

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OBJECT ORIENTED APPLICATION
FRAMEWORKS COMPARE AND SELECT THE

APPROPRIATE DESIGN TECHNIQUE

by

Güler SEZER

January, 2006

İZMİR

OBJECT ORIENTED APPLICATION
FRAMEWORKS COMPARE AND SELECT THE

APPROPRIATE DESIGN TECHNIQUE

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Güler SEZER

January, 2006

İZMİR

 ii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “OBJECT ORIENTED APPLICATION

FRAMEWORKS COMPARE AND SELECT THE APPROPRIATE DESIGN

TECHNIQUE” completed by GÜLER SEZER under supervision of

PROFESSOR DR. ALP R. KUT and we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Alp R. KUT

Supervisor

 Assoc.Prof. Dr. Yalçın Çebi Asst. Prof. Dr. Zafer DİCLE

(Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGEMENTS

 I would like to thank my advisor Prof. Dr. Alp R. KUT for offering me to study in
Object Oriented Application Framework and for his advises, support and help to
complete my thesis.

I would also like to thank Research Assistant Özlem AKTAŞ, who encouraged me

during the writing of the thesis.

 I have special thanks to my father Mustafa SAGIT who died last year for his

support, patience and making me encouraged all my life.

Güler SEZER

 iv

OBJECT ORIENTED APPLICATION FRAMEWORKS COMPARE AND

SELECT THE APPROPRIATE DESIGN TECHNIQUE

ABSTRACT

Object oriented frameworks are defined in many ways. The most popular

definition: “a framework is a partial design and implementation from an application

in a given domain” [Bosch]. In my opinion frameworks are a set of abstract and

concrate classes that together comprise a generic solution to similar problems in a

specific domain. The core of the framework is made up of abstract classes.

Object-oriented frameworks have been used since the early eighties and now they

are becaming increasingly popular. They provide software developers with the

means to build an infrastructure for their applications. Also they decrease the time of

developing application. A good framework has several properties such as ease of

use, extensibility, flexibility, and completeness, which can help to make it more

reusable.

The aim of this study is to examine the details of the frameworks and their design

techniques. Therefore, I studied basic concepts related with frameworks, design

techniques used for frameworks recently and selected an object-oriented technique,

which is the most powerful technique in developing framework. Some of the

frameworks have been chosen to compare because of the large number of different

applications. These frameworks are ACE (Adaptive Communication Enviroment),

MET++ (Multimedia Application Framework) and SMA (State Maneger Interface).

In addition, more general framework .NET Framework is also selected to be

examined. As a result, the most appropriate technique from inside of these

techniques is suggested for developing object oriented application frameworks. Also

selected frameworks are compared.

Keywords: Object Oriented Frameworks, blackbox framework, whitebox

framework, design guidelines, design patterns, software reuse, and domain analysis

 v

NESNE TABANLI UYGULAMA ÇERÇEVELERİNİN

KARŞILAŞTIRILMASI VE EN UYGUN TASARLAMA TEKNİĞİNİN

SEÇİLMESİ

ÖZ

 Nesne tabanlı uygulama çerçeveleri için çeşitli tanımlamalar yapıldı. Bunlardan

en populer olanı “Uygulama çerçevesi belirli bir problem alanında kısmi bir tasarım

ve kodlamadır” [Bosch]. Benim düşünceme gore uygulama çerçevesi soyut ve

somut sınıflardan oluşan bir yapıdır öyle ki bu sınıflar belirli bir problem alanı

içersinde karşılaşılan benzer problemler için çözümler oluştururlar. Uygulama

çerçevesinin ana bölümü soyut sınıflardan meydana gelir.

 Nesne Tabanlı Çerçeveler on sekizinci yüzyılın başlarında kullanılmaya başlandı

ve gün geçtikçe daha da populer olmakta. Onlar yazılım geliştiriciler için

uygulamalara alt yapı oluşturmaktadır. İyi bir uygulama çerçevesi belirli

özelliklere sahip olmalıdır. Bunlar kullanım kolaylığı, genişleyebilirlik, esneklik,

tamamlanabilirlik. Bu özellikler yeniden kullanabilirliği arttırır.

 Bu çalışmanın amacı nesne tabanlı çerçeveleri ve tasarlama tekniklerinin detaylı

bir şekilde incelenmesidir. Bu yüzden uygulama çerçevesi ve bu çerçeveler için

kullanılan tasarlama teknikleri ile ilişkili kavramlar üzerinde çalışıldı ve uygulama

çerçeveleri geliştirmede kullanılan en güzlü teknik seçildi. Şu anda kullanımda olan

çok fazla uygulama çerçevesi olmasından dolayı incelemek için bazı çerçeveler

seçildi. Bunlar ACE (Adaptive Communication Enviroment), MET++ (Multimedia

Application Framework) ve SMA (State Maneger Interface) ‘dır. Bu inceleme ve

karşılaştırmadan sonra biraz daha genel olan .NET Framework incelendi. Sonuc

olarak kullanılmakta olan dizayn tekniklerinden en uygun olanın seçildi. Buna ilave

olarakta daha önceden seçilip incelenen nesne tabanlı uygulama çerçeveleri

karşılaştırıldı.

Anahtar sözcükler: Nesne Tabanlı Uygulama Çerçeveleri ,kara kutu uygulama

çerçeveleri ,beyaz kutu uygulama çerçeveleri, yazılımda yeniden kullanım,

tasarlama teknikleri

 vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM .. ii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

CHAPTER TWO - OBJECT ORIENTED FRAMEWORK CONCEPTS 3

2.1 Main Framework Concepts ... 4

 2.1.1 Abstract and Concrate Class... 4

 2.1.2 Hot Spots And Frozen Spots .. 5

2.1.2.1 Template Method Pattern... 5

2.1.2.2 Template And Hook Methods.. 7

 2.1. 3 Composition And Inheritance.. 8

2.1.3.1 Composition... 8

2.1.3.2 Inheritances.. 9

2.2 Classification Of Frameworks... 10

 2.2.1 White Box Frameworks and Black Box Frameworks .. 11

2.2.1.1 White Box Frameworks ... 11

2.2.1.2 Black Box Frameworks ... 12

2.3 Characteristic Of Frameworks... 14

2.4 Goals Of Frameworks ... 14

2.5 Ways to Use a Framework .. 15

2.6 Users Of Frameworks .. 15

2.7 Advantages And Disadvantages Of Using Frameworks... 16

 2.7.1 Advantages ... 17

 2.7.2 Disadvantages... 17

CHAPTER THREE - BUILDING OBJECT ORIENTED FRAMEWORKS 19

3.1 Design Process .. 19

3.1.1 Analysis ... 20

3.1.2 Design And Implementation.. 21

3.1.3 Testing ... 21

 vii

3.1.4 Refinement... 22

3.2 Framework Development Techniques... 22

3.2.1 Classical Buttom Up Iteration.. 22

3.2.1.1 Three Examples ... 23

3.2.1.2 White Box Frameworks ... 25

3.2.1.3 Component Library.. 26

3.2.1.4 Hot Spots.. 26

3.2.1.5 Plaggable Objects .. 27

3.2.1.6 Fine Grained Objects ... 28

3.2.1.7 Black Box Frameworks ... 28

3.2.1.8 Visual Builder .. 29

3.2.1.9 Language Tools.. 29

3.2.2 Top Down Developments .. 30

3.2.2.1 Domain Analysis.. 30

 3.2.2.1.1 FODA.. 32

 3.2.2.1.1 DSSA... 34

3.2.2.2 Design Patterns .. 35

 3.2.2.2.1 Composite Design Pattern ... 37

 3.2.2.2.2 Observation Design Pattern... 40

3.3 Hot Spot Generalization .. 42

3.4 Use Case Assorment.. 44

CHAPTER FOUR - FRAMEWORK EXAMPLES.. 46

4.1 ACE(Adaptative Communination Enviroment) .. 46

4.2 MET++(Multimedia Application Framework).. 47

4.3 SMI++(State Manager Interface) .. 49

4.3.1 The SMI Model .. 49

4.3.2 SML The Language.. 50

4.3.3 State Manager ... 53

4.4 .NET Framework... 53

4.4.1 CLR Common Language Runtime ... 55

4.4.2 The Class Library ... 58

CHAPTER FIVE - CONCLUSION ... 59

 viii

REFERENCES... 61

APPENDICES.. 65

 1

CHAPTER ONE

 INTRODUCTION

Object oriented frameworks are a cornerstone of software developing area. A

common observation when writing applications is that many parts are similar or the

same for many applications. Frameworks try to make these common parts explicit

and reusable. In other words the most important idea of frameworks is that a small

number of components are used over and over. These components become very

rebust over the time because they have been used in many different applications.

Furthermore, they are very cheap if one compares the development effort with the

number of usages. Thus, the development effort can be higher for reusable

components without noticeable cost increase for the applications using the

components. So, the goal of reuse is to minimise the implement the same code. I

think the next goal of framework is developing application writing any code.

A framework is not only a reuseble code and it also reusable design which can be

obtained by abstract classes and interfaces. What we mean about reuseable design?

Framework forces their users to follow some desing rules by abstract classes. By

definition, a framework is an object-oriented design. It doesn't have to be

implemented in an object-oriented language, though it usually is.

Often it is difficult to reuse a software component outside of its original area.

Object-oriented frameworks can provide that area in which the component is meant

to be reused and thus allow for a significant amount of reuse. The concrete classes

provide the reusable components, while the design provides the context in which

they are used. A framework is more than a collection of reusable components. It

provides a generic solution to a set of similar problems within an application

domain. The framework itself is incomplete and provides places called hooks at

which users can add their own components specific to a particular application by

using different techniques.

Developing a framework differs from developing an application in many ways.

 2

The framework already supplies the architecture of the application, and users fill

in the parts left incomplete by the framework. A framework typically includes the

main control loop and calls application extensions to perform specific tasks. Unlike

the reuse of pure function libraries, framework users give up control of the design. In

return, users are able to develop applications much more quickly, and a single

framework can form the basis for a whole family of related applications.

Greg Butler gives a definition for frameworks: “A framework is reusable, semi-

complete application that can be specialized to produce custom applications. “

Furthermore he composed a principle “Don’t call us, we’ll call you. “. Principle is as

named Hollywood principle. The framework calls the custom code, unlike a library,

where the custom code calls library code as shown in Figure 1.1.

Figure 1.1 Calling Frameworks and Called Frameworks and Custom Codes

A good framework can reduce the cost of developing an application by an order

of magnitude because it lets you reuse both design and code.

Unfortuanately, developing a good framework is expensive. A framework must

be simple enough to be learned; yet must provide enough features that it can be used

quickly and hooks for the features that are likely to change.

 3

CHAPTER TWO

OBJECT ORIENTED FRAMEWORKS CONCEPTS

An application developed from a framework consists of several different parts as

shown graphfically in the Figure 2.1. Applications are developed from frameworks

by filling in missing pieces and customizing the framework in the appropriate areas.

Figure 2.1 Application Developed from a Framework and the parts of

Framework

The parts of a framework are:

• Framework Core: The core of the framework, generally consisting of abstract

classes, that define the generic structure and behavior of the framework, and

forms the basis for the application developed from the framework. However,

the framework core can also contain concrete classes that are meant to be

used as is in all applications built from the framework.

• Framework Library: Extensions to the framework core consisting of concrete

components that can be used with little or no modification by applications

 4

developed from the framework.

• Application Extensions: Application specific extensions made to the

framework, also called an ensemble [Cotter and Potel, 1995].

• Application: In terms of the framework, the application consists of the

framework core, the used framework library extensions, and any application

specific extensions needed.

• Unused Library classes: Typically, not all of the classes within a framework

will be needed in an application that can be developed from the framework.

2.1 Main Framework Concepts

In the previous chapter we defined frameworks in many ways. In this chapter we

will study on frameworks concepts.

2.1.1 Abstract and Concrate Class

A good framework often includes abstract classes and also interfaces which

embody the basic architecture and interactions of the framework for design and

implementation reuse. There is no necessary all classes to be abstact in the core of

framework but the classes that are hot spots must be abstract. We are going to

explain hotspots later. Framework designers derive new classes from abstract

classes by filling in the methods deliberately left unimplemented in the abstract

classes or by adding functionality. The abstract classes should be flexible and

extensible. These classes can define the properties of key, and also they capture the

interactions between elements of the framework as well.

A framework will generally have a small number of these core classes, but will

also have a number of concrete classes, which form the framework library. These

concrete classes inherit from the abstract classes but provide specific and complete

functionality that may be reused directly without modication in an application

developed from the framework [Gangopadhyay and Mitra, 1995].

 5

2.1.2 Hot Spots and Frozen Spots

A hot spot is point of variability in the framework between applications. Hot

spots provide the flexibility and extensibility of the framework and their design is

critical to the success of the framework. Two questions to consider about a hot spot

are: [Pree, 1995]

• What is the desired degree of flexibility, remembering that flexibility has to

be balanced with ease of use?

• Must the behavior be changeable at run-time, in which case composition is

preferred over inheritance?

Each hot spot will likely have several hooks associated with it. The hooks

describe how specific changes can be made to the framework in order to fulfill some

requirement of the application [Froehlich, 1997].

Variations points open to users for implementation in a framework are called hot

spots while stable parts are called frozen spots. Hot spots are implemented as hook

classes and frozen spots as template classes. A template class contains template

methods that use services of a hook class. The hook class is abstract, so its hook

methods must be implemented when the framework is extended. Also hook methods

often appers in the form of an abstact method inside an abstract class.

2.1.2.1 Template Method Pattern

Figure 2.2 Template Method Pattern – Structural Example

 6

using System;

namespace DoFactory.GangOfFour.Template.Structural
{
 class MainApp // MainApp test application
 {
 static void Main()
 {
 AbstractClass c;
 c = new ConcreteClassA();
 c.TemplateMethod();
 c = new ConcreteClassB();
 c.TemplateMethod();
 Console.Read(); // Wait for user
 }
 }

 abstract class AbstractClass // "AbstractClass"
 {
 public abstract void PrimitiveOperation1();
 public abstract void PrimitiveOperation2();

 public void TemplateMethod() // The "Template method"
 {
 PrimitiveOperation1();
 PrimitiveOperation2();
 Console.WriteLine("");
 }
 }

 class ConcreteClassA : AbstractClass // "ConcreteClass"
 {
 public override void PrimitiveOperation1()
 {
 Console.WriteLine("ConcreteClassA.PrimitiveOperation1()");
 }
 public override void PrimitiveOperation2()
 {
 Console.WriteLine("ConcreteClassA.PrimitiveOperation2()");
 }
 }

 class ConcreteClassB : AbstractClass
 {
 public override void PrimitiveOperation1()
 {
 Console.WriteLine("ConcreteClassB.PrimitiveOperation1()");
 }
 public override void PrimitiveOperation2()
 {
 Console.WriteLine("ConcreteClassB.PrimitiveOperation2()");
 }
 }
}

 7

Schmid (1997) suggests that the variability required from a hot spot can be

classified by the following characteristics:

• The common responsibility that generalizes the different alternatives.

• The different alternatives that realize responsibility.

• The kind of variability required. This variability can be considered for

example in alternatives with a common interface but different

implementations, or alternatives with uniform service over different

structures and so on.

• The multiplicity that gives the number and structuring of the alternatives that

may be bound to a hot spot. It is directly related to the previous characteristic

in the sense that usually the kind of variability dictates the number and

structure of the alternatives.

• The binding time represents the point of time at which an alternative is

selected. This time is either the time of creating an application or the run

time. In the first case the application developer realizes the binding while in

the second case it is the end user responsibility to do it either once or

repeatedly.

2.1.2.2 Template and Hook Methods

“Template Method” is one of the design patterns described in the GoF book. Its

intent is “Define the skeleton of an algorithm in an operation, deferring some steps

to subclasses. Template Method lets subclasses redefine certain steps of an algorithm

without changing the algorithm’s structure”. The skeleton is called the template

method while the deferred steps are called hook methods.

The next figure shows an example of an application derivation from a framework.

The left side of the figure shows the structure of the application. The framework

defines interfaces with templates and hooks that are used to implement the

application specific functionality of the product as shown in the center of the figure.

 8

Figure 2.3 An example of the structure of an application derived from a product family

based on an object-oriented framework (on the left), the class level interface between the

framework and the application specific code element extending it (in the center) and context

of the hook and template coverages (on the right).

2.1. 3 Compasition and Inheritence

Inheritance and composition are the two main ways for extending object oriented

framework. The inheritance is a simple way to enabling hot spots inside a

framework and extending framework. Althought composition is often recommended

over inheritance (data driven as opposed to architecture driven) each of these ways

has strengths and weaknesses. The type of customization used in each case depends

upon the requirements of the framework.

2.1.3.1 Composition

Composition is generally used when interfaces and uses of the framework are

fairly well defined, whereas inheritance provides flexibility in cases where the full

range of functionality cannot be anticipated.

 9

 Figure 2.4 Aggregation Relationship Example

When a class is formed as a collection of other classes, it is called an aggregation

relationship between these classes. It is also called a "has a" relationship.

 Figure 2.4 Composition Relationship Example

Composition is a variation of the aggregation relationship. Composition connotes

that a strong life cycle is associated between the classes.

2.1.3.2 Inheritences

Figure 2.5 Inheritence Relationship Example

Also called an "is a" relationship, because the child class is a type of the parent

class. Generalization is the basic type of relationship used to define reusable

elements in the class diagram. Literally, the child classes "inherit" the common

functionality defined in the parent class.

The three types of inheritence are as follows:

• Attribute inheritence:

• Implementation inheritence

• Interface inheritance

 10

2.2 A Classification of Frameworks

Several types of frameworks have been identified by the framework group of the

german Computer Science Society (GI - Gesellschaft für Informatik). Frameworks

can be classified by the domain the framework can be in used and by the way the

application-specific behaviour has to be specified. Classified by domain:

• Generic application frameworks (like MVC, ET++, MFC or CommonPoint)

provides basic functionality that is common for all programs. They supply,

for example, GUI functionality and data management services.

• Domain specific frameworks are more specific in that they provide

functionality for a specific problem domain. There are framework s for

operating systems, structured editors, databases, and many others.

• Support frameworks provide basic system-level functionality upon which

other frameworks or applications can be built. A support framework might

provide services for file access or basic drawing primitives.

Figure 2.6 Stages of Framework Maturite and White Box, Black Box FW

By the type of specification of the application-specific functionality:

• black-box frameworks
o interfaces

o abstract classes

 11

• white-box frameworks

o components

2.2.1 White Box Frameworks and Black Box Frameworks

Figure 2.7 White Box Framework – Black Box Framework

2.2.1.1 White Box Frameworks

Use inheritance to build a white box framework by generalizing from the classes

in the individual applications [Johnson, Foote, 1988]. Use patterns like Template

Method and Factory Method to increase the amount of reusable code in the

superclasses from which you are inheriting [Gamma et al., 1995].

White box frameworks, also called architecture driven frameworks rely upon

inheritance for extending or customizing the framework [Adair, 1995]. Users are

able to add functionality by creating a subclass of a class that already exists within

the framework. White box frameworks typically require a more in-depth knowledge

to use.

There are several problems with white-box frameworks:

 12

• Every application requires the creation of many new subclasses. While the

classes are mostly simple the number makes it difficult to learn the design of

an application when it is to be changed.

• A white-box framework is difficult to learn because learning how to use it

means learning how it is constructed.

2.2.1.2 Black Box Framework

Use component relationships to build a black box framework. A black-box

framework is one where you can reuse components by plugging them together and

not worrying about how they accomplish their individual tasks [Johnson, Foote,

1988]. In contrast, white-box frameworks require an understanding of how the

classes work so that correct inheritances can be developed.

Black box frameworks, also called data-driven frameworks, use composition and

existing components rather than inheritance for customization of the framework

[Adair, 1995]. Configuring a framework by selecting components tends to be much

simpler than inheriting from existing classes and so black box frameworks tend to be

easier to use. Johnson argues that frameworks tend to mature towards black box

frameworks.

The users have to know detail about structure of the base class. Hence, it is a

white box to the client. In languages with static typing the protocol for the

parameter objects is defined in an abstract class. The black box and abstract class are

abstractly coupled.

The components are held and organised in a component library. Each of the

components has to understand a particular protocol. The user needs to understand

only the external interface of the components.

• Black-box frameworks are easier to learn because the user is not required to

have knowledge about internal details of the classes he uses.

• Black-box frameworks are less flexible than white-box frameworks. The

 13

number of possible combinations of components is determined by the

architecture of the framework. There is no way of defining other behaviour

than the one supplied by the framework.

• Using a black-box framework requires less programming because the

components are only combined so there is no need for deriving classes and

writing methods.

• Black-box frameworks allow the change of behaviour at run-time by

replacing a component by another component with the same protocol.

Altogether, it can be said that a framework becomes more reusable as the

relationships between its parts is defined in composition, instead of using

inheritance. Black-box relationships and, therefore, black-box frameworks are an

ideal towards which a system should evolve even though the combinations of the

objects might be limited. This problem could be compensated by providing a well-

defined (white-box) interface for extending the framework

Figure 2.8 Relations between the different elements in a framework

Design

Interfaces

Abstract classes

Components

Objects

reflect

reflect
implement

implement
inherit

collaborate with

More Abstract

More implementation oriented

 14

2.3 Characteristics of Frameworks

• The Model of the collaboration is incorporated in and determined by the

framework. Anyone who uses the framework has to stick with this model and

can only change it in the way the designer of the framework designed it into

the framework.

• Invariants are usually valid for single classes. In frameworks invariants are

often shared by a group of objects.

• Frameworks incorporate knowledge of the problem domain. Developing a

framework, therefore, requires deep understanding of the problem domain.

• Framework exhibits "inversion of control" at runtime via callbacks. These

callbacks invoke the hook methods of application-defined components after

the occurrence of an event, such as a mouse click or data arriving on a

network connection. When an event occurs, the framework calls back to a

virtual hook method in a preregistered application component, which then

performs application-defined processing in response to the event. The hook

methods in the components decouple the application software from the

reusable framework software, which allows each to change independently as

long as the interface signature and interaction protocols are not modified.

Since frameworks exhibit inversion of control, they can simplify application

design because the framework rather than the application runs the event loop

to detect events, demultiplex events to event handlers, and dispatch hook

methods on the handlers that process the events.

• Frameworks reuse design as well as code. Some aspects of a design such as

the kind of objects are easily described by code. Other aspects, such as

invariants prescribed by the framework are not easily expressed as code.

2.4 Goals of Frameworks

• Make it easy to develop applications.

• Write as little new code as possible.

• Enable novice programmers to write good programs.

 15

• Leverage domain experience of expert programmers.

• Decrease the cost of developing applications.

2.5 Ways to Use A Framework

There are a number of different ways in which to use a framework. Each of them

requires a different amount of knowledge about the framework and a different level

of skill in using it. Taligent [1995] defines three main ways in which frameworks

can be used.

• As is: the framework is used without modifying or adding to it in any way.

The framework is treated as a black box, or maybe as a collection of optional

components that are plugged together to form an application.

• Complete: the framework user adds to the framework by filling in parts left

open by the framework developers. Completing the framework is necessary

if it does not come with a full set of library components.

• Customize: the framework user replaces part of the framework with custom

code. Modifying the framework in such a way requires a detailed knowledge

of how the framework operates.

2.6 Users of Frameworks

In addition to the different ways to use a framework, different people will use a

framework with different goals.

• Regular user: many users will use a framework in the way that it was meant

to be used. They will use it as is, or they will complete the framework as the

framework designer intended. A regular user needs to know only enough

about the framework to enable them to use it e_ectively and typically do not

require an in-depth knowledge of the framework.

 16

• Advanced user: some users will want to use the framework in unexpected

ways, ways that the framework developers never anticipated or planned for.

They will use the framework in the same way as regular users but will also

customize the framework or try to add completely new and unanticipated

functionality to it. Needless to say, the advanced user needs a deeper

understanding of the framework.

• Framework developer: a framework can evolve by adding functionality or

fixing errors, specialized frameworks can be derived by adding specialized

classes, or the framework can be generalized to accommodate a wider

domain. The framework developers performing these activities need to know

all of the details of the design and implementation of the framework and

must keep in mind how changes will affect applications already developed

from the framework.

• Developer of another framework: some users simply want to learn how the

framework achieves its exibility, and need to know about the design and the

decisions behind it.

Of the four types of users, the first is probably the most common. A framework is

designed for a particular type of application and will be most successful when it is

used to build that type of application. As an example consider a framework for

building graphical user interfaces. Most users simply want to build a user interface

for their application, and will use the framework as intended. A few users will push

the interface paradigm to develop custom interface styles. Even fewer will be

interested in evolving the framework.

2.7 Advantages and Disadvantages of Using Frameworks

Frameworks provide tremendous leverage for developers of new applications. For

example, a framework represents an exible design that can be easily and quickly

extended to develop applications. However, frameworks are not appropriate for

every application, and here we give some advantages and disadvantages of using a

framework.

 17

2.7.1 Advantages

• Reusing expertise: the single biggest advantage of using a framework is that

it captures the expertise of developers within that domain. The framework

developers are generally experts within the domain and have already

analyzed the domain to provide a quality, exible design. That expertise can

be transferred to the application developers simply by using the framework.

• Decreased development time: the problem domain does not have to be

analyzed again, and the framework often provides a number of components

that can be used directly in an application. Users familiar with the framework

can develop new applications from a framework in much less time than

without the framework. However, there is the disadvantage of learning the

framework as discussed below.

• Enhanced quality: the framework should have a well thought out, quality

design. Applications developed from the framework will inherit much of the

quality design, although poorly developed applications based on high quality

frameworks are still possible.

• Reduced maintenance cost: if a family of similar products are developed

from a single framework, then maintainers will only have to learn one

standard design and will be able to maintain the whole product line more

easily.

2.7.2 Disadvantages

• Framework mismatch: committing to a particular framework can be

inconvenient if the requirements of the application are incompatible with the

design of the framework. It can be disastrous if the incompatibilities are

found late in the application development cycle. Unfortunately, knowledge of

what the framework can and cannot do primarily comes from experience

using the framework, although clear documentation helps to alleviate this

problem. Prototype projects can help familiarize users with what a

 18

framework can be used for without jeopardizing an important project.

• Learning curve: using a framework requires some amount of learning, just as

with any relatively complex tool or technique. A complex framework can

require a great deal of time to learn and may not be appropriate if very few

applications will be developed from it. The cost of the initial period of

learning is lessened if several applications are developed from a single

framework.

• Lack of design control: the framework already has a design specified and

implemented and any applications developed from it have to conform to that

design. Application developers give up most of their control over the design,

but this loss is more than offset by the advantages of using a framework.

 19

CHAPTER THREE

BUILDING OBJECT ORIENTED FRAMEWORKS

Frameworks should be developed from scratch. They, just like most reusable

software, have to be designed to be reusable from the very beginning.

As Booch (1996) suggests object-oriented development in general and framework

development in particular requires an iterative or cyclic approach in which the

framework is defined, tested and refined a number of times. Additionally, small

teams or even individual developers are recommended for framework development

so that each member of the development team has a good overall understanding of

the framework.

3.1 Design Process

Standard software development methodologies are not suficient for developing

object-oriented frameworks (Pree, 1995). For example, we can’t design effectively

hook methods using traditional methods that tend to focus on the functional design.

Hooks are also requirements of a framework, but they are quasi-functional. They do

not perform functions within the system, but instead allow the framework to be

customized to support a wide range of functionality. Hooks should be considered

throughout the process of requirements analysis through to testing (Cline, 1996).

 20

While there is no agreed upon standard for designing frameworks, some

techniques have been proposed (Sparks et al., 1996) (Taligent, 1995) (Johnson,

1993) (Pree, 1995). The proposed approaches are still immature and provide

guidelines rather than a fully defined methodology. Several general steps can

characterize each of the approaches: analysis, design and implementation, testing,

refinement.

Figure 3.1 Framework Development Process

The steps are the traditional stages of software development, but each is tailored

to the design of frame-works. Typically, the framework is not built during a single

pass, but through multiple iterations of the steps.

3.1.1 Analysis

All of the software development, the first stage is the analysis of the problem

domain. In the case of frameworks, this requires a domain expert. The expert

identifies the size of the domain that the framework covers, the abstractions that will

be incorporated within the framework, and how variations between applications

within the domain will be dealt with.

 21

After the domain of the framework has been determined, analyzing the domain of

the framework helps to determine the primary or key abstractions that will form the

core of the framework.

3.1.2 Design And Implementation

The design determines the structures for the abstractions, frozen spots and hot

spots. The design and implementation of the framework are often intertwined.

Abstractions can be dificult to design properly the first time and parts of a

framework may have to be redesigned and reimplemented as the abstractions

become better understood (Pree, 1995).

In order to develop easy to use and flexible frameworks, Taligent (1995) suggests:

• Reduce the number of classes and methods users have to override

• Simplify the interaction between the framework and the application

extensions

• Isolate platform dependent code

• Do as much as possible within the framework

• Factor code so that users can override limiting assumptions

• Provide notification hooks so that users can react to important state changes

within the framework

At this stage, the specific hooks for each hot spot must also be designed and

specified. Hooks can be described in an informal manner or a semiformal manner

using templates (Froehlich et al., 1997).

3.1.3 Testing

There are two types of testing that a framework can undergo. First, a framework

should be tested in isolation; that is, without any application extensions. Testing the

framework by itself helps to identify defects within the framework, and in so doing

isolates framework defects from errors that might be caused by the application

 22

extensions, or in the interface between the framework and the application extensions.

Second, the true test of a framework really only occurs when it is used to develop

applications. Designers never truly know if a framework can be reused successfully

until it actually has been. Using the framework serves as a means of testing the

hooks of the framework, the points where interactions between application

extensions and the framework occur.

3.1.4 Refinement

After testing, the abstractions of the framework will often need to be extended or

refined. Building a framework is a highly iterative process; so many cycles through

these steps will be performed before the final framework is produced. That iterative

process is necessary for framework life cycle.

3.1 Framework Development Techniques

3.2.1 Classical Buttom Up Iteration

Figure 3.2 The Patterns Relation each other in a sort of time line

 23

3.2.1.1 Three Examples

The framework developers use concrete examples to succeed in abstractions.

Roberts and Johnson (1996) propose to build three examples in the problem domain

in order to identify abstractions to be captured by the framework.

Developing reusable frameworks cannot occur by simply setting down and

thinking about the problem domain. No one has the insight to come up with the

proper abstractions. Domain experts won’t understand how to codify the abstractions

that they have in their heads, and programmers won’t understand the domain well

enough to derive the abstractions. In fact, often there are abstractions that do not

become apparent until a framework has been reused. The more examples you look

at, the more general your framework will be.

While initial designs may be acceptable for single applications, the ability to

generalize for many applications can only come by actually building the applications

and determining which abstractions are being reused across the applications.

Generalizing from a single application rarely happens. It is much easier to generalize

from two applications, but it is still difficult. The general rule is: build an

application, build a second application that is slightly different from the first, and

finally build a third application that is even more different than the first two.

Provided that all of the applications fall within the problem domain, common

abstractions will become apparent.

The framework won't be done after three applications. Developers can expect it to

continue to evolve. However, it should be useful and they can use it to gather more

examples. Just don't acquire too many users initially the framework will change!

There are two approaches to developing these applications.

• In the first approach, the applications are developed in sequence by a

single team. This allows the team to begin reusing design insight

 24

immediately at the possible expense of narrowness.

• In the second approach, the applications are developed in parallel by

separate teams. This approach allows for diversity and different points of

view at the expense of the time it will take to unify these applications in

the future.

Some people have built a series of applications many times in the same problem

domain, so they might be able to design a framework without first building an

example. They are not counter examples; they've already developed their three

applications before they decided to start the framework.

Another way to follow this pattern is to prototype several applications without

building industrial strength versions of any of them. Developer will have to refactor

it when they use it, but they will be a lot closer than they would be after one

application. An advantage of this approach is that developers can tell their customer

that they are only buying the rights to use the framework, not complete ownership of

it. Even though the application will force the developers to change the framework,

they will still retain ownership of it. When they build a series of applications, it is

often hard to get the right to use code written for one to build the next.

Framework developers do not need to use any design techniques when they are

building these applications. Just use standard techniques, and try to make your their

systems flexible and extensible.

The Runtime System Expert framework was initially developed by developing

runtime systems for various platforms. The first platform was Tektronix Smalltalk.

The second platform was ParcPlace Smalltalk. (Durham, Johnson, 1996) Bill

Reynen created a C front-end for the RTL system that required a C runtime system

(which was quite trivial)

 25

3.2.1.2 White Box Frameworks

The framework is extended either by inheriting from framework base classes or

by overriding pre-defined hooks methods (Fayad and Schmidt, 1997). While

developing the subsequent applications, whenever developers realize that they need

a class that is nearly the same to a class that they developed in a prior application. At

that point developers can create a subclass and override the methods that are

different. This is known as programming-by-difference (Johnson, Foote, 1988).

After making a couple of subclasses, developers will recognize which parts

consistently overriding and which parts are relatively stable. Then, developers will

be able to create an abstract class to contain the common portions.

Also, we will encounter that certain methods are almost the same in all of the

subclasses. Again, we should factor out the parts that change into a new method. By

doing this, the original methods will all become identical and can be moved into the

abstract class.

The properties of white box frameworks:

• White Box Frameworks easy to understand.

• Developers need to know the structure of base class.

• It is static and cannot change at runtime.

• Specific to subclassing in general, is the dependence among methods: e.g.

overriding one operation might require overriding another and so on.

Subclassing can lead in this case to an explosion of classes, because even a

simple extension may affect many classes that have to be extended or

changed.

The Model-View-Controller framework for graphical user interfaces was

originally a white-box framework at the begining. New view and controller classes

were created by making subclasses of the View and Controller classes, respectively.

For instance, to create a scrolling view, a programmer would have to create a new

http://sern.ucalgary.ca/courses/SENG/609.03/W98/adi2/framework.html#fayad#fayad

 26

subclass of ScrollController to handle the scrolling behavior for the view.

3.2.1.3 Component Library

Using a framework, similar objects used in applications can be stored in a library

for future reuse. A framework with a good library of concrete components will be

easier to use than one with a small library. Various applications develop concrete

classes for tailoring a framework to a specific library. The component library of a

framework is the result of accumulating such concrete classes that can be reused in

future applications. While at the beginning every concrete component can be

included in the library in the long run, only those that are often used remain.

Start with a simple library of the obvious objects and add additional objects as

you need them. Some time later some of the objects will be problem-specific and

never get reused. These will eventually be removed from the library. However, these

objects will provide valuable insight into the type of code that users of the

framework must write. Others will be common across most or all solutions. From

these, you will be able to derive the major abstractions within the problem domain

that should be represented as objects in the framework.

In the long run, a class should only be included in the component library if it used

by several applications, but in the beginning, you should put all of them in. If a

component gets used a lot, it should remain in the library. If it never gets reused, it

gets throw out. Many components will get refactored into smaller subcomponents by

later patterns and disappear that way.

3.2.1.4 Hot Spots

We have introduced that definition in the previous chapter. In most existing

techniques for framework development (Pree, 1995, Pree, 1999,Schmid, 1997,

Schmid, 1999, Roberts and Johnson, 1998), hot spots are identified throughout the

process. They begin with a particular application model, which is used to define the

 27

first framework version, and then it is refined through several iteration cycles,

including more and more hot spots. In other approaches, like Bosch’s (J. Bosch and

Fayad, 1999), a domain analysis model is obtained at the beginning, which makes

the framework hot spots more foreseeable.

Many of the Gang of Four design patterns encapsulate various types of changes.

The following table shows possible design patterns to use when different portions of

the framework change from application to application: (Gamma et al., 1995).

Table 3.1 Design Patterns

What varies Design Pattern

Algorithms Strategy, Visitor

Actions Command

Implementations Bridge

Response to change Observer

Interactions between objects Mediator

Object being created Factory Method, Abstract Factory, Prototype

Structure being created Builder

Traversal Algorithm Iterator

Object interfaces Adapter

Object behavior Decorator, State

3.2.1.5 Plaggable Objects

New classes, no matter how trivial, increase the complexity of the system.

Complex sets of parameters make parameterized classes more difficult to understand

and use. Design adaptable subclasses that can be parameterized with messages to

 28

send, indexes to access, blocks to evaluate, or whatever else distinguishes one trivial

subclass from another.

3.2.1.6 Fine Grained Objects

When our objects number increase, the system will be difficult to understand.

Because of that we are refactoring component library to make it more

understandable and reusable. The component library must be used effectively by

domain experts and non-programmer.

Anywhere in your component library that you find classes that encapsulate

multiple behaviors that could possibly vary independently, create multiple classes to

encapsulate each behavior. Wherever the original class was used, replace it with a

composition that recreates the desired behavior. This will reduce code duplication, as

well as the need to create new subclasses for each new application.

3.2.1.7 Black Box Framework

Use inheritance to organize your component library and composition to combine

the components into applications. Essentially, inheritance will provide taxonomy of

parts to ease browsing and composition will allow for maximum flexibility in

application development. When it isn’t clear which is the better technique for a

given component, favor composition?

A black-box framework is one where you can reuse components by plugging

them together and not worrying about how they accomplish their individual tasks

(Johnson, Foote, 1988). In contrast, white-box frameworks require an understanding

of how the classes work so that correct subclasses can be developed.

People like to organize things into hierarchies. These hierarchies allow us to

classify things and quickly see how the various classifications are related. By using

inheritance, which represents is-a relationship, to organize our component library,

 29

we can rapidly see how the myriad of components in the library is related to each

other. By using composition to create applications, we both avoid programming and

allow the compositions to vary at runtime.

To convert the white box to back box we have to convert inheritance relationships

to component relationships. Pull out common code in unrelated (by inheritance)

classes and encapsulate it in new components. Many of the previous patterns will

provide the techniques for locating and creating new component classes.

3.2.1.8 Visual Builder

Now we are using Black-Box Framework and we can make an application by

connecting objects. An application comprises two parts: The script that connects the

objects of the framework and turns them on and the behavior of the objects. The

connection script is usually similar for each application, but the specific objects are

different.

3.2.1.9 Language Tools

Language tools such as compilers, interpreters, and code generators are a critical

part of the framewok. Any application using that framework will include several

procured tools and very likely several in-house tools. Experience shows that the only

guarantee with such tools is change: the underlying language may change due to

improvements or extensions. The specific changes that will be made are rarely

known at the outset, but change is always necessary.

The framework we created is became a programming language. It will require

language tools to help debug and understand it as we explain in the previous

paragraph. We have a languge tool in our framework but it is generally inadequate

for dealing with the specialized composition relationship between objects. Because

our framework will be filled with little object that all look alike and some of them

completely unnecessary for building an application.

http://www.smallmemory.com/almanac/RobertsEtc98.html#BlackBoxFramework

 30

So we need to develop new and robust language tools. But building good tools is

an expensive task that can beetwen e viewed as overhead, although language tools

are indispensable for frameworks.

3.2.2 Top Down Development

• Application Family Engineering (AFE): Design framework as layered

architecture of components.

• Component System Engineering (CSE): Design flexibilty into each

component.

• Application System Engineering (ASE): Development with reuse of

framework. (Application Engineering)

The reason for developing system families is that it pays to develop all common

aspects of highly related systems only once. These “core assets” consist of a domain

model, a reference architecture and implementation components. (Jacobson 1997)

describes the engineering processes needed for developing system families, namely

Application Family Engineering (AFE), Component System Engineering (CSE), and

Application System Engineering (ASE). While the first two focuses on developing

the core assets of the domain, (also known as domain engineering) ASE focuses on

developing the actual applications by reusing as much core assets as possible (and

therefore also called application engineering). To support these engineering

processes all artefacts that are produced, such as domain models, architectures, and

components, must be stored and managed.

3.2.2.1 Domain Analysis

Domain analysis is first introduced in the 1980s. There are different descriptions

for it:

• It is an activity within domain engineering and is the process by which

 31

information used in developing systems in a domain is identified,

captured, and organized with the purpose of making it reusable when

creating new systems (Prieto Diaz 1990).

• Another description is given by Software Engineering Institute of

Carnegie Mellon University. “ Domain analysis is the process of

identifying, collecting, organizing, and representing the relevant

information in a domain, based upon the study of existing systems and

their development histories, knowledge captured from domain experts,

underlying theory, and emerging technology within a domain. “

Figure 3.3 Domain analysis and the part of the process

Domain Analysis should carefully bound the domain being considered, consider

commonalities and differences of the systems in the domain, organize an

understanding of the relationships between the various elements in the domain, and

represent this understanding in a useful way (CARDS 1994).

The purpose of Domain Analysis is:

• Select and define the domain,

• Build the domain model.

 32

There are numerous Domain Analysis techniques. Each technique focuses on

increasing the understanding of the domain by capturing the information in formal

models. Discusses six different domain analysis approaches:

• FODA :Feature-Oriented Domain Analysis (developed at Software
Engineering Institute)

• ODM :Organization Domain Modeling (M. Simos)
• Draco (J. Neighbors)
• DARE :Domain Analysis and Reuse Environment (W. Frakes & R. Prieto-

Diaz)
• DSSA :Domain-Specific Software Architecture (ARPA)
• FAST :Family-Oriented Abstraction, Specification, and Translation(D.

Weiss)
• ODE : Ontology-based Domain Engineering (Falbo et al.)

3.2.2.1.1 FODA – Feature Oriented Domain Analysis (Developed at Software
Engineering Instite)

Feature-oriented domain analysis (FODA) is a domain analysis method based

upon identifying the prominent or distinctive features of a class of systems. FODA

resulted from an in-depth study of other domain analysis approaches (Kang 1990).

FODA uses to affect the maintainability, understandability, and reusability

characteristics of a system or family of systems. Also it lacks a concrete description

of the transition from a feature model to architecture.

 33

 Figure 3.4 Phases and Products of Domain Analysis

The FODA process is divided into three phases:

• Context analysis: The results of this phase provide the context of the domain.

This requires representing the primary inputs and outputs of software in the

domain as well as identifying other software interfaces.

• Domain modelling: The products of this phase describe the problems

addressed by software in the domain. They provide:

o features of software in the domain

o standard vocabulary of domain experts

o documentation of the entities embodied in software

o generic software requirements via control flow, data flow, and other

specification techniques

• Architecture modelling: This phase establishes the structure of

implementations of software in the domain. The representations generated

provide developers with a set of architectural models for constructing

applications and mappings from the domain model to the architectures. These

architectures can also guide the development of libraries of reusable

components.

 34

As a result, the FODA feasibility study established methods for performing a

domain analysis, described the products of the domain analysis process, and

established the means to use these products for application development.

3.2.2.1.2 DSSA- Domain-Specific Software Architecture (ARPA)

Hayes-Roth defines in 1995 domain-specific software architecture (DSSA) as
comprising:

• a reference architecture, which describes a general computational
framework for a significant domain of applications,

• a component library, which contains reusable chunks of domain
expertise, and

• An application configuration method for selecting and configuring
components within the architecture to meet particular application
requirements.

 Figure 3.5 Architecture based software development

 Figure 3.6 DSSA based software development

 35

 As we see in Figure 3.5 architecture based software development separate parts
the solution space. But in domain specific software architecture separate parts the
problem space and the solution spaces.

3.2.2.2 Design Patterns

Patterns are devices that allow programs to share knowledge about their design.

In our programming, we encounter many problems that have occured, and will occur

again. We can use design patterns for these types of problems.

As we told patterns are attempts to describe successful solutions to common

software problems. The long-term goal is to develop handbooks for software

engineers. Eventhough we have a long way for that goal, most of the patterns make

general problems simple for software developers. Also we can say that they are

successful for a short term. Not only do patterns teach useful techniques, they help

people communicate better, and they help people reason about what they do and

why. In addition, patterns are a step toward handbooks for software engineers.

A pattern is a recurring solution for a standard problem developers encountered.

When related patterns are woven together they form a ``language'' that provides a

process for the orderly resolution of software development problems. Pattern

languages are not formal languages, but rather a collection of interrelated patterns,

though they do provide a vocabulary for talking about a particular problem. Both

patterns and pattern languages help developers communicate architectural

knowledge, help people learn a new design paradigm or architectural style, and help

new developers ignore traps and pitfalls that have traditionally been learned only by

costly experience.

Schmidt (1996) gives the following values:

• Success is more important than novelty. The longer a pattern has been used

successfully, the more valuable it tends to be. In fact, novelty can be a

liability, because new techniques are often untested. Finding a pattern is a

 36

matter of discovery and experience, not invention. A new technique can be

documented as a pattern, but its value is known only after it has been tried.

This is why most patterns describe several uses.

• Emphasis on writing and clarity of communication. Most pattern descriptions

document recurring solutions using a standard format. We look forward to

the day when we will have handbooks for software engineers. Therefore, we

write our patterns in a form that is like a catalog entry. In this sense, pattern

descriptions are both a literary style and technical documentation.

• The emphasis on clear writing stems from our collective experience

developing complex software systems. In many cases, projects failed because

developers were unable to communicate good software designs,

architectures, and programming practices to each other. Well written pattern

descriptions improve communication by naming and concisely articulating

the structure and behavior of solutions to common software problems.

• Qualitative validation of knowledge. Another part of our ethic is to

qualitatively describe concrete solutions to software problems, instead of

quantifying or theorizing about them. There is a place for theoretical and

quantitative work, but we feel such activities are more appropriate in a

context separate from discovering and documenting patterns. Our goal is to

appreciate and reward the creative process that expert developers use to build

high quality software systems.

• Good patterns arise from practical experience. Every experienced developer

has valuable patterns that we would like him or her to share. We value the

experience of all software developers, and do not think that a few people

have the patterns, and everybody else just sits back and learns them. That is

why our use of writer's workshops has been so successful at pattern

conferences. In a writer's workshop, participants discuss the strengths and

weaknesses of each pattern, accentuate positive aspects of the patterns, share

their own experience, and suggest improvements in content and style.

Writer's workshops assume that we all can learn from each other.

• Recognize the importance of human dimensions in software development.

The purpose of patterns is not to replace developer creativity with rote

 37

application of rigid design rules. Neither is we trying to replace programmers

with automated CASE tools. Instead, our intent is to recognize the

importance of human factors in developing software. This recognition

appears in design patterns when we discuss their effect on the complexity

and understandability of software systems. In addition, this recognition

shows itself in patterns on effective software process and organization.

3.2.2.2.1 Composite Design Pattern

When we are developing systems, we always need to implement some
component, which may be either an individual object or a collection of objects. The
composition pattern is a solution to represent tree structures. For example you can
use the composition pattern to built job representation. A manager has workers so it
is node with additional branch in three structures. Every worker is a leaves. We can
give a lot of example to show using that pattern.

 You can see a code part written in C# show that pattern.

using System;

using System.Collections;

namespace DoFactory.GangOfFour.Composite.Structural
{

 // MainApp test application

 class MainApp
 {
 static void Main()
 {
 // Create a tree structure
 Composite root = new Composite("root");
 root.Add(new Leaf("Leaf A"));
 root.Add(new Leaf("Leaf B"));

 Composite comp = new Composite("Composite X");
 comp.Add(new Leaf("Leaf XA"));
 comp.Add(new Leaf("Leaf XB"));

 root.Add(comp);
 root.Add(new Leaf("Leaf C"));

 // Add and remove a leaf

 38

 Leaf leaf = new Leaf("Leaf D");
 root.Add(leaf);
 root.Remove(leaf);

 // Recursively display tree
 root.Display(1);

 // Wait for user
 Console.Read();
 }
 }

 // "Component"

 abstract class Component
 {
 protected string name;

 // Constructor
 public Component(string name)
 {
 this.name = name;
 }
 public abstract void Add(Component c);
 public abstract void Remove(Component c);
 public abstract void Display(int depth);
 }

 // "Composite"

 class Composite : Component
 {
 private ArrayList children = new ArrayList();

 // Constructor
 public Composite(string name) : base(name)
 {
 }

 public override void Add(Component component)
 {
 children.Add(component);
 }

 public override void Remove(Component component)
 {
 children.Remove(component);
 }

 public override void Display(int depth)
 {
 Console.WriteLine(new String('-', depth) + name);

 // Recursively display child nodes
 foreach (Component component in children)
 {
 component.Display(depth + 2);
 }

 39

 }
 }

 // "Leaf"

 class Leaf : Component
 {
 // Constructor
 public Leaf(string name) : base(name)
 {
 }

 public override void Add(Component c)
 {
 Console.WriteLine("Cannot add to a leaf");
 }

 public override void Remove(Component c)
 {
 Console.WriteLine("Cannot remove from a leaf");
 }
 public override void Display(int depth)
 {
 Console.WriteLine(new String('-', depth) + name);
 }
}
}

3.2.2.2.2 Observation Patterns

Observer pattern has two main actors, the observer and the subject. The observer

is responsible for displaying the changes to the user. The subject, on the other hand,

is a business object from the problem domain. As depicted in Figure 3.7, a logical

association exists between the observer and subject.

Figure 3.7 Observation pattern and the object of pattern

Most frameworks implement registration and notification via callbacks. The

steps of observation pattern:

• The observer registers with the subject.

• When a change occurs, the subject notifies the observer of the change.

• The observer unregisters from the subject.

 40

Figure 3.8 Observer Registration

Doug Purdy from Microsoft Corporation gives a useful example for observation

pattern. Suppose we have a simple application that tracks stock prices throughout the

day. Within this application we have a Stock class that models various stocks that

are traded on the NASDAQ. This class contains an instance variable which

represents the current ask price, which fluctuates throughout the day. In order to

display this information to the user, the application uses a StockDisplay class that

writes to stdout (standard output). Within this application, an instance of the Stock

class acts as the subject and an instance of the StockDisplay class as the observer.

As the ask price changes over the course of the trading day, the current ask price of

the Stock instance changes as well (how it changes is not germane). Since the

StockDisplay instance is observing the Stock instance, these state changes

(modification of the ask price) are displayed to the user as they occur.

The use of this observation process ensures that a boundary exists between the

Stock and StockDisplay classes. Suppose that the requirements for the application

change tomorrow, requiring the use of a form-based user interface. Enabling this

new functionality is a simple matter of constructing a new class, StockForm, to act

as an observer. The Stock class would not require any modification whatsoever. In

fact, it would not even be aware that such a change was made. Likewise, if a change

in requirements dictated that the Stock class retrieved asks price information from

another source (perhaps a Web service rather than from a database), the

 41

StockDisplay class would not require modification. It simply continues to observe

the Stock, oblivious to any changes.

public class MainClass {

public static void Main(){

//create new display and stock instances

StockDisplay stockDisplay=new StockDisplay();

Stock stock=new Stock();

//create a new delegate instance and bind it
//to the observer's askpricechanged method

Stock.AskPriceDelegate

aDelegate=new Stock.AskPriceDelegate(stockDisplay.AskPriceChanged);

Stock.AskPriceDelegate

aDelegate1=new Stock.AskPriceDelegate(stockDisplay.TellMe);

//add the delegate to the event
stock.AskPriceChanged+=aDelegate;

stock.AskPriceChanged+=aDelegate1;

//loop 100 times and modify the ask price
for(int looper=0;looper < 100;looper++)
{
 stock.AskPrice=looper;
}

//remove the delegate from the event
stock.AskPriceChanged-=aDelegate;

stock.AskPriceChanged-=aDelegate1;

}//Main

public class Stock
{
 public Stock()
 {

 }

//declare a delegate for the event

public delegate void AskPriceDelegate(object aPrice);

 42

//declare the event using the delegate
public event AskPriceDelegate AskPriceChanged;

//instance variable for ask price
object _askPrice;

//property for ask price
public object AskPrice
{

 set
 {

 //set the instance variable
 _askPrice=value;

 //fire the event
 AskPriceChanged(_askPrice);

 }

 }//AskPrice property

}//Stock class

//represents the user interface in the application
public class StockDisplay
{

public void AskPriceChanged(object aPrice)
 {

 Console.Write("The new ask price is:" + aPrice + "\r\n"); }

 public void TellMe(object aPrice)
 {

 Console.Write("The second function test: Guler Sezer");

 }

}//StockDispslay class

3.3 Hot Spot Generalization

That development techniques is based on the flexible points called hot spots. The

quality of a framework is directly related to the flexibility required in a domain,

explicit identification of domain-specific hot spots can indeed help.

 43

Figure 3.9 Hot-spot-driven development process (adapted from Pree, 1995).

Hot Spot Generation obtain code reuse and reduces development time, risk for

errors. But besides those advantages it is very complex, abstrack and there are no
adequate documentation techniques. As shown in Figure 3.9 that development
technique has three steps:

• Identify hotspots: Domain-specific knowledge is required to find hot spots.

Only domain analysis can help to acquire this knowledge and also domain

experts. After identify hotspots we created metapatterns(hot spots cards) for

documented each of hotspots in the framework. These metapatterns include

information about hotspots. Then show relations between that points.

 44

• Framework design: After domain experts have initially identified and

documented the hot spots, software engineers have to modify the object

model in order to gain the desired hot spot flexibility. They also use some

patterns to satisfactory frameworks.

• Framework usage: A framework needs to be used several times in different

applications in order to detect its weaknesses, that is, inappropriate or

missing hot spots.

3.4 Use Case Assortment

The framework is based on the set theory and the notion of pre and post

conditions. The method is expected to be usable within an incremental and iterative

development process driven by use cases (J. Runbaugh, 1999).

Use Case Assortment is one of the first and primary means of gathering

requirements in the behavioral methodology. Use cases are a standard technique for

gathering requirements in many modern software development methodologies.

Use cases provide a mechanism for breaking down a given problem into smaller

scenarios that reflect how the software will be used by external agents called actors

(Miller). These actors might be customers or other parts of the system with which

the software must interact. The use-case model describes the functional requirement.

That has mainly three steps:

• Capture functionality as use cases: A good source for identifying use

cases is external events. Think about all the events from the outside world

which the developer wants to react. A given event may cause a system

reaction that does not involve users, or it may cause a reaction primarily

from the users. Identifying the events that the developers need to react to

will help them identify the use cases.

• Organize set of use cases to reflect commonality and variablty

 45

o Intruduce abstract use case for commonality

o “Extends” to show variablity

o use heuristics

• Now design and implement

 46

CHAPTER FOUR

 OBJECT ORIENTED FRAMEWORK EXAMPLES

We are studying on some of application frameworks and a foundation framework

(.Net Framework). These application frameworks are ACE (Adaptative

Communination Enviroment), MET++ (Multimedia Application Framework), and

SMI++ (State Manager Interface).

4.1 ACE (Adaptative Communination Enviroment)

4.1.1 An Overview of ACE

ACE is a highly portable, widely used, open-source host infrastructure

middleware toolkit. It is open source; freely avaiable software and we are free to use

it. The core ACE library contains roughly a quarter million line of C++ code that

comprises approximately 500 classes. Many of these classes cooperate to form

ACE's major frameworks. The ACE toolkit also includes higher-level components,

as well as a large set of examples and an extensive automated regression test suite.

To separate concerns, reduce complexity, and permit functional subsetting, ACE

is designed using a layered architecture, shown in the next figure. The capabilities

provided by ACE span the session, presentation, and application layers in the OSI

reference model. The foundation of the ACE toolkit is its combination of an OS

adaptation layer and C++ wrapper facades, which together encapsulate core OS

network programming mechanisms to run portably on all the OS platforms. The

higher layers of ACE build on this foundation to provide reusable frameworks,

networked service components, and standards-based middleware.

 47

Figure 4.1 ACE Architecture, Component Layers and Framework Layer

4.2 MET++ (Multimedia Application Framework)

MET++ is an object-oriented application framework that supports the

development of multimedia applications by providing reusable objects for 2D

graphics, user interface components, 3D graphics, video, audio, and music

(Ackerman 1996). The standard behaviour of a multimedia application such as time

synchronisation and user interaction (file dialog, cut-copy-paste, multi-level

undoable commands, etc.) manages by MET++. A developper will customize the

MET++ application framework by composing reusable objects, by building

subclasses through inheritance, and by overwriting hook methods to add his specific

functionalitly (Ackerman 1996).

As Bernard Wagner explained it is a portable object-oriented C++ multimedia

application framework developed at the University of Zürich. It is based on the

object-oriented application framework ET++. ET++ consists of several frameworks,

which support the development of desktop applications with graphical user

interfaces. ET++ has a layered architecture addressing the following goals:

portability among operating systems and windowing systems, generic data

 48

structures, support for graphic user interfaces, and desktop applications. The

abstractions in ET++ are highly integrated and anticipate all generic interaction

between application components. Thus a developer using the framework need only

fill predefined slots with the application-specific content.

MET++ is built on top of ET++. It doesn’t change the architecture and style

defined by ET++ but add new features. The multimedia extensions provided by

MET++ are:

• 3D graphics

• Audio and music

• Video

• Time synchronization

• Visual programming.

MET++ has boon using in numerous multimedia projects, commercial

applications and it is very efficient in these applications.

It has building blocks that are so-called DataUnits and DataPorts. The DataPorts

provide the input/output to the DataUnits. DataUnits have several categories:

• Mathematical functions,

• GUI components,

• Wrappers,

• Data containers

• Data mappers.

MET++ uses the Adapter design Pattern for the visual programming environment

to wrap existing media abstractions. Using this environment, a user can explore the

behaviour and protocol of a media abstraction available in MET++ before

programming against its API using C++.

The visual programming environment has been successfully employed in the areas:

• Interactive data visualization

 49

• Animation

• sonification of animation

• Visualization of sound.

MET++ is not just a library or collection of isolated classes but a framework that

pre-integrates the components and predefines their style of interaction. For example

all time-dependent media can be edited regardless of their specific type in a special

grouping editor provided by MET++.

4.3 SMI++ (State Manager Interface)

SMI++ is an object oriented application framework based on C++. It is developed

by DELPHI and used since 1989. SMI, the State Management Interface the

experiment is viewed as a collection of objects behaving as finite state machines.

SMI objects can represent concrete entities, for example a hardware device or

abstract entities like a logical sub-system. The objects representing concrete entities

interact with the hardware they model and control through driver processes or

proxies. These objects are tipically organized in hierarchical structures called

domains allowing up to the full automation of the experiment by a top-level object.

The object model of the experiment is described using a dedicated language -

SML - State Manager Language. This language allows detailed specification of the

objects such as their states, actions and associated conditions.

4.3.1 The SMI Model

SMI is a tool for developing control systems; it is based on the concept of Finite

State Machines (FSM). Finite state machines are a simple way to describe control

systems, complex systems can be broken down into small and simple FSMs that are

hierarchically controlled by other FSMs. Using SMI the experiment can be

decomposed and described in terms of objects behaving as finite state machines.

SMI objects can represent concrete entities, for example a hardware device or

abstract entities like a logical sub-system. The objects representing concrete entities

 50

interact with the hardware they model and control through driver processes or

proxies. The objects are typically organised in hierarchical structures called

domains.

Figure 4.2 SMI Mode and SMI Domain Relationships

The SMI mechanism allows an easy reconfiguration of the system: modifying or

replacing proxies and logical modifications can easily integrate changes in the

hardware by changing the SMI code. The decoupling between the actual actions on

the hardware (done by the Proxies) and the control logic (residing in the SMI

objects) makes the evolution of a system from its first test phase up to final

complexity a very smooth process

4.3.2 SML The Language

The object model of the experiment is described using State Manager Language

(SML). This language allows detailed specification of the objects such as their

 51

states, actions and associated conditions. The main characteristics of this language

are:

• Finite State Logic

Objects are described as finite state machines. The only attribute of an object

is its state. Commands sent to an object trigger actions that can bring about a

change in its state.

• Sequencing

an action on an abstract object is specified by a sequence of instructions,

mainly consisting on commands sent to other objects and logical tests on

states of other objects. Actions on concrete objects are sent off as messages

to the Driver Control Processes.

• Asynchrounous

several actions may proceed in parallel: a command sent by object-A to

object-B does not suspend the instruction sequence of object-A. Only a test

by object-A on the state of object-B suspends the instruction sequence of

object-A if object-B is still in transition.

• AI-like rules

each object can specify logical conditions based on states of other objects.

These when satisfied will trigger an action on the local object. This provides

the mechanism for an object to respond to unsolicited state changes of its

environment.

Figure 4.3 SML File and the relationship between idea of a domain and SML File

 52

Example of SML code

object : RUN_CONTROL

 state : READY

 action : START_RUN

 do MOUNT TAPE

 if TAPE not in_state MOUNTED then

 do MOUNT_ERROR ERROR_OBJ

 terminate_action/state=ERROR

 endif

 do START READOUT_CONTROLER

 if READOUT_CONTROLER in_state RUNNING

 terminate_action/state=RUN_IN_PROGRESS

 ...

 state : RUN_IN_PROGRESS

 when TAPE in_state FILE_FULL

 do PAUSE_RUN

 when READOUT_CONTROLER in_state ERROR

 do ABORT_RUN

 action : ABORT_RUN

 ...

object : READOUT_CONTROLER/driver

 state : READY

 action : START

 ...

 state : RUNNING

 action : PAUSE

 action : ABORT

 ...

 53

4.3.3 State Manager

Logic Engine that reads the SML file and ‘drives’ the described model:

• Responds to external commands

• Responds to asynchronous changes in the environment

• Sends out ‘properly’ sequenced commands to other domains and proxy

processes

Figure 4.4 State Manager and the relationship between SML Code and State Manager

4.4 .NET Framework

Figure 4.5 The .NET platform is made up of several core technologies

 54

Microsoft .NET is a set of Microsoft software technologies for rapidly building

and integrating XML Web services, Microsoft Windows-based applications, and

Web solutions. The .NET Framework is a language-neutral platform for writing

programs that can easily and securely interoperate, using a system similar to

Java/Java Virtual Machine (JVM). And also it is a foundation framework which is

my master subject’s parts. Because of that we are going to learn deeply information

about that framework and then we can compare these frameworks.

It standardizes common data types and communications protocols so that

components created in different languages can easily interoperate. For example you

can create a C# component and use it in Visual Basic. Also a component which is

created in J# can convert in any language in .Net platform.

“.NET” is also the collective name given to various software components built

upon the .NET platform. These will be both products (Visual Studio.NET and

Windows.NET Server, for instance) and services (like Passport, .NET My Services

(a.k.a. HailStorm), and so on).

 Figure 4.6 Net Framework Achitecture

 55

The .NET Framework sits on top of the operating system, which can be any

flavor of Windows, and consists of a number of components. Currently, the .NET

Framework consists of:

• Four official languages: C#, VB .NET, Managed C++, and JScript .NET

• The Common Language Runtime (CLR),

• Framework Class Library (FCL).

4.4.1 CLR (Common Language Runtime)

 Figure 4.7 Comman Language Runtime and the architecture of CLR

The most important component of the .NET Framework is the CLR, which

provides the environment in which programs are executed. The CLR includes a

virtual machine, analogous in many ways to the Java virtual machine. At a high

level, the CLR activates objects, performs security checks on them, lays them out in

memory, executes them, and garbage-collects them. (The Common Type System is

also part of the CLR.) (Liberty, J. 2001)

 56

The CLR is described as a managed execution environment that handles memory

allocation, error trapping and interacting with the operating system services. The

most important features of CLR are:

• Conversion from a low-level assembler-style language, called Intermediate

Language (IL), into code native to the platform being executed on.

• Memory management, notably including garbage collection.Checking and

enforcing security restrictions on the running code.

• Loading and executing programs, with version control and other such

features.

When the developer compiles her code on the .NET platform, the compiler

doesn’t produce a traditional executable file, but rather compiles the code into

Microsoft Intermediate Language (MSIL). MSIL is CPU independent and it is much

higher level than most machine languages. One written and built, a managed .NET

application can execute on any platform that supports the .NET CLR.

.NET programs are constructed from “Assemblies”. An Assembly is a compiled

and versioned collection of code and metadata. This metadata describes the interface

of the component - for instance, what methods it provides, what parameters they

take, and what they return. The presence of metadata in the file along with the MSIL

enables your code to describe itself, which means that there is no need for separate

type libraries or Interface Definition Language (IDL). The runtime locates and

extracts the metadata from the file as needed during execution.

All Assemblies contain a Manifest, which contains the Assembly name, version,

and locale, has a list of files that form the Assembly, what dependencies the

Assembly has, and what features are exported by the Assembly. When you want to

execute the code MSIL converted the execute code by JIT compiler. CLR include

one or more JIT compiler.

 57

The following features of the .NET framework are given by Liberty in the book

of Programming C#:

• Managed Code - is code that targets .NET, and which contains certain extra

information - “metadata” - to describe itself. Whilst both managed and

unmanaged code can run in the runtime, only managed code contains the

information that allows the CLR to guarantee, for instance, safe execution

and interoperability.

• Managed Data - With Managed Code comes from Managed Data. CLR

provides memory allocation and deallocation facilities, and garbage

collection. Some .NET languages use Managed Data by default, such as C#,

Visual Basic.NET and JScript.NET, whereas others, namely C++, do not.

Targeting CLR can, depending on the language you’re using, impose certain

constraints on the features available; for instance, C++ loses multiple

inheritances. As with managed and unmanaged code, one can have both

managed and unmanaged data in .NET applications - data that doesn’t get

garbage collected but instead is looked after by unmanaged code.

• Common Type System - The CLR uses something called the Common Type

System (CTS) to strictly enforce type-safety. This ensures that all classes are

compatible with each other, by describing types in a common way. CTS

defines how types work within the runtime (their declaration and usage),

which enables types in one language to interoperate with types in another

language, including cross-language exception handling. As well as ensuring

that types are only used in appropriate ways, the runtime also ensures that

code doesn’t attempt to access memory that hasn’t been ` allocated to it (that

is to say, the code is type-safe).

• Common Language Specification - The CLR provides built-in support for

language interoperability. However, this support does not guarantee that the

code you write can be used by developers using another programming

language. To ensure that you can develop managed code that can be fully

used by developers using any programming language, a set of language

features and rules for using them called the Common Language Specification

 58

(CLS) has been defined. Components that follow these rules and expose only

CLS features are considered CLS-compliant.

4.4.2 The Class Library

 Figure 4.8 Base Class Libraries

As explained in MSDN from Microsoft documentation .NET class configuration

is a single-rooted hierarchy. It’s containing over 7000 types. The root of the

namespace is called System; this contains basic types like Byte, Double, Boolean,

and String, as well as Object. All objects derive from System.Object. As well as

objects, there are value types. Value types can be allocated on the stack (which is

generally quicker to some degree than allocation on the heap), which can provide

useful flexibility. There are also efficient means of converting value types to object

types if and when necessary.

To access any of the platform’s features, we need to know which namespace

contains the types that expose the facilities we’re after. When we want to customize

any type’s behavior, we can simply derive our own type from the desired FCL type.

The object-oriented nature of the platform is how the .NET Framework presents a

consistent programming paradigm to software developers. Also, developers can

easily create their own namespaces containing their own types. These namespaces

and types merge seamlessly into the programming paradigm.

 59

CHAPTER FIVE

CONCLUSION

 In the research described in this thesis object-oriented application frameworks are

investigated to get architectural description, and also the design techniques that

obtain reusable implementation and design are examined.

ACE (Adaptative Communination Enviroment), MET++ (Multimedia

Application Framework), and SMI++ (State Manager Interface) are domain specific

frameworks. On the other hand .Net Framework is an object oriented foundation

frameworks.

An examination of domain specific frameworks shows that all of them are

succefull in most of the applications which they used. Although ACE doesn’t have

robust library, it is open source. Because of that developer can understand

framework very quickly, use it and extended it. And also developer can find many

examples for using that framework. MET ++ is complex but effective framework for

multimedia application. It is not open source but it is succeed in design and

implementation reusage. The last framework which was investigated has own

language but components are unchangeable.

In the previous chapter object oriented application development approaches are

classified into four categories:

• Classical Bottom Up Iteration

• Top Down Development

• Hot Spot Generalization

• Use Case Assortment

All these approach is using for developing application frameworks. In my opinion

the most efficient approach for framework development and evolution will be a

60

hybrid approach. It combines the modeling aspects of the top-down domain

engineering approaches like domain anlysis , and the iterative, refactoring

approaches of the bottom-up iteration object-oriented enviroment. First domain

analysis must be done and then classical bottom up iteration can be used with design

patterns.

In conclusion, our main purpose is usage of design and implementation. We are

developing frameworks for that aim. I think the hybrid methodology can be

succesful for obtaining easy and effective object oriented frameworks.

61

REFERENCES

Adair, D. (1995). Building Object-Oriented Frameworks. AIXpert. Feb.

G. Arango, G., & R. Prieto-Diaz, R. (1991). Domain Analysis Concepts and

Research Directions, IEEE Computer Society.

Bosch, J., Molin, P., Mattson, M., & Bengtsson, P. (1999). Object oriented

frameworks problems and experiences. Building Application. Frameworks, Fayad

ME, Schmidt DC, Johnson RE (eds.). Wiley & Sons.

Fayad, M., & Schmidt, D. (1999). Building Application Frameworks: Object

Oriented Foundations of Design. First Edition, John Wiley & Sons.

Booch, G. (1994). Designing an Application Framework. Dr. Dobb's Journal.

19(2):24-32.

Butler, Greg. Object Oriented Framework. Department of Computer Science

Concordia University, Montreal

gregb@cs.concordia.ca http://www.cs.concordia.ca/~faculty/gregb

Bosch, J. (1999). Design of an object-oriented framework for measurement systems.

Object Oriented Application Frameworks, Fayad ME, Schmidt DC, Johnson RE

(eds.). Wiley & Sons.

Mattsson, M., & Bosch, J. (1997) Framework composition problems, causes and

solutions. Proceedings Technology of Object-Oriented Languages and Systems,

U.S.A., August 1997.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995) Design Patterns

Elements of Reusable Object Oriented Software. Addison-Wesley.

mailto:gregb@cs.concordia.ca

62

Sparks, S., Benner, K., & Faris, C. (1996). Managing object oriented framework

reuse. Computer; 29(9):53–61.

Bengtsson, P., & Bosch, J. (1999). Haemo dialysis software architecture design

experiences. Proceedings of the 21st International Conference on Software

Engineering, May.

Roberts, D., & Johnson, R. (1998). Patterns for evolving frameworks. Pattern

Languages of Program Design 1998; 3:471–486.

Riehle, D., & Gross, T. (1998). Role model based framework design and

integration. Proceedings of OOPSLA ’98. ACM Press; 117–133.

Pree, W. (1994). Design Patterns for Object-Oriented Software Development.

Addison-Wesley: Reading, MA.

Daly, J., Brooks, A., Miller, J., Roper, M., & Wood, M. The effect of

inheritance on the maintainability of object oriented software:An empirical study.

Proceedings of International Conference on Software Maintenance. IEEE

Computer Society Press:Los Alamitos, CA, U.S.A.; 20–29.

Schmidt, DC., & Fayad ,ME. (1997). Lessons learned uilding reusable OO

frameworks for distributed software. Communications of the ACM; 40(10):85–87.

Johnson, RE., & Foote, B. (1988). Designing reusable classes. Journal of Object

Oriented Programming; 1(2):22–35.

D’Souza, D., & Wills, AC. (1999). Composing modelling frameworks in catalysis.

Building Application Frameworks Object Oriented foundations of Framework

Design, ch. 19, Fayad ME, Schmidt DC, Johnson RE (eds.). John Wiley & Sons.

63

Bosch, J. (1998). Specifying frameworks and design patterns as architectural

fragments. Proceedings Technology of Object-Oriented Languages and Systems;

268–277.

Bosch, J. (2001). Design and Use of Software Architectures—Adopting and Evolving

a Product Line Approach. Addison-Wesley, 2000.Copyright Ó 2001 John Wiley

& Sons, Ltd. Softw. Pract. Exper.; 31:277–300

Weiss, G. (2000). Multiagent systems: a modern approach to distributed artificial

Intelligence. The MIT Press, Second printing.

Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial

Intelligence. Addison-Wesley Pub Co.

Garcia, A., Silva, V., Lucena, C., & Milidiú, R. An Aspect-Based Approach for

Developing Multi-Agent Object-Oriented Systems.

Garcia, A., Lucena, C. J., & Cowan, D.D. Engineering Multi-Agent Object-

Oriented Software with Aspect-Oriented Programming.

Garcia, A., & Lucena, C. J. (2001). An Aspect-Based Object-Oriented Model for

Multi-Agent Systems. 2nd Advanced Separation of Concerns Workshop at

ICSE'2001.

Kendall, E., Krishna, P., Pathak, C., & Suresh, C. (1999) A Framework for

Agent Systems. In: Implementing Application Frameworks – Object-Oriented

Frameworks at Work, M. Fayad et al. (editors), John Wiley & Sons.

Silva, O., Garcia, A., & Lucena, C.J. (2001). A Reflective Tuple

SpaceEnvironment for Dependable Mobile Agent Systems. III WCSF at

IEEEMWCN 2001, Recife, Brasil.

64

Milidiu, R.L., Lucena, C.J., & Sardinha, J.A.R.P. (2001). An object-oriented

framework for creating offerings. 2001 International Conference on Internet

Computing (IC'2001).

Fontoura, M.F., Haeusler, E.H., & Lucena, C.J.P. (1998). The Hot-Spot Relationship

in OO Framework Design. MCC33/98, Computer Science Department, PUC-Rio.

Rosana, T., Braga, V., & Paulo, Cesar Masiero Journal of Object Technology.

Finding framework hotspots in pattern languages. Instituto de Ciˆencias

Matem´aticas e de Computa¸c˜ao Universidade de S˜ao Paulo Brazil

Kyo, C. Kang., Sholom, G. Cohen., James, A. Hess., William, E. Novak., & A.

Spencer, Peterson (1990). Feature-Oriented Domain Analysis (FODA)Feasibility

Study

Franek, B. (1998) Object Oriented Framework for Designing and Implementing

Distributed Control Systems Rutherford Appleton Laboratory Great Britain

Woolridge, Richard (1999) An Intraduction of Use Case Analysis http://www.cbd-

hq.com/articles/1999/991115rw_caseanalysis.asp

Wolfgang, Pree Hot-Spot-Driven Framework Development University of Constance

D-78457 Constance, Germany

Hansen, Todd., & Granville, Miller Definition and Verification of Requirements

Through Use Case Analysis and Early Prototyping

http://www.cbd-/

 65

APPENDICES

A. ACE (Adaptative Communination Enviroment) Class Diagram

[Containers]

o Array.cpp
o Array.h [doxygen]
o Array.inl
o Containers.cpp
o Containers.inl
o Containers.h
o Hash_Map_Manager.cpp
o Hash_Map_Manager.h [doxygen]
o Filecache.cpp
o Filecache.h [doxygen]
o Free_List.cpp
o Free_List.inl
o Free_List.h [doxygen]
o Managed_Object.cpp
o Managed_Object.h [doxygen]
o Managed_Object.inl
o Map_Manager.cpp
o Map_Manager.h [doxygen]
o Map_Manager.inl
o Object_Manager.cpp
o Object_Manager.inl
o Object_Manager.h [doxygen]
o SString.cpp
o SString.h [doxygen]
o SString.inl

[Concurrency]

o Activation_Queue.h [doxygen]
o Activation_Queue.cpp
o Atomic_Op.inl
o Future.h [doxygen]
o Future.cpp
o Method_Request.h [doxygen]
o Method_Request.cpp
o Process.cpp
o Process.h [doxygen]
o Process.inl
o Process_Manager.cpp
o Process_Manager.h [doxygen]
o Process_Manager.inl
o Sched_Params.cpp
o Sched_Params.h [doxygen]
o Sched_Params.inl

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Array.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Array.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Hash_Map_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Hash__Map__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Filecache.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Filecache.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Free_List.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Free__List.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Managed_Object.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Managed__Object.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Map_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Map__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Object_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Object__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SString.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SString.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Future.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Future.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Method_Request.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Method__Request.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Method_Request.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Process.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Process.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Process.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Process.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Process_Manager.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Process_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Process__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Process_Manager.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Sched_Params.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Sched_Params.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Sched__Params.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Sched_Params.inl

 66

o Synch.cpp
o Synch.h
o Synch.inl
o Synch_Options.cpp
o Synch_Options.h [doxygen]
o Synch_Options.inl
o Synch_T.cpp
o Synch_T.h
o Synch_T.inl
o Thread.cpp
o Thread.h [doxygen]
o Thread.inl
o Thread_Manager.cpp
o Thread_Manager.h [doxygen]
o Thread_Manager.inl
o Token.cpp
o Token.h [doxygen]
o Token.inl

[Config]

o config.h
o Basic_Types.cpp
o Basic_Types.h
o Basic_Types.inl
o Version.h

[Connection]

o Acceptor.cpp
o Acceptor.h [doxygen]
o Acceptor.inl
o Asynch_Acceptor.cpp
o Asynch_Acceptor.h [doxygen]
o Asynch_Acceptor.inl
o Asynch_IO.cpp
o Asynch_IO.h
o Asynch_IO.inl
o Connector.cpp
o Connector.h [doxygen]
o Connector.inl
o Dynamic_Service.cpp
o Dynamic_Service.h [doxygen]
o Dynamic_Service.inl
o Strategies.cpp
o Strategies.h
o Strategies.inl
o Strategies_T.cpp
o Strategies_T.h
o Strategies_T.inl

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch_Options.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch_Options.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Synch__Options.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch_Options.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch_T.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Synch_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Thread.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Thread.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Thread.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Thread.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Thread_Manager.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Thread_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Thread__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Thread_Manager.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Token.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/config.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Basic_Types.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Basic_Types.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Basic_Types.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Version.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Asynch_Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Asynch_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Asynch__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Asynch_Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Asynch_IO.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Asynch_IO.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Asynch_IO.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dynamic_Service.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dynamic_Service.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Dynamic__Service.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dynamic_Service.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Strategies.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Strategies.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Strategies.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Strategies_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Strategies_T.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Strategies_T.inl

 67

o Svc_Handler.cpp
o Svc_Handler.h [doxygen]
o Svc_Handler.inl

[IPC]
[IO_SAP]

 IO_SAP.cpp
 IO_SAP.h [doxygen]
 IO_SAP.inl

[DEV_SAP]
 DEV.cpp
 DEV.h [doxygen]
 DEV.inl
 DEV_Connector.cpp
 DEV_Connector.h [doxygen]
 DEV_Connector.inl
 DEV_IO.cpp
 DEV_IO.h [doxygen]
 DEV_IO.inl
 TTY_IO.cpp
 TTY_IO.h [doxygen]

[FILE_SAP]

 FILE.cpp
 FILE.h [doxygen]
 FILE.inl
 FILE_Connector.cpp
 FILE_Connector.h [doxygen]
 FILE_Connector.inl
 FILE_IO.cpp
 FILE_IO.h [doxygen]
 FILE_IO.inl

[IPC_SAP]

 IPC_SAP.cpp
 IPC_SAP.h [doxygen]
 IPC_SAP.inl

[Addr]
 Addr.cpp
 Addr.h [doxygen]
 Addr.inl
 DEV_Addr.cpp
 DEV_Addr.h [doxygen]
 DEV_Addr.inl
 FILE_Addr.cpp
 FILE_Addr.h [doxygen]
 FILE_Addr.inl

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Handler.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Handler.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Svc__Handler.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Handler.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IO_SAP.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IO_SAP.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__IO__SAP.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IO_SAP.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__DEV.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__DEV__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_IO.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_IO.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__DEV__IO.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_IO.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TTY_IO.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TTY_IO.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__TTY__IO.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FILE.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FILE__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_IO.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_IO.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FILE__IO.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_IO.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IPC_SAP.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IPC_SAP.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__IPC__SAP.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IPC_SAP.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Addr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Addr.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_Addr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__DEV__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DEV_Addr.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_Addr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FILE__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FILE_Addr.inl

 68

 INET_Addr.cpp
 INET_Addr.h [doxygen]
 INET_Addr.inl
 SPIPE_Addr.cpp
 SPIPE_Addr.h [doxygen]
 SPIPE_Addr.inl
 UNIX_Addr.cpp
 UNIX_Addr.h [doxygen]
 UNIX_Addr.inl
 UPIPE_Addr.h [doxygen]

[FIFO_SAP]

 FIFO.cpp
 FIFO.h [doxygen]
 FIFO.inl
 FIFO_Recv.cpp
 FIFO_Recv.h [doxygen]
 FIFO_Recv.inl
 FIFO_Recv_Msg.cpp
 FIFO_Recv_Msg.h [doxygen]
 FIFO_Recv_Msg.inl
 FIFO_Send.cpp
 FIFO_Send.h [doxygen]
 FIFO_Send.inl
 FIFO_Send_Msg.cpp
 FIFO_Send_Msg.h [doxygen]
 FIFO_Send_Msg.inl

[SOCK_SAP]

 LOCK_SOCK_Acceptor.cpp
 LOCK_SOCK_Acceptor.h [doxygen]
 LSOCK.cpp
 LSOCK.h [doxygen]
 LSOCK.inl
 LSOCK_Acceptor.cpp
 LSOCK_Acceptor.h [doxygen]
 LSOCK_Acceptor.inl
 LSOCK_CODgram.cpp
 LSOCK_CODgram.h [doxygen]
 LSOCK_CODgram.inl
 LSOCK_Connector.cpp
 LSOCK_Connector.h [doxygen]
 LSOCK_Connector.inl
 LSOCK_Dgram.cpp
 LSOCK_Dgram.h [doxygen]
 LSOCK_Dgram.inl
 LSOCK_Stream.cpp
 LSOCK_Stream.h [doxygen]

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/INET_Addr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/INET_Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__INET__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/INET_Addr.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Addr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SPIPE__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Addr.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UNIX_Addr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UNIX_Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__UNIX__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UNIX_Addr.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Addr.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__UPIPE__Addr.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FIFO.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Recv.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Recv.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FIFO__Recv.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Recv.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Recv_Msg.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Recv_Msg.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FIFO__Recv__Msg.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Recv_Msg.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Send.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Send.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FIFO__Send.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Send.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Send_Msg.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Send_Msg.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__FIFO__Send__Msg.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/FIFO_Send_Msg.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LOCK_SOCK_Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LOCK_SOCK_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LOCK__SOCK__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LSOCK.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LSOCK__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_CODgram.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_CODgram.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LSOCK__CODgram.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_CODgram.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LSOCK__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Dgram.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Dgram.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LSOCK__Dgram.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Dgram.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Stream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Stream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__LSOCK__Stream.html

 69

 LSOCK_Stream.inl
 SOCK.cpp
 SOCK.h [doxygen]
 SOCK.inl
 SOCK_Acceptor.cpp
 SOCK_Acceptor.h [doxygen]
 SOCK_Acceptor.inl
 SOCK_CODgram.cpp
 SOCK_CODgram.h [doxygen]
 SOCK_CODgram.inl
 SOCK_Connector.cpp
 SOCK_Connector.h [doxygen]
 SOCK_Connector.inl
 SOCK_Dgram.cpp
 SOCK_Dgram.h [doxygen]
 SOCK_Dgram.inl
 SOCK_Dgram_Bcast.cpp
 SOCK_Dgram_Bcast.h [doxygen]
 SOCK_Dgram_Bcast.inl
 SOCK_Dgram_Mcast.cpp
 SOCK_Dgram_Mcast.h [doxygen]
 SOCK_Dgram_Mcast.inl
 SOCK_IO.cpp
 SOCK_IO.h [doxygen]
 SOCK_IO.inl
 SOCK_Stream.cpp
 SOCK_Stream.h [doxygen]
 SOCK_Stream.inl

[SPIPE_SAP]

 SPIPE.cpp
 SPIPE.h [doxygen]
 SPIPE.inl
 SPIPE_Acceptor.cpp
 SPIPE_Acceptor.h [doxygen]
 SPIPE_Acceptor.inl
 SPIPE_Connector.cpp
 SPIPE_Connector.h [doxygen]
 SPIPE_Connector.inl
 SPIPE_Stream.cpp
 SPIPE_Stream.h [doxygen]
 SPIPE_Stream.inl

[TLI_SAP]

 TLI.cpp
 TLI.h [doxygen]
 TLI.inl
 TLI_Acceptor.cpp

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/LSOCK_Stream.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_CODgram.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_CODgram.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__CODgram.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_CODgram.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__Dgram.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram_Bcast.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram_Bcast.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__Dgram_Bcast.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram_Bcast.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram_Mcast.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram_Mcast.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__Dgram__Mcast.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Dgram_Mcast.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_IO.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_IO.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__IO.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_IO.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Stream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Stream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SOCK__Stream.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SOCK_Stream.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SPIPE.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SPIPE__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SPIPE__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Stream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Stream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SPIPE__Stream.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SPIPE_Stream.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__TLI.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Acceptor.cpp

 70

 TLI_Acceptor.h [doxygen]
 TLI_Acceptor.inl
 TLI_Connector.cpp
 TLI_Connector.h [doxygen]
 TLI_Connector.inl
 TLI_Stream.cpp
 TLI_Stream.h [doxygen]
 TLI_Stream.inl

[UPIPE_SAP]

 UPIPE_Acceptor.cpp
 UPIPE_Acceptor.h [doxygen]
 UPIPE_Acceptor.inl
 UPIPE_Connector.cpp
 UPIPE_Connector.h [doxygen]
 UPIPE_Connector.inl
 UPIPE_Stream.cpp
 UPIPE_Stream.h [doxygen]
 UPIPE_Stream.inl

[Misc]

 IOStream.cpp
 IOStream.h [doxygen] [doxygen]
 IOStream_T.inl
 Pipe.cpp
 Pipe.h [doxygen]
 Pipe.inl
 Signal.cpp
 Signal.h
 Signal.inl

[Logging and Tracing]

o Dump.cpp
o Dump.h
o Dump_T.cpp
o Dump_T.h
o Log_Msg.cpp
o Log_Msg.h [doxygen]
o Log_Msg.inl
o Log_Priority.h
o Log_Record.cpp
o Log_Record.h [doxygen]
o Log_Record.inl
o Trace.cpp
o Trace.h [doxygen]
o Trace.inl

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__TLI__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__TLI__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Stream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Stream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__TLI__Stream.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/TLI_Stream.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Acceptor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Acceptor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__UPIPE__Acceptor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Acceptor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Connector.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Connector.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__UPIPE__Connector.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Connector.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Stream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Stream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__UPIPE__Stream.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/UPIPE_Stream.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IOStream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IOStream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__IOStream.html
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__IOStream_T.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IOStream_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Pipe.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Pipe.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Pipe.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Pipe.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Signal.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Signal.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Signal.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dump.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dump.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dump_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dump_T.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Msg.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Msg.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Log__Msg.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Msg.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Priority.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Record.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Record.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Log__Record.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Log_Record.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Trace.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Trace.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Trace.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Trace.inl

 71

[Memory]
[Mem_Map]

 Mem_Map.cpp
 Mem_Map.h [doxygen]
 Mem_Map.inl

[Shared_Malloc]

 Malloc.cpp
 Malloc.h [doxygen]
 Malloc.inl
 Malloc_T.cpp
 Malloc_T.h
 Malloc_T.inl
 Memory_Pool.cpp
 Memory_Pool.h
 Memory_Pool.inl

[Shared_Memory]

 Shared_Memory.h [doxygen]
 Shared_Memory_MM.cpp
 Shared_Memory_MM.h [doxygen]
 Shared_Memory_MM.inl
 Shared_Memory_SV.cpp
 Shared_Memory_SV.h [doxygen]
 Shared_Memory_SV.inl

[Utils]

 Obstack.cpp
 Obstack.h [doxygen]
 Read_Buffer.cpp
 Read_Buffer.h [doxygen]
 Read_Buffer.inl

[Misc]

o ARGV.cpp
o ARGV.h [doxygen]
o ARGV.inl
o Auto_Ptr.cpp
o Auto_Ptr.h
o Auto_Ptr.inl
o Date_Time.cpp
o Date_Time.h [doxygen]
o Date_Time.inl
o Dynamic.cpp
o Dynamic.h [doxygen]

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Mem_Map.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Mem_Map.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Mem__Map.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Mem_Map.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Malloc.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Malloc.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Malloc.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Malloc.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Malloc_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Malloc_T.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Malloc_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Memory_Pool.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Memory_Pool.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Memory_Pool.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Shared__Memory.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory_MM.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory_MM.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Shared__Memory__MM.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory_MM.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory_SV.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory_SV.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Shared__Memory__SV.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Memory_SV.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Obstack.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Obstack.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Obstack.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Read_Buffer.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Read_Buffer.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Read__Buffer.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Read_Buffer.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/ARGV.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/ARGV.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__ARGV.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/ARGV.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Auto_Ptr.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Auto_Ptr.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Auto_Ptr.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Date_Time.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Date_Time.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Date__Time.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Date_Time.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dynamic.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dynamic.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Dynamic.html

 72

o Dynamic.inl
o Get_Opt.cpp
o Get_Opt.h [doxygen]
o Get_Opt.inl
o Registry.cpp
o Registry.h [doxygen]
o Singleton.cpp
o Singleton.h [doxygen]
o Singleton.inl
o System_Time.cpp
o System_Time.h [doxygen]

[Name_Service]

o Local_Name_Space.cpp
o Local_Name_Space.h [doxygen]
o Local_Name_Space_T.cpp
o Local_Name_Space_T.h [doxygen]
o Name_Proxy.cpp
o Name_Proxy.h [doxygen]
o Name_Request_Reply.cpp
o Name_Request_Reply.h
o Name_Space.cpp
o Name_Space.h [doxygen]
o Naming_Context.cpp
o Naming_Context.h [doxygen]
o Registry_Name_Space.cpp
o Registry_Name_Space.h [doxygen]
o Remote_Name_Space.cpp
o Remote_Name_Space.h [doxygen]

[OS Adapters]

o ACE.cpp
o ACE.h [doxygen]
o ACE.inl
o OS.cpp
o OS.h [doxygen]
o OS.inl

[Reactor]

o Event_Handler.cpp
o Event_Handler.h [doxygen]
o Event_Handler.inl
o Event_Handler_T.cpp
o Event_Handler_T.h [doxygen]
o Event_Handler_T.inl
o Handle_Set.cpp
o Handle_Set.h [doxygen]

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Dynamic.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Get_Opt.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Get_Opt.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Get__Opt.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Get_Opt.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Registry.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Registry.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Registry.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Singleton.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Singleton.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Singleton.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Singleton.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/System_Time.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/System_Time.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__System__Time.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Name_Space.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Name_Space.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Local__Name__Space.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Name_Space_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Name_Space_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Name__Options.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Name_Proxy.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Name_Proxy.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Name__Proxy.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Name_Request_Reply.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Name_Request_Reply.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Name_Space.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Name_Space.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Name__Space.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Naming_Context.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Naming_Context.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Naming__Context.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Registry_Name_Space.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Registry_Name_Space.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Registry__Name__Space.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Remote_Name_Space.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Remote_Name_Space.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Remote__Name__Space.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/ACE.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/ACE.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/namespaceACE.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/ACE.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/OS.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/OS.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/namespaceACE__OS.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/OS.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Event_Handler.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Event_Handler.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Event__Handler.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Event_Handler.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Event_Handler_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Event_Handler_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Event__Handler__T.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Event_Handler_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Handle_Set.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Handle_Set.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Handle__Set.html

 73

o Handle_Set.inl
o Priority_Reactor.cpp
o Priority_Reactor.inl
o Priority_Reactor.h [doxygen]
o Proactor.h [doxygen]
o Proactor.inl
o Proactor.cpp
o Reactor.cpp
o Reactor.h [doxygen]
o Reactor.inl
o Reactor_Impl.h [doxygen]
o Select_Reactor.cpp
o Select_Reactor.h
o Select_Reactor.inl
o WFMO_Reactor.cpp
o WFMO_Reactor.h [doxygen]
o WFMO_Reactor.inl
o XtReactor.cpp
o XtReactor.h [doxygen]

[Service_Configurator]

o DLL.cpp
o DLL.h [doxygen]
o Parse_Node.cpp
o Parse_Node.h [doxygen]
o Parse_Node.inl
o Service_Config.cpp
o Service_Config.h [doxygen]
o Service_Config.inl
o Service_Manager.cpp
o Service_Manager.h [doxygen]
o Service_Manager.inl
o Service_Object.cpp
o Service_Object.h [doxygen]
o Service_Object.inl
o Service_Repository.cpp
o Service_Repository.h [doxygen]
o Service_Repository.inl
o Service_Types.cpp
o Service_Types.inl
o Service_Types.h
o Shared_Object.cpp
o Shared_Object.h [doxygen]
o Shared_Object.inl
o Svc_Conf.h
o Svc_Conf_l.cpp
o Svc_Conf_y.cpp
o Svc_Conf_Tokens.h

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Handle_Set.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Priority_Reactor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Priority_Reactor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Priority_Reactor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Priority__Reactor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Proactor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Proactor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Proactor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Proactor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Reactor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Reactor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Reactor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Reactor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Reactor_Impl.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Reactor__Impl.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Select_Reactor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Select_Reactor.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Select_Reactor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/WFMO_Reactor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/WFMO_Reactor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__WFMO__Reactor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/WFMO_Reactor.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/XtReactor.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/XtReactor.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__XtReactor.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DLL.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/DLL.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__DLL.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Parse_Node.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Parse_Node.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Parse__Node.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Parse_Node.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Config.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Config.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Service__Config.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Config.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Manager.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Service__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Manager.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Object.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Object.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Service__Object.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Object.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Repository.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Repository.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Service__Repository.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Repository.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Types.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Types.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Service_Types.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Object.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Object.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Shared__Object.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Shared_Object.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Conf.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Conf_l.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Conf_y.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Svc_Conf_Tokens.h

 74

[Streams]

o IO_Cntl_Msg.cpp
o IO_Cntl_Msg.h [doxygen]
o IO_Cntl_Msg.inl
o Message_Block.cpp
o Message_Block.h [doxygen]
o Message_Block.inl
o Message_Queue.cpp
o Message_Queue.h [doxygen]
o Message_Queue.inl
o Message_Queue_T.cpp
o Message_Queue_T.h
o Message_Queue_T.inl
o Module.cpp
o Module.h [doxygen]
o Module.inl
o Stream.cpp
o Stream.h [doxygen]
o Stream.inl
o Stream_Modules.cpp
o Stream_Modules.h
o Stream_Modules.inl
o Task.cpp
o Task.h [doxygen]
o Task.inl
o Task_T.cpp
o Task_T.h
o Task_T.inl

[System_V_IPC]
[System_V_Message_Queues]

 SV_Message.cpp
 SV_Message.h [doxygen]
 SV_Message.inl
 SV_Message_Queue.cpp
 SV_Message_Queue.h [doxygen]
 SV_Message_Queue.inl
 Typed_SV_Message.cpp
 Typed_SV_Message.h [doxygen]
 Typed_SV_Message.inl
 Typed_SV_Message_Queue.cpp
 Typed_SV_Message_Queue.h [doxygen]
 Typed_SV_Message_Queue.inl

[System_V_Semaphores]

 SV_Semaphore_Complex.cpp
 SV_Semaphore_Complex.h [doxygen]

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IO_Cntl_Msg.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IO_Cntl_Msg.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__IO__Cntl__Msg.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/IO_Cntl_Msg.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Block.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Block.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Message__Block.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Block.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Queue.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Queue.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Message__Queue.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Queue.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Queue_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Queue_T.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Message_Queue_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Module.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Module.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Module.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Module.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Stream.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Stream.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Stream.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Stream.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Stream_Modules.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Stream_Modules.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Stream_Modules.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Task.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Task.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Task.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Task.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Task_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Task_T.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Task_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Message.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Message.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SV__Message.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Message.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Message_Queue.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Message_Queue.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SV__Message__Queue.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Message_Queue.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Typed_SV_Message.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Typed_SV_Message.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Typed__SV__Message.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Typed_SV_Message.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Typed_SV_Message_Queue.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Typed_SV_Message_Queue.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Typed__SV__Message__Queue.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Typed_SV_Message_Queue.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Semaphore_Complex.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Semaphore_Complex.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SV__Semaphore__Complex.html

 75

 SV_Semaphore_Complex.inl
 SV_Semaphore_Simple.cpp
 SV_Semaphore_Simple.h [doxygen]
 SV_Semaphore_Simple.inl

[System_V_Shared_Memory]

 SV_Shared_Memory.cpp
 SV_Shared_Memory.h [doxygen]
 SV_Shared_Memory.inl

[Timers]

o High_Res_Timer.cpp
o High_Res_Timer.h [doxygen]
o High_Res_Timer.inl
o Profile_Timer.cpp
o Profile_Timer.h [doxygen]
o Profile_Timer.inl
o Time_Request_Reply.cpp
o Time_Request_Reply.h
o Time_Value.h [doxygen]
o Timer_Hash.cpp
o Timer_Hash.h
o Timer_Hash_T.cpp
o Timer_Hash_T.h [doxygen]
o Timer_Heap.cpp
o Timer_Heap.h
o Timer_Heap_T.cpp
o Timer_Heap_T.h [doxygen]
o Timer_List.cpp
o Timer_List.h
o Timer_List_T.cpp
o Timer_List_T.h [doxygen]
o Timer_Queue.cpp
o Timer_Queue.h
o Timer_Queue.inl
o Timer_Queue_Adapters.cpp
o Timer_Queue_Adapters.h
o Timer_Queue_Adapters.inl
o Timer_Queue_T.cpp
o Timer_Queue_T.h [doxygen]
o Timer_Queue_T.inl
o Timer_Wheel.cpp
o Timer_Wheel.h
o Timer_Wheel_T.cpp
o Timer_Wheel_T.h [doxygen]

[Token_Service]

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Semaphore_Complex.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Semaphore_Simple.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Semaphore_Simple.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SV__Semaphore__Simple.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Semaphore_Simple.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Shared_Memory.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Shared_Memory.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__SV__Shared__Memory.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/SV_Shared_Memory.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/High_Res_Timer.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/High_Res_Timer.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__High__Res__Timer.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/High_Res_Timer.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Profile_Timer.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Profile_Timer.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Profile__Timer.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Profile_Timer.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Time_Request_Reply.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Time_Request_Reply.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Time_Value.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Time__Value.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Hash.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Hash.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Hash_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Hash_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Timer__Hash__T.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Heap.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Heap.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Heap_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Heap_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Timer__Heap__T.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_List.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_List.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_List_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_List_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Timer__List__T.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue_Adapters.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue_Adapters.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue_Adapters.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Timer__Queue__T.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Queue_T.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Wheel.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Wheel.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Wheel_T.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Timer_Wheel_T.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Timer__Wheel__T.html

 76

o Local_Tokens.cpp
o Local_Tokens.h
o Local_Tokens.inl
o Remote_Tokens.cpp
o Remote_Tokens.h
o Remote_Tokens.inl
o Token_Collection.cpp
o Token_Collection.h [doxygen]
o Token_Collection.inl
o Token_Manager.cpp
o Token_Manager.h [doxygen]
o Token_Manager.inl
o Token_Request_Reply.cpp
o Token_Request_Reply.h
o Token_Request_Reply.inl
o Token_Invariants.h
o Token_Invariants.inl
o Token_Invariants.cpp

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Tokens.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Tokens.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Local_Tokens.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Remote_Tokens.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Remote_Tokens.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Remote_Tokens.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Collection.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Collection.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Token__Collection.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Collection.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Manager.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Manager.h
http://www.dre.vanderbilt.edu/Doxygen/Current/html/ace/classACE__Token__Manager.html
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Manager.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Request_Reply.cpp
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Request_Reply.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Request_Reply.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Invariants.h
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Invariants.inl
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ace/Token_Invariants.cpp

	Giris.doc
	ABSTRACT

	Bolum1-Baslik.doc
	 INTRODUCTION

	Bolum1.doc
	Bolum2-baslik.doc
	CHAPTER TWO
	OBJECT ORIENTED FRAMEWORKS CONCEPTS

	Bolum2.doc
	2.1 Main Framework Concepts
	2.1.1 Abstract and Concrate Class
	2.1.2 Hot Spots and Frozen Spots
	2.1.2.1 Template Method Pattern
	2.1.2.2 Template and Hook Methods

	2.1. 3 Compasition and Inheritence
	2.1.3.1 Composition
	2.1.3.2 Inheritences

	2.2 A Classification of Frameworks
	2.2.1 White Box Frameworks and Black Box Frameworks
	2.2.1.1 White Box Frameworks
	2.2.1.2 Black Box Framework

	Bolum3-baslik.doc
	BUILDING OBJECT ORIENTED FRAMEWORKS
	3.1 Design Process

	Bolum3.doc
	3.1 Framework Development Techniques
	3.2.1 Classical Buttom Up Iteration
	3.2.2 Top Down Development
	
	3.2.2.2 Design Patterns
	3.2.2.2.1 Composite Design Pattern

	Bolum4-baslik.doc
	 OBJECT ORIENTED FRAMEWORK EXAMPLES

	Bolum4.doc
	Bolum5-baslik.doc
	CHAPTER FIVE
	CONCLUSION

	Bolum5.doc
	References.doc
	REFERENCES

	Appendices.doc
	APPENDICES

