for n=500 and better results were obtained for large number of jobs and 

small number of machines.  

 

The second problem was the scheduling of a set of independent jobs with 

sequence-dependent setups and distinct due dates on non-identical multi-machines to 

minimize the total weighted earliness and tardiness. In relevant literature, most of the 

researches on earliness and tardiness were conducted in a single machine setting. 

However, multi machines exist in many real world situations, and the regular 

performance measures, such as minimizing the total tardiness, number of tardy jobs, 

maximum tardiness and flowtime, can not meet the needs of many practical 

problems. The motivation behind this study is that although many researchers have 

focused on the parallel machine problems, there is a lack of research on the multi-

machine scheduling problem with the non-regular performance measure of 

minimizing the earliness and tardiness. Firstly, the original mixed integer 

formulation of the problem was modified by adding one more constraint to the model 

to prevent the assignment of two jobs at the same time to the first position. Then, an 

interconnected neural network was developed to solve the problem. The proposed 

network is composed of two maximum networks, three piecewise linear networks 

and one log-sigmoid network all of which interact with each other.  
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The motivation for using maximum networks was to reduce the network 

complexity by incorporating competitive mechanism into the network and to obtain a 

simplified energy function. Additionally, the log-sigmoid network helps us to get rid 

of some of the binary constraints. Convergence of the network was analyzed by 

using the extension of the La Salle’s invariance principle developed for the systems 

with discontinuous right hand sides. Again, in this application, a time varying penalty 

coefficient methodology was proposed to be used during simulation experiments to 

overcome the tradeoff problem encountered in using the penalty function approach. 

The proposed approach was tested on a scheduling problem. An optimal solution 

which may be promising for the applications of large size problems was obtained. 

 

In general, we can say that the results obtained using the proposed neural network 

models were acceptable in terms of solution quality. However, with the 

implementation of parallel processing, full benefits of the neural network approach 

can be explored and assessed. The main benefit one can expect from using the neural 

networks in performing task optimization is the additional efficiency gained from 

implementation of parallel neural processing. Parallel processing and parallel 

computation has been well accepted as a legitimate and effective way for speed 

improvement in solving many combinatorial optimization problems (Censor & 

Zenios, 1997; Migdalas, Pardalos, & Story, 1997). However, a challenge with the 

parallel approaches is that many tasks cannot be easily or possibly broken down into 

a parallel structure so that the parallel processing can be performed. Because of the 

neural network’s inherent parallel nature of processing units and network structure, 

once a problem is formulated into a neural network model, it will be in a ready mode 

to realize parallel processing. In other words, the neural network can be viewed as a 

natural vehicle to convert a problem into a parallel format. For full exploration of the 

neural network’s potential in optimization, we need to firstly formulate a problem 

into a neural network model and then implement the neural network algorithms on a 

multiple processor machine or on a parallel-computing platform. Although we can 

find a quite number of studies that aim to implement parallel computation in using 

neural networks (Salleh & Zomaya, 1999; Saratchandran, Dundararajan, & Foo, 

1996), most reported works in the literature have fulfilled only the first half of the 
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process. Since the neural network computation in our experiments works also in 

serial mode, the experimental results reported do not reflect the potential of the true 

benefit of the neural network approach. With fast advance of high technology, 

parallel processing facilities will become inevitably more popular and easy to access. 

To this extent, we can expect a great improvement in computation time using the 

neural network approach (Hao, Lai, & Tan, 2004).  

 

8.2 Future Research Directions 

 

The followings which are possible extensions of this study are suggested for 

future research.  

 
• One of the major shortcomings of the proposed networks was determination 

of the parameters required for the simulation of the proposed networks, such 

as the penalty parameters, the slope of the activation functions, the number of 

iterations and the step sizes, by trial and error. This is a tedious process, and 

the parameter values obtained might not be the optimal values for this study. 

The methodology for obtaining appropriate parameters for the development 

of a neural network that will yield more precise results should be considered 

in a future study.  

 

• There exists a great potential for application of neural networks in 

conjunction with other optimization techniques. A number of different 

techniques and metaheuristics can be combined with neural networks to 

tackle the problems considered.  

 
• Much work has to be done to compare the performance of neural network 

models with the performance of other existing methods. 

 
• Hopfield like dynamical networks were chosen to map our problems since 

they facilitated easy mapping of the problem. Likewise, these networks can 

be implemented in hardware for making them attractive alternatives to 

classical heuristic approaches. It is obvious that if the proposed networks can 
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be implemented in hardware, there will be a tremendous reduction in 

computational times. 

 
• Dynamical gradient networks suffer from serious problems of getting stuck at 

local minima, having high sensitivity to parametric changes and tradeoff 

problem among these parameters. Several problems still exist although a 

penalty function approach whose coefficients vary with time were used to 

alleviate the tradeoff problem in this study. To overcome the local minima, 

stochastic methods such as simulated annealing can be integrated with ANNs. 

By introducing a probability for the acceptance of a new state, the network 

occasionally accepts transitions to states with higher energy and thus can 

escape from local minima. Replacing sigmoidal activation function with a 

stochastic decision type activation function, adding noise to the weights of 

the network or to the biases of the network are some of the main methods 

used to embed stochasticity into the Hopfield network (Smith, 1999).  

 
• One of the other issues for future research may be to introduce evolution to 

adjust the topology and the parameters of ANNs automatically or to search 

for the ways of developing automatic parameter controlling methods to 

overcome the need of tuning the parameters by a trial and error. 

 
• The performance of the proposed networks depends on the choice of the 

initial states. Another area on which future research has to focus may be to 

propose new neural network models that are less sensitive to the initial states.    

 
• Other scheduling objectives, setup times, the mean flow times or the 

weighted number of tardy jobs minimization, in parallel machine scheduling 

can be studied. Especially for the first application, non-identical parallel 

machine case is worthy of exploration.  

 

• It may also be interesting to evaluate the proposed networks’ performance for 

real time scheduling systems. 
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