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THE VEHICLE SCHEDULING WITH SEQUENCE DEPENDENT TRIPS

ABSTRACT

In this study, we consider a vehicle scheduling problem with sequence dependent
trip times. The problem is assigning vehicles to a set of trips with fixed ready times
and deadlines, while minimizing cost. The trip time for a vehicle between any two
places is also known deterministically. A number of different types of vehicles are
available for transportation, each with different capacities, fixed and variable costs.
The costs for regular and overtime utilization also vary for different types of
vehicles. The problem resembles the Tactical Fixed Job Scheduling Problem where
ready times and deadlines of jobs are known in advance, and the objective is to
minimize the cost of machines to perform all the jobs. A job cannot be processed

unless a machine is available at its ready time.

The problem is formulated as an Integer Programming Model. A spread time
constraint determines the regular time usage of the vehicles. The formulation is
coded in LINGO 8.0 and GAMS 20.2 with CPLEX solver. Due to the complex
nature of the problem, it is observed that the optimal solution of even middle-size
instances is very time consuming. Hence, we develop three different heuristic
approaches for the problem, each one having two different types based on overtime
usage allowances. The algorithms are coded in C programmer Language using DEV
C++ Compiler. The average behaviour of the algorithms is investigated through
computational experiments. Lower bound values for the problem are found using
GAMS developing some approaches, and the performances of the algorithms are
compared based on these bounds. The problems whose number of trip is more than a
hundred have been solved in a very short time. The least solution of heuristic

approaches is actually 10% greater than optimum solution.

Key Words: Tactical Fixed Job Scheduling, Spread Time Constraints, Integer

Programming, Heuristics.
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SIRALI BAGIMLI SEFERLERDE ARAC CiZELGELEMESI

0z

Bu calismada, biz sirali bagimli sefer zamanlarina sahip arag g¢izelgeleme
problemi iizerine calistik. Problem, araclarin sabit baslama ve bitis zamanina sahip
seferlere minimum maliyet ile atanmas1 problemidir. Seferler arasindaki sefer siiresi
deterministlik olarak bilinmektedir. Tasima yapabilecek, farkli kapasiteye, sabit ve
degisken maliyetine sahip ara¢ c¢esitleri mevcuttur. Normal ve fazla
kullanimlarindaki kullanim maliyeti arag tiplerine gore degismektedir. Problem yap1
bakimindan baslama ve bitis zamanlar1 bilinen ve amag¢ fonksiyonu biitlin isleri
yapacak ara¢ kullanim maliyetinin minimum olacag: taktiksel sabit is ¢izelgeleme
problemine benzemektedir. Eger isin baglama zamaninda uygun bir makine yoksa is

yapilamaz.

Problem Tam Sayili Programlama Modeli kullanilarak formiile edilmistir.
Araglarin  normal siirede kullanimlar1 yaygmlik zamani kisitt  kullanilarak
belirtilmistir. Problemin matematiksel modeli LINGO 8.0 ve GAMS 20.2 CPLEX
¢oziicii kullanilarak modellenmistir. Problemin kompleks yapisi yiiziinden orta
hacimdeki problemlerde bile optimum ¢6zliimiin bulunmasi ¢ok zaman almaktadir.
Bu yiizden fazla kullanima dayali ikiser degisik ¢6zliim tipinde li¢ farkli sezgisel
yaklagim gelistirilmistir. Algoritmalar DEV C++ derleyicisi  kullanilarak C
programlama dilinde kodlanmistir. Algoritmalarin ortalama performanslarinin
bulunmasi i¢in Ornek denemeler yaratilmistir. Cesitli yontemlerle ve GAMS
programi kullanilarak problemin performansin1 degerlendirmede kullanilacak alt
limitler bulunmaya ¢alisilmistir. Problemin sefer sayist yiizden fazla olan
denemelerde bile sezgisel yontem kullanilarak c¢ok kisa siirede ¢ozildigi
gosterilmigtir. Problem i¢in, sezgisel yontemle bulunan ¢oéziimlerin en kii¢ligliniin

optimum ¢6ziimden ortalama % 10 biiyiik oldugu gdsterilmistir.

Anahtar Kelimeler: Taktiksel Sabit Is Cizelgelemesi, Yayginlik Zamam Kisitlari,

Tamsayili Programlama, Sezgiseller
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CHAPTER ONE
INTRODUCTION

1.1. Motivation of Research

It is possible to encounter a wide range of scheduling problems in real life. To
model and solve such problems is quite a difficult task though. Because the variables
in real life are not deterministic but of a stochastic nature, and therefore they are
difficult to model. Although such problems are modelled within a varied number of
assumptions, the solution of scheduling problems in real life is rather difficult due to
the size of the problem. Therefore by developing different solution methods, such
problems are attempted to be solved. Vehicle scheduling problems set an example to
scheduling problems in real life. These set of problems similarly have complex

modelling features and they are difficult to solve.

Vehicle scheduling problems are modelled under several assumptions using
Integer Programming. Such problems may be linear or nonlinear in nature. As a
general structure, there is a series of tasks that are necessary to be processed in
vehicle scheduling problems, and the vehicles to perform them. The objective
function is to process all tasks with minimum vehicle usage. Yet, as the solution of
substantial problems with computers is difficult, the problems are attempted to be
solved with various optimization methods and heuristic algorithms. Branch — and —
bound, cutting plane method and enumeration method can be given as examples to
optimization methods. Heuristic methods may vary according to the structure of the

problem.

Although the subject of the study “Vehicle Scheduling Problem with Sequence
Dependent Trips” is actually a kind of vehicle scheduling problem, it features
different qualities. In this problem the tasks should be performed within certain
intervals and all of the tasks require to be completed. Due to the fact that the tasks

start and end within certain intervals, the problem resembles the Interval Scheduling



Problem. Besides, all of the tasks must be completed and due to the structure of the
sources, the problem is a Tactical Fixed Job Scheduling Problem. The original
problem is the undergraduate thesis prepared by Karakiitiik & Karagizmeli in 2004.
In this study, a scheduling of a model which would provide for the carrying of the
participants in a large-scale organization was attempted. Starting out from that
approach, it has been attempted to find out a general solution to similar problems in
this study. As for the example, the problem structure of the UNIVERSIADE 2005
games which were used by Karakiitiikk & Karacizmeli has been chosen. However, the
solution methods have been prepared in line with the problems conforming to all

these features.

1.2. Purpose

The purpose of the study is to find out a solution which will enable vehicle
scheduling with sequence dependent trip problems with minimum cost. While
attempting to find out the solution, the method is aimed to solve substantial problems

in small computation times since such scheduling is done daily.

1.3. Significance

As mentioned before, it is quite difficult to solve scheduling problems in real life,
especially vehicle scheduling problems. Therefore it is essential to develop solution
methods to solve such scheduling problems in small computation times. With the
help of heuristic approaches that the thesis proposes as well, it is ensured to solve
large-scale vehicle scheduling problems with sequence dependent trips in an
acceptable time period which could be encountered in real life. Furthermore, the
results have been tested to see their closeness to optimum. As an outcome of the

thesis, appropriate heuristics have been proposed.



1.4. Thesis Outline

The main objective of the thesis is to generate a solution method to vehicle

scheduling problem with sequence dependent trips.

A literature survey is provided about the problem structure, which is the subject of
the study in chapter 2. Also, the structure of scheduling problems is presented. As the
problem is in line with interval scheduling and fixed job scheduling problems, such
problem structures are also mentioned. In addition, vehicle scheduling problems are

reviewed in general. Finally, solution methods to scheduling problems are also given.

In Chapter 3, the problem is defined. The problem variables and the collected data
are presented, the assumptions are stated and the mathematical model so formed is
explained. In addition, the heuristic approaches developed through the problem
solutions are given in this chapter; as well. The application of these methods are

explained too.

In Chapter 4 a comparison between heuristic approaches developed for the
problem and the optimization method has been made. An experimental design is
conducted and problem instances are generated. Furthermore, in order to evaluate
heuristic approaches, various lower bound algorithms are developed and outcomes of
these are compared with the results of heuristics. The performance of the heuristics

are discussed and evaluated.

Finally, Chapter 5 summarizes the research work, and outlines directions for

future research.



CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction to Scheduling

Within an organization, scheduling is related to determining the timing of the use
of specific resources of that organization. It relates to the use of specified resources
of the equipment, facilities, and human activities. Scheduling occurs in every
organization, regardless of the nature of its activities. The objective of scheduling is
to achieve trade — offs among conflicting goals, which include efficient utilization of
staff, equipment and facilities, and minimization of costumer waiting time,

inventories, and process time. (Stevenson, 1999, p.722)

The scheduling function uses mathematical techniques or heuristic methods to
allocate those limited resources to the processing of tasks. A proper allocation of
resources enables the company to optimize its objectives and achieve its goals.
Resources may be machines in a workshop, runways at an airport, crews at a
construction site, or processing units in a computing environment. Tasks may be
operations in a workshop, takeoffs and landings at an airport or stages in a
construction project. Each task may have a priority level, an earliest possible starting
time, and a due date. The objectives may also take many forms, such as minimizing
the time to complete all tasks or minimizing the number of tasks completed after

their due dates. (Pinedo& Chao, 1999, p.2)

Unfortunately, scheduling can be difficult to perform and implement because
scheduling problems are often complicated by large numbers of constraints relating
to each other, resources to activities and to each other, and either resources or
activities to events external to the system. For example, two particular activities may
interfere with each other and be unable to use the same required resources

simultaneously. Or there are overlapping activities and they can not be made by the



same resource. Because of these complex interrelationships and difficulties of
modeling real world, solving of large scheduling problems is very difficult. For this
reason, the complex problems are tried to solve with heuristics approaches. Some
algorithms are developed. Then the algorithms are tested how sensitive the solutions
are to these complex problems and an approximate solutions are found to difficult

problems where the complexity proves central.

First, we provide a comprehensive but not exhaustive list of scheduling problems.
Then, we present a detailed overview of interval scheduling, fixed job scheduling
and vehicle scheduling as they are related to our study. Finally, we mention about

solution methods for scheduling problems.

2.2 Types of Scheduling Problems

Scheduling is a complex but an important operation function. There are many
different types of scheduling problems faced in the real life. A partial list is as

follows.

e Job shop scheduling. Job shop scheduling, known more commonly in practice
as shop floor control, is the set of activities in the shop that transforms inputs to

output.

e Personnel Scheduling. Scheduling personnel is an important problem for both
manufacturing and service industries. Although shift scheduling on the factory
floor may be considered one of the functions of shop control flow, personnel
scheduling is a much larger problem. Scheduling health professionals in
hospitals and bus driver scheduling problems are typical examples.
Determining whether to meet peak demand with overtime shifts, night shifts, or

subcontracting is another example of a personnel scheduling problem.

o Facilities scheduling. This problem is particularly important when facilities

become a bottleneck resource. Scheduling operating rooms at hospital set



example. As the need for health care increases, some hospitals and health
maintenance organizations find that facilities are strained. A similar problem
occurs in colleges and universities in which enrollments have increased without

commensurate increases in the size of the premises.

Vehicle scheduling. Manufacturing firms must distribute their products in a
cost — efficient and well-timed manner. Some service operations, such as dial —
a — ride systems, involve pick-ups and deliveries of goods and/or people.
Vehicle routing is a problem that arises in many contexts. Problems as
scheduling snow removal equipment, postal and bank deliveries, and shipments
to costumers with varying requirements at different locations are some

examples.

Vendor scheduling. For firms with just — in — time (JIT) systems, scheduling
deliveries from vendors is an important logistics issue. Purchasing must be
coordinated with the entire product delivery system to ensure that JIT

production systems function efficiently.

Project scheduling. A project may be broken down into a set of interrelated
tasks. Although some tasks can be done concurrently, many tasks cannot be
started until others are completed. Complex projects may involve thousands of
individual tasks which must be coordinated for the project to be completed on
time and within budget. Project scheduling is an important component of

planning function.

Dynamic versus static scheduling. Most scheduling theories view the
scheduling problem as a static one. Numerous jobs arrive simultaneously to be
processed on a set of machines. In practice, many scheduling problems are
dynamic in the sense that jobs arrive continuously over time. One example is
the problem faced by an air traffic controller who must schedule runways for

arriving planes. The problem is a dynamic one in that the planes arrive



randomly and runways are freed up and committed randomly over time.
Dynamic scheduling problems are analyzed using the tools of queuing theory.

e Interval scheduling. A formal schedule is given in advance; most actual
processing is expected to conform to that schedule, even if unanticipated
emergencies and other happenings force some change. A good example is an
executive’s appointment log. Interval scheduling is useful when the use of
several critical resources must be coordinated. Interval scheduling can cause
large gaps and inefficiencies in the schedule. In practice, schedules often

become quite patchwork. (Morton & Pentico, 1993, p. 20)

2.3 Interval Scheduling

There are given a set M of machines, a set / of intervals, and a mapping

g :1—2" which determines on which machines each interval can be scheduled.
Each interval i has a fixed ready time r, and a fixed processing time p,. Interval i
must be assigned to a machine immediately at time 7,, and it must be continuously

processed until it is complete, or else it is lost. A machine can only process one
interval at a time. In other words, overlapping intervals cannot be scheduled on the
same machine. The goal of this problem is to find a schedule that processes the
maximum number of intervals. These types scheduling problems are named Interval

Scheduling Problem. (Wagner, 2001)

Interval Scheduling is an emerging area of scheduling where tasks, each equipped
with specified ready times and deadlines, are to be processed on a number of
resources. The problem is typical for reservation systems and has many real life
applications such as classroom assignment, transportation systems, and shift
scheduling. Reservation systems may arise in service environments like room
reservation and car rental or repair services, where customers represent tasks and
hotel rooms, cars or technicians correspond to resources. In production
environments, the tasks give reservation request to resources during specified time

windows of processing. The problem may involve the decision as to which orders are



to be accepted or how many resources are to be allocated to serve all orders. (Eliiyi,

2004)

Bouzina and Emmons (1996) studied interval scheduling where jobs with fixed
start and end times were processed on identical parallel machines. The objective was
to find a feasible schedule with the maximum number of completed jobs. When job
weights were defined, the problem was to find a solution that maximized the sum of
the weights of completed jobs. The non-weighted and weighted versions were
referred to as the maximal interval scheduling and maximal-weight interval

scheduling, respectively. The authors showed that these type problems are NP — hard.

There are two main types of interval scheduling problems. In the first type of
problem, there are a fixed number of machines, and the goal is to determine if all of
the jobs can be scheduled on the available machines, or to maximize the number of
jobs that can be scheduled. It may be the case that some jobs have higher priority
than others, in which case the job weighted, and the goal is to maximize the weight

of the scheduled jobs. (Wagner, 2001)

In the second type of problem, there is an unlimited pool of machines and the goal
is to find a set of machines with minimal cost that can process all of the jobs. The
machines can be different types and they can have different costs. If the machines are
identical, then any job can be scheduled on any machine, and the weight of the job is
independent from the machine on which it is run. It is worth noting that in Interval
Scheduling problems, the concept of machine speed is generally not relevant. Jobs
have a fixed starting and ending time which does not depend on the machine on
which the job is run. All machines operate at the same speed. In this case the goal of
the second type interval scheduling problem is to find the smallest number of

machines necessary to process all jobs.

The special types of interval scheduling problem on identical machines are

described in the following subsections.



2.3.1 Restricted Interval Scheduling

If the machines are restricted, then a given job can only be scheduled on subset of
the machines. All of the machines have the same speed, thus identical. These type

problems will be referred to restricted interval scheduling problem.

Restricted Interval Scheduling is first considered by Arkin and Silverberg (1987).
Their problem is the basic interval scheduling problem where each interval can be
scheduled on arbitrary subset of the machines. The authors show that Restricted
Interval Scheduling is NP — complete. They have developed a dynamic programming

solution method.

Another version of Restricted Interval Scheduling Problem is Class Scheduling
Problem, where the jobs and machines are divided into classes. In the most general
case, each machine and job forms its own class. Kolen and Kroon (1991) show that if
there are three or more dependent classes of machines, then deciding if all the
intervals can be scheduled is NP — complete. A set of machine classes are dependent
if the classes of jobs they can process overlap. Kolen and Kroon (1991) also show
that if there are two or more dependent classes of machines then the optimization

problem is NP — hard.

Another Class Scheduling Problem where each job has a fixed ready time, a fixed
end time, and a value representing the job priority is discussed by Kolen and Kroon
(1993). Machines are available in specific time intervals (shifts), and a job can be
processed only if the interval between the start and end time is a subinterval of a
machine’s shift. A machine can process at most one job at a time and preemptions
are not allowed. The objective is to find a feasible schedule for all jobs when such a
schedule exists. Otherwise, the objective is to find a feasible schedule in which the
subset of processed jobs yields the maximum total value. The feasibility problem is
referred to as shift class scheduling while the optimization problem is referred to as
maximum shift-class scheduling. Shift class scheduling is NP-complete but can be

solved in polynomial time if preemptions are allowed. Maximum shift-class
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scheduling is NP-hard. If the number of shifts and the start and end times of each
shift are known in advance, shift class scheduling is NP-complete while maximum
shift-class scheduling is NP-hard. Kolen and Kroon (1993) present some special

cases where each can be solved in polynomial time.

Classroom Assignment Problem is an interval scheduling problem where the
classrooms correspond to machines and the classes are jobs. This problem is
discussed by Carter and Tovey (1992). They consider variations where several
classes meet several times a week but must be scheduled in the same room, in which
case of intervals must all be scheduled on the same machine. They also consider the
problem where classes can be scheduled in any room that is large enough. This is a
special case of restricted interval scheduling where machines can be arranged in a

hierarchy. In general these problems remain hard.

2.3.2 Online Interval Scheduling

In online interval scheduling problem, jobs must be scheduled on a single
machine which runs one job at a given time. The problem is online in that jobs are
unknown until their ready time. Each job must be started or rejected immediately
when it becomes known. Each job has a fixed value, which is gained if the job runs
uninterrupted to completion. If a job arrives and there is a job running, the running
job may be aborted in order to allow the new job to start. The goal is to maximize the
sum of the values of those jobs which run to completion. This and similar scheduling
problems arise in important application areas such as continuous media and call

control. (Seiden, 1998)

Online interval scheduling problem is studied by Woeginger (1994). He considers
the single machine case. Job length and weights are known when they arrive. Jobs
can be preempted, but they are lost. The quality of online algorithms depends on the
relation between the length of the jobs and the weight of the jobs. If the weights of
the jobs have no relation to the lengths of the jobs then no online algorithm is

competitive. An instance of the problem is called f'— related if there is a function f(x)
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that maps lengths to weights. If f(x) is concave or decreasing then there exists a 4 —
competitive online algorithm. The algorithm is straightforward. A job J; is scheduled
if the machine is idle, or if its value is twice the value of the job currently being
processed, or if its end time is before the end time of the job currently being
processed and its value is greater than the value of the job currently processed. They
show that for concave f- related instances, no algorithm has a competitive ratio better

tan 4 — g, so the straightforward algorithm is optimal.

2.3.3 Minimal Resources Interval Scheduling

Given a set of jobs called operations, each associated with a release time and a
deadline, and a set of processors called components, the problem of minimal
resource interval scheduling is to find a schedule of operations on the components,
such that each operation is started after its release time and completed before its
deadline while the total resource cost of the components is minimized. Minimal
resource interval scheduling is an important scheduling problem with wide
applications. It is also an efficient approximation to some other hard scheduling

problems such as precedence constrained scheduling, etc.

Minimal resource interval scheduling problems were modeled by Shen and Jong
(1999) using integer linear programming. Minimal resource interval scheduling

problem is strongly NP — hard, as shown by Shen and Jong (1999).

2.4 Fixed Job Scheduling

If the job cannot be delayed after its ready time, then interval scheduling problem
becomes a fixed job scheduling. The common feature in these problems is that the
job j has a fixed starting time 7;, completes at d;, and a job must be processed

continually for a fixed amount of the time or else it is lost.

Given n tasks T;(j = I, .., n) each of which requires processing without

interruption from a given release time 7; to a given deadline d; (j = 1,......, n), and an
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unlimited number of identical parallel processors P;, P,, ..., P, each of which can
process at most one task at a time. The Fixed Job Scheduling (FJS) Problem is to
determine a feasible assignment of tasks to processors, such that the number of

required processors is at minimum.

Two different generalization of operating time constraint of FJS problem have
been considered in literature. These operating time constraints are spread time and
working time constraints. Spread time constraints impose an upper bound on the time
between the start and finish times of the operations on any machine. The working
time constraints impose an upper bound on the sum of the processing times of the

tasks assigned to each processor.

FJS problem with spread time constraint is considered by Martello, Fischetti and
Toth (1987). In this problem each processor is available only for s time units from
the release time of the earliest task assigned to it, in the sense that any pair of tasks

(T}, T that are assigned to sense processor must satisfy the relation d, —r, <s. The

idle time between the start and finish times are included in the spread time. This
problem arises naturally in more general Bus Driver Scheduling Problem. They
modeled this problem and showed that this problem is NP — hard and proposed a

branch and bound algorithm for the exact solution of problem.

A real life application of bus driver scheduling problem with working time
constraint is pointed out by Martello, Fischetti and Toth (1989). In this problem each
processor is allowed to operate only for w time units. The processor must satisfy the

relation d; —r, <w. The working time constraint is limited by the working time of

bus drivers. Unlike spread time case, it does not include the idle times. They modeled
this problem and showed that this problem is NP — hard and proposed a branch and

bound algorithm for the exact solution of problem.

Another FJS Problem is considered by Yuan and Lin (2005). They consider the
single machine preemptive scheduling problem with some fixed jobs being

previously given. The fixed jobs are already fixed in the schedule. The remaining



13

jobs are to be assigned to the remaining time-slots of machine in such a way that they
do not overlap each other. The objective is to minimize a tardiness related criterion.
If the jobs are processed without preemption, in literature this problem is strongly

NP-hard.

The FJS problem has two types based on the objective function.

The first type of the FJS problem is the Operational Fixed Job Scheduling (OFJS)
problem, where each job j has a weight w; that represents its value or relative
importance, and the concern is maximizing the total weight of the processed jobs
with a given number of processors. When all jobs have equal weights, the objective

reduces to maximizing the number of jobs processed (Eliiyi, 2004).

Eliiyi (2004) considers the OFJS problem on the identical machines. The author
uses two different constraints for this problem. It is assumed that the jobs have fixed
ready times and deadlines and working time constraint at the first model and spread
time constraint at the second model are imposed on machines. Their objective is to
select a set of jobs for processing so as to maximize the total weight. They show that
the problem is strongly NP-hard. They use branch and bound algorithm to find an

optimal solution.

The second type of the FJS problem is the Tactical Fixed Job Scheduling (TFJS)
problem. In these type problems, there are unlimited pools of machines and the goal
is to find a set of machines with minimal cost or minimum number of machines that
can process all of the jobs (Wagner, 2001). In a study by Kroon (1990), the TFJS
problem is used as the core model in tactical capacity planning of aircraft

maintenance personnel for an airline company.

A special case of FJS problem is the Operational Fixed Interval Scheduling
Problem (OFISP). OFISP is characterized as the problem of scheduling a number of

jobs, each with a fixed starting time, a fixed finishing time, a priority index, and a job
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class. The objective is to find an assignment of jobs to machines with maximal total

priority. The problem is complicated by the restrictions that:

i. Each machine can handle only one job at a time,

ii. Each machine can handle only jobs from a prespecified subset of all possible

job classes,

iii. Preemption is not allowed.

It follows from the above that OFISP has both the character of a job scheduling
problem and that of an assignment problem. (Kroon, Solomon and Wassenhove,

1993)

Several projects in which OFISP plays an important role were proposed by

different researches. Some examples of these projects are briefly discussed below:

o The assignment of airplanes to gates. This problem was taken up at Schiphol
Airport, where airplanes of different types have to be assigned to gates during
fixed intervals. However, each gate can only handle a limited set of aircraft
types due to technical restrictions. The problem here is to find an assignment of
airplanes to gates where the number of unassigned airplanes - whose

passengers have to be transported to the terminal by bus — is minimized.

o The scheduling of operating rooms in a hospital. In most hospitals a limited
number of operating rooms are available. Some of these operating rooms may
be general purpose, but others may be suitable for only a subset of the various

types of operations. In general the time slot for an operation is fixed.

o The assignment of holiday bungalows to vacationists. Usually holiday
bungalows are booked a long time in advance for a period of one or more

weeks. The holiday bungalows may differ in several aspects, i.e. size, location,
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accommodation, quality, and price. Each season the booking office is faced
with the problem of finding an assignment of holiday bungalows to
vacationists, such that there is a matching between the requirements of the

vacationists with respect to e.g. comfort, and the available accommodation.

2.5 Vehicle Scheduling Problem

The vehicle scheduling problem (VSP) consists of assigning a set of scheduled
trips to a set of vehicles, in such a way that each trip is associated to one vehicle and
a cost function is minimized. The VSP is a classical optimization problem which is

faced in the operational planning of public transportation systems. (Baita et al., 1990)

Vehicle scheduling problems have different objective functions. First objective
type is minimizing the total number of vehicles that is, minimizing the capital cost or
fixed cost of vehicles. Second objective type is the total deadhead time or deadhead
cost of operations. Third objective type is maximizing the utilization of vehicles,

which is equivalent to minimizing the idle time or arc time.

VSP is modeled by integer programming. Arc time, which is defined as the time it
takes for a vehicle to go from the arrival point of the first trip to the departure point
of the second trip, overlapping trips set, which is a set of trips which can not be made
by a vehicle, spread time constraint and working time constraint are used in

modeling VSP.

There are efficient algorithms for some versions of the VSP, i.e., when all
vehicles are equal and share the same depot. Nevertheless, real-life applications may
turn out to be complex due not only to the dimension of the problem but also, and
more importantly, to the particular requirements which are present in practical
situations but are hard to be modeled. Practical requirements for this problem,
usually not considered in the literature, include considering several performance
evaluation criteria, producing different alternative solutions, and getting hints on how

data could be modified to improve the quality of the solutions. (Baita et al.,1990)
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2.5.1 Why Vehicle Scheduling Problems Are Complex

Most real vehicle scheduling problems are difficult for modeling and complex for
solving. Schrage (1981) lists 10 features that make real problems difficult to solve.

These include:

e Frequency requirements. Visiting customers may have to occur at a certain

frequency and that frequency may vary from customer to customer.

e Time windows. This refers to the requirement that visits to customer locations
be made at specific times. Dial — ride systems and postal and bank pickups and

deliveries are typical examples.

e Time dependent travel time. When deliveries are made in urban centers, rush —
hour congestion can be made an important factor. Travel time depends on the

time of days.

e Multi dimensional capacity constraints. There may be constraints on weight
as well as on volume. This can be a thorny issue, especially when the same

vehicles are used to transport a variety of different products.

e Vehicle types. There may be several vehicle types to choose from. Vehicle
types may differ according to capacity, the cost of operation, and whether the
vehicle is constrained to closed trips only. When several types of vehicles are

available, the number of feasible alternatives increases dramatically.

o Split deliveries. If one customer has a particular requirement, it could make

sense to have more than one vehicle assigned to that customer.

e Uncertainty. Scheduling algorithms invariably assume that the information is

known in advance. In practice, however, the time required to cross certain
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portions of network could be highly variable depending on factors such as

traffic conditions, weather, and vehicle breakdowns.

2.5.2 Types of Vehicle Scheduling Problems

The general vehicle scheduling problems are the problems in which a number of
vehicles starting at one or more depot have to collectively visit a number of demand
points then return to the depot from which they start.(Haghani et al., 2003) There are
two different main types of vehicle scheduling problem: Single Depot and Multi
Depot Vehicle Scheduling Problem.

2.5.2.1 Single Depot Vehicle Scheduling Problem

The single depot vehicle scheduling problem (SDVSP) contains the basic
structure of the scheduling problem. Suppose there are n trips to be served by
vehicles starting from a single depot. Every trip has a starting point, an ending point,
a starting time, and an ending time. The trips could be served by the same vehicle if
the starting time of one trip is greater than the ending time of another trip plus the
travel time between these two trips. The objective of the problem is to find the

minimum number of the vehicles to serve all the trips.

A network could be constructed to represent this problem: each trip represented
by a node, and an arc (i, j) exists if the ending time of trip i plus the travel time
between ending point of trip i and starting point of trip j is less than the starting time
of trip j. Then the problem is to find the minimum number of paths in this network
that cover all the nodes. The path here is treated as a vehicle scheduled to start from
the depot and end at the depot. This problem could be solved as a minimum cost flow

problem.

Several network flow type of algorithms have been proposed for the SDVSP. The
SDVSP problem has been formulated as a linear assignment problem, a

transportation problem, a minimum cost flow problem, a quasi — assignment problem



18

and a matching problem. Freling et al (1999) review the most relevant algorithms
and they propose new two phase algorithm, which is valid in case of the special cost

structure and a new core oriented approach.

The single depot scheduling problem is well — known to be solvable in
polynomial time. However, when other constraints such as the route time constraints
that make the problem more realistic are introduced, it becomes a NP-hard problem.

Large problems of this type can be solved only by heuristic procedures.

2.5.2.2 Multi Depot Vehicle Scheduling Problem

The multiple depot vehicle scheduling problems (MDVSP) are extensions of the
SDVSP problem. The major difference between the two is that in the multiple depot
case vehicles are housed at different depots. The objective is to determine the
minimum number of vehicles to serve all trips and to identify the optimal locations
of the vehicles in order to minimize the total cost. The MDVSP can be formulated as
a mixed integer programming problem in two different ways: ‘“Trip Based”
formulations, in which the trips are the components to which the variables are
related, and ‘‘Block Based’ formulations, in which the blocks serve that purpose.

Bertossi et al. (1987) proved that the problem is NP-hard.

Some researchers formulated the MDVSP as a multi — commodity formulation
which is a network flow formulation that accounts for multiple commodities shipped
from different origins to different destinations in the network. Desaulniers et al
(1998) studied MDVSP with time windows and waiting cost. They formulate this
problem as an integer nonlinear multi — commodity network flow model with time
variables and they solve it using a column generation approach embedded in branch

— and — bound framework.

Many branch and bound or heuristics approaches are used to solve the MDVSP
but the most successful approach for solving it is the work of Ldbel (1997). He

solved large real world problems using a specific type of column generation called
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“‘Lagrangean Pricing’’. He solved a problem consisting of 25,000 trips with more
than 13 million variables to optimality and a similar problem with about 70 million

variables to a good feasible solution.

2.6 Solution Methods for Scheduling Problems

Solution methods for scheduling problems can be classified as exact optimization
approaches and heuristic approaches. Exact optimization approaches include integer
programming solutions, dynamic programming solutions. A heuristic method

includes basic dispatch schedule and search techniques.

2.6.1 Exact Optimization Approaches

2.6.1.1 Integer Programming (IP)

A surprisingly wide class of problems can be modeled using integer variables and
linear constraints. Sometimes such a model consists solely of integer variables. That
1S a pure integer programming (IP) model. More commonly there are both
conventional continuous variables together with integer variables present. Such a
model is said to be a mixed integer programming (MIP) model. (Williams, 2003, p:
144)

We can think of situations where it is only meaningful to make integral quantities
of certain goods or use integral quantities of some resources. In these cases IP model
might be used of many different types of problem. Knapsack problem, sequencing
problem, location problem, scheduling problem, transportation problem, assignment
problem, set partitioning problem, depot location problem are some example

problems for which IP models may be built.

There is a considerable danger in building an IP model only to see that it is not
possible to solve it in a reasonable time using a modern computer and package

programs. For this reason some methods of solving IP are developed. Branch — and
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bound method, cutting planes method and enumerative methods are some different

methods by which IP models may be solved.

Enumerative methods are generally applied to the special class of 0 — 1 PIP
problems. In theory there are only a finite number of possible solutions to a problem
in this class. Although it would be quite difficult to examine all these possibilities, by
use of a tree search it is possible to examine only some solutions and systematically

rule out many others being infeasible or non — optimal.

Branch and bound method is one of the most popular methods of solving IP. The
branching refers to a partitioning of the solution space; each part of the solution
space is then considered separately. The bounding refers to the development of lower
bounds for parts of solution space. If a lower bound on the objective in one part of
the solution space is larger than an integer solution already found in a different part
of solution space, the corresponding part of the former solution space can be

disregarded. (Pinedo& Chao, 1999, p.396)

Cutting plane methods usually start by solving an IP problem as if it were an LP
problem by dropping the Integrality requirements. If the resultant LP solution is
integer, this solution will also be the integer optimum. Otherwise extra constraints
are systematically added to the problem, further constraining it. The new solution to
the further constrained problem may or may not be integer. By continuing the
process until an integer solution is found or the problem shown to be infeasible the IP

problem can be solved.

2.6.1.2 Dynamic Programming

Dynamic programming is a technique that can be used to solve many optimization
problems. Dynamic programming obtains solution by working backward from end of
a problem toward the beginning. The problem can be divided into stages with
decision required at each stage. Each stage has a number of states associated with it.

Decision makers choose the state which is an optimal decision at their stage and they
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transform it into the state at the next stage. Dynamic programming technique is an

implicit enumeration method, i.e., it evaluates only a subset of all possible solutions.

Since the number of stages becomes large rapidly in scheduling problems,
dynamic programming approach is difficult to implement from the computational

point of view, due to its memory and time requirements. (Edis, 2004)

2.6.2 Heuristics Approaches

For both integer programming and dynamic programming, however, while very
small problems can be solved in a reasonable time; solving the large problems are
very hard. These problems are usually known NP — complete. For this reason,
various heuristics approaches are developed for approximate solution of the large

problems.

2.6.2.1 Dispatch Schedule

A formal scheduling may or may not be given in advance, but simple practical
changes may be handled just by adjusting/slipping the whole schedule in a flexible
way. The emphasis is on scheduling resource by resource, keeping each resource
busy with the most important activity available. When resource becomes free, the
highest priority activity available is performed next. This tends to produce a
compact, efficient schedule, but necessary complicated resource matching may be
more difficult. While some users may object to a schedule with constant minor
change, the entire schedule remains logical and tightly knit in terms of priorities.

(Morton & Pentico, 1993, p. 20)

Dispatching heuristic has some rules that prioritize all the activity that are waiting
for using resource. These rules can be classified in various ways. First way of
classifying dispatching rules is according to the information they are based upon. A
local rule uses information pertaining to either the queue where activity is waiting or

the resources where the activity is queued. A global rule may use information
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pertaining to other resources, such as the processing time of the activity on the next
resources on its route or current queue length at that resource. Another classification
of dispatching rules is static or dynamic rules. Static rules are not time dependent but

dynamic rules are.

2.6.2.2 Search Techniques

There are a number of heuristic search techniques to solve large scale problems

(Pinedo& Chao, 1999, p.421).

¢ Neighborhood Search: Neighborhood search is a rather general technique used
for scheduling. First pick a feasible starting solution, using any method. Next,
try all possible ways of schedule slightly and evaluate each resulting schedule.
If there is no improvement, the method is finished. Otherwise, take the largest
improvement and begin looking small changes from that, and so on. It arrives
at only local optimum, but is very useful especially if used in conjunction with

good started heuristic method.

e Tabu Search: Tabu search which is neighborhood search with list of recent
search position is another search technique. The best solution to date is also

always saved in case no better solution is ever found.

e Simulated Annealing: Simulated annealing also adds diversification to a
neighborhood search procedure, but in a somewhat different way. A random

amount is added to each possible move’s evaluation.

e Genetic Algorithms: There is a current population of possible solutions to the
problem. In each generation, the best solutions are allowed to produce new
solutions (children) by mixing features of the parents; the worst children die off

to keep the population stable, and on to the next generation.
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e Beam Search: Beam search is a derivative of branch — and — bound, which
tries to eliminate branches in an intelligent way so that not all branches have to
be examined. It thus requires less computer time, but can no longer guarantee

an optimal solution.

Savings heuristics, a time oriented — nearest neighbor heuristics, insertion
heuristics and a time — oriented sweep heuristics are other heuristics methods to
solve vehicle scheduling and routing problems. Solomon (1987) considers the design
and analysis of such heuristic algorithms for vehicle scheduling and routing problems
with time window constraints. They show that insertion heuristics prove to be very

successful.



CHAPTER THREE

PROBLEM STATEMENT AND SOLUTION APPROACH

3.1 Introduction

In this chapter, the problem will be defined, factors and objectives will be
identified and the mathematical model appropriate to the goal and to the structure of
the problem will be constructed. Besides, the modelling of this problem with the
optimization package programs and the heuristic solution approaches will be fully
explained through this chapter. The problem can be defined as the assignment of the
jobs which have certain time intervals to the machines. What is meant by the time
interval here is that the jobs have a fixed ready time and operation period. All the
jobs should be done right on time. The number of the available machines is infinite.

The objective is to schedule — the minimum number of machines to process all jobs.

Such scheduling problems are encountered in real life. In this study, a problem is
examined where the machines correspond to vehicles and the jobs to trips. Generally,
this problem is a vehicle scheduling problem. The problem examined in the study is

inspired by the study of Karakiitiik and Karacizmeli (2004).

Though possible, it is rather difficult to model the variables and situations in real
life mathematically. Therefore, to model such problems, several assumptions are
made. It is rather difficult to find out the optimum solutions of the scheduling
problems in real life. Thus, heuristic approaches have been prepared for the problem

in compliance with the assumptions to be used in modeling.

The method to be used in the modeling of the problem is the mixed integer

programming (MIP), and the constraints are structurally the ones to be encountered

24
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in interval scheduling and fixed job scheduling problems. The solution algorithm
has been prepared in compliance with similar scheduling problems. In addition, by
making slight adjustments in algorithms, heuristic approaches have been created
apart from such vehicle scheduling problems, applicable to similarly structured

problems in a different domain.

3.2 Problem Definition

The problem is to form the cost-efficient vehicle schedules, which will be used in
a large—scale organization for the transportation between the participants’
accommodation facilities and the facilities where the activities will take place, in
compliance with the terms of the organization. Problem will be solved daily; that is,
a new schedule is made for each day. The main reason is that the organization
program changes from day to day. The daily programs are known beforehand. There
are two basic parameters that form the problem. The first one is a trip which
corresponds to the participants’ transportation activity from one center to another.
The other is the vehicle, which will conduct the carrying of the demands of the trips.
The collected data, the data sets formed out of these data change with respect to these
two parameters. In order to render the problem comprehensible, these two parameters

and the data sets connected to them are required to be explained in detail.

3.2.1 Data Related with Trips (j)

A trip is the act of transportation of passengers from a center to another, and it is
required to be performed in a certain time interval. Daily organization program is
known, for this reason the daily required number of trips is known in advance.
Furthermore, the trip set stands for an act of transportation between only two centers,
that is to say, the trips do not consist of consecutive transportations between three or
more centers. In fact, due to the structure of the problem, a trip stands for the

transportation between just two centers.
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The trips are the acts that have a ready time and deadline. As seen in Figure 3.1,
each trip in the time axis corresponds to a certain time interval. These time intervals
sometimes overlap with one another. Each time interval has a departure and arrival
point on time axis, known in advance. A trip demand emerges at each time interval.
The trip demand corresponds to the number of passengers on that trip. The

transportation of the demand should necessarily be performed within this time

interval.
r. : d. r : d
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Figure 3.1 The Time Interval of Trips

All trips have a definite ready time () and deadline (d ;). The ready time and

deadline are known in advance and deterministic ones. Thus, every single trip has a

definite processing time (p; =d, —r;). Namely, the time to be spent on each trip is

deterministic and known beforehand. The vehicle to be assigned to each trip
necessarily has to be at the departure point in ready time. It is not possible to delay

the trips after the ready time.

The passenger demands for the trips (D, ) are deterministic and they are known in

advance. It is necessary to assign adequate number of vehicles to supply the demand
for each trip. That is, the demand for each trip has to be satisfied at any rate. There

are two kinds of trips based on demands.

The demand for the first type of trips is split. That is to say, in order to meet the
demand, more than one vehicle may be used. The important thing here is to supply

the adequate number of seats to meet the demand. Therefore, there is a necessity to
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assign more than one vehicle for the trips whose demands exceed the capacity of the
vehicle with the largest capacity; since all the demands of the trips should be
satisfied. Furthermore, the trips pertaining to the first type, and whose demands are
smaller than the capacity of the vehicle with the largest capacity also can be

conducted with more than one vehicle according to the problem.

The second type of trips is the ones which are required to be conducted with only
one vehicle. Due to the organizational conditions, the demands of some trips should
necessarily be satisfied with a single vehicle; therefore some trips should necessarily
be taken with a single vehicle. The demands of such trips should be equal to or
smaller than the capacity of the vehicle with the largest capacity. Otherwise, an
assignment without a division is not possible and the problem would be infeasible.
The set (7) constituted by the second type demands of the trips formed during the

day time should be known in advance.

Each trip has a departure and arrival point. If a vehicle is to take another trip after
finishing one, it has to get from the arrival point of the first trip to the departure point
of the other trip. When the vehicle takes a trip b after a trip j, the elapsed time that
the vehicle gets from the arrival point of j to the departure point of b is called the arc

time (a ) between the places j and b. Arc time could be regarded as a setup time.

That is to say, it is the preparation time of the machine from the latest task to its new

task.

The arc time between the trips can be explained more clearly with Figure 3.2.

Here the departure point of the first trip is DF,, and the arrival point of the same trip
1s AP, . Let’s assume the departure point of the next trip after the first one as DP,, and
the arrival point as AP, . In such a case, the arc time (q,, ) is the elapsed time that the
vehicle travels from the first trip’s arrival point 4F to the second trip’s departure
point DP,. In order for the vehicle to take the second trip, the sum of the first trip’s

deadline (d,) and the arc time between the trips (a,,) has to be smaller than the
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second trip’s ready time (7, ), in other words the condition (a,, +d, <r,) has to be

met. Otherwise, the vehicle cannot take that trip, but might another trip.

o]
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Figure 3.2 Arc Time between Two Trips

3.2.2 Data Related with Vehicles (i)

The second significant parameter is the one dependent on the vehicles to transport
the demands of the trips from one center to another. As a matter of fact, the problem
is assigning the vehicles to the trips. The vehicles have cost of use, usage period and

types with definite capacities.

Single or various types of vehicles may be used in the problem. It has been
assumed that there are an enough number of vehicles in each size. That is, if there are
k types of the vehicles, then that is assumed an enough number of all types of
vehicles are available. By this way, the number of the vehicles to be used will be

determined dependent on the structure of the trips.

Each vehicle has a definite capacity (c, ). The vehicles cannot exceed these limits,

yet in order for the vehicle to complete a trip; not all the seats are required to be
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occupied. Even though only one person is to be transported, the vehicle should be

assigned to that trip. The maximum passenger capacity for each vehicle differs.

As we have mentioned before when explaining the trips, each vehicle can be
assigned to only one trip and can transport passengers between two centers at a
single slot of time. In other words, even though the vehicle’s capacity is fit for more,

it is allowed to transport the passengers of a single trip.

The average speed of the vehicles is assumed as constant. Actually, based on this
assumption, it has been mentioned before that each trip and arc time are

deterministic.

Each vehicle has a daily fixed cost dependent on its size. When a vehicle is
assigned to a trip, its fixed cost should be tolerated. In exchange of the fixed cost

(f,) the right to use the vehicle for a certain period is obtained. This period is called

daily available regular time (S). Throughout this period, the vehicle can be used

without extra charges. In addition, each vehicle has a variable cost (v, ) dependent on
its type. Variable cost is the unit overtime (o,) cost of use. If the vehicle is used

more than the standard or variable time, an extra cost is charged for every unit of
time as much as the variable cost. Each vehicle has a limit for overtime usage, which
is called the daily available overtime (O) limit. A vehicle can be used as much as the
sum of the daily available regular time and the daily available overtime (S+0O) at the
most. The usage limits for all the vehicles are the same. The vehicle’s cost of use is
made up of the fixed and variable cost. As a matter of fact, the objective function of
the problem is to minimize the total fixed cost plus the total variable costs of the

vehicles.

3.2.3 Incompatibility Set

Some trips cannot be handled by the same vehicle. The set of the trips that cannot

be transported by the same vehicle form incompatibility sets (Q}). This set varies
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dependent on both the trips and the vehicles. There can be three reasons for the two

trips not to be taken by the same vehicle. These three cases can be seen in Figure 3.3.

separately.
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Figure 3.3 An Example Time Intervals of Trips for Incompatibility Set

The first reason is the overlapping of the intervals of two trips. For any trip j, if

there is a trip b which provides r, <r, <d_, trips j and b overlap and therefore they

cannot be performed by the same vehicle. To explain this, let us examine the
overlapping 1% and 2™ trips in Figure 3.2. If the vehicle has been assigned to the 1

trip, then it is busy from 7, to d, time. As the vehicle is busy and it can only be
assigned to a single trip, it will not be present at the ready time of the second tripr, .

Therefore, 1% and 2™ trips cannot be taken with the same vehicle.

Another reason is that, a vehicle cannot perform two trips due to the arc time

between the two destinations. If r, <7, <d; +a, for the trip b following the trip j,

these trips cannot be taken by the same vehicle. The 3™ and 4™ trips in Figure 3.3 can
be shown as an example for the case. The time intervals of these do not overlap, but
the arc time between the 3™ and 4™ trips is more than the difference between the
ready times and deadlines of these trips. Thus these trips cannot be taken by the same

vehicle.
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As the last reason, if the difference of the trip j’s ready time (7;) and the trip b’s
deadline (d,) exceeds the total use time (S+0O <d, —r;), then the vehicle cannot

perform the trips j and b simultaneously. This case is observed between the 1 and 5"

trips in Figure 3.3, these two trips cannot be taken by the same vehicle.

If these three relations can be observed any two trips, i and j, these trips would be

the ones to be taken by the same vehicle. Then, job j will be added to set Q;, and job

i will be added to the set Q.

3.3 Model Assumptions

Before mathematical modeling of the problem, the conditions due to the
organization and the assumptions for modeling should be restated briefly.
Examination of these subjects will provide for a better understanding of the

problem’s context.

i. The upper bound value for the passenger demands in nonsplit trips is equal to

the capacity of the largest vehicle.

ii. It is assumed that we have enough number of vehicles in each size.

iii. It is assumed that the trip times are deterministic and constant.

Besides the assumptions, there are some constraints due to the organizational

structure. These include following:

i. The vehicles can transport between only two facilities, that is, only the

passengers of a single trip can be carried with the same vehicle.

ii. Some trips are nonsplit due to the organizational conditions. That is, they have

to be performed with a single vehicle.
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iii. The postponement, delay or cancellation of the trips is not possible. All the

trips should be taken in the time interval assigned to them.

The data of the problem include:

i. Daily program: The information about the exact timing of the activities, the
facilities that the transportation will take place in between, and also the number

of passengers to be transported.

ii. The distance and the route between the facilities: Since the distance of all trips
is constant and the distances are known, time intervals of the trips are known in

advance. In addition to this, the arc times of the trips is also known beforehand.

iii. Capacity and cost of vehicle: The information about the vehicles is known in
advance. It has been already stated that there are enough number of vehicles in

each size.

3.4 Mathematical Formulation

Parameters

o i=12.....1,1 +L...,1,,I, +1....,1, : Vehicle index
(I, —1,_,) 1s an upper bound on the number of available vehicles of type k.

o j=1,......... J: Trip index

e D, : Number of passengers on trip

e r;: Departure time (ready time) of trip /.

e p;: Trip duration (processing time) of trip j
e ¢, : Capacity of vehicle i

e /. : Daily fixed cost for vehicle i
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v, : Overtime cost per time unit for vehicle i

S : Daily regular time unit available for each vehicle

O : Daily available overtime units for each vehicle

Q' : Incompatibility set of trip j — The set of trips which can not be made by a

vehicle, if that vehicle takes trip j.

Qi =b>j:r,<r,<r,+p,+a, orr,+p,—r; >S+0}
0 ay, (arctime) is the time it takes for a vehicle to go from the arrival point of

trip j to the departure point of trip .

T : The set of indexes of trips in which must use only one vehicle

M: A large integer number. (M =J)

N: A large integer number ( N =max(r; +7, + p,))

Decision Variables

1 if vehicle iis used
[ ] L=
Y 0, otherwise
1, if vehiclei takes trip j
[ X.. =
v 0, otherwise

e o0, : Overtime usage of vehicle i



Mathematical Model

Objective Function:

1k
min z = z (f,y, +v,0,)
i=1

Subject To:
Iy
c,x; 2D, Vj
i=1
X+ X, <1, Vi, j,and be Q)
J
inj <My, Vi

J=1

(r, + py)xy, —r;x; <S+0,+(—-x,)N

Iy

ink =1 keT
i=1

x,,y; binary, Vi,j

0,20 Vi

Constraints

The objective function in (3.1) minimizes the total cost of the vehicles. If vehicle i

is used, the decision variable y, take value of 1 and the fixed cost of the vehicle must

be tolerated. If the vehicle performs overtime, its overtime period is multiplied by the

Vz‘,j,andbng;

unit overtime cost and added to the objective function.

Constraint set (3.2) ensures the assignment of the adequate number of vehicles
that transport all the passengers in each trip. This constraint set controls that the total

amount of the capacities of the entire vehicles to be assigned to a trip is more than

the demand of the trip.

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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The constraints in constraint set (3.3) are called as the spread time constraint. If

vehicle 7 is assigned to the trip j, the vehicle will be unable to take the other trips

which are in the incompatibility set (Q) of this trip. By way of this constraint, if the
vehicle takes a trip j (x, =1) it is ensured that the trip b (x, =0) in the

incompatibility set (Q') not to be taken.

Constraint set (3.4) is used to find out whether the vehicle is used or not. The
main reason to use this constraint is to add the fixed cost of the vehicle to the
objective function on condition that the vehicle is assigned. In this model, M value is

equal to the number of the trips to be taken in daytime.

Constraint set (3.5) is used for determining the total overtime period of the
vehicle, if it goes overtime. For this purpose, the time difference between the first
and last trip is compared with S value. If this difference is bigger than the S value,
addition of the exceeding time to the objective function as overtime cost is enabled.
The N value here is equal to the difference between the ready time of the vehicle

with the earliest ready time and deadline of the vehicle with the latest deadline.

Constraint set (3.6) enables the assignment of a single vehicle to the trips that are

required to be taken by a single vehicle.

Constraint sets (3.7) and (3.8) enable the decision variables to be nonnegative and

binary.

3.5 Optimal Solution

The mathematical model of the problem is mixed integer programming model.
The number of constraints in the model changes depending on the number of trips
and the number of vehicles. It can be thought that the solution period may extend

with rising number of trips and vehicles in the problem, since the decision variables
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in the model are mostly binary. The mathematical model is attempted to be solved

optimally with two different optimization programs.

Firstly, formulation in LINGO 8.0 is attempted to be solved with the optimization
software by a P4 2.4 MHz. 256 Mb computer. However, it has been deduced that
daily optimum schedule of organizations of a daily program that includes more than
100 trips can not be ascertained with this software in an acceptable time period. The
result is that because the problem is daily, maximum time period allowable is one

day, but within this time solving the problem is not possible with this software.

Secondly, problem is modeled in GAMS 20.2 optimization program by the use of
CPLEX SOLVER and it has been attempted to be solved by the same computer.
There has not been any change in the result. It has also been extrapolated that even
though the performance is better than LINGO optimization software, in the situations
like when there are over 100 trips in a day; this program will not be able to as certain
the optimum solution of the problem within an acceptable time period, as well.
LINGO and GAMS models of an sample problem and the preparations of the data

sets inside these programs are presented in Appendix A.

As it has been pointed in the beginning, the existence of binary decision variables
and the large number of constraints may be indicated as the reasons demonstrating
why the problem cannot be solved in reasonable times by the optimization software.
Many problems especially with Constraints (3.3) -that is spread time constraint- are
presented as NP — complex and NP — hard in literature. (See also Fischetti et al.

1987)

The question that whether the problem is NP — complex or NP - hard is beyond
the scope of this study. Yet, by using the optimization software, it has been inferred
that the problem can not be solved within a reasonable time period. Because of that,
some methods should be developed that will enable to figure out the problem with
more trips in a shorter time. In this problem, heuristic search techniques will be

utilized as solution methods.
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3.6 Heuristics

Since the problem can not be solved within a reasonable period of time, heuristic
solution methods have been developed which are capable of producing suboptimal or
near optimal solutions in shorter times. Each of these methods has been based upon
various criteria. Three heuristics approaches which are established on different
algorithms have been developed. Each different heuristic is solved by two distinct
solutions in itself; in the first solution, vehicles are used only during their daily
regular time limit (S). In the second solution, vehicles are forced to make overtime;

1.e. each vehicle is used in a period of length (S+0O).

In this way, a total of six different solution methods are constructed. The first one
of the three different heuristics methods is the Vehicle Based Heuristic (VBH)
method, which performs the assignments considering vehicles one by one. The
second one is the Trip Based Heuristic (TBH) method, which performs the
assignments considering the trips one by one. The third one is the Group Based
Heuristic (GBH) method, where the trips are grouped and then assigned with respect
to this group order. The process of each method and their detailed algorithms are

presented below.

3.6.1 Vehicle Based Heuristic

In this method, the assignments are based on vehicles. A daily work schedule of
the vehicle is formed by assigning the vehicle to all trips that they are able to do
within the performance time of the vehicles. The performance time may be S or
(S+0), depending on the type of algorithm, as will be stated below. Thus, the daily
work schedule of each assigned vehicle is done, and it continues until the process is

over. The general algorithm of the method is as follows.
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1. Determine the first trip to take.

2. Assign a new vehicle to the chosen trip.

3. Form the trip set that can be assigned to the vehicle.

4. If there are any trips (i.e. the trip set is nonempty) which can be made by the
same vehicle after assigning the previous trip and go to step 5, otherwise go to

step 6.

5. Assign the vehicle to the most proper trip with respect to its performance

criteria. Then follow step 3 again.

6. If any trip is left in the system, go to step /; if not stop.

In this method, the problem is solved by two different approaches. In the first
approach overtime is not allowed, in the latter one all vehicles perform overtime. The
only difference in the algorithm is that in the first approach daily available overtime

units for each vehicles equals to zero (O=0).
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The general flowchart of the method is displayed in Figure 3.4.

Determine the first
trip to take

A 4

A 4

Assign a brand new
vehicle to the
chosen trip

y

Form the trip set that
can be assigned to
the vehicle.

A

No

Yes

Assign vehicle to
available trip

Have any
trips left in
the system

Exit
system

Yes

Figure 3.4 Flowchart of Vehicle Based Heuristic

B: The set of trips which
can be made by same
vehicle after assigning
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The detailed algorithm of heuristic method and its parameters are as follows:

Parameters:

F : The set of unused vehicles.

T;: The set of nonsplit trips that cannot be assigned to vehicle i.

S: The regular time limit of a vehicle.

O: The maximum over time unit of a vehicle.

O = 0; for vehicle based heuristic without overtime (VBH)
O > 0; for vehicle based heuristic with overtime (VBHO)

O, : The Compatibility Set of trips which the vehicle to be assigned to #rip j is

able to take within daily usage time period (S+0O).

k; : The index of the first assigned trip of vehicle i.

w;, - The idle time of the vehicle i in case that it takes trip b after its trip j

whether on regular or on overtime.

e wj, : The idle time of the vehicle 7 in case that it takes trip b after its trip j on

overtime.

P;5 - The usage time period of the vehicle that performs overtime after its trip

J-

R, 1s the performance criteria for assignment of vehicle i to trip b after trip .

R,;, = cost of idle time on regular time + cost of idle time on overtime

+ cost of unused seats on regular time + cost of unused seats on overtime

’ .fz ' max(ci -D ’O) ’ f; '
Rg‘jb :(Wg‘jb _Wg,'b)?"'wg/b v, + . : (p, _pijb)g-i_pj/b *v,)
¥he(Q, - T))
R, , 1s calculated for every trip b which vehicle i can take after its trip j and it is

regarded as an assignment criterion. Vehicle i is assigned to trip b that gives
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min R, . This ratio enables the vehicle to be assigned to the busiest trip with

minimum delay. The vehicle is assigned to the trip with the lowest free seat cost

and shortest delay time this way.

Detailed Algorithm

S0: Initialization: The process of necessary preparations for algorithm.

i. Arrange the vehicles by their sizes in descending order.
ii. Create a list of trips by arranging the trips in a chronological order according to
their ready time.
iii. Form a T set for each vehicle; 7': {jeT:c[ < Dj}‘
iv. Forma O, set for each trip;
Q,=b>j:r+p,+ta,<ryorr,+r+p,<S+0}
v. Calculate the w;, values for each trip; w,, =r, —(p; +r;), VbeQ,
vi. Calculate the w};, and p, values for each trip;
a. If there is not any overtime; w/, =0 and pj, =0
b. If there is overtime;

i» =max(r, —(r, +5),0), Vbe(Q,

Wijb

Py =max(r, + p, — (1, +95),0), VbeQ,

S1: Choose the first trip from the list which is not done and let it be trip ;.
S2: Assign an unused vehicle to the first chosen trip.

A.If D; > max(c,), then assign the vehicle i which is max(c;) i € F' to trip j. If
not, U, = {ci -D j} Vi e F . Calculate for all vehicles i belonging to set F, the

quantity of passengers who cannot transport in the trip j in the event of vehicle

i assignment to this trip. In the trip j that gives U, > 0 value, assign the vehicle
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i with min(U,) to the trip j. Thus, the assigned vehicle’s free seats will be in

minimum number.
B. Delete vehicle i from the set F.
C. kl' :j.

S3: Reduction of the demand of the assigned trip as much as the capacity of the

vehicle assigned to the trip.

A. D; =max((D, —¢,),0)

B.If D, =0, then delete trip j from list of trips.

S4: Assignment of the vehicle in use to its new trips within the validity period.

If (O, -T))# & then

i. Calculate the R,, ratio for every trip b in this format: b € (Q, —T;)
ii. Assign vehicle i to trip » whose R, is minimum.

iii. b = j (Consider the newly assigned trip b as trip ).

iv. Go to step S3.
Otherwise go to step SS5.
SS: If there is any work to be done in list of trips, go to S1; if not exit the system.
According to the types of the vehicles employed, the total fixed costs are
calculated. In order to count the overtime costs, we calculate the time length between

the ready time of the first trips and the deadline of the last trips, and then subtract the

S value from this time so as to get the overtime period.
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3.6.2 Trip Based Heuristic

In this method, the assignments are trip based. The trips are ordered according to
their ready times and a combination of vehicles with the minimum number of vehicle
is assigned to those trips. All assignments are conducted in this way until all the trips
are taken. For the assignments, the priority belongs to the vehicles that are used
before. In this method, the schedule is formed as trips. The general algorithm of the

method is as follows:

1. Determine the first trip to take.

2. Assign enough vehicles to meet the demand of the trip (If possible from
used vehicle).

3. If there is a trip left go to the first step, if not exit the system.

The flowchart created according to this algorithm is displayed in Figure 3.5.

Determine the first
trip to take

A 4

A 4

Assign enough
numbers of vehicles
to meet the demand

of the trip
(if possible from
used vehicles)

Have any
trips left in
system?

Exit
system

Yes

Figure 3.5 Flowchart of Trip Based Heuristic
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In this method, there are two approaches like the vehicle based heuristic method,
depending on whether the vehicle performs overtime or not. The detailed algorithm

is stated below.

Q,; is the Compatibility Set of trips which the vehicle to be assigned before #rip j

is able to take within daily usage time period (S+0). Other notations are the same as

VBH and VBHO.

Detailed Algorithm

S0: Initialization: The process of necessary preparations for algorithm.

i. Arrange the vehicles by their sizes in descending order.
ii. Create a list of trips by arranging the trips in a chronological order according to
their ready time.

iii. Form a T set for each vehicle; 7;': {je T:c, < Dj}
iv.Forma Q,; set for each trip;
O,=b<j:r,+p,+ta, <r,orr,+r,+p,<S+0}
v. Calculate the w,, values for each trip; w, =7, —(p, +r,), Vbe(,;
vi. Calculate the wj, values for each trip;
a. If there is not any overtime; wj, =0 and p;, =0

b. If there is overtime;

wy, =max(r, —(r, +5),0), VbeQ,;

Pi = max(r, + p, — (1, +5),0), VbeQ;
S1: Choose the first trip from the list of trips and let it be trip ;.

S2: If there is not any other trip to take with the chosen trip j (Q,; =9) then follow

the step S4, otherwise goes to step S3.
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S3: If the available vehicle i is (j ¢ 7)) ; namely if the previously assigned vehicle is

able to take trip j.

i. Calculate R, ratio.

ii. Form an “Assignment” set by ordering the R, values in ascending order.

ijb
a. If the assignment set is # J,

b. Assign the first vehicle 7 in the row and delete it from the “Assignment” set.
¢. D, =max((D,; —c,),0).
d. If D, # 0, then go to step a.

iii. If D, # 0, then goes to step S4, if not goes to step S5.

S4: Assignment of an unused vehicle to the chosen first trip.

A.If D; > max(c,), then assign the vehicle i which is max(c;) i € F' to trip j. If
not, U, = {ci -D j} Vi e F. Calculate for all vehicles i belonging to set F, the

quantity of passengers who cannot transport in the trip j in the event of vehicle

i assignment to this trip. In the trip j that gives U, > 0 value, assign the vehicle
i with min(U,) to the trip j. Thus, the assigned vehicle’s free seats will be in

minimum number.
B. Delete vehicle i from the set F.
C. kl' = j .
D. D, =max((D, —¢,),0)

E. If D, # 0 then go back to A.; if not go to step S5.

SS: If there is any work to be done in the list of trips, goes to S1; if not exit the

system.

Overtime costs are calculated as in the vehicle based heuristics.
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3.6.3 Group Based Heuristic (GBH)

This heuristic method has a different approach. In this method the trips are
divided into two main groups. The first group is composed of nonsplit trips while the
latter group is formed with split trips. Each group has its subgroups based on their
vehicle capacity. The assignments begin with the groups belonging to nonsplit trips
and during the time left from the trips, the vehicle of this group is assigned to the
trips of other groups respectively. In this way the vehicle scheduling is attempted to
be made. The aim of this grouping is assignment of the vehicle primarily to the trips
appropriate for its capacity. By assigning the convenient vehicle to the trips of other
groups, the idle time of the vehicle is minimized. The algorithm of this method is

briefly like this:

[

. Group the trips as split and nonsplit.

2. Classify subgroups according to the capacity of the vehicles.

3. Select a trip in a subgroup, repeat steps 4, 5 and 6 for all trips, when no trip is

left, exit the system.

4. Assign the appropriate vehicle in the group primarily to the trips within the

same group.

S. If there are trips in the other groups with the idle time of the assigned vehicle,

then assign the vehicle to those trips.

6. Go back to step 3.

In Figure 3.6 the general flowchart of the method is demonstrated. Herein after,

the detailed algorithm of the method is presented.
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Group the trips as
split - nonsplit

A 4

Classify subgroups
according to the
capacity of vehicle

Are there
nonempty
group?

Select first
nonempty group.

A 4

Assign vehicle to the B: The set of trips which can be made by
first available trip at the the same vehicle after previous assigning
selected group. trip. (Element of other groups)
Yes Assign vehicle to
B # { } > available trip
No

Figure 3.6 Flowchart of Group Based Heuristic
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Algorithm:
S0. Initialization:

a. Index the trips in chronological order of their ready times.
b. Index vehicles in decreasing order of their capacities.
c. Form two sets, 4 and B. Gather all trips in which must use only one vehicle
(nonsplit trips), in set A. Put all remaining trips in set B.
d. Group the trips in sets 4 and B separately as follows in (2K+1) groups:
Groupl , ={jeA:c1 2D, > cz}, Groupl, ={jEB:c1 >d; > cz}
Group?2 , :{jeA:c2 2D;>c }, Group?2, :{jeB:c2 >d; > 03}

Group K | ={jeA:ck ZDJ,}, Group K , = {jeB:ck ZDA/}
GroupK +1, ={jeB:c, <D}

The elements in Group K +1, are the trips that must be divided.

S1. Scheduling of Trips in set A (Nonsplit Trips):

Consider the nonempty groups sequentially. For each group £,, k=1,...K:

A. Let fand / be the first and last trips of the group, respectively.

B. If (d, -r;)<S, the minimum number of vehicles required to carry out the

trips in this group is equal to the maximum number of trip overlaps in the group
(Hashimoto and Stevens, 1971). This theorem can not be exactly applied because
in addition to overlapping trips in this problem, some trips are also taken by the
same vehicle due to arc time. Therefore, with the light of this theorem, a new

corollary is proposed.

Corollary 1: If the (d,-r,)<S§ condition is provided for one group,

incompatibility ~sets which provide Q) ={b>j:r <1, <r,+p, +a;}
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conditions for all trips in that group are formed. The trip is determined, whose
number of elements of incompatibility set is maximum (max(s(Q})). The total
number of overlapping trip of this group is equal to max(s(Q’)+1. The number

of vehicle for the optimum scheduling of this group is equal to the number of
overlapping trips. By employing as many vehicles as the overlapping trips,
optimum scheduling of the trip in this group can be formed. While assigning the
vehicles to the trips, if separate vehicles are assigned to the overlapping trips,

optimum scheduling is acquired.

C. Else, assign job f'to a new vehicle of type k (call this vehicle 7). The ending

time of the regular shift for vehicle i then becomes (7, +.5). Determine the trips

in Group k4 that can be assigned to vehicle during its regular shift, i.e., determine

set O, ={jek,:r,2d,;,d; <r,+S}.Do the following for the trips in O;:

1L.W. ={f}. W, represents the set of trips assigned to vehicle i.

ii.Consider the trips in O, sequentially. At each ready time, add the arriving trip
to set W,. If the vehicle is not available at the ready time of a trip, remove the
trip with the latest deadline from set W, (but not trip f).

iii.Remove the trips in set /¥, from consideration.

D. Check if any other trip can be assigned to the vehicle(s) scheduled in Steps
(B) or (C):

1.Start the checking procedure with Group K +1, (if not empty). If there exists a
trip (f) in that group that can be assigned to the vehicle in its regular shift, then
split the trip in two. D, becomes C,, while D, become (D; —C,). Assign
trip j to the vehicle. Place trip J +1 in the appropriate group. Update the total
number of trips as J +1(J <~ J +1) After considering all trips in Group
K +1,, proceed with groups 1,,2,,2,,3 ,, ...

ii.Remove all assigned trips from consideration.
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S2. Scheduling of Trips in set B:

Consider the nonempty groups in decreasing order of their number of

elements (cardinalities). For each group k,, k =1,...,K ::

A. Let fand [ be the first and last trips of the group, respectively.

B.If (d,—r;)< S, then by using corollary I, overlapping trips are determined

and the scheduling of this group can be formed when vehicles as many as the
number of trips are employed. In this process, the fact that vehicles should

primarily be assigned to the overlapping trips must be taken into consideration.

C. Else, assign job f to a new vehicle of type k (call this vehicle 7). The ending

time of the regular shift for vehicle i then become (7, +S§). Determine the
trips in Group k, that can be assigned to vehicle during its regular shift, i.e.,

determine set O, ={jek,:r,>2d,;,d; <r,+S} Do the following for the

trips inQ, :

LW, ={f}. W, represents the set of trips assigned to vehicle i.

ii.Consider the trips in O, sequentially. At each ready time, add the arriving trip
to set W, . If the vehicle is not available at the ready time of a trip, remove the
trip with the latest deadline from set W, (but not trip f).

iii.Remove the trips in set W, from consideration.

D. Check if any other trip can be assigned to the vehicle(s) scheduled in Steps (B)
or (C):

1.Start the checking procedure with Group K +1, (if not empty). If there exists a

trip () in that group that can be assigned to the vehicle in its regular shift, then
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split the trip in two. D, becomes C,, while D, become (D; —C)).. Assign

Jj+l
trip j to the vehicle. Place trip J +1 in the appropriate group. Update the total
number of trips as J +1(J < J+1). After considering all trips in Group
K +1,, proceed with groups 1;,2,,3,,.... Remove all assigned trips from

consideration.

This method is solved by two distinct approaches, as well. These approaches
require the vehicles to work overtime or not as in other approaches. If this algorithm
is figured out with the use of the overtime, the algorithm is solved by placing S with

S+0.

The overtime cost calculations are similar to the other heuristics.



CHAPTER FOUR

EXPERIMENTATION

4.1. Introduction

There is an important point which is as significant as the structure and processing
of the solution methods; the fact that how effective the solution methods can perform
during a real problem. The points that for how many trips can we find optimum
solution with using mathematical model and to figure out how close are the result of
the heuristics solution methods and we could lay a path for interpreting the
performances of the methods. Therefore, a problem appropriate to the real problem
generated by using a determined experimental design and evaluating the results

found with solution methods is required.

In this chapter an experimental design appropriate to the problem is prepared and
sample problems are produced. The optimum values of these problems are found by
mathematical models, upper bounds with heuristic methods and lower bound values
by use of algorithms. The performances of the methods are evaluated by taking these

values into consideration.

4.2. Design of Experiment

By using experimental design, appropriate samples to the problem are generated.
During composing the experimental design, the ready information within the system,
that is to say, the data known in advance are attempted to be created by a certain
systematic. Consequently, some variables are formed by use of a certain distribution
and some are formed by use of the data from real life. The experimental design used

during the formation of sample problems is as follows:

52
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While generating the problem, a daily working amount is assumed as two hundred
units. It has been also assumed that there are four types of vehicles. The capacities of
these different types, their usage periods and their fixed and variable costs are
displayed in Table 4.1. In addition to this, there is enough number of vehicles in each

size.

Table 4.1 The Variables Depend on Vehicle

Velicle (o] oy ] I ¥
Types | (persom) | (time unit) | (time unit) | (YTL) | (YTL)

I 45 100 =1 1200 20
II 27 100 20 900 15
II1 16 100 20 720 12
Iv 10 100 S0 600 10

While designing the variables dependent on trips, the numbers of trips are
determined first. The problem are generated starting from » = 20 trips and increasing
by increments of 10 to n = 100 trips. We generated 10 random instances of each
problem combination. Thus, nine separate groups based upon the number of trips are
formed. It has been supposed that 40 % of these daily trips are nonsplit trips. Daily
demand is prepared by using U [8, 100] discrete uniform for split trips and U [5, 30]
discrete uniform distribution for the nonsplit trips. In this way, the demands of the

nonsplit trips are less than the capacity of the largest vehicle.

The ready times of the trips are generated by two different methods for each
number of daily trips. Hence, for every nine group there are two subgroups which
make eighteen separate data sets. The ready times are created by discrete uniform
distribution in the first method and by uniform distribution with peak periods in the

second method. The distribution of ready time is stated below:

i. Ready Time Type 1 (r = 1): Discrete Uniform distribution U [0, 200]
ii. Ready Time Type 2 (r = 2): Uniform with peak periods:
a. 30% of the ready times ~ U [30, 40]
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b. 30% of the ready times ~ U [130, 140]
c. 40% of the ready times uniformly random in the ranges [0, 29],

[41,129], and [141, 200].

The processing times of the trips are generated by two different methods like their
ready times. Thus, there are two subgroups of eighteen separate data sets which make
thirty six separate data sets. The processing times are created by using only one
discrete uniform distribution nonsplit while split trips are generated by using two

different discrete uniform distributions.

1. Processing Time Type 1 (p = 1): For split trips U [5, 10] and for nonsplit trips
U [5, 40]

ii. Processing Time Type 2 (p = 2): For split trips U [2, 20] and for nonsplit trips
U [5, 40]

Arc time is determined by using discrete uniform distribution, as well. The arc
time between two trips is generated by use of U [0, 10] distribution. With this design,
four combinations are made for each number of daily trips. Ten sample problems are
generated from each combination. Thus, from nine separate trip sets, in four time
combinations and from ten trips, three hundred sixty total sample problems are

obtained.

So as to form the sample problems, an algorithm appropriate to experimental
design is created in C coded program and three hundred sixty sample problems are
composed by utilizing this algorithm. In that way sample problems could be

constituted automatically.

4.3 Optimal Solution of Mathematical Model

The mathematical model of the problem was mentioned in chapter three. It was

also mentioned in the same chapter that the mathematical model prepared here has

been modelled by making use of LINGO 8.0 and GAMS 20.2. In the previous
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attempts before experimental design has been performed, the GAMS 20.2 models
had been determined to yield better and more productive results. Furthermore,
another advantage of GAMS 20.2 was the opportunity to choose a solver. Therefore,
the optimum results of the prepared sample problems has been researched by making

use of GAMS 20.2 and setting a one hour time limit.

During the solution, CPLEX solver has been used in GAMS 20.2. The reason to use
CPLEX solver for the solution was that CPLEX solver is an algorithm designed to
solve large, structurally complex and difficult mixed integer programming (MIP)
problems. The problem to be dealt here is a problem with the same structure. GAMS
20.2 have been chosen due to the advantage to make use of CPLEX solver for the

solution and thus better results could be achieved.

GAMS models of all the attempts have been created and the attempts have been
solved with a P4 2.4 MHz. 256 Mb. computer. However, in the attempts of only
twenty and thirty trips with one-hour limit an insufficient number of problems
optimum results could be achieved. In the problems with more trips no optimum
result could be achieved. Computer could hardly operate in the solutions of the
algorithms. As mentioned above, this demonstrates the complexity of the problem
and the difficulty in the solution of the problem by making use of optimization

programs.

However, so as to achieve more optimum results than one — hour limit, five
attempts out of each combination of twenty and thirty trips have been solved without
any time limit and the optimum values of these attempts have been found. This will
help to evaluate the performance of the upper and lower bound methods which will

be covered in the further sections.

4.4 Upper Bound — Solutions of Heuristics

The solutions which found in heuristics for the samples problem is defined as

upper bound (k). Each solution found by way of heuristic methods is an upper
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bound for the problem. The reason is that the value found by way of heuristics

methods is always larger than or equal to optimum.

In the previous chapter it has been mentioned there are three different heuristic
solution methods for the problem and the algorithms of these methods have been
stated. In addition, there has been two different solution approaches for each method.

According to this, there are six different upper bound solutions (k£ =1,2,...,6). In

order to find these values the samples require to be solved using these heuristics. So
as to render these solutions, software programs for six different methods have been
produced belonging to the algorithms of heuristics in C programming language with
usage of DEV — C ++ compiler. The entire sample attempts have been solved with
the software programs coded for heuristic solution methods. Unlike the optimization
program, the sample problems have been solved with the coded software programs in
a very short time, which demonstrates that the algorithms can solve the problem in a

short time. Larger problems can be solved with this C program faster.

The fast solution of the algorithms with C provided an advantage to obtain the
upper bound of the problem. As stated before, the problem had been required to be
solved daily and there had been no optimum solution of the problem with the
optimization programs in a reasonable period of time. However, as the solution
period of algorithms coded with C program is quite short, the problem is solved for

six different methods separately and 6 different upper bounds (UB, ) are found.

These values are as follows:

J UB, = Solution of trip based heuristics without overtime;

o UB, = Solution of trip based heuristics with overtime;

o UB, = Solution of vehicle based heuristics without overtime;
o UB, = Solution of vehicle based heuristics with overtime;

. UB, = Solution of group based heuristics without overtime;

. UB, = Solution of group based heuristics with overtime;
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With these six different upper bounds, a set of upper bounds (UBS), ) is formed for
each sample (/ =1,2,...,360). UBS, ={UB,,,UB,,,UB,;,UB,, ,UB,;,UB,4 }

By selecting the minimal value (min(UBS,) out ofUBS, , it could be regarded as

the least upper bound found with heuristics. Thus, instead of comparing the heuristic
methods and seeking the best method, the problem is solved with the entire
heuristics, the set of upper bounds is formed and a closer result to optimum is
achieved by selecting the minimal value. The minimal upper bound in the set of
upper bounds is called “supremum”. Sundaram (1999) defines this concept as: “The
supremum is defined to be the least upper bound of the set of upper bounds of

problem.” (p. 14).

The important task here is the examination of the relation of the supremum with
the optimum solution. The closer the supremum to optimum the more successful the
heuristic solution methods are. Yet, as stated in the previous chapter, not enough
optimum solution could be found to make comparison. Therefore, lower bounds have
been attempted to be found with the some methods which will be explained in the

next section.

4.5. Lower Bounds

In this section, we present methods to find lower bounds (LB) that are used to
evaluate the upper bound performance. Five different methods are employed to find

the lower bound for the problem, which are as follows.

LB 1: In this method, a vehicle usage cost of an average one time unit (V') is
calculated based on the capacities, fixed costs, variable costs, available regular and
overtime unit per day of the vehicles. A cost is found for the works to be done by the
multiplication of the processing times of regular trips and newly found average cost.

The formulation of this method is as follows.



58

icl(f +v,0)

, ) ) .o, T S +0
v': Average cost of a vehicle per time unit; v' = = ;

>
i=1

J
LB, = z: Total Cost: ZZijv'

J=1

Thus, the cost (LB, ) which is LB, < opt(z)according to the total processing time

is found.

Proof: The cost (LB,) is found by way of LB [ method and it is a smaller value
than optimum solution (LB, < opt(z)); besides, this method has a big gap between
optimum. The main reason is that the idle time of the vehicles and the arc times
between the trips have been disregarded while LB, is found. Furthermore, the

capacities of the trips and vehicles have not been taken into account. Also, another
reason for the solution found with this method to be infeasible and smaller than the
optimum is that overlapping trips have been disregarded because the assignments are
performed merely according to the processing times. Normally, it is not possible to
compile daily feasible vehicle schedules without using processing times, capacities

and demands.

LB 2: In this method, an average seat cost for one time unit is found according to
the average usage times of the vehicles. The cost of trip is calculated according to the
demand and processing time of the trips to be taken. The cost for the whole day is
calculated with the sum of the cost of the trips. The formulation of this method is as

follows:

Z(f +v.0)

. . S+0
v": Average cost of seat per time unit: V" = S————;

Z Ci
i=1

J
LB, = z: Total Cost: z:ZDjpjv”.
=1
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Thus, the cost (LB,) which is LB, < LB, <opt(z)according to the total

processing times and demand is found.

Proof: In this method, the solution is always smaller than the optimum value, too;
however, it is much closer to the optimum than the result found by first method
(LB, < LB, <opt(z)), because the demands also affected the cost function. Similar
to LB 1, the arc and idle times are disregarded in this solution. The overlapping trips
are not taken into account. All the vehicles are accepted to take full capacity in all
trips. There is no possibility to schedule a normal day this way, the result found with

this method is infeasible at all.

LB 3: Third method of finding lower bound is grouping the tasks according to the
demands and finding the number of vehicles according to the sum of the processing
times of each group. In this method, the set (Q,) of index of the tasks to be
performed according to each vehicle types is formed. The tasks whose demands are
larger than the vehicle with the highest capacity are divided into groups of the least
number of vehicles. By this way, the required number of vehicles out of every
vehicle class is found and the cost for the particular day according to this method is

calculated by multiplying with the cost of use. Algorithm is as follows.

1. Sort all vehicles in descending order, i.e.max(c,)=c, and min(c,)=c,
(k=12,...,K).

2. Determine which vehicle fits to the current demand;

2.1 if ¢, 2D;;then jeQ,;

22 if ¢, 2D, >c,;then jeQ, ;

2.(K-1) if ¢, 2D; >c,; then j€Q,

2.(K) if D, >c ;then jeQ, and D, =D, —¢, and go to step 2.1.
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3. Find minimum number of vehicle in each type kk=12,..K,

2P,

w, =% ,Vk and je O,

K
4. Calculate total cost: LB, = z = ZWk Iy

k=1

The cost (LB;) which is LB, < LB, < LB, <opt(z) 1s found according to the

trips grouped with this algorithms and the use time of the trips in each group.

Proof: In this LB 3 method, the overlapping trips, the idle times between the trips
and arc times are disregarded as well. Therefore, the result found with this method is
infeasible and it always has a smaller value than the optimum. The value found with

this method (LB;) has more accurate results to the optimum than the other two
methods (LB, < LB, < LB, <opt(z)). Its main reason is that each trip is considered

separately during the classification of the trips according to the vehicles and the

vehicle is not used 100% occupancy rate.

LBS 4: This method is the same as the LB 3, but the only difference here is the
calculation of the cost of use. Here, instead of calculating the cost by finding the
numbers of all types of vehicles and multiplying them with fixed cost, total
processing times of the trip set for each vehicle type are found. This total cost for
each group is calculated by way of usage cost for unit time. This cost is found
according to the fixed and variable costs of the vehicles. Unit cost and total cost can

be found as follows:

. . . +v, 0O
: Average cost per time unit of a vehicle type k: v/ = S +v.0 ;

S+0

"
i

v

K
Total cost: LB, = z = Z ijv,'{” jeo,.

k=1 jeQ,
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The cost (LB, ) which is LB, < LB, < LB, < LB, <opt(z) according to unit cost

is found.

Proof: The total cost value found with this method ( LB, ) is an infeasible solution

because of the reasons explained in the previous method. However, a closer result is
achieved to optimum compared to the previous method because the total cost is
calculated by way of a one unit cost whose overtime period is included

(LB, < LB, < LB, < LB, < opi(z)).

LBS 5: A lower bound has been attempted to be found by using heuristic solution
algorithms which were explained in the previous chapter. The vehicle capacity and
use cost has been modified while the algorithm has remained the same. During the
solutions of the algorithms, the capacities of the entire vehicles are accepted to be
equal with the capacity of the largest vehicle. The usage costs of the vehicles to be
accepted equal with the capacity of the largest vehicle are equalized with the vehicle

with the lowest use costs. That is to say, the capacities and the costs are as follows;

* ¢, =max(c,) Vi,
* f; =min(f,) vi,
*y, =min(v,) Vi.

Totally six heuristic solution methods with two different solution approaches out
of three different algorithms are solved with the vehicle set having these
modifications and six different costs, in other words lower bounds, which need to be

tolerated are found for each day. Their listing in order is as follows;

J LB, = Solution of trip based heuristics without overtime;

J LB, = Solution of trip based heuristics with overtime;

J LB, = Solution of vehicle based heuristics without overtime;
J LB, = Solution of vehicle based heuristics with overtime;

J LB, = Solution of group based heuristics without overtime;
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o LB, = Solution of group based heuristics with overtime;

Proof: All of the six values found with this method give smaller values than the
optimum. Its main reasons are that during the assignments, the capacities of the
entire vehicles are accepted equal with the vehicle with the maximum capacity and
the fixed and variable costs of this vehicle are accepted with the vehicle with the
lowest capacity. As the cost is taken low, even though the daily scheduling turns out
to be the optimum scheduling, the found cost would be less than normal. In addition,
as the vehicles are accepted to be the vehicle with the highest capacity, they operate
to overcome the unproductiveness of the assignment procedure of heuristic
approaches by enabling the trip, which requires less capacity than the vehicle with
the highest capacity, to be taken with a single vehicle in the demands they were
assigned to. However, the cost of the optimum assignment would be higher than the
one found with this method because there are different vehicles with different

capacities and costs in the actual problem.

LBS 6: This lower bound ( LB, ) is the Best node value whose solution is found by

the GAMS optimization program in one hour limit. It had been explained that
CPLEX solver has been used as solving the problem with GAMS program. While the
CPLEX algorithm solves MIP problems, it uses an algorithm which includes branch
and bound method. In this algorithm, a best node is found in each step and the
optimum solution is sought over this best node. This best node is an infeasible
solution which is found by a method peculiar to CPLEX and its value is smaller than
the optimum. The gap between the optimum solution and this best node diminishes
as the result reaches to the optimum. That is to say, as the algorithm gets closer to the
optimum solution, the gap between the best node and the objective function goes to
0. The optimum solution is achieved as the gap falls under a particular limit.
Therefore, the best node GAMS find along with CPLEX solver after one hour period
is lower bound value. Because, as the solution approaches to the optimum this best
node get closer to the optimum and its value increases. By this way, a definite lower
bound value of one hour is found for some of the prepared sample problems.

However, as this node value cannot be found in some problems; that is to say, as the
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one hour period is not sufficient in order to find a start node, or the program can
iterate very lowly, the number of the usable lower bound value to be found by this

method is very few.

For the entire attempts to be prepared with the experimental design, the set of

lower bounds (LBS,) is formed by making use of these six different lower bounds

for each sample (/ =1,2,...,360).

LBSI = {LBll 2 LB[Z ’LBIS ’LBM ’LBISI LB152 LB153 LB154 LBZSS LB156 7LBI6}

The largest lower bound ( LB, = max(LBS,) ) out of the LBS, set belonging to each
sample is chosen. The largest one of the lower bound values in the LBS, set is called

the infimum of the set. Sundaram (1999) has defined infumum concept as such: “The
infimum is defined to be the greatest lower bound of the set of lower bounds of
problem.” (p. 14). By way of this lower bound, the necessary data has been achieved
in order to assess the performances of the heuristic solutions. However, there is
another key point which is the relationship between lower bound and the optimum

solution. This should be taken into account during the performance assessment.

4.6 Computational Results

In this section, lower bounds, upper bounds and optimum solutions will be
evaluated. The computational experiences solved with optimization program whereas
lower and upper bound solutions are figured out with algorithms. The results are

evaluated in order to assess the performance of the solution.

An optimum solution for the problem is tried to be found by using the
optimization program yet enough optimum solution could not be found because of
one hour time limit. For the trips whose the number of trips is more than sixty,
optimization program could not even find a starting solution. Because of these

reasons given above, the optimum solution values are tried to be found by choosing
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five samples from ten samples tests belonging to each data set without the limitation
of time. In the twenty trips attempts, five problems of four different data sets are
solved at average two hours CPU time per sample. When trip number is increased to
thirty, the solution of twenty problems of four different data sets has taken ten hours
CPU time per sample at average, as well. Moreover, when the number of trip is
raised to forty, the computer could not find the optimum solution of the problem
even in sixty hours CPU time for only one sample of operating. Therefore, it can be
deduced that the more number of trips, the longer solution period of the problem is

and also the increase in the solution period is much more than the number of trips.

However, it has been observed that the optimum solution period of the problem
does not change depending on vehicle number and vehicle type. Within the same
data set, some attempts are conducted with single type vehicles less in number but
the same problems are solved in the same period. This shows that any change in

vehicle number does not influence the solution period of the problem.

The solution of the same problems acquired by C programs which conform to the
heuristic solution algorithms takes at average of five seconds CPU time per sample.
By this way, the heuristic methods enable to solve the problems in a very short time
which normally takes quite long when they are solved with optimization program. It
should be noted that the relation of result with the optimum is as important as the
shortness of time. As it has been pointed earlier, a few kinds of lower bounds are
improved since there are limited optimum solutions. The problems without an
optimum solution are evaluated by lower bounds. The GAMS solutions show that the
total of forty one attempts has optimum solutions. In the Appendix B there are tables
demonstrating the results of the attempts with optimum values, the lower bounds and

upper bounds of these results together with their comparisons.

The evaluation of the problems is shown in the tables numbered; 4.2, 4.3, 4.4, 4.5

and 4.6. Before analyzing these tables, the abbreviations are:
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n — shows the number of the trip and it changes as n = 20, 30, 40, ..., 100. p —
shows processing time distribution types and there are two different distribution
composing p. r - shows ready time distribution types and this is composed by use of
two different distributions as well. The structure of processing time and ready time

distributions are explained in section 4.2.

The average and maximum gap between the minimum upper bounds (supremum)
which are acquired by the six separate upper bounds of each attempt and the
optimum solutions are calculated as follows:

ZL: (mln(UB ) - optl)

=1 l

L

Gap between opt. and min. UB =

Similarly, the gaps between the maximum lower bounds and the optimum solution

are calculated as follows:

L, (opt, —max(LB,)
Z:,( p— )

Gap between opt. and max. LB= = .

The gaps between max. LB and min. UB are calculated as follows:
i (min(UB,) — max(LB,)
max(LB,)
L

)

Gap between min. UB and max. LB ==

However, while forming the set (LBS, ), the lower bounds found by the GAMS

are not used here. Because GAMS gives us the optimum solution and the lower

bound are very close to each other.

The performances of our infimum and supremum are investigated first in Table
4.2. Table 4.2 reports the average and maximum supremum and infimum deviations
as a percentage of optimal solutions for » =1 and 2, p =1 and 2, n = 20 and 30 trips.
The GAP among those three values is calculated. The average gap between optimal
solutions and supremum are about 10 % while the GAP between optimal solutions

and infimum is about 24 %.
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Table 4.2 Compating Optirraun Solution, Infimom and Supremim

Optivum - Min UB Optimum - KMax. LB Ain. UE - Max. LB
Hof (Suprenunt) (Infimum) (Supremum - Infirum)
Trip P
Av, Gap Max. Gap Av, Gap Max. Gap Av, Gap Max. Gap
0 i1 0,107 0,220 0,218 0,305 0,290 0,370
20 i1z 0,142 0,178 0,241 0,299 0,334 0,405
0 121 0,076 0,225 0,243 0,273 0,254 0,354
20 123 0,109 0,157 0,244 0,331 0,316 0,415
300 i1 0,139 0,191 0,229 0,287 0,323 0,379
30 12 0,161 0,214 0,201 0,314 0,312 0,405
300i2:1 0,096 0,151 0,244 0,344 0,312 0,413
30 i3l 0,076 0,128 0,254 0,353 0,308 0,376

Table 4.3 reports the average and maximum upper bound deviations as a
percentage of optimal solutions for » =1 and 2, p =1 and 2, n = 20 and 30 trips . In
this table, the average and maximum gap between the optimum solution and every
heuristic solution is calculated separately. The mean of average gap is 10.8 % for n
=20 and 11.8 % for n =30, while mean of maximum gap is 19.5 % for n =20 and
17.1 % for n =30. TBHO gives the best results 19.3 % for n =20 and VBH gives the
best result 19.1% for n =30 but the worst result for » =20 is 26.7 % from GBH and
the worst result for n =30 is 21.7 % from GBHO. The means of total solution from
each method do not differentiate much. That is to say, this method yields better
results is not an exactly true claim. Because of that, a set of upper bounds is created
for every problem and the minimum one is considered to be the best upper bound. In
addition to this, in three of the attempts optimum result is found by heuristic methods

as it has been displayed in Appendix B.

Furthermore, in Table 4.4, the values found by the distinct lower bounds and the
optimum solutions for » =1 and 2, p =1 and 2, n = 20 and 30 trips are compared. As it

may be inferred from the table, the greatest lower bound value is found by LB,

method. The lower bound values found by GAMS are not used here, too.
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The comparisons of all upper bounds and the best lower bound for » =1 and 2, p
=1 and 2, n =20, 30, ..., 100 trips are in Table 4.5. The best average gap between the
upper and lower bound is achieved by TBHO method as 43 %. The average gap of
the other methods are as follows; TBH 53 %, VBH 53 %, VBHO 50 %, GBH and
GBHO 55 %. When the heuristic methods are evaluated severally, it may be stated
that the best result is reached by TBHO method. Yet, since the least one of these 6
different methods will be accepted as the solution, the infimum and the supremum
are compared in Table 4.5, as well. The result of this comparison shows that the gap
between lower bound and upper bound is 35 % at average. At all attempts, the
minimum average gap between the infimum and the supremum is 19 %, while
maximum gap is 73 %. The means of average gap for each » are not different after n

= 30, they are about 36 %.

Lastly, the effects of p and r on the solution performance report in Table 4.6. The
gap for p =2, r =1 has closer gap 33 % than the other combination and the gaps for
other combination are not different. The heuristics have best performance in the
combination p =2, r =1 than the other combinations. Because the mean of p = 2 has
closer gap between heuristics and maximum lower bound than the means of p = 1, it
is about 35 % and the mean of » = 1 has closer gap than the mean of » = 2 too, it is

about 38 %.

The 35% difference of the average value in fact does not give effective result.
However, there has been a percentage of 24% between the outcomes acquired by the
improved lower bound solution methods and the optimum outcomes showing the
difference, this reveals that the percentage between the optimum and the best upper

bound is 9%. This may be schematized as:

UB=LB _ 35 ana PPL=LB ~ 24 _, UB=opL .09
LB LB opt.

As displayed in Table 4.2, the average percentage between optimum and the least
upper bound of 20 and 30 trips is 10%, actually. The percentage presented above is
close to this one, as well. At this point, it may be concluded that the difference

between the optimum solution and the least upper bound is around 10%.
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Tahkle 4.5 Upper Bounds and Lower Bounds

70

Average of Heuristic's Resulis

#;;: P T TBH TBHO VBH YBHO GBH GBHO Supremum
Av. Gap i Max. Gap | Av. Gap i Max. Gap | Av. Gap i Max. Gap | Av. Gap | Max. Gap | Av. Gap: Max. Gap | Av. Gap i Max. Gap | Av. Gap i hlax. Gap
i 1 0,339F 0603 0387 0211: 0347 0,793 0434! 1102 04500 1081: 0437 0958 0268 0,603
2% 03421 0481; 03850 05937 0344: 0836] 04030 10820 0489 0,788 0,519% 0,220f 0,294 0,593
20 . 1 0,510 0,779 0,288 0,749 0424: 07461 0,275! 05590 0402 0696 0,252¢ 0603 0,191 0559
2% 0422) 07100 0284 0478 0384 0,637 0315 0709 04207 0694 0,359 0,924 0214 0478
average 0,403 0,688] 0323 0658 0,39 0717 0,357 0,859 0437 0814] 0,392 0,826 0,241 0,558
i 1 0404: 0,787 0384: 06710 037 07337 0485: 0247! 0525 09730 0567: 10850 03300 0,671
23 0,382{ 0407 0418; 0O794% 03537 0,589 0464 08700 04140 07028 0,538 0,862 0,298 0,501
30 . 1 0478f 0,783 02627 0447 04850 0,7631 0,301 0474 053820 0,79300 02400 0,497 0,213 0,447
2% 0,315% 0.1e; 0219% 0387 03037 0616 0256 0498 02730 05427 0,216 0,438 0,178! 0,387
average 0,395 0,693 0321 0575 0,379 0675 0,377 0677 0393 0762 0,39 0,723; 0255 0,501
i 1 04360 0591 04881 0689 04547 0640: 05650 0,740 0428) 08250 09280 0957 0408 0,580
2% 03451 0,535 04881 06200 03570 0804 05760 0720 05028 0441F 0,730 10227 0,321 0,493
40 2 1 05878 0,739 0349 0483 0,590; 0,734 0,343: 0473] 0502¢ 0687 05334: 0,598] 0,297 0458
2% 05047 0,775 03397 0627: 05070 0211 03550 04040 04820 0,79 0,354% 0,761 0,292 0,604
average 0,468 0,660 0,406: 0,606, 0477 0697 0,450 0,636; 0529 0,738 0,536 0,835] 0329 052
i 1 0480¢ 05950 0528: 05981 0455 05891 0626: 07400 0653: 02700 0,848: 1,282! 04358 0,566
23 04597 0,742 0545 02360 04557 0,729 07200 09200 04810 08381 0,803%7 1,107¢ 0,42 0,722
0 2 1 08390 0,756 0333 0490: 0,638 0,778F 0,393 0469 0567) 06710 05374) 0,578¢ 0,328 0,490
2% 0,.408 0,715 0426: 05977 06290 0,715) 0477 07620 0805¢ 0,728] 0403 0,7117 0,366 0,539
average 0,550 0,704 0,483] 0642 0,544] 0,703 0,555] 0,772 0,621 0,777 0,607 0,919 0,388 0,581
i 1 04798 0,700 05500 0693 04681 0,657 0,667! 0252: 0594 0862¢ 0217 1,045 0438 0,611
2§ 04881 0437 08261 0250; 04820 0,5684] 07200 0946 04800 0,791 0923%1 1,039 0,452 0,564
a0 2 1 0ge2i 08040 0341F 0,539 0,653 07931 0,386 05483! 0573; 0,704! 0350; 0,537 0,295 0,401
2% 0,357 0,718F 04257 0619 06367 07500 04520 05490 05300 06798 04481 0,893 0,374) 0,566
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CHAPTER FIVE
CONCLUSION

5.1 Summary and Conclusion

This study attempts to develop methods for vehicle scheduling in a large
organization which will provide for the transportation of the participants between the
activity centers conforming to the conditions of the organization with the minimum
cost. In this study, a mathematical model is developed for a real life application and

general solution methods for similar problems are proposed.

The problem is a vehicle scheduling problem with sequence dependent trips. The
trips in the problem are given within a particular time interval. Each trip should be
proposed within this time interval. There are an enough number of vehicles in each
size and cost to perform the trip. The objective function is to form the minimum cost
scheduling to assign all the trips to vehicles. The problem is a tactical fixed job
scheduling problem in this respect. However, unlike the problems in the literature,
the vehicles here are not identical and they have fixed and variable usage times and
costs. The purpose in this problem is to minimize these usage costs and make a

schedule which will provide for the implementation of the entire tasks.

The definitions of the variables and the problem structure are explained in chapter
3, where the variables dependent on those parameters and the available data about
the system are stated. Furthermore, as the problem includes real life data, particular

assumptions are given as well.

The problem is modeled mathematically by using mixed integer programming,
conforming to the assumptions. The mathematical model is attempted to solve with
optimization programs by preparing samples consisting with the actual problem.

However, by making use of optimization programs, the optimum result could be
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achieved only in the problems with small number of trips. This demonstrates that as
the number of variables increases, the solution time takes longer as well. What makes
the problem complex is the number of trips. If the number of trips increases, the
solution time will increase more than the number of trips increasing ratio. Actually,
during the solution of the problem, the optimum is achieved at an average of two
hours CPU time in attempts of twenty trips, while the solution time increases to an
average of eight hours CPU time in attempts of thirty trips, and finally, in attempts of
fourty trips the optimum result could not be found even after fifty - sixty hours CPU

time of solution time. This shows the complexity of the problem.

Heuristic approaches have been improved as the longer solution time of the
problem. Three different heuristic solution algorithms, namely trip based, vehicle
based and group based, have been constructed. Each algorithm has two different
solution approaches as with and without overtime. The algorithms have been
modeled by making use of Dev C++ compiler in C programming language and an
upper bound for the problem have been obtained by solving these models. It has been
observed that even the solution time for the problems with a hundred trips have taken

one - two seconds CPU time.

As well as the problem can be solved by using heuristic methods very quickly, the
performance of the solution should be determined with the optimum. Therefore, a
certain experiment design has been done and problems with various numbers of trips
and different data sets have been created. The created problems have been sought to
be solved through heuristic algorithms. In order to determine the performance of the
heuristic method, the samples have been attempted to solve in a definite time limit in
GAMS optimization program by using CPLEX solver. However, sufficient number
of optimum solution could not be achieved. Also, by making use of Gantt chart, the
trip orders assigned to the vehicles of the schedules which have been created with
optimum solution and heuristic methods for a sample with thirty trips have been
presented in Appendix C. The assignments created for the problem can be seen in the

gantt charts in Appendix C.
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As there is not sufficient optimum solution for the problem, lower bounds have
been found in order to assess the upper bounds. The difference between the newly
found lower bounds and the upper bounds is too much, therefore the optimum
solution has been attempted to be found by using GAMS program without any time
limit for the problems. In the problems with twenty and thirty trips, sufficient
optimum solutions could be achieved, however in the attempts with forty trips, no
optimum solution could be achieved in even fifty — sixty hours CPU time of solution
periods. By this way, the performances of the heuristic approaches have been
attempted to be assessed by comparing the UB, LB and optimum solution values for
the attempts with twenty and thirty trips. For the entire samples, UB and LB values
have been compared. The smallest result out of the six results found by heuristic
approaches for each sample, namely the least value of the upper bounds (supremum)

is 10 % more than the optimum solution of the problem at an average.

If this problem is solved through the proposed heuristic methods, we can find an
average of 10% an extra cost than the cost of optimal solution but heuristics could be
achieved the schedule in the short run. Also, by modifying the solution methods in
accordance with the organization conditions, these solution methods could be used in
the scheduling of the passenger transportations in large-scale organizations.
Consequently, the vehicle scheduling problems with these sequence dependent trips
could be solved at a very short period by using these methods or by the methods

which will be based on these methods in accordance with the problem structure.

5.2 Future Research

Fixed job scheduling problems of this type are prone to improvement and study.
First of all, such scheduling problems are not common in the literature. It is also a
problem having many fields of application. Especially, the interval scheduling and
vehicle scheduling problems are very commonly used in real life. Solution methods

for these problems can be improved.
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The fixed job scheduling problem studied in this thesis can be improved by
changing its assumptions. Here, we have assumed the processing times, demands and
ready times as deterministic data. In real life, the demands can be deterministic;
however, the ready times and processing times are always stochastic. The problem
can be remodeled as stochastic interval scheduling or stochastic vehicle scheduling

problem thus solution methods could be improved.

Furthermore, new solutions which can produce closer values to the optimum can
be generated by making improvements in the heuristic solution methods existing in
this study. New heuristic approaches producing better results could also be created.
Apart from the heuristic solution methods, branch and bound solution algorithm for
the problem could be improved by proving the problem to be NP — hard or NP —

Complex.

Moreover, it has been stated in the previous parts that the problems had been
solved through the specially prepared heuristic solution methods which are coded in
C program. Making a package software can provide for a convenient solution of the
problems by the end users which can be produced from the methods developed for
the problem or out of the algorithms prepared for the solution methods of another
vehicle scheduling problem in real life following these methods. By creating a user
interface to the C programs, a package program might be developed having the
capability to find the best result which uses the heuristic algorithms for the problems

in real life.

Interval scheduling, tactical fixed job scheduling problem and vehicle scheduling
problems have many ranges of application. They are commonly encountered in real
life and are prone to continuous development. In this study, an actual scheduling
problem having the same attributes with this problem have been attempted to be
solved in a reasonable period of time by developing heuristic approaches which will
operate to find a result close to the optimum. However, as it has been stated, the

subject is open to development.
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Appendix A.1: Data sets of the example problem with 30 trips.

Table A.1.1 Trip Data

Trip Demand | Ready Time | Deadline Pr(¥i$;2ng Team Trip
Number (j) (D)) (r;) (d_/) (P, :dj_rj) (T)

1 66 1 6 5 0
2 42 2 7 5 0
3 17 4 10 6 0
4 65 6 12 6 0
5 9 7 33 26 1
6 22 23 42 19 1
7 84 24 33 9 0
8 60 35 41 6 0
9 36 55 61 6 0
10 30 56 66 10 0
11 13 78 95 17 1
12 66 82 87 5 0
13 18 86 102 16 1
14 58 92 97 5 0
15 14 92 99 1
16 81 95 105 10 0
17 8 103 113 10 0
18 58 123 133 10 0
19 5 129 156 27 1
20 9 130 139 9 0
21 96 155 162 7 0
22 24 158 168 10 1
23 11 159 171 12 1
24 12 164 175 11 1
25 35 174 179 5 0
26 20 175 214 39 1
27 74 177 185 8 0
28 30 179 186 7 1
29 9 193 199 6 0
30 20 199 228 29 1
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Table A.1.2 Arc Matrix
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Table A.1.4 Incompatibility Matrix
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ls|0:0:0:0;0:0i0:0:0:0:0:0:0:0:0:0

1IT|o:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:10

IBlo:0:0:0:;0;0:0i0:0:0:0:0:0:0:0:0:0:0

191 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:20:21:22:25:0:0:0:0:0:0:10
W(o:oio:0:0:0:0:0:i0:0:0:0:0:;0:0:{0:0;0;0:0i0:0:0:0:0:0i0:0:0:0
FA(0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:22:23:24:0:0:0:0:0:0
RIO:0:i0:0:0:0:0:0:0:i0:0:0:0:0:0:0:0:0:0:0i0:0:23:24:0:0:29:0:0:10
W(oioi0:0i0:0:0:0i0:0:0:;0:0:0:0:0:0i0i0:i0i0:0:0:24:35:0:27:0:0:0
4000 :0:0:0:0:0:i0:0:0:0:0:0:0:0:0:0:0:0i0:0:i0:0:25:28:27:0:0:10
E(Oi0i0:0i0:0:0:0i0:i0:0:0:0:0:0:0:0i0i0:i0i0:0:0:0:0:20i27:28:0:0
W 0:0:i0:0:0:0:0:0:0:i0:0:0:0:0:0:0:0:0:0:0:i0:0:0:0:0:0:27i28:29:30
T(oioi0:0i0:0:0:0i0:i0:0:;0:0:0:0:0:0i0i0:i0i0:0:i0:0:0:0:0:28:0:0
WlO:0:i0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0i0:0:0:0:0:0:0:0:0:0
Wo:i0i0:0:0:0:0:0:i0i0:;0:;0:0:0:0:0:0i0i0:i0i0:i0:i0:0:0:0:030:0:30
foioi0:i0i0:0;0:0i0i0:0;0:0 0000000008000 0i0i0:0:0




Appendix A.2: GAMS 20.2 Model of the Example Problem

Sets

i0 wehicles index /f1+4/

0 trips index 1730/

kb0 trips index /1*30/

BALTAS (30,30p) :

Parameters

focostO(*)/ 1 1200 50 daily avalisble standart time / 100 /
ool o0 daily avaliable overtime / 50 /
el MO big nuwber / 30 /

j LIS 0 big nwdber / 250 /;
wooatO(*) /S 1 20

2 15

3 1z

4 10

J/

capacity0d(*),/ 1 45

2 27

3 16

4 10

/

rO(*)s1 1 |pOi*) /1 5 d0(*1/1 &6 EeeO(*)/
z z 2 5 2 4z 10
3 4 3 & 3 17 2 0
4 4 & 4 65 30
5 7 5 zg 5 o 0
& 23 & 19 6 ZZ 51
7 24 7o 7 54 &1
g 35 g6 g 60 s
9 55 =N =Y 30
10 56 10 10 10 30 EE
11 78 11 17 11 13 oo
iz &z iz 5§ 1z &6 111
13 &6 13 16 13 18 1z 0
14 o9z 14 5§ 14 55 13 1
15 o9z i5 7 15 14 14 0
16 95 16 10 16 81 151
17 103 17 10 17 & 15 0
18 123 18 10 18 55 170
19 129 19 27 19 5 15 0
20 130 20 o 20 o 131
21 155 21 7 21 95 A
2z 15§ 2z 10 2z 24 i1 0
2% 159 23 12 23 11 2 1
z4 164 24 11 24 12 23 1
zZ5 174 25 5 25 35 24 1
Z6 175 26 39 26 20 5 0
z7 177 27 & 27 T4 6 1
z5 179 25 7 25 30 @7 o
29 193 29 6 29 9 5 1
30 199 30 29 30 20 G
/ / / 01




mcornpatibility matio

Table C0(30,k0)

30
30
30
30
30
30
30
30
30

29
29
Z9

25
25
28
25
25
28
25
25
28

27
27
27
27
27
27
27
27
a

26
26
26

25
25
25
25
25
25
25
25

24
24
24
24
24
24
24
24

23
23
23
23
23
23

1z 13 14 15 1& 17 15 19 20 =21 22
19 21
12 21
19 21
21
21

11

10

22

Z2
22

29
29
29

26
26
26

22

22

29
29
29

26
26
26
26
26

30
30

10

10
11
12
13

17

16
la
16
16
1la

15
15
15
15

13 14

13

1z

17
17
17
17

14

14
15
16
17
15
19
20
21
22
23

20
20

13

23

22

21

24
24
24

23

23

22

27
27
27
27
27

25
25

26
26

24
25
26
27
20
29
30

25
25
25

30

29

30
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LINGO 8.0 Model of the Example Problem

.
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Appendix A.3
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Appendix B.1: Comparison of All Optimum Solutions with Upper Bound

86

Values
Upper Bound Solution
#of Opt | TBH(UB1} | TBHO (UBZ) | VBH(UB3) | VBHO (UB4) i GBH(UBS) | GBHO (UB6) .
Trip P17} Solution bl Y P
Value | Cap | Value | Cap | Value | Cap | Value | Cap | Value | Gap | Value | GCap | UBY
B705: 11220: 0289 11076 0,272 10620: 02200 11260 0294 11940: 0,372. 12970; 0490 106200 0220
9284: 121800 0315 109208 0179 114607 0.237; 117300 0266 127200 0,373 11757) 0269 109200 0179
20 i1ili 1lm200 122400 0036 136600 0,156 153801 01521 132800 0,124; 124801 0,056 14043 0,188: 122400 0,0%8
112200 126600 0,128; 13405! 0,195 12860 0,128 13505 0,204 11220! 0,000¢ 12690; 0,151: 11220 0,000
87800 12180} 0,387 116861 0,351 12180} 0,387 12116} 05800 11040 0,257 9675 0,1020 9675 0,102
11540; 145200 0,258; 14457; 0,253 14820 0,284: 13817, 0,197 14220) 0232 13593 0,178; 13595 0,178
12091¢ 151200 0,164 14614} 0,125 145201 0.11%: 14054; 0,082 173401 0335 210011} 0,617; 14054 0,062
20 ili2i 142400 158407 0.112¢ 16758, 0,175 15980: 0,121: 17358 0219 16140¢ 0,133 18523 0,301: 15840: 0,112
135400 157800 0,165 17402] 0,285 157201 0161: 17974 0.527: 18840] 0391 212061 0,566 157200 0161
12856: 151207 0,178; 15452; 0,204 15120 0,175: 15514 0,209 16980: 0,323 16153; 0,259: 15120: 0,178
13535; 201607 0,489: 14258] 0,052 197401 0,458 14099) 0,0427 193201 0,427 18155 0,194: 14099 0,042
130900 16920¢ 02931 13950; 0,068 16620 0,270! 14160° 00821 175200 0,338 15014: 0,147 139800 0,088
20 1211 13651F 18900: 0,385! 16725: 0,225 18900: 0.355! 17220¢ 0261 19200: 0AQ6. 18268: 0,338 16725 0223
89731 103800 0,157 11148 0,242¢ 10380: 0.157F 107200 0,195 10860: 0,2101 =973 0.000F 975! 0,000
18155] 22260; 0,228 19805 0,096 22260 0,226! 20050: 0,107 18960: 0,044 19290; 0,098 18960: 0044
11715] 144600 0,2341 14205: 0,213 13560 0,157! 15213 0,299 14640: 0,250) 15278 0,304! 15560) 0,157
17151¢ 24000; 0,399 19775; 0,153 23320: 0.371; 18890: 0,101 22440: 0308, 19605 0.143; 18290; 0101
20 P22 16977 222600 03111 20693 0,219 22260 03111 20380° 0,1991 22260: 0311 1A977: 0,000F 169771 0,000
DFE0; 11760 0,193 12505: 0,268 11280; 0,144: 11750: 0,195, 12540 0,272; 12185: 0,236 112800 0,144
14390] 19260° 0,338] 16405: 01400 19260 03581 17203 0,195] 18660: 0,297 17693 0,2301 16405] 0,140
11742] 13380; 0,159. 12652: 0,077 13380 0,139] 12819 0,092 19140: 0630, 16786; 0,430; 12652 0,077
14308! 18960; 0,325! 17715; 0,238 16360 0,285! 19107 0,335 19380 0,354 16419; 0,148: 16419! 0,148
30 i1ili 12675 146400 0,155¢ 156400 0,234 148401 0.155: 15628 0,249 152401 0202 16819} 0,311 146400 0,155
120000 166207 0.293: 17144; 0325 154801 02007 19237 0491: 153600 0,151 15394 0.426¢ 15360: 0191
157400 219007 0,189 21084} 0,125 219001 0,169] 23219) 0,239 24360! 0300 24182} 0,2000 21084; 0,123
15560; 127200 0,203; 21106; 0,356 17880 0,149: 219200 0409 174600 0122 19596 0,259: 17460: 0,122
123400 171600 0,391 18436] 04594 15601 0.342: 16667 0,552 15000! 0216 1s014} 0,208 150000 0216
30 ili2i 113900 145807 0,280¢ 14159 0,243 13680; 0,201: 15154 0.330F 13860) 0,217 14997: 0.317: 13680: 0201
140400 177600 0,265: 16313] 0,162 175801 0.252! 17325 0,234 16140! 0150° 18574} 0,180: 161400 0,150
16152 T8060; 0,118; 20430; 0,265 18080 0,11%: 22670 04047 21060: 0,304 22643 0.402: 18060: 0,118
19506; 266407 0,359 225000 0,153 266401 0,359 225500 0,151 25440] 0,298 23187 0,183 225500 0151
199400 252007 0,264 : 22555: 0,146 252001 0,264: 22554 0.131: 23100 0,158 229551 0.151: 225541 0131
30 i2ili 191300 159920: 0.041F 20130; 0,052 19930: 0,041; 20685 O081F 20040; D048 20945: 0.095! 19920° 0041
16046] 19950¢ 0.245] 18553; 0,135 20400 02711 20268 0283 16680: 0,040¢ 1A&60: 0,038: l&&&00 0,058
247100 20100; 0,178 20081: 0,177 28260; 0,168; 30301 0226 27600: 0117 28233: 0,143; 276000 0,117
21125! 22800¢ 0,079] 242300 0,147 225000 0,065! 25763 0220 232800 0102 2A514; 0,255 225000 0,083
27E10¢ 28520; 0,040 28845: 0,037, 28920; 00400 29705 0066 29520¢ D061 20683: 0,067 25545 0057
30 izi2i 0 19024) 22080¢ 02081 22053 0,207 29280 02241 24994 05141 20100: 0,057 21299 01201 201000 0,057
I0546] 26460; 03017 23111: 0,196 25560; 0,256] 23376 0,149 25680: 0,262 22045: 0,128 226945 0,128
18754} 21780¢ 0,1631 21566; 0,140) 21180 0,1511 2093500 0,118] 21180¢ 0,131} 20483: 0,093] 20485! 0,093
40 f1:1! 21660] 23220: 0,072] 26038; 0,202 22320 0,050] 27438 0,267 26460: 0,222 31520; 0448 22520) 0,050

6204035

£7560A0

EEEEET

T 7465201

752872

£ 755400

L758121 ]

| BRIRITI
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Appendix B.2: Comparison of All Optimum Solutions with Lower Bound

Values

Lower Bound Solution
#of » Opt.

Trip Solution | LE1 | LB | LB} | LB4 | LBE£1 | LBEZ | LBE3 | LBS4 | LBSS | LBS6 max. LB | Gap

8705; 21=4: 3393: 4041; 4320 &000; &310; &000; 5580; &&00: 7000 o0 0,19
926d4: 3492; 3583%: 5384 5832 T200; &220; T200; a240; 7800; Y2e0 TE00; 0,158
20 i1+l 11820% 337a; 45343 &7a0; 72890 7T200: 8010¢ 7200: 7R10¢ 7800: 8580 g380: 0,274
11220¢ 3840F 3211: 4825 5200f 7200: 2470: 7800: 2300¢ 7200: D630 2470; 0,158
8780: 25%2: 3208: 4305; 4878; 5400: &l00: 5400; 5840: 5400: 4840 &l00; 0,305
11540; 3240; 4&834; 58200 83290 7200; 7230; 7200: &B40; 7200: =lal 2le0; 0,293
12991 340%; 5901; &894 7807 2000; 7630: 2400: ‘fes0; 9000: 103520 10380; 0,201
20 il:2 14240; 4080; &542; 7975 8681) 2000; 2020; 2000; E&40; S000; 10240 10240; 0,281
13540: 3432; a070: 6866 7480¢ 8400; 27%0: B5400: B230; 10200: 11750 11750¢ 0,132
12836; 375ai 5850; 7a%ai TR53] 2000: BSal0: 2000: E140:¢ 2000: 7a30 F000; 0,239
13535; 285a; 3726 4899 5322¢ 10200: 7410: 10800: <7170; 10800: 77730 10800; 0,202
13090; 3024: 3924: 5101; 5556 9800:; 7240: S600: 7&70; Sa00: =230 Qe00; 0,287
20§24l 15551 35524 4748 58E3 63950 10200: 9360: 10800: E270: 10800: 9940 10800; 0,209
BT 3252: 35247: 4825: 5212: 6000: 3870 8000¢ 5%10: a600: 4920 aa00; 0,264
18155: 3144: 3848 5073 5487¢ 13200: 124230: 13200: 11820: 13200: 12500 13200¢ 0,273
11715; 37e8i 4586 59110 &408] 2400; 85100 B5400: &%50; 8400: 8530 8530 0272
17151 2964 4503 5296 5771 13200: 10420: 13200: 10200; 12000; 10580 13200; 0,230
20 :2:2 18877 3872: 5101 &034; £553; 13200: 12110% 13200: 11770: 13200; 123520 13200; 0222
@8a0: 35156: 4415: 5229¢ 3881 &800: &350 &e00: 5910: aAs00: &200 &aa00; 0,551
143%20: 3624: 4759 6133 6&71; 12000: 10030 12000: 2240: 12000: =S80 12000¢ 0,166
11742 4728 5823 7T252; 7856 as00: 7320: 7200: &320; S000: 7ral Q000; 0,254
14302 42127 8283 TEYZ 83eE2] 10200: 10020: 10200: &s&00; 10200: 9020 10200; 0,287
30 1%L 12675; 4548 5859 7395 2028 2400; 2790: 2400: £080; 7200: 10240 10240; 0,192
12900; 4176; 4828 6821 7179 2000; 11000; 2000; S750; S000; 10910 11000; 0,147
18740: 5112; 6074: TE63; §319) 12000 12220% 12000 10810¢ 12&00: 13430 134300 0,283
15560 5%7ai TR02] %9921 10833] 10200 12050: 10200 10540 2a00: 10420 12050 0,226
12340; 5844 Ted4l: 10220; 11085 2000 10520: 2000: 2470; 7200; 9420 11085 0,102
30 i1:2 11320; 4380; 5275 7113 7714 7200; 78%0: B8400: &7a0; 2400: 7540 2400 0,263
14040; 55803 &543; 226 9370 9800; =2870: S600: £8830; S&00: 9070 Qe00; 0,314
16152: &l5a:; 7006 %4690 102681§ 10300: 13340 10800: 12010: 12&600: 145320 14520¢ 0,101
125%6: 5S00d: 6842 2701: 94390 1a200: 118350: 18800: 12130: 15800: 128a0 lag00; 0,143
19240; 5184 &038 7736] 5388] 1a200: 13510: 15200: 13510% 1e200: 14500 le200; 0,188
30 0:2%1 19130; 42727 5351 e®aea) 7ies] 12600 1183%90: 12600: 11320; 12a00; 11980 12800; 0,541
1e046: &l44: /185 2746 9475; 12000; 10120: 12600: S8200; 10200; 9820 12800; 0,215
24710: a03&; 7958: 10545: 11480: 18200: 15880: 18200: 14410: 14200: 15910 16200; 0544
211258 54%a¢ 7272t 26%E: 10537: 15800: 15420: 13800: 14120¢ 14400: 15480 15480¢ 0,287
27810; a036; 9337: 11280 12275: 18000: 17500: 18000: 1a220: lagi0: 17580 12000; 0,353
30 :2:2 12024 5088 58770 798l Sesl] 14400: 13900: 14400: 13330; 12e00: 13510 14400; 0,243
20348; 5796 T2SR: R235: 10009: 18200; 13410: 18200; 12770; 17400; 13470 17400; 0,145
18734; 7380; 7740; 1025%; 11114 13800; 13390; 13800; 15020; 15800; 12900 13800; 0,283
40 i1tl 21660; a080; SZ82: 11101: 120%4: 11400¢ 14550¢ 12000: 13300 12800: 155840 152400 0,284

Total § &20401 471955 0,239




Appendix C.1: Gantt Chart of Ready Time and Processing Times of All Trips
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f GBH and GBHO Methods
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Gantt Chart of Scheduli
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f TBH and TBHO Methods
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Appendix C.4
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f VBH and VBHO Methods
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Gantt Chart of Scheduli

Appendix C.5
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