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THE VEHICLE SCHEDULING WITH SEQUENCE DEPENDENT TRIPS 

 

ABSTRACT 

 

In this study, we consider a vehicle scheduling problem with sequence dependent 

trip times. The problem is assigning vehicles to a set of trips with fixed ready times 

and deadlines, while minimizing cost. The trip time for a vehicle between any two 

places is also known deterministically. A number of different types of vehicles are 

available for transportation, each with different capacities, fixed and variable costs. 

The costs for regular and overtime utilization also vary for different types of 

vehicles. The problem resembles the Tactical Fixed Job Scheduling Problem where 

ready times and deadlines of jobs are known in advance, and the objective is to 

minimize the cost of machines to perform all the jobs. A job cannot be processed 

unless a machine is available at its ready time. 

 

The problem is formulated as an Integer Programming Model. A spread time 

constraint determines the regular time usage of the vehicles. The formulation is 

coded in LINGO 8.0 and GAMS 20.2 with CPLEX solver. Due to the complex 

nature of the problem, it is observed that the optimal solution of even middle-size 

instances is very time consuming. Hence, we develop three different heuristic 

approaches for the problem, each one having two different types based on overtime 

usage allowances. The algorithms are coded in C programmer Language using DEV 

C++ Compiler. The average behaviour of the algorithms is investigated through 

computational experiments. Lower bound values for the problem are found using 

GAMS developing some approaches, and the performances of the algorithms are 

compared based on these bounds. The problems whose number of trip is more than a 

hundred have been solved in a very short time. The least solution of heuristic 

approaches is actually 10% greater than optimum solution.  

 

Key Words: Tactical Fixed Job Scheduling, Spread Time Constraints, Integer 

Programming, Heuristics.  
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SIRALI BAĞIMLI SEFERLERDE ARAÇ ÇİZELGELEMESİ  

 

ÖZ 

 

Bu çalışmada, biz sıralı bağımlı sefer zamanlarına sahip araç çizelgeleme 

problemi üzerine çalıştık. Problem, araçların sabit başlama ve bitiş zamanına sahip 

seferlere minimum maliyet ile atanması problemidir. Seferler arasındaki sefer süresi 

deterministlik olarak bilinmektedir. Taşıma yapabilecek, farklı kapasiteye, sabit ve 

değişken maliyetine sahip araç çeşitleri mevcuttur. Normal ve fazla 

kullanımlarındaki kullanım maliyeti araç tiplerine göre değişmektedir. Problem yapı 

bakımından başlama ve bitiş zamanları bilinen ve amaç fonksiyonu bütün işleri 

yapacak araç kullanım maliyetinin minimum olacağı taktiksel sabit iş çizelgeleme 

problemine benzemektedir. Eğer işin başlama zamanında uygun bir makine yoksa iş 

yapılamaz.  

 

Problem Tam Sayılı Programlama Modeli kullanılarak formüle edilmiştir. 

Araçların normal sürede kullanımları yaygınlık zamanı kısıtı kullanılarak 

belirtilmiştir. Problemin matematiksel modeli LINGO 8.0 ve GAMS 20.2 CPLEX 

çözücü kullanılarak modellenmiştir. Problemin kompleks yapısı yüzünden orta 

hacimdeki problemlerde bile optimum çözümün bulunması çok zaman almaktadır. 

Bu yüzden fazla kullanıma dayalı ikişer değişik çözüm tipinde üç farklı sezgisel 

yaklaşım geliştirilmiştir. Algoritmalar DEV C++ derleyicisi kullanılarak C 

programlama dilinde kodlanmıştır. Algoritmaların ortalama performanslarının 

bulunması için örnek denemeler yaratılmıştır. Çeşitli yöntemlerle ve GAMS 

programı kullanılarak problemin performansını değerlendirmede kullanılacak alt 

limitler bulunmaya çalışılmıştır. Problemin sefer sayısı yüzden fazla olan 

denemelerde bile sezgisel yöntem kullanılarak çok kısa sürede çözüldüğü 

gösterilmiştir. Problem için, sezgisel yöntemle bulunan çözümlerin en küçüğünün 

optimum çözümden ortalama % 10 büyük olduğu gösterilmiştir.  

 

Anahtar Kelimeler: Taktiksel Sabit İş Çizelgelemesi, Yaygınlık Zamanı Kısıtları, 

Tamsayılı Programlama, Sezgiseller  
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CHAPTER ONE 

INTRODUCTION

 

 

1.1. Motivation of Research 

 

 It is possible to encounter a wide range of scheduling problems in real life. To 

model and solve such problems is quite a difficult task though. Because the variables 

in real life are not deterministic but of a stochastic nature, and therefore they are 

difficult to model. Although such problems are modelled within a varied number of 

assumptions, the solution of scheduling problems in real life is rather difficult due to 

the size of the problem. Therefore by developing different solution methods, such 

problems are attempted to be solved. Vehicle scheduling problems set an example to 

scheduling problems in real life. These set of problems similarly have complex 

modelling features and they are difficult to solve.  

 

Vehicle scheduling problems are modelled under several assumptions using 

Integer Programming.  Such problems may be linear or nonlinear in nature. As a 

general structure, there is a series of tasks that are necessary to be processed in 

vehicle scheduling problems, and the vehicles to perform them. The objective 

function is to process all tasks with minimum vehicle usage. Yet, as the solution of 

substantial problems with computers is difficult, the problems are attempted to be 

solved with various optimization methods and heuristic algorithms. Branch – and – 

bound, cutting plane method and enumeration method can be given as examples to 

optimization methods. Heuristic methods may vary according to the structure of the 

problem.  

 

Although the subject of the study “Vehicle Scheduling Problem with Sequence 

Dependent Trips” is actually a kind of vehicle scheduling problem, it features 

different qualities. In this problem the tasks should be performed within certain 

intervals and all of the tasks require to be completed. Due to the fact that the tasks 

start and end within certain intervals, the problem resembles the Interval Scheduling 
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Problem. Besides, all of the tasks must be completed and due to the structure of the 

sources, the problem is a Tactical Fixed Job Scheduling Problem. The original 

problem is the undergraduate thesis prepared by Karakütük & Karaçizmeli in 2004. 

In this study, a scheduling of a model which would provide for the carrying of the 

participants in a large-scale organization was attempted. Starting out from that 

approach, it has been attempted to find out a general solution to similar problems in 

this study. As for the example, the problem structure of the UNIVERSIADE 2005 

games which were used by Karakütük & Karaçizmeli has been chosen. However, the 

solution methods have been prepared in line with the problems conforming to all 

these features.   

 

1.2. Purpose 

 

 The purpose of the study is to find out a solution which will enable vehicle 

scheduling with sequence dependent trip problems with minimum cost. While 

attempting to find out the solution, the method is aimed to solve substantial problems 

in small computation times since such scheduling is done daily. 

 

1.3. Significance 

 

As mentioned before, it is quite difficult to solve scheduling problems in real life, 

especially vehicle scheduling problems. Therefore it is essential to develop solution 

methods to solve such scheduling problems in small computation times. With the 

help of heuristic approaches that the thesis proposes as well, it is ensured to solve 

large-scale vehicle scheduling problems with sequence dependent trips in an 

acceptable time period which could be encountered in real life. Furthermore, the 

results have been tested to see their closeness to optimum. As an outcome of the 

thesis, appropriate heuristics have been proposed.  
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1.4. Thesis Outline 

 

The main objective of the thesis is to generate a solution method to vehicle 

scheduling problem with sequence dependent trips. 

 

A literature survey is provided about the problem structure, which is the subject of 

the study in chapter 2. Also, the structure of scheduling problems is presented. As the 

problem is in line with interval scheduling and fixed job scheduling problems, such 

problem structures are also mentioned. In addition, vehicle scheduling problems are 

reviewed in general. Finally, solution methods to scheduling problems are also given.  

 

In Chapter 3, the problem is defined. The problem variables and the collected data 

are presented, the assumptions are stated and the mathematical model so formed is 

explained. In addition, the heuristic approaches developed through the problem 

solutions are given in this chapter; as well. The application of these methods are 

explained too.  

 

In Chapter 4 a comparison between heuristic approaches developed for the 

problem and the optimization method has been made. An experimental design is 

conducted and problem instances are generated. Furthermore, in order to evaluate 

heuristic approaches, various lower bound algorithms are developed and outcomes of 

these are compared with the results of heuristics. The performance of the heuristics 

are discussed and evaluated. 

 

Finally, Chapter 5 summarizes the research work, and outlines directions for 

future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1 Introduction to Scheduling   

 

Within an organization, scheduling is related to determining the timing of the use 

of specific resources of that organization. It relates to the use of specified resources 

of the equipment, facilities, and human activities. Scheduling occurs in every 

organization, regardless of the nature of its activities. The objective of scheduling is 

to achieve trade – offs among conflicting goals, which include efficient utilization of 

staff, equipment and facilities, and minimization of costumer waiting time, 

inventories, and process time. (Stevenson, 1999, p.722) 

 

The scheduling function uses mathematical techniques or heuristic methods to 

allocate those limited resources to the processing of tasks. A proper allocation of 

resources enables the company to optimize its objectives and achieve its goals. 

Resources may be machines in a workshop, runways at an airport, crews at a 

construction site, or processing units in a computing environment. Tasks may be 

operations in a workshop, takeoffs and landings at an airport or stages in a 

construction project. Each task may have a priority level, an earliest possible starting 

time, and a due date. The objectives may also take many forms, such as minimizing 

the time to complete all tasks or minimizing the number of tasks completed after 

their due dates. (Pinedo& Chao, 1999, p.2) 

 

Unfortunately, scheduling can be difficult to perform and implement because 

scheduling problems are often complicated by large numbers of constraints relating 

to each other, resources to activities and to each other, and either resources or 

activities to events external to the system. For example, two particular activities may 

interfere with each other and be unable to use the same required resources 

simultaneously. Or there are overlapping activities and they can not be made by the 
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same resource. Because of these complex interrelationships and difficulties of 

modeling real world, solving of large scheduling problems is very difficult. For this 

reason, the complex problems are tried to solve with heuristics approaches. Some 

algorithms are developed. Then the algorithms are tested how sensitive the solutions 

are to these complex problems and an approximate solutions are found to difficult 

problems where the complexity proves central.  

 

First, we provide a comprehensive but not exhaustive list of scheduling problems. 

Then, we present a detailed overview of interval scheduling, fixed job scheduling 

and vehicle scheduling as they are related to our study. Finally, we mention about 

solution methods for scheduling problems.  

 

2.2 Types of Scheduling Problems  

 

Scheduling is a complex but an important operation function. There are many 

different types of scheduling problems faced in the real life. A partial list is as 

follows.  

 

• Job shop scheduling. Job shop scheduling, known more commonly in practice 

as shop floor control, is the set of activities in the shop that transforms inputs to 

output. 

 

• Personnel Scheduling. Scheduling personnel is an important problem for both 

manufacturing and service industries. Although shift scheduling on the factory 

floor may be considered one of the functions of shop control flow, personnel 

scheduling is a much larger problem. Scheduling health professionals in 

hospitals and bus driver scheduling problems are typical examples. 

Determining whether to meet peak demand with overtime shifts, night shifts, or 

subcontracting is another example of a personnel scheduling problem.  

 

• Facilities scheduling.  This problem is particularly important when facilities 

become a bottleneck resource. Scheduling operating rooms at hospital set 
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example. As the need for health care increases, some hospitals and health 

maintenance organizations find that facilities are strained. A similar problem 

occurs in colleges and universities in which enrollments have increased without 

commensurate increases in the size of the premises.  

 

• Vehicle scheduling. Manufacturing firms must distribute their products in a 

cost – efficient and well-timed manner. Some service operations, such as dial – 

a – ride systems, involve pick-ups and deliveries of goods and/or people. 

Vehicle routing is a problem that arises in many contexts. Problems as 

scheduling snow removal equipment, postal and bank deliveries, and shipments 

to costumers with varying requirements at different locations are some 

examples.  

 

• Vendor scheduling. For firms with just – in – time (JIT) systems, scheduling 

deliveries from vendors is an important logistics issue. Purchasing must be 

coordinated with the entire product delivery system to ensure that JIT 

production systems function efficiently. 

 

• Project scheduling. A project may be broken down into a set of interrelated 

tasks. Although some tasks can be done concurrently, many tasks cannot be 

started until others are completed. Complex projects may involve thousands of 

individual tasks which must be coordinated for the project to be completed on 

time and within budget. Project scheduling is an important component of 

planning function. 

  

• Dynamic versus static scheduling. Most scheduling theories view the 

scheduling problem as a static one. Numerous jobs arrive simultaneously to be 

processed on a set of machines. In practice, many scheduling problems are 

dynamic in the sense that jobs arrive continuously over time. One example is 

the problem faced by an air traffic controller who must schedule runways for 

arriving planes. The problem is a dynamic one in that the planes arrive 
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randomly and runways are freed up and committed randomly over time. 

Dynamic scheduling problems are analyzed using the tools of queuing theory.  

• Interval scheduling. A formal schedule is given in advance; most actual 

processing is expected to conform to that schedule, even if unanticipated 

emergencies and other happenings force some change. A good example is an 

executive’s appointment log. Interval scheduling is useful when the use of 

several critical resources must be coordinated. Interval scheduling can cause 

large gaps and inefficiencies in the schedule. In practice, schedules often 

become quite patchwork. (Morton & Pentico, 1993, p. 20) 

 

2.3 Interval Scheduling  

 

There are given a set M of machines, a set I of intervals, and a mapping 
MIg 2: →  which determines on which machines each interval can be scheduled. 

Each interval i has a fixed ready time ir  and a fixed processing time ip . Interval i 

must be assigned to a machine immediately at time ir , and it must be continuously 

processed until it is complete, or else it is lost. A machine can only process one 

interval at a time. In other words, overlapping intervals cannot be scheduled on the 

same machine. The goal of this problem is to find a schedule that processes the 

maximum number of intervals. These types scheduling problems are named Interval 

Scheduling Problem. (Wagner, 2001) 

 

Interval Scheduling is an emerging area of scheduling where tasks, each equipped 

with specified ready times and deadlines, are to be processed on a number of 

resources. The problem is typical for reservation systems and has many real life 

applications such as classroom assignment, transportation systems, and shift 

scheduling. Reservation systems may arise in service environments like room 

reservation and car rental or repair services, where customers represent tasks and 

hotel rooms, cars or technicians correspond to resources. In production 

environments, the tasks give reservation request to resources during specified time 

windows of processing. The problem may involve the decision as to which orders are 
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to be accepted or how many resources are to be allocated to serve all orders. (Eliiyi, 

2004) 

 

Bouzina and Emmons (1996) studied interval scheduling where jobs with fixed 

start and end times were processed on identical parallel machines. The objective was 

to find a feasible schedule with the maximum number of completed jobs. When job 

weights were defined, the problem was to find a solution that maximized the sum of 

the weights of completed jobs. The non-weighted and weighted versions were 

referred to as the maximal interval scheduling and maximal-weight interval 

scheduling, respectively. The authors showed that these type problems are NP – hard.    

 

There are two main types of interval scheduling problems. In the first type of 

problem, there are a fixed number of machines, and the goal is to determine if all of 

the jobs can be scheduled on the available machines, or to maximize the number of 

jobs that can be scheduled. It may be the case that some jobs have higher priority 

than others, in which case the job weighted, and the goal is to maximize the weight 

of the scheduled jobs. (Wagner, 2001) 

 

In the second type of problem, there is an unlimited pool of machines and the goal 

is to find a set of machines with minimal cost that can process all of the jobs. The 

machines can be different types and they can have different costs. If the machines are 

identical, then any job can be scheduled on any machine, and the weight of the job is 

independent from the machine on which it is run. It is worth noting that in Interval 

Scheduling problems, the concept of machine speed is generally not relevant. Jobs 

have a fixed starting and ending time which does not depend on the machine on 

which the job is run. All machines operate at the same speed. In this case the goal of 

the second type interval scheduling problem is to find the smallest number of 

machines necessary to process all jobs.  

 

The special types of interval scheduling problem on identical machines are 

described in the following subsections.  
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2.3.1 Restricted Interval Scheduling  

 

If the machines are restricted, then a given job can only be scheduled on subset of 

the machines. All of the machines have the same speed, thus identical. These type 

problems will be referred to restricted interval scheduling problem.  

 

Restricted Interval Scheduling is first considered by Arkin and Silverberg (1987). 

Their problem is the basic interval scheduling problem where each interval can be 

scheduled on arbitrary subset of the machines. The authors show that Restricted 

Interval Scheduling is NP – complete. They have developed a dynamic programming 

solution method.  

 

Another version of Restricted Interval Scheduling Problem is Class Scheduling 

Problem, where the jobs and machines are divided into classes. In the most general 

case, each machine and job forms its own class. Kolen and Kroon (1991) show that if 

there are three or more dependent classes of machines, then deciding if all the 

intervals can be scheduled is NP – complete. A set of machine classes are dependent 

if the classes of jobs they can process overlap. Kolen and Kroon (1991) also show 

that if there are two or more dependent classes of machines then the optimization 

problem is NP – hard.  

 

Another Class Scheduling Problem where each job has a fixed ready time, a fixed 

end time, and a value representing the job priority is discussed by Kolen and Kroon 

(1993). Machines are available in specific time intervals (shifts), and a job can be 

processed only if the interval between the start and end time is a subinterval of a 

machine’s shift. A machine can process at most one job at a time and preemptions 

are not allowed. The objective is to find a feasible schedule for all jobs when such a 

schedule exists. Otherwise, the objective is to find a feasible schedule in which the 

subset of processed jobs yields the maximum total value. The feasibility problem is 

referred to as shift class scheduling while the optimization problem is referred to as 

maximum shift-class scheduling. Shift class scheduling is NP-complete but can be 

solved in polynomial time if preemptions are allowed. Maximum shift-class 
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scheduling is NP-hard. If the number of shifts and the start and end times of each 

shift are known in advance, shift class scheduling is NP-complete while maximum 

shift-class scheduling is NP-hard. Kolen and Kroon (1993) present some special 

cases where each can be solved in polynomial time. 

 

Classroom Assignment Problem is an interval scheduling problem where the 

classrooms correspond to machines and the classes are jobs. This problem is 

discussed by Carter and Tovey (1992). They consider variations where several 

classes meet several times a week but must be scheduled in the same room, in which 

case of intervals must all be scheduled on the same machine. They also consider the 

problem where classes can be scheduled in any room that is large enough. This is a 

special case of restricted interval scheduling where machines can be arranged in a 

hierarchy. In general these problems remain hard.  

 

2.3.2 Online Interval Scheduling  

 

In online interval scheduling problem, jobs must be scheduled on a single 

machine which runs one job at a given time. The problem is online in that jobs are 

unknown until their ready time. Each job must be started or rejected immediately 

when it becomes known.  Each job has a fixed value, which is gained if the job runs 

uninterrupted to completion. If a job arrives and there is a job running, the running 

job may be aborted in order to allow the new job to start. The goal is to maximize the 

sum of the values of those jobs which run to completion. This and similar scheduling 

problems arise in important application areas such as continuous media and call 

control. (Seiden, 1998) 

 

Online interval scheduling problem is studied by Woeginger (1994). He considers 

the single machine case. Job length and weights are known when they arrive. Jobs 

can be preempted, but they are lost. The quality of online algorithms depends on the 

relation between the length of the jobs and the weight of the jobs. If the weights of 

the jobs have no relation to the lengths of the jobs then no online algorithm is 

competitive. An instance of the problem is called f – related if there is a function f(x) 
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that maps lengths to weights. If f(x) is concave or decreasing then there exists a 4 – 

competitive online algorithm. The algorithm is straightforward. A job Jk is scheduled 

if the machine is idle, or if its value is twice the value of the job currently being 

processed, or if its end time is before the end time of the job currently being 

processed and its value is greater than the value of the job currently processed. They 

show that for concave f- related instances, no algorithm has a competitive ratio better 

tan 4 – ε, so the straightforward algorithm is optimal.  

 

2.3.3 Minimal Resources Interval Scheduling 

 

Given a set of jobs called operations, each associated with a release time and a 

deadline, and a set of processors called components, the problem of minimal 

resource interval scheduling is to find a schedule of operations on the components, 

such that each operation is started after its release time and completed before its 

deadline while the total resource cost of the components is minimized. Minimal 

resource interval scheduling is an important scheduling problem with wide 

applications. It is also an efficient approximation to some other hard scheduling 

problems such as precedence constrained scheduling, etc. 

 

Minimal resource interval scheduling problems were modeled by Shen and Jong 

(1999) using integer linear programming. Minimal resource interval scheduling 

problem is strongly NP – hard, as shown by Shen and Jong (1999).  

 

2.4 Fixed Job Scheduling  

 

If the job cannot be delayed after its ready time, then interval scheduling problem 

becomes a fixed job scheduling. The common feature in these problems is that the 

job j has a fixed starting time rj, completes at dj, and a job must be processed 

continually for a fixed amount of the time or else it is lost. 

 

Given n tasks Tj,(j = 1, …, n) each of which requires processing without 

interruption from a given release time rj to a given deadline dj (j = 1,……, n), and an 
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unlimited number of identical parallel processors P1, P2, …, Pn each of which can 

process at most one task at a time. The Fixed Job Scheduling (FJS) Problem is to 

determine a feasible assignment of tasks to processors, such that the number of 

required processors is at minimum.  

 

Two different generalization of operating time constraint of FJS problem have 

been considered in literature. These operating time constraints are spread time and 

working time constraints. Spread time constraints impose an upper bound on the time 

between the start and finish times of the operations on any machine. The working 

time constraints impose an upper bound on the sum of the processing times of the 

tasks assigned to each processor.  

 

FJS problem with spread time constraint is considered by Martello, Fischetti and 

Toth (1987). In this problem each processor is available only for s time units from 

the release time of the earliest task assigned to it, in the sense that any pair of tasks 

(Tj, Tk) that are assigned to sense processor must satisfy the relation srd kj ≤− . The 

idle time between the start and finish times are included in the spread time. This 

problem arises naturally in more general Bus Driver Scheduling Problem.  They 

modeled this problem and showed that this problem is NP – hard and proposed a 

branch and bound algorithm for the exact solution of problem.  

 

A real life application of bus driver scheduling problem with working time 

constraint is pointed out by Martello, Fischetti and Toth (1989). In this problem each 

processor is allowed to operate only for w time units. The processor must satisfy the 

relation wrd jj ≤− . The working time constraint is limited by the working time of 

bus drivers. Unlike spread time case, it does not include the idle times. They modeled 

this problem and showed that this problem is NP – hard and proposed a branch and 

bound algorithm for the exact solution of problem.  

 

Another FJS Problem is considered by Yuan and Lin (2005). They consider the 

single machine preemptive scheduling problem with some fixed jobs being 

previously given. The fixed jobs are already fixed in the schedule. The remaining 
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jobs are to be assigned to the remaining time-slots of machine in such a way that they 

do not overlap each other. The objective is to minimize a tardiness related criterion. 

If the jobs are processed without preemption, in literature this problem is strongly 

NP-hard.  

   

The FJS problem has two types based on the objective function.  

 

The first type of the FJS problem is the Operational Fixed Job Scheduling (OFJS) 

problem, where each job j has a weight wj that represents its value or relative 

importance, and the concern is maximizing the total weight of the processed jobs 

with a given number of processors. When all jobs have equal weights, the objective 

reduces to maximizing the number of jobs processed (Eliiyi, 2004). 

 

Eliiyi (2004) considers the OFJS problem on the identical machines. The author 

uses two different constraints for this problem. It is assumed that the jobs have fixed 

ready times and deadlines and working time constraint at the first model and spread 

time constraint at the second model are imposed on machines. Their objective is to 

select a set of jobs for processing so as to maximize the total weight. They show that 

the problem is strongly NP-hard. They use branch and bound algorithm to find an 

optimal solution.  

 

The second type of the FJS problem is the Tactical Fixed Job Scheduling (TFJS) 

problem. In these type problems, there are unlimited pools of machines and the goal 

is to find a set of machines with minimal cost or minimum number of machines that 

can process all of the jobs (Wagner, 2001). In a study by Kroon (1990), the TFJS 

problem is used as the core model in tactical capacity planning of aircraft 

maintenance personnel for an airline company. 

 

A special case of FJS problem is the Operational Fixed Interval Scheduling 

Problem (OFISP). OFISP is characterized as the problem of scheduling a number of 

jobs, each with a fixed starting time, a fixed finishing time, a priority index, and a job 
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class. The objective is to find an assignment of jobs to machines with maximal total 

priority. The problem is complicated by the restrictions that:  

 

i. Each machine can handle only one job at a time, 

 

ii. Each machine can handle only jobs from a prespecified subset of all possible 

job classes, 

 

iii. Preemption is not allowed.  

 

It follows from the above that OFISP has both the character of a job scheduling 

problem and that of an assignment problem. (Kroon, Solomon and Wassenhove, 

1993) 

 

Several projects in which OFISP plays an important role were proposed by 

different researches. Some examples of these projects are briefly discussed below: 

 

• The assignment of airplanes to gates. This problem was taken up at Schiphol 

Airport, where airplanes of different types have to be assigned to gates during 

fixed intervals. However, each gate can only handle a limited set of aircraft 

types due to technical restrictions. The problem here is to find an assignment of 

airplanes to gates where the number of unassigned airplanes - whose 

passengers have to be transported to the terminal by bus – is minimized. 

 

• The scheduling of operating rooms in a hospital. In most hospitals a limited 

number of operating rooms are available. Some of these operating rooms may 

be general purpose, but others may be suitable for only a subset of the various 

types of operations. In general the time slot for an operation is fixed.  

 

• The assignment of holiday bungalows to vacationists. Usually holiday 

bungalows are booked a long time in advance for a period of one or more 

weeks. The holiday bungalows may differ in several aspects, i.e. size, location, 
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accommodation, quality, and price. Each season the booking office is faced 

with the problem of finding an assignment of holiday bungalows to 

vacationists, such that there is a matching between the requirements of the 

vacationists with respect to e.g. comfort, and the available accommodation. 

 

2.5 Vehicle Scheduling Problem  

 

The vehicle scheduling problem (VSP) consists of assigning a set of scheduled 

trips to a set of vehicles, in such a way that each trip is associated to one vehicle and 

a cost function is minimized. The VSP is a classical optimization problem which is 

faced in the operational planning of public transportation systems. (Baita et al., 1990) 

 

Vehicle scheduling problems have different objective functions. First objective 

type is minimizing the total number of vehicles that is, minimizing the capital cost or 

fixed cost of vehicles. Second objective type is the total deadhead time or deadhead 

cost of operations. Third objective type is maximizing the utilization of vehicles, 

which is equivalent to minimizing the idle time or arc time.  

 

VSP is modeled by integer programming. Arc time, which is defined as the time it 

takes for a vehicle to go from the arrival point of the first trip to the departure point 

of the second trip, overlapping trips set, which is a set of trips which can not be made 

by a vehicle, spread time constraint and working time constraint are used in 

modeling VSP.  

 

There are efficient algorithms for some versions of the VSP, i.e., when all 

vehicles are equal and share the same depot. Nevertheless, real-life applications may 

turn out to be complex due not only to the dimension of the problem but also, and 

more importantly, to the particular requirements which are present in practical 

situations but are hard to be modeled. Practical requirements for this problem, 

usually not considered in the literature, include considering several performance 

evaluation criteria, producing different alternative solutions, and getting hints on how 

data could be modified to improve the quality of the solutions. (Baita et al.,1990) 
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2.5.1 Why Vehicle Scheduling Problems Are Complex 

 

Most real vehicle scheduling problems are difficult for modeling and complex for 

solving. Schrage (1981) lists 10 features that make real problems difficult to solve. 

These include:  

 

• Frequency requirements. Visiting customers may have to occur at a certain 

frequency and that frequency may vary from customer to customer. 

 

• Time windows. This refers to the requirement that visits to customer locations 

be made at specific times. Dial – ride systems and postal and bank pickups and 

deliveries are typical examples.  

 

• Time dependent travel time. When deliveries are made in urban centers, rush – 

hour congestion can be made an important factor. Travel time depends on the 

time of days.  

 

• Multi dimensional capacity constraints. There may be constraints on weight 

as well as on volume. This can be a thorny issue, especially when the same 

vehicles are used to transport a variety of different products.  

 

• Vehicle types. There may be several vehicle types to choose from. Vehicle 

types may differ according to capacity, the cost of operation, and whether the 

vehicle is constrained to closed trips only. When several types of vehicles are 

available, the number of feasible alternatives increases dramatically.  

 

• Split deliveries. If one customer has a particular requirement, it could make 

sense to have more than one vehicle assigned to that customer.   

 

• Uncertainty. Scheduling algorithms invariably assume that the information is 

known in advance. In practice, however, the time required to cross certain 
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portions of network could be highly variable depending on factors such as 

traffic conditions, weather, and vehicle breakdowns.  

 

2.5.2 Types of Vehicle Scheduling Problems 

 

The general vehicle scheduling problems are the problems in which a number of 

vehicles starting at one or more depot have to collectively visit a number of demand 

points then return to the depot from which they start.(Haghani et al., 2003) There are 

two different main types of vehicle scheduling problem: Single Depot and Multi 

Depot Vehicle Scheduling Problem. 

 

2.5.2.1 Single Depot Vehicle Scheduling Problem  

 

The single depot vehicle scheduling problem (SDVSP) contains the basic 

structure of the scheduling problem. Suppose there are n trips to be served by 

vehicles starting from a single depot. Every trip has a starting point, an ending point, 

a starting time, and an ending time. The trips could be served by the same vehicle if 

the starting time of one trip is greater than the ending time of another trip plus the 

travel time between these two trips. The objective of the problem is to find the 

minimum number of the vehicles to serve all the trips.  

 

A network could be constructed to represent this problem: each trip represented 

by a node, and an arc (i; j) exists if the ending time of trip i plus the travel time 

between ending point of trip i and starting point of trip j is less than the starting time 

of trip j. Then the problem is to find the minimum number of paths in this network 

that cover all the nodes. The path here is treated as a vehicle scheduled to start from 

the depot and end at the depot. This problem could be solved as a minimum cost flow 

problem.  

 

Several network flow type of algorithms have been proposed for the SDVSP. The 

SDVSP problem has been formulated as a linear assignment problem, a 

transportation problem, a minimum cost flow problem, a quasi – assignment problem 



18 

 

 

and a matching problem. Freling et al (1999) review the most relevant algorithms 

and they propose new two phase algorithm, which is valid in case of the special cost 

structure and a new core oriented approach.  

 

The single depot scheduling problem is well – known to be solvable in 

polynomial time. However, when other constraints such as the route time constraints 

that make the problem more realistic are introduced, it becomes a NP-hard problem. 

Large problems of this type can be solved only by heuristic procedures.  

 

2.5.2.2 Multi Depot Vehicle Scheduling Problem  

 

The multiple depot vehicle scheduling problems (MDVSP) are extensions of the 

SDVSP problem. The major difference between the two is that in the multiple depot 

case vehicles are housed at different depots. The objective is to determine the 

minimum number of vehicles to serve all trips and to identify the optimal locations 

of the vehicles in order to minimize the total cost. The MDVSP can be formulated as 

a mixed integer programming problem in two different ways: ‘‘Trip Based’’ 

formulations, in which the trips are the components to which the variables are 

related, and ‘‘Block Based’’ formulations, in which the blocks serve that purpose. 

Bertossi et al. (1987) proved that the problem is NP-hard.  

 

Some researchers formulated the MDVSP as a multi – commodity formulation 

which is a network flow formulation that accounts for multiple commodities shipped 

from different origins to different destinations in the network. Desaulniers et al 

(1998) studied MDVSP with time windows and waiting cost. They formulate this 

problem as an integer nonlinear multi – commodity network flow model with time 

variables and they solve it using a column generation approach embedded in branch 

– and – bound framework. 

 

Many branch and bound or heuristics approaches are used to solve the MDVSP 

but the most successful approach for solving it is the work of Löbel (1997). He 

solved large real world problems using a specific type of column generation called 
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‘‘Lagrangean Pricing’’. He solved a problem consisting of 25,000 trips with more 

than 13 million variables to optimality and a similar problem with about 70 million 

variables to a good feasible solution. 

 

2.6 Solution Methods for Scheduling Problems  

 

Solution methods for scheduling problems can be classified as exact optimization 

approaches and heuristic approaches. Exact optimization approaches include integer 

programming solutions, dynamic programming solutions. A heuristic method 

includes basic dispatch schedule and search techniques. 

 

2.6.1 Exact Optimization Approaches 

 

2.6.1.1 Integer Programming (IP) 

 

A surprisingly wide class of problems can be modeled using integer variables and 

linear constraints. Sometimes such a model consists solely of integer variables. That 

is a pure integer programming (IP) model. More commonly there are both 

conventional continuous variables together with integer variables present. Such a 

model is said to be a mixed integer programming (MIP) model. (Williams, 2003, p: 

144) 

 

We can think of situations where it is only meaningful to make integral quantities 

of certain goods or use integral quantities of some resources. In these cases IP model 

might be used of many different types of problem. Knapsack problem, sequencing 

problem, location problem, scheduling problem, transportation problem, assignment 

problem, set partitioning problem, depot location problem are some example 

problems for which IP models may be built. 

 

There is a considerable danger in building an IP model only to see that it is not 

possible to solve it in a reasonable time using a modern computer and package 

programs. For this reason some methods of solving IP are developed. Branch – and 
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bound method, cutting planes method and enumerative methods are some different 

methods by which IP models may be solved.  

 

Enumerative methods are generally applied to the special class of 0 – 1 PIP 

problems. In theory there are only a finite number of possible solutions to a problem 

in this class. Although it would be quite difficult to examine all these possibilities, by 

use of a tree search it is possible to examine only some solutions and systematically 

rule out many others being infeasible or non – optimal.  

 

Branch and bound method is one of the most popular methods of solving IP. The 

branching refers to a partitioning of the solution space; each part of the solution 

space is then considered separately. The bounding refers to the development of lower 

bounds for parts of solution space. If a lower bound on the objective in one part of 

the solution space is larger than an integer solution already found in a different part 

of solution space, the corresponding part of the former solution space can be 

disregarded. (Pinedo& Chao, 1999, p.396) 

 

Cutting plane methods usually start by solving an IP problem as if it were an LP 

problem by dropping the Integrality requirements. If the resultant LP solution is 

integer, this solution will also be the integer optimum. Otherwise extra constraints 

are systematically added to the problem, further constraining it. The new solution to 

the further constrained problem may or may not be integer. By continuing the 

process until an integer solution is found or the problem shown to be infeasible the IP 

problem can be solved.  

 

2.6.1.2 Dynamic Programming  

 

Dynamic programming is a technique that can be used to solve many optimization 

problems. Dynamic programming obtains solution by working backward from end of 

a problem toward the beginning. The problem can be divided into stages with 

decision required at each stage. Each stage has a number of states associated with it. 

Decision makers choose the state which is an optimal decision at their stage and they 
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transform it into the state at the next stage. Dynamic programming technique is an 

implicit enumeration method, i.e., it evaluates only a subset of all possible solutions. 

 

Since the number of stages becomes large rapidly in scheduling problems, 

dynamic programming approach is difficult to implement from the computational 

point of view, due to its memory and time requirements. (Edis, 2004) 

 

2.6.2 Heuristics Approaches 

 

For both integer programming and dynamic programming, however, while very 

small problems can be solved in a reasonable time; solving the large problems are 

very hard. These problems are usually known NP – complete. For this reason, 

various heuristics approaches are developed for approximate solution of the large 

problems.  

 

 2.6.2.1 Dispatch Schedule 

 

A formal scheduling may or may not be given in advance, but simple practical 

changes may be handled just by adjusting/slipping the whole schedule in a flexible 

way. The emphasis is on scheduling resource by resource, keeping each resource 

busy with the most important activity available. When resource becomes free, the 

highest priority activity available is performed next. This tends to produce a 

compact, efficient schedule, but necessary complicated resource matching may be 

more difficult. While some users may object to a schedule with constant minor 

change, the entire schedule remains logical and tightly knit in terms of priorities. 

(Morton & Pentico, 1993, p. 20) 

 

Dispatching heuristic has some rules that prioritize all the activity that are waiting 

for using resource. These rules can be classified in various ways. First way of 

classifying dispatching rules is according to the information they are based upon. A 

local rule uses information pertaining to either the queue where activity is waiting or 

the resources where the activity is queued. A global rule may use information 
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pertaining to other resources, such as the processing time of the activity on the next 

resources on its route or current queue length at that resource. Another classification 

of dispatching rules is static or dynamic rules. Static rules are not time dependent but 

dynamic rules are.  

 

2.6.2.2 Search Techniques 

 

There are a number of heuristic search techniques to solve large scale problems 

(Pinedo& Chao, 1999, p.421).  

 

• Neighborhood Search: Neighborhood search is a rather general technique used 

for scheduling. First pick a feasible starting solution, using any method. Next, 

try all possible ways of schedule slightly and evaluate each resulting schedule. 

If there is no improvement, the method is finished. Otherwise, take the largest 

improvement and begin looking small changes from that, and so on. It arrives 

at only local optimum, but is very useful especially if used in conjunction with 

good started heuristic method.  

 

• Tabu Search: Tabu search which is neighborhood search with list of recent 

search position is another search technique. The best solution to date is also 

always saved in case no better solution is ever found.  

 

•  Simulated Annealing: Simulated annealing also adds diversification to a 

neighborhood search procedure, but in a somewhat different way. A random 

amount is added to each possible move’s evaluation.  

 

• Genetic Algorithms: There is a current population of possible solutions to the 

problem. In each generation, the best solutions are allowed to produce new 

solutions (children) by mixing features of the parents; the worst children die off 

to keep the population stable, and on to the next generation.  
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• Beam Search: Beam search is a derivative of branch – and – bound, which 

tries to eliminate branches in an intelligent way so that not all branches have to 

be examined. It thus requires less computer time, but can no longer guarantee 

an optimal solution.  

 

Savings heuristics, a time oriented – nearest neighbor heuristics, insertion 

heuristics and a time – oriented sweep heuristics are other heuristics methods to 

solve vehicle scheduling and routing problems. Solomon (1987) considers the design 

and analysis of such heuristic algorithms for vehicle scheduling and routing problems 

with time window constraints. They show that insertion heuristics prove to be very 

successful.  
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CHAPTER THREE 

PROBLEM STATEMENT AND SOLUTION APPROACH 

 

 

3.1 Introduction 

 

In this chapter, the problem will be defined, factors and objectives will be 

identified and the mathematical model appropriate to the goal and to the structure of 

the problem will be constructed. Besides, the modelling of this problem with the 

optimization package programs and the heuristic solution approaches will be fully 

explained through this chapter. The problem can be defined as the assignment of the 

jobs which have certain time intervals to the machines. What is meant by the time 

interval here is that the jobs have a fixed ready time and operation period. All the 

jobs should be done right on time. The number of the available machines is infinite. 

The objective is to schedule – the minimum number of machines to process all jobs.  

 

Such scheduling problems are encountered in real life. In this study, a problem is 

examined where the machines correspond to vehicles and the jobs to trips. Generally, 

this problem is a vehicle scheduling problem. The problem examined in the study is 

inspired by the study of Karakütük and Karaçizmeli (2004).  

 

Though possible, it is rather difficult to model the variables and situations in real 

life mathematically. Therefore, to model such problems, several assumptions are 

made. It is rather difficult to find out the optimum solutions of the scheduling 

problems in real life. Thus, heuristic approaches have been prepared for the problem 

in compliance with the assumptions to be used in modeling.  

 

The method to be used in the modeling of the problem is the mixed integer 

programming (MIP), and the constraints are structurally the ones to be encountered 
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in interval scheduling and fixed job scheduling problems. The solution algorithm 

has been prepared in compliance with similar scheduling problems. In addition, by 

making slight adjustments in algorithms, heuristic approaches have been created 

apart from such vehicle scheduling problems, applicable to similarly structured 

problems in a different domain.  

 

3.2 Problem Definition 

 

The problem is to form the cost-efficient vehicle schedules, which will be used in 

a large–scale organization for the transportation between the participants’ 

accommodation facilities and the facilities where the activities will take place, in 

compliance with the terms of the organization. Problem will be solved daily; that is, 

a new schedule is made for each day. The main reason is that the organization 

program changes from day to day. The daily programs are known beforehand. There 

are two basic parameters that form the problem. The first one is a trip which 

corresponds to the participants’ transportation activity from one center to another. 

The other is the vehicle, which will conduct the carrying of the demands of the trips. 

The collected data, the data sets formed out of these data change with respect to these 

two parameters. In order to render the problem comprehensible, these two parameters 

and the data sets connected to them are required to be explained in detail.  

 

3.2.1 Data Related with Trips (j)  

 

 A trip is the act of transportation of passengers from a center to another, and it is 

required to be performed in a certain time interval. Daily organization program is 

known, for this reason the daily required number of trips is known in advance. 

Furthermore, the trip set stands for an act of transportation between only two centers, 

that is to say, the trips do not consist of consecutive transportations between three or 

more centers. In fact, due to the structure of the problem, a trip stands for the 

transportation between just two centers.  
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The trips are the acts that have a ready time and deadline. As seen in Figure 3.1, 

each trip in the time axis corresponds to a certain time interval. These time intervals 

sometimes overlap with one another. Each time interval has a departure and arrival 

point on time axis, known in advance. A trip demand emerges at each time interval. 

The trip demand corresponds to the number of passengers on that trip. The 

transportation of the demand should necessarily be performed within this time 

interval.  

 

 
Figure 3.1 The Time Interval of Trips  

 

All trips have a definite ready time ( jr ) and deadline ( jd ). The ready time and 

deadline are known in advance and deterministic ones. Thus, every single trip has a 

definite processing time ( jjj rdp −= ). Namely, the time to be spent on each trip is 

deterministic and known beforehand. The vehicle to be assigned to each trip 

necessarily has to be at the departure point in ready time. It is not possible to delay 

the trips after the ready time.    

 

The passenger demands for the trips ( jD ) are deterministic and they are known in 

advance. It is necessary to assign adequate number of vehicles to supply the demand 

for each trip. That is, the demand for each trip has to be satisfied at any rate. There 

are two kinds of trips based on demands.    

 

The demand for the first type of trips is split. That is to say, in order to meet the 

demand, more than one vehicle may be used. The important thing here is to supply 

the adequate number of seats to meet the demand. Therefore, there is a necessity to 
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assign more than one vehicle for the trips whose demands exceed the capacity of the 

vehicle with the largest capacity; since all the demands of the trips should be 

satisfied. Furthermore, the trips pertaining to the first type, and whose demands are 

smaller than the capacity of the vehicle with the largest capacity also can be 

conducted with more than one vehicle according to the problem.  

 

The second type of trips is the ones which are required to be conducted with only 

one vehicle. Due to the organizational conditions, the demands of some trips should 

necessarily be satisfied with a single vehicle; therefore some trips should necessarily 

be taken with a single vehicle. The demands of such trips should be equal to or 

smaller than the capacity of the vehicle with the largest capacity. Otherwise, an 

assignment without a division is not possible and the problem would be infeasible. 

The set (T) constituted by the second type demands of the trips formed during the 

day time should be known in advance.  

 

Each trip has a departure and arrival point. If a vehicle is to take another trip after 

finishing one, it has to get from the arrival point of the first trip to the departure point 

of the other trip. When the vehicle takes a trip b after a trip j, the elapsed time that 

the vehicle gets from the arrival point of  j to the departure point of b is called the arc 

time ( jba ) between the places j and b.  Arc time could be regarded as a setup time. 

That is to say, it is the preparation time of the machine from the latest task to its new 

task. 

 

 The arc time between the trips can be explained more clearly with Figure 3.2. 

Here the departure point of the first trip is 1DP , and the arrival point of the same trip 

is 1AP . Let’s assume the departure point of the next trip after the first one as 2DP , and 

the arrival point as 2AP . In such a case, the arc time ( 12a ) is the elapsed time that the 

vehicle travels from the first trip’s arrival point 1AP  to the second trip’s departure 

point 2DP . In order for the vehicle to take the second trip, the sum of the first trip’s 

deadline ( 1d ) and the arc time between the trips ( 12a ) has to be smaller than the 
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second trip’s ready time ( 2r ), in other words the condition ( 2112 rda ≤+ ) has to be 

met. Otherwise, the vehicle cannot take that trip, but might another trip.  

 

 
 

Figure 3.2 Arc Time between Two Trips 

 

3.2.2 Data Related with Vehicles (i) 

 

The second significant parameter is the one dependent on the vehicles to transport 

the demands of the trips from one center to another. As a matter of fact, the problem 

is assigning the vehicles to the trips. The vehicles have cost of use, usage period and 

types with definite capacities.  

 

Single or various types of vehicles may be used in the problem. It has been 

assumed that there are an enough number of vehicles in each size. That is, if there are 

k types of the vehicles, then that is assumed an enough number of all types of 

vehicles are available. By this way, the number of the vehicles to be used will be 

determined dependent on the structure of the trips. 

 

Each vehicle has a definite capacity ( ic ). The vehicles cannot exceed these limits, 

yet in order for the vehicle to complete a trip; not all the seats are required to be 
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occupied. Even though only one person is to be transported, the vehicle should be 

assigned to that trip. The maximum passenger capacity for each vehicle differs.  

 

As we have mentioned before when explaining the trips, each vehicle can be 

assigned to only one trip and can transport passengers between two centers at a 

single slot of time. In other words, even though the vehicle’s capacity is fit for more, 

it is allowed to transport the passengers of a single trip.  

 

The average speed of the vehicles is assumed as constant. Actually, based on this 

assumption, it has been mentioned before that each trip and arc time are 

deterministic.  

 

Each vehicle has a daily fixed cost dependent on its size. When a vehicle is 

assigned to a trip, its fixed cost should be tolerated. In exchange of the fixed cost 

( if ) the right to use the vehicle for a certain period is obtained. This period is called 

daily available regular time (S).  Throughout this period, the vehicle can be used 

without extra charges. In addition, each vehicle has a variable cost ( iv ) dependent on 

its type. Variable cost is the unit overtime ( io ) cost of use.  If the vehicle is used 

more than the standard or variable time, an extra cost is charged for every unit of 

time as much as the variable cost. Each vehicle has a limit for overtime usage, which 

is called the daily available overtime (O) limit. A vehicle can be used as much as the 

sum of the daily available regular time and the daily available overtime (S+O) at the 

most. The usage limits for all the vehicles are the same. The vehicle’s cost of use is 

made up of the fixed and variable cost. As a matter of fact, the objective function of 

the problem is to minimize the total fixed cost plus the total variable costs of the 

vehicles.  

 

3.2.3 Incompatibility Set 

 

Some trips cannot be handled by the same vehicle. The set of the trips that cannot 

be transported by the same vehicle form incompatibility sets ( jQ′ ). This set varies 
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dependent on both the trips and the vehicles. There can be three reasons for the two 

trips not to be taken by the same vehicle. These three cases can be seen in Figure 3.3. 

separately. 

 

 
 

Figure 3.3 An Example Time Intervals of Trips for Incompatibility Set   

 

The first reason is the overlapping of the intervals of two trips. For any trip j, if 

there is a trip b which provides jbj drr ≤≤ , trips j and b overlap and therefore they 

cannot be performed by the same vehicle. To explain this, let us examine the 

overlapping 1st and 2nd trips in Figure 3.2. If the vehicle has been assigned to the 1st 

trip, then it is busy from 1r  to 1d   time. As the vehicle is busy and it can only be 

assigned to a single trip, it will not be present at the ready time of the second trip 2r . 

Therefore, 1st and 2nd trips cannot be taken with the same vehicle.  

  

Another reason is that, a vehicle cannot perform two trips due to the arc time 

between the two destinations. If jbjbj adrr +<≤  for the trip b following the trip j, 

these trips cannot be taken by the same vehicle. The 3rd and 4th trips in Figure 3.3 can 

be shown as an example for the case. The time intervals of these do not overlap, but 

the arc time between the 3rd and 4th trips is more than the difference between the 

ready times and deadlines of these trips. Thus these trips cannot be taken by the same 

vehicle.  
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As the last reason, if the difference of the trip j’s ready time ( jr ) and the trip b’s 

deadline ( bd ) exceeds the total use time ( jb rdOS −<+ ), then the vehicle cannot 

perform the trips j and b simultaneously. This case is observed between the 1st and 5th 

trips in Figure 3.3, these two trips cannot be taken by the same vehicle. 

 

If these three relations can be observed any two trips, i and j, these trips would be 

the ones to be taken by the same vehicle. Then, job j will be added to set iQ′ , and job 

i will be added to the set jQ′ .  

 

3.3 Model Assumptions 

 

Before mathematical modeling of the problem, the conditions due to the 

organization and the assumptions for modeling should be restated briefly. 

Examination of these subjects will provide for a better understanding of the 

problem’s context.  

 

i. The upper bound value for the passenger demands in nonsplit trips is equal to 

the capacity of the largest vehicle. 

 

ii. It is assumed that we have enough number of vehicles in each size. 

 

iii. It is assumed that the trip times are deterministic and constant.  

 

Besides the assumptions, there are some constraints due to the organizational 

structure. These include following:  

 

i. The vehicles can transport between only two facilities, that is, only the 

passengers of a single trip can be carried with the same vehicle.  

 

ii. Some trips are nonsplit due to the organizational conditions. That is, they have 

to be performed with a single vehicle. 
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iii. The postponement, delay or cancellation of the trips is not possible. All the 

trips should be taken in the time interval assigned to them.  

 

The data of the problem include:  

 

i.  Daily program: The information about the exact timing of the activities, the 

facilities that the transportation will take place in between, and also the number 

of passengers to be transported. 

 

ii. The distance and the route between the facilities:  Since the distance of all trips 

is constant and the distances are known, time intervals of the trips are known in 

advance. In addition to this, the arc times of the trips is also known beforehand. 

 

iii. Capacity and cost of vehicle:  The information about the vehicles is known in 

advance. It has been already stated that there are enough number of vehicles in 

each size. 

 

3.4 Mathematical Formulation  

 

Parameters  

 

• kIIIII,,i ,......,1,,.....,1,......,21 2211 ++= : Vehicle index  

)( 1−− kk II  is an upper bound on the number of available vehicles of type k.      

• j = 1, ………,J: Trip index  

• :jD  Number of passengers on trip j  

• :jr  Departure time (ready time) of trip j.  

• :jp  Trip duration (processing time) of trip j  

• :ic   Capacity of vehicle i  

• :if  Daily fixed cost for vehicle i  
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• :iv  Overtime cost per time unit  for vehicle i  

• :S  Daily regular time unit available for each vehicle   

• :O  Daily available overtime units for each vehicle 

• :jQ′  Incompatibility set of trip j – The set of trips which can not be made by a 

vehicle, if that vehicle takes trip j. 

}:{ OSrproraprrrjbQ jbbjbjjbjj +>−+++≤≤>=′  

o jba  (arc time) is the time it takes for a vehicle to go from the arrival point of 

trip j to the departure point of trip b. 

• :T  The set of indexes of trips in which must use only one vehicle 

• M: A large integer number. ( JM = ) 

• N: A large integer number ( )max( 1 jj prrN ++= ) 

 

Decision Variables  

 

• 
⎩
⎨
⎧

=
otherwise,0

used isvehicleif,1 i
yi  

 

• 
⎩
⎨
⎧

=
otherwise,0

triptakesvehicleif,1 ji
xij  

 

• :io  Overtime usage of vehicle i  
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Mathematical Model 

 

Objective Function:  
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1
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Tkx
kI

i
ik ∈=∑

=1
1        (3.6) 

jiyx iij ,binary,, ∀         (3.7) 

ioi ∀≥  0         (3.8)  

 

Constraints 

 

The objective function in (3.1) minimizes the total cost of the vehicles. If vehicle i 

is used, the decision variable iy  take value of 1 and the fixed cost of the vehicle must 

be tolerated. If the vehicle performs overtime, its overtime period is multiplied by the 

unit overtime cost and added to the objective function.   

 

Constraint set (3.2) ensures the assignment of the adequate number of vehicles 

that transport all the passengers in each trip. This constraint set controls that the total 

amount of the capacities of the entire vehicles to be assigned to a trip is more than 

the demand of the trip.  
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The constraints in constraint set (3.3) are called as the spread time constraint. If 

vehicle i is assigned to the trip j, the vehicle will be unable to take the other trips 

which are in the incompatibility set ( jQ′ ) of this trip. By way of this constraint, if the 

vehicle takes a trip j ( 1=ijx ) it is ensured that the trip b ( 0=ibx ) in the 

incompatibility set ( jQ′ ) not to be taken.  

 

Constraint set (3.4) is used to find out whether the vehicle is used or not. The 

main reason to use this constraint is to add the fixed cost of the vehicle to the 

objective function on condition that the vehicle is assigned. In this model, M value is 

equal to the number of the trips to be taken in daytime.  

 

Constraint set (3.5) is used for determining the total overtime period of the 

vehicle, if it goes overtime. For this purpose, the time difference between the first 

and last trip is compared with S value. If this difference is bigger than the S value, 

addition of the exceeding time to the objective function as overtime cost is enabled. 

The N value here is equal to the difference between the ready time of the vehicle 

with the earliest ready time and deadline of the vehicle with the latest deadline. 

 

Constraint set (3.6) enables the assignment of a single vehicle to the trips that are 

required to be taken by a single vehicle.  

 

Constraint sets (3.7) and (3.8) enable the decision variables to be nonnegative and 

binary.   

 

3.5 Optimal Solution 

 

The mathematical model of the problem is mixed integer programming model. 

The number of constraints in the model changes depending on the number of trips 

and the number of vehicles. It can be thought that the solution period may extend 

with rising number of trips and vehicles in the problem, since the decision variables 
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in the model are mostly binary. The mathematical model is attempted to be solved 

optimally with two different optimization programs. 

 

Firstly, formulation in LINGO 8.0 is attempted to be solved with the optimization 

software by a P4 2.4 MHz. 256 Mb computer. However, it has been deduced that 

daily optimum schedule of organizations of a daily program that includes more than 

100 trips can not be ascertained with this software in an acceptable time period. The 

result is that because the problem is daily, maximum time period allowable is one 

day, but within this time solving the problem is not possible with this software. 

 

Secondly, problem is modeled in GAMS 20.2 optimization program by the use of 

CPLEX SOLVER and it has been attempted to be solved by the same computer. 

There has not been any change in the result. It has also been extrapolated that even 

though the performance is better than LINGO optimization software, in the situations 

like when there are over 100 trips in a day; this program will not be able to as certain 

the optimum solution of the problem within an acceptable time period, as well. 

LINGO and GAMS models of an sample problem and the preparations of the data 

sets inside these programs are presented in Appendix A.  

 

As it has been pointed in the beginning, the existence of binary decision variables 

and the large number of constraints may be indicated as the reasons demonstrating 

why the problem cannot be solved in reasonable times by the optimization software. 

Many problems especially with Constraints (3.3) -that is spread time constraint- are 

presented as NP – complex and NP – hard in literature. (See also Fischetti et al. 

1987) 

 

The question that whether the problem is NP – complex or NP - hard is beyond 

the scope of this study. Yet, by using the optimization software, it has been inferred 

that the problem can not be solved within a reasonable time period. Because of that, 

some methods should be developed that will enable to figure out the problem with 

more trips in a shorter time. In this problem, heuristic search techniques will be 

utilized as solution methods. 
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3.6 Heuristics  

 

Since the problem can not be solved within a reasonable period of time, heuristic 

solution methods have been developed which are capable of producing suboptimal or 

near optimal solutions in shorter times. Each of these methods has been based upon 

various criteria. Three heuristics approaches which are established on different 

algorithms have been developed. Each different heuristic is solved by two distinct 

solutions in itself; in the first solution, vehicles are used only during their daily 

regular time limit (S). In the second solution, vehicles are forced to make overtime; 

i.e. each vehicle is used in a period of length (S+O). 

 

In this way, a total of six different solution methods are constructed. The first one 

of the three different heuristics methods is the Vehicle Based Heuristic (VBH) 

method, which performs the assignments considering vehicles one by one. The 

second one is the Trip Based Heuristic (TBH) method, which performs the 

assignments considering the trips one by one. The third one is the Group Based 

Heuristic (GBH) method, where the trips are grouped and then assigned with respect 

to this group order. The process of each method and their detailed algorithms are 

presented below.  

 

3.6.1 Vehicle Based Heuristic  

 

In this method, the assignments are based on vehicles. A daily work schedule of 

the vehicle is formed by assigning the vehicle to all trips that they are able to do 

within the performance time of the vehicles. The performance time may be S or 

(S+O), depending on the type of algorithm, as will be stated below. Thus, the daily 

work schedule of each assigned vehicle is done, and it continues until the process is 

over. The general algorithm of the method is as follows. 
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1. Determine the first trip to take. 

 

2. Assign a new vehicle to the chosen trip. 

 

3. Form the trip set that can be assigned to the vehicle. 

 

4. If there are any trips (i.e. the trip set is nonempty) which can be made by the 

same vehicle after assigning the previous trip and go to step 5, otherwise go to 

step 6. 

 

5. Assign the vehicle to the most proper trip with respect to its performance 

criteria. Then follow step 3 again.  

 

6. If any trip is left in the system, go to step 1; if not stop.  

 

In this method, the problem is solved by two different approaches. In the first 

approach overtime is not allowed, in the latter one all vehicles perform overtime. The 

only difference in the algorithm is that in the first approach daily available overtime 

units for each vehicles equals to zero (O=0).  
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The general flowchart of the method is displayed in Figure 3.4. 

 

 
 

 
Figure 3.4 Flowchart of Vehicle Based Heuristic 
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The detailed algorithm of heuristic method and its parameters are as follows: 

 

Parameters: 

 

• :F  The set of unused vehicles.  

• :iT ′  The set of nonsplit trips that cannot be assigned to vehicle i.  

• S: The regular time limit of a vehicle.  

• O: The maximum over time unit of a vehicle. 

O = 0; for vehicle based heuristic without overtime (VBH) 

O > 0; for vehicle based heuristic with overtime (VBHO) 

• jQ : The Compatibility Set of trips which the vehicle to be assigned to trip j is 

able to take within daily usage time period (S+O). 

• :ik  The index of the first assigned trip of vehicle i.  

• :ijbw The idle time of the vehicle i in case that it takes trip b after its trip j 

whether on regular or on overtime.            

• :ijbw′  The idle time of the vehicle i in case that it takes trip b after its trip j on 

overtime.            

• :ijbp′  The usage time period of the vehicle that performs overtime after its trip 

j.  

• ijbR  is the performance criteria for assignment of vehicle i to trip b after trip j.  

 

ijbR  = cost of idle time on regular time + cost of idle time on overtime  

      + cost of unused seats on regular time + cost of unused seats on overtime  

 

)(
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ijbR , is calculated for every trip b which vehicle i can take after its trip j and it is 

regarded as an assignment criterion. Vehicle i is assigned to trip b that gives 
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ijbRmin . This ratio enables the vehicle to be assigned to the busiest trip with 

minimum delay. The vehicle is assigned to the trip with the lowest free seat cost 

and shortest delay time this way.  

 

Detailed Algorithm 

 

S0: Initialization: The process of necessary preparations for algorithm. 

 

i. Arrange the vehicles by their sizes in descending order. 

ii. Create a list of trips by arranging the trips in a chronological order according to 

their ready time.  

iii. Form a iT ′ set for each vehicle; { }jii DcTjT <∈′ ::  

iv. Form a jQ  set for each trip; 

}:{ OSprrorraprjbQ bbjbjbjjj +≤++≤++>=  

v. Calculate the ijbw  values for each trip; jjjbijb Qbrprw ∈∀+−= ),(  

vi. Calculate the ijbw′  and ijbp′  values for each trip;  

a. If there is not any overtime; ijbw′ =0 and 0=′ijbp  

b. If there is overtime;  

jkbijb QbSrrw
i

∈∀+−=′ ),0),(max(     

jkbbijb QbSrprp
i

∈∀+−+=′ ),0),(max(  

 

S1:  Choose the first trip from the list which is not done and let it be trip j.     

                                 

S2: Assign an unused vehicle to the first chosen trip.          

 

A. If )max( ij cD ≥ , then assign the vehicle i which is Fici ∈)max(  to trip j. If 

not, { } FiDcU jii ∈∀−= . Calculate for all vehicles i belonging to set F, the 

quantity of passengers who cannot transport in the trip j in the event of vehicle 

i assignment to this trip. In the trip j that gives 0≥iU  value, assign the vehicle 
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i with )min( iU  to the trip j. Thus, the assigned vehicle’s free seats will be in 

minimum number. 

B. Delete vehicle i from the set F. 

C. ki = j. 

 

S3:  Reduction of the demand of the assigned trip as much as the capacity of the 

vehicle assigned to the trip. 

 

A. )0),max(( ijj cDD −=  

B. If 0=jD , then delete trip j from list of trips. 

 

S4: Assignment of the vehicle in use to its new trips within the validity period. 

 

If ∅≠′− )( ij TQ  then 

 

i. Calculate the ijbR  ratio for every trip b in this format: )( ij TQb ′−∈   

ii.  Assign vehicle i to trip b whose ijbR  is minimum. 

iii. jb =  (Consider the newly assigned trip b as trip j). 

iv. Go to step S3. 

 

    Otherwise go to step S5.  

 

S5:  If there is any work to be done in list of trips, go to S1; if not exit the system.  

 

According to the types of the vehicles employed, the total fixed costs are 

calculated. In order to count the overtime costs, we calculate the time length between 

the ready time of the first trips and the deadline of the last trips, and then subtract the 

S value from this time so as to get the overtime period.  
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3.6.2 Trip Based Heuristic  

 

In this method, the assignments are trip based. The trips are ordered according to 

their ready times and a combination of vehicles with the minimum number of vehicle 

is assigned to those trips. All assignments are conducted in this way until all the trips 

are taken. For the assignments, the priority belongs to the vehicles that are used 

before. In this method, the schedule is formed as trips. The general algorithm of the 

method is as follows: 

 

1. Determine the first trip to take. 

2. Assign enough vehicles to meet the demand of the trip (If possible from 

used vehicle).  

3. If there is a trip left go to the first step, if not exit the system. 

 

The flowchart created according to this algorithm is displayed in Figure 3.5. 

 

 
Figure 3.5 Flowchart of Trip Based Heuristic 
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In this method, there are two approaches like the vehicle based heuristic method, 

depending on whether the vehicle performs overtime or not. The detailed algorithm 

is stated below.  

 

jQ1  is the Compatibility Set of trips which the vehicle to be assigned before trip j 

is able to take within daily usage time period (S+O). Other notations are the same as 

VBH and VBHO.  

 

Detailed Algorithm 

 

S0: Initialization: The process of necessary preparations for algorithm. 

 

i. Arrange the vehicles by their sizes in descending order. 

ii. Create a list of trips by arranging the trips in a chronological order according to 

their ready time.  

iii. Form a iT ′ set for each vehicle; { }jii DcTjT <∈′ ::  

iv. Form a jQ1  set for each trip;  

}:{1 OSprrorraprjbQ bbjbjbjjj +≤++≤++<=  

v. Calculate the ijbw  values for each trip; jjjbijb Qbrprw 1),( ∈∀+−=  

vi. Calculate the ijbw′  values for each trip;  

a. If there is not any overtime; ijbw′ =0 and 0=′ijbp  

b. If there is overtime;  

jkbijb QbSrrw
i 1),0),(max( ∈∀+−=′  

jkbbijb QbSrprp
i 1),0),(max( ∈∀+−+=′  

 

S1:  Choose the first trip from the list of trips and let it be trip j.    

 

S2: If there is not any other trip to take with the chosen trip j ( jQ1 =∅) then follow 

the step S4, otherwise goes to step S3.     
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S3: If the available vehicle i is )( iTj ′∉ ; namely if the previously assigned vehicle is 

able to take trip j. 

 

i. Calculate ijbR  ratio. 

ii. Form an “Assignment” set by ordering the ijbR  values in ascending order. 

a. If the assignment set is ∅≠ , 

b. Assign the first vehicle i in the row and delete it from the “Assignment” set. 

c. )0),max(( ijj cDD −= .  

d. If 0≠jD , then go to step a. 

iii. If 0≠jD , then goes to step S4, if not goes to step S5.   

 

S4: Assignment of an unused vehicle to the chosen first trip. 

 

A. If )max( ij cD ≥ , then assign the vehicle i which is Fici ∈)max(  to trip j. If 

not, { } FiDcU jii ∈∀−= . Calculate for all vehicles i belonging to set F, the 

quantity of passengers who cannot transport in the trip j in the event of vehicle 

i assignment to this trip. In the trip j that gives 0≥iU  value, assign the vehicle 

i with )min( iU  to the trip j. Thus, the assigned vehicle’s free seats will be in 

minimum number. 

B. Delete vehicle i from the set F. 

C. ki = j. 

D. )0),max(( ijj cDD −=  

E.  If 0≠jD  then go back to A.; if not go to step S5.  

 

S5: If there is any work to be done in the list of trips, goes to S1; if not exit the 

system.  

 

Overtime costs are calculated as in the vehicle based heuristics.  
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3.6.3 Group Based Heuristic (GBH) 

 

 This heuristic method has a different approach. In this method the trips are 

divided into two main groups. The first group is composed of nonsplit trips while the 

latter group is formed with split trips. Each group has its subgroups based on their 

vehicle capacity. The assignments begin with the groups belonging to nonsplit trips 

and during the time left from the trips, the vehicle of this group is assigned to the 

trips of other groups respectively. In this way the vehicle scheduling is attempted to 

be made. The aim of this grouping is assignment of the vehicle primarily to the trips 

appropriate for its capacity. By assigning the convenient vehicle to the trips of other 

groups, the idle time of the vehicle is minimized. The algorithm of this method is 

briefly like this: 

 

1. Group the trips as split and nonsplit. 

 

2. Classify subgroups according to the capacity of the vehicles. 

 

3. Select a trip in a subgroup, repeat steps 4, 5 and 6 for all trips, when no trip is 

left, exit the system.  

 

4. Assign the appropriate vehicle in the group primarily to the trips within the 

same group. 

 

5. If there are trips in the  other groups with the idle time of the assigned vehicle, 

then assign the vehicle to those trips.  

 

6. Go back to step 3.  

 

In Figure 3.6 the general flowchart of the method is demonstrated. Herein after, 

the detailed algorithm of the method is presented.  
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Figure 3.6 Flowchart of Group Based Heuristic 
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Algorithm:  

 

S0.  Initialization: 

 

a. Index the trips in chronological order of their ready times. 

b. Index vehicles in decreasing order of their capacities. 

c. Form two sets, A and B. Gather all trips in which must use only one vehicle 

(nonsplit trips), in set A. Put all remaining trips in set B. 

d. Group the trips in sets A and B separately as follows in (2K+1) groups: 

 

{ } { }
{ } { }

{ } { }
}:{1

:,:
..............................

:2,:2
:1,:1

1

3232

2121

jB

jkBjkA

jBjA

jBjA

DcBjKGroup

DcBjKGroupDcAjKGroup

cdcBjGroupcDcAjGroup
cdcBjGroupcDcAjGroup

≤∈=+

≥∈=≥∈=

>≥∈=>≥∈=

>≥∈=>≥∈=

 

 The elements in BKGroup 1+  are the trips that must be divided. 

 

S1. Scheduling of Trips in set A (Nonsplit Trips): 

 

Consider the nonempty groups sequentially. For each group Ak ,  :...,,1 Kk =  

 

A. Let f and l be the first and last trips of the group, respectively.  

 

B. If Srd fl ≤− )( , the minimum number of vehicles required to carry out the 

trips in this group is equal to the maximum number of trip overlaps in the group 

(Hashimoto and Stevens, 1971). This theorem can not be exactly applied because 

in addition to overlapping trips in this problem, some trips are also taken by the 

same vehicle due to arc time. Therefore, with the light of this theorem, a new 

corollary is proposed. 

 

Corollary 1: If the Srd fl ≤− )(  condition is provided for one group, 

incompatibility sets which provide }:{ jbjjbjj aprrrjbQ ++≤≤>=′   
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conditions for all trips in that group are formed. The trip is determined, whose 

number of elements of incompatibility set is maximum ))((max( jQs ′ . The total 

number of overlapping trip of this group is equal to 1)(max( +′jQs . The number 

of vehicle for the optimum scheduling of this group is equal to the number of 

overlapping trips. By employing as many vehicles as the overlapping trips, 

optimum scheduling of the trip in this group can be formed. While assigning the 

vehicles to the trips, if separate vehicles are assigned to the overlapping trips, 

optimum scheduling is acquired.  

 

C. Else, assign job f to a new vehicle of type k (call this vehicle i). The ending 

time of the regular shift for vehicle i then becomes ( Srf + ). Determine the trips 

in Group kA that can be assigned to vehicle during its regular shift, i.e., determine 

set },:{ SrddrkjQ fjfjAi +≤≥∈= . Do the following for the trips in iQ : 

 

i. }.{ fWi =  iW  represents the set of trips assigned to vehicle i.  

ii. Consider the trips in iQ  sequentially. At each ready time, add the arriving trip 

to set iW . If the vehicle is not available at the ready time of a trip, remove the 

trip with the latest deadline from set iW  (but not trip f). 

iii.Remove the trips in set iW  from consideration.    

 

D. Check if any other trip can be assigned to the vehicle(s) scheduled in Steps 

(B) or (C):  

 

i.Start the checking procedure with Group BK 1+  (if not empty). If there exists a 

trip (j) in that group that can be assigned to the vehicle in its regular shift, then 

split the trip in two. jD  becomes 1C , while 1+jD  become ( 1CD j − ). Assign 

trip j to the vehicle. Place trip 1+J  in the appropriate group. Update the total 

number of trips as )1(1 +←+ JJJ  After considering all trips in Group 

BK 1+ , proceed with groups ...,3,2,2,1 ABAB   

ii. Remove all assigned trips from consideration.      
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S2. Scheduling of Trips in set B: 

 

Consider the nonempty groups in decreasing order of their number of 

elements (cardinalities). For each group Bk , :...,,1 Kk = : 

 

A. Let f and l be the first and last trips of the group, respectively.  

 

B. If Srd fl ≤− )( , then by using corollary 1, overlapping trips are determined 

and the scheduling of this group can be formed when vehicles as many as the 

number of trips are employed. In this process, the fact that vehicles should 

primarily be assigned to the overlapping trips must be taken into consideration.  

 

C. Else, assign job f to a new vehicle of type k (call this vehicle i). The ending 

time of the regular shift for vehicle i then become ( Srf + ).  Determine the 

trips in Group Bk  that can be assigned to vehicle during its regular shift, i.e., 

determine set },:{ SrddrkjQ fjfjAi +≤≥∈=   Do the following for the 

trips in iQ : 

 

i. }.{ fWi =  iW  represents the set of trips assigned to vehicle i.  

ii. Consider the trips in iQ  sequentially. At each ready time, add the arriving trip 

to set iW . If the vehicle is not available at the ready time of a trip, remove the 

trip with the latest deadline from set iW  (but not trip f). 

iii.Remove the trips in set iW  from consideration.    

 

D. Check if any other trip can be assigned to the vehicle(s) scheduled in Steps (B) 

or (C):  

 

i.Start the checking procedure with Group BK 1+  (if not empty). If there exists a 

trip (j) in that group that can be assigned to the vehicle in its regular shift, then 
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split the trip in two. jD  becomes 1C , while 1+jD  become ( 1CD j − ).. Assign 

trip j to the vehicle. Place trip 1+J  in the appropriate group. Update the total 

number of trips as )1(1 +←+ JJJ . After considering all trips in Group 

BK 1+ , proceed with groups ...,3,2,1 BBB . Remove all assigned trips from 

consideration.        

 

This method is solved by two distinct approaches, as well.   These approaches 

require the vehicles to work overtime or not as in other approaches. If this algorithm 

is figured out with the use of the overtime, the algorithm is solved by placing S with 

S+O.  

 

The overtime cost calculations are similar to the other heuristics.  
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CHAPTER FOUR 

EXPERIMENTATION 

 

 

4.1. Introduction 

 

 There is an important point which is as significant as the structure and processing 

of the solution methods; the fact that how effective the solution methods can perform 

during a real problem. The points that for how many trips can we find optimum 

solution with using mathematical model and to figure out how close are the result of 

the heuristics solution methods and we could lay a path for interpreting the 

performances of the methods. Therefore, a problem appropriate to the real problem 

generated by using a determined experimental design and evaluating the results 

found with solution methods is required. 

 

In this chapter an experimental design appropriate to the problem is prepared and 

sample problems are produced. The optimum values of these problems are found by 

mathematical models, upper bounds with heuristic methods and lower bound values 

by use of algorithms. The performances of the methods are evaluated by taking these 

values into consideration.  

 

4.2. Design of Experiment 

 

By using experimental design, appropriate samples to the problem are generated. 

During composing the experimental design, the ready information within the system, 

that is to say, the data known in advance are attempted to be created by a certain 

systematic. Consequently, some variables are formed by use of a certain distribution 

and some are formed by use of the data from real life. The experimental design used 

during the formation of sample problems is as follows:   
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While generating the problem, a daily working amount is assumed as two hundred 

units. It has been also assumed that there are four types of vehicles. The capacities of 

these different types, their usage periods and their fixed and variable costs are 

displayed in Table 4.1. In addition to this, there is enough number of vehicles in each 

size.   

  
Table 4.1 The Variables Depend on Vehicle 

 
 

While designing the variables dependent on trips, the numbers of trips are 

determined first. The problem are generated starting from n = 20 trips and increasing 

by increments of 10 to n = 100 trips. We generated 10 random instances of each 

problem combination. Thus, nine separate groups based upon the number of trips are 

formed. It has been supposed that 40 % of these daily trips are nonsplit trips. Daily 

demand is prepared by using U [8, 100] discrete uniform for split trips and U [5, 30] 

discrete uniform distribution for the nonsplit trips. In this way, the demands of the 

nonsplit trips are less than the capacity of the largest vehicle. 

 

The ready times of the trips are generated by two different methods for each 

number of daily trips. Hence, for every nine group there are two subgroups which 

make eighteen separate data sets. The ready times are created by discrete uniform 

distribution in the first method and by uniform distribution with peak periods in the 

second method. The distribution of ready time is stated below: 

 

i. Ready Time Type 1 (r = 1):  Discrete Uniform distribution U [0, 200] 

ii. Ready Time Type 2 (r = 2):  Uniform with peak periods:  

a. 30% of the ready times ~ U [30, 40] 
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b. 30% of the ready times ~ U [130, 140] 

c. 40% of the ready times uniformly random in the ranges [0, 29],                

[41,129], and [141, 200]. 

 

The processing times of the trips are generated by two different methods like their 

ready times. Thus, there are two subgroups of eighteen separate data sets which make 

thirty six separate data sets. The processing times are created by using only one 

discrete uniform distribution nonsplit while split trips are generated by using two 

different discrete uniform distributions. 

 

i. Processing Time Type 1 (p = 1): For split trips  U [5, 10] and for nonsplit trips 

U [5, 40]  

ii. Processing Time Type 2 (p = 2): For split trips  U [2, 20] and for nonsplit trips 

U [5, 40] 

 

Arc time is determined by using discrete uniform distribution, as well. The arc 

time between two trips is generated by use of U [0, 10] distribution. With this design, 

four combinations are made for each number of daily trips. Ten sample problems are 

generated from each combination. Thus, from nine separate trip sets, in four time 

combinations and from ten trips, three hundred sixty total sample problems are 

obtained. 

 

So as to form the sample problems, an algorithm appropriate to experimental 

design is created in C coded program and three hundred sixty sample problems are 

composed by utilizing this algorithm. In that way sample problems could be 

constituted automatically.  

 

4.3 Optimal Solution of Mathematical Model 

 

The mathematical model of the problem was mentioned in chapter three. It was 

also mentioned in the same chapter that the mathematical model prepared here has 

been modelled by making use of LINGO 8.0 and GAMS 20.2. In the previous 
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attempts before experimental design has been performed, the GAMS 20.2 models 

had been determined to yield better and more productive results. Furthermore, 

another advantage of GAMS 20.2 was the opportunity to choose a solver. Therefore, 

the optimum results of the prepared sample problems has been researched by making 

use of GAMS 20.2 and setting a one hour time limit. 

 

During the solution, CPLEX solver has been used in GAMS 20.2. The reason to use 

CPLEX solver for the solution was that CPLEX solver is an algorithm designed to 

solve large, structurally complex and difficult mixed integer programming (MIP) 

problems. The problem to be dealt here is a problem with the same structure. GAMS 

20.2 have been chosen due to the advantage to make use of CPLEX solver for the 

solution and thus better results could be achieved.  

 

GAMS models of all the attempts have been created and the attempts have been 

solved with a P4 2.4 MHz. 256 Mb. computer. However, in the attempts of only 

twenty and thirty trips with one-hour limit an insufficient number of problems 

optimum results could be achieved. In the problems with more trips no optimum 

result could be achieved. Computer could hardly operate in the solutions of the 

algorithms. As mentioned above, this demonstrates the complexity of the problem 

and the difficulty in the solution of the problem by making use of optimization 

programs.  

 

However, so as to achieve more optimum results than one – hour limit, five 

attempts out of each combination of twenty and thirty trips have been solved without 

any time limit and the optimum values of these attempts have been found. This will 

help to evaluate the performance of the upper and lower bound methods which will 

be covered in the further sections. 

  

4.4 Upper Bound – Solutions of Heuristics  

 

The solutions which found in heuristics for the samples problem is defined as 

upper bound ( k ). Each solution found by way of heuristic methods is an upper 
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bound for the problem. The reason is that the value found by way of heuristics 

methods is always larger than or equal to optimum.  

 

In the previous chapter it has been mentioned there are three different heuristic 

solution methods for the problem and the algorithms of these methods have been 

stated. In addition, there has been two different solution approaches for each method. 

According to this, there are six different upper bound solutions ( 6...,,2,1=k ). In 

order to find these values the samples require to be solved using these heuristics. So 

as to render these solutions, software programs for six different methods have been 

produced belonging to the algorithms of heuristics in C programming language with 

usage of DEV – C ++ compiler. The entire sample attempts have been solved with 

the software programs coded for heuristic solution methods. Unlike the optimization 

program, the sample problems have been solved with the coded software programs in 

a very short time, which demonstrates that the algorithms can solve the problem in a 

short time. Larger problems can be solved with this C program faster.  

 

The fast solution of the algorithms with C provided an advantage to obtain the 

upper bound of the problem. As stated before, the problem had been required to be 

solved daily and there had been no optimum solution of the problem with the 

optimization programs in a reasonable period of time. However, as the solution 

period of algorithms coded with C program is quite short, the problem is solved for 

six different methods separately and 6 different upper bounds ( kUB ) are found. 

These values are as follows: 

 

• =1UB  Solution of trip based heuristics without overtime; 

• =2UB  Solution of trip based heuristics with overtime; 

• =3UB  Solution of vehicle based heuristics without overtime; 

• =4UB  Solution of vehicle based heuristics with overtime; 

• =5UB  Solution of group based heuristics without overtime; 

• =6UB  Solution of group based heuristics with overtime; 
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With these six different upper bounds, a set of upper bounds ( LUBS ) is formed for 

each sample ( 360...,,2,1=l ). },,,,,{ 654321 lllllll UBUBUBUBUBUBUBS =  

 

By selecting the minimal value ( )min( lUBS  out of LUBS , it could be regarded as 

the least upper bound found with heuristics. Thus, instead of comparing the heuristic 

methods and seeking the best method, the problem is solved with the entire 

heuristics, the set of upper bounds is formed and a closer result to optimum is 

achieved by selecting the minimal value. The minimal upper bound in the set of 

upper bounds is called “supremum”. Sundaram (1999) defines this concept as: “The 

supremum is defined to be the least upper bound of the set of upper bounds of 

problem.” (p. 14). 

 

The important task here is the examination of the relation of the supremum with 

the optimum solution. The closer the supremum to optimum the more successful the 

heuristic solution methods are. Yet, as stated in the previous chapter, not enough 

optimum solution could be found to make comparison. Therefore, lower bounds have 

been attempted to be found with the some methods which will be explained in the 

next section.  

 

4.5. Lower Bounds 

 

In this section, we present methods to find lower bounds (LB) that are used to 

evaluate the upper bound performance. Five different methods are employed to find 

the lower bound for the problem, which are as follows.  

 

LB 1: In this method, a vehicle usage cost of an average one time unit ( v′ ) is 

calculated based on the capacities, fixed costs, variable costs, available regular and 

overtime unit per day of the vehicles. A cost is found for the works to be done by the 

multiplication of the processing times of regular trips and newly found average cost. 

The formulation of this method is as follows.  

 



58 

 

 

:v′  Average cost of a vehicle per time unit: 
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Thus, the cost ( 1LB ) which is )(1 zoptLB ≤ according to the total processing time 

is found. 

 

Proof: The cost ( 1LB ) is found by way of LB 1 method and it is a smaller value 

than optimum solution ( )(1 zoptLB ≤ ); besides, this method has a big gap between 

optimum. The main reason is that the idle time of the vehicles and the arc times 

between the trips have been disregarded while 1LB  is found. Furthermore, the 

capacities of the trips and vehicles have not been taken into account. Also, another 

reason for the solution found with this method to be infeasible and smaller than the 

optimum is that overlapping trips have been disregarded because the assignments are 

performed merely according to the processing times. Normally, it is not possible to 

compile daily feasible vehicle schedules without using processing times, capacities 

and demands.  

 

LB 2: In this method, an average seat cost for one time unit is found according to 

the average usage times of the vehicles. The cost of trip is calculated according to the 

demand and processing time of the trips to be taken. The cost for the whole day is 

calculated with the sum of the cost of the trips. The formulation of this method is as 

follows: 

:v ′′  Average cost of seat per time unit: 
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Thus, the cost ( 2LB ) which is )(21 zoptLBLB ≤≤ according to the total 

processing times and demand is found. 

 

Proof: In this method, the solution is always smaller than the optimum value, too; 

however, it is much closer to the optimum than the result found by first method 

( )(21 zoptLBLB ≤≤ ), because the demands also affected the cost function. Similar 

to LB 1, the arc and idle times are disregarded in this solution. The overlapping trips 

are not taken into account. All the vehicles are accepted to take full capacity in all 

trips. There is no possibility to schedule a normal day this way, the result found with 

this method is infeasible at all.  

 

LB 3: Third method of finding lower bound is grouping the tasks according to the 

demands and finding the number of vehicles according to the sum of the processing 

times of each group. In this method, the set ( kQ ) of index of the tasks to be 

performed according to each vehicle types is formed. The tasks whose demands are 

larger than the vehicle with the highest capacity are divided into groups of the least 

number of vehicles. By this way, the required number of vehicles out of every 

vehicle class is found and the cost for the particular day according to this method is 

calculated by multiplying with the cost of use. Algorithm is as follows.  

 

1. Sort all vehicles in descending order, i.e. Kkk ccandcc == )min()max( 1    

( Kk ...,,2,1= ).  

2. Determine which vehicle fits to the current demand;  

2.1  if jk Dc ≥ ; then kQj∈ ;  

2.2  if kjk cDc >≥−1 ; then 1−∈ kQj ; 

……. 

2.(K-1) if 21 cDc j >≥ ; then 1Qj∈  

2.(K) if 1cD j > ; then 1Qj∈  and 1cDD jj −=  and go to step 2.1.  
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3. Find minimum number of vehicle in each type k, Kk ...,,2,1= , 
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The cost ( 3LB ) which is )(321 zoptLBLBLB ≤≤≤   is found according to the 

trips grouped with this algorithms and the use time of the trips in each group.  

 

Proof: In this LB 3 method, the overlapping trips, the idle times between the trips 

and arc times are disregarded as well. Therefore, the result found with this method is 

infeasible and it always has a smaller value than the optimum. The value found with 

this method ( 3LB ) has more accurate results to the optimum than the other two 

methods ( )(321 zoptLBLBLB ≤≤≤ ). Its main reason is that each trip is considered 

separately during the classification of the trips according to the vehicles and the 

vehicle is not used 100% occupancy rate.  

 

LBS 4: This method is the same as the LB 3, but the only difference here is the 

calculation of the cost of use. Here, instead of calculating the cost by finding the 

numbers of all types of vehicles and multiplying them with fixed cost, total 

processing times of the trip set for each vehicle type are found. This total cost for 

each group is calculated by way of usage cost for unit time. This cost is found 

according to the fixed and variable costs of the vehicles. Unit cost and total cost can 

be found as follows: 

 

:iv ′′′  Average cost per time unit of a vehicle type k: 
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The cost ( 4LB ) which is )(4321 zoptLBLBLBLB ≤≤≤≤  according to unit cost 

is found.  

 

Proof: The total cost value found with this method ( 4LB ) is an infeasible solution 

because of the reasons explained in the previous method. However, a closer result is 

achieved to optimum compared to the previous method because the total cost is 

calculated by way of a one unit cost whose overtime period is included 

( )(4321 zoptLBLBLBLB ≤≤≤≤ ).  

 

LBS 5: A lower bound has been attempted to be found by using heuristic solution 

algorithms which were explained in the previous chapter. The vehicle capacity and 

use cost has been modified while the algorithm has remained the same. During the 

solutions of the algorithms, the capacities of the entire vehicles are accepted to be 

equal with the capacity of the largest vehicle. The usage costs of the vehicles to be 

accepted equal with the capacity of the largest vehicle are equalized with the vehicle 

with the lowest use costs. That is to say, the capacities and the costs are as follows;  
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Totally six heuristic solution methods with two different solution approaches out 

of three different algorithms are solved with the vehicle set having these 

modifications and six different costs, in other words lower bounds, which need to be 

tolerated are found for each day. Their listing in order is as follows;  

 

• =51LB  Solution of trip based heuristics without overtime; 

• =52LB  Solution of trip based heuristics with overtime; 

• =53LB  Solution of vehicle based heuristics without overtime; 

• =54LB  Solution of vehicle based heuristics with overtime; 

• =55LB  Solution of group based heuristics without overtime; 
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• =56LB  Solution of group based heuristics with overtime; 

 

Proof: All of the six values found with this method give smaller values than the 

optimum. Its main reasons are that during the assignments, the capacities of the 

entire vehicles are accepted equal with the vehicle with the maximum capacity and 

the fixed and variable costs of this vehicle are accepted with the vehicle with the 

lowest capacity. As the cost is taken low, even though the daily scheduling turns out 

to be the optimum scheduling, the found cost would be less than normal. In addition, 

as the vehicles are accepted to be the vehicle with the highest capacity, they operate 

to overcome the unproductiveness of the assignment procedure of heuristic 

approaches by enabling the trip, which requires less capacity than the vehicle with 

the highest capacity, to be taken with a single vehicle in the demands they were 

assigned to. However, the cost of the optimum assignment would be higher than the 

one found with this method because there are different vehicles with different 

capacities and costs in the actual problem.  

 

LBS 6: This lower bound ( 6LB ) is the Best node value whose solution is found by 

the GAMS optimization program in one hour limit. It had been explained that 

CPLEX solver has been used as solving the problem with GAMS program. While the 

CPLEX algorithm solves MIP problems, it uses an algorithm which includes branch 

and bound method. In this algorithm, a best node is found in each step and the 

optimum solution is sought over this best node. This best node is an infeasible 

solution which is found by a method peculiar to CPLEX and its value is smaller than 

the optimum. The gap between the optimum solution and this best node diminishes 

as the result reaches to the optimum. That is to say, as the algorithm gets closer to the 

optimum solution, the gap between the best node and the objective function goes to 

0. The optimum solution is achieved as the gap falls under a particular limit. 

Therefore, the best node GAMS find along with CPLEX solver after one hour period 

is lower bound value. Because, as the solution approaches to the optimum this best 

node get closer to the optimum and its value increases. By this way, a definite lower 

bound value of one hour is found for some of the prepared sample problems. 

However, as this node value cannot be found in some problems; that is to say, as the 
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one hour period is not sufficient in order to find a start node, or the program can 

iterate very lowly, the number of the usable lower bound value to be found by this 

method is very few.   

 

For the entire attempts to be prepared with the experimental design, the set of 

lower bounds ( lLBS ) is formed by making use of these six different lower bounds 

for each sample ( 360...,,2,1=l ).  

 

},,,,,{ 65655545352514321 llllllllllll LBLBLBLBLBLBLBLBLBLBLBLBS =  

 

The largest lower bound ( )max( ll LBSLB = ) out of the lLBS set belonging to each 

sample is chosen. The largest one of the lower bound values in the lLBS set is called 

the infimum of the set. Sundaram (1999) has defined infumum concept as such: “The 

infimum is defined to be the greatest lower bound of the set of lower bounds of 

problem.” (p. 14). By way of this lower bound, the necessary data has been achieved 

in order to assess the performances of the heuristic solutions. However, there is 

another key point which is the relationship between lower bound and the optimum 

solution. This should be taken into account during the performance assessment.  

 

4.6 Computational Results 

 

In this section, lower bounds, upper bounds and optimum solutions will be 

evaluated. The computational experiences solved with optimization program whereas 

lower and upper bound solutions are figured out with algorithms. The results are 

evaluated in order to assess the performance of the solution. 

 

An optimum solution for the problem is tried to be found by using the 

optimization program yet enough optimum solution could not be found because of 

one hour time limit. For the trips whose the number of trips is more than sixty, 

optimization program could not even find a starting solution. Because of these 

reasons given above, the optimum solution values are tried to be found by choosing 
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five samples from ten samples tests belonging to each data set without the limitation 

of time. In the twenty trips attempts, five problems of four different data sets are 

solved at average two hours CPU time per sample. When trip number is increased to 

thirty, the solution of twenty problems of four different data sets has taken ten hours 

CPU time per sample at average, as well. Moreover, when the number of trip is 

raised to forty, the computer could not find the optimum solution of the problem 

even in sixty hours CPU time for only one sample of operating. Therefore, it can be 

deduced that the more number of trips, the longer solution period of the problem is 

and also the increase in the solution period is much more than the number of trips. 

 

However, it has been observed that the optimum solution period of the problem 

does not change depending on vehicle number and vehicle type. Within the same 

data set, some attempts are conducted with single type vehicles less in number but 

the same problems are solved in the same period. This shows that any change in 

vehicle number does not influence the solution period of the problem. 

 

The solution of the same problems acquired by C programs which conform to the 

heuristic solution algorithms takes at average of five seconds CPU time per sample. 

By this way, the heuristic methods enable to solve the problems in a very short time 

which normally takes quite long when they are solved with optimization program. It 

should be noted that the relation of result with the optimum is as important as the 

shortness of time. As it has been pointed earlier, a few kinds of lower bounds are 

improved since there are limited optimum solutions. The problems without an 

optimum solution are evaluated by lower bounds. The GAMS solutions show that the 

total of forty one attempts has optimum solutions. In the Appendix B there are tables 

demonstrating the results of the attempts with optimum values, the lower bounds and 

upper bounds of these results together with their comparisons. 

 

The evaluation of the problems is shown in the tables numbered; 4.2, 4.3, 4.4, 4.5 

and 4.6. Before analyzing these tables, the abbreviations are: 
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n – shows the number of the trip and it changes as n = 20, 30, 40, …, 100. p – 

shows processing time distribution types and there are two different distribution 

composing p. r - shows ready time distribution types and this is composed by use of 

two different distributions as well. The structure of processing time and ready time 

distributions are explained in section 4.2. 

 

The average and maximum gap between the minimum upper bounds (supremum) 

which are acquired by the six separate upper bounds of each attempt and the 

optimum solutions are calculated as follows: 
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Similarly, the gaps between the maximum lower bounds and the optimum solution 

are calculated as follows:  
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The gaps between max. LB and min. UB are calculated as follows: 

Gap between min. UB and max. LB 
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However, while forming the set ( lLBS ), the lower bounds found by the GAMS 

are not used here. Because GAMS gives us the optimum solution and the lower 

bound are very close to each other.  

 

The performances of our infimum and supremum are investigated first in Table 

4.2. Table 4.2 reports the average and maximum supremum and infimum deviations 

as a percentage of optimal solutions for r =1 and 2, p =1 and 2, n = 20 and 30 trips. 

The GAP among those three values is calculated. The average gap between optimal 

solutions and supremum are about 10 % while the GAP between optimal solutions 

and infimum is about 24 %.  
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Table 4.3 reports the average and maximum upper bound deviations as a 

percentage of optimal solutions for r =1 and 2, p =1 and 2, n = 20 and 30 trips . In 

this table, the average and maximum gap between the optimum solution and every 

heuristic solution is calculated separately. The mean of average gap is 10.8 % for n 

=20 and 11.8 % for n =30, while mean of maximum gap is 19.5 % for n =20 and 

17.1 % for n =30. TBHO gives the best results 19.3 % for n =20 and VBH gives the 

best result 19.1% for n =30 but the worst result for n =20 is 26.7 % from GBH and 

the worst result for n =30 is 21.7 % from GBHO. The means of total solution from 

each method do not differentiate much. That is to say, this method yields better 

results is not an exactly true claim. Because of that, a set of upper bounds is created 

for every problem and the minimum one is considered to be the best upper bound. In 

addition to this, in three of the attempts optimum result is found by heuristic methods 

as it has been displayed in Appendix B.  

 

Furthermore, in Table 4.4, the values found by the distinct lower bounds and the 

optimum solutions for r =1 and 2, p =1 and 2, n = 20 and 30 trips are compared. As it 

may be inferred from the table, the greatest lower bound value is found by 5LB  

method. The lower bound values found by GAMS are not used here, too. 
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The comparisons of all upper bounds and the best lower bound for r =1 and 2, p 

=1 and 2, n = 20, 30, …, 100 trips are in Table 4.5. The best average gap between the 

upper and lower bound is achieved by TBHO method as 43 %. The average gap of 

the other methods are as follows; TBH 53 %, VBH 53 %, VBHO 50 %, GBH and 

GBHO 55 %. When the heuristic methods are evaluated severally, it may be stated 

that the best result is reached by TBHO method. Yet, since the least one of these 6 

different methods will be accepted as the solution, the infimum and the supremum 

are compared in Table 4.5, as well. The result of this comparison shows that the gap 

between lower bound and upper bound is 35 % at average. At all attempts, the 

minimum average gap between the infimum and the supremum is 19 %, while 

maximum gap is 73 %. The means of average gap for each n are not different after n 

= 30, they are about 36 %.  

 

Lastly, the effects of p and r on the solution performance report in Table 4.6. The 

gap for p =2, r =1 has closer gap 33 % than the other combination and the gaps for 

other combination are not different. The heuristics have best performance in the 

combination p =2, r =1 than the other combinations. Because the mean of p = 2 has 

closer gap between heuristics and maximum lower bound than the means of p = 1, it 

is about 35 % and the mean of r = 1 has closer gap than the mean of r = 2 too, it is 

about 38 %.  

 

The 35% difference of the average value in fact does not give effective result. 

However, there has been a percentage of 24% between the outcomes acquired by the 

improved lower bound solution methods and the optimum outcomes showing the 

difference, this reveals that the percentage between the optimum and the best upper 

bound is 9%. This may be schematized as:  
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As displayed in Table 4.2, the average percentage between optimum and the least 

upper bound of 20 and 30 trips is 10%, actually. The percentage presented above is 

close to this one, as well. At this point, it may be concluded that the difference 

between the optimum solution and the least upper bound is around 10%. 
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CHAPTER FIVE 

CONCLUSION 

 

5.1 Summary and Conclusion  

 

This study attempts to develop methods for vehicle scheduling in a large 

organization which will provide for the transportation of the participants between the 

activity centers conforming to the conditions of the organization with the minimum 

cost. In this study, a mathematical model is developed for a real life application and 

general solution methods for similar problems are proposed.   

 

The problem is a vehicle scheduling problem with sequence dependent trips. The 

trips in the problem are given within a particular time interval. Each trip should be 

proposed within this time interval. There are an enough number of vehicles in each 

size and cost to perform the trip. The objective function is to form the minimum cost 

scheduling to assign all the trips to vehicles. The problem is a tactical fixed job 

scheduling problem in this respect. However, unlike the problems in the literature, 

the vehicles here are not identical and they have fixed and variable usage times and 

costs. The purpose in this problem is to minimize these usage costs and make a 

schedule which will provide for the implementation of the entire tasks.  

 

The definitions of the variables and the problem structure are explained in chapter 

3, where the variables dependent on those parameters and the available data about 

the system are stated. Furthermore, as the problem includes real life data, particular 

assumptions are given as well.  

 

The problem is modeled mathematically by using mixed integer programming, 

conforming to the assumptions. The mathematical model is attempted to solve with 

optimization programs by preparing samples consisting with the actual problem. 

However, by making use of optimization programs, the optimum result could be
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achieved only in the problems with small number of trips. This demonstrates that as 

the number of variables increases, the solution time takes longer as well. What makes 

the problem complex is the number of trips. If the number of trips increases, the 

solution time will increase more than the number of trips increasing ratio. Actually, 

during the solution of the problem, the optimum is achieved at an average of two 

hours CPU time in attempts of twenty trips, while the solution time increases to an 

average of eight hours CPU time in attempts of thirty trips, and finally, in attempts of 

fourty trips the optimum result could not be found even after fifty - sixty hours CPU 

time of solution time. This shows the complexity of the problem.  

 

Heuristic approaches have been improved as the longer solution time of the 

problem. Three different heuristic solution algorithms, namely trip based, vehicle 

based and group based, have been constructed. Each algorithm has two different 

solution approaches as with and without overtime. The algorithms have been 

modeled by making use of Dev C++ compiler in C programming language and an 

upper bound for the problem have been obtained by solving these models. It has been 

observed that even the solution time for the problems with a hundred trips have taken 

one - two seconds CPU time.  

 

As well as the problem can be solved by using heuristic methods very quickly, the 

performance of the solution should be determined with the optimum. Therefore, a 

certain experiment design has been done and problems with various numbers of trips 

and different data sets have been created. The created problems have been sought to 

be solved through heuristic algorithms. In order to determine the performance of the 

heuristic method, the samples have been attempted to solve in a definite time limit in 

GAMS optimization program by using CPLEX solver. However, sufficient number 

of optimum solution could not be achieved. Also, by making use of Gantt chart, the 

trip orders assigned to the vehicles of the schedules which have been created with 

optimum solution and heuristic methods for a sample with thirty trips have been 

presented in Appendix C. The assignments created for the problem can be seen in the 

gantt charts in Appendix C.  

 



 

 

73 

As there is not sufficient optimum solution for the problem, lower bounds have 

been found in order to assess the upper bounds. The difference between the newly 

found lower bounds and the upper bounds is too much, therefore the optimum 

solution has been attempted to be found by using GAMS program without any time 

limit for the problems. In the problems with twenty and thirty trips, sufficient 

optimum solutions could be achieved, however in the attempts with forty trips, no 

optimum solution could be achieved in even fifty – sixty hours CPU time of solution 

periods. By this way, the performances of the heuristic approaches have been 

attempted to be assessed by comparing the UB, LB and optimum solution values for 

the attempts with twenty and thirty trips. For the entire samples, UB and LB values 

have been compared. The smallest result out of the six results found by heuristic 

approaches for each sample, namely the least value of the upper bounds (supremum) 

is 10 % more than the optimum solution of the problem at an average.  

 

If this problem is solved through the proposed heuristic methods, we can find an 

average of 10% an extra cost than the cost of optimal solution but heuristics could be 

achieved the schedule in the short run. Also, by modifying the solution methods in 

accordance with the organization conditions, these solution methods could be used in 

the scheduling of the passenger transportations in large-scale organizations. 

Consequently, the vehicle scheduling problems with these sequence dependent trips 

could be solved at a very short period by using these methods or by the methods 

which will be based on these methods in accordance with the problem structure.  

 

5.2 Future Research 

 

Fixed job scheduling problems of this type are prone to improvement and study. 

First of all, such scheduling problems are not common in the literature. It is also a 

problem having many fields of application. Especially, the interval scheduling and 

vehicle scheduling problems are very commonly used in real life. Solution methods 

for these problems can be improved.  
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The fixed job scheduling problem studied in this thesis can be improved by 

changing its assumptions. Here, we have assumed the processing times, demands and 

ready times as deterministic data. In real life, the demands can be deterministic; 

however, the ready times and processing times are always stochastic. The problem 

can be remodeled as stochastic interval scheduling or stochastic vehicle scheduling 

problem thus solution methods could be improved.  

 

Furthermore, new solutions which can produce closer values to the optimum can 

be generated by making improvements in the heuristic solution methods existing in 

this study. New heuristic approaches producing better results could also be created. 

Apart from the heuristic solution methods, branch and bound solution algorithm for 

the problem could be improved by proving the problem to be NP – hard or NP – 

Complex.   

 

Moreover, it has been stated in the previous parts that the problems had been 

solved through the specially prepared heuristic solution methods which are coded in 

C program. Making a package software can provide for a convenient solution of the 

problems by the end users which can be produced from the methods developed for 

the problem or out of the algorithms prepared for the solution methods of another 

vehicle scheduling problem in real life following these methods. By creating a user 

interface to the C programs, a package program might be developed having the 

capability to find the best result which uses the heuristic algorithms for the problems 

in real life.  

 

Interval scheduling, tactical fixed job scheduling problem and vehicle scheduling 

problems have many ranges of application. They are commonly encountered in real 

life and are prone to continuous development. In this study, an actual scheduling 

problem having the same attributes with this problem have been attempted to be 

solved in a reasonable period of time by developing heuristic approaches which will 

operate to find a result close to the optimum. However, as it has been stated, the 

subject is open to development.  
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Appendix A.1: Data sets of the example problem with 30 trips. 
 
 
Table A.1.1 Trip Data 
 

Trip 
Number (j) 

Demand 
( jD ) 

Ready Time 
( jr ) 

Deadline 
( jd )  

Processing  
Time 

( jjj rdp −= ) 

Team Trip 
(T ) 

1 66 1 6 5 0 
2 42 2 7 5 0 
3 17 4 10 6 0 
4 65 6 12 6 0 
5 9 7 33 26 1 
6 22 23 42 19 1 
7 84 24 33 9 0 
8 60 35 41 6 0 
9 36 55 61 6 0 

10 30 56 66 10 0 
11 13 78 95 17 1 
12 66 82 87 5 0 
13 18 86 102 16 1 
14 58 92 97 5 0 
15 14 92 99 7 1 
16 81 95 105 10 0 
17 8 103 113 10 0 
18 58 123 133 10 0 
19 5 129 156 27 1 
20 9 130 139 9 0 
21 96 155 162 7 0 
22 24 158 168 10 1 
23 11 159 171 12 1 
24 12 164 175 11 1 
25 35 174 179 5 0 
26 20 175 214 39 1 
27 74 177 185 8 0 
28 30 179 186 7 1 
29 9 193 199 6 0 
30 20 199 228 29 1 
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Table A.1.2 Arc Matrix 
 

 
 
Table A.1.3 Vehicle Data 

 
 

Vehicle 

Types 
ic  

(person) 

S   

(time unit) 

O  

(time unit) 
if  

(YTL)

iv  

(YTL) 

I 45 100 50 1200 20 

II 27 100 50 900 15 

III 16 100 50 720 12 

IV 10 100 50 600 10 
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Table A.1.4 Incompatibility Matrix  
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Appendix A.2: GAMS 20.2 Model of the Example Problem  
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Appendix A.3: LINGO 8.0 Model of the Example Problem  
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Appendix B.1: Comparison of All Optimum Solutions with Upper Bound 

Values 
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Appendix B.2: Comparison of All Optimum Solutions with Lower Bound 

Values 
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Appendix C.1: Gantt Chart of Ready Time and Processing Times of All Trips 
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Appendix C.2: Gantt Chart of Optimum Scheduling  
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Appendix C.3: Gantt Chart of Scheduling of GBH and GBHO Methods 
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Appendix C.4: Gantt Chart of Scheduling of TBH and TBHO Methods 
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Appendix C.5: Gantt Chart of Scheduling of VBH and VBHO Methods 

 

 
 

 
 


