

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

CONTROLLING A NON-HOLONOMIC VEHICLE
VIA ARTIFICIAL NEURAL NETWORKS

by

Aytaç GÖREN

November, 2007

IZMIR

CONTROLLING A NON-HOLONOMIC VEHICLE

VIA ARTIFICIAL NEURAL NETWORKS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in

Mechanical Engineering, Machine Theory and Dynamics Program

by

Aytaç GÖREN

November, 2007

IZMIR

iii

ACKNOWLEDGMENTS

Firstly, I would like to thank to my supervisor Prof. Dr. Erol UYAR for

supervising as flexible as possible so that I could have the chance of widening not

only the scope of this research but also my research areas.

I would also like to thank Assist. Prof. Dr. Zeki KIRAL and Assist. Prof. Dr.

Zafer DİCLE for their help with valuable suggestions and discussions during

periodical meetings of this research and Prof. Dr. Georgi M. DIMIROVSKI for his

valuable suggestions in expressing research results of DS-Theory which I presented

in IFAC DECOM-TT ‘07.

I would also like to thank Faz Elektrik A.Ş. for supporting me by giving the base

and motors of the model.

Special thanks are also extended to Osman KORKUT for his extraordinary effort

of helping me in experiments, Cuma POLAT for building the mechanical model, my

colleagues Levent ÇETIN and Özgün BAŞER for their encouragements and helping

for finding solutions for problems, Necdet YILDIZ, Mustafa DAL, M. Rıfat AKAL

for helping me in building the motor drivers, Abdullah ADIYAN, Eyüp

KERVANCIOĞLU for helping me in building the 3D model and producing the real

model, Prof. Dr - Ing. Ernst SCHNEIDER, Mrs. SCHNEIDER, P. VIEHHAUSER

and Z. LEPOJEWITSCH for their encouragement in writing my thesis. I am still

remembering them very clearly saying ‘close your eyes and straight go!’

 I want to dedicate my thesis to my wife Meltem GÖREN, my mother Gülsüm

GÖREN and my father İsmail GÖREN for their unlimited patience through this

project. Without their encouragements, it was not possible for me to motivate myself

during hard working hours and days.

Aytaç GÖREN

iv

CONTROLLING A NON-HOLONOMIC VEHICLE VIA
ARTIFICIAL NEURAL NETWORKS

ABSTRACT

The use of learning autonomous robots is inevitable in modern production technologies.

Modern industries require efficient production, précised measuring and robust control

systems due to the hard competition of perfect product manufacturing whereas human

wants more comfort in life. Various kinds of robot vehicles for various tasks have been

developing increasingly not only in production industry but also in daily life.

In this research, a vehicle model with four wheels is built and equipped with actuators,

different types of sensors, communication devices, data acquisition and control units in

Automatic Control Laboratory of Mechanical Engineering Department of Dokuz Eylul

University. On this developed autonomous wheeled mobile robot model, Dempster-Shafer

evidence theory is tested at first step in means of sensor fusion for having more reliable

data from sensors.

Fuzzy logic and most types of artificial neural networks architectures which are popular

on autonomous mobile robots are explained starting with basic equations and control

parameters, revealing the advantages of ANNs use on autonomous mobile robots in second

chapter of this thesis. Chapter three covers the kinematic analysis of mobile robot model. It

is the fourth chapter, in which the experimental data and results are demonstrated. The

conclusion part, which is named as chapter five, is the part in which the results are

evaluated in not only in means of technical or scientific research but also in means of daily

life use.

Keywords: Artificial neural networks, autonomous mobile robots, wheeled mobile robots,

non-holonomic vehicles, fuzzy logic, Dempster-Shafer Theory.

v

HOLONOMİK OLMAYAN ARAÇLARIN YAPAY SİNİR AĞLARI İLE
KONTROLÜ

ÖZ

Öğrenebilen otonom robotların modern üretim teknolojilerinde kullanımı kaçınılmazdır.

Modern endüstriler, mükemmel mamül üretim yarışı içerisinde hızlı ve verimli üretim,

hassas ölçme ve sağlam kontrolü gerektirirken; insan da günlük hayatta daha fazla komfor

aramaktadır. Değişik görevler için değişik çeşit robot araçlar sadece üretim endüstrisinde

değil, günlük hayatta da hızla ortaya çıkmaktadır.

Bu araştırmada, dört tekerlekli bir araç modeli Dokuz Eylül Üniversitesi Makina

Mühendisliği Bölümü Otomatik Kontrol Laboratuvarı’nda üretilmiş ve üzerine hareket

elemanları, çeşitli algılayıcılar, iletişim cihazları, veri toplama ve kontrol üniteleri

yerleştirilmiştir. Üretilen bu otonom tekerlekli gezgin robot modelinde ilk aşamada sensör

füzyonu ve algılayıcılardan daha güvenilir veri alma konusunda Dempster-Shafer teoremi

denenmiştir.

Otonom gezgin robotlarda sıklıkla kullanılan bulanık mantık ve yapay sinir ağları

mimarileri temel denklem ve kontrol parametrelerinden başlanılarak, gezgin robotlarda

YSA kullanımının avantajları ortaya konularak bu tezin ikinci bölümünde anlatılmıştır.

Üçüncü bölümde gezgin robot modelinin kinematik analizine yer verilmiştir. Dördüncü

bölümde ise deneysel veriler ve spnuçlar gösterilmiştir. Bölüm beş olarak adlandırılan

sonuç bölümünde sadece teknik ve bilimsel araştırma açısından değil, günlük hayatta

kullanım açısından da değerlendirilmiştir.

Anahtar Sözcükler: Yapay sinir ağları, otonom gezgin robotlar, tekerlekli gezgin robotlar,

holonomic olmayan araçlar, bulanık mantık, Dempster-Shafer Teoremi.

 vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS... iii

ABSTRACT... iv

ÖZ ... v

CHAPTER ONE – INTRODUCTION…………………………………………………...1

1.1 Introduction …………………………………………………………………………1

1.2 Artificial Neural Networks ………………………………………………………….2

1.2.1 Types of ANNs ………………………………………………………………...4

1.2.2 Learning Types in ANNs ……………………………………………………..5

1.2.2.1 Unsupervised Learning ………………………………………………….5

1.2.2.2 Supervised Learning ……………………………………………………..5

1.2.2.3 Reinforcement Learning ………………………………………………….5

1.2. 3. Autonomous Mobile Robots ………………………………………………….6

1.2. 3.1 Autonomous Mobile Robot Model ………………………………………8

1.2. 4. ANNs Applications in Autonomous Mobile Robots ……………………… 9

1.2.4.1 Application of Sensor Data Directly to ANNs…………………………. 10

1.2. 4.2 Image Processing with ANNs on AMRs …………………………….. 11

1.2.4.3. Approximation to Optimal Path Following and Obstacle Avoidance … 12

CHAPTER TWO-FUZZY LOGIC AND ARTIFICIAL NEURAL NETWORKS …15

2.1 Dempster – Shafer Theory and Sensor Fusion …………………………………… 15

2.2 Artificial Neural Networks ………………………………………………………. 16

2.2.1 Types of Artificial Neural Networks ………………………………………… 20

2.2.2 Learning Types in Artificial Neural Networks ……………………………….20

2.2.2.1 Unsupervised Learning …………………………………………………. 20

2.2.2.2 Supervised Learning ……………………………………………………. 20

2.2.2.3 Reinforcement Learning ………………………………………………... 21

2.2.3 Types of Connections in Artificial Neural Networks ……………………...... 21

2.2.4 Architectures and Learning Paradigms in Artificial Neural Networks ……….23

2.2.4.1 Hopfield Model ………………………………………………………… 23

 vii

2.2.4.2 The Perceptron Model …………………………………………………...24

2.2.4.3 Cellular Neural Networks Model ………………………………………..25

2.2.4.4 Winner Takes All Model ………………………………………………...27

2.2.4.5 Back-Propagation Model ………………………………………………. 27

2.2.4.6 McCulloch-Pitts Model ………………………………………………….28

2.2.4.7 Adaptive Resonance Theory (ART) Model ……………………………..29

2.2.4.8 Radial Basis Function (RBF) Model …………………………………….30

2.2.4.9 Widrow-Hoff Model (ADALINE and MADALINE) …………………...32

2.2.4.10 Kohonen (Self Organizing Map- SOM) Model ……………………….. 33

2.2.4.11 Learning Vector Quantization (LVQ) Model …………………………. 34

2.2.4.12 Boltzmann Machines ………………………………………………….. 36

2.2.4.13 Hebbian Learning Rule …………………………………………………38

2.2.4.14 Principal Component Analysis …………………………………………39

2.3 Fuzzy Logic ………………………………………………………………………..40

2.3.1 Introduction …………………………………………………………………...40

2.3.2 Membership Function ………………………………………………………...40

2.3.3 Fuzzy Logic Control …………………………………………………………. 41

2.3.3.1 Fuzzy Logic Operations ………………………………………………... 41

2.3.3.2 Control ………………………………………………………………….. 43

CHAPTER THREE AUTONOMOUS NON-HOLONOMIC MOBILE ROBOTS..48

3.1 Non-Holonomic Vehicles ………………………………………………………….48

3.2 Autonomous Wheeled Mobile Robots ……………………………………………. 49

3.3 Dead Reckoning …………………………………………………………………... 53

3.4 Architecture of Autonomous Wheeled Mobile Robots ……………………………54

3.4.1 Mobile Robot Navigation ……………………………………………………. 55

3.5 Braitenberg Vehicles ……………………………………………………………… 56

CHAPTER FOUR SYSTEM AND EXPERIMENTS …………………………………58

4.1 Kinematics of the Experimental Mobile Robot ……………………………………58

4.2 Experimental System Model ……………………………………………………… 60

4.2.1 Ultrasonic Sensors for Navigation …………………………………………... 61

4.2.1.1 Ultrasonic Sensors Installation …………………………………………. 62

4.2.2 Wireless Communications on Model …………………………………………64

 viii

4.2.2.1 Radio Frequency Modems ……………………………………………… 64

4.2.2.2 Bluetooth ………………………………………………………………... 65

4.2.2.3 Wireless Network ………………………………………………………. 66

4.2.3 Motors and Drivers …………………………………………………………. 67

4.2.3.1 Motors of the Research Model ………………………………………….. 67

4.2.3.2 Motor Drivers …………………………………………………………... 68

4.2.4 Controllers and Input – Output Cards ………………………………………...69

4.2.4.1 PC104: Embedded Computer on the Mobile Robot Model ……………..69

4.2.4.2 Microcontrollers on the Mobile Robot Model …………………………...71

4.3 Block Diagrams …………………………………………………………………… 72

4.3.1 First Models of the Robot …………………………………………………….72

4.3.2 Control of the System ………………………………………………………... 72

4.4 Dempster – Shafer Evidence Theory Experiments ……………………………….. 74

4.5 Fuzzy Logic Experiments (Find Target) ………………………………………….. 77

4.5.1 Fuzzy Logic Controller Experiment 1 ………………………………………. 77

4.5.2 Fuzzy Logic Controller Experiment 2 ………………………………………. 81

4.5.3 Fuzzy Logic Controller Experiment 3 ………………………………………. 82

4.5.4 Fuzzy Logic Controller Experiment 4 ………………………………………. 85

4.5.5 Fuzzy Logic Controller Experiment 5 ………………………………………. 87

4.6 Artificial Neural Networks Experiments (Find Empty Space) …………………… 89

4.6.1 ANN and Fuzzy Logic Combined Experiments ……………………………..91

CHAPTER FIVE - CONCLUSION …………………………………………….....103

 5.1 Overview …………………………………………………………………………103

5.2 Conclusions About Control Techniques and Future Work ………………………103

REFERENCES …………………………………………………………………………106

APPENDICES ………………………………………………………………………….110

Appendix 1 – Nomenclature .. 110

Appendix 2 – Abbreviations ...112

Appendix 3 – Definitions in Computer Networks ..114

Appendix 4 – Schematics ...119

Appendix 5 – Programs ..129

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

It is the starting point of a hard target to build a robot that can decide. However, it

is harder to build a robot that can sense environment and decide. The aim of most of

the autonomous mobile robots is to move towards the target without any help from a

man and without hitting any obstacle around using its own decision mechanism.

Since the parameters which affect decision mechanism are variable, it is a great

advantage for the control unit of an AMR to have learning skill.

The most important advantage of the use of artificial neural networks on AMR is

the increase of the flexibility of adaptation of control algorithm in varying

environment conditions. In other words, the main advantage of using ANN in mobile

robots is the ability of developing solutions for changing environment and limitations

problem. For instance, robot can complete its tasks in not only the predefined

environments and conditions or in the workspace that is recorded in the memory but

also in totally changed conditions without using huge environmental data in memory.

In solving the two main problem of finding free space in workspace and finding the

shortest way to target problem, many different ANN techniques are being used

(Janglova, 2004; Hamdi, A.A. & Al-Zorkany, M.A., 2004).

ANN analysis and solutions techniques have been used in industrial applications

in last years. Some application fields are: Production planning, optimization of

production for increasing productivity in various conditions with changing

parameters, process monitoring, modeling and control researches (Lennox, B.,

Montague, G. A., Frith, A. M., Gent, C., Bevan, V., 2001).

2

1.2 Artificial Neural Networks

Human nerve cell consists of four parts: 1. Dendrite, the part which accepts

inputs, 2. Soma, the part that process inputs, 3. Axon, the part which changes inputs

into outputs, 4. Synapse, the part that carries the data to the next cell (Figure 1.1).

Artificial Neural Networks (ANN) are the control methods those are inspired from

biological neuron and its parts. Each input (X1, X2, …, Xn) is connected to a certain

cell or a cell (s) which is selected after process with a weight that defines the

connection strength or the influence of a neuron to the next one. Weights (W1, W2,

…, Wn) change to optimal values in program cycles during training period. Thus, the

convenient output(s) is (are) obtained. In other words, the ANN learned. In equations

below you may see the output of ANN, output with feedback, error and updated

weight value respectively. In equations, di is the desired value, yi is the output value,

η is the learning rate and δi is the local slope.

 Figure 1.1 Parts of a biological nerve cell (neuron).

; w. x f(x)
n

0
ii∑

=

=
i

 i= 0, 1, 2, ..., N (1.1)

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

n

i
iiii xwfy

1
)(θ ; i= 0, 1, 2, ..., N (1.2)

ei (n)=di(n)-yi (n) (1.3)

wij(n+1)=wij(n)+ηδi(n)xj(n) (1.4)

3

ANNs models are generally simple mathematical models those define f: X → Y.

ANNs have also disadvantages in applications. Time need in training period, more

upgraded hardware need than generally for processing, more complex than classical

methods are some clues which show that ANNs methods are not the optimal solution

for every control problem. Some application fields of ANNs in AMR are:

Classification, image and sound data processing, non-linear mapping, optimization,

coordination of robot parts and associative memory applications.

Figure 1.2 Artificial Neuron 1(feedback)

 Figure 1.3 Artificial Neuron 2

4

1.2.1 Types of ANNs

The two main criterions for classification of ANNs are whether the ANN has

feedforward or feedback and whether the ANN is supervised or unsupervised (Mori,

H., Tamaru, Y., Tsuzuki, S. 1992). Some ANN algorithm types can be seen in Table

1.1

Table 4.1. Classification of ANN algorithms.

 Recurrent Feedforward

U
ns

up
er

vi
se

d ART (Adaptive Resonance
Theory), Hopfield, Bidirectional

associative memory (BAM),
Trilateral associative memory

(TAM), Boltzmann Machine (can
be also supervised),...

Linear associative memory,
Fuzzy Associative Memory

(FAM), LVQ, CPN, SOM, ...

Su
pe

rv
is

ed

Fuzzy Cognitive Map (FCM),
Boltzmann Machine (can be also

unsupervised),
...

Backpropagation (BP), Adaline,
Perceptron, ...

Figure 1.4 Artificial Neural Networks

5

1.2.2 Learning Types in ANNs

1.2.2.1 Unsupervised Learning

It is learning with doing. Without any interference, the neurons in hidden layer

organize themselves. No sample output according to relevant input is given to the

network.

1.2.2.2 Supervised Learning

If the desired output value is y and network output is o , the difference between y

and o is the error value. Error value is used to update the weights in supervised

learning. Desired output values are connected to input values and are given as

vectors to the network. These sample values matrix is called as training set.

1.2.2.3 Reinforcement Learning

It is also a type of supervised learning. Neurons in hidden layer are random

connected to each other. Approximation to solution of the problem is the main

evaluation criteria. There can be a training data set or a performance observer.

Table 1.2 Learning types in ANN

Supervised Unsupervised Reinforcement

In addition to the ANN types above, in some problem solutions supervised and

unsupervised learning are combined (Janglova, 2004).

ANN

 w
x

Critical
Signal

generator

y

Reinforcement
signal

Critic
signal

ANN

w
x y

ANN

w
x

Signal
error

generator

d
e

y

6

1.2. 3. Autonomous Mobile Robots

An autonomous mobile robot is a robot which is moving and changing its

workspace aiming to complete its tasks in limitations of the rules given or the rules it

develops. The mobile robots which are studied in this research are wheeled mobile

robots.

In kinematic analysis of mobile robots, there are four main differences for

kinematic analysis of robot manipulators (Muir, 1986).

• Stationary manipulators only form closed chains when they are contact with

fixed objects whereas; wheeled mobile robots form many closed chains at the

same time.

• The contact between a wheel and plane forms a higher-pair, but stationary

manipulators contain only lower-pair joints.

Figure1.5 Some AMR models in this research.

7

• In wheeled mobile robots, only some degrees of freedom of a wheel are

actuated. However, all DOFs of each joint of a stationary manipulator has at

least one actuator.

• Each joint in stationary manipulator has position and velocity sensors. In

wheeled mobile robots, only some degrees of freedom of a wheel have position

or velocity sensors.

Left and right motor velocity equations of a four wheeled mobile robot whose two

wheels are actuated can be seen in figure below.

Figure.1.6 Velocities of left and right motors of the mobile robot model in this research.

r: Dynamic radius of wheel [m],

R: Radius of curvature, [m],

L: Distance between the middles of two front wheels [m],

v: Linear velocity of the mobile robot, [m/s],

vR (t): Linear velocity of the right front wheel, [m/s],

vL (t): Linear velocity of the left front wheel, [m/s],

θ: Heading angle, [rad],

w (t): Angular velocity in z coordinate of the mobile robot, [rad/s],

{Xh, Yh}: Moving coordinate axes,

{Xs, Ys} : Stationary coordinate axes.,

Ys

Xs

Yh
Xh

θ M

x

y

L

R

vL(t)

vR(t)

8

1.2. 3.1 Autonomous Mobile Robot Model

Autonomous mobile robots in this research are heeled mobile robots which can

perform their tasks without guidance of human.

If the structure of a mobile robot is studied many external or internal sensors and

sensor data, lots of priority levels in algorithm regarding the task priorities should be

studied. But generally, interaction of mobile robot with three concepts can be seen.

These are user, object and environment (Kopacek, 2006). In Figure 1.7, structure of

an autonomous mobile robot can be seen. Extracting some blocks, this structure can

be used also for an open loop controlled mobile robot. Of course when it is open loop

controlled, it is not classified as autonomous. In Table 1.3, the paradigm of an

autonomous mobile robot movement is demonstrated (Murphy, R.R., 2000).

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(

10
0)(sin
0)(cos

)(
)(
)(

tw
tv

t
t

t
ty
tx

θ
θ

θ&
&

&

 (1.5)

Figure 1.7 Structure of a mobile robot.

Robot

Object

User

Security
System

Energy Supply

Driver

End
Effector

Handling
Arm

Control

Sensors

Payload
Module

Mobile
Platform

MMI

Environment and Peripheral

9

Table 1.3. Movement mechanism of an autonomous mobile robot.

Movement Input Output

Sense Sensors Sensor Data

Plan Data (sensed and/or logic) Commands

Do Sensed data or commands Actuators

1.2. 4. ANNs Applications in Autonomous Mobile Robots

Starting point of ANNs applications study can be simulation programs. MatLab

NN toolbox and NN blockset, BrainCom, Stuttgart University’s SNNS, EasyNN-

Plus are some examples. In simulations or in programming basic steps to ANN study

is:

• Determination of number of inputs, initial values of weights (some types do

not need), number and types of outputs, number of layers.

• Training period.

• When the ANN achieves the desired values, it is tested.

• If it is convenient, it is used. If it is not, training and testing periods are

repeated. If it is needed convenient changes are made and steps are repeated.

Most researches need more than simulations. In this case, if there is a NN library

in the programming language, which will be used, it can be an advantage. Fast

Artificial Neural Networks library is one of the widespread libraries. It not only has

different versions for different programming languages (GCC, C++, .NET, Perl, PHP

…), but also has different versions for different operating systems (Linux, MacOS,

POSIX, Windows …). In figure below, FANN Explorer, the interface for FANN can

be seen.

10

1.2.4.1 Application of Sensor Data Directly to ANNs

ANNs can be applied in all stages of movement paradigm of AMR. For instance,

in sense stage ANNs can be used to have more reliable data from sensors; in

planning stage, they can be used to find free space or path or for mapping and in

doing stage, they can be used to solve non-linearity problems or finding optimal

operating conditions.

In sensing stage, for the purpose of having reliable data, some theories like,

Dempster-Shafer can be applied (Gören, A., Uyar, E., Dicle, Z., 2007). In Figure 1.9,

dividing regions as for having data from sensors with priority levels can be seen.

ANNs have some advantages in applications in sensing stage based on ‘behaving

more sensible for the sensor that is stimulated before’. Each sensor data can be

accepted as each neuron input. Taking into consideration of heading angle,

limitations and target coordinates, weights can increase or decrease. In result of this,

AMR can act more optimal. In sensing stage, ANNs also can be used to have reliable

data.

Figure 1.8 Interface of FANN library and FANN explorer

11

1.2. 4.2 Image Processing with ANNs on AMRs

Realtime image processing is one of the popular techniques which are used on

mobile robots. AMR can detect an object from environment, map surround, classify

objects, head towards a target, detect motion, detect the distance from an object or

associate information with an object via image processing, On the other hand,

realtime image processing code in control algorithm should be fast and should not

make the behavior of the robot clumsy. In this case, cellular neural networks can be

a solution method. Instead of taking into consideration of the whole data in an image,

using just some important data in a region of an image the same result can be found.

CNN (cellular neural networks) use this information. Using CNN, control algorithm

becomes faster and AMR does not need advanced control unit hardware. So,

realtime image processing on an AMR can be processed without high cost of control

unit and without any slowness that is caused by image processing. Linux operating

systems (Slackware, RT Linux, Debian, Fedora, etc…) with realtime kernel and

‘comedi drivers’ can be a very effective choice not only for low cost realtime control

and also for developing open source codes.

Figure 1.9 Sensor installations and regions on model

12

Structure of CNN and definition as equations can be seen below.

1.2.4.3. Approximation to Optimal Path Following and Obstacle Avoidance

One part of researches on WMR is finding the optimal path. Using classical

methods or Fuzzy Logic in AMR control isn’t the optimum solution especially in

adaptation to different environments. Path to the target can be quite longer,

movements of AMR may have discontinuity or because of long rule lists, the

decision mechanism, consequently, the robot can be slow.

If it is considered that the velocities of the wheels of WMRs is simply dependent

to the path following function of the robot. Therefore, a discontinuity on the path,

which means also a discontinuity in velocity functions and also means high

acceleration and deceleration values. In Figure 1.11, types of path curves can be

seen. Equation 1.9, 1.10, 1.11 and 1.12 denote velocities of left and right side motors.

Figure 1.10. CNN Structure (Sum, Dynamic part and activation).

()11
2
1

−−+= kkk xxy (1.6)

∑ ∑
∈ ∈

+++−=
Nk Nk

kkkk zubyaxx 11& (1.7)

IB*uA*y(X)XX +++−=& (1.8)

13

r(s), is the radius of curvature at s and κ (s) is the curvature at s. θ is the angle

between the stationary coordinate axis and the tangent of the curve at point P.

In Figure 1.11, class 0 type curve is a discontinuous curve whereas a continuous

curve is in class 1. In addition to continuity of the curve, if the direction tangent is

also continuous it is a class 2 type curve. And in addition to all, if it has also

curvature continuity, it is a class 3 type curve. Class 3 type curve is the optimal path

following curve in most of the problems. And it is hard for an AMR to act in a class

3 type ways, especially in not known environments. However, using modern control

κ (s) = r(s)-1 (1.9)

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
)(.1 sL

L
κνν (1.10)

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
)(.1 sL

R
κνν (1.11)

)(
2

)(

sr

Lsr
R

+
=νν (1.12)

Figure 1.11 Class 0, class 1, class 2 and class 3 curve types.

P

θ

s =
sδ

δθκ

Class 0

Class 1

Class 2

Class 3

14

techniques like ANNs in AMR, the path for the robot can be smoother. Another point

that has to be considered is that the performance criterion for an AMR is quite

different than a stationary manipulator. Path or function following of a stationary

manipulator is generally considers how accurate the ideal theoretical curve is

followed whereas path following for an AMR generally means how successful, fast,

optimal, accurate and how intelligent the tasks are completed. ANNs use is

important for this reason.

In this research, some ANNs usage applications in AMR is explained with basic

equations and control parameters revealing the advantages of ANNs use on

autonomous mobile robots.

15

CHAPTER TWO

FUZZY LOGIC AND ARTIFICIAL NEURAL NETWORKS

2.1 Dempster – Shafer Theory and Sensor Fusion

Let X is universal set and P(X) is the set of all possible subsets of X, including the

empty set, ø, in other words the power set. The mass of the empty set is zero;

The mass of a given member of the power set, A , expresses the proportion of all

relevant and available evidence that supports the claim that the actual state belongs to

A but to no particular subset of A and denoted by , m(A) .

From the mass assignments, the upper and lower bounds of a probability interval

can be defined. This interval is bounded by two non-additive continuous measures

called belief (or support) and plausibility:

The sum of all the masses of subsets of the set of interest is the belief of a set and

denoted by bel (A).

Whereas the plausibility is the sum of all the masses of the sets that intersect the

set of interest:

m(ø)=0 (2.1)

∑
∈

=
)(

)(1
XPA

Am (2.2)

∑
≠∩

=
ø|

)()(
ABB

BmApl (2.3)

∑
⊆

=
ABB

BmAbel
|

)()((2.4)

∑
≠∩

=
ø|

)()(
ABB

BmApl (2.5)

 16

Dempster’s rule of combination is a generalization of Bayes rule that emphasizes

the agreement between multiple sources and ignores all the conflicting evidence

through a normalization factor.

In equations 8 and 9, K is a measure of the amount of conflict between the two

mass sets whereas the normalization factor (1-K), has the effect of completely

ignoring conflict and attributing any mass associated with conflict to the null set.

To have more reliable data from sensors, sometimes sensory data or data derived

from sensory data from disparate sources are combined. The reason is that resulting

information is in some sense more accurate or more dependable than would be

possible when these sources were used individually. This is called sensor fusion.

2.2 Artificial Neural Networks

For many scientists, artificial neural networks research started in 1943, when

Warren McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts,

wrote a paper on how neurons might work and modeled a simple neural network

with electrical circuits. Donald Hebb wrote The Organization of Behavior in 1949.

The important point in this book was pointing out that neural pathways are

strengthened each time that they are used. Nathanial Rochester from the IBM

research laboratories led the first effort to simulate a neural network in 1950’s. But,

)(1)(AbelApl −= (2.6)

m1,2 (ø)=0 (2.7)

∑
≠=∩−

=
 ø

212,1)()(
1

1)(
ACB

CmBm
K

Am (2.8)

∑
=∩

=
 ø

21)()(
CB

CmBmK (2.9)

 17

this attempt failed. . In 1956 the Dartmouth Summer Research Project on Artificial

Intelligence provided a boost to both artificial intelligence and neural networks. In

the years following the Dartmouth Project, John von Neumann suggested imitating

simple neuron functions by using telegraph relays or vacuum tubes. Frank

Rosenblatt, a neuro-biologist of Cornell, began work on the Perceptron. He was

intrigued with the operation of the eye of a fly. Much of the processing which tells a

fly to flee is done in its eye. The Perceptron, which resulted from this research, was

built in hardware and is the oldest neural network still in use today. A single-layer

perceptron was found to be useful in classifying a continuous-valued set of inputs

into one of two classes. The perceptron computes a weighted sum of the inputs,

subtracts a threshold, and passes one of two possible values out as the result.

Unfortunately, the perceptron is limited and was proven as such during the

"disillusioned years" in Marvin Minsky and Seymour Papert's 1969 book

Perceptrons. It is 1959 that Bernard Widrow and Marcian Hoff developed models

and called ADALINE and MADALINE (Multiple ADAptive LINear Elements).

Eliminating echoes on phone lines, MADALINE was the first neural network to be

applied to a real world problem. But, until John Hopfield of Caltech presented a

paper to the national Academy of Sciences and Teuva Kohonen presented Self-

Organizing Maps in 1982, the years passed without any success in application, but

just frustration because of the insufficient computers. Hopfield's approach was not to

simply model brains but to create useful devices. (History of Neural Networks, n.d.).

Inspiration of Artificial Neural Networks research is the human brain. Similar to

biological neural networks, simple processing elements are called neurons. Each

neuron is connected to certain of its neighbors with varying coefficients of

connectivity. These coefficients are called as weights and represent the strengths of

these connections. The most popular advantage for artificial neural networks is

learning. Learning is accomplished by adjusting these weights to cause the overall

network to output appropriate results. Collective and synergistic computation,

asynchronous operation, robustness are other characteristics of ANNs. Intelligent

machines, parallel processing, distributed computing, learning, generalization,

 18

adaptation are some terms which are popular and mostly related with artificial neural

networks.

Biological neuron consists of four parts:

i. Dendrite, the part which accepts inputs,

ii. Soma, the part that process inputs,

iii. Axon, the part which changes inputs into outputs,

iv. Synapse, the part that carries the data to the next cell (Figure 2.1).

If we compare the parts of biological and artificial neurons, the dendrite in

biological neuron is input in artificial neuron, synaptic efficacy is weight, excitation

level is noise (u) and signal in biological neuron is output in artificial neuron

(Dohnal, V., Kuca, K. & Jun, D., 2005).

Each input (X1, X2, …, Xn) is connected to a certain cell or a cell (s) which is

selected after process with a weight that defines the connection strength or the

influence of a neuron to the next one. Weights (W1, W2, …, Wn) change to optimal

values in program cycles during training period. Thus, the convenient output(s) is

(are) obtained. In other words, the ANN learned. In equations below you may see the

output of ANN, output with feedback, error and updated weight value respectively.

In equations, di is the desired value, yi is the output value, η is the learning rate and δi

is the local slope.

 Figure 2.1. Parts of biological nerve cell (The Major Structures of the Neuron, n.d.) and artificial
 neurons.

 19

; w. x f(x)
n

0
ii∑

=

=
i

 i= 0, 1, 2, ..., N (2.10)

ANNs models are generally simple mathematical models those define f: X → Y. In

Figures 2.2 and Figure 2.3 you may see examples of structures of artificial neural

networks.

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

n

i
iiii xwfy

1
)(θ ; i= 0,1, 2, ..., N (2.11)

ei (n)=di(n)-yi (n) (2.12)

wij(n+1)=wij(n)+ηδi(n)xj(n) (2.13)

 Figure 2.2 Artificial neuron model 1(feedback)

 Figure 2.3 Artificial neuron model 2

 20

2.2.1 Types of Artificial Neural Networks

The two main criterions for classification of ANNs are whether the ANN has

feedforward or recurrent and whether the ANN is supervised or unsupervised (Mori,

H., Tamaru, Y., Tsuzuki, S. 1992). Some ANN algorithm types can be seen in Table

2.1.

Table 2.1 Classification of algorithms of ANNs .

 Recurrent Feedforward

U
ns

up
er

vi
se

d ART (Adaptive Resonance
Theory), Hopfield, Bidirectional
associative memory (BAM),
Trilateral associative memory
(TAM), Boltzmann Machine (can
be also supervised),...

Linear associative memory, Fuzzy
Associative Memory (FAM), LVQ,
CPN, SOM, ...

Su
pe

rv
is

ed
 Fuzzy Cognitive Map (FCM),

Boltzmann Machine (can be also
unsupervised),

...

Backpropagation (BP), Adaline,
Perceptron, ...

2.2.2 Learning Types in Artificial Neural Networks

2.2.2.1 Unsupervised Learning

It is learning with doing. Without any interference, the neurons in hidden layer

organize themselves. No sample output according to relevant input is given to the

network.

2.2.2.2 Supervised Learning

If the desired output value is d and network output is y, the difference between d

and y is e, the error value. Error value is used to update the weights in supervised

learning. Desired output values are connected to input values and are given as

vectors to the network. These sample values matrix is called as training set.

 21

2.2.2.3 Reinforcement Learning

It is also a type of supervised learning. Neurons in hidden layer are random

connected to each other. Approximation to solution of the problem is the main

evaluation criteria. There can be a training data set or a performance observer.

Reinforcement learning and unsupervised learning have the relative disadvantage of

slowness and inefficiency relying on random shuffling to find the proper weights.

In addition to the ANN types above, in some problem solutions supervised and

unsupervised learning are combined (Janglova, 2004). For some literature, there are

some other learning types in addition to the three types above. Some of these are:

Associative recall, competitive learning, delta rule, Hebbian learning, gradient

descend rule (Kartalopoulos, 1996, Şenol, 2002).

2.2.3 Types of Connections in Artificial Neural Networks

Connections between layers in ANNs can be fully or partially, feed forwarded, bi-

directional, hierarchical connected or limited with certain conditions (resonance).

Table 2.2 Connections between neurons.

Interlayer connections Intralayer Connections

Fully
Connected

Each neuron in previous layer is
connected to the every neruon in next

layer
Partially

Connected
Not all neuron has to be connected to

all neurons in next layer.

Feedforward Neurons in previous layer send data to
the neurons in next layer.

Recurrent

Neurons in a layer are fully
or partially connected to each
other. After receiving inputs
from neurons of other layers,
they send data to each other
before sending data to other

layers.

Bi-
directional

Neurons in previous layer send data to
the neurons in next layer and vice

versa.

Hierarchical
Neurons of a lower layer can only

communicate with the next level layer
neurons.

Resonance
Neurons have bidirectional connection

and they continue to communicate
until a certain condition is achieved.

On-center
/ off

surround

Neighbor neurons
communicate with each other

and update their weights
before sending output to

other layer neurons.

 22

Table 2.3 Some activation functions.

Step Function
(unipolar)

Step Function
(bipolar) Step Function with Bias

Piecewise-linear Function
Sigmoidal Function
(Logistic Function)

(unipolar)

Sigmoidal Function
(bipolar)

Hyperbolic Tangent Function Radial Basis Function Identity Function

1
1tanh 2

2

+
−

= x

x

e
ex

)(2

)(axexf −=

xxf =)(

 23

2.2.4 Architectures and Learning Paradigms in Artificial Neural Networks

2.2.4.1 Hopfield Model

Hopfield network is a single layer, symmetrically weighted autoassociative fully

connected network. The network takes two-valued activations bipolar (+1,-1) or

binary (0, 1). See equation (2.14) and equation (2.15). Mathematical analysis is

easier with bipolar inputs. Hopfield model is described in terms of an energy

function (Equation 2.16).

The Hopfield neural network is a simple artificial network which is able to store

certain memories or patterns. The full pattern can be recovered if the network is

presented with only partial information. Because of this feature, it is similar to the

brain. Training a Hopfield net involves lowering the energy of states. The net serves

as a content addressable memory system, so if it is given only part of the state, the

network will converge to a remembered state. Hopfield model can be seen in Figure

2.4.

 Figure 2.4 Hopfield Model

 24

An activation function is simply a function that is used to introduce nonlinearity

to the network. The choice of activation function can change the behavior of the

ANN considerably. Some activation functions can be seen in Table 2.2.

2.2.4.2 The Perceptron Model

The perceptron is invented in 1957 at the Cornell Aeronautical Laboratory by

Frank Rosenblatt. It can be seen as the simplest kind of feedforward, supervised

neural network. The perceptron is a kind of linear binary classifier that maps its

inputs x to an output value f(x). x is a binary vector whereas f(x) is a single binary

value. It is calculated as:

Figure 2.5 Perceptron model.

⎩
⎨
⎧

<
≥

=
0net if 0
0net if 1

f(net) (2.14)

⎩
⎨
⎧

<
≥

==
0net if 1-
0net if 1

)sgn(f(net) net (2.15)

∑∑ ∑
≠

+−=
ji i

iijiij ssswE τ
2
1

 (2.16)

 25

The Hopfield Net is a neural network that is a lot simpler to understand than the

Multi Layer Perceptron.

2.2.4.3 Cellular Neural Networks Model

Cellular neural networks (CNN) are a parallel computing paradigm defined in

discrete N-dimensional spaces. Communication is only allowed between neighbor

units. There are two templates for iteration; control template and feedback template.

CNN paradigm was first proposed by Chua and Yang in 1988. The two most

fundamental ingredients of the CNN paradigm are: The use of analog processing

cells with continuous signal values and local interaction within a finite radius (Destri,

G., n.d.; Moser, 1998). Architecture of CNN can be seen in Figure 2.8.

()11
2
1

−−+= kkk xxy (2.18)

∑ ∑
∈ ∈

+++−=
Nk Nk

kkkk zubyaxx 11& (2.19)

IB*uA*y(X)XX +++−=& (2.20)

CNN architecture and block-scheme of a generical CNN iteration can be seen in

Figure 2.8.

⎩
⎨
⎧ >+⋅

=
se el

bx if w
f(net)

0
01

 (2.17)

 Figure 2.6 Multi layer perceptron.

 26

Figure 2.7 4x4 cellular neural network model.

Figure 2.8 Block-scheme of a generical CNN iteration and architecture of CNN

 (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3)

 (1,4)

 (2,4)

 (3,4)

 (4,1) (4,2)

 (4,4)

 27

2.2.4.4 Winner Takes All Model

Winner-takes-all (WTA) network is an unsupervised competitive learning network.

The desired output vector in winner-takes-all model has a single active unit because

the output nodes are said to compete with each other to be the one to fire (see Figure

2.9). An input vector (X) is applied to all nodes; the best response is declared the

inner according to the winner selection criterion below,

2.2.4.5 Back-Propagation Model

The backpropagation algorithm was first introduced in 1974 by Paul Werbos in

his Ph. D. Thesis. Back propagation neural networks are one of the most common

neural network structures. The back propagation algorithm uses feedforward

supervised learning. It is simple and effective. The network receives inputs by

neurons in the input layer, and the output of the network is given by the neurons on

an output layer. The training begins with random weights, and the goal is to adjust

them so that the error will be minimal. There may be one or more intermediate

yn =max (wn X); i=1,2,…,N (2.21)

∆wn(k+1)= wn(k)+ η(k)(x-wn) (2.22)

Figure 2.9 Winner-takes-all model with node 2 winning

1

2

3

x1

x2

x3

y

 28

hidden layers. Character recognition is one of the most popular applications of

BPNNs.

 Figure 2.10 Backpropagation algorithm applied one layer feedforward neural network

2.2.4.6 McCulloch-Pitts Model

The early model of an artificial neuron or the threshold logic unit first proposed

by Warren McCulloch and Walter Pitts in 1943. It is a neuron of a set of inputs x1,

x2, x3, ..., xn and one output y. The inputs and outputs are both binary. The linear

threshold gate simply classifies the set of inputs into two different classes. Thus, the

output y is also binary.

As a transfer function, it employs a threshold or Heaviside step function taking on

the values 1 or 0 only. Model equation can be seen as equation 2.24 and model can

be seen in Figure 2.11.

⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

n

i
jijij bxwy

1
σ (2.23)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

N

j
iijiji bwxfy

1

)((2.24)

1

2

3 3

2

1

Hidden Layer Input Layer Output Layer

y1

y2

y3

x1

x2

x3

 29

2.2.4.7 Adaptive Resonance Theory (ART) Model

Adaptive Resonance Theory (ART) is a neural network architecture developed by

Stephen Grossberg in 1976. It was developed to solve the instability problem of

feedforward systems. The basic ART system is an unsupervised learning model, a

vector classifier. It accepts a vector as input and classifies it into a category

depending on the stored pattern it most closely resembles. If the input pattern is

found, it is trained to resemble the input vector. If the input vector does not match

any stored pattern within a certain tolerance, then a new category is created by

storing a new pattern similar to the input vector.

There are different types of adaptive resonance theory models. ART1 performs

unsupervised learning for binary input patterns. The ART1 architecture has two

layers: The input - comparison layer with N nodes and output - recognition layer

with M nodes. Output layer of ART1 model is a winner-takes-all layer. ART2 is

modified to handle both analog and binary input patterns. ART3 performs parallel

searches of distributed recognition codes in a multilevel network hierarchy.

ARTMAP combines two ART modules to perform supervised learning whereas

fuzzy ARTMAP represents a synthesis of elements from fuzzy logic, neural

networks, and expert systems.

 Figure 2.11 McCulloch-Pitts model

 30

 2.2.4.8 Radial Basis Function (RBF) Model

A radial basis function network is an artificial neural network which uses radial

basis functions as activation functions. It is a classification and function

approximation algorithm. If the architecture of the radial basis function studied (see

Figure 2.13), there are no connection weights between input layer and hidden layer.

The weights are between hidden layer and output layer. RBF may be used to simulate

the nonlinear relationship between the sensors measurement and the ideal output

value (Noguchi, 1997).

 Figure 2.12 Adaptive resonance theory model

∑
=

=
m

j
jj xhwxf

1
)()((2.25)

Vigilance test

 31

RBF has three layers: Input layer, hidden layer and output layer. The input layer is

fully connected to hidden layer. Hidden layer consists of units those are activated by

radial basis activation functions. In Table 2.3, some activation functions can be seen.

Equation 2.29 is the output of the RBF model.

Table 2.4 Commonly used RB activation function types

Name Equation

Gaussian))(exp()(2

2

r
cxxh −

−=

Multiquadric
r

cxr
xh

22)(
)(

−+
=

Euclidean distance r

Thin plate splines ,...,,mrr m 642 ; log =
Smooth splines rm ; m=1,3,5,…

Figure 2.13 Radial basis function network architecture. The weights are
between hidden and output layers.

 32

2.2.4.9 Widrow-Hoff Model (ADALINE and MADALINE)

ADALINE (adaptive linear element, adaptive linear neuron) was developed by

Professor Bernard Widrow and his graduate student Ted Hoff at Stanford University

in 1960. It is similar to McCulloch-Pitts neuron. This model is supervised and

feedforward. It is a single neuron whose weights are updated according to LMS

(Least Mean Square) algorithm. The LMS algorithm is an adaptive algorithm that

computes adjustments of the neuron synaptic weights.

 Figure 2.14 Adaline architecture.

 ∑
=

+=
n

i
ii wxy

1

θ (2.26)

)()()()1(nxnnwnw iii η+=+ (2.27)

x0

x3

+1 -1

x2
w1

w2

w3

Σ

w0

hard limit.
f=sgn(y)

+1
-1

y=sgn(wTx)

x1

nonlinear

quantizer

Σ

-

Desired
value: T

+

EAdaptive
Alg.

Actual
Value: R

Supervisor

R=wTx

 33

Using equations (2.27) is another form of equation (2.13) with the slope value of

1. Δwi is the synaptic adjustment value and can simply obtained from equation (2.27)

as)()(nxn iη . In Figure 2.14 a detailed model of ADALINE may be seen.

MADALINE (multiple ADALINE) is a solution to nonlinear separation problem

(see Figure 2.15). MADALINE has two types: MADALINE I is a multiple

ADALINE with single output whereas MADALINE II has multiple outputs.

2.2.4.10 Kohonen (Self Organizing Map- SOM) Model

Self organizing map is a feedforward unsupervised network. A Kohonen network

is composed of a grid of output units and N input units. The input pattern is fed to

each output unit with weights. These weights are initialized as small random

numbers. A set of artificial neurons learn to map points in an input space to

coordinates in an output space. SOM is called a topology-preserving map because

there is a topological structure imposed on the nodes in the network. A topological

 Figure 2.15 Madaline I architecture. MADALINE I is a multiple ADALINE with single output.

x0

x2

Σ

w10

y

x1

+

Weight update

algorithm

u1 f=sgn(y)

f=sgn(y)

Logic
Function

d

- -

u2

Σ

w20

w11

w21

w12

w22

 34

map is simply a mapping that preserves neighborhood relations. The goal is to train

the net so that nearby outputs correspond to nearby inputs.

Linear vector quantization net and SOM net are similar to each other since both

have a single layer of nodes and use a distance metric to find the output node closest

to input pattern. SOM uses equation (2.28) to find the closest distance and equation

(2.29) to update the weights.

2.2.4.11 Learning Vector Quantization (LVQ) Model

Learning Vector Quantization is a supervised feedforward net which is developed

by Teuvo Kohonen, like SOM algorithm. It is a modified SOM algorithm for

classification. It has one hidden layer of neurons, fully connected with the input

layer. The weights of the network are changed by the network in order to classify the

 Figure 2.16 SOM conventional feature mapping architecture.

∑
−

=

−=
1

0

2))()((
N

i
ijij twtxd (2.28)

))()1()(()()1(twtxttwtw ijiijij −++=+ η (2.29)

w11

wmn

x1 xn

m

w2n

2
1

wm1

w1n

w12

 35

data correctly. LVQ LVQ1, OLVQ1 (Optimized Learning Vector Quantization 1),

LVQ2.1, LVQ3, OLVQ3 are some different types of LVQ’s. LVQ algorithms do not

approximate density functions of class samples. Using a nearest-neighbor rule and a

winner takes all paradigm, they directly define class boundaries based on prototypes.

Some application areas for LVQ algorithms are: Pattern recognition, multi-class

classification and data compression tasks. LVQ architecture can be seen in Figure

2.17.

 Figure 2.17 LVQ architecture

LVQ1 paradigm is as follows (Van Laerhoven, K., 1999):

i. mc is the codebook vector that is closest to the input x, so this will define the

classification of x,

i. Update the codebook vectors mi = mi(t) ,

ii. If x is classified correctly: mc(t+1) = mc(t) + η (t).[x(t) – mc(t)] ,

X1

X2

X3

u2

u1=||x-w||2

u4

u3

Hidden Layer Output Layer Input Layer

w11

W43

w23
y1

y2

Winner takes all

Codebook
vectors

1

0

 36

ii. If the classification is incorrect: mc(t+1) = mc(t) - η (t).[x(t) – mc(t)], and

mi(t+1) = mi(t) for i≠c.

For each input pattern, LVQ finds the output node with the best match to the

training pattern in training period. If the class of the training pattern differs from the

class of output node, it finds the next best match. If the next best match is the

appropriate class, LVQ moves the best match node farther from the training pattern.

The second version of LVQ adds a symmetric window of nonzero width between

two codebook vectors.

2.2.4.12 Boltzmann Machines

The Boltzmann Machine is an artificial neural network of units with an "energy"

defined for the network which is developed by Hinton and Sejnowski. It has

stochastic binary units, unlike Hopfield nets have. Some application fields of

Boltzmann Machines are: Combinatorial optimization, classification, and

association. The global energy, E, in Boltzmann Machines is:

Probability that a cell is in a given state depends on the synthetic temperature of

the system (Te):

Te
Ei i

e
p Δ

+
=+

1

1)1((2.31)

 ∑ ∑
<

+−=
ji i

iijiij ssswE τ (2.30)

 where
⎩
⎨
⎧

⎭
⎬
⎫

+
−

∈
1
1

si and wii=0; wij=wji .

pi(0)=1- pi(+1) (2.32)

 37

Boltzmann distribution can be seen in equation (2.33) and Boltzmann Machines

architecture can be seen in Figure 2.18.

 Figure 2.18 Architecture of Boltzmann Machines which is inspired from annealing in metallurgy.

Boltzmann learning is based upon a simulated annealing technique. Compared to

other learning algorithms such as backpropagation, BM is significantly slower. The

name and inspiration come from annealing in metallurgy, a technique involving

heating and controlled cooling of a material to increase the size of its crystals and

reduce their defects. The heat causes the atoms to become unstuck from their initial

positions (a local minimum of the internal energy) and wander randomly through

states of higher energy; the slow cooling gives them more chances of finding

configurations with lower internal energy than the initial one (Simulated Annealing,

2007).

∑
−

−

=
e

e

T
E

T
E

e

ep
β

α

β
α (2.33)

s=∑wixi+x0

Stochastic
response
unit;
output (s)
is (are)
either 1 or
0

w0

Bias input

w1

w2

wn

x1

x2

xn

y

 38

2.2.4.13 Hebbian Learning Rule

Hebbian learning rule is developed by D.O. Hebb in 1949. Hebb's original

proposal was worded as:

 When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A's efficiency, as one of the cells firing B, is

increased (Hebb, 1949, p. 62).

Hebbian learning is an unsupervised training algorithm in which the synaptic

weight is increased if both the source neuron and target neuron are active at the same

time.

where wij is the weight of the connection from neuron j to neuron i, n is the

dimension of the input vector, p the number of training patterns, and k
jx is the kth

input for neuron i. Hebbian learning rule is:

The discrete time standard Hebbian learning rule using energy function is:

The continuous time standard Hebbian learning rule is:

∑
=

=
p

k

k
j

k
iij xx

n
w

1

1
 (2.34)

)()()()1(tytxtwtw jiijij η+=+ (2.35)

[])()()()()1(kxkxkykwkw αμ −+=+ (2.36)

)(xyx
dt
dw αμ −= (2.37)

 39

2.2.4.14 Principal Component Analysis

Principal components analysis (PCA) is an artificial neural network technique

which is used to reduce multidimensional data sets to lower dimensions for analysis

(see Figure 2.19).

PCA is used to compress data, like image compressing. PCA can be also used as

finding free spaces on mobile robot control as it condenses the input data down to a

few principal components (Janglova, 2004).

The outputs of the PCA networks can be found using the equation below:

Some other models are: Restricted Coulomb Energy- RCE Model, Culbertson’s

Model, Encephalon Model, Logicon Projection Network- LPN Model, Probabilistic

RAM Model, Neural Accelerator Chip Model, Cerebellum Model Articulation

Controller (CMAC) Model, Memory Type Models, Probabilistic Neural Network –

∑
−

=

=
1

0

)()()(
p

i
iiji nxnwny j=0,1,2,…,m-1 (2.38)

 Figure 2.19 An application of ANN with one layer of principal component analysis.

Input Layer PCA Layer Hidden Layer Output Layer

y0

y1

y2

x0

x1

x2

x3

Σ

Σ

Σ

w11
w21

w33

 40

PNN Model, Time-Delay Neural Net (TDNN) Model, Linear Associative Memory

(LAM) Model, Cognitron and Neocognitron Models, Real-time Models.

2.3 Fuzzy Logic

2.3.1 Introduction

The concept of Fuzzy Logic (FL) has been introduced by Lotfi Zadeh (1965), a

professor at the University of California at Berkley. He presented fuzzy logic not as a

control methodology, but as a way of processing data. In contrast to binary classical

set memberships, fuzzy sets are sets whose elements have degrees of membership.

Fuzzy set theory was not applied to control systems until the 70's because of

insufficient small-computer capability.

Today, with the low cost use of microcomputers and microcontrollers, fuzzy logic

is a very effective solution in many control problems ranging from embedded micro-

controllers to personal computers as implemented in hardware, software or in both.

Providing a simple solution for a desired conclusion from noisy, ambiguous,

imprecise, or missing input information is the advantage of fuzzy logic. It can be

used in hardware, software, or a combination of both.

2.3.2 Membership Function

For any set A, a membership function on A is any function from A to the real unit

interval [0, 1]. For an element x of the fuzzy set A~ , the value μA (x) is called the

Figure 2.20 Memberships in crisp sets and in fuzzy sets.

4
0
%

 A

6
0
%

 B

4
5
%

 B

5
5
%

 C
 A

B

C
A B C

 41

membership degree of x in A~ . The value 0 means that x is not a member of the fuzzy

set whereas the value 1 means that x is fully a member of the fuzzy set. The values

between 0 and 1 characterize fuzzy members, which belong to the fuzzy set partially.

2.3.3 Fuzzy Logic Control

2.3.3.1 Fuzzy Logic Operations

The standard definitions in fuzzy logic as suggested by Prof. Zadeh are:

• Negate (negation criterion) : truth (not x) = 1.0 - truth (x)

• Intersection (minimum criterion): truth (x and y) = minimum (truth(x),

truth(y))

• Union (maximum criterion): truth (x or y) = maximum (truth(x), truth(y))

In order to clarify this, a few examples are given. Let A be a fuzzy interval

between 4 and 6 and B be a fuzzy number about 3. The corresponding figures are

shown below.

 Figure 2.21 Fuzzy set µA and fuzzy number µB

µA µB

1

1 1

1 2 3 4 5 6 7 8 2 3 4 5 6 7 8

 42

The figure below gives an example for a negation. The red line is the negation of

the fuzzy set µA, in other words µĀ.

The following figure shows the fuzzy set between 4 and 6 AND about 3 (red line).

The minimum criterion is used. Intersection of µA and µB is in plum color.

Finally, the Fuzzy set between 4 and 6 OR about 3 is shown in the next figure

(green line). The maximum criterion is used.

 Figure 2.22 Negation of µA

 Figure 2.23 µA , µB and intersection of µA and µB

 Figure 2.24 µA , µB and union of µA and µB

1

1

2 3 4 5 6 7 8

µA µB

µB∪ µB

1

1

2 3 4 5 6 7 8

µA µB

µB∩ µB

µĀ

1

1

2 3 4 5 6 7 8

µA

 43

These basic operations provide guidelines to construct more complex ones which

in turn can be used to create fuzzy machines. The following rules are common in

classical set theory and fuzzy set theory.

Table 2.5 Some rules which are applicable to classical set and fuzzy set theories.

De Morgans law:
BABA ∩=∩)(
BABA ∪=∪)(

Associativity
)()(CBACBA ∩∩=∩∩
)()(CBACBA ∪∪=∪∪

Commutativity
ABBA
ABBA

∪=∪
∩=∩

Distributivity)()()(CBBACBA ∩∪∩=∪∩

2.3.3.2 Control

Fuzzy logic control (FLC), which directly uses fuzzy rules, is the most important

application in fuzzy logic theory. It can be either open or closed loop control. There

is no learning in fuzzy control as in artificial neural networks, but if the main

criterion is time, fuzzy control can be a very effective solution even on mobile

robots. It is widely used on microcontrollers to force the control system to behave

more naturally. FLC block diagram can be seen in Figure 2.25.

Inverted pendulum and crane problems are very popular examples of fuzzy logic

control (Abdul Aziz, 1996; Becerikli, 2007; Schneider, 2007; Zhang, 1992). The

problem is to balance an inverted pendulum on a mobile platform that can move to

the left or to the right. The angle between the platform and the pendulum and the

angular velocity of this angle are chosen as the inputs of the system whereas the

speed of the platform is chosen as the corresponding output. FLC is also used in

some researches about mobile robots mainly guidance (Gharieb, 2000).

 44

Three steps are taken to create fuzzy logic control:

i. Fuzzification: Graphically description using membership functions.

Levels of output of the platform are defined by specifying the membership

functions for the fuzzy sets. These levels are named as high, medium, low,

etc… Similarly, the different angles between the platform and the

pendulum and the angular velocities of specific angles are also defined.

 Figure 2.25 Fuzzy logic control block diagram

 Figure 2.26 Fuzzification

Max Speed (+)

1
+ high

0 Max Speed (-)

+ low zero - low - high

Max Angle (+)

1

+ wide

0
Max Angle (-)

+narrow middle -narrow - wide

Max Angular
velocity(+)

1

+ high

0
Max Angular
Velocity (-)

+ low zero - low - high

Input Output

Fuzzy Rules (if > then)

Membership Functions

(i)
Fuzzification

(ii)
Fuzzy Inference

(iii)
Defuzzification

Crisp
output

Process

Crisp
input

 45

ii. Rule evaluation: Fuzzy logic rule evaluation from graphics. Second step

is to define the fuzzy rules. The fuzzy rules are a series of if-then

statements as mentioned before. These statements are usually derived by

an expert to achieve optimum results. Some examples of these rules are: If

angle is zero and angular velocity is zero then speed is also zero.

If angle is zero and angular velocity is low then the speed shall be low.

And so on. The full set of rules can be seen in the table below

Table 2.6 Control rules

 Velocity

NL NM ZR PM PL

NL NL NL NL NM NS

NM NL NL NM NS PS

NS NL NM NS PS PM

PS NM NS PS PM PL

PM NS PS PM PL PL

An
gl

e

PL PS PM PL PL PL

* ZR: Zero; NL: Negative Large; NM: Negative Medium; NS: Negative Small; PL: Positive Large;
PM: Positive Medium; PS: Positive Small.

After completing table, the next step is to describing regions with due to

desired output of the system (see Figure 2.27). Let us say the actual value

of the angle is the value at the point A in the angle graph and angular

velocity has the value of the point B in angular velocity graph. As for the

rule, ‘the strength of the output is as strong as the weakest component’,

using AND operator, the minimum value is taken for this area, so the

graph of the speed for this area can be seen also in Figure 2.27. If there is

more than one activated output for the same region, then the strongest one

prevails for the region. These operations are applied to all regions due to

desired behavior of the system. If first input is x1 in A1ij; second input is x2

 46

in A2ki and output is y in Om
i, rules for obtaining the region values are

equations (2.39) and (2.40).

μOm
i=min [μA1ji(x1), μA2ki(x2]) (2.39)

μOm

p&q(y)=max[min[μA1jp(x1), μA2kp(x2)],min[μA1jq(x1), μA2kq(x2)]} (2.40)

Figure 2.27 Describing regions for desired output

-narrow

Max Angle (+)

1

+ wide

0
Max Angle (-)

+narrow middle - wide

Max Angular
velocity(+)

1

+ high

0
Max Angular
Velocity (-)

+ low zero - low - high

A

B

0

0
A

B
Fuzzy Logic
Controller

Angle

Angular
Velocity

0.45

0.8

Λ
Speed

 47

iii. Defuzzification: Obtaining crisp results from rules. The values of the

speed due to regions are combined in a graph. An example graph can be

seen in Figure 2.28.

 Figure 2.28 Defuzzification stage in FLC design (output of the Fuzzy Logic Controller).

48

CHAPTER THREE

AUTONOMOUS NON-HOLONOMIC MOBILE ROBOTS

3.1 Non-Holonomic Vehicles

Nonholonomic conditions are assumed to be expressible as non-integrable

differential relations. The terminology was introduced by Hertz.

Non-holonomic constraint is defined in very different ways. One of them is: “A

non-holonomic constraint is expressed as a non-integrable equation involving

derivatives of the configuration parameters and it can not be reduced to equality

constraint on the position parameters.” (Dimirovski, 2000)

Non-holonomic means to have fewer controllable degrees of freedom then total

degrees of freedom. In other words, the outcome of a non-holonomic system is path

dependent and after its motion, it is not sure that the system will return to its original

position. For example, ordinary automobiles are nonholonomic systems. As a result

of this, they can not move to every direction in any moment. Ideal holonomic system

is a space craft in space (or a submarine in sea) which can move to any desired

direction. But, the mobile robots which can move to every desired direction on the

ground also called as holonomic mobile robots even they can not fly.

Omni-directional wheel Swedish wheel Forming holonomic wheel from
nonholonomic wheels

Figure 3.1 Some holonomic wheels and systems. Holonomic wheels are wheels with two degrees of
freedom. They are also known as omni-directional wheels or omni-wheels.

 49

Non-holonomic constraint of the model of this research is formed by non-steering

front wheels. Mobile robot rotates with the difference between left and right front

wheel velocities (see Figure 4.2). But, it is good to mention once more that this

constraint is for the motions in directions of X and Y axes; in other words, the robot

has no actuator for motion in the direction of Z axis.

3.2 Autonomous Wheeled Mobile Robots

Autonomous mobile robot is the robot which can change its location and move

sensible interacting with environment including objects and living things.

Autonomous motion has three stages: Sensing, planning and acting.

Figure 3.2 Autonomous wheeled nonholonomic mobile robot model in this research has four wheels.

 50

Kinematic modeling of a wheeled mobile robot is different than a stationary

manipulator. In kinematic modeling of stationary manipulators, the mechanisms are

low-pair whereas in wheeled mobile robots they are high-pair. Since Denavit-

Hartenberg Convention has some problems with multiple closed chains, Sheith –

Uicker Convention is used. The angular velocities of the wheels can be converted

directly into translational velocities along the surface which the wheels are on (Muir,

1986).

Wheeled mobile robots (WMR) have very huge amount of different types as in

number of wheels / actuators, dimensions or as tasks control types.

In kinematic analysis of mobile robots, there are four main differences for

kinematic analysis of robot manipulators (Muir, 1986).

i. Stationary manipulators only form closed chains when they are contact

with fixed objects whereas; wheeled mobile robots form many closed

chains at the same time.

ii. The contact between a wheel and plane forms a higher-pair, but stationary

manipulators contain only lower-pair joints.

Figure 3.3 In Sheth – Uicker notation, each joint has two coordinate systems
because of high kinematic pairs.

Link 1

Link 2

Link 3

W1

W2

Z2

Z3

 51

iii. In wheeled mobile robots, only some degrees of freedom of a wheel are

actuated. However, all DOF’s of each joint of a stationary manipulator has

at least one actuator.

iv. Each joint in stationary manipulator has position and velocity sensors. In

wheeled mobile robots, only some degrees of freedom of a wheel have

position or velocity sensors. Sheth-Uicker convention allows modeling the

higher-pair relationship between each wheel on the WMR and the floor.

Thus, the Sheth-Uicker convention is more suitable for finding

transformation matrix in analyzing kinematics of wheeled mobile robots.

Left and right front wheel velocity equations of a four wheeled mobile robot

whose two wheels are actuated can be seen in figure below. This is called

differentially driven mobile robot. The reference point is denoted with M in Figure

3.4. M is the middle point of the two front wheels. As mentioned before, only the

front wheels have motors.

 Figure 3.4 Velocities of left and right wheels of the mobile robot model in this research.

r: Dynamic radius of wheel [m],

R: Radius of curvature, instantaneous rotation radius or steer radius [m],

L: Distance between the middles of two front wheels [m],

Ys

Xs

Yh Xh

θ M

x

y

L

R

vL(t)

vR(t)

 52

v: Linear velocity of the mobile robot, [m/s],

vR (t): Linear velocity of the right front wheel, [m/s],

vL (t): Linear velocity of the left front wheel, [m/s],

θ: Heading angle, [rad],

w (t): Angular velocity in z coordinate of the mobile robot, [rad/s],

{Xh, Yh}: Moving coordinate axes,

{Xs, Ys} : Stationary coordinate axes.,

Equation (3.2) shows the non-holonomic constraint of the model. Equation 3.3

denotes velocities of left and right side front wheels. r(s), is the radius of curvature

at s and κ (s) is the curvature at s. θ is the angle between the stationary coordinate

axis and the tangent of the curve at point P.

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(

10
0)(sin
0)(cos

)(
)(
)(

tw
tv

t
t

t
ty
tx

θ
θ

θ&
&

&

 (3.1)

0sincos =− θθ xy && (3.2)

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

R

L

w
w

L
r

L
r

rr

tVy
tVx

00
22

)(
)(

θ&
 (3.3)

κ (s) = r(s)-1 (3.4)

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
)(.1 sL

L
κνν (3.5)

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
)(.1 sL

R
κνν (3.6)

)(
2

)(

sr

Lsr
R

+
=νν (3.7)

 53

If the WMR model steering is car like, which may be seen in Figure 3.5, this time

the instantaneous rotation radius (R) is equal to Lm over tan (σ). The main difference

between the car like mobile robots and differentially driven mobile robot is that the

rotation. In differentially driven mobile robots, rotation motion is achieved with

having different velocities of the wheels whereas in car like mobile robots, rotation is

achieved with steering of one (or some) wheel(s).

In analyzing the mobile robots, inverse kinematics can be used easier than direct

kinematics because of the similarities of the mobile robots with the parallel

manipulators (Tsai, 1999). In inverse kinematics, the end effector position is known

and the aim is to find the joint values to make the effector in next position.

Assumptions for mobile robot analysis are: Pure rolling, non slipping, constant wheel

base and diameter.

3.3 Dead Reckoning

Dead reckoning is the real-time calculation of the wheeled mobile robot position

in floor coordinates usually from wheel sensor measurements. This is also called

forward position kinematics. Uncertainty of the WMR model, disturbance during

motion of the mobile robot, localization errors (caused by sensors or difference of

radius of wheel during motion…) and should be cumulated resulting in the position

failure (Zu, 2004; Muir, 1986).

 Figure 3.5 Car like wheeled mobile robot.

 54

Discrete time kinematics is applied for dead reckoning to the model. If mobile

robot travels with v(k) and rotates with ω(k) in a uniform sampling kth interval t,

approximate discrete kinematics is given as:

However, dead reckoning is an ideal approach for localization. Wheels slippage,

accuracy of encoders, changing radius of wheels and similar reasons cause dead

reckoning has some problems. So, linear and angular velocities found using equation

3.7 said to be estimated values. Adding the uncertainty value ηuc which is a white

Gaussian noise with covariance matrix E[ηuc ηuc
T], the considered discrete

kinematics model is (Vale, 2005):

3.4 Architecture of Autonomous Wheeled Mobile Robots

The purpose of building the architecture of a robot is pointing out the interactive

parts of the robot to build the hardware and software framework. Mobile robot

models have sensors, control parts, man machine interfaces, security systems,

handling systems or mechanical parts, actuators and so on. So, it is needed to have

main control and sub control systems. For example, different sensors have their sub

control systems to be evaluated by the main control system. Architecture of a robot

also makes the control of the robot easier to understand in means of priority levels of

these control systems. The framework of software and hardware to control of the

AWMR model in this research, in other words the architecture of the model in this

research, can be seen in Figure 3.6.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

)(.
)(sin).(.
)(cos).(.

)(
)(
)(

)1(
)1(
)1(

kt
kkvt
kkvt

k
ky
kx

k
ky
kx

ω
θ
θ

θθ
 (3.8)

uckkvkxfkx ηω +=+))(~),(~),(()1((3.9)

 55

3.4.1 Mobile Robot Navigation

Robot navigation covers different type of navigation in meanings. Navigation is

used for;

 Going from a totally different environment to another,

 Mapping environment for discovering a place,

 Finding path and reaching target.

The environment of the mobile robot must be considered if it will be used indoor

or outdoor. For outdoor use, a very huge number of researches in recent years cover

GPS receiver or obtaining précised GPS data (Gören, 2001). In addition to global

positioning system receivers, mobile robots for outdoor use have encoders, laser

sensors, ultrasonic sensors, maybe optical sensors, cameras, radars or sonar, and etc.

The model in this thesis is an indoor mobile robot. For indoor mobile robots,

however, it is not so easy to teach the robot to know the place that the robot itself

Figure 3.6 Architecture of the research model which is an example of autonomous wheel mobile
robot

Robot

O

b
je

ct

User Security
System

Energy Supply

Control

Mobile
Platform

MMI

 Target

Drivers Camera 1

Ultrasonic
sensors

Telemetry

Camera 1

 56

stands. Encoder, ultrasonic sensor, camera, RF transceiver, odometer, radar,

gyroscope, sonar, laser sensors are some types which are used for indoor use of

mobile robots. In this research, target is a visual unique landmark.

3.5 Braitenberg Vehicles

Braitenberg (1984), who is a neuro-scientist, described basic behaviors of wheeled

mobile robots in his book ‘Vehicles: Experiments in Synthetic Psychology' in 1984.

He divided the behaviors in four thought experiments as for structure of the mobile

robot. First type of the WMR has one wheel with one sensor. Sensor directly affects

the motor activity.

The second type of Braitenberg vehicle consists of two sensors and two motors.

Sensors are either directly or cross connected to motors and motor activity is directly

proportional to sensor activity. Depending on the connection type between sensors

and motors, vehicle accelerates to the source or accelerates to escape from source, so

behaves like having either “fear” or “aggression” (see Table 3.1).

The third type of Braitenberg vehicles are the WMR’s has two sensors and two

motors similar to vehicle 2. The difference is the inhibitory effect of sensors to the

motors. If the sensors cross connected to motors, WMR escapes from the source

whereas it goes directly to the source when the sensors are directly connected to

motors.

The last type of the Braitenberg vehicles which is also called as ‘vehicle 4’ is

more near to the present modern WMR’s. It has many different types of sensors

(gyroscope, GPS, temperature, encoders, cameras, laser, sonar, ultrasonic,

odometers, etc.) and via more than one controller; the WMR has different logics

embedded on it. Combining the sensor data, it makes its decision for motion. Both

senses and the motions of the robot are more complex than the other type of

Braitenberg vehicles. In designing a mobile robot, even the task(s) of the robot is

(are) complex, better type is the simpler type of Braitenberg vehicles that completes

its task.

 57

Table 3.1 Braitenberg vehicles.

Vehicle 1: Getting around. Simplest vehicle,
always forward. One motor with one sensor.

Vehicle 2: Fear and aggression. Two sensors
and two motors. (a) is directly, (b) is cross

connected. Excitatory.

Vehicle 3: Love. Inhibitory. Vehicle 4: Different types of sensors mounted.
Complex behavior.

- temperature,
- ultrasonic,
- camera,
- ...

different type
of sensors

58

CHAPTER FOUR

SYSTEM AND EXPERIMENTS

4.1 Kinematics of the Experimental Mobile Robot

In Chapter Three, kinematics, architecture and behavior of autonomous wheeled

mobile robots are studied. The first part of this chapter is related with the

experimental WMR model that was originally a wheel chair which has four wheels

and whose two wheels are actuated with two motors (See Figure 4.3 and Figure 4.4).

Experimental mobile robot position with respect to reference coordinates is:

Rotation matrix of the reference coordinates with respect to moving coordinate

system is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

θ
y
x

q (4.1)

.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

)(θθ
θθ

θR (4.2)

 Figure 4.1 Coordinate System Locations of the mobile robot.

Ys

Xs

Yh

Xh

θ M

x

y

L

59

In Figure 4.1, reference coordinate system and moving coordinate system; in

Figure 4.2, velocity variations in respect to instantaneous center of rotation of

Autonomous Mobile Robot (AMR) can be seen.

Velocities of the right and left wheels can be defined as:

or

In condition of going straight forward (if the velocity of the right and left wheel is

equal);

 Figure 4.2 Left and right motor velocities of the mobile robot
.

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

R

L

w
w

L
r

L
r

rr

tVy
tVx

00
22

)(
)(

θ&
 (4.3)

⎥
⎦

⎤
⎢
⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(

10
0)(sin
0)(cos

)(
)(
)(

tw
tv

t
t

t
ty
tx

θ
θ

θ&
&

&

 (4.4)

Ys

Xs

y M

x

L

R

vL(t)

vR(t)

60

If the mobile robot turns around on a point,

This motion is one of the most known advantages of the dual drive vehicles. In

this case, instantaneous center of rotation of the mobile robot model is on the middle

of the front axis. And the model can turn around without going forward or backward.

4.2 Experimental System Model

Our laboratory built autonomous mobile robot (AMR) model in this research,

which was originally a wheel chair having four wheels those all independent from

each other. Front wheels are connected to two separated motors so that the

autonomous wheeled robot can have more advantages in motion. Kinematic model of

the robot is studied for a vehicle model that has four wheels and whose two wheels

are driven.

Figure 4.3 Real model of experimental mobile robot

w(t)=0 θ:constant (4.5)

and v(t)=vL(t)=vR(t) (4.6)

v(t)=0 and (4.7)

)(2)(tv
L

tw R= (4.8)

61

Figure 4.4 CAD model of mobile robot.

4.2.1 Ultrasonic Sensors for Navigation

A mobile robot has many sensors on it to know environment, to interact with

human and to complete its tasks. For its purposes reliable sensor data is as important

as accurate sensor data (Kopacek, 2006). But this is not the whole part, more is

necessary for self localization of a mobile robot (Iyengar, 1991). After getting

reliable data from sensors, method of evaluation in decision mechanism makes the

robot movements either more quick and reasonable or redundant and clumsy.

Frequently, more time is spent by robot to know environment than to move towards

target. Most suitable method has to be selected rather than more complicated in

means of motion and tasks of the mobile robot. But sometimes, it is inevitable to use

more complicated evaluations and algorithms, especially when it is needed to map

environment in details. In that case, generally priority level one task is to distinguish

meaningful data in data mass.

62

Six ultrasonic sensors with cone angle of more than 300 at a distance of 100cm are

mounted on the model to scan 180 degrees. Two important parameters are effective

for this choice. These are: Fast processing to control and reliable measurement data.

For more than 300 cone angle, some regions intersect to each other. Data from the

sensors are taken via microprocessor 1 in Figure 4.7 whereas second processor is

used to get information from self-built encoders on wheels. Dempster – Shafer

evidence theory helps to have reliable data from ultrasonic sensors, especially in

intersecting regions which are roughly illustrated in Figure 4.7. Characteristics of the

ultrasonic sensors and indicator table can be seen in Figure 4.5 and Table 4.1,

respectively.

4.2.1.1 Ultrasonic Sensors Installation.

Input pins of Microcontroller 1 (PIC16F877) are connected to 2nd, 4th, 6th, and

7th output indicator pins of the ultrasonic sensor circuit which indicate closer than

 Figure 4.5 Tested characteristics of the ultrasonic sensors
 those are used (location units are in cm).

1

2

3

4

5

6

7

17,-20

30,-40.5

23,-60

31.5,-80

26, -100

31,-120

0,-140

-20,-20

-30,-40

-32,-60

-26.5,-80

-27,-100

-31.1,-120

63

0.2m, 0.6m, 1.0m and 1.4m respectively. This helps to determine 5 levels of

closeness regions in every 30 degrees covering 180 degrees. These senses are needed

to be very accurate since these mentioned values will be the inputs of the neural

network in further research.

Table 4.1 Indicators of the Ultrasonic Sensors

0
m

-0
.4

m

0
.4

m
-0

.6
m

0
.6

m
-0

.8
m

0
.8

m
-1

.0
m

1
.0

m
-1

.2
m

1
.2

m
-1

.4
m

1
..

4
m

-2
.0

m

7 F
6 F
5
4
3
2
1

Carrier frequency and signal shape from ultrasonic sensors can be seen in Figure

4.6. First signal in figure is the information of any object existence with its distance

to related sensor in one region of six. Second signal on the figure is the

synchronization signal. The period of the first signal is divided into four. Changing

the form of the signal due to the distance sensed by the ultrasonic sensors, the

information is sent to controller unit.

 Figure 4.6 Oscilloscope output of the ultrasonic sensors

64

4.2.2 Wireless Communications on Model

4.2.2.1 Radio Frequency Modems

Figure 4.7 Ultrasonic sensor regions.

Figure 4.8 Installation of the ultrasonic sensors on real
model.

65

Using serial port connected RF Modems; mobile robot is connected bidirectional

to computer. Some part of the Quick Basic code for previous research on an open

loop controlled mobile robot can be seen in Table 4.2 (Gören, 2001). In that

research, mobile robot is equipped also with an embedded computer which has an

80386 CPU and very limited flash memory. The goal was to build a mobile robot to

get information from a hazardous area for human. Mobile robot sends the data using

RF modems and PC104 stabile in a distance of 5km without effecting from

disturbances. The main advantage of RF modem in that project was not to loose

control of the mobile robot. The disadvantages of RF Modems are that they are

heavy and relevantly slower in data transmission. Fault detection is also worse than

othr solutions.

Table 4.2 RS232 connected RF-Modem QB sample program.
...
OPEN "com1:9600,n,8,1,rs,cs,ds" FOR OUTPUT AS #1
...
CASE "RIGHT"
CTR = CTR + RGTB
PRINT #1, CTR
SLEEP (1)
CTR = CTR - RGTB
PRINT #1, CTR
GOTO 110
...

In this research, however, the task of RF Modems is telemetry which means to

send some information to monitor some data of the mobile robot on a stationary

computer.

4.2.2.2 Bluetooth

An embedded computer which means a tiny main board and daughter boards in

standards is mounted on the mobile robot. Using USB (Universal Serial Bus) port of

this embedded computer, a Bluetooth dongle can be installed on the mobile robot.

Bluetooth is a cable replacement technology offering point to point links without

native support for IP. Main advantage is that the Bluetooth technology covers a very

huge area, but it is not good for LANs.

66

Bluetooth offers the possibility to create an RfComm between a master and up to

6 slaves, with the SDP protocol to connect those pipes to specific applications or

driver. TCP/IP is only one profile, implemented through PPP. Using Bluetooth

software, serial communication ports of computer of mobile robot can be seen as

ports of immobile computer. In addition to this, like using FTP server program in

Wireless Ethernet 802.11g, Bluetooth file transfer program is tested to send

meaningful text file to record path to mobile robot’s computer.

4.2.2.3 Wireless Network

The 802.11g specification is a standard for wireless local area networks that offers

transmission over distances at up to 54 Mbps. Compared with the 11 Mbps

theoretical maximum of the earlier 802.11b standard, it is relatively short. 802.11g

and 802.11b networks operate at radio frequencies between 2.400 GHz and 2.4835

GHz. The 802.11g uses orthogonal frequency division multiplexing (OFDM).

802.11g can fall back to speeds of 11 Mbps, so 802.11b and 802.11g devices are

compatible. If the access point device uses 802.11b, modification of it to 802.11g

compliance usually involves only a firmware upgrade.

In applications of wireless network in this research, VNC was used to monitor and

teleoperate the robot whereas FTP was used to control the robot. VNC is Virtual

Network Computing. It is remote control software which allows you to view and

interact with another computer anywhere on the internet. It is operating system

independent.

Figure 4.9 Screenshots of stationary computer during connecting to PC104 via VNC.

67

Using C Programming Language, desired path is transferred to the robotic

vehicle. In application, this is a file transferred from the immobile computer, mainly

just a text or character file. FTP Server program is installed in PC104 to get the

relevant file from the desired port. This is just similar in Bluetooth. But, in

Bluetooth, file transfer program is generally included in software package of

Bluetooth device. Use of WLAN on mobile robot can be seen in Figure 4.10 and

Figure 4.11.

In order to achieve security in wireless Ethernet, in addition to WPA-PSK security

in wireless Ethernet, IP checking and user with a password is used for FTP server.

Partly, SSH is also tested.

Figure 4.11 Mobile robot (Client Side)

4.2.3 Motors and Drivers

4.2.3.1 Motors of the Research Model

The AMR has two brush DC12V motors whose specifications are indicated in

Figure 4.12.

Figure 4.10 Immobile Computer (Server side)

FTP Server
Program

ImmobilePC
Memory

Wireless
Ethernet

C
Program

Data Acq
(I/O)

Motor
Drivers Motors Mechanical

System

Immobile
PC

FTP client
Program

Wireless
Ethernet

Desired path is given
as Text File or via

keyboard directly to
memory of mobile PC

68

4.2.3.2 Motor Drivers

Motor drivers of the model are also our lab made circuits which can be seen in

Figure 4.13. Power voltage of the circuits is DC12V. It is an H Bridge whose power

is 500 watt. Velocity of the motors can be changed as the velocity control input is

changed between 0V - 5V. UC3525 in the circuit generates a width adjustable 20

kHz square signal. S5 transistor is used as a step-down-converter and changes the

Figure 4.12 Dimensions and performance of the motors on WMR model.

69

output voltage, so the speed of the motor. Motor can be rotated backwards with

making the input enable and input forward/backward high.

Effective period and frequency of the circuit can be set with the potentiometers on

the circuit if needed.

4.2.4 Controllers and Input – Output Cards

4.2.4.1 PC104: Embedded Computer on the Mobile Robot Model

As a master controller of mobile robot, a PC104 single board computer is

selected. SBC is called PC104 because of the 104 pins that are used as a bus between

the cards connected to each other. Using these pins, PC104 standard cards are

connected physical one to another and different function cards use direct access to

others. For the controller, an AMD Geode 300 MHz CPU PC104 with 256MB SD

compact flash, 64MB SD Ram is selected. On the CPU module, an Ethernet chip and

a VGA chip exists. USB, Parallel & Serial Port can be used as for the interfaces of

the card. PCM 3350 type PC104 and its block diagram can be seen in Figure 4.14

and Figure 4.15 (PCM3350, 2006).

 Figure 4.13 Motor driver card circuit (a larger version of this image can be found in Appendix
 4, Schematic 2).

70

In addition to PCM-3350, an analog output card (PCM-3712-A) and a digital I/O

and analog input card (PCM-3718H-B) is mounted on the PCM-3350 PC104

module. For features of the cards, please see Table 4.3.

Figure 4.14 PCM 3350 type PC104 embedded PC.

 Figure 4.15. Block diagram of PCM 3350.

71

Table 4.3 Features of PCM 3712 and PCM 3718 daughterboards (PCM-3712, PCM-3718H/HG,
2007).

Features of PCM 3712

• 2 channel analog output
• 0 to 5 V, 0 to 10 V, ±2.5 V, ±5 V, ±10 V and 4 to 20 mA output range
• 12-bit resolution
• High speed
• Single power (+5 V) operation
• Output cut off at power on

Features of PCM 3718H

4.2.4.2 Microcontrollers on the Mobile Robot Model

Peripheral Interface Controller, shortly PIC, is the name of the microcontroller

made by Microchip. It was developed to control peripheral devices as can be

understood from its name. It is alleviating the load from the main programming unit.

Four PICs (PIC16F877 and PIC16F84) are installed on the experimental mobile

robot model. The tasks of these microcontrollers may be seen in Figure 4.16. The

features of these two types of PICs may be found in Appendix 4, Schematic 7,

Schematic 8 and Schematic 9.

None of two motors have the same exactly same characteristics of each other. So,

always a motion and velocity feedback is needed to correct errors to each other. Two

encoders are constructed and mounted on the wheels of the AMR in initial stage of

the project. These encoders are connected to a microcontroller (initial stages of the

project a PIC16F84, then a PIC16F877) in order to have similar characteristics for

left and right motion. This microcontroller is named as ‘Microcontroller 3’ in this

project. Microcontroller 3 also sends the counted pulses via RS-232 to either

‘Microcontroller 1’ or PC104 for calibration, control and telemetry.

72

4.3 Block Diagrams

4.3.1 First Models of the Robot

In developing stages of the project, many changes are made to the control model;

sometimes to improve the model, sometimes to adapt the model in use of daily life

and sometimes because of limited project budget. Some changes in developing stages

of the project can be seen in Appendix 4 Schematic 9.

4.3.2 Control of the System

In many researches, mapping algorithms are tested for having knowledge of the

environment (Beckerman, 1990; Awad, 2004). However, in this research focus is on

more reliable data from sensors aiming the movement of the mobile robot quick and

reasonable.

Figure 4.16 Block diagram of the model.

Ultrasonic
Sensors

Camera 1

Microcontroller
1

Encoder 1

Encoder 2

Microcontroller 3 RF - Modem

Left Motor
Driver

Right Motor
Driver

Left Motor
+ Gears

Left
Wheel

Right
Wheel

Right Motor
+ Gears

RF - Modem PC

Target Place
Data

Objects and walls
place data

vL (t)

vR (t)

Microcontroller
2

 MMI

Supervisor
(in training
phase only)

73

Two different control algorithms and performances were tested on the mobile

robot. As mentioned before, an embedded PC (PC104) with digital and analog I/O’s

is mounted on the model for neural networks algorithm whereas two microcontrollers

are mounted to test fuzzy logic algorithm. Control block in system block diagram in

Figure 4.16 is Microcontroller 1 block that also demonstrates embedded PC in neural

network algorithm experiments. Sensor fusion algorithm is loaded on this

microcontroller also. Microcontroller 3 block is a modular unit which interfaces for

the self-built encoders with RS232 standard to communicate either with embedded

PC or the Microcontroller 1. Later, another PIC is used for ANN algorithm.

For continuous control of the right and left side motors, equation (4.9) and (4.10)

are used in algorithm. These equations are also used in forming fuzzy logic

algorithm.

vR : Right motor velocity

vL : Left motor velocity

vBR: Output Value for Right Motor Max Velocity (for Calibration)

vBL: Output Value for Left Motor Max Velocity (for Calibration)

 Figure 4.17 Control blocks of the mobile robot in DSET experiments.

KRSvv RVLVLBRR
××−=)((4.9)

KRSvv LVRVRBLL

××−=)((4.10)

Microcontroller 1

Right Motor
Driver

Left Motor
Driver Left Motor

Right Motor

Microcontroller 3

Microcontroller 3

VL

VR

Ultrasonic

74

SVL: Sensor Value for Left (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6)

SVR: Sensor Value for Right (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6)

RVL: Region Value for left (Closeness factor)

RVR: Region Value for right (Closeness factor)

KR : Right Motor Velocity Factor

KL : Left Motor Velocity Factor

X1 : Closeness Factor for Region 1 (It is close.)

X2 : Closeness Factor for Region 2 (It is far.)

q3x1 : Location matrix for mobile robot.

4.4 Dempster – Shafer Evidence Theory Experiments

In forming control algorithms of continuous or fuzzy logic control, front region of

the mobile robot is divided into 12 regions with respect to their closeness probability

to unexpected objects and motion direction. With this division, a compact, simple

algorithm, so quick motion for AMR is aimed. Dempster – Shafer evidence theory

was tested in limitations of quick motion with reliable sensor data. In Table 4.4

sensor data from ultrasonic sensors and processed data can be seen.

Table 4.4 Sensor Data from Ultrasonic Sensors

 Unprocessed
data

Processed data
(Bayesian - Occupied)

Processed Data (Dempster –
Shafer / Occupied)

… … ... …

Tn 6,4,6,0,4,6 0.29, 0.14, 0.79, 0.00, 0.14, 0.29 0.250, 0.339, 0.429, 0.232, 0.143, 0.250

Tn+1 6,4,6,0,4,6 0.29, 0.14, 0.79, 0.00, 0.14, 0.29 0.250, 0.339, 0.429, 0.232, 0.143, 0.250

Tn+2 6,4,6,0,4,6 0.29, 0.14, 0.79, 0.00, 0.14, 0.29 0.250, 0.339, 0.429, 0.232, 0.143, 0.250

Tn+3 4,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+4 7,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+5 7,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+6 7,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+7 4,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+8 4,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

… … … …

75

Figure 4.18 Regions for algorithm.

Translating sensor readings into probabilities and combining probabilities using

Bayes Rule is one of the most known methods. For localization and map making,

other two most popular methods are DS Theory and HIMM (Murphy, 2000). In

Bayes Rule of evidence there are two parts evaluating the space empty or occupied.

However, if there is spaces that can not be classified as occupied or empty although

having signals from sensors, Dempster – Shafer Theory has to be used. If we

simplify the rules, in Bayesian Theory, the sum of probability of a space to be

occupied and the probability of a space to be empty is equal to one whereas in

Dempster – Shafer Theory, the sum of the probability of a space to be occupied, to

be empty and not to be known is equal to one. The main purpose is to combine

different sensor data as being different sensors or as for the same sensor in different

times. This is used in this research for the mobile robot to find a path itself as quickly

and as reasonable as possible.

In Figure 4.19 and in Figure 4.20, unprocessed and processed signals for

algorithm during the robot movement are shown respectively. When the robot comes

a point that most of the signals are similar, it is easy for it to decide the direction

since the processed signal values includes different sensors and different times. This

also improves the quality of the path which can be easily seen in Figure 4.20. In this

figure, the edges or the important places have greater values after using DS-Theory.

In color scale of the processed sensor data values, they can be seen darker in color in

this figure.

76

Figure 4.19. Unprocessed signals from ultrasonic sensors which are taken during
movement of the mobile robot in a corridor.

Figure 4.20. Processed signals using DS Theory from ultrasonic sensors which are taken
during movement of the mobile robot in a corridor.

77

To simplify the optimal path problem, smoothing the path curve is the first step.

Let a discontinuous curve denoted as Type 0. A continuous curve whose tangent

direction is discontinuous is called Type 1. The set of continuous curves whose

tangent direction is also continuous is Type 2. A curve has curvature continuity as

well as tangent direction continuity is called Type 3. Third type curves are

considered “smoother” than the previous classes. See Figure 4.21. This type curve is

said to be optimal motion for a mobile robot. Performance of the control algorithms

and improvement with Dempster – Shafer evidence theory were also tested on this

matter.

4.5 Fuzzy Logic Experiments (Find Target)

4.5.1 Fuzzy Logic Controller Experiment 1

Two basic well known problems of the autonomous mobile robots are finding

empty space and heading target problems. These problems are the subjects of many

researches. In developing solutions to these problems, two main research areas are

formed. These are mapping environment as well as the location of the robot and

sensor processing for finding target and heading (Janglova, 2004; Kopacek, 2006;

Yi, 2000; Montaner, 1998).

The first part of fuzzy logic controller experiments is based on finding target and

optimal behavior of movement of robot towards the target. Environment in heading

 Figure 4.21 Smoothness of curves of different types

T
yp

e
0

T
yp

e
2

T
yp

e
3
 T
yp

e
1

78

to the goal experiments can be seen in Figure 4.22. For simplifying the heading

problem, x axis value of target on image is taken as input and left and right side

motor velocities are taken as outputs first.

The distance between the starting point and the goal is 20 meters. Camera is

mounted on the central axis of the mobile robot. Microcontroller 2 receives the xp

value which means the location of the target on x axis on image from the mobile

robot camera 1. Using this information robot determines the left and right motor

velocities due to the fuzzy rules (see Table 4.5).

Figure 4.22 Environment in heading to the goal experiments and modeling environment using
camera images.

79

After getting the location data of the target, the next stage is Fuzzification process

(see Figure 4.24).

 Figure 4.24 Fuzzy sets for the linguistic variables target on image left and right side motor
 velocities (Fuzzification).

Figure 4.23 Experiment 1 scenario: Mobile robot finds the target and heads towards the target.

50 0

F M S Z

1

40 0

MR M ML L

1
L:Left
ML:Medium Left
M:Medium
MR:Medium Right
R:Right

Z:Zero
S:Slow
M:Medium
F:Fast

50 0

F M S Z

1

Z:Zero
S:Slow
M:Medium
F:Fast

80

R

60 20

Target location on image [pixels]

Left motor velocity [unit]

Right motor velocity [unit]

20 10

20 10

20m

Target

Direction of the robot

Optimal path to the target

80

Creating rules due to the graphics in Fuzzification process is the next stage. Rules

in code on microcontroller 2 during the experiment 1 can be seen in Table 4.5.

Outputs of the system can be seen in Figure 4.24. In each experiment, mobile robot

reached the target successfully. But, in some experiments, the followed path on the

way to reach the goal was not the best solution as can be seen in Figure 4.25. The

reasons will be discussed in conclusion chapter of this thesis.

Table 4.5 Fuzzy rules on microcontroller program.
...
rref = 0; lref = 0

If cmu_mx <= 40 Then ' Fuzzy Table-Left
l_cmu = ((40 - cmu_mx) * 100) / 40
rref = rref + (20 * l_cmu) / 100
End If

If cmu_mx >= 40 Then 'Fuzzy Table-Right
r_cmu = ((cmu_mx - 40) * 100) / 40
lref = lref + (20 * r_cmu) / 100
End If
...
'Fuzzy Table Middle
If cmu_mx >= 20 And cmu_mx <= 60 Then
If cmu_mx < 40 Then
m_cmu = ((cmu_mx - 20) * 100) / 20
Else
m_cmu = ((60 - cmu_mx) * 100) / 20
End If
rref = rref + (50 * m_cmu) / 100
lref = lref + (40 * m_cmu) / 100
End If
...

 Figure 4.25 Outputs of the FLC experiment 1.

Right motor velocity [unit]

Left motor velocity [unit]

81

 Figure 4.26 Fuzzy logic controller experiment 1 (Graphs are the followed real paths of the AMR)

4.5.2 Fuzzy Logic Controller Experiment 2

The goal of second FLC experiment is to find the efficiency of the seeking mode

code and motion of the autonomous mobile robot. AMR has to find its path to the

target starting without knowing the place of the target and without having chance to

see the target. The program code is the same of the code in experiment 1 (which can

be examined in Appendix 5).

2000,00

1500,00

1000,00

500,00

0,00

500,00

1000,00

1500,00

2000,00

0 5000 10000 15000 20000

-2000

-1000

0

1000

2000

0 5000 10000 15000 20000

Total Travel Time:2m50s; Vmax= 40 unit

Total Travel Time:1m45s; Vmax = 40 unit

82

Seeking mode and heading of the AMR is really effective. It also adapts itself due

to the light intensity without loosing the location information of the target during

adaptation. AMR can be programmed to track not the color but the exact color of the

target.

4.5.3 Fuzzy Logic Controller Experiment 3

This experiment environment is similar with the experiment 1. However, the rules

are changed to make the control region boundaries sharper. This change made the

behavior of the robot less optimal. Because, big sudden changes in boundaries of

regions causes robot to have worse behavior. The other problem in this experiment

is to design the FLC behavior for the left motor and right motor velocities of the

 Figure 4.27 FLC experiment 2 scenario: Robot seeks the target, finds it and heads towards the goal.

-2000

-1000

0

1000

2000
20000150001000050000

 Figure 4.28 FLC Experiment 2 results (real navigation trajectory). Data are taken via telemetry.

20m

Target

Direction of the robot

Optimal path to the target

Vmax = 40

83

mobile robot when turning left or right while going forward. In this condition, the

error is small, so the response is not enough. But, the desired response is to have the

control of interference even in very small angles in order to have a very stable

behavior (see Figure 4.29). These two disadvantages made the behavior of the robot

worse which can be seen also in Figure 4.31.

Fuzzy rules: Let us define the location of the target on x axis as xp, maximum

velocity of the robot is Vmax,

1. If xp < 20 0=Lv ;
80max

p
R

x
vv ⋅=

2. If xp is between 20 and 30
3

2 maxV
vL

⋅
= ; max

max

80
2

3
2

V
xV

v p
R ⋅−

⋅
=

3. If xp is between 30 and 50 vL = vR = Vmax

4. If xp is between 50 and 60 max
max

80
2

3
2

V
xV

v p
L ⋅−

⋅
= ;

3
2 maxV

vR
⋅

=

5. If xp > 60
80max

p
L

x
Vv ⋅= ; 0=Rv

Rules above are found after Fuzzification that can be seen in Figure 4.30.

 Figure 4.29. Defuzzification and outputs of the system.

50
0

1

Left motor velocity [unit]

Right motor velocity [unit]

20 30 60

50
0

1

20 30 60

84

 Figure 4.30 Fuzzy sets for the linguistic variables target on image left and right

 side motor velocities (Fuzzification).

-2000

-1000

0

1000

2000

0 5000 10000 15000 20000

Figure 4.31 Movement of the AMR during one of first type of experiment using fuzzy logic.

40
0

F M S Z

1

40 0

MR M ML L

1

L:Left
ML:Medium Left
M:Medium
MR:Medium Right
R:Right

Z:Zero
S:Slow
M:Medium
F:Fast

⎟
⎠
⎞

⎜
⎝
⎛

3
80

⎟
⎠
⎞

⎜
⎝
⎛

3
40

40
0

F M S Z

1

Z:Zero
S:Slow
M:Medium
F:Fast

⎟
⎠
⎞

⎜
⎝
⎛

3
80

⎟
⎠
⎞

⎜
⎝
⎛

3
40

80

R

60 20

Target location on image [pixels]

Left motor velocity [unit]

Right motor velocity [unit]

Vmax = 40

85

4.5.4 Fuzzy Logic Controller Experiment 4

This time, the outputs for the left and right motors in program are set not to give

zero output at any time, in other words, continue running even sharp rotating

conditions. This reduces the effects of starting impacts to model, in other words

makes motion smoother. Another difference is dividing the regions of outputs of

fuzzy control into less number of regions (see Figure 4.32). This improves the

continuous motion behavior, so the robot follows the optimal path in a narrow

tolerance band (see Figure 4.33). The error at the end of the path in this figure comes

from the lens effect of the light source. When the robot comes very near to the target,

lens changes the sensed color of the target into a very bright color via increasing the

intensity of the light, which is seen white by the camera. So, in this condition, robot

seeks for the target. This is not accepted as a fault of the robot, but fault of selecting

the light source of the target. However, it is obviously seen from this figure that even

in this condition, robot finds the target successfully.

Simplified fuzzy rules in code for finding target are:

1. If 0 < xp <= 20 5=Lv ; maxVvR =

2. If 20<xp<= 30)20(3 −= pL xv ; maxVvR =

3. If 30<xp <= 50 vL = vR = Vmax

4. If 50<xp <= 60 maxVvL = ;)60(3 pR xv −=

5. If xp > 60 maxVvL = ; 5=Rv

In evaluating the experimental results with figures in this chapter, it should be

remembered that the distances in figures are in millimeters and the width of the robot

is approximately 65 cm. Another note is that the velocity unit is not m/s or km/h but

a unit that is defined in the program. This unit is the same unit in all experiments.

The reason is to make the programming easier.

86

 Figure 4.32 Velocity outputs of the FL model.

The figure above shows the outputs of the code whereas the figure below is the

path in fuzzy logic experiment 4 (finding target problem, optimizing regions and

robot motion on reaching the target.)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 5000 10000 15000 20000

 Figure 4.33 Motion of the AMR in one of first type of experiments using fuzzy logic (find
 and head to target problem).

50 0

1

Left motor velocity [unit]

Right motor velocity [unit]

20 30 60

50 0

1

20 30 60

40 80

80

Vmax = 20

87

4.5.5 Fuzzy Logic Controller Experiment 5

Fuzzy logic experiment group 5 is related with the corridor finding and obstacle

avoidance with fuzzy logic controller code. In the first stage of this experiment

group, robot is tested for finding the exit of different corridors. One of the

experiments is shown in Figure 4.34 (a). In most of the experiments in this group

robot failed to avoid the obstacles or could not find the exit. Changing the combined

fuzzy rules of finding the target and obstacle avoidance some time later made the

program very long and so the robot motion very slow. Relatively successful second

part of this group experiments (Figure 4.34-b) can be seen in Figure 4.35. This

results, however, very far away from neuro-fuzzy experiments results success, which

will be told in following parts of this chapter.

(a)

(b)

 Figure 4.34 Initial and final stages of the experiments
on obstacle avoidance.

88

-2000

0

2000

-50015003500550075009500

-2000

0

2000

0200040006000800010000 0

0

0

-2000

0

2000
0200040006000800010000

-2000

0

2000
-50015003500550075009500

-2000

0

2000
-50015003500550075009500

Figure 4.35 Fuzzy logic experiments, actual followed path.

89

4.6 Artificial Neural Networks Experiments (Find Empty Space)

The perceptron can be seen as the simplest kind of feedforward, supervised neural

network. The perceptron is a kind of linear binary classifier that maps its inputs x to

an output value f(x). x is a binary vector whereas f(x) is a single binary value. It is

calculated as:

 Figure 4.36 Perceptron model of the AMR.

However, the outputs of the nets are binary, but the optimal velocities of the

autonomous wheeled robot model should not be. For this reason, ADALINE NN

model is thought to be more suitable for experimental AMR model. As mentioned in

Chapter 2, ADALINE model is supervised and feedforward. It is a single neuron

whose weights are updated according to LMS (Least Mean Square) algorithm. The

LMS algorithm is an adaptive algorithm that computes adjustments of the neuron

synaptic weights. ADALINE, as mentioned, is a single neuron. Barely, the outputs

of the AMR model are not just one single output. Left and right motor velocities,

which are the outputs of the system, have to be evaluated as one vector. Each input

(ultrasonic sensors outputs) should have different weights in order to decide the

heading precisely. So, the MADALINE model may be more appropriate for the

model (see Figure 4.37 and Figure 4.38).

⎩
⎨
⎧ >+⋅

=
se el

bx if w
f(net)

0
01

 (4.11)

∑

w0=Θ

Bias input = 1

w1
w2

w3

x1

x2

x3 f
R VL

nonlinearity w4

x4
w5

x5

w6

x6

∑

w0=Θ

Bias input = 1

w1
w2

w3

x1

x2

x3 f
R VR

nonlinearity w4

x4 w5

x5

w6

x6

Ultrasonic sensor outputs: x1, x2, x3, x4, x5, x6;
Left and right motor velocites: vL, vR ;

90

In training phase of the experiments, initial weights are predicted. Supervisor

decision is for refusing the motion of the AMR. If y is positive, which means left and

right side systems are running, and d is also positive, which means the motion is

approved, then the weights do not change (see Figure 4.38). The reason of getting

supervisor decision only for refusing is to make the weights optimal in reasonable

Figure 4.37 ADALINE model of the AMR.

x0

x3

+ -1

x2
w1

w2

w3

Σ

w0

hard
limit.

+
-

y=sgn(wTx)

x1

nonlinearity

quantizer

Σ

-

Desired
value: T

-

E Adaptive
Alg.

Actual
Value: R

Supervisor

R=wTx

∑

w0=Θ

Bias input = 1

ww2

w3

x1

x2

x3 f
R VL

nonlinearity w4

x4
w5

x5

w6

x6

∑

w0=Θ

Bias input = 1

w1
w2

w3

x1

x2

x3 f
R VR

nonlinearity w4

x4 w5

x5

w6

x6

Ultrasonic sensor outputs: x1, x2, x3, x4, x5, x6;
Left and right motor velocites: vL, vR ;

(a) Detailed ADALINE model (general)

(b) ADALINE model

91

time. After training, the followed paths can be seen as in Figure 4.39 and following

figures.

4.6.1 ANN and Fuzzy Logic Combined Experiments

Experiment scenario for the model is decided as finding the target and avoiding

the obstacles on the way during the motion. Target has to be recognized with any

characteristic(s) of it. In this scenario, target is a led which is red in color. But, the

difficulty of the task for finding the target is to discover the red led in various light

intensities and contrast it from other red colored objects. Despite these difficulties,

this task is completed very successfully. Programming the camera at RGB format in

each color scale of 255, the target can be attracted successfully.

The second task is to make the AMR head to target autonomous. This is

controlled via fuzzy logic algorithm. The main idea for this was: Since the target

could be recognized successfully, fuzzy logic algorithm will make the control faster.

The result was as expected, naturally after many optimization experiments which are

explained in fuzzy logic experiments part of this chapter.

 Figure 4.38 MADALINE model of the AMR.

x0

x6

Σ

w10

y

x1

Weight update
algorithm

u1 f=sgn(y)

f=sgn(y)

Logic Function

+d

- -

u2

Σ

w20

w11
w21

w16
w26

x2

x3

x4

x5

w22

w23

w24

w25

w12

w13

w14

w15

* Velocities of
motors are denoted
as u2 and u1.

92

The third task, and the most difficult one, is to avoid the obstacles on the path.

The AMR model has to notice the obstacles during motion and pass them with a

smooth curve and then return back to its optimal path. Ultrasonic sensors are

mounted on the front 180 degrees part of AMR model for this purpose. Although the

ultrasonic sensors are physically independent from each other as for transceiver

parts, control units, and as for scanned regions, signal of them can be reflected from

walls and obstacles or effect each other using the body of the model. Isolating the

ultrasonic transceiver signals as transferring through the model body is the simplest

problem. It can be isolated using materials with appropriate softness that the signals

would not go through. Finding solution for the reflections from other objects and

walls problem, however, is more difficult. Dempster- Shafer Theory is studied in

order to discover the important places on the path. This research, which had also

successful results, was told in related part of this chapter. On the other hand, adding

DS theory code with fuzzy logic control and NN control algorithms would make the

code slower and the AMR model not to response in reasonable time intervals. And

NN has also changeable weights, which can take the task of DS theory for this

research model. NN model selected after studying several NN architectures and

models, which are mentioned in Chapter 2.

First experiments with neural networks is using ANN for object avoidance and

heading via fuzzy logic. The following figures show that control of the robot with

neural networks even with bias values is more successful than the previous

experiments which only fuzzy logic used in this research. After first group of

experiments (see Figure 4.40), in second group of experiments, the NN tried to be

trained. In this group, path following performance of robot is investigated due to the

changing weights (please see Table 4.6 and Figure 4.41).

After study on the model, control algorithms and application of the theoretical

control solutions on the model, the optimal simplified solution for the model is found

as in Figure 4.39 below.

93

 Figure 4.39 Simplified control algorithm of the model.

Where is the target?
(Seeking mode)

Find velocities using FL
algorithm (find target)

Is it the right motion?
(Supervisor)

Any obstacles or walls
around?

No

Find velocities using
ANN algorithm (find

empty space).

No

Yes

Go through the
target in empty

space.

VL,VR

Target position, x; .
Sens. Values., x1,..,x6

Target position, x; .
Sens. Values., x1,..,x6

Get target position and look
for obstacle and walls

Wait for the next target.

No

Yes

Yes

Reached the goal?

94

-2000

-1000

0

1000

2000
010002000300040005000600070008000900010000

-2000

-1000

0

1000

2000
010002000300040005000600070008000900010000

-2000

-1000

0

1000

2000
010002000300040005000600070008000900010000

-2000

-1000

0

1000

2000
010002000300040005000600070008000900010000

 Figure 4.40 Target heading with object avoidance (I2C protocol made the sampling
 time faster and so the path is more optimal). Dimensions of the AMR in figures are
 bigger than real dimensions. First groups of experiments with NN.

T
ar

g
et

95

Table 4.6 Weights in experiments.
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

Θ K K K K K K K K
W11 225 150 225 150 225 255 200 200
W12 225 175 175 175 225 255 225 225
W13 225 225 150 225 225 255 255 255
W14 75 75 25 75 50
W15 75 50 50 50 75 75
W16 75 25 75 25 50
W21 75 25 25 75 50
W22 75 50 50 50 75 75
W23 75 75 75 25 50
W24 150 175 255 255 255
W25 175 175 175 175 255
W26 150 150 175 255 200 200
η 1 1 1 1 1 1 1 1

In table above, darker colors represent stronger weights. Weights are grouped if

the data are from left or right side and if the weight is connected to neuron 1 or

neuron 2. As an example, w11, w12, w13 are colored according to values of each other.

Similarly, the following weight values are grouped each having three components.

-2
00

0
0

20
00

0200040006000800010000

Exp. 2.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 2.2

x6

Σ

x1

Σ

w11

w21

w1

w26

x2

x3

x4

x5

w22

w23

w24

w25

w12

w13

w14

w15

96

-2
00

0
0

20
00

0200040006000800010000

Exp. 3.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 3.2

-2
00

0
0

20
00

0200040006000800010000

Exp. 4.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 4.2

97

-2
00

0
0

20
00

0200040006000800010000

Exp. 5.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 5.2

-2
00

0
0

20
00

0200040006000800010000

Exp. 6.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 6.2

98

-2
00

0
0

20
00

0200040006000800010000

Exp. 7.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 7.2

-2
00

0
0

20
00

0200040006000800010000

Exp. 8.1

-2
00

0
0

20
00

0200040006000800010000

Exp. 8.2

 Figure 4.41 Followed paths due to different weights.

99

For the third group of experiments, the number of obstacles is increased to 8 and

the distance to goal increased to 14 meters. In Figure 4.44, Figure 4.45 and Figure

4.46, left and right wheel responses due to the related outputs, six ultrasonic sensor

outputs, target x coordinate and followed path during motion of AMR in three ‘4

obstacle and a target scenario’ experiments can be seen. Conclusion will be discussed

in following chapter.

 Figure 4.42 Third group of experiments with ANN.

-2
00

0
0

20
00

02000400060008000100001200014000

-2
00

0
0

20
00

02000400060008000100001200014000

 Figure 4.43 Obstacle avoidance and heading to target performance of the AMR.

100

0
5

10
15
20
25
30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

VL: Output of microcontroller for left motor; Le5:Left front wheel encoder

0

20

40

60

80

0 10 20 30 40 50 60 70 80

X coordinate of the target during motion.

-2
00

0
0

20
00

0 2000 4000 6000 8000 10000

Figure 4.44 Right and left wheel velocities, microcontroller related outputs, sensor outputs
during motion.

Ultrasonic sensor outputs (U1, U2, U3, U4, U5, U6) ; dark: near, bright: far.

0
5

10
15
20
25
30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

VR: Output of microcontroller for right motor; Re5: Right front wheel encoder output

101

0
5

10
15

20
25
30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Re5 VR

VR: Output of microcontroller for right motor; Re5: Right front w heel encoder output

0
5

10
15

20
25
30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Le5 VL

VL: Output of microcontroller for left motor; Le5:Left front wheel
d

0

40

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

X coordinate of the target during motion.

-2
00

0
0

20
00

0 2000 4000 6000 8000 10000

Figure 4.45 Right and left wheel velocities, microcontroller related outputs, sensor outputs during
motion.

Ultrasonic sensor outputs (U1, U2, U3, U4, U5, U6) ; dark: near, bright: far.

102

0
5

10
15
20
25
30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Re5 VR
VR: Output of microcontroller for right motor; Re5: Right front w heel encoder output

0

5
10

15

20
25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Le5 VL

VL: Output of microcontroller for left motor; Le5:Left front wheel
d

Xcam

0
20
40
60
80

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

X coordinate of the target during motion.

-2
00

0
0

20
00

0 2000 4000 6000 8000 10000

0

Figure 4.46 Right and left wheel velocities, microcontroller related outputs, sensor outputs during
motion.

103

CHAPTER FIVE

CONCLUSIONS

5.1 Overview

In this research, model of a non-holonomic autonomous wheeled mobile robot is

designed and constructed which is equipped with an embedded PC, micro

controllers, cameras, encoders and ultrasonic sensors in order to study on some

control and sensor fusion algorithms. The WMR model in this research was

originally a wheel chair which has four wheels and whose two wheels are actuated

with two motors. But, the systems are mounted as its back as its front. The reason

was to decrease the disadvantages of its motional constraints. This can be understood

easily if the differences between a car motion and a forklift motion are thought.

Nonholonomic conditions are assumed to be expressible as non-integrable

differential relations. In analyzing the non holonomic mobile robots, inverse

kinematics can be used easier than direct kinematics because of the similarities of the

mobile robots with the parallel manipulators. However, forward position kinematics,

in other words dead reckoning, is used in many applications or researches.

5.2 Conclusions About Control Techniques and Future Work

A mobile robot has many sensors on it to know environment, to interact with

human and to complete its tasks. Uncertainties in ultrasonic sensors caused by the

specular reflection from environments make them less reliable. In this thesis,

applying Dempster-Shafer evidence theory to data from the sensors, it was aimed to

have more reliable sensor data. DS evidence theory was selected because of its

advantages over Bayesian theory. DS evidence theory was tested in limitations of

quick motion with reliable sensor data. In scale of the processed sensor data values in

the experiments, the edges or the important places have greater values after using

DS-Theory. So, the sensor fusion part of this research is successful in getting the

reliable data from sensors.

104

Two basic well known problems of the autonomous mobile robots are finding

empty space and heading target problems. In means of main control structure, a

camera feedback is used on the model for main feedback of target. The first part of

fuzzy logic controller experiments is based on finding target and optimal behavior of

movement of robot towards the target. Four different groups of experiments were

completed in testing the target heading performance and optimizing the fuzzy regions

for fast and précised heading. With these experiments, it is obviously seen that if the

sensors have reliable and fast data, and motion due to parameters is analyzed well,

fuzzy logic is very suitable for heading the mobile robot towards the target. It is not

only fast but also robust in different environments. However, in avoiding the

obstacles experiments, fuzzy logic controller was not that well working. Rule table,

so the code gets very long if all conditions are need to be considered. As a result of

long code and conditions, response and so the motion gets slower. If the code does

not include all conditions, right decisions can not be made during the motion of

avoiding obstacles and heading to target. This situation can be easily seen in Figure

4.34. Another great disadvantage of fuzzy logic controller for a mobile robot motion

in object avoidance is that, even the fuzzy logic controller is well designed for a

certain environment, if the environment changes, it is luck if the mobile robot makes

the right decision.

The perceptron can be seen as the simplest kind of feedforward, supervised neural

network. So, starting from idea of using perceptron as a NN controller, MADALINE

was decided to be tested as a controller. As predicted, the training phase is the harder

part to be applied. In training phase of the experiments, initial weights were

predicted. For speeding up the algorithm, supervisor decision was decided to be just

for refusing the motion of the AMR. The first groups of experiments with neural

networks is using ANN for object avoidance and heading via fuzzy logic. The second

groups is to find out the performance when changing weights and the third group of

experiments, the number of obstacles is increased to 8 and the distance to goal

increased to 14 meters. As for the conclusion of these three groups of experiments,

the first result may be said with no hesitation that the performance of NN after

105

training for object avoidance, even in different conditions, is much more successful

than the FLC for the same task. Nevertheless, for heading the robot towards the

target, the FLC is fast and very robust. So, combining the system as FLC for heading

and NN controller for object avoidance is the optimal solution for this research

model. If Figure 4.43, Figure 4.44 and Figure 4.45, which are the graphics obtained

during motion, are studied, it can be also seen that the response of the system is fast

enough to find the approximate optimal path in real time. Learning the environment

is a very great advantage of ANN, but unsupervised learning is more convenient for

an autonomous robot. The reason why the supervised learning took part in this

research was that the model is designed for a kind of wheel chair and safety motion

is more important.

In designing a mobile robot, even the task(s) of the robot is (are) complex, better

type is the simpler type of Braitenberg vehicles that completes its task. It is similar

for the other criteria of mobile robot design.

The starting point of this thesis was to design an autonomous wheel chair. In

completing stage of this research, it can be said the task is completed in means of the

first stage of designing and producing a modular autonomous wheel chair which can

be very useful for disabled people and old people. For the future work, developing

the model for swarm robots of the same model might be very efficient for rest homes

and hospitals.

106

REFERENCES

Abdul Aziz, S.B. (1996). Everything you've always wanted to know about

designing fuzzy logic machines but were afraid to ask. Retrieved September 7,

2007, from

http://www-dse.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/sbaa/article2.html

Awad,H.A. & Mohamed A. Al-Zorkany (2004), Mobile robot navigation using

local model networks, International Conference on Computational Intelligence,

Istanbul, TR, 326-331.

Becerikli, Y. & Çelik, B.K. (2007). Fuzzy control of inverted pendulum and

concept of stability using java application. Mathematical and Computer

Modelling, 46, 24–37.

Beckerman M. & E. M. Oblow.(1990). Treatment of systematic errors in the

processing of wide-angle sonar sensor data for robotic navigation, IEEE

Transactions on Robotics and Automation, 6(2), 137- 145.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology.

Massachusetts: The MIT Press.

Destri, G. (n.d.). Cellular neural networks. Retrieved August 18, 2007, from

http://www.ce.unipr.it/pardis/CNN/cnn.html.

Dimirovski, G.M., Gacovski, Z. M., Schlacher K. and Kaynak, O. (2000). Mobile

non-holonomic robots: On trajectory generation and obstacle avoidance.

Proceedings of the 6th IFAC Symposium Robot Control 2000 - Syroco ’00, 549-

554.

Dohnal, V., Kuca, K. & Jun, D. (2005). What are artificial neural networks and

what they can do?, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.,

149(2), 221–4.

107

Gharieb, W. & Nagib, G. (2000). Fuzzy guidance control for a mobile robot.

International MDP Conference, 67-74.

Gören, A. (2001). Computer supported remote controlled manipulator vehicle and

data transfer system. Izmir: Dokuz Eylul University.

Gören, A., Uyar, E. & Dicle, Z., (2007), Application of Dempster – Shafer

evidence theory to sensors of an autonomous mobile robot. Proceedings of IFAC

DECOM-TT’07, 39-44.

Hamdi, A. A. & Al-Zorkany, M.A. (2004). Mobile Robot Navigation Using Local

Model Networks. Transactions on Engineering, Computing and Technology,

V1, 326-331.

Haykin, S. (1994). Neural Networks. Macmillan College Publishing Company Inc.

Hebb, D.O. (1949). Organization of Behavior. New York: John Wiley & Sons.

History of Neural Networks, (n.d.), Retrieved August 15, 2007, from

http://www.psych.utoronto.ca/~reingold/courses/ai/cache/neural4.html.

Iyengar, S.S., & Elfes, A. (1991). Autonomous Mobile Robots: Control, Planning,

and Architecture. IEEE Computer Society Press.

Janglova, D. (2004). Neural networks in mobile robot motion. International

Journal of Advanced Robotic Systems, 1(1), 15-22.

Kartalopoulos, S.V. (1996), Understanding neural netwroks and fuzzy logic : Basic

concepts and applications, NJ: IEEE Press.

Kopacek, P. (2006). Autonome, Mobile Roboter. Lecture notes, Technical

University of Vienna.

Lennox, B., Montague, G. A., Frith, A. M., Gent, C. & Bevan, V., (2001),

Industrial application of neural networks – an investigation. Journal of Process

Control, 11 (2001), 497-507.

108

Montaner, M.B. & Ramirez-Serrano, A. (1998). Fuzzy knowledge-based controller

design for autonomous robot navigation. Expert Systems with Applications,

14(1998), 179-186.

Mori, H., Tamaru, Y. & Tsuzuki, S. (1992). An artificial neural-net based

technique for power system dynamic stability with the Kohonen Model.

Transactions on Power Systems, 7 (2), 856-864.

Moser, S. & Pfaffhauser, E. (1998). Introduction to cellular neural networks .

Retrieved August 20, 2007 from

http://www.isi.ee.ethz.ch/~haenggi/CNN_web/introduction.html.

Muir, P. F. & Neuman, C.P (1986). Kinematic modeling of wheeled mobile

robots. tech. report CMU-RI-TR-86-12.Carnegie Mellon University, PA, US.

Murphy, R.R. (2000). Introduction to AI Robotics. USA: MIT Press.

Nissen, L. (2007). Fast Neural Networks Library, 13.06.2007, http://leenissen.dk.

Noguchi, N., Ishii, K. & Tereo, H. (1997). Development of an agriculture mobile

robot using a geomagnetic direction sensor and image sensors. Journal of

Agricultural Engineering Research, 67(1), 1-15.

PCM-3712, PCM-3718H/HG. (2007). Advantech PCM-3712PCM-3718H/HG

Datasheet. Advantech Co.,Ltd.

PCM-3350. (2006). Advantech PCM3350 Datasheet. Advantech Co.,Ltd.

Schneider, E. (2007). Fuzzy control of a gantry crane. Proceedings of IFAC

DECOM-TT’07, 297-300.

Simulated Annealing, (August 27, 2007). Retrieved September 4, 2007, from

http://en.wikipedia.org/wiki/Simulated_Annealing.

Senol, Y. (2002). Artificial neural networks. Lecture notes, Dokuz Eylül

University.

109

The Major Structures of the Neuron, (n.d.). Retrieved June 20, 2007 from

www.biocrawler.com/encyclopedia/Neurons.

Tsai, L.W. (1999). Robot Analysis. Canada: Wiley-Interscience Publication.

Uyar, E., Gören, A. & Zibil, A. (2002). Çift Tekerlekten Ayrik Tahrikli Bir Aracin

Bilgisayar Destekli Iz Takip Kontrolu ve Denetimi. Turkish Conference on

Automatic Control . 487-495.

Van Laerhoven, K. (1999). On-line adaptive context awareness starting from low

level sensors, Thesis. Brussels: Free University of Brussels.

Yi, Z., Khing, H.Y., Seng,C.C. & Zhou Xiao Wei (2000). Multi-ultrasonic Sensor

Fusion for Mobile Robots. Proceedings of the IEEE Intelligent Vehicles

Symposium. Dearborn (MI), USA.

Zhang, W. (1992). Two stage inverted pendulum. Retrieved September 7, 2007, from

http://www.aptronix.com/fuzzynet/applnote/twostage.htm.

Zu, L., Wang, H.K. and Yue, F. (2004). Artificial neural networks for mobile robot

acquiring heading angle. Proceedings of Third International Conference on

Machine Learning and Cybernetics. 3248-3253.

110

APPENDICES

APPENDIX 1

NOMENCLATURE

b bias value []

bel(A) belief function []

c center []

di desired value []

E Global energy of the system []

ei error of the output []

fHL Hard limiter []

K amount of conflict between the two mass sets []

KR right motor velocity factor []

KL left motor velocity factor []

L distance between the middles of two front wheels [m]

m(A) mass of set A []

mi, mc codebook vector []

p probability []

P(X) power set, set of all possible subsets of X []

pl (A) plausibility function []

q3x1 location matrix for mobile robot []

R radius of curvature [m]

r dynamic radius of wheel [m]

RVL region value for left (closeness factor) []

RVR region value for right (closeness factor) []

si, sj state of firing []

SVL sensor value for left (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6) []

SVR sensor value for right (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6) []

T similarity ratio []

Te synthetic temperature of the system []

v linear velocity of the mobile robot [m/s]

111

vBR output value for right motor max velocity (for calibration) [m/s]

vBL output value for left motor max velocity (for calibration) [m/s]

vij feedback weight of ith neuron in layer to jth neuron in previous layer []

vL (t) linear velocity of the left front wheel [m/s]

Vmax maximum linear velocity of the right and left front wheel [m/s]

vR (t) linear velocity of the right front wheel [m/s]

w (t) angular velocity in z coordinate of the mobile robot [rad/s]

wn weights in the artificial neural networks []

X universal set []

X1 closeness factor for region 1 (it is close) []

X2 closeness factor for region 2 (it is far) []

{Xh, Yh} moving coordinate axes []

{Xs, Ys} stationary coordinate axes []

xi input(s) of the system []

xp target location on x axis [pixel]

yi output(s) of the system []

δi local slope []

ø empty set []

θ constant in ADALINE model []

Θ heading angle [rad]

κ (s) curvature at point s [1/m]

µA(x) membership degree of x in set A~

η learning rate []

τi threshold value []

112

APPENDIX 2

ABBREVIATIONS

ADALINE Adaptive Linear Element, Adaptive Linear Neuron

AI Artificial Intelligence

AMR Autonomous Mobile Robot

ANFIS Adaptive Network Based Fuzzy Inference System

ANNs Artificial Neural Networks

ART Adaptive Resonance Theory

BAM Bidirectional Associative Memory

BP Backpropagation

CC Cascade Correlation

CMAC Cerebellum Model Articulation Controller

CNN Cellular Neural Networks

dLVQ Dynamic Learning Vector Quantization

DOF Degrees of Freedom

FAM Fuzzy Associative Memory

FCM Fuzzy Cognitive Map

FL Fuzzy Logic

FLC Fuzzy Logic Control

FS Fuzzy Sets

GUI Graphical User Interface

HAM Hamming Net

HOP Hopfield Network

LMS Least Mean Square

LVQ Learning Vector Quantization (or linear vector quantization)

MADALINE Multiple ADALINE

M1 MADALINE I

M2 MADALINE II

M3 MADALINE III

MFT Mean Field Theory

MR Mobile Robot

OLVQ Optimized LVQ

OLAM Optimal Linear Associative Memory

PCA Principal component analysis

113

PIC Peripheral Interface Controller

PNN Probabilistic Neural Network

QP Quick Propagation

RBF Radial Basis Function

RBP Recurrent Backpropagation

RCE Restricted Coulomb Energy

RF Radio Frequency

RfComm Radio Frequency Communication

SBC Single Board Computer

SDP Session Description Protocol

SOM Self-Organizing Map

TAM Trilateral Associative Memory

TDNN Time-Delay Neural Net

USB Universal Serial Bus

WMR Wheeled Mobile Robot

WTA Winner Takes All

114

APPENDIX 3

DEFINITIONS IN COMPUTER NETWORKS

Bandwidth : Commonly, it is the size of the channel used by the radio (the amount

of frequency available to the system). By extension, it can also sometimes refer to

the speed of the system (the bit rate).

Bit-rate : Speed at which bits are transmitted over the physical layer, also called

signaling rate. Quite different from throughput.

Carrier: The base frequency used by the system. The modulation process will

generate a signal centered on the carrier, of width equal to the bandwidth.

Carrier Sense: Checking the transmission medium to get permission if it is free or if

there is a transmission going on. Usually measure of the received power. See CSMA.

CDMA (Code Division Multiple Access) : Technique used to share the same

bandwidth between different channels using codes. The code is a signature

multiplexed with the signal and used to recover it.

CSMA (Carrier Sense Multiple Access) : Using carrier sense to access the

medium. One of the main MAC methods.

Cell : Radio neighborhood, area where all nodes can communicate with each other.

As the range over radio is limited, the network is split into independent cells and a

cell to cell communication is provided (via access point or internal routing).

Channel : On the radio, this is usually synonym of a specific frequency, and by

extension the communication medium. It can also mean a stream of data between

two nodes (a point to point link in connection oriented systems).

115

dB (decibel) : Logarithmic way to express a value. Usually the signal strength

(transmitted and received power) is expressed in dBm (the reference is 1 mW - 0

dBm). A difference between two values in dBm is without unit, in dB (in fact, this is

a factor between the two values).

Ethernet : Standard wired LAN protocol. Includes physical and link layers.

Fading : Variation in channel performance due to the dynamicity of the

environment, make the receive signal strength change.

FEC (Forward Error Correction) : Technique used to overcome some type of

errors created by transmission on noisy channels, by adding redundancy bits to the

main data transmission.

Frequency band : Portion of the radio spectrum delimited for a particular use. For

example, most wireless LANs use the 2.4 to 2.48 GHz band. A frequency band is

usually divided in channels.

FTP: File Transfer Protocol

Header : Information added by the protocol in front of the payload in the packet for

its own use (addresses, packet type, sequence number, CRC...). Each protocol adds a

different header, so in a typical TCP/IP packet as transmitted, we have a MAC

header, an IP header and a TCP header, followed by the payload.

IP : see TCP/IP.

IPX : Network protocol used in Netware, usually with SPX.

LAN (Local Area Network) : Network on a short distance, as opposed to WAN

(typically inside a building).

116

Latency: Measure of the performance of a network for short requests and

multimedia traffic. There is no real standard measurement, it might be the time to

send and transmit a packet, or the time spent in the transmit queue, or the time for an

answer to come back, or a number of requests per second...

Layer: This terminology comes from the OSI specification. It divides any

communicating system into 7 layers, each having a different functionality. Layer 1 is

the physical layer, and layer 2 is the link layer. IP could be assimilated as layer 3

(network layer), and TCP as layer 4 (transport layer).

Link layer: This is the part of the protocol managing the direct delivery between two

devices on a specific physical layer (coaxial bus, point to point link, radio...). This

includes packaging and addressing. Most of this is implemented in the MAC.

MAC (Medium Access Control) : This is the part of the radio device managing the

protocol and the usage of the link. The MAC decides when to transmit and when to

receive, creates the packets headers and filters the received packets.

Medium: Name to describe the mean used to transfer information. This could be a

wire (twisted pairs, coax...), an optic fibber, the radio waves (the air), infrared light...

Mbps: Megabits per second

Modem (modulator/demodulator) : In a radio device, this is the part converting the

bits to transmit into a modulation of the radio waves and the reverse at the reception.

It does the analog to digital conversion, the generation of the frequency, the

modulation and the amplification.

Modulation: Specific way of coding information on a radio frequency. Basically,

there is amplitude modulation (AM - change waveform strength) and frequency /

phase modulation (FM - change waveform timing), but there exist many variations

and combinations each designated by a specific acronym.

117

NetBeui : Network protocol used in Lan Manager.

Node: A device part of the network, source or destination of the data. For us, a

computer with a radio card in it.

Noise: Any unwanted signal. Background noise, interferences, and transmissions

from nodes; not belonging to the network.

Packet: Unit of transmission over the network. The data to be transmitted is split

into packets, which are sent individually over the network.

Protocol: Specification of the interactions between systems and the data

manipulated. This describes what to do and when (the rules), and the format of the

data exchanged on the lower communication layer.

Physical layer: This is the part of the device interacting with the medium. For a

radio LAN, the physical layer is also called modem.

Roaming: Ability to move between cells of the same network.

SNR (Signal to Noise Ratio): Difference in strength between the signal we want to

receive and the background noise (or any unwanted signal).

TCP/IP: Network protocol used by firstly UNIX and Internet. Better in some

respects than NetBeui and IPX (allows routing, for example).

TDMA (Time Division Multiple Access): Technique used to share the same

bandwidth between different channels using periodic time slots.

Throughput: Measure of the performance of a network for large data transfer (such

as FTP, NFS, HTTP 1.1). This speed is expressed in bits per seconds or a multiple.

118

VNC stands for Virtual Network Computing. It is remote control software which

allows you to view and interact with one computer (the "server") using a simple

program (the "viewer") on another computer anywhere on the Internet. The two

computers don't even have to be the same type, so for example you can use VNC to

view an office Linux machine on your Windows PC at home.

WAN (Wide Area Network): Network on a large scale: a town, a country or the

world.

Wired: Using a wire.

Wireless: Not using a wire. For networks, it might be radio or infrared.

WLANs: wireless local area networks

119

APPENDIX 4

SCHEMATICS

 Schematic 1 CMU CAMERA

120

 Schematic 2 Experimental motor driver circuit

121

Schematic 3. PCM 3718 block diagram

 PCM 3712 base address selecting.

Schematic 4. PCM 3712 block diagram and base address selecting.

122

 Schematic 5. Block diagram of PC104 main board (PCM 3350).

 Schematic 6. Internal block diagram of UC3525A.

123

Schematic 7. 16F877 28/40-pin 8-bit CMOS FLASH microcontroller pin diagram

124

Schematic 8. 16F877 pinout description

125

Schematic 9. 16F877 block diagram

126

(First Model: Path Following Diagram of the Vehicle)

(First Model: Navigation Diagram of the Vehicle)

(First model: General view.)

Camera 1 (Fixed)

Camera 2
(on the
vehicle)

Grabber Card

Camera Stepper
Control Card

Color Follower
Algorithm

Computer

Serial
Comm
PIC
Card

RF
Modem

RF
Modem

Where am
RF Modem

127

(Third model of the AMR)

Schematic 10. Model developing stages.

(Second model of the AMR)

128

Schematic 11. 3D Model of the AMR:

129

APPENDIX 5

PROGRAMS

1. Ultrasonic Sensor Data Sending Pic Basic Pro Program

'**
'* Name : SENSOR.BAS *
'* Author : OK & AG *
'* Notice : Copyright (c) 2006 *
'* : All Rights Reserved *
'* Date : 08.06.2006 *
'* Version: 1.0 *
'**
c1 var byte
c2 var byte
c3 var byte
c4 var byte
c5 var byte
c6 var byte
c7 var byte
'**
d0 var byte
d1 var byte
d2 var byte
d3 var byte
d4 var byte
d5 var byte
d6 var byte
d7 var byte
'**
sonuc1 var byte
sonuc2 var byte
sonuc3 var byte
sonuc4 var byte
sonuc5 var byte
sonuc6 var byte

lref var byte
rref var byte

TRISA=%11111111
TRISB=%10111111
TRISC=%11111111
TRISD=%11111111
TRISE=%00000000

PORTA = 0
PORTB = 0
portc = 0
portd = 0
PORTE = 0

pause 500

include "modedefs.bas"
serout PORTB.6,N9600,["Başlıyor..",13,10]

c1 = 0
c2 = 0
c3 = 0
c4 = 0
c5 = 0
c6 = 0
c7 = 0

lref = 0
rref = 0

start:

130

startc:
while portc.0=1
Wend
while portc.0=0
Wend
pause 2
c1.3=portc.1
c2.3=portc.2
c3.3=portc.3
c4.3=portc.4

pause 4
c1.2=portc.1
c2.2=portc.2
c3.2=portc.3
c4.2=portc.4
pause 4
c1.1=portc.1
c2.1=portc.2
c3.1=portc.3
c4.1=portc.4
pause 4
c1.0=portc.1
c2.0=portc.2
c3.0=portc.3
c4.0=portc.4
'sol algıla

sonuc5 = 0
if c4.3=0 then sonuc5=2
if c3.3=0 then sonuc5=4
if c2.3=0 then sonuc5=6
if c1.3=0 then sonuc5=7
sonuc6 = 0
if c4.2=0 then sonuc6=2
if c3.2=0 then sonuc6=4
if c2.2=0 then sonuc6=6
if c1.2=0 then sonuc6=7

startd:

while portd.3=1
Wend
while portd.3=0
Wend
pause 2
d4.3=portd.4
d5.3=portd.5
d6.3=portd.6
d7.3=portd.7
pause 4
d4.2=portd.4
d5.2=portd.5
d6.2=portd.6
d7.2=portd.7
pause 4
d4.1=portd.4
d5.1=portd.5
d6.1=portd.6
d7.1=portd.7
pause 4
d4.0=portd.4
d5.0=portd.5
d6.0=portd.6
d7.0=portd.7

'sol algıla
sonuc3 = 0
if d7.3=0 then sonuc3=2
if d6.3=0 then sonuc3=4
if d5.3=0 then sonuc3=6
if d4.3=0 then sonuc3=7
sonuc4 = 0
if d7.2=0 then sonuc4=2

131

if d6.2=0 then sonuc4=4
if d5.2=0 then sonuc4=6
if d4.2=0 then sonuc4=7

startb:

while portc.5=1
Wend
while portc.5=0
Wend
pause 2
c6.3=portc.6
c7.3=portc.7
d0.3=portd.0
d1.3=portd.1

pause 4
c6.2=portc.6
c7.2=portc.7
d0.2=portd.0
d1.2=portd.1
pause 4
c6.1=portc.6
c7.1=portc.7
d0.1=portd.0
d1.1=portd.1
pause 4
c6.0=portc.6
c7.0=portc.7
d0.0=portd.0
d1.0=portd.1
'sol algıla

sonuc1 = 0
if d1.3=0 then sonuc1=2
if d0.3=0 then sonuc1=4
if c7.3=0 then sonuc1=6
if c6.3=0 then sonuc1=7
sonuc2 = 0
if d1.2=0 then sonuc2=2
if d0.2=0 then sonuc2=4
if c7.2=0 then sonuc2=6
if c6.2=0 then sonuc2=7

'serout
PORTB.6,N9600,[#sonuc1,",",#sonuc2,",",#sonuc3,",",#sonuc4,",",#sonuc5,",",#sonuc6,13
,10]

rref = 30
lref = 30
If sonuc2 >= 4 Then rref = 30: lref = 10
If sonuc5 >= 4 Then rref = 10: lref = 30

serout PORTB.6,N9600,["L",lref,"R",rref]

GoTo start

End

132

2. Encoder Data Sending Pic Basic Pro Program

'**
'* Name : ENCODER.BAS *
'* Author : OK & AG *
'* Notice : Copyright (c) 2006 *
'* : All Rights Reserved *
'* Date : 08.06.2006 *
'* Version : 1.0 *
'**

TRISA=%11111100
TRISB=%11111111

PORTa = 0
portb = 0
left var word
left_durum var byte
right var word
right_durum var byte

i var word
include "modedefs.bas"
pause 500
Left = 0
left_durum = 0
Right = 0
right_durum = 0

mainloop:

For i = 0 To 10000
if portb.1=1 then
 If left_durum = 0 Then
 Left = Left + 1
 left_durum = 1
 End If
Else
left_durum = 0
End If
if portb.0=1 then
 If right_durum = 0 Then
 Right = Right + 1
 right_durum = 1
 End If

Else
right_durum = 0
End If
Next
cikti:
serout PORTa.1,N9600,["1",left.BYTE0,"2",left.BYTE1,"3",right.BYTE0,"4",right.BYTE1]
Left = 0
Right = 0
GoTo mainloop

133

3. Motor Control due to the Encoder Feedback Pic Basic Pro Program

'**
'* Name : MAIN.BAS *
'* Author : OK & AG *
'* Notice : Copyright (c) 2006 *
'* : All Rights Reserved *
'* Date : 08.06.2006 *
'* Version : 1.0 *
'**

TRISA=%11111111
TRISB=%10111111
TRISC=%11111111
TRISD=%11111111
TRISE=%00000000

PORTA = 0
PORTb = 0
PORTC = 0
PORTD = 0
PORTE = 0

lhiz var word
rhiz var word
lmax var word
rmax var word
lref var byte
rref var byte
lpwm var word
rpwm var word

i var word

lfeed_back var word
rfeed_back var word

pause 500
lref = 0
rref = 0
lmax = 70
rmax = 70
lfeed_back = 0
rfeed_back = 0
lpwm = 0
rpwm = 0

include "modedefs.bas"
serout PORTB.6,N9600,["Başlıyor..",13,10]
HPWM 1, lpwm, 20000
HPWM 2, rpwm, 20000

start:
'encoder verisi
SERIN portb.5,N9600,["1"],lhiz.BYTE0'motor verilerini alıyoruz.
SERIN portb.5,N9600,["2"],lhiz.BYTE1
SERIN portb.5,N9600,["3"],rhiz.BYTE0
SERIN portb.5,N9600,["4"],rhiz.BYTE1

'sensor Karari
SERIN portb.4,N9600,["L"],lref
SERIN portb.4,N9600,["R"],rref

serout PORTb.6,N9600,["L=",#lhiz,",R=",#rhiz,13,10]

lfeed_back = 0
rfeed_back = 0
lpwm = 0
rpwm = 0
If lref <= lhiz Then
lfeed_back = (lhiz - lref)

134

lpwm = ((lref - lfeed_back) * 255) / lmax
End If

If rref <= rhiz Then
rfeed_back = (rhiz - rref)
rpwm = ((rref - rfeed_back) * 255) / rmax
End If

If lref > lhiz Then
lfeed_back = (lref - lhiz)
lpwm = ((lref + lfeed_back) * 255) / lmax
End If

If rref > rhiz Then
rfeed_back = (rref - rhiz)
rpwm = ((rref + rfeed_back) * 255) / rmax
End If

serout PORTb.6,N9600,["lref=",#lref,",rref=",#rref,13,10]
serout PORTb.6,N9600,["Lpwm=",#lpwm,",Rpwm=",#rpwm,13,10]

If lpwm > 255 Then lpwm = 255
If rpwm > 255 Then rpwm = 255

HPWM 1, lpwm, 20000
HPWM 2, rpwm, 20000

i = i + 1

'if i=5 then lref=0:rref=45
'if i=10 then lref=30:rref=30
'if i=15 then lref=45:rref=0
'if i=20 then lref=30:rref=30:i=0

GoTo start

End

135

4. Fuzzy Mobile Robot Motion Control with Camera and Ultrasonic Feedbacks
Pic Basic Pro Program (see Figure 4.15 & Figure 4.16)

'**
'* Name : sensor(deney1).bas *
'* Author : OK & AG *
'* Notice : Copyright (c) 2006 *
'* : All Rights Reserved *
'* Date : 08.06.2006 *
'* Version : 2.0 *
'**
c1 var byte
c2 var byte
c3 var byte
c4 var byte
c5 var byte
c6 var byte
c7 var byte

'**
d0 var byte
d1 var byte
d2 var byte
d3 var byte
d4 var byte
d5 var byte
d6 var byte
d7 var byte

sonuc var byte[7]
fuzzy_ultra var byte [3]
hareketli_mi var byte
enson_gordugu var byte

l_cmu var byte
r_cmu var byte
m_cmu var byte
lref var byte
rref var byte

cmu_x1 var byte
cmu_x2 var byte
cmu_y1 var byte
cmu_y2 var byte
cmu_mx var byte
cmu_my var byte
cmu_pix var byte
cmu_yog var byte

i var word

TRISA=%11111111
TRISB=%00101111
TRISC=%11111111
TRISD=%11111111
TRISE=%00000000

PORTA = 0
PORTb = 0
portc = 0
portd = 0
PORTE = 0

cmu_x1 = 0
cmu_x2 = 0
cmu_y1 = 0
cmu_y2 = 0
cmu_mx = 0
cmu_my = 0
cmu_pix = 0
cmu_yog = 0

pause 500

136

camera:

include "modedefs.bas"
serout PORTB.7,N9600,["Basliyor..",13,10]
serout portb.4,N9600,["TC 200 255 0 70 0 70",13]

c1 = 0
c2 = 0
c3 = 0
c4 = 0
c5 = 0
c6 = 0
c7 = 0

lref = 0
rref = 0
hareketli_mi = 0
start:

startc:

while portc.0=1
Wend
while portc.0=0
Wend
pause 2
c1.3=portc.1
c2.3=portc.2
c3.3=portc.3
c4.3=portc.4

pause 4
c1.2=portc.1
c2.2=portc.2
c3.2=portc.3
c4.2=portc.4
pause 4
c1.1=portc.1
c2.1=portc.2
c3.1=portc.3
c4.1=portc.4
pause 4
c1.0=portc.1
c2.0=portc.2
c3.0=portc.3
c4.0=portc.4
'sol algıla

sonuc [5] = 0
if c4.3=0 then sonuc[5]=2
if c3.3=0 then sonuc[5]=4
if c2.3=0 then sonuc[5]=6
if c1.3=0 then sonuc[5]=7
sonuc [6] = 0
if c4.2=0 then sonuc[6]=2
if c3.2=0 then sonuc[6]=4
if c2.2=0 then sonuc[6]=6
if c1.2=0 then sonuc[6]=7

startd:

while portd.3=1
Wend
while portd.3=0
Wend
pause 2
d4.3=portd.4
d5.3=portd.5
d6.3=portd.6
d7.3=portd.7
pause 4
d4.2=portd.4

137

d5.2=portd.5
d6.2=portd.6
d7.2=portd.7
pause 4
d4.1=portd.4
d5.1=portd.5
d6.1=portd.6
d7.1=portd.7
pause 4
d4.0=portd.4
d5.0=portd.5
d6.0=portd.6
d7.0=portd.7

'sol algıla
sonuc [3] = 0
if d7.3=0 then sonuc[3]=2
if d6.3=0 then sonuc[3]=4
if d5.3=0 then sonuc[3]=6
if d4.3=0 then sonuc[3]=7
sonuc [4] = 0
if d7.2=0 then sonuc[4]=2
if d6.2=0 then sonuc[4]=4
if d5.2=0 then sonuc[4]=6
if d4.2=0 then sonuc[4]=7

startb:

while portc.5=1
Wend
while portc.5=0
Wend
pause 2
c6.3=portc.6
c7.3=portc.7
d0.3=portd.0
d1.3=portd.1

pause 4
c6.2=portc.6
c7.2=portc.7
d0.2=portd.0
d1.2=portd.1
pause 4
c6.1=portc.6
c7.1=portc.7
d0.1=portd.0
d1.1=portd.1
pause 4
c6.0=portc.6
c7.0=portc.7
d0.0=portd.0
d1.0=portd.1
'sol algıla

sonuc [1] = 0
if d1.3=0 then sonuc[1]=2
if d0.3=0 then sonuc[1]=4
if c7.3=0 then sonuc[1]=6
if c6.3=0 then sonuc[1]=7
sonuc [2] = 0
if d1.2=0 then sonuc[2]=2
if d0.2=0 then sonuc[2]=4
if c7.2=0 then sonuc[2]=6
if c6.2=0 then sonuc[2]=7

serin2 portb.5,16468,[wait("M "),dec cmu_mx,wait(" "),dec cmu_my,wait(" "),dec
cmu_x1,wait(" "),dec cmu_y1,wait(" "),dec cmu_x2,wait(" "),dec cmu_y2,wait(" "),dec
cmu_pix,wait(" "),dec cmu_yog]

rref = 0
lref = 0

If cmu_mx <= 40 Then ' Fuzzy tablosu Sol

138

l_cmu = ((40 - cmu_mx) * 100) / 40
rref = rref + (20 * l_cmu) / 100
End If

If cmu_mx >= 40 Then ' Fuzzy tablosu Sag
r_cmu = ((cmu_mx - 40) * 100) / 40
lref = lref + (20 * r_cmu) / 100
End If

If cmu_mx = 0 Then GoTo arama
enson_gordugu = cmu_mx
If hareketli_mi = 0 Then hareketli_mi = 1: rref = 0: lref = 0: GoTo send

'CMU Fuzzy tablosu Orta
If cmu_mx >= 20 And cmu_mx <= 60 Then
If cmu_mx < 40 Then
m_cmu = ((cmu_mx - 20) * 100) / 20
Else
m_cmu = ((60 - cmu_mx) * 100) / 20
End If
rref = rref + (50 * m_cmu) / 100
lref = lref + (40 * m_cmu) / 100
End If

'ultrasonik Fuzzy
if sonuc[1]>sonuc[2] then
fuzzy_ultra[0]=sonuc[1]
Else
fuzzy_ultra[0]=sonuc[2]
End If

if sonuc[3]>sonuc[4] then
fuzzy_ultra[1]=sonuc[3]
Else
fuzzy_ultra[1]=sonuc[4]
End If

if sonuc[5]>sonuc[6] then
fuzzy_ultra[2]=sonuc[5]
Else
fuzzy_ultra[2]=sonuc[6]
End If

For i = 0 To 2
select case fuzzy_ultra[i]
Case 2
fuzzy_ultra [i] = 29
Case 4
fuzzy_ultra [i] = 57
Case 6
fuzzy_ultra [i] = 71
Case 7
fuzzy_ultra [i] = 100
End Select
Next

'Ultrasonic karar tablosu
if sonuc[1]+sonuc[2]>0 then rref = rref+(20*fuzzy_ultra[0])/100
if sonuc[3]>2 and sonuc[4]>2 then rref=0:lref=0:goto send
if sonuc[5]+sonuc[6]>0 then lref = lref+(20*fuzzy_ultra[2])/100

If rref > 50 Or lref > 50 Then 'hızların 50 yi gecmemesi gerekli
If lref > rref Then
rref = rref - (lref - 50)
lref = 50
Else
lref = lref - (rref - 50)
rref = 50
End If
End If

send:

139

serout PORTB.6,N9600,["L",lref,"R",rref]
serout2 PORTb.3,16780,["$RF
ULtra[",#sonuc[1],",",#sonuc[2],",",#sonuc[3],",",#sonuc[4],",",#sonuc[5],",",#sonuc[
6],"] CMU[",#cmu_mx,"] L",#lref," R",#rref," END",13,10]

GoTo start

arama:
hareketli_mi = 0
if sonuc[3]>2 and sonuc[4]>2 then rref=0:lref=0:goto send
rref = 20: lref = 0
If enson_gordugu > 40 Then: lref = 20: rref = 0

GoTo send

End

	Cover
	Cover Out
	Cover - In
	Result Form
	Acknowledgments
	Abstract
	Özet
	Contents

	CHAPTER ONE - INTRODUCTION
	1.1 Introduction
	1.2 Artificial Neural Networks
	1.2.1 Types of ANNs
	1.2.2 Learning Types in ANNs
	1.2.3. Autonomous Mobile Robots
	1.2.4. ANNs Applications in Autonomous Mobile Robots

	CHAPTER TWO - FUZZY LOGIC AND ARTIFICIAL NEURAL NETWORKS
	2.1 Dempster – Shafer Theory and Sensor Fusion
	2.2 Artificial Neural Networks
	2.2.1 Types of Artificial Neural Networks
	2.2.2 Learning Types in Artificial Neural Networks
	2.2.3 Types of Connections in Artificial Neural Networks
	2.2.4 Architectures and Learning Paradigms in Artificial Neural Networks

	2.3 Fuzzy Logic
	2.3.1 Introduction
	2.3.2 Membership Function
	2.3.3 Fuzzy Logic Control

	CHAPTER THREE - AUTONOMOUS NON-HOLONOMIC MOBILE ROBOTS
	3.1 Non-Holonomic Vehicles
	3.2 Autonomous Wheeled Mobile Robots
	3.3 Dead Reckoning
	3.4 Architecture of Autonomous Wheeled Mobile Robots
	3.4.1 Mobile Robot Navigation

	3.5 Braitenberg Vehicles

	CHAPTER FOURSYSTEM AND EXPERIMENTS
	4.1 Kinematics of the Experimental Mobile Robot
	4.2 Experimental System Model
	4.2.2 Wireless Communications on Model
	4.2.1 Ultrasonic Sensors for Navigation
	4.2.2 Wireless Communications on Model
	4.2.3 Motors and Drivers
	4.2.4 Controllers and Input – Output Cards

	4.3 Block Diagrams
	4.3.1 First Models of the Robot
	4.3.2 Control of the System

	4.4 Dempster – Shafer Evidence Theory Experiments
	4.5 Fuzzy Logic Experiments (Find Target)
	4.5.1 Fuzzy Logic Controller Experiment 1
	4.5.2 Fuzzy Logic Controller Experiment 2
	4.5.3 Fuzzy Logic Controller Experiment 3
	4.5.4 Fuzzy Logic Controller Experiment 4
	4.5.5 Fuzzy Logic Controller Experiment 5

	4.6 Artificial Neural Networks Experiments (Find Empty Space)
	4.6.1 ANN and Fuzzy Logic Combined Experiments

	CHAPTER FIVECONCLUSIONS
	5.1 Overview
	5.2 Conclusions About Control Techniques and Future Work

	REFERENCES
	APPENDICES
	APPENDIX 1NOMENCLATURE
	APPENDIX 2ABBREVIATIONS
	APPENDIX 3DEFINITIONS IN COMPUTER NETWORKS
	APPENDIX 4SCHEMATICS
	APPENDIX 5PROGRAMS

