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ON THE EIGENVALUES OF A SCHRODINGER OPERATOR

ABSTRACT

In this thesis, we study on the eigenvalues of the self-adjoint Schrodinger operator, with
mixed boundary condition defined on a d-dimensional parallelepiped F.

Keywords: Eigenvalues, mixed boundary condition, Schrodinger operator.
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SCHRODINGER OPERATORUNUN OZDEGERLERI UZERINE

Oz

Bu tezde, d boyutlu bir prizma F lizerinde karigk smir sart1 ile tanimlanan kendine es
Schrodinger operatdriiniin 6zdegerleri lizerine calisiimistir.

Anahtar sozciikler: Karisik smir sart1, 6zdegerler, Schrédinger operatorti.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

The time independent Schrodinger operator
L(u) = —Au+ q(z)u

is one of the fundamental operators in quantum mechanics. Due to its physical importance, it
has been studied for a long time.

For one dimensional case the perturbation theory can be applied and asymptotic formulas
for sufficiently large eigenvalues can be easily obtained

1
/\n = TL2 + 0(7)7

n
where \,, is the eigenvalue of the perturbed operator andn? is the eigenvalue of the unperturbed
operator.

However, in multy dimensional cases the eigenvalues influence each other strongly and the
regular perturbation theory does not work.

For the first time asymptotic formulas for the eigenvalues of the periodic (with respect to
an arbitrary lattice) Schrédinger operator with quasiperiodic boundary conditions are obtained
by Veliev(1987). By some other methods, the asymptotic formulas for quasiperiodic boundary
conditions in two and three dimensional cases are obtained in Feldman, Knoerrer, & Trubowitz
(1990), Feldman, Knoerrer, & Trubowitz (1991), Karpeshina (1992), Karpeshina (1996). The
asymptotic formulas for the eigenvalues of the Schrédinger operator with periodic boundary
conditions are obtained in Friedlanger (1990). When this operator is considered with Dirichlet
boundary conditions in two dimensional rectangle, the asymptotic formulas for the eigenvalues
are obtained in Hald, & McLaughlin (1996). Atilgan, Karakilic, & Veliev (2002) obtained
the asymptotic formulas for the non-resonance eigenvalues of the Schrédinger operator with
Dirichlet and Neumann boundary conditions in an arbitrary dimension. Also, the asymptotic
formulas for the resonance eigenvalues of the Schrédinger operator with Dirichlet and Neumann
boundary conditions are obtained in Karakilig, Atilgan, & Veliev (2005) and Karakilig, Veliev,
& Atilgan (2005).

In this thesis, we consider the d-dimensional Schrodinger operator defined by the differential



expression
Lu=—-Au+ q(x)u (1.1.1)

in I’ with the mixed boundary condition

ou
—0 112
(cufa) + 2 [or=10, (1L12)
where x = (11, x2,...,2q4) € F,F = [0,a1] x[0,a2] x...%x[0,aq4],a1,a2,...,ag € R,d > 2,

82
81’5

OF is the boundary of F, ¢(z) is a real-valued function in Ly (F'), A = % + % + -+
1 2

is the Laplace operator in R, o > 0, a% is the differentiation along the outward normal.

We denote the operator defined by (1.1.1) and (1.1.2) in Lo(F') by Ls(g(x)) and the
eigenvalues and the corresponding eigenfunctions of the operator Lz (g(x)) by Ay and Wy,
respectively.

The aim of this thesis is to obtain an asymptotic formula for the eigenvalues of the operator
Lys(q(x)). For this, we use the method which is introduced by Veliev (1987). He studied
the periodic Schrodinger operator with quasiperiodic boundary conditions. In this method, the
eigenvalues of the unperturbed operator are divided into two groups: Resonance and Non-
Resonance. In this thesis, we obtain the asymptotic formula for the non-resonance eigenvalues.

1.2 The Eigenvalues and the Eigenfunctions of the OperatorL;(0)

We first consider the unperturbed operator Lj;(0) which is defined by the differential
expression (1.1.1) when ¢(z) = 0 and the mixed boundary condition (1.1.2).

We find the eigenvalues of the operator L/ (0), that is, we solve the following eigenvalue
problem:

—Au = Jdu, (1.2.1)
)lor = 0. (1.2.2)

du

(au + o

For this we use the method of separation of variables: We seek a non-zero solution of
(1.2.1)-(1.2.2) in the following form

u(z) = ui(xr)ua(z2) ... ug(zq). (1.2.3)



Substituting (1.2.3) into (1.2.1) we obtain

—uy(x1) - ug(zg) — - —u(21) - - ug(wa) = Mua (z1)uz(w2) - - - ug(q).

Since u(z) is assumed to be an eigenfunction it is nonzero. Dividing both sides of the last
equation by u(z), we get

_ui(en)  wp(za) o ug(za) _
ur(x1)  ug(wa) ug(zq) ’
"
S
ug ()
where A\ is a scalar fork = 1,2,...,d. So we have
A=A1+ X+ 4 Ag, (1.2.4)
and
ulkl(l’k) + /\kuk(azk) =0 k=1,2,....,d. (1.2.5)

On the other hand, the boundary of the domain F is formed by the hyperplanes
Iy ={z e R (xz,e) =0, = 0,...,0,1,0,...,0)},
and its shifts
arer + 1 = {z € R%: (z,arex) = 0,ex = (0,...,0,1,0,...,0)},
where the outer normal to Il is —ex = (0,...,0,—1,0,...,0) and the outer normal to

ager, + I is e = (0,...,0,1,0,...,0) for every k = 1,2,...,d. Using this we write the
boundary condition (1.2.2) explicitly as

Ou

(cu(z) + 8n) lm,=0 k=1,2,....d, (1.2.6)
and
ou
(u(zx) + %) lager+1, =0 k=1,2,...,d. (1.2.7)

(1.2.3) and (1.2.6) imply

auy(z1) .. ug(zg) - . ug(za) — ur(zr) ..o ug(zg) - . ug(@g)| =0 = 0,



auy(z1) . uk(0) .. cug(eg) —ui(z1) ... up(0) ... ug(zq) = 0,
aup(0) —u,(0)=0 k=1,2,...,d.
(1.2.3) and (1.2.7) imply
auy(z1) . oug(zg) - ug(zg) +ua(zr) g (zr) - ug(2a)|zp=a, =0,
auy(z1) . ug(ag) - . ug(zq) +ui(z1) .. uf(ag) - . . ug(zg) = 0,

aug(ag) +up(ar) =0 k=1,2,...,d.

That is,
aup(0) —ul(0)=0 k=1,2,...,d, (1.2.8)

aug(ag) +up(ar) =0 k=1,2,...,d. (1.2.9)

From (1.2.5), (1.2.8) and (1.2.9) we obtain the following Sturm-Liouville problems for every
k=1,2,...,d

u%(:tk) + /\kuk(xk) = 0 0<uzp<ag
auk(0) —u(0) = 0 (1.2.10)
aug(ag) +up(ar) = 0 a>0.

The eigenvalues of (1.2.10) are

Mg mp=1,2,3,..., k=1,2,....d, (1.2.11)
where \,,, = (%)2, fin,, are the positive roots of cot 1 = L — <2 and satisfy ngm < pin,, <

(nk + 1), so that 7 < /A, - < CEHUT e Z4 {0}, k=1,2,...d.

The eigenfunctions of (1.2.10) corresponding to the eigenvalues),,, are

. — /A .
U (z3) = €V Ak~ LTIV AR iR g1 9 4. (12.12)
a+iy/ A,

By (1.2.4) and (1.2.11) the eigenvalues of L, (0) are

A= Any + Ang + e+ Any (1.2.13)
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Since we assumed u(z) = uy(z1)uz(x2) .. . uq4(zq), by (1.2.5) and (1.2.12) the eigenfunc-
tions of Lj7(0) corresponding to the eigenvalues A are

=1] I Ve 2TV Am _Z: A eIV An TR (1.2.14)
bl o+ i/ Ay,

We define a lattice Q2 in R? by

d
Q:{kawk:mkeZ,kzl,Q,...,d}
k=1

with the basis
w1 = (al,O,...,O),wz = (O,GQ,O,...,O),...,wd: (O,...,O,ad)

and the dual lattice I' of 2 by

d
T={> mp":mpeZk=12...d}

k=1
with the basis
2 2 2
B =(=0,...,0),82 = (0,=2,0,...,0),...,8 = (0,...,0,=%).
al a9 Qaq
Notice that w; and 37 are bi-orthogonal vectors, that is,
(wivﬁj) = 27r5ij>
where (-, -) is the standard inner product in R, 6; ; 18 the Kronecker delta.
According to dual lattice I', we introduce the following notations:
r nimw Mom ngm .
—={y= : €Z Yi=1,2,...,d
2 {’Y (alvaz) ad) nle 1 9 “y 7}7
r+o NIT Mam ngm
—={y= , o omeZt| Ho} Vi=1,2,...,d}.
g ==L ez i) i }

Since the solutions Ay, -
An,; < ("’H) ,ni € ZHJ{0},i=1,2,...,d, the eigenvalues A of Ly;(0) are indeed |\, |*




6

a1l ’ aq

where Ay = (\/Anys ooy /Ang), ¥ = (525, ..., 24%). We denote by Sp+o the set of all \,,
2

v € F%O where ])\7]2 are the eigenvalues of Lj/(0). Also we denote the eigenfunction uy ()
in (1.2.14) by u. () which corresponds to the eigenvalue |\, |*.

For the sake of simplicity in calculations, we write the eigenfunctionsu () of the unper-
turbed operator L7 (0) corresponding to the eigenvalues |\, |* for any v € %0 as

uy(x) = Z eieﬁei(ﬁ’x),

ﬁEA)"‘/
0z€B
BEBA,

where
A)"‘/ :{ﬁ: (ﬁl,ﬁg,...,,@d) ES% : |ﬁk |:| ‘/)‘”k ‘,k’: 1,2,...,d},

and

a—iy/An
By, ={0s = an;gk:_m Ony i Ony = arg[_WVZ]’

k:1727"'7d7ﬁ:(ﬂlaﬂ?v"wﬁd) EA)W}-

(Note that g = 0 if 8 = \,)

Let v € F%O, then there correspond an eigenvalue ]/\7\2 and an eigenfunction u(z) of
L(0). Suppose that any j-th component of v is changed by its negative, that is, m is

changed by —/A,,;. Then



Unj(xjﬂ e T i

_ ez( \/An; ;) @ — l(i Vi )‘ng ) efi(f1 [An;25)
a+i(—/ ;)
— in/An.Tj o+ Z \V4 )‘nj ez} /)\n] x]}

Denote the function u,, (7;) | /- g v by u_n;(x;). Thus if we change /\,; by
¥ "5

— /)\nj then

U, (25) = ¢ n; Up, ().

Any component of v can be changed by its negative. Taking into consideration all these
changes, 0, is definedas 6, = 3, 5 _ Noow On,;. So we have
J

uy(z) = e Pruy(z) YA, € Ay, (1.2.15)
where 0, € B .

By direct substitution we show that |\,/|* is an eigenvalue of Lys(0) and w.(z) =

e~ u.(z) is an eigenfunction corresponding to the eigenvalue|\./ .
Using (1.2.15), we get

—Auy(z) = —Ale"u(z))]



So (1.1.1) is satisfied and again by (1.2.15)

(o) + 2Dy = (ae

So (1.1.2) is satisfied.

It is clear that the system of eigenfunctionsu. (x) of Lys(0), that is,

— it 01(8,7)
{UV(J?)}%? {Z;;eef;);v e’Fe }’YEFZﬁ

forms an orthogonal basis in L2 (F'). Hence any Q(x) € Lo(F') is equal to its Fourier series
Q(z) = Zweﬂ Qyuq (),
2

<Q(z),uqy(2)>
[l ()12

{uy(x)}7€¥, < -, > denotes the inner product in Lo (F').

where Qy = are the Fourier coefficients of Q(z) with respect to the basis

By this result and (1.2.15) any function Q(z) in Lo(F') has the following Fourier series
expansion

Q@)= Qyuy(), (1.2.16)

r
YES

where Q. = | Ai I <?‘(5)/?;)/ |(|f)> are the Fourier coefficients of Q(x) with respect to the basis
/ v

{uy (:L‘)},Y,eg, and | Ay , | is the number of vectors in A .

Indeed, let v € FT% Consider 31, 52,...,3. € Ay, where r =| Ay, |, | Ay, | is the



number of vectors in Ay _. By (1.2.15)

<Q(x),ug, (z) >ug, (z) = <Q(x), e_i97u7(33) > e vy, (z)
= < Q(z),uy(z) > uy(x)

< Q@) upy(x) > upy(x) = < Q(z),e uy(x) > e ru,(2)
= < Q(z),uy(z) > uy(x)

< Q)up (1) > up (1) = < Q) e Py (z) > e Py (2)

Summing both sides we have

| Ay, 1< Q) () > 1y(2) = Den, < Q) us(w) > us(a),

or

Z < Q(x),ug(x) > ug(x). (1.2.17)

‘ A)W | BGA)W

On the other hand, by (1.2.15) for any A\g, € Ay we have

”2 = <uﬁi(x)’uﬁi(m)>

0

| ug; ()
= <e (), e u,(z) >
= e et < (x),u, (z) >

= Juy(2)|?. (1.2.18)

Substituting (1.2.17) and (1.2.18) into the Fourier expansion of Q(x) with respect to the
basis {Uy(%’)}/yeﬂ, we obtain
2

Q(l’) _ Z <Q($)7u7($)>u7(ﬂf)

2, e P
B 1 < Q(z),ug(x) >
- Z Aol Twm

Using the facts Sg = U%# Ay, and | Ay [=] Ay, |= 24 for all v,v' € FTH) the last
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expression reduces to

Z ‘ AA () > (). (1.2.19)

\H “7 () [I?

<Q(z )u /(I)|>2 the result (1 2. 16) follows.

Letting Q. = TAx T @)1



CHAPTER TWO
ASYMPTOTIC FORMULA

2.1 Resonance and Non-Resonance Domains

As in papers Veliev (1987) and Veliev (1988) we divide the eigenvalues of the unperturbed
operator L/ (0) into two groups.

Consider the eigenvalues | A, |2 of Ly/(0) forall v € L such that| v [~ p. | v [~ p means
that | v | and p are asymptotically equal, that is,c1p <| v |< cop where ¢;, i = 1,2 are positive

real constants which do not depend on p.

Leta < ﬁ, a1 = 3a and define the following sets

Vi(p)={z e R?: ||z — [z +0b|<p™}

El(palﬂp) = Ubel"(ppal) ‘/b(pal)

U(pCYl’p) = Rd \ El (palvp);

where I'(pp™) = {b € g 10 <| b|< pp*}. The set U(p™, p) is said to be a non-resonance
domain, and the eigenvalue | A, |? is called a non-resonance eigenvalue ify € U(p™,p). The
domains V;(p®!), for all b € T'(pp®) are called resonance domains and the eigenvalue| A, |?
is a resonance eigenvalue ify € V;(p™).

Remark 2.1.1. Note that, the elements of the single resonance domain
Vi(p™) = {e € R': |22 |z +b[2l< p™)

are contained between the two hyperplanes
= {a: |l —|e+b]’=—p™}

and
Oy ={z: ||z —|z+0b[*=p™}.

11
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Since
|z 2= |z+bP=(z,2) — (x+bz+b) = —2(xb—|b|*=Fp™,
@o+ L2l
we have
le{x:(x—kg—km,b):O} = Hb+(g+2p|a;b2)
HQ—{$1($+Z2)_2PQ;7276)—0} = Hb+([2?—2p|a;b2)a

where I, = {z : (x,b) = 0} is the hyperplane passing through the origin. It is clear that the
distance between the two hyperplanesII; and Il is %.

Lemma 2.1.2. The non-resonance domain U(p®*, p) has asymptotically full measure on RY,

that is,
w(U(p*t,p) N B(p))

w(B(p))

where B(p) = {xr € R?: |z |< p}.

—1 as p— o0,

Proof. 1t is clear that V},(p®') N B(p) is the part of B(p) which is contained between the two
hyperplanes II; and II5. Since the distance between these hyperplanes is %, we have

1(Vs(p™) N B(p)) = O(p?=tten),

where O is an order relation and we say that a function f is in the O relation with g for £ — oo
and we write it f(§) = O(g(&)) for ¢ — oo if there is a constant ¢ such that | f(§) |< ¢ | g(§) |

at some neighborhood of co.

The number of vectorsy in I'(pp®) is O(p®) and (B (p)) ~ p?. Thus,

p( | W) [()Blp) = O(p* Hrertde
beT (pp™)

= w(B(p)O(p™t ™). 2.1.1)

Using that, R? = U(p™, p) U E1, and

RN B(p) = (U(p*,p) N B(p) UEL N B(p))
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we have,

w(B(p)) = w(U(p**,p) N B(p)) + n(EL (N B(p)),
which together with (2.1.1) implies

uU(p™,p) [ B(p) = u(B(p))(1 = O(p™ 1)),

Thus from the last equation the result follows, sincea; + da < 1. That is, the domain
U(p®, p) has asymptotically full measure on R% O

Note that this lemma implies that the number of non-resonance eigenvalues is greater than
the number of resonance eigenvalues.

2.2 On the Potential of L,/ (q(z))

If we consider the functions ¢(z)u~(z) in Lo(F') for any v € g, by a rearrangement in

indexing, the Fourier series of ¢(x)u. () can be written as

Q@) = q(@)uy(2) = D Quiyrliyiy (), (2.2.1)
ves
e (@)t (), 1 (2)
< @(2)Uy(Z ), Unypyr (X) >
Qyty = . (2.2.2)
T Ty gy (@) P
Suppose that for all v € g such that | 7 |~ p the Fourier coefficients (2.2.2) satisfy
2 /21
D1 Quy P 1+ 7 ) < o, (22.3)
ves
where [ > % +d+ 3.
Therefore,
Q(z) = Z Q7+7/u7+7/(1’) +O(p77), (2.2.4)
7' €L (p*)

where I'(p®) = {7y € L : 0 <| ¥ |<p*},p=1—d,a < ﬁ and p is a large parameter,
O(p~P%) is a function in Lo (F') with norm of order p~P¢.
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Indeed, for~y’ ¢ I'(p®)

|Q+"2|’Y"2l \Q+'H’Y/\l
S 1= X Kl 3 ity

20 1

Iy'1>pe 1y [>p* ] 1 [>p> [

N1 I 1
<[ Z | Qv P 17)2( Z W)Q]Q
1y'[>p™ 1y [>p
1
l —
= ( Z | @yt |2\ o |2 ) Z W) =0(p").
1y'[>p* 11>

Because the first series on the right hand side of the inequality is convergent by (2.2.3) and
the norm of the second series is in the big O relation with p~?“ which we show by using the
integral test.

Let f(z) = IQ, Clearly, f(z) is a continuous positive decreasing function on[1, c0). On

the other hand, f1 “ar is convergent. Because 2/ > 1, and
* dx > dx
o ﬁ < . ﬁ < 00.
oo dl ~ tm t di . p20+1 . . 2041 pa(72l+1)
po a2 t=00 fpa a2l tmoo =20+ 1 TP im0 -2l +1

a(—21+1) —pa
p _p
20-1 —20-1

* dx .
| =ow).
p(X

2

since p = [ — d. Thus

Letting a» = f(| 7' |) = w,l|2l, the series > /(s po Gy = D)5 po W is convergent by
the integral test and

1 _
> =0l )
IV [>p*
On the other hand,
|Qv+7 | | 21\1 1
Z’Q’H—’V‘_Z |’Y‘l Z‘Q7+’Y|‘7’ 2Z|7‘252<OO'
vel yel vel

Because the first series on the right hand side of the inequality is convergent by (2.2.3) and
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the second series is easily found to be convergent by the integral test.

So say
M('y) = Z | Q’y-&-'y’ ‘ . (2.2.5)
vey

2.3 Asymptotic Formula

To obtain an asymptotic formula for the eigenvalues Ay of the operator Ls(¢(z)) in a
non-resonance domain we use the binding formula

(An—[ Ay ) < On(2),uy (@) >=< Un (), g(2)uy(z) > . (2.3.1)

To obtain the binding formula, we multiply both sides of the equation
—A\I’N(IE) + q(x)\I’N(x) = AN\I/N(QT)
by u(z). That is,

< —AVN(z) + q(2)¥ N (2), uy () >=< ANYN(T),uy(2) > .

Using the properties of inner product, we obtain

< —AUN(z),uy(2) > + < q(2)UN(2), uy(2) >= AN < Un(2),uy(x) > .

Since Ljs(0) = —A is self adjoint and ¢(x) is real valued
<Un(z), —Auy(x) > + < q(2)¥n(z), uy(x) >= Ay < ¥n(x),uy(z) >,
and u. () is an eigenfunction of L, (0)

<Un(@),] Ay [2 s (@) > + < a@)¥n (), us (@) >= Ay < Un (@), uy (@) > .

Consequently, we obtain from the last equation

| Ay P< TN (2),uqy(7) > + < q(2) TN (2),uy () >= Ay < Un(2),uqy(7) >,
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< q(@)¥n(2),uy(z) >= AN < Un(),uy(2) > — | Ay P< Un(2), uy(z) >,
< q(@)Un(2),uy(2) >= (An—| Ay ) < Un(2),uq(2) > .

Lemma 2.3.1. Lety € U(p™,p), thatis, | Ay |* be a non-resonance eigenvalue of L (0) and

be'(pp®). Then

1Ay 2 = 1 Ay 21> ™

Proof. If v € U(p™, p) then for all b € I'(pp™) we have

1y P = Tv+o Pz o (232)
Letus denotey € U(p™,p) by y = (%5, %25, ..., B4%). [ Ay |2 is an eigenvalue of L, (0)

for \y € Sg. So we have

1
T < VA, < w k=1,2,...,d.
ag ag
‘We obtain from this relation,
|y P< Ay P<] v+ e, (2.3.3)
where e = (%, e ;—d)
Similarly,
|y +b12<| AMgp P<| v +b+e|?. (2.3.4)

Then using (2.3.3), (2.3.4) and (2.3.2), we get
12 P =1 A P>y P = [y + 0 e P[> p

O]

Lemma 2.3.2. Lety € U(p™,p), thatis, | \y |* be a non-resonance eigenvalue of L (0) and
AN be the eigenvalue of Ly (q(x)) satisfying the inequality

1
| A= |2y Bl< 5o,

Then 1
| AN— | Ao [P]> 37
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Jforallb € T'(pp®).

Proof. Ify € U(p™*, p) then for all b € I'(pp®) we have from Lemma(2.3.1)
1A 12 =1 Xy P> o™

which together with | Ay— | Ay |?|< 3p°* gives

‘ An— | )"Yer |2‘:‘ An— ’ )W ‘2 + ‘ )‘7 |2 - | )Wer |2‘Z
1 1
| An—1[ Ay ‘2| — | Aysb |2 — | A ‘2H>| p™ — §pa1 = 5:0(11'
O

Lemma 2.3.3. Let | A\, |? be an eigenvalue of the operator L1 (0) where | v |~ p. Then there
is an integer N such that | Ay— | Ay [*|< 2M and

—(d=1)

|[<UN(2),uy(T) >|>c3p™ 2, (2.3.5)

where M =|| q(x) ||.

Proof. We use aresult from the general perturbation theory, the N -th eigenvalue of the operator
Ly (q(x)) lies in M -neighborhood of the N-th eigenvalue of the operator L, (0).

Let the N-th eigenvalues of Ly/(q(z)) and Lys(0) be Ay and | Ay |?, respectively. It is
clear that the eigenfunctions ¥y (z) of Ls(g(x)) form an orthonormal basis for Lo(F'). So

uy(z) = > < Un(),uy(z) > Un(z).
N=1

Without loss of generality, assume that || u,(x) ||= 1. By Parseval’s relation

L=l uy(2) = Y 1< On(@)uy(2) >
N=1

= Z |< \I/N(CL‘),U,},(Q?) >’2 + Z |< \PN(x)’u’y(x) >‘2 .

N:An—|Ay|2|>2M N:|An—|\|2|<2M
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Using the binding formula (2.3.1), Bessel’s inequality and M =|| ¢(z) || we have

X T )U~N\T 2
> < Un()uy(z) >P= Y < Un(2), q(z)uy (@) >|

_ 2|2

N:AN— |y |2[>2M NiAn—|\|2|>2M | AN | )"Y | |
< > |< Un(x), q(z)uy () >[*< ! I q(@) 1P uy(2) [IP< !
4M?2 ’ v AM?2 ol 4

N:AN— |y |2|>2M

Therefore, by Parseval’s relation

> < W (), uy(2) >*>
N:|An—|Ay[2|<2M

On the other hand, if a ~ p then the number of v € % satisfying || v [* —a® |< 1 is less
than c¢4p?~!. Therefore, the number of eigenvalues of L;(0) lying in (a® — 1,a® + 1) is less
than c5p?~!. By this result and a result of perturbation theory the number of eigenvaluesA y
of Lys(q(z)) in the interval I = [| A, |> —2M, | A, |? +2M] is less than cgp?~1. Thus there
is N € I such that

< > |< Un(2),uy(2) >2< e3p®™ |< Un (), uq(z) >|2 .
N:|An—|\y[2|<2M

>~ w

That is,

d—1)

< Un(2),uqy(x) >|> c3p™ >
O

Theorem 2.3.4. For every non-resonance eigenvalue| Ay |%, | v |~ p, of the operator L (0)
there exists an eigenvalue A of the operator Ly(q(x)) satisfying

Ay = My |2 +0(p~ ™). (2.3.6)

Proof. We do an iteration by using the binding formula.

In order to start iteration we substitute the decomposition (2.2.4) ofq(z)u,(x) into the
binding formula (2.3.1)
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(An=1 2y P) < On(2), uy(2) >
= <Un(z), Z Qi Uyt () > +O0(p™P)
1€ (p*)
= > Qi < IN@) Uy (1) > +O(p7P), (23.7)
1€l (p*)

Since v € U(p*t, p), 71 € I'(p®) by Lemma(2.3.2)

1
| AN— | Ay ‘2|> §Pa1-

So the binding formula

(An—| Ayt |2) < \IJN(w)>u7+'y1 (z) >=< \IIN(x),q(:U)u,Hm(x) >

implies

< Un(z),q(x)u z) >
< UN(T), Uy, () >= NJE )7 ()\) 7+712( ) . (2.3.8)
N | Y+ |

Substituting (2.3.8) into (2.3.7)

(An—1] Ay %) < U (1), uy(7) >

Q —pa
= Y I < Un(2),q(2) g, (2) > +O(p P, (23.9)
o An— ‘ /\7-&-71 |
1€l (p™)

At the second step of the iteration we substitute the decomposition (2.2.4) ofg(2)uy4-, (x)

into (2.3.9)

(AN—] Ay %) < U (z), uy(x) >

Q e
N Z A—A/—)—i\_’y12 < Un(z), E : Q1 +72 Uyt +72 () > +0(p™P?)
N ‘ Y+71 ‘

1€l (p%) ¥2€l(p®)
Q —pa
O e T Q< Bl ) 106
1€l (p%) N TN er(om)

Isolating the terms with the coefficient< Wy (z), u(z) > in the last expression, we obtain
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(A= Ay [P) < Oy (2), uy(z) >

Qv+t
= Z ﬁ@’y—‘r’yl—i—q? < \IJN(]})vu,Y(x) >
71, 72€T(p%) N Y+71
Y¥1+v2=0
Qv+
+ Z ﬁQ"/‘F’Yl*‘F’Yz < \IIN(J:)’U'YJF’YlJrVQ ((L‘) >
v1,72€L(p%) N Y+71
Y1 +v2#0
rov (2.3.10)

Since v € U(p®',p), 11 + 72 € I'(2p*) by Lemma(2.3.2)

1
| AN= | Ayt P> gpal-

So the binding formula

(AN= | Myty1 472 ’2) < UN(T), Untyy 4 (7) >=< UN(T), ¢(2)Ungryy 4 () >

implies n (@) g() @)
< WN(T), g(XT)U~ygryy 470 (L) >
< \I]N($)>u’7+'71+’72(x) >= AN_ ‘ A,ij j—; '722 '
1+72

(2.3.11)

Substituting (2.3.11) into (2.3.10)

(An=1 X [1) < On(2), uy(2) >

Qy+
= D ﬁ%ﬂlm < UN(2), uy(2) >
Y1,72E€T(p%) N Y+71
Y1+72=0
+ D Qo Ot g (), @)y, (2) >
Y179 €0 (p®) An—| A+ > An—| A1+ |
71+727#0
+ O(pP). (2.3.12)

At the third step of the iteration we substitute the decomposition (2.2.4) ofg(2) Uy, 4, ()
into (2.3.12)
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(A= Ay [P) < Oy (2), uy(z) >

Qy+
= Y Gl Qe < W) (@) >
vger(pe) N gant
v1+v2=0
+ Z Q'H'n Q'y+'yl+'yz
) AN= | Ayt PAN= [ Ayiyitae
v1+72#0
< \IJN(.I), Z Q7+71+’72+’Y3u’y+71+’72+’73 (I) >
v3€T(p)
+ O(p™™)
Qv+
= > ﬁ%mm < Un(2),uy(z) >
yimger(pe) N T
Y1 +72=0
+ Z Qy+m Qytyi+y
71,72 €D(p%) An—| Ayt > An— | Ay 472 2
Y1+72#0
Z Qv trat7s < UN(T), Uyt 4yatys () >
v3€T(p)
+ O0(p™).

Isolating the terms with the coefficient< ¥ (x), u,(x) > in the last expression, we obtain
(Av=1 2y P) < On(2), uy(2) >

_ Q7+’y1
- E : ’2 Q7+V1 +72
1

71, 72€T(pY) AN_ | AFH_’Y
¥1+7v2=0
< Un(2),uy(z) >
Z Q7+71 Qv-&-vﬁ-w

An—| Avim > An— | Ay tyi+2 2

Q'y-‘r% +72+73

71,7273 €T (pY)
Y1 +7v2+7v3=0

< Un(z), uy(x) >
Z Q*y—&-’n Q’y—&-’n +72

An—| Avim 2 An—| Aytn42

’2 Q’y-‘r’h +v2+73
v1,72,73€T(pY)
71 +72+737#0
< Un(2), Uy 4y1+y2+73 (z) >

+ 0(p™).

By the same method, repeating the iterationp times and isolating the terms with multiplicand
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< Un(x),uy(x) >, we get

(An—[ XM P) < Uy (), uy (@) >={D Sk} < Un(2),uy(z) > +R, + O(p""),
k=1

(2.3.13)
where

@) (AN= 1 Amn [2) - (A= [ Ayt 2)

R _ 3 Qv - @yttt
. oy AN= | Ay P) - (AN—= [ Mppyi o 2)
Y1t+v2+-+vp41#0

< Un(2), Uy ty1 - 4ypt1 () >,

v € T(p®) and | 1 +v2 + -+ + % |< pp® for all k = 1,2,...,p. Therefore, using
Lemma(2.3.2) and (2.2.5)

| Sk |=
= | Z Q1 Qbbb |
VLY25 V41 €T (0%) (AN= [ Aytys 12+ (AN = | Ayttt )
v1t+v2+-+vE41=0
< 3 | Qv | | @yttt vess |
- Y1725 Vke+1 €L (PY) | An— ‘ )\“/JF’Yl |2| e | An— | )"Y+’Yl+"'+’7k |2|
Y1+v2+- A 1=0
L aiy—k
< (§pa1) Z ‘ Q"H"Yl | | Q'Y+'Yl+"'+'7k+'7k+1 ’
Y1725 V41 €L (PY)
Y1t+v2+- v 1=0
L oaiy—k
= (ipal) M(v) Z | Qvtyitye | | @yttt
Y25 V41 ET(PY)
y1+r2+- 14 1=0
1 a1\—k
= (= 1) 1+ 1)
(5™ TMMM (Y + 1) - My 71+ 4 %)
that is, .
| Sk 1< (5p™) FM )M (Y + 1) - My + 71+ + ),
2
or

S = O(p~Fa) (2.3.14)
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forevery k = 1,2, ..., p which implies

p
> Se=0(p""). (2.3.15)
k=1

Using Lemma(2.3.2), (2.2.5) and |< VN (), Uyt +... 49,4, () >[< K for some constant

K

| Ry |

that is,

or

IN

IN

| Z Q'y+’y1 U Q'y+'yl+'~~+'yp+7p+1
Y1725 Yp+1 €T (p%) (AN_ ‘ >\"/+’Yl |2) o (AN_ | /\’Y+'Yl+"'+7p |2)
y1+v2+-+1p+17#0

|< ‘IIN(I)’ Uy +y14. +vpt1 (‘T) >‘

3 | Qv | | @yttt |

TAN= Dats PL TAN= T toig P)

Y1,Y250 5 Vp+1 EL (P
Y1t+v2te 170

|[<UN(T), Uyoyy ooy (T) >
1

K(5pM)7" > | @yt |+ | @ttt
Y1725+ Yp41 EL(PY)
y1t+v2+-+vp41#0
1 _
K(iﬁ“) PM () Z | Qytyitys |+ | Qv+ 41+t
Y25+ p4+1 €0 (PY)
Y1+v2+-FVp41#0
1 _
K(ipal) PM()MOy+y1) - MOy +y+-+ ),

1 _
| Ry |< K(ip"“) PM(Y)M(y+71) - My +y1+ -+ %),

R, =O0(p"™). (2.3.16)

Substituting (2.3.15) and (2.3.16) into (2.3.13) we obtain

(An—=1 2y P) < Un(2),uy(z) >=

O(p™™) < UN(),uqy(z) > +O(p~ ") + O(p™"%).



Dividing both sides of the last equation by < ¥ (z), u(z) >

Y e S
An—1[ A, |2_ O(p™) + < Un(x),uy(x) > * < Un(x), uy(z) >

using Lemma(2.3.3)

O(p™™)  O(p~™)
—(d—1) —(d—1n) ’

0~ 0T

Av— 1 P=0(") +

using a1 = 3a > «

—ar O(p~P«
An— | A, 2= 0oy + 20 )
O(p~2)

: d—1
choosing p such thatp > 5=+ 1

Ax =] Ay 2 +0(7™).

This completes the proof.
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CONCLUSIONS

In this thesis, we obtained an asymptotic formula for the non-resonance eigenvalues of the
self-adjoint Schrédinger operator, with mixed boundary condition defined on a d-dimensional
parallelepiped F'.

For every non-resonance eigenvalue| A, |2, | v |~ p, of the operator L/ (0) there exists an
eigenvalue A of the operator Lys(q(z)) satisfying

An = Ay P +0(p™).
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