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CONTROLLING A NON-HOLONOMIC VEHICLE VIA 
ARTIFICIAL NEURAL NETWORKS 

 

ABSTRACT 

 

The use of learning autonomous robots is inevitable in modern production technologies. 

Modern industries require efficient production, précised measuring and robust control 

systems due to the hard competition of perfect product manufacturing whereas human 

wants more comfort in life. Various kinds of robot vehicles for various tasks have been 

developing increasingly not only in production industry but also in daily life.  

 

In this research, a vehicle model with four wheels is built and equipped with actuators, 

different types of sensors, communication devices, data acquisition and control units in 

Automatic Control Laboratory of Mechanical Engineering Department of Dokuz Eylul 

University. On this developed autonomous wheeled mobile robot model, Dempster-Shafer 

evidence theory is tested at first step in means of sensor fusion for having more reliable 

data from sensors.  

 

Fuzzy logic and most types of artificial neural networks architectures which are popular 

on autonomous mobile robots are explained starting with basic equations and control 

parameters, revealing the advantages of ANNs use on autonomous mobile robots in second 

chapter of this thesis. Chapter three covers the kinematic analysis of mobile robot model. It 

is the fourth chapter, in which the experimental data and results are demonstrated. The 

conclusion part, which is named as chapter five, is the part in which the results are 

evaluated in not only in means of technical or scientific research but also in means of daily 

life use. 

 

Keywords: Artificial neural networks, autonomous mobile robots, wheeled mobile robots, 

non-holonomic vehicles, fuzzy logic, Dempster-Shafer Theory. 
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HOLONOMİK  OLMAYAN ARAÇLARIN YAPAY SİNİR AĞLARI İLE 
KONTROLÜ 

 

ÖZ 

 

Öğrenebilen otonom robotların modern üretim teknolojilerinde kullanımı kaçınılmazdır. 

Modern endüstriler, mükemmel mamül üretim yarışı içerisinde hızlı ve verimli üretim, 

hassas ölçme ve sağlam kontrolü gerektirirken; insan da günlük hayatta daha fazla komfor 

aramaktadır. Değişik görevler için değişik çeşit robot araçlar sadece üretim endüstrisinde 

değil, günlük hayatta da hızla ortaya çıkmaktadır.  

 

Bu araştırmada, dört tekerlekli bir araç modeli Dokuz Eylül Üniversitesi Makina 

Mühendisliği Bölümü Otomatik Kontrol Laboratuvarı’nda üretilmiş ve üzerine hareket 

elemanları, çeşitli algılayıcılar, iletişim cihazları, veri toplama ve kontrol üniteleri 

yerleştirilmiştir. Üretilen bu otonom tekerlekli gezgin robot modelinde ilk aşamada sensör 

füzyonu ve algılayıcılardan daha güvenilir veri alma konusunda Dempster-Shafer teoremi 

denenmiştir.  

 

Otonom gezgin robotlarda sıklıkla kullanılan bulanık mantık ve yapay sinir ağları 

mimarileri temel denklem ve kontrol parametrelerinden başlanılarak, gezgin robotlarda 

YSA kullanımının avantajları ortaya konularak bu tezin ikinci bölümünde anlatılmıştır. 

Üçüncü bölümde gezgin robot modelinin kinematik analizine yer verilmiştir. Dördüncü 

bölümde ise deneysel veriler ve spnuçlar gösterilmiştir. Bölüm beş olarak adlandırılan 

sonuç bölümünde sadece teknik ve bilimsel araştırma açısından değil, günlük hayatta 

kullanım açısından da değerlendirilmiştir.  

 

Anahtar Sözcükler: Yapay sinir ağları, otonom gezgin robotlar, tekerlekli gezgin robotlar, 

holonomic olmayan araçlar, bulanık mantık, Dempster-Shafer Teoremi. 
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CHAPTER ONE 

INTRODUCTION 

 
1.1 Introduction  

 

It is the starting point of a hard target to build a robot that can decide. However, it 

is harder to build a robot that can sense environment and decide. The aim of most of 

the autonomous mobile robots is to move towards the target without any help from a 

man and without hitting any obstacle around using its own decision mechanism. 

Since the parameters which affect decision mechanism are variable, it is a great 

advantage for the control unit of an AMR to have learning skill.  

  

The most important advantage of the use of artificial neural networks on AMR is 

the increase of the flexibility of adaptation of control algorithm in varying 

environment conditions. In other words, the main advantage of using ANN in mobile 

robots is the ability of developing solutions for changing environment and limitations 

problem. For instance, robot can complete its tasks in not only the predefined 

environments and conditions or in the workspace that is recorded in the memory but 

also in totally changed conditions without using huge environmental data in memory. 

In solving the two main problem of finding free space in workspace and finding the 

shortest way to target problem, many different ANN techniques are being used 

(Janglova, 2004; Hamdi, A.A. & Al-Zorkany, M.A., 2004 ).  

  

ANN analysis and solutions techniques have been used in industrial applications 

in last years. Some application fields are: Production planning, optimization of 

production for increasing productivity in various conditions with changing 

parameters, process monitoring, modeling and control researches (Lennox, B., 

Montague, G. A., Frith, A. M., Gent, C., Bevan, V., 2001). 



 
 

 

2

1.2 Artificial Neural Networks 
 
 

Human nerve cell consists of four parts: 1. Dendrite, the part which accepts 

inputs, 2. Soma, the part that process inputs, 3. Axon, the part which changes inputs 

into outputs, 4. Synapse, the part that carries the data to the next cell (Figure 1.1).  

 

 

Artificial Neural Networks (ANN) are the control methods those are inspired from 

biological neuron and its parts. Each input (X1, X2, …, Xn) is connected to a certain 

cell or a cell (s) which is selected after process with a weight that defines the 

connection strength or the influence of a neuron to the next one. Weights (W1, W2, 

…, Wn) change to optimal values in program cycles during training period. Thus, the 

convenient output(s) is (are) obtained. In other words, the ANN learned. In equations 

below you may see the output of ANN, output with feedback, error and updated 

weight value respectively. In equations, di is the desired value, yi is the output value, 

η is the learning rate and δi is the local slope. 

 

   Figure 1.1 Parts of a biological nerve cell (neuron). 
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ANNs models are generally simple mathematical models those define f: X → Y.  

 

 
 

 
 

ANNs have also disadvantages in applications. Time need in training period, more 

upgraded hardware need than generally for processing, more complex than classical 

methods are some clues which show that ANNs methods are not the optimal solution 

for every control problem. Some application fields of ANNs in AMR are: 

Classification, image and sound data processing, non-linear mapping, optimization, 

coordination of robot parts and associative memory applications. 

 

 

Figure 1.2 Artificial Neuron 1(feedback)

 
   Figure 1.3 Artificial Neuron 2  
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1.2.1 Types of ANNs  

 

The two main criterions for classification of ANNs are whether the ANN has 

feedforward or feedback and whether the ANN is supervised or unsupervised (Mori,  

H., Tamaru, Y., Tsuzuki, S. 1992). Some ANN algorithm types can be seen in Table 

1.1  

 
Table 4.1. Classification of ANN algorithms. 
 

 Recurrent Feedforward 

U
ns

up
er

vi
se

d ART (Adaptive Resonance 
Theory), Hopfield, Bidirectional 

associative memory (BAM), 
Trilateral associative memory 

(TAM), Boltzmann Machine (can 
be also supervised),... 

Linear associative memory, 
Fuzzy Associative Memory 

(FAM), LVQ, CPN, SOM, ... 
 

Su
pe

rv
is

ed
 

Fuzzy Cognitive Map (FCM), 
Boltzmann Machine (can be also 

unsupervised), 
... 

Backpropagation (BP), Adaline, 
Perceptron, ... 

 

 
 
Figure 1.4 Artificial Neural Networks 
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1.2.2 Learning Types in ANNs 

 

1.2.2.1 Unsupervised Learning 
 

It is learning with doing. Without any interference, the neurons in hidden layer 

organize themselves. No sample output according to relevant input is given to the 

network. 

 

1.2.2.2 Supervised Learning 
 

If the desired output value is y and network output is o , the difference between y 

and o is the error value. Error value is used to update the weights in supervised 

learning. Desired output values are connected to input values and are given as 

vectors to the network. These sample values matrix is called as training set. 
 

1.2.2.3 Reinforcement Learning 

 
It is also a type of supervised learning. Neurons in hidden layer are random 

connected to each other. Approximation to solution of the problem is the main 

evaluation criteria. There can be a training data set or a performance observer.  

 
Table 1.2 Learning types in ANN 
 

   

Supervised Unsupervised Reinforcement 

 

In addition to the ANN types above, in some problem solutions supervised and 

unsupervised learning are combined (Janglova, 2004). 

 

ANN 

 w 
x 

Critical 
Signal 

generator 

y 

Reinforcement 
signal 

Critic 
signal 

ANN 

w 
x y 

ANN 

w 
x 

Signal 
error 

generator 

d 
e 

y 



 
 

 

6

1.2. 3. Autonomous Mobile Robots 

 
An autonomous mobile robot is a robot which is moving and changing its 

workspace aiming to complete its tasks in limitations of the rules given or the rules it 

develops. The mobile robots which are studied in this research are wheeled mobile 

robots.  

 

 

In kinematic analysis of mobile robots, there are four main differences for 

kinematic analysis of robot manipulators (Muir, 1986). 

 

• Stationary manipulators only form closed chains when they are contact with 

fixed objects whereas; wheeled mobile robots form many closed chains at the 

same time. 

 

• The contact between a wheel and plane forms a higher-pair, but stationary 

manipulators contain only lower-pair joints. 

 

 
 

 
 
Figure1.5 Some AMR models in this research.  
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• In wheeled mobile robots, only some degrees of freedom of a wheel are 

actuated. However, all DOFs of each joint of a stationary manipulator has at 

least one actuator.  

 

• Each joint in stationary manipulator has position and velocity sensors. In 

wheeled mobile robots, only some degrees of freedom of a wheel have position 

or velocity sensors. 

 

Left and right motor velocity equations of a four wheeled mobile robot whose two 

wheels are actuated can be seen in figure below. 

   
Figure.1.6 Velocities of left and right motors of the mobile robot model in this research.  
 

r: Dynamic radius of wheel [m], 

R: Radius of curvature, [m], 

L: Distance between the middles of two front wheels [m], 

v: Linear velocity of the mobile robot, [m/s], 

vR (t): Linear velocity of the right front wheel, [m/s], 

vL (t): Linear velocity of the left front wheel, [m/s], 

θ: Heading angle, [rad], 

w (t): Angular velocity in z coordinate of the mobile robot, [rad/s], 

{Xh, Yh}: Moving coordinate axes, 

{Xs, Ys} : Stationary coordinate axes., 
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1.2. 3.1 Autonomous Mobile Robot Model 
 

Autonomous mobile robots in this research are heeled mobile robots which can 

perform their tasks without guidance of human.  

 

If the structure of a mobile robot is studied many external or internal sensors and 

sensor data, lots of priority levels in algorithm regarding the task priorities should be 

studied. But generally, interaction of mobile robot with three concepts can be seen. 

These are user, object and environment (Kopacek, 2006). In Figure 1.7, structure of 

an autonomous mobile robot can be seen. Extracting some blocks, this structure can 

be used also for an open loop controlled mobile robot. Of course when it is open loop 

controlled, it is not classified as autonomous. In Table 1.3, the paradigm of an 

autonomous mobile robot movement is demonstrated (Murphy, R.R., 2000).  
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Figure 1.7  Structure of a mobile robot.  
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Table 1.3. Movement mechanism of an autonomous mobile robot. 
 

Movement Input Output 

Sense Sensors Sensor Data 

Plan Data  (sensed and/or logic) Commands 

Do Sensed data or commands Actuators 

 

 

1.2. 4. ANNs Applications in Autonomous Mobile Robots 
 

Starting point of ANNs applications study can be simulation programs. MatLab 

NN toolbox and NN blockset, BrainCom, Stuttgart University’s SNNS, EasyNN-

Plus are some examples. In simulations or in programming basic steps to ANN study 

is: 

 

• Determination of number of inputs, initial values of weights (some types do 

not need), number and types of outputs, number of layers. 

 

• Training period. 

 

• When the ANN achieves the desired values, it is tested. 

 

• If it is convenient, it is used. If it is not, training and testing periods are 

repeated. If it is needed convenient changes are made and steps are repeated. 

 

Most researches need more than simulations. In this case, if there is a NN library 

in the programming language, which will be used, it can be an advantage. Fast 

Artificial Neural Networks library is one of the widespread libraries. It not only has 

different versions for different programming languages (GCC, C++, .NET, Perl, PHP 

…), but also has different versions for different operating systems (Linux, MacOS, 

POSIX, Windows …). In figure below, FANN Explorer, the interface for FANN can 

be seen.  
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1.2.4.1 Application of Sensor Data Directly to ANNs 
 

ANNs can be applied in all stages of movement paradigm of AMR. For instance, 

in sense stage ANNs can be used to have more reliable data from sensors; in 

planning stage, they can be used to find free space or path or for mapping and  in 

doing stage, they can be used to solve non-linearity problems or finding optimal 

operating conditions.  

 

In sensing stage, for the purpose of having reliable data, some theories like, 

Dempster-Shafer can be applied (Gören, A., Uyar, E., Dicle, Z., 2007). In Figure 1.9, 

dividing regions as for having data from sensors with priority levels can be seen. 

ANNs have some advantages in applications in sensing stage based on ‘behaving 

more sensible for the sensor that is stimulated before’.  Each sensor data can be 

accepted as each neuron input. Taking into consideration of heading angle, 

limitations and target coordinates, weights can increase or decrease. In result of this, 

AMR can act more optimal. In sensing stage, ANNs also can be used to have reliable 

data.   

 
Figure 1.8 Interface of FANN library and FANN explorer   
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1.2. 4.2 Image Processing with ANNs on AMRs 
 

Realtime image processing is one of the popular techniques which are used on 

mobile robots. AMR can detect an object from environment, map surround, classify 

objects, head towards a target, detect motion, detect the distance from an object or 

associate information with an object via image processing, On the other hand, 

realtime image processing code in control algorithm should be fast and should not 

make the behavior of the robot clumsy. In this case, cellular neural networks can be 

a solution method. Instead of taking into consideration of the whole data in an image, 

using just some important data in a region of an image the same result can be found. 

CNN (cellular neural networks) use this information. Using CNN, control algorithm 

becomes faster and AMR does not need advanced control unit hardware.  So, 

realtime image processing on an AMR can be processed without high cost of control 

unit and without any slowness that is caused by image processing.  Linux operating 

systems (Slackware, RT Linux, Debian, Fedora, etc…) with realtime kernel and 

‘comedi drivers’ can be a very effective choice not only for low cost realtime control 

and also for developing open source codes.  

 
 
 
Figure 1.9 Sensor installations and regions on model  
 



 
 

 

12

 

Structure of CNN and definition as equations can be seen below.  

 

 

1.2.4.3. Approximation to Optimal Path Following and Obstacle Avoidance  
 

One part of researches on WMR is finding the optimal path.  Using classical 

methods or Fuzzy Logic in AMR control isn’t the optimum solution especially in 

adaptation to different environments. Path to the target can be quite longer, 

movements of AMR may have discontinuity or because of long rule lists, the 

decision mechanism, consequently, the robot can be slow.    

 

If it is considered that the velocities of the wheels of WMRs is simply dependent 

to the path following function of the robot. Therefore, a discontinuity on the path, 

which means also a discontinuity in velocity functions and also means high 

acceleration and deceleration values. In Figure 1.11, types of path curves can be 

seen. Equation 1.9, 1.10, 1.11 and 1.12 denote velocities of left and right side motors. 

 
 
Figure 1.10.  CNN Structure (Sum, Dynamic part and activation).  
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r(s),  is the radius of curvature at s and κ (s) is the curvature at s. θ is the angle 

between the stationary coordinate axis and the tangent of the curve at point P.  

 

 

 

 

 

In Figure 1.11, class 0 type curve is a discontinuous curve whereas a continuous 

curve is in class 1. In addition to continuity of the curve, if the direction tangent is 

also continuous it is a class 2 type curve. And in addition to all, if it has also 

curvature continuity, it is a class 3 type curve.  Class 3 type curve is the optimal path 

following curve in most of the problems. And it is hard for an AMR to act in a class 

3 type ways, especially in not known environments. However, using modern control 
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Figure 1.11 Class 0,  class 1, class 2 and  class 3  curve  types. 
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techniques like ANNs in AMR, the path for the robot can be smoother. Another point 

that has to be considered is that the performance criterion for an AMR is quite 

different than a stationary manipulator.  Path or function following of a stationary 

manipulator is generally considers how accurate the ideal theoretical curve is 

followed whereas path following for an AMR generally means how successful, fast, 

optimal, accurate and how intelligent the tasks are completed.  ANNs use is 

important for this reason. 

 

In this research, some ANNs usage applications in AMR is explained with basic 

equations and control parameters revealing the advantages of ANNs use on 

autonomous mobile robots.  
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CHAPTER TWO 

FUZZY LOGIC AND ARTIFICIAL NEURAL NETWORKS 
 

2.1 Dempster – Shafer Theory and Sensor Fusion 

 

Let X is universal set and P(X) is the set of all possible subsets of X, including the 

empty set, ø, in other words the power set.  The mass of the empty set is zero;  
 

The mass of a given member of the power set, A , expresses the proportion of all 

relevant and available evidence that supports the claim that the actual state belongs to 

A but to no particular subset of A and denoted by , m(A) .  
 

From the mass assignments, the upper and lower bounds of a probability interval 

can be defined. This interval is bounded by two non-additive continuous measures 

called belief (or support) and plausibility:  

 

 
The sum of all the masses of subsets of the set of interest is the belief of a set and 

denoted by bel (A).   

 

 

Whereas the plausibility is the sum of all the masses of the sets that intersect the 

set of interest: 
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Dempster’s rule of combination is a generalization of Bayes rule that emphasizes 

the agreement between multiple sources and ignores all the conflicting evidence 

through a normalization factor.   

 

In equations 8 and 9, K is a measure of the amount of conflict between the two 

mass sets whereas the normalization factor (1-K), has the effect of completely 

ignoring conflict and attributing any mass associated with conflict to the null set.  

 

To have more reliable data from sensors, sometimes sensory data or data derived 

from sensory data from disparate sources are combined. The reason is that resulting 

information is in some sense more accurate or more dependable than would be 

possible when these sources were used individually. This is called sensor fusion.  

 

2.2 Artificial Neural Networks 

 

For many scientists, artificial neural networks research started in 1943, when 

Warren McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts, 

wrote a paper on how neurons might work and modeled a simple neural network 

with electrical circuits. Donald Hebb wrote The Organization of Behavior in 1949. 

The important point in this book was pointing out that neural pathways are 

strengthened each time that they are used. Nathanial Rochester from the IBM 

research laboratories led the first effort to simulate a neural network in 1950’s. But, 

)(1)( AbelApl −=                             (2.6) 
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∑
≠=∩−

=
 ø

212,1 )()(
1

1)(
ACB

CmBm
K

Am               (2.8) 

 
 

∑
=∩

=
 ø

21 )()(
CB

CmBmK         (2.9) 



 17

this attempt failed. . In 1956 the Dartmouth Summer Research Project on Artificial 

Intelligence provided a boost to both artificial intelligence and neural networks. In 

the years following the Dartmouth Project, John von Neumann suggested imitating 

simple neuron functions by using telegraph relays or vacuum tubes. Frank 

Rosenblatt, a neuro-biologist of Cornell, began work on the Perceptron. He was 

intrigued with the operation of the eye of a fly. Much of the processing which tells a 

fly to flee is done in its eye. The Perceptron, which resulted from this research, was 

built in hardware and is the oldest neural network still in use today. A single-layer 

perceptron was found to be useful in classifying a continuous-valued set of inputs 

into one of two classes. The perceptron computes a weighted sum of the inputs, 

subtracts a threshold, and passes one of two possible values out as the result. 

Unfortunately, the perceptron is limited and was proven as such during the 

"disillusioned years" in Marvin Minsky and Seymour Papert's 1969 book 

Perceptrons. It is 1959 that Bernard Widrow and Marcian Hoff developed models 

and called ADALINE and MADALINE (Multiple ADAptive LINear Elements). 

Eliminating echoes on phone lines, MADALINE was the first neural network to be 

applied to a real world problem. But, until John Hopfield of Caltech presented a 

paper to the national Academy of Sciences and Teuva Kohonen presented Self-

Organizing Maps in 1982, the years passed without any success in application, but 

just frustration because of the insufficient computers. Hopfield's approach was not to 

simply model brains but to create useful devices. (History of Neural Networks, n.d.).  

 

Inspiration of Artificial Neural Networks research is the human brain. Similar to 

biological neural networks, simple processing elements are called neurons. Each 

neuron is connected to certain of its neighbors with varying coefficients of 

connectivity. These coefficients are called as weights and represent the strengths of 

these connections. The most popular advantage for artificial neural networks is 

learning. Learning is accomplished by adjusting these weights to cause the overall 

network to output appropriate results. Collective and synergistic computation, 

asynchronous operation, robustness are other characteristics of ANNs. Intelligent 

machines, parallel processing, distributed computing, learning, generalization, 
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adaptation are some terms which are popular and mostly related with artificial neural 

networks.  

Biological neuron consists of four parts:  

 

i.   Dendrite, the part which accepts inputs,  

ii.  Soma, the part that process inputs,  

iii. Axon, the part which changes inputs into outputs,  

iv. Synapse, the part that carries the data to the next cell (Figure 2.1).  
 

 

 

If we compare the parts of biological and artificial neurons, the dendrite in 

biological neuron is input in artificial neuron, synaptic efficacy is weight, excitation 

level is noise (u) and signal in biological neuron is output in artificial neuron 

(Dohnal, V., Kuca, K. & Jun, D., 2005).   

 

Each input (X1, X2, …, Xn) is connected to a certain cell or a cell (s) which is 

selected after process with a weight that defines the connection strength or the 

influence of a neuron to the next one. Weights (W1, W2, …, Wn) change to optimal 

values in program cycles during training period. Thus, the convenient output(s) is 

(are) obtained. In other words, the ANN learned. In equations below you may see the 

output of ANN, output with feedback, error and updated weight value respectively. 

In equations, di is the desired value, yi is the output value, η is the learning rate and δi 

is the local slope. 

 

      
 

     Figure 2.1. Parts of biological nerve cell (The Major Structures of the Neuron, n.d.) and artificial  
     neurons. 
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ANNs models are generally simple mathematical models those define f: X → Y. In 

Figures 2.2 and Figure 2.3 you may see examples of structures of artificial neural 

networks. 
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ei (n)=di(n)-yi (n)                                         (2.12) 
 
 
wij(n+1)=wij(n)+ηδi(n)xj(n)                          (2.13) 

 
      Figure 2.2 Artificial neuron model 1(feedback) 

 
       Figure 2.3 Artificial neuron model 2  
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2.2.1 Types of Artificial Neural Networks  

The two main criterions for classification of ANNs are whether the ANN has 

feedforward or recurrent and whether the ANN is supervised or unsupervised (Mori, 

H., Tamaru, Y., Tsuzuki, S. 1992). Some ANN algorithm types can be seen in Table 

2.1.  

 
Table 2.1 Classification of algorithms of ANNs . 

 Recurrent  Feedforward 

U
ns

up
er

vi
se

d ART (Adaptive Resonance 
Theory), Hopfield, Bidirectional 
associative memory (BAM), 
Trilateral associative memory 
(TAM), Boltzmann Machine (can 
be also supervised),... 

Linear associative memory, Fuzzy 
Associative Memory (FAM), LVQ, 
CPN, SOM, ... 

 

Su
pe

rv
is

ed
 Fuzzy Cognitive Map (FCM), 

Boltzmann Machine (can be also 
unsupervised), 

... 

Backpropagation (BP), Adaline, 
Perceptron, ... 

 

2.2.2 Learning Types in Artificial Neural Networks 

2.2.2.1 Unsupervised Learning 

It is learning with doing. Without any interference, the neurons in hidden layer 

organize themselves. No sample output according to relevant input is given to the 

network. 

2.2.2.2 Supervised Learning 

If the desired output value is d and network output is y, the difference between d 

and y is e, the error value. Error value is used to update the weights in supervised 

learning. Desired output values are connected to input values and are given as 

vectors to the network. These sample values matrix is called as training set. 
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2.2.2.3 Reinforcement Learning 

It is also a type of supervised learning. Neurons in hidden layer are random 

connected to each other. Approximation to solution of the problem is the main 

evaluation criteria. There can be a training data set or a performance observer. 

Reinforcement learning and unsupervised learning have the relative disadvantage of 

slowness and inefficiency relying on random shuffling to find the proper weights. 

 

In addition to the ANN types above, in some problem solutions supervised and 

unsupervised learning are combined (Janglova, 2004). For some literature, there are 

some other learning types in addition to the three types above. Some of these are: 

Associative recall, competitive learning, delta rule, Hebbian learning, gradient 

descend rule (Kartalopoulos, 1996, Şenol, 2002). 

 

2.2.3 Types of Connections in Artificial Neural Networks 

Connections between layers in ANNs can be fully or partially, feed forwarded, bi-

directional, hierarchical connected or limited with certain conditions (resonance).  
 

Table 2.2 Connections between neurons. 

Interlayer connections Intralayer Connections 

Fully 
Connected 

Each neuron in previous layer is 
connected to the every neruon in next 

layer 
Partially 

Connected 
Not all neuron has to be connected to 

all neurons in next layer. 

Feedforward Neurons in previous layer send data to 
the neurons in next layer. 

Recurrent 

Neurons in a layer are fully 
or partially connected to each 
other. After receiving inputs 
from neurons of other layers, 
they send data to each other 
before sending data to other 

layers. 

Bi-
directional 

Neurons in previous layer send data to 
the neurons in next layer and vice 

versa. 

Hierarchical  
Neurons of a lower layer can only 

communicate with the next level layer 
neurons. 

Resonance 
Neurons have bidirectional connection 

and they continue to communicate 
until a certain condition is achieved. 

On-center 
/ off 

surround 

Neighbor neurons 
communicate with each other 

and update their weights 
before sending output to 

other layer neurons. 
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Table 2.3 Some activation functions. 

Step Function 
(unipolar) 

Step Function 
(bipolar) Step Function with Bias 

   

  

Piecewise-linear Function 
Sigmoidal Function 
(Logistic Function) 

(unipolar) 

Sigmoidal Function 
(bipolar) 

 
 

 

Hyperbolic Tangent Function Radial Basis Function Identity Function 

 

1
1tanh 2

2

+
−

= x

x

e
ex
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)( axexf −=
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2.2.4 Architectures and Learning Paradigms in Artificial Neural Networks 

2.2.4.1 Hopfield Model 

Hopfield network is a single layer, symmetrically weighted autoassociative fully 

connected network. The network takes two-valued activations bipolar (+1,-1) or 

binary (0, 1). See equation (2.14) and equation (2.15). Mathematical analysis is 

easier with bipolar inputs. Hopfield model is described in terms of an energy 

function (Equation 2.16). 

 

The Hopfield neural network is a simple artificial network which is able to store 

certain memories or patterns. The full pattern can be recovered if the network is 

presented with only partial information. Because of this feature, it is similar to the 

brain. Training a Hopfield net involves lowering the energy of states. The net serves 

as a content addressable memory system, so if it is given only part of the state, the 

network will converge to a remembered state. Hopfield model can be seen in Figure 

2.4. 

 
        
               Figure 2.4 Hopfield Model 
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An activation function is simply a function that is used to introduce nonlinearity 

to the network. The choice of activation function can change the behavior of the 

ANN considerably. Some activation functions can be seen in Table 2.2. 

 

2.2.4.2 The Perceptron Model 

The perceptron is invented in 1957 at the Cornell Aeronautical Laboratory by 

Frank Rosenblatt. It can be seen as the simplest kind of feedforward, supervised 

neural network. The perceptron is a kind of linear binary classifier that maps its 

inputs x to an output value f(x). x is a binary vector whereas f(x)  is a single binary 

value. It is calculated as: 

 

 
 
Figure 2.5 Perceptron model. 
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The Hopfield Net is a neural network that is a lot simpler to understand than the 

Multi Layer Perceptron.  

 

 

2.2.4.3 Cellular Neural Networks Model 

Cellular neural networks (CNN) are a parallel computing paradigm defined in 

discrete N-dimensional spaces. Communication is only allowed between neighbor 

units. There are two templates for iteration; control template and feedback template. 

CNN paradigm was first proposed by Chua and Yang in 1988. The two most 

fundamental ingredients of the CNN paradigm are: The use of analog processing 

cells with continuous signal values and local interaction within a finite radius (Destri, 

G., n.d.; Moser, 1998). Architecture of CNN can be seen in Figure 2.8. 
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CNN architecture and block-scheme of a generical CNN iteration can be seen in 

Figure 2.8. 
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   Figure 2.6 Multi layer perceptron. 
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Figure 2.7 4x4 cellular neural network model.

Figure 2.8 Block-scheme of a generical CNN iteration and architecture of CNN  

 (1,1)  (1,2)  (1,3) 

 (2,1)  (2,2)  (2,3) 

 (3,1)  (3,2)  (3,3) 

 (1,4) 

 (2,4) 

 (3,4) 

 (4,1)  (4,2) 
 

 (4,4) 
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2.2.4.4 Winner Takes All Model 

Winner-takes-all (WTA) network is an unsupervised competitive learning network. 

The desired output vector in winner-takes-all model has a single active unit because 

the output nodes are said to compete with each other to be the one to fire (see Figure 

2.9). An input vector (X) is applied to all nodes; the best response is declared the 

inner according to the winner selection criterion below,  

 

 

 

 

 

2.2.4.5 Back-Propagation Model 

The backpropagation algorithm was first introduced in 1974 by Paul Werbos in 

his Ph. D. Thesis. Back propagation neural networks are one of the most common 

neural network structures. The back propagation algorithm uses feedforward 

supervised learning. It is simple and effective.  The network receives inputs by 

neurons in the input layer, and the output of the network is given by the neurons on 

an output layer. The training begins with random weights, and the goal is to adjust 

them so that the error will be minimal. There may be one or more intermediate 

yn =max (wn X); i=1,2,…,N                           (2.21) 

∆wn(k+1)= wn(k)+ η(k)(x-wn)                    (2.22) 
 

 

Figure 2.9 Winner-takes-all model with node 2 winning  
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hidden layers. Character recognition is one of the most popular applications of 

BPNNs.  

 
 Figure 2.10 Backpropagation algorithm applied one layer feedforward neural network 

 

 

2.2.4.6 McCulloch-Pitts Model 

The early model of an artificial neuron or the threshold logic unit first proposed 

by Warren McCulloch and Walter Pitts in 1943. It is a neuron of a set of inputs x1, 

x2, x3, ..., xn and one output  y. The inputs and outputs are both binary. The linear 

threshold gate simply classifies the set of inputs into two different classes. Thus, the 

output y is also binary.  

 

 

As a transfer function, it employs a threshold or Heaviside step function taking on 

the values 1 or 0 only. Model equation can be seen as equation 2.24 and model can 

be seen in Figure 2.11. 
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2.2.4.7 Adaptive Resonance Theory (ART) Model 

Adaptive Resonance Theory (ART) is a neural network architecture developed by 

Stephen Grossberg in 1976. It was developed to solve the instability problem of 

feedforward systems. The basic ART system is an unsupervised learning model, a 

vector classifier. It accepts a vector as input and classifies it into a category 

depending on the stored pattern it most closely resembles. If the input pattern is 

found, it is trained to resemble the input vector. If the input vector does not match 

any stored pattern within a certain tolerance, then a new category is created by 

storing a new pattern similar to the input vector.  

 

There are different types of adaptive resonance theory models. ART1 performs 

unsupervised learning for binary input patterns. The ART1 architecture has two 

layers: The input - comparison layer with N nodes and output - recognition layer 

with M nodes. Output layer of ART1 model is a winner-takes-all layer. ART2 is 

modified to handle both analog and binary input patterns. ART3 performs parallel 

searches of distributed recognition codes in a multilevel network hierarchy. 

ARTMAP combines two ART modules to perform supervised learning whereas 

fuzzy ARTMAP represents a synthesis of elements from fuzzy logic, neural 

networks, and expert systems. 

 

 
         Figure 2.11 McCulloch-Pitts model 
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  2.2.4.8 Radial Basis Function (RBF) Model 

A radial basis function network is an artificial neural network which uses radial 

basis functions as activation functions. It is a classification and function 

approximation algorithm. If the architecture of the radial basis function studied (see 

Figure 2.13), there are no connection weights between input layer and hidden layer. 

The weights are between hidden layer and output layer. RBF may be used to simulate 

the nonlinear relationship between the sensors measurement and the ideal output 

value (Noguchi, 1997).  

 

 
 
  Figure 2.12 Adaptive resonance theory model 
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RBF has three layers: Input layer, hidden layer and output layer. The input layer is 

fully connected to hidden layer. Hidden layer consists of units those are activated by 

radial basis activation functions. In Table 2.3, some activation functions can be seen. 

Equation 2.29 is the output of the RBF model.  
 

Table 2.4 Commonly used RB activation function types 

Name Equation 

Gaussian ))(exp()( 2

2

r
cxxh −

−=
 

Multiquadric 
r

cxr
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22 )(
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−+
=

 
Euclidean distance r 

Thin plate splines ,...,,mrr m 642 ;        log =  
Smooth splines rm  ; m=1,3,5,… 

 
              
          
Figure 2.13 Radial basis function network architecture. The weights are 
between hidden and output layers. 



 32

2.2.4.9 Widrow-Hoff Model (ADALINE and MADALINE) 

ADALINE (adaptive linear element, adaptive linear neuron) was developed by 

Professor Bernard Widrow and his graduate student Ted Hoff at Stanford University 

in 1960. It is similar to McCulloch-Pitts neuron. This model is supervised and 

feedforward. It is a single neuron whose weights are updated according to LMS 

(Least Mean Square) algorithm. The LMS algorithm is an adaptive algorithm that 

computes adjustments of the neuron synaptic weights.   

 

 

 

 

 

 
     Figure 2.14 Adaline architecture. 
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Using equations (2.27) is another form of equation (2.13) with the slope value of 

1. Δwi is the synaptic adjustment value and can simply obtained from equation (2.27) 

as )()( nxn iη . In Figure 2.14 a detailed model of ADALINE may be seen.  

 

MADALINE (multiple ADALINE) is a solution to nonlinear separation problem 

(see Figure 2.15).  MADALINE has two types: MADALINE I is a multiple 

ADALINE with single output whereas MADALINE II has multiple outputs.  

 

 

 

2.2.4.10 Kohonen (Self Organizing Map- SOM) Model 

Self organizing map is a feedforward unsupervised network. A Kohonen network 

is composed of a grid of output units and N input units. The input pattern is fed to 

each output unit with weights. These weights are initialized as small random 

numbers. A set of artificial neurons learn to map points in an input space to 

coordinates in an output space. SOM is called a topology-preserving map because 

there is a topological structure imposed on the nodes in the network. A topological 

 Figure 2.15 Madaline I architecture.  MADALINE I is a multiple ADALINE with single output.
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map is simply a mapping that preserves neighborhood relations. The goal is to train 

the net so that nearby outputs correspond to nearby inputs.  

 

 

Linear vector quantization net and SOM net are similar to each other since both 

have a single layer of nodes and use a distance metric to find the output node closest 

to input pattern. SOM uses equation (2.28) to find the closest distance and equation 

(2.29) to update the weights.  

2.2.4.11 Learning Vector Quantization (LVQ) Model 

Learning Vector Quantization is a supervised feedforward net which is developed 

by Teuvo Kohonen, like SOM algorithm. It is a modified SOM algorithm for 

classification. It has one hidden layer of neurons, fully connected with the input 

layer.  The weights of the network are changed by the network in order to classify the 

 
 
  Figure 2.16 SOM conventional feature mapping  architecture. 
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data correctly. LVQ LVQ1, OLVQ1 (Optimized Learning Vector Quantization 1), 

LVQ2.1, LVQ3, OLVQ3 are some different types of LVQ’s. LVQ algorithms do not 

approximate density functions of class samples. Using a nearest-neighbor rule and a 

winner takes all paradigm, they directly define class boundaries based on prototypes. 

Some application areas for LVQ algorithms are: Pattern recognition, multi-class 

classification and data compression tasks. LVQ architecture can be seen in Figure 

2.17.  

 

 
 

   Figure 2.17 LVQ architecture 
 

LVQ1 paradigm is as follows (Van Laerhoven, K., 1999): 

 

i. mc is the codebook vector that is closest to the input x, so this will define the 

classification of x, 

i. Update the codebook vectors mi = mi(t) ,  
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ii. If the classification is incorrect:  mc(t+1) = mc(t) - η (t).[x(t) – mc(t)], and 

mi(t+1) = mi(t) for i≠c. 

 

For each input pattern, LVQ finds the output node with the best match to the 

training pattern in training period. If the class of the training pattern differs from the 

class of output node, it finds the next best match. If the next best match is the 

appropriate class, LVQ moves the best match node farther from the training pattern.  

 

The second version of LVQ adds a symmetric window of nonzero width between 

two codebook vectors. 
 

2.2.4.12 Boltzmann Machines 

The Boltzmann Machine is an artificial neural network of units with an "energy" 

defined for the network which is developed by Hinton and Sejnowski. It has 

stochastic binary units, unlike Hopfield nets have. Some application fields of 

Boltzmann Machines are: Combinatorial optimization, classification, and 

association. The global energy, E, in Boltzmann Machines is: 

 

 

Probability that a cell is in a given state depends on the synthetic temperature of 

the system (Te): 
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Boltzmann distribution can be seen in equation (2.33) and Boltzmann Machines 

architecture can be seen in Figure 2.18.  

 

 
       
     Figure 2.18 Architecture of Boltzmann Machines which is inspired from annealing in metallurgy. 

 

Boltzmann learning is based upon a simulated annealing technique. Compared to 

other learning algorithms such as backpropagation, BM is significantly slower. The 

name and inspiration come from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and 

reduce their defects. The heat causes the atoms to become unstuck from their initial 

positions (a local minimum of the internal energy) and wander randomly through 

states of higher energy; the slow cooling gives them more chances of finding 

configurations with lower internal energy than the initial one (Simulated Annealing, 

2007). 
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2.2.4.13 Hebbian Learning Rule 

Hebbian learning rule is developed by D.O. Hebb in 1949. Hebb's original 

proposal was worded as:   

 

 When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased (Hebb, 1949, p. 62). 

 

Hebbian learning is an unsupervised training algorithm in which the synaptic 

weight is increased if both the source neuron and target neuron are active at the same 

time.  

 

 

where wij is the weight of the connection from neuron j to neuron i, n is the 

dimension of the input vector, p the number of training patterns, and k
jx  is the kth 

input for neuron i. Hebbian learning rule is: 

 

 

The discrete time standard Hebbian learning rule using energy function is: 

 

 

The continuous time standard Hebbian learning rule is: 

 

 

∑
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2.2.4.14 Principal Component Analysis 

Principal components analysis (PCA) is an artificial neural network technique 

which is used to reduce multidimensional data sets to lower dimensions for analysis 

(see Figure 2.19).  

 

PCA is used to compress data, like image compressing. PCA can be also used as 

finding free spaces on mobile robot control as it condenses the input data down to a 

few principal components (Janglova, 2004).  

 

The outputs of the PCA networks can be found using the equation below: 

 

 

 

Some other models are: Restricted Coulomb Energy- RCE Model, Culbertson’s 

Model, Encephalon Model, Logicon Projection Network- LPN Model, Probabilistic 

RAM Model, Neural Accelerator Chip Model, Cerebellum Model Articulation 

Controller (CMAC) Model, Memory Type Models, Probabilistic Neural Network – 

∑
−

=

=
1

0

)()()(
p

i
iiji nxnwny  j=0,1,2,…,m-1                    (2.38) 

  Figure 2.19 An application of ANN with one layer of principal component analysis.  
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PNN Model, Time-Delay Neural Net (TDNN) Model, Linear Associative Memory 

(LAM) Model, Cognitron and Neocognitron Models, Real-time Models. 

 

2.3 Fuzzy Logic  

2.3.1 Introduction 

The concept of Fuzzy Logic (FL) has been introduced by Lotfi Zadeh (1965), a 

professor at the University of California at Berkley. He presented fuzzy logic not as a 

control methodology, but as a way of processing data. In contrast to binary classical 

set memberships, fuzzy sets are sets whose elements have degrees of membership. 

Fuzzy set theory was not applied to control systems until the 70's because of 

insufficient small-computer capability.  

 

 
 

 

Today, with the low cost use of microcomputers and microcontrollers, fuzzy logic 

is a very effective solution in many control problems ranging from embedded micro-

controllers to personal computers as implemented in hardware, software or in both.  

Providing a simple solution for a desired conclusion from noisy, ambiguous, 

imprecise, or missing input information is the advantage of fuzzy logic. It can be 

used in hardware, software, or a combination of both.  

 

2.3.2 Membership Function 

For any set A, a membership function on A is any function from A to the real unit 

interval [0, 1]. For an element x of the fuzzy set A~ , the value μA (x) is called the 

Figure 2.20 Memberships in crisp sets and in fuzzy sets.      
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membership degree of x in A~ . The value 0 means that x is not a member of the fuzzy 

set whereas the value 1 means that x is fully a member of the fuzzy set. The values 

between 0 and 1 characterize fuzzy members, which belong to the fuzzy set partially. 

2.3.3 Fuzzy Logic Control  

2.3.3.1 Fuzzy Logic Operations 

The standard definitions in fuzzy logic as suggested by Prof. Zadeh are:  

 

• Negate (negation criterion) : truth (not x) = 1.0 - truth (x) 

 

• Intersection (minimum criterion): truth (x and y) = minimum (truth(x), 

truth(y)) 

 

• Union (maximum criterion): truth (x or y) = maximum (truth(x), truth(y)) 

 

In order to clarify this, a few examples are given. Let A be a fuzzy interval 

between 4 and 6 and B be a fuzzy number about 3. The corresponding figures are 

shown below. 

 

 

 

  Figure 2.21 Fuzzy set µA and fuzzy number µB 
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The figure below gives an example for a negation. The red line is the negation of 

the fuzzy set µA, in other words µĀ.  

 

The following figure shows the fuzzy set between 4 and 6 AND about 3 (red line). 

The minimum criterion is used. Intersection of µA and µB is in plum color.  

 

 

Finally, the Fuzzy set between 4 and 6 OR about 3 is shown in the next figure 

(green line). The maximum criterion is used.  

 

 
   Figure 2.22 Negation of µA 

 
      Figure 2.23 µA , µB  and intersection of  µA and µB   

 
      Figure 2.24 µA , µB  and union of  µA and µB   
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These basic operations provide guidelines to construct more complex ones which 

in turn can be used to create fuzzy machines. The following rules are common in 

classical set theory and fuzzy set theory.  

 
Table 2.5 Some rules which are applicable to classical set and fuzzy set theories. 

De Morgans law: 
BABA ∩=∩ )(  
BABA ∪=∪ )(  

Associativity 
)()( CBACBA ∩∩=∩∩  
)()( CBACBA ∪∪=∪∪  

Commutativity 
ABBA
ABBA

∪=∪
∩=∩

 
Distributivity )()()( CBBACBA ∩∪∩=∪∩  

 

2.3.3.2 Control 

Fuzzy logic control (FLC), which directly uses fuzzy rules, is the most important 

application in fuzzy logic theory. It can be either open or closed loop control. There 

is no learning in fuzzy control as in artificial neural networks, but if the main 

criterion is time, fuzzy control can be a very effective solution even on mobile 

robots. It is widely used on microcontrollers to force the control system to behave 

more naturally. FLC block diagram can be seen in Figure 2.25.  

 

Inverted pendulum and crane problems are very popular examples of fuzzy logic 

control (Abdul Aziz, 1996; Becerikli, 2007; Schneider, 2007; Zhang, 1992). The 

problem is to balance an inverted pendulum on a mobile platform that can move to 

the left or to the right. The angle between the platform and the pendulum and the 

angular velocity of this angle are chosen as the inputs of the system whereas the 

speed of the platform is chosen as the corresponding output. FLC is also used in 

some researches about mobile robots mainly guidance (Gharieb, 2000).  
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Three steps are taken to create fuzzy logic control: 

 

i. Fuzzification: Graphically description using membership functions. 

Levels of output of the platform are defined by specifying the membership 

functions for the fuzzy sets. These levels are named as high, medium, low, 

etc… Similarly, the different angles between the platform and the 

pendulum and the angular velocities of specific angles are also defined.  

 

 
 
    Figure 2.25 Fuzzy logic control block diagram 

          Figure 2.26 Fuzzification       
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ii. Rule evaluation: Fuzzy logic rule evaluation from graphics. Second step 

is to define the fuzzy rules. The fuzzy rules are a series of if-then 

statements as mentioned before. These statements are usually derived by 

an expert to achieve optimum results. Some examples of these rules are:  If 

angle is zero and angular velocity is zero then speed is also zero.  

If angle is zero and angular velocity is low then the speed shall be low. 

And so on. The full set of rules can be seen in the table below 
 

Table 2.6 Control rules  

 Velocity  

NL NM ZR PM PL 

NL NL NL NL NM NS 

NM NL NL NM NS PS 

NS NL NM NS PS PM 

PS NM NS PS PM PL 

PM NS PS PM PL PL 

An
gl

e 

PL PS PM PL PL PL 

* ZR: Zero; NL: Negative Large; NM: Negative Medium; NS: Negative Small; PL: Positive Large; 
PM: Positive Medium; PS: Positive Small. 

 

After completing table, the next step is to describing regions with due to 

desired output of the system (see Figure 2.27). Let us say the actual value 

of the angle is the value at the point A in the angle graph and angular 

velocity has the value of the point B in angular velocity graph. As for the 

rule, ‘the strength of the output is as strong as the weakest component’, 

using AND operator, the minimum value is taken for this area, so the 

graph of the speed for this area can be seen also in Figure 2.27. If there is 

more than one activated output for the same region, then the strongest one 

prevails for the region. These operations are applied to all regions due to 

desired behavior of the system. If first input is x1 in A1ij; second input is x2 
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in A2ki and output is y in Om
i, rules for obtaining the region values are 

equations (2.39) and (2.40). 

 

 

 

μOm
i=min [μA1ji(x1), μA2ki(x2])                   (2.39) 

 
 
μOm

p&q(y)=max[min[μA1jp(x1), μA2kp(x2)],min[μA1jq(x1), μA2kq(x2)]}     (2.40) 

Figure 2.27 Describing regions for desired output      

-narrow 

Max Angle (+) 

1 

+ wide 

0 
Max Angle (-) 

+narrow middle - wide 

Max Angular 
velocity(+) 

1 

+ high 

0 
Max Angular 
Velocity (-) 

+ low zero - low - high 

A 

B 

0 

0 
A 

B 
Fuzzy Logic 
Controller 

Angle 

Angular 
Velocity 

0.45 

0.8 

Λ 
Speed 



 47

iii. Defuzzification: Obtaining crisp results from rules. The values of the 

speed due to regions are combined in a graph. An example graph can be 

seen in Figure 2.28. 

 

 

 

 

 

 

 
 

            Figure 2.28  Defuzzification stage in FLC design (output of the Fuzzy Logic Controller). 
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CHAPTER THREE 

AUTONOMOUS NON-HOLONOMIC MOBILE ROBOTS 
 
 

3.1 Non-Holonomic Vehicles  

 

Nonholonomic conditions are assumed to be expressible as non-integrable 

differential relations. The terminology was introduced by Hertz.  

 

Non-holonomic constraint is defined in very different ways. One of them is: “A 

non-holonomic constraint is expressed as a non-integrable equation involving 

derivatives of the configuration parameters and it can not be reduced to equality 

constraint on the position parameters.” (Dimirovski, 2000) 

 

Non-holonomic means to have fewer controllable degrees of freedom then total 

degrees of freedom. In other words, the outcome of a non-holonomic system is path 

dependent and after its motion, it is not sure that the system will return to its original 

position. For example, ordinary automobiles are nonholonomic systems. As a result 

of this, they can not move to every direction in any moment. Ideal holonomic system 

is a space craft in space (or a submarine in sea) which can move to any desired 

direction. But, the mobile robots which can move to every desired direction on the 

ground also called as holonomic mobile robots even they can not fly.  

 

 
 

 

Omni-directional wheel  Swedish wheel  Forming holonomic wheel from 
nonholonomic wheels 

 
Figure 3.1 Some holonomic wheels and systems. Holonomic wheels are wheels with two degrees of 
freedom.  They are also known as omni-directional wheels or omni-wheels.  
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Non-holonomic constraint of the model of this research is formed by non-steering 

front wheels. Mobile robot rotates with the difference between left and right front 

wheel velocities (see Figure 4.2). But, it is good to mention once more that this 

constraint is for the motions in directions of X and Y axes; in other words, the robot 

has no actuator for motion in the direction of Z axis.  

 

 

 
 

 

3.2 Autonomous Wheeled Mobile Robots  

 

Autonomous mobile robot is the robot which can change its location and move 

sensible interacting with environment including objects and living things. 

Autonomous motion has three stages: Sensing, planning and acting.  

 

            
Figure 3.2 Autonomous wheeled nonholonomic mobile robot model in this research has four wheels.  
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Kinematic modeling of a wheeled mobile robot is different than a stationary 

manipulator. In kinematic modeling of stationary manipulators, the mechanisms are 

low-pair whereas in wheeled mobile robots they are high-pair. Since Denavit-

Hartenberg Convention has some problems with multiple closed chains, Sheith – 

Uicker Convention is used. The angular velocities of the wheels can be converted 

directly into translational velocities along the surface which the wheels are on (Muir, 

1986). 

 

 

Wheeled mobile robots (WMR) have very huge amount of different types as in 

number of wheels / actuators, dimensions or as tasks control types. 

 

In kinematic analysis of mobile robots, there are four main differences for 

kinematic analysis of robot manipulators (Muir, 1986). 

 

i. Stationary manipulators only form closed chains when they are contact 

with fixed objects whereas; wheeled mobile robots form many closed 

chains at the same time. 

 

ii. The contact between a wheel and plane forms a higher-pair, but stationary 

manipulators contain only lower-pair joints. 

 
 

Figure 3.3 In Sheth – Uicker notation, each joint has two coordinate systems 
because of high kinematic pairs.  

Link 1 
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iii. In wheeled mobile robots, only some degrees of freedom of a wheel are 

actuated. However, all DOF’s of each joint of a stationary manipulator has 

at least one actuator.  

 

iv. Each joint in stationary manipulator has position and velocity sensors. In 

wheeled mobile robots, only some degrees of freedom of a wheel have 

position or velocity sensors. Sheth-Uicker convention allows modeling the 

higher-pair relationship between each wheel on the WMR and the floor. 

Thus, the Sheth-Uicker convention is more suitable for finding 

transformation matrix in analyzing kinematics of wheeled mobile robots.  

 

Left and right front wheel velocity equations of a four wheeled mobile robot 

whose two wheels are actuated can be seen in figure below. This is called 

differentially driven mobile robot. The reference point is denoted with M in Figure 

3.4. M is the middle point of the two front wheels. As mentioned before, only the 

front wheels have motors.  

 

 
 
    Figure 3.4 Velocities of left and right wheels of the mobile robot model in this research.  
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v: Linear velocity of the mobile robot, [m/s], 

vR (t): Linear velocity of the right front wheel, [m/s], 

vL (t): Linear velocity of the left front wheel, [m/s], 

θ: Heading angle, [rad], 

w (t): Angular velocity in z coordinate of the mobile robot, [rad/s], 

{Xh, Yh}: Moving coordinate axes, 

{Xs, Ys} : Stationary coordinate axes., 

 

 

Equation (3.2) shows the non-holonomic constraint of the model. Equation 3.3 

denotes velocities of left and right side front wheels. r(s),  is the radius of curvature 

at s and κ (s) is the curvature at s. θ is the angle between the stationary coordinate 

axis and the tangent of the curve at point P.  
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If the WMR model steering is car like, which may be seen in Figure 3.5, this time 

the instantaneous rotation radius (R) is equal to Lm over tan (σ).  The main difference 

between the car like mobile robots and differentially driven mobile robot is that the 

rotation. In differentially driven mobile robots, rotation motion is achieved with 

having different velocities of the wheels whereas in car like mobile robots, rotation is 

achieved with steering of one (or some) wheel(s). 

 

 

In analyzing the mobile robots, inverse kinematics can be used easier than direct 

kinematics because of the similarities of the mobile robots with the parallel 

manipulators (Tsai, 1999). In inverse kinematics, the end effector position is known 

and the aim is to find the joint values to make the effector in next position. 

Assumptions for mobile robot analysis are: Pure rolling, non slipping, constant wheel 

base and diameter. 

 

3.3 Dead Reckoning 

 

Dead reckoning is the real-time calculation of the wheeled mobile robot position 

in floor coordinates usually from wheel sensor measurements. This is also called 

forward position kinematics. Uncertainty of the WMR model, disturbance during 

motion of the mobile robot, localization errors (caused by sensors or difference of 

radius of wheel during motion…) and should be cumulated resulting in the position 

failure (Zu, 2004; Muir, 1986).    

 
           
         Figure 3.5 Car like wheeled mobile robot. 
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Discrete time kinematics is applied for dead reckoning to the model. If mobile 

robot travels with v(k) and rotates with ω(k) in a uniform sampling kth interval t, 

approximate discrete kinematics is given as: 

 

 

However, dead reckoning is an ideal approach for localization. Wheels slippage, 

accuracy of encoders, changing radius of wheels and similar reasons cause dead 

reckoning has some problems. So, linear and angular velocities found using equation 

3.7 said to be estimated values. Adding the uncertainty value ηuc which is a white 

Gaussian noise with covariance matrix E[ηuc ηuc
T], the considered discrete 

kinematics model is (Vale, 2005): 

 

 

3.4 Architecture of Autonomous Wheeled Mobile Robots 

 

The purpose of building the architecture of a robot is pointing out the interactive 

parts of the robot to build the hardware and software framework. Mobile robot 

models have sensors, control parts, man machine interfaces, security systems, 

handling systems or mechanical parts, actuators and so on. So, it is needed to have 

main control and sub control systems. For example, different sensors have their sub 

control systems to be evaluated by the main control system. Architecture of a robot 

also makes the control of the robot easier to understand in means of priority levels of 

these control systems. The framework of software and hardware to control of the 

AWMR model in this research, in other words the architecture of the model in this 

research, can be seen in Figure 3.6. 
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3.4.1 Mobile Robot Navigation 

Robot navigation covers different type of navigation in meanings. Navigation is 

used for; 

 

 Going from a totally different environment to another, 

 Mapping environment for discovering a place, 

 Finding path and reaching target. 

 

The environment of the mobile robot must be considered if it will be used indoor 

or outdoor. For outdoor use, a very huge number of researches in recent years cover 

GPS receiver or obtaining précised GPS data (Gören, 2001). In addition to global 

positioning system receivers, mobile robots for outdoor use have encoders, laser 

sensors, ultrasonic sensors, maybe optical sensors, cameras, radars or sonar, and etc. 

The model in this thesis is an indoor mobile robot. For indoor mobile robots, 

however, it is not so easy to teach the robot to know the place that the robot itself 

 
Figure 3.6 Architecture of the research model which is an example of autonomous wheel mobile 
robot 
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stands. Encoder, ultrasonic sensor, camera, RF transceiver, odometer, radar, 

gyroscope, sonar, laser sensors are some types which are used for indoor use of 

mobile robots. In this research, target is a visual unique landmark.  

 

3.5 Braitenberg Vehicles 

 

Braitenberg (1984), who is a neuro-scientist, described basic behaviors of wheeled 

mobile robots in his book ‘Vehicles: Experiments in Synthetic Psychology' in 1984. 

He divided the behaviors in four thought experiments as for structure of the mobile 

robot. First type of the WMR has one wheel with one sensor. Sensor directly affects 

the motor activity. 

 

The second type of Braitenberg vehicle consists of two sensors and two motors.  

Sensors are either directly or cross connected to motors and motor activity is directly 

proportional to sensor activity. Depending on the connection type between sensors 

and motors, vehicle accelerates to the source or accelerates to escape from source, so 

behaves like having either “fear” or “aggression” (see Table 3.1).   

 

The third type of Braitenberg vehicles are the WMR’s has two sensors and two 

motors similar to vehicle 2. The difference is the inhibitory effect of sensors to the 

motors. If the sensors cross connected to motors, WMR escapes from the source 

whereas it goes directly to the source when the sensors are directly connected to 

motors. 
 

The last type of the Braitenberg vehicles which is also called as ‘vehicle 4’ is 

more near to the present modern WMR’s. It has many different types of sensors 

(gyroscope, GPS, temperature, encoders, cameras, laser, sonar, ultrasonic, 

odometers, etc.) and via more than one controller; the WMR has different logics 

embedded on it. Combining the sensor data, it makes its decision for motion. Both 

senses and the motions of the robot are more complex than the other type of 

Braitenberg vehicles. In designing a mobile robot, even the task(s) of the robot is 

(are) complex, better type is the simpler type of Braitenberg vehicles that completes 

its task.  
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Table 3.1 Braitenberg vehicles. 
 

Vehicle 1: Getting around. Simplest vehicle, 
always forward. One motor with one sensor. 

Vehicle 2: Fear and aggression. Two sensors 
and two motors. (a) is directly, (b) is cross 

connected. Excitatory. 

 
 

Vehicle 3: Love. Inhibitory.  Vehicle 4: Different types of sensors mounted. 
Complex behavior.  

  

 
 

- temperature, 
- ultrasonic, 
- camera, 
- ... 
 
different type 
of sensors  
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CHAPTER FOUR 

SYSTEM AND EXPERIMENTS 
 

4.1 Kinematics of the Experimental Mobile Robot 
 

In Chapter Three, kinematics, architecture and behavior of autonomous wheeled 

mobile robots are studied. The first part of this chapter is related with the 

experimental WMR model that was originally a wheel chair which has four wheels 

and whose two wheels are actuated with two motors (See Figure 4.3 and Figure 4.4). 

Experimental mobile robot position with respect to reference coordinates is: 

 

 

Rotation matrix of the reference coordinates with respect to moving coordinate 

system is: 
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     Figure 4.1 Coordinate System Locations of the mobile robot. 
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In Figure 4.1, reference coordinate system and moving coordinate system; in 

Figure 4.2, velocity variations in respect to instantaneous center of rotation of 

Autonomous Mobile Robot (AMR) can be seen. 

 

Velocities of the right and left wheels can be defined as:  

 

 
or 

 

 

In condition of going straight forward (if the velocity of the right and left wheel is 

equal); 

 

 
 

       Figure 4.2 Left and right motor velocities of the mobile robot 
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If the mobile robot turns around on a point,  

 
This motion is one of the most known advantages of the dual drive vehicles. In 

this case, instantaneous center of rotation of the mobile robot model is on the middle 

of the front axis. And the model can turn around without going forward or backward.  

 

4.2 Experimental System Model 
 
 

Our laboratory built autonomous mobile robot (AMR) model in this research, 

which was originally a wheel chair having four wheels those all independent from 

each other. Front wheels are connected to two separated motors so that the 

autonomous wheeled robot can have more advantages in motion. Kinematic model of 

the robot is studied for a vehicle model that has four wheels and whose two wheels 

are driven.  

 

 
 

Figure 4.3 Real model of experimental mobile robot  
 

w(t)=0  θ:constant                                                            (4.5) 

and v(t)=vL(t)=vR(t)                                                           (4.6) 

 
v(t)=0 and                                                                         (4.7)  

 

)(2)( tv
L

tw R=                                   (4.8) 
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Figure 4.4 CAD model of mobile robot. 

 

4.2.1 Ultrasonic Sensors for Navigation 
 

 

A mobile robot has many sensors on it to know environment, to interact with 

human and to complete its tasks. For its purposes reliable sensor data is as important 

as accurate sensor data (Kopacek, 2006). But this is not the whole part, more is 

necessary for self localization of a mobile robot (Iyengar, 1991). After getting 

reliable data from sensors, method of evaluation in decision mechanism makes the 

robot movements either more quick and reasonable or redundant and clumsy. 

Frequently, more time is spent by robot to know environment than to move towards 

target. Most suitable method has to be selected rather than more complicated in 

means of motion and tasks of the mobile robot. But sometimes, it is inevitable to use 

more complicated evaluations and algorithms, especially when it is needed to map 

environment in details. In that case, generally priority level one task is to distinguish 

meaningful data in data mass. 
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Six ultrasonic sensors with cone angle of more than 300 at a distance of 100cm are 

mounted on the model to scan 180 degrees.  Two important parameters are effective 

for this choice. These are: Fast processing to control and reliable measurement data. 

For more than 300 cone angle, some regions intersect to each other. Data from the 

sensors are taken via microprocessor 1 in Figure 4.7 whereas second processor is 

used to get information from self-built encoders on wheels.  Dempster – Shafer 

evidence theory helps to have reliable data from ultrasonic sensors, especially in 

intersecting regions which are roughly illustrated in Figure 4.7. Characteristics of the 

ultrasonic sensors and indicator table can be seen in Figure 4.5 and Table 4.1, 

respectively.  

 

4.2.1.1 Ultrasonic Sensors Installation. 
 

Input pins of Microcontroller 1 (PIC16F877) are connected to 2nd, 4th, 6th, and 

7th output indicator pins of the ultrasonic sensor circuit which indicate closer than 

 
 

     Figure 4.5 Tested characteristics of the ultrasonic sensors  
  those are used (location  units are in cm). 
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0.2m, 0.6m, 1.0m and 1.4m respectively.   This helps to determine 5 levels of 

closeness regions in every 30 degrees covering 180 degrees. These senses are needed 

to be very accurate since these mentioned values will be the inputs of the neural 

network in further research.  
 
Table 4.1 Indicators of the Ultrasonic Sensors 
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Carrier frequency and signal shape from ultrasonic sensors can be seen in Figure 

4.6. First signal in figure is the information of any object existence with its distance 

to related sensor in one region of six. Second signal on the figure is the 

synchronization signal. The period of the first signal is divided into four.  Changing 

the form of the signal due to the distance sensed by the ultrasonic sensors, the 

information is sent to controller unit.  
 
 

 
 

 Figure 4.6 Oscilloscope output of the ultrasonic sensors  
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4.2.2 Wireless Communications on Model 
 

4.2.2.1 Radio Frequency Modems 
 

 
 

Figure 4.7 Ultrasonic sensor regions. 

 
Figure 4.8 Installation of the ultrasonic sensors on real 
model. 



 
 

 

65

Using serial port connected RF Modems; mobile robot is connected bidirectional 

to computer. Some part of the Quick Basic code for previous research on an open 

loop controlled mobile robot can be seen in Table 4.2 (Gören, 2001).  In that 

research, mobile robot is equipped also with an embedded computer which has an 

80386 CPU and very limited flash memory. The goal was to build a mobile robot to 

get information from a hazardous area for human. Mobile robot sends the data using 

RF modems and PC104 stabile in a distance of 5km without effecting from 

disturbances. The main advantage of RF modem in that project was not to loose 

control of the mobile robot. The disadvantages of RF Modems are that they are 

heavy and relevantly slower in data transmission. Fault detection is also worse than 

othr solutions.  

 

Table 4.2 RS232 connected RF-Modem QB sample program. 
... 
OPEN "com1:9600,n,8,1,rs,cs,ds" FOR OUTPUT AS #1  
... 
CASE "RIGHT" 
CTR = CTR + RGTB 
PRINT #1, CTR 
SLEEP (1) 
CTR = CTR - RGTB 
PRINT #1, CTR 
GOTO 110 
... 

 

In this research, however, the task of RF Modems is telemetry which means to 

send some information to monitor some data of the mobile robot on a stationary 

computer.  

 

4.2.2.2 Bluetooth 
 

An embedded computer which means a tiny main board and daughter boards in 

standards is mounted on the mobile robot. Using USB (Universal Serial Bus) port of 

this embedded computer, a Bluetooth dongle can be installed on the mobile robot. 

Bluetooth is a cable replacement technology offering point to point links without 

native support for IP. Main advantage is that the Bluetooth technology covers a very 

huge area, but it is not good for LANs.  
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Bluetooth offers the possibility to create an RfComm between a master and up to 

6 slaves, with the SDP protocol to connect those pipes to specific applications or 

driver. TCP/IP is only one profile, implemented through PPP. Using Bluetooth 

software, serial communication ports of computer of mobile robot can be seen as 

ports of immobile computer. In addition to this, like using FTP server program in 

Wireless Ethernet 802.11g, Bluetooth file transfer program is tested to send 

meaningful text file to record path to mobile robot’s computer. 

 

4.2.2.3 Wireless Network 
 

The 802.11g specification is a standard for wireless local area networks that offers 

transmission over distances at up to 54 Mbps. Compared with the 11 Mbps 

theoretical maximum of the earlier 802.11b standard, it is relatively short. 802.11g 

and 802.11b networks operate at radio frequencies between 2.400 GHz and 2.4835 

GHz. The 802.11g uses orthogonal frequency division multiplexing (OFDM). 

802.11g can fall back to speeds of 11 Mbps, so 802.11b and 802.11g devices are 

compatible. If the access point device uses 802.11b, modification of it to 802.11g 

compliance usually involves only a firmware upgrade. 

 

In applications of wireless network in this research, VNC was used to monitor and 

teleoperate the robot whereas FTP was used to control the robot. VNC is Virtual 

Network Computing. It is remote control software which allows you to view and 

interact with another computer anywhere on the internet.  It is operating system 

independent.  

 

 
 
Figure 4.9 Screenshots of stationary computer during connecting to PC104 via VNC.     
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Using C Programming Language, desired path is transferred to the robotic 

vehicle. In application, this is a file transferred from the immobile computer, mainly 

just a text or character file.  FTP Server program is installed in PC104 to get the 

relevant file from the desired port. This is just similar in Bluetooth. But, in 

Bluetooth, file transfer program is generally included in software package of 

Bluetooth device. Use of WLAN on mobile robot can be seen in Figure 4.10 and 

Figure 4.11. 

 

In order to achieve security in wireless Ethernet, in addition to WPA-PSK security 

in wireless Ethernet, IP checking and user with a password is used for FTP server. 

Partly, SSH is also tested.  

 

 

 
 
Figure 4.11 Mobile robot (Client Side)                  

 

4.2.3 Motors and Drivers 
 

4.2.3.1 Motors of the Research Model 
 

The AMR has two brush DC12V motors whose specifications are indicated in 

Figure 4.12.  

 

Figure 4.10 Immobile Computer (Server side)               
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4.2.3.2 Motor Drivers 
 

Motor drivers of the model are also our lab made circuits which can be seen in 

Figure 4.13. Power voltage of the circuits is DC12V. It is an H Bridge whose power 

is 500 watt.  Velocity of the motors can be changed as the velocity control input is 

changed between 0V - 5V. UC3525 in the circuit generates a width adjustable 20 

kHz square signal. S5 transistor is used as a step-down-converter and changes the 

 

 
 

Figure 4.12 Dimensions and performance of the motors on WMR model. 
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output voltage, so the speed of the motor. Motor can be rotated backwards with 

making the input enable and input forward/backward high. 

 

Effective period and frequency of the circuit can be set with the potentiometers on 

the circuit if needed. 

 

4.2.4 Controllers and Input – Output Cards 
 

4.2.4.1 PC104: Embedded Computer on the Mobile Robot Model 
 

As a master controller of mobile robot, a PC104 single board computer is 

selected. SBC is called PC104 because of the 104 pins that are used as a bus between 

the cards connected to each other. Using these pins, PC104 standard cards are 

connected physical one to another and different function cards use direct access to 

others.  For the controller, an AMD Geode 300 MHz CPU PC104 with 256MB SD 

compact flash, 64MB SD Ram is selected. On the CPU module, an Ethernet chip and 

a VGA chip exists. USB, Parallel & Serial Port can be used as for the interfaces of 

the card. PCM 3350 type PC104 and its block diagram can be seen in Figure 4.14 

and Figure 4.15 (PCM3350, 2006). 
 

  Figure 4.13 Motor driver card circuit (a larger version of this image can be found in Appendix  
  4, Schematic 2). 
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In addition to PCM-3350, an analog output card (PCM-3712-A) and a digital I/O 

and analog input card (PCM-3718H-B) is mounted on the PCM-3350 PC104 

module. For features of the cards, please see Table 4.3. 

 

 
 
Figure 4.14 PCM 3350 type PC104 embedded PC. 

 
   Figure 4.15.  Block diagram of PCM 3350. 
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Table 4.3 Features of PCM 3712 and PCM 3718 daughterboards (PCM-3712, PCM-3718H/HG, 
2007). 

Features of PCM 3712 

• 2 channel analog output 
• 0 to 5 V, 0 to 10 V, ±2.5 V, ±5 V, ±10 V and 4 to 20 mA output range 
• 12-bit resolution 
• High speed 
• Single power (+5 V) operation 
• Output cut off at power on 

Features of PCM 3718H 

 

4.2.4.2 Microcontrollers on the Mobile Robot Model 
 

Peripheral Interface Controller, shortly PIC, is the name of the microcontroller 

made by Microchip. It was developed to control peripheral devices as can be 

understood from its name. It is alleviating the load from the main programming unit.  

Four PICs (PIC16F877 and PIC16F84) are installed on the experimental mobile 

robot model. The tasks of these microcontrollers may be seen in Figure 4.16. The 

features of these two types of PICs may be found in Appendix 4, Schematic 7, 

Schematic 8 and Schematic 9. 

 

None of two motors have the same exactly same characteristics of each other. So, 

always a motion and velocity feedback is needed to correct errors to each other. Two 

encoders are constructed and mounted on the wheels of the AMR in initial stage of 

the project. These encoders are connected to a microcontroller (initial stages of the 

project a PIC16F84, then a PIC16F877) in order to have similar characteristics for 

left and right motion. This microcontroller is named as ‘Microcontroller 3’ in this 

project. Microcontroller 3 also sends the counted pulses via RS-232 to either 

‘Microcontroller 1’ or PC104 for calibration, control and telemetry. 
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4.3 Block Diagrams 
 
4.3.1 First Models of the Robot 

 

In developing stages of the project, many changes are made to the control model; 

sometimes to improve the model, sometimes to adapt the model in use of daily life 

and sometimes because of limited project budget. Some changes in developing stages 

of the project can be seen in Appendix 4 Schematic 9. 

 

 

4.3.2 Control of the System 
 

In many researches, mapping algorithms are tested for having knowledge of the 

environment (Beckerman, 1990; Awad, 2004). However, in this research focus is on 

more reliable data from sensors aiming the movement of the mobile robot quick and 

reasonable.   
 

 
 
Figure 4.16 Block diagram of the model. 
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Two different control algorithms and performances were tested on the mobile 

robot. As mentioned before, an embedded PC (PC104) with digital and analog I/O’s 

is mounted on the model for neural networks algorithm whereas two microcontrollers 

are mounted to test fuzzy logic algorithm. Control block in system block diagram in 

Figure 4.16 is Microcontroller 1 block that also demonstrates embedded PC in neural 

network algorithm experiments. Sensor fusion algorithm is loaded on this 

microcontroller also. Microcontroller 3 block is a modular unit which interfaces for 

the self-built encoders with RS232 standard to communicate either with embedded 

PC or the Microcontroller 1. Later, another PIC is used for ANN algorithm. 
 

 

For continuous control of the right and left side motors, equation (4.9) and (4.10) 

are used in algorithm. These equations are also used in forming fuzzy logic 

algorithm.  

 

 
vR : Right motor velocity  

vL  : Left motor velocity 

vBR: Output Value for Right Motor Max Velocity (for Calibration) 

vBL: Output Value for Left Motor Max Velocity (for Calibration) 

 
 

    Figure 4.17 Control blocks of the mobile robot in DSET experiments. 
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SVL: Sensor Value for Left (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6) 

SVR: Sensor Value for Right (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6) 

RVL: Region Value for left (Closeness factor) 

RVR: Region Value for right (Closeness factor) 

KR  : Right Motor Velocity Factor 

KL  : Left Motor Velocity Factor 

X1  : Closeness Factor for Region 1 (It is close.) 

X2  : Closeness Factor for Region 2 (It is far.) 

q3x1 : Location matrix for mobile robot. 

 

4.4 Dempster – Shafer Evidence Theory Experiments 
 

In forming control algorithms of continuous or fuzzy logic control, front region of 

the mobile robot is divided into 12 regions with respect to their closeness probability 

to unexpected objects and motion direction. With this division, a compact, simple 

algorithm, so quick motion for AMR is aimed. Dempster – Shafer evidence theory 

was tested in limitations of quick motion with reliable sensor data. In Table 4.4 

sensor data from ultrasonic sensors and processed data can be seen. 

 

Table 4.4 Sensor Data from Ultrasonic Sensors 

 Unprocessed 
data 

Processed data 
(Bayesian - Occupied) 

Processed Data (Dempster – 
Shafer / Occupied) 

… … ... … 

Tn 6,4,6,0,4,6 0.29, 0.14, 0.79, 0.00, 0.14, 0.29 0.250, 0.339, 0.429, 0.232, 0.143, 0.250

Tn+1 6,4,6,0,4,6 0.29, 0.14, 0.79, 0.00, 0.14, 0.29 0.250, 0.339, 0.429, 0.232, 0.143, 0.250

Tn+2 6,4,6,0,4,6 0.29, 0.14, 0.79, 0.00, 0.14, 0.29 0.250, 0.339, 0.429, 0.232, 0.143, 0.250

Tn+3 4,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+4 7,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+5 7,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+6 7,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+7 4,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

Tn+8 4,4,6,0,4,6 0.46, 0.14, 0.79, 0.00, 0.14, 0.29 0.384, 0.384, 0.429, 0.232, 0.143, 0.250

… … … … 
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Figure 4.18 Regions for algorithm. 

 

Translating sensor readings into probabilities and combining probabilities using 

Bayes Rule is one of the most known methods. For localization and map making, 

other two most popular methods are DS Theory and HIMM (Murphy, 2000). In 

Bayes Rule of evidence there are two parts evaluating the space empty or occupied.  

However, if there is spaces that can not be classified as occupied or empty although 

having signals from sensors, Dempster – Shafer Theory has to be used. If we 

simplify the rules, in Bayesian Theory, the sum of probability of a space to be 

occupied and the probability of a space to be empty is equal to one whereas in 

Dempster – Shafer Theory, the sum of the probability of a space to be occupied, to 

be empty and not to be known is equal to one. The main purpose is to combine 

different sensor data as being different sensors or as for the same sensor in different 

times. This is used in this research for the mobile robot to find a path itself as quickly 

and as reasonable as possible.  

 

In Figure 4.19 and in Figure 4.20, unprocessed and processed signals for 

algorithm during the robot movement are shown respectively. When the robot comes 

a point that most of the signals are similar, it is easy for it to decide the direction 

since the processed signal values includes different sensors and different times. This 

also improves the quality of the path which can be easily seen in Figure 4.20. In this 

figure, the edges or the important places have greater values after using DS-Theory. 

In color scale of the processed sensor data values, they can be seen darker in color in 

this figure.  
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Figure 4.19. Unprocessed signals from ultrasonic sensors which are taken during
movement of the mobile robot in a corridor.  
 

 
Figure 4.20. Processed signals using DS Theory from ultrasonic sensors which are taken
during movement of the mobile robot in a corridor.  
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To simplify the optimal path problem, smoothing the path curve is the first step. 

Let a discontinuous curve denoted as Type 0. A continuous curve whose tangent 

direction is discontinuous is called Type 1. The set of continuous curves whose 

tangent direction is also continuous is Type 2. A curve has curvature continuity as 

well as tangent direction continuity is called Type 3. Third type curves are 

considered “smoother” than the previous classes. See Figure 4.21. This type curve is 

said to be optimal motion for a mobile robot. Performance of the control algorithms 

and improvement with Dempster – Shafer evidence theory were also tested on this 

matter. 
 

 

4.5 Fuzzy Logic Experiments (Find Target) 
 
4.5.1 Fuzzy Logic Controller Experiment 1 

 

Two basic well known problems of the autonomous mobile robots are finding 

empty space and heading target problems. These problems are the subjects of many 

researches. In developing solutions to these problems, two main research areas are 

formed. These are mapping environment as well as the location of the robot and 

sensor processing for finding target and heading (Janglova, 2004; Kopacek, 2006; 

Yi, 2000; Montaner, 1998). 

 

The first part of fuzzy logic controller experiments is based on finding target and 

optimal behavior of movement of robot towards the target. Environment in heading 

 
 

 Figure 4.21 Smoothness of curves of different types 
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to the goal experiments can be seen in Figure 4.22. For simplifying the heading 

problem, x axis value of target on image is taken as input and left and right side 

motor velocities are taken as outputs first. 

 

 

 

The distance between the starting point and the goal is 20 meters. Camera is 

mounted on the central axis of the mobile robot. Microcontroller 2 receives the xp 

value which means the location of the target on x axis on image from the mobile 

robot camera 1. Using this information robot determines the left and right motor 

velocities due to the fuzzy rules (see Table 4.5). 

Figure 4.22 Environment in heading to the goal experiments and modeling environment using
camera images.                         
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After getting the location data of the target, the next stage is Fuzzification process 

(see Figure 4.24).  

 

 
 

    Figure 4.24 Fuzzy sets for the linguistic variables target on image left and right side motor      
    velocities (Fuzzification). 
 

Figure 4.23 Experiment 1 scenario: Mobile robot finds the target and heads towards the target. 
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Creating rules due to the graphics in Fuzzification process is the next stage. Rules 

in code on microcontroller 2 during the experiment 1 can be seen in Table 4.5. 

Outputs of the system can be seen in Figure 4.24. In each experiment, mobile robot 

reached the target successfully. But, in some experiments, the followed path on the 

way to reach the goal was not the best solution as can be seen in Figure 4.25. The 

reasons will be discussed in conclusion chapter of this thesis.  

 

Table 4.5 Fuzzy rules on microcontroller program. 
... 
rref = 0; lref = 0 
 
If cmu_mx <= 40 Then ' Fuzzy Table-Left 
l_cmu = ((40 - cmu_mx) * 100) / 40 
rref = rref + (20 * l_cmu) / 100 
End If 
 
If cmu_mx >= 40 Then 'Fuzzy Table-Right 
r_cmu = ((cmu_mx - 40) * 100) / 40 
lref = lref + (20 * r_cmu) / 100 
End If 
... 
'Fuzzy Table Middle 
If cmu_mx >= 20 And cmu_mx <= 60 Then 
If cmu_mx < 40 Then 
m_cmu = ((cmu_mx - 20) * 100) / 20 
Else 
m_cmu = ((60 - cmu_mx) * 100) / 20 
End If 
rref = rref + (50 * m_cmu) / 100 
lref = lref + (40 * m_cmu) / 100 
End If 
... 

 
 

 
 

 
     Figure 4.25   Outputs   of   the   FLC  experiment 1.       
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     Figure 4.26 Fuzzy logic controller experiment 1 (Graphs are the followed real paths of the AMR)  

 

4.5.2 Fuzzy Logic Controller Experiment 2 
 

The goal of second FLC experiment is to find the efficiency of the seeking mode 

code and motion of the autonomous mobile robot. AMR has to find its path to the 

target starting without knowing the place of the target and without having chance to 

see the target. The program code is the same of the code in experiment 1 (which can 

be examined in Appendix 5).  
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Seeking mode and heading of the AMR is really effective. It also adapts itself due 

to the light intensity without loosing the location information of the target during 

adaptation. AMR can be programmed to track not the color but the exact color of the 

target.  

 

 

 

4.5.3 Fuzzy Logic Controller Experiment 3 
 

This experiment environment is similar with the experiment 1. However, the rules 

are changed to make the control region boundaries sharper. This change made the 

behavior of the robot less optimal. Because, big sudden changes in boundaries of 

regions causes robot to have worse behavior.  The other problem in this experiment 

is to design the FLC behavior for the left motor and right motor velocities of the 

   Figure 4.27 FLC experiment 2 scenario: Robot seeks the target, finds it and heads towards the goal.
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  Figure 4.28 FLC Experiment 2 results (real navigation trajectory). Data are taken via telemetry.  
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mobile robot when turning left or right while going forward. In this condition, the 

error is small, so the response is not enough. But, the desired response is to have the 

control of interference even in very small angles in order to have a very stable 

behavior (see Figure 4.29). These two disadvantages made the behavior of the robot 

worse which can be seen also in Figure 4.31. 

 

Fuzzy rules: Let us define the location of the target on x axis as xp, maximum 

velocity of the robot is Vmax,  

1. If xp < 20   0=Lv ; 
80max

p
R

x
vv ⋅=  

2. If xp is between 20 and 30   
3

2 maxV
vL

⋅
=   ; max

max

80
2

3
2

V
xV

v p
R ⋅−

⋅
=  

3. If xp is between 30 and 50  vL = vR = Vmax 

4. If xp is between 50 and 60  max
max

80
2

3
2

V
xV

v p
L ⋅−

⋅
=  ; 

3
2 maxV

vR
⋅

=  

5. If xp > 60   
80max

p
L

x
Vv ⋅=   ; 0=Rv  

 
Rules above are found after Fuzzification that can be seen in Figure 4.30. 

 

 
    
              Figure 4.29. Defuzzification and outputs of the system.  
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         Figure 4.30 Fuzzy sets for the linguistic variables target on image left and right  

  side motor velocities (Fuzzification). 
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Figure 4.31 Movement of the AMR during one of first type of experiment using fuzzy logic. 
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4.5.4 Fuzzy Logic Controller Experiment 4 
 

This time, the outputs for the left and right motors in program are set not to give 

zero output at any time, in other words, continue running even sharp rotating 

conditions. This reduces the effects of starting impacts to model, in other words 

makes motion smoother. Another difference is dividing the regions of outputs of 

fuzzy control into less number of regions (see Figure 4.32). This improves the 

continuous motion behavior, so the robot follows the optimal path in a narrow 

tolerance band (see Figure 4.33). The error at the end of the path in this figure comes 

from the lens effect of the light source. When the robot comes very near to the target, 

lens changes the sensed color of the target into a very bright color via increasing the 

intensity of the light, which is seen white by the camera. So, in this condition, robot 

seeks for the target. This is not accepted as a fault of the robot, but fault of selecting 

the light source of the target. However, it is obviously seen from this figure that even 

in this condition, robot finds the target successfully.    

 

Simplified fuzzy rules in code for finding target are: 

 

1. If 0 < xp <= 20   5=Lv ; maxVvR =  

2. If 20<xp<= 30   )20(3 −= pL xv   ; maxVvR =  

3. If 30<xp <= 50  vL = vR = Vmax 

4. If 50<xp <= 60  maxVvL =  ; )60(3 pR xv −=  

5. If xp > 60   maxVvL =   ; 5=Rv  

 

In evaluating the experimental results with figures in this chapter, it should be 

remembered that the distances in figures are in millimeters and the width of the robot 

is approximately 65 cm. Another note is that the velocity unit is not m/s or km/h but 

a unit that is defined in the program. This unit is the same unit in all experiments. 

The reason is to make the programming easier.  
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              Figure 4.32  Velocity outputs of the FL model. 

 

The figure above shows the outputs of the code whereas the figure below is the 

path in fuzzy logic experiment 4 (finding target problem, optimizing regions and 

robot motion on reaching the target.)  
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 Figure 4.33 Motion of the AMR in one of first type of experiments using fuzzy logic (find  
 and head to target problem). 
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4.5.5 Fuzzy Logic Controller Experiment 5 
 

Fuzzy logic experiment group 5 is related with the corridor finding and obstacle 

avoidance with fuzzy logic controller code. In the first stage of this experiment 

group, robot is tested for finding the exit of different corridors. One of the 

experiments is shown in Figure 4.34 (a). In most of the experiments in this group 

robot failed to avoid the obstacles or could not find the exit. Changing the combined 

fuzzy rules of finding the target and obstacle avoidance some time later made the 

program very long and so the robot motion very slow. Relatively successful second 

part of this group experiments (Figure 4.34-b) can be seen in Figure 4.35. This 

results, however, very far away from neuro-fuzzy experiments results success, which 

will be told in following parts of this chapter. 

 

 
 

(a) 
 

 
 

(b) 
 

        Figure 4.34 Initial and final stages of the experiments  
on obstacle avoidance.    
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Figure 4.35 Fuzzy logic experiments, actual followed path.    
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4.6 Artificial Neural Networks Experiments (Find Empty Space) 
 

The perceptron can be seen as the simplest kind of feedforward, supervised neural 

network. The perceptron is a kind of linear binary classifier that maps its inputs x to 

an output value f(x). x is a binary vector whereas f(x)  is a single binary value. It is 

calculated as: 
 

 
 

  Figure 4.36 Perceptron model of the AMR. 
 

 

However, the outputs of the nets are binary, but the optimal velocities of the 

autonomous wheeled robot model should not be. For this reason, ADALINE NN 

model is thought to be more suitable for experimental AMR model. As mentioned in 

Chapter 2, ADALINE model is supervised and feedforward. It is a single neuron 

whose weights are updated according to LMS (Least Mean Square) algorithm. The 

LMS algorithm is an adaptive algorithm that computes adjustments of the neuron 

synaptic weights.  ADALINE, as mentioned, is a single neuron. Barely, the outputs 

of the AMR model are not just one single output. Left and right motor velocities, 

which are the outputs of the system, have to be evaluated as one vector. Each input 

(ultrasonic sensors outputs) should have different weights in order to decide the 

heading precisely. So, the MADALINE model may be more appropriate for the 

model (see Figure 4.37 and Figure 4.38).   
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In training phase of the experiments, initial weights are predicted. Supervisor 

decision is for refusing the motion of the AMR. If y is positive, which means left and 

right side systems are running, and d is also positive, which means the motion is 

approved, then the weights do not change (see Figure 4.38). The reason of getting 

supervisor decision only for refusing is to make the weights optimal in reasonable 

Figure 4.37 ADALINE model of the AMR.               
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time. After training, the followed paths can be seen as in Figure 4.39 and following 

figures.  

 

 

 

4.6.1 ANN  and Fuzzy Logic Combined Experiments  
 

Experiment scenario for the model is decided as finding the target and avoiding 

the obstacles on the way during the motion. Target has to be recognized with any 

characteristic(s) of it. In this scenario, target is a led which is red in color. But, the 

difficulty of the task for finding the target is to discover the red led in various light 

intensities and contrast it from other red colored objects. Despite these difficulties, 

this task is completed very successfully. Programming the camera at RGB format in 

each color scale of 255, the target can be attracted successfully.  

 

The second task is to make the AMR head to target autonomous. This is 

controlled via fuzzy logic algorithm. The main idea for this was: Since the target 

could be recognized successfully, fuzzy logic algorithm will make the control faster. 

The result was as expected, naturally after many optimization experiments which are 

explained in fuzzy logic experiments part of this chapter.  

   
  Figure 4.38 MADALINE model of the AMR.                
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The third task, and the most difficult one, is to avoid the obstacles on the path. 

The AMR model has to notice the obstacles during motion and pass them with a 

smooth curve and then return back to its optimal path. Ultrasonic sensors are 

mounted on the front 180 degrees part of AMR model for this purpose. Although the 

ultrasonic sensors are physically independent from each other as for transceiver 

parts, control units, and as for scanned regions, signal of them can be reflected from 

walls and obstacles or effect each other using the body of the model. Isolating the 

ultrasonic transceiver signals as transferring through the model body is the simplest 

problem. It can be isolated using materials with appropriate softness that the signals 

would not go through. Finding solution for the reflections from other objects and 

walls problem, however, is more difficult. Dempster- Shafer Theory is studied in 

order to discover the important places on the path. This research, which had also 

successful results, was told in related part of this chapter. On the other hand, adding 

DS theory code with fuzzy logic control and NN control algorithms would make the 

code slower and the AMR model not to response in reasonable time intervals. And 

NN has also changeable weights, which can take the task of DS theory for this 

research model. NN model selected after studying several NN architectures and 

models, which are mentioned in Chapter 2.  

 

First experiments with neural networks is using ANN for object avoidance and 

heading via fuzzy logic. The following figures show that control of the robot with 

neural networks even with bias values is more successful than the previous 

experiments which only fuzzy logic used in this research. After first group of 

experiments (see Figure 4.40), in second group of experiments, the NN tried to be 

trained.  In this group, path following performance of robot is investigated due to the 

changing weights (please see Table 4.6 and Figure 4.41).  

 

After study on the model, control algorithms and application of the theoretical 

control solutions on the model, the optimal simplified solution for the model is found 

as in Figure 4.39 below. 
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  Figure 4.39 Simplified control algorithm of the model.            
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    Figure 4.40 Target heading with object avoidance (I2C protocol made the sampling  
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Table 4.6 Weights in experiments.  
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

Θ K K K K K K K K
W11 225 150 225 150 225 255 200 200
W12 225 175 175 175 225 255 225 225
W13 225 225 150 225 225 255 255 255
W14 75 75 25 75 50
W15 75 50 50 50 75 75
W16 75 25 75 25 50
W21 75 25 25 75 50
W22 75 50 50 50 75 75
W23 75 75 75 25 50
W24 150 175 255 255 255
W25 175 175 175 175 255
W26 150 150 175 255 200 200
η 1 1 1 1 1 1 1 1     

 
 

In table above, darker colors represent stronger weights. Weights are grouped if 

the data are from left or right side and if the weight is connected to neuron 1 or 

neuron 2. As an example, w11, w12, w13 are colored according to values of each other. 

Similarly, the following weight values are grouped each having three components. 
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   Figure 4.41 Followed paths due to different weights.            
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For the third group of experiments, the number of obstacles is increased to 8 and 

the distance to goal increased to 14 meters. In Figure 4.44, Figure 4.45 and Figure 

4.46, left and right wheel responses due to the related outputs, six ultrasonic sensor 

outputs, target x coordinate and followed path during motion of AMR in three ‘4 

obstacle and a target scenario’ experiments can be seen. Conclusion will be discussed 

in following chapter.  

  

 
 

        Figure 4.42 Third group of experiments with ANN. 
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      Figure 4.43 Obstacle avoidance and heading to target performance of the AMR. 
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Figure 4.44 Right and left wheel velocities, microcontroller related outputs, sensor outputs
during motion.      

Ultrasonic sensor outputs (U1, U2, U3, U4, U5, U6 ) ; dark: near, bright: far. 
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Figure 4.45 Right and left wheel velocities, microcontroller related outputs, sensor outputs during 
motion.      

Ultrasonic sensor outputs (U1, U2, U3, U4, U5, U6 ) ; dark: near, bright: far. 
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Figure 4.46 Right and left wheel velocities, microcontroller related outputs, sensor outputs during
motion.      
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CHAPTER FIVE 

CONCLUSIONS 
  

5.1 Overview 

 

In this research, model of a non-holonomic autonomous wheeled mobile robot is 

designed and constructed which is equipped with an embedded PC, micro 

controllers, cameras, encoders and ultrasonic sensors in order to study on some 

control and sensor fusion algorithms. The WMR model in this research was 

originally a wheel chair which has four wheels and whose two wheels are actuated 

with two motors. But, the systems are mounted as its back as its front. The reason 

was to decrease the disadvantages of its motional constraints. This can be understood 

easily if the differences between a car motion and a forklift motion are thought. 

 

Nonholonomic conditions are assumed to be expressible as non-integrable 

differential relations. In analyzing the non holonomic mobile robots, inverse 

kinematics can be used easier than direct kinematics because of the similarities of the 

mobile robots with the parallel manipulators. However, forward position kinematics, 

in other words dead reckoning, is used in many applications or researches.  

 

5.2 Conclusions About Control Techniques and Future Work  

 

A mobile robot has many sensors on it to know environment, to interact with 

human and to complete its tasks. Uncertainties in ultrasonic sensors caused by the 

specular reflection from environments make them less reliable. In this thesis, 

applying Dempster-Shafer evidence theory to data from the sensors, it was aimed to 

have more reliable sensor data. DS evidence theory was selected because of its 

advantages over Bayesian theory. DS evidence theory was tested in limitations of 

quick motion with reliable sensor data. In scale of the processed sensor data values in 

the experiments, the edges or the important places have greater values after using 

DS-Theory. So, the sensor fusion part of this research is successful in getting the 

reliable data from sensors.   
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Two basic well known problems of the autonomous mobile robots are finding 

empty space and heading target problems. In means of main control structure, a 

camera feedback is used on the model for main feedback of target. The first part of 

fuzzy logic controller experiments is based on finding target and optimal behavior of 

movement of robot towards the target. Four different groups of experiments were 

completed in testing the target heading performance and optimizing the fuzzy regions 

for fast and précised heading. With these experiments, it is obviously seen that if the 

sensors have reliable and fast data, and motion due to parameters is analyzed well, 

fuzzy logic is very suitable for heading the mobile robot towards the target. It is not 

only fast but also robust in different environments. However, in avoiding the 

obstacles experiments, fuzzy logic controller was not that well working. Rule table, 

so the code gets very long if all conditions are need to be considered. As a result of 

long code and conditions, response and so the motion gets slower. If the code does 

not include all conditions, right decisions can not be made during the motion of 

avoiding obstacles and heading to target. This situation can be easily seen in Figure 

4.34. Another great disadvantage of fuzzy logic controller for a mobile robot motion 

in object avoidance is that, even the fuzzy logic controller is well designed for a 

certain environment, if the environment changes, it is luck if the mobile robot makes 

the right decision.  

 

The perceptron can be seen as the simplest kind of feedforward, supervised neural 

network. So, starting from idea of using perceptron as a NN controller, MADALINE 

was decided to be tested as a controller. As predicted, the training phase is the harder 

part to be applied. In training phase of the experiments, initial weights were 

predicted. For speeding up the algorithm, supervisor decision was decided to be just 

for refusing the motion of the AMR. The first groups of experiments with neural 

networks is using ANN for object avoidance and heading via fuzzy logic. The second 

groups is to find out the performance when changing weights and the third group of 

experiments, the number of obstacles is increased to 8 and the distance to goal 

increased to 14 meters. As for the conclusion of these three groups of experiments, 

the first result may be said with no hesitation that the performance of NN after 
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training for object avoidance, even in different conditions, is much more successful 

than the FLC for the same task. Nevertheless, for heading the robot towards the 

target, the FLC is fast and very robust. So, combining the system as FLC for heading 

and NN controller for object avoidance is the optimal solution for this research 

model. If Figure 4.43, Figure 4.44 and Figure 4.45, which are the graphics obtained 

during motion, are studied, it can be also seen that the response of the system is fast 

enough to find the approximate optimal path in real time. Learning the environment 

is a very great advantage of ANN, but unsupervised learning is more convenient for 

an autonomous robot. The reason why the supervised learning took part in this 

research was that the model is designed for a kind of wheel chair and safety motion 

is more important.  

 

In designing a mobile robot, even the task(s) of the robot is (are) complex, better 

type is the simpler type of Braitenberg vehicles that completes its task. It is similar 

for the other criteria of mobile robot design.  

 

The starting point of this thesis was to design an autonomous wheel chair. In 

completing stage of this research, it can be said the task is completed in means of the 

first stage of designing and producing a modular autonomous wheel chair which can 

be very useful for disabled people and old people. For the future work, developing 

the model for swarm robots of the same model might be very efficient for rest homes 

and hospitals.  
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APPENDICES 

APPENDIX 1 

NOMENCLATURE 

 
b  bias value [] 

bel(A) belief function [] 

c  center [] 

di  desired value [] 

E  Global energy of the system [] 

ei  error of the output [] 

fHL  Hard limiter [] 

K   amount of conflict between the two mass sets [] 

KR    right motor velocity factor [] 

KL    left motor velocity factor [] 

L  distance between the middles of two front wheels [m] 

m(A) mass of set A [] 

mi, mc codebook vector [] 

p  probability [] 

P(X)  power set, set of all possible subsets of X []  

pl (A) plausibility function [] 

q3x1   location matrix for mobile robot [] 

R  radius of curvature [m] 

r  dynamic radius of wheel [m] 

RVL  region value for left (closeness factor) [] 

RVR   region value for right (closeness factor) [] 

si, sj state of firing [] 

SVL  sensor value for left (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6) [] 

SVR  sensor value for right (3 for S3 and S4, 2 for S2 and S5, 1 for S1 and S6) [] 

T  similarity ratio [] 

Te  synthetic temperature of the system [] 

v   linear velocity of the mobile robot [m/s] 
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vBR  output value for right motor max velocity (for calibration) [m/s] 

vBL   output value for left motor max velocity (for calibration) [m/s] 

vij  feedback weight of ith neuron in layer to jth neuron in previous layer [] 

vL (t)  linear velocity of the left front wheel [m/s] 

Vmax maximum linear velocity of the right and left front wheel [m/s] 

vR (t)  linear velocity of the right front wheel [m/s] 

w (t)  angular velocity in z coordinate of the mobile robot [rad/s] 

wn  weights in the artificial neural networks [] 

X   universal set [] 

X1   closeness factor for region 1 (it is close) [] 

X2    closeness factor for region 2 (it is far) [] 

{Xh, Yh}  moving coordinate axes [] 

{Xs, Ys}  stationary coordinate axes [] 

xi  input(s) of the system [] 

xp  target location on x axis [pixel] 

yi  output(s) of the system [] 

δi  local slope [] 

ø  empty set []  

θ   constant in ADALINE model []  

Θ  heading angle [rad] 

κ (s)  curvature at point s [1/m] 

µA(x) membership degree of x in set A~  

η  learning rate [] 

τi  threshold value [] 
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APPENDIX 2 

ABBREVIATIONS 

 
 
ADALINE Adaptive Linear Element, Adaptive Linear Neuron 

AI  Artificial Intelligence 

AMR  Autonomous Mobile Robot 

ANFIS  Adaptive Network Based Fuzzy Inference System 

ANNs  Artificial Neural Networks 

ART  Adaptive Resonance Theory      

BAM  Bidirectional Associative Memory 

BP     Backpropagation                 

CC    Cascade Correlation 

CMAC  Cerebellum Model Articulation Controller 

CNN   Cellular Neural Networks 

dLVQ   Dynamic Learning Vector Quantization 

DOF  Degrees of Freedom 

FAM   Fuzzy Associative Memory  

FCM  Fuzzy Cognitive Map 

FL  Fuzzy Logic 

FLC  Fuzzy Logic Control 

FS  Fuzzy Sets 

GUI  Graphical User Interface 

HAM   Hamming Net                     

HOP   Hopfield Network 

LMS  Least Mean Square 

LVQ   Learning Vector Quantization (or linear vector quantization)     

MADALINE Multiple ADALINE 

M1  MADALINE I 

M2  MADALINE II 

M3    MADALINE III                    

MFT   Mean Field Theory 

MR  Mobile Robot 

OLVQ  Optimized LVQ 

OLAM  Optimal Linear Associative Memory    

PCA  Principal component analysis  
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PIC  Peripheral Interface Controller 

PNN  Probabilistic Neural Network  

QP    Quick Propagation 

RBF  Radial Basis Function 

RBP  Recurrent Backpropagation            

RCE   Restricted Coulomb Energy  

RF  Radio Frequency 

RfComm Radio Frequency Communication 

SBC  Single Board Computer 

SDP  Session Description Protocol 

SOM   Self-Organizing Map 

TAM  Trilateral Associative Memory 

TDNN  Time-Delay Neural Net 

USB  Universal Serial Bus 

WMR  Wheeled Mobile Robot 

WTA   Winner Takes All  
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APPENDIX 3 

DEFINITIONS IN COMPUTER NETWORKS 

 
Bandwidth : Commonly, it is the size of the channel used by the radio (the amount 

of frequency available to the system). By extension, it can also sometimes refer to 

the speed of the system (the bit rate). 

 

Bit-rate : Speed at which bits are transmitted over the physical layer, also called 

signaling rate. Quite different from throughput. 

 

Carrier: The base frequency used by the system. The modulation process will 

generate a signal centered on the carrier, of width equal to the bandwidth. 

 

Carrier Sense: Checking the transmission medium to get permission if it is free or if 

there is a transmission going on. Usually measure of the received power. See CSMA. 

 

CDMA (Code Division Multiple Access) : Technique used to share the same 

bandwidth between different channels using codes. The code is a signature 

multiplexed with the signal and used to recover it.  

 

CSMA (Carrier Sense Multiple Access) : Using carrier sense to access the 

medium. One of the main MAC methods. 

 

Cell : Radio neighborhood, area where all nodes can communicate with each other. 

As the range over radio is limited, the network is split into independent cells and a 

cell to cell communication is provided (via access point or internal routing). 

 

Channel : On the radio, this is usually synonym of a specific frequency, and by 

extension the communication medium. It can also mean a stream of data between 

two nodes (a point to point link in connection oriented systems). 
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dB (decibel) : Logarithmic way to express a value. Usually the signal strength 

(transmitted and received power) is expressed in dBm (the reference is 1 mW - 0 

dBm). A difference between two values in dBm is without unit, in dB (in fact, this is 

a factor between the two values).  

 

Ethernet : Standard wired LAN protocol. Includes physical and link layers. 

 

Fading : Variation in channel performance due to the dynamicity of the 

environment, make the receive signal strength change.  

 

FEC (Forward Error Correction) : Technique used to overcome some type of 

errors created by transmission on noisy channels, by adding redundancy bits to the 

main data transmission.  

 

Frequency band : Portion of the radio spectrum delimited for a particular use. For 

example, most wireless LANs use the 2.4 to 2.48 GHz band. A frequency band is 

usually divided in channels. 

 

FTP: File Transfer Protocol 

 

Header : Information added by the protocol in front of the payload in the packet for 

its own use (addresses, packet type, sequence number, CRC...). Each protocol adds a 

different header, so in a typical TCP/IP packet as transmitted, we have a MAC 

header, an IP header and a TCP header, followed by the payload. 

 

IP : see TCP/IP. 

 

IPX : Network protocol used in Netware, usually with SPX. 

 

LAN (Local Area Network) : Network on a short distance, as opposed to WAN 

(typically inside a building). 
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Latency: Measure of the performance of a network for short requests and 

multimedia traffic. There is no real standard measurement, it might be the time to 

send and transmit a packet, or the time spent in the transmit queue, or the time for an 

answer to come back, or a number of requests per second... 

 

Layer: This terminology comes from the OSI specification. It divides any 

communicating system into 7 layers, each having a different functionality. Layer 1 is 

the physical layer, and layer 2 is the link layer. IP could be assimilated as layer 3 

(network layer), and TCP as layer 4 (transport layer). 

Link layer: This is the part of the protocol managing the direct delivery between two 

devices on a specific physical layer (coaxial bus, point to point link, radio...). This 

includes packaging and addressing. Most of this is implemented in the MAC. 

 

MAC (Medium Access Control) : This is the part of the radio device managing the 

protocol and the usage of the link. The MAC decides when to transmit and when to 

receive, creates the packets headers and filters the received packets.  

 

Medium: Name to describe the mean used to transfer information. This could be a 

wire (twisted pairs, coax...), an optic fibber, the radio waves (the air), infrared light... 

 

Mbps: Megabits per second 

 

Modem (modulator/demodulator) : In a radio device, this is the part converting the 

bits to transmit into a modulation of the radio waves and the reverse at the reception. 

It does the analog to digital conversion, the generation of the frequency, the 

modulation and the amplification. 

 

Modulation: Specific way of coding information on a radio frequency. Basically, 

there is amplitude modulation (AM - change waveform strength) and frequency / 

phase modulation (FM - change waveform timing), but there exist many variations 

and combinations each designated by a specific acronym.  
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NetBeui : Network protocol used in Lan Manager. 

 

Node: A device part of the network, source or destination of the data. For us, a 

computer with a radio card in it. 

 

Noise: Any unwanted signal. Background noise, interferences, and transmissions 

from nodes; not belonging to the network. 

 

Packet: Unit of transmission over the network. The data to be transmitted is split 

into packets, which are sent individually over the network. 

 

Protocol: Specification of the interactions between systems and the data 

manipulated. This describes what to do and when (the rules), and the format of the 

data exchanged on the lower communication layer. 

Physical layer: This is the part of the device interacting with the medium. For a 

radio LAN, the physical layer is also called modem. 

 

Roaming: Ability to move between cells of the same network.  

 

SNR (Signal to Noise Ratio): Difference in strength between the signal we want to 

receive and the background noise (or any unwanted signal).  

 

TCP/IP: Network protocol used by firstly UNIX and Internet. Better in some 

respects than NetBeui and IPX (allows routing, for example). 

 

TDMA (Time Division Multiple Access): Technique used to share the same 

bandwidth between different channels using periodic time slots.  

 

Throughput: Measure of the performance of a network for large data transfer (such 

as FTP, NFS, HTTP 1.1). This speed is expressed in bits per seconds or a multiple. 
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VNC stands for Virtual Network Computing. It is remote control software which 

allows you to view and interact with one computer (the "server") using a simple 

program (the "viewer") on another computer anywhere on the Internet. The two 

computers don't even have to be the same type, so for example you can use VNC to 

view an office Linux machine on your Windows PC at home. 

WAN (Wide Area Network): Network on a large scale: a town, a country or the 

world.  

Wired: Using a wire. 

Wireless: Not using a wire. For networks, it might be radio or infrared. 

WLANs: wireless local area networks 
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APPENDIX 4 

SCHEMATICS 
 

 

 

    Schematic 1 CMU CAMERA 
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         Schematic 2 Experimental motor driver circuit 
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Schematic 3. PCM 3718 block diagram 
 

                PCM 3712 base address selecting. 
 

Schematic 4. PCM 3712 block diagram and base address selecting. 
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   Schematic 5. Block diagram of PC104 main board (PCM 3350). 
 

 

 

     Schematic 6. Internal block diagram of UC3525A. 
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Schematic 7. 16F877 28/40-pin 8-bit CMOS FLASH microcontroller pin diagram 

 
 

 



 

 

124

 
 
Schematic 8. 16F877 pinout description 
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Schematic 9. 16F877 block diagram 
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(First Model: Path Following Diagram of the Vehicle) 
 

(First Model: Navigation Diagram of the Vehicle)

 
 

(First model: General view.) 
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(Third model of the AMR) 

 
Schematic 10. Model developing stages. 
 
 

 
 

(Second model of the AMR) 
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Schematic 11. 3D Model of the AMR: 
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APPENDIX 5 

PROGRAMS 
 
1. Ultrasonic Sensor Data Sending Pic Basic Pro Program  
 
'****************************************************************** 
'*  Name   : SENSOR.BAS                                          * 
'*  Author : OK & AG                                             * 
'*  Notice : Copyright (c) 2006                                   * 
'*         : All Rights Reserved                   * 
'*  Date   : 08.06.2006                       * 
'*  Version: 1.0                               * 
'****************************************************************** 
c1 var byte 
c2 var byte 
c3 var byte 
c4 var byte 
c5 var byte 
c6 var byte 
c7 var byte 
'**************************************************************** 
d0 var byte 
d1 var byte 
d2 var byte 
d3 var byte 
d4 var byte 
d5 var byte 
d6 var byte 
d7 var byte 
'**************************************************************** 
sonuc1 var byte 
sonuc2 var byte 
sonuc3 var byte 
sonuc4 var byte 
sonuc5 var byte 
sonuc6 var byte 
 
lref var byte 
rref var byte 
 
TRISA=%11111111 
TRISB=%10111111 
TRISC=%11111111 
TRISD=%11111111 
TRISE=%00000000 
 
PORTA = 0 
PORTB = 0 
portc = 0 
portd = 0 
PORTE = 0 
 
pause 500 
 
include "modedefs.bas" 
serout PORTB.6,N9600,["Başlıyor..",13,10] 
 
c1 = 0 
c2 = 0 
c3 = 0 
c4 = 0 
c5 = 0 
c6 = 0 
c7 = 0 
 
lref = 0 
rref = 0 
 
start: 
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startc: 
while portc.0=1 
Wend 
while portc.0=0 
Wend 
pause 2 
c1.3=portc.1 
c2.3=portc.2 
c3.3=portc.3 
c4.3=portc.4 
 
pause 4 
c1.2=portc.1 
c2.2=portc.2 
c3.2=portc.3 
c4.2=portc.4 
pause 4 
c1.1=portc.1 
c2.1=portc.2 
c3.1=portc.3 
c4.1=portc.4 
pause 4 
c1.0=portc.1 
c2.0=portc.2 
c3.0=portc.3 
c4.0=portc.4 
'sol algıla 
 
sonuc5 = 0 
if c4.3=0 then sonuc5=2 
if c3.3=0 then sonuc5=4 
if c2.3=0 then sonuc5=6 
if c1.3=0 then sonuc5=7 
sonuc6 = 0 
if c4.2=0 then sonuc6=2 
if c3.2=0 then sonuc6=4 
if c2.2=0 then sonuc6=6 
if c1.2=0 then sonuc6=7 
 
startd: 
 
while portd.3=1 
Wend 
while portd.3=0 
Wend 
pause 2 
d4.3=portd.4 
d5.3=portd.5 
d6.3=portd.6 
d7.3=portd.7 
pause 4 
d4.2=portd.4 
d5.2=portd.5 
d6.2=portd.6 
d7.2=portd.7 
pause 4 
d4.1=portd.4 
d5.1=portd.5 
d6.1=portd.6 
d7.1=portd.7 
pause 4 
d4.0=portd.4 
d5.0=portd.5 
d6.0=portd.6 
d7.0=portd.7 
 
'sol algıla 
sonuc3 = 0 
if d7.3=0 then sonuc3=2 
if d6.3=0 then sonuc3=4 
if d5.3=0 then sonuc3=6 
if d4.3=0 then sonuc3=7 
sonuc4 = 0 
if d7.2=0 then sonuc4=2 



 

 

131

if d6.2=0 then sonuc4=4 
if d5.2=0 then sonuc4=6 
if d4.2=0 then sonuc4=7 
 
startb: 
 
while portc.5=1 
Wend 
while portc.5=0 
Wend 
pause 2 
c6.3=portc.6 
c7.3=portc.7 
d0.3=portd.0 
d1.3=portd.1 
 
pause 4 
c6.2=portc.6 
c7.2=portc.7 
d0.2=portd.0 
d1.2=portd.1 
pause 4 
c6.1=portc.6 
c7.1=portc.7 
d0.1=portd.0 
d1.1=portd.1 
pause 4 
c6.0=portc.6 
c7.0=portc.7 
d0.0=portd.0 
d1.0=portd.1 
'sol algıla 
 
sonuc1 = 0 
if d1.3=0 then sonuc1=2 
if d0.3=0 then sonuc1=4 
if c7.3=0 then sonuc1=6 
if c6.3=0 then sonuc1=7 
sonuc2 = 0 
if d1.2=0 then sonuc2=2 
if d0.2=0 then sonuc2=4 
if c7.2=0 then sonuc2=6 
if c6.2=0 then sonuc2=7 
 
'serout 
PORTB.6,N9600,[#sonuc1,",",#sonuc2,",",#sonuc3,",",#sonuc4,",",#sonuc5,",",#sonuc6,13
,10] 
 
rref = 30 
lref = 30 
If sonuc2 >= 4 Then rref = 30: lref = 10 
If sonuc5 >= 4 Then rref = 10: lref = 30 
 
serout PORTB.6,N9600,["L",lref,"R",rref] 
 
GoTo start 
 
End 
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2. Encoder Data Sending Pic Basic Pro Program 
 
'**************************************************************** 
'*  Name    : ENCODER.BAS                                       * 
'*  Author  : OK & AG                                           * 
'*  Notice  : Copyright (c) 2006                                * 
'*          : All Rights Reserved                               * 
'*  Date    : 08.06.2006                                        * 
'*  Version : 1.0                                               * 
'**************************************************************** 
 
TRISA=%11111100 
TRISB=%11111111 
 
PORTa = 0 
portb = 0 
left var word 
left_durum var byte 
right var word 
right_durum var byte 
 
i var word 
include "modedefs.bas" 
pause 500 
Left = 0 
left_durum = 0 
Right = 0 
right_durum = 0 
 
mainloop: 
 
For i = 0 To 10000 
if portb.1=1 then 
 If left_durum = 0 Then 
 Left = Left + 1 
 left_durum = 1 
 End If 
Else 
left_durum = 0 
End If 
if portb.0=1 then 
 If right_durum = 0 Then 
 Right = Right + 1 
 right_durum = 1 
 End If 
  
Else 
right_durum = 0 
End If 
Next 
cikti: 
serout PORTa.1,N9600,["1",left.BYTE0,"2",left.BYTE1,"3",right.BYTE0,"4",right.BYTE1] 
Left = 0 
Right = 0 
GoTo mainloop 
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3. Motor Control due to the Encoder Feedback Pic Basic Pro Program 
 
'**************************************************************** 
'*  Name    : MAIN.BAS                                * 
'*  Author  : OK & AG                              * 
'*  Notice  : Copyright (c) 2006                                * 
'*          : All Rights Reserved                               * 
'*  Date    : 08.06.2006                                        * 
'*  Version : 1.0                                               * 
'**************************************************************** 
 
TRISA=%11111111 
TRISB=%10111111 
TRISC=%11111111 
TRISD=%11111111 
TRISE=%00000000 
 
PORTA = 0 
PORTb = 0 
PORTC = 0 
PORTD = 0 
PORTE = 0 
 
lhiz var word 
rhiz var word 
lmax var word 
rmax var word 
lref var byte 
rref var byte 
lpwm var word 
rpwm var word 
 
i var word 
 
lfeed_back var word 
rfeed_back var word 
 
pause 500 
lref = 0 
rref = 0 
lmax = 70 
rmax = 70 
lfeed_back = 0 
rfeed_back = 0 
lpwm = 0 
rpwm = 0 
 
include "modedefs.bas" 
serout PORTB.6,N9600,["Başlıyor..",13,10] 
HPWM 1, lpwm, 20000 
HPWM 2, rpwm, 20000 
 
 
start: 
'encoder verisi 
SERIN portb.5,N9600,["1"],lhiz.BYTE0'motor verilerini alıyoruz. 
SERIN portb.5,N9600,["2"],lhiz.BYTE1 
SERIN portb.5,N9600,["3"],rhiz.BYTE0 
SERIN portb.5,N9600,["4"],rhiz.BYTE1 
 
'sensor Karari 
SERIN portb.4,N9600,["L"],lref 
SERIN portb.4,N9600,["R"],rref 
 
 
serout PORTb.6,N9600,["L=",#lhiz,",R=",#rhiz,13,10] 
 
lfeed_back = 0 
rfeed_back = 0 
lpwm = 0 
rpwm = 0 
If lref <= lhiz Then 
lfeed_back = (lhiz - lref) 
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lpwm = ((lref - lfeed_back) * 255) / lmax 
End If 
 
If rref <= rhiz Then 
rfeed_back = (rhiz - rref) 
rpwm = ((rref - rfeed_back) * 255) / rmax 
End If 
 
If lref > lhiz Then 
lfeed_back = (lref - lhiz) 
lpwm = ((lref + lfeed_back) * 255) / lmax 
End If 
 
If rref > rhiz Then 
rfeed_back = (rref - rhiz) 
rpwm = ((rref + rfeed_back) * 255) / rmax 
End If 
 
serout PORTb.6,N9600,["lref=",#lref,",rref=",#rref,13,10] 
serout PORTb.6,N9600,["Lpwm=",#lpwm,",Rpwm=",#rpwm,13,10] 
 
If lpwm > 255 Then lpwm = 255 
If rpwm > 255 Then rpwm = 255 
 
HPWM 1, lpwm, 20000 
HPWM 2, rpwm, 20000 
 
i = i + 1 
 
'if i=5 then lref=0:rref=45 
'if i=10 then lref=30:rref=30 
'if i=15 then lref=45:rref=0 
'if i=20 then lref=30:rref=30:i=0 
 
GoTo start 
 
End 
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4. Fuzzy Mobile Robot Motion Control with Camera and Ultrasonic Feedbacks 
Pic Basic Pro Program (see Figure 4.15 & Figure 4.16) 
 
'**************************************************************** 
'*  Name    : sensor(deney1).bas          * 
'*  Author  : OK & AG                              * 
'*  Notice  : Copyright (c) 2006                                * 
'*          : All Rights Reserved                               * 
'*  Date    : 08.06.2006                                        * 
'*  Version : 2.0                                               * 
'**************************************************************** 
c1 var byte 
c2 var byte 
c3 var byte 
c4 var byte 
c5 var byte 
c6 var byte 
c7 var byte 
 
'**************************************************************** 
d0 var byte 
d1 var byte 
d2 var byte 
d3 var byte 
d4 var byte 
d5 var byte 
d6 var byte 
d7 var byte 
 
sonuc var byte[7] 
fuzzy_ultra var byte [3] 
hareketli_mi var byte 
enson_gordugu var byte 
 
l_cmu var byte 
r_cmu var byte 
m_cmu var byte 
lref var byte 
rref var byte 
 
cmu_x1 var byte 
cmu_x2 var byte 
cmu_y1 var byte 
cmu_y2 var byte 
cmu_mx var byte 
cmu_my var byte 
cmu_pix var byte 
cmu_yog var byte 
 
i var word 
 
TRISA=%11111111 
TRISB=%00101111 
TRISC=%11111111 
TRISD=%11111111 
TRISE=%00000000 
 
PORTA = 0 
PORTb = 0 
portc = 0 
portd = 0 
PORTE = 0 
 
cmu_x1 = 0 
cmu_x2 = 0 
cmu_y1 = 0 
cmu_y2 = 0 
cmu_mx = 0 
cmu_my = 0 
cmu_pix = 0 
cmu_yog = 0 
 
pause 500 
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camera: 
 
include "modedefs.bas" 
serout PORTB.7,N9600,["Basliyor..",13,10] 
serout portb.4,N9600,["TC 200 255 0 70 0 70",13] 
 
c1 = 0 
c2 = 0 
c3 = 0 
c4 = 0 
c5 = 0 
c6 = 0 
c7 = 0 
 
lref = 0 
rref = 0 
hareketli_mi = 0 
start: 
 
startc: 
 
while portc.0=1 
Wend 
while portc.0=0 
Wend 
pause 2 
c1.3=portc.1 
c2.3=portc.2 
c3.3=portc.3 
c4.3=portc.4 
 
pause 4 
c1.2=portc.1 
c2.2=portc.2 
c3.2=portc.3 
c4.2=portc.4 
pause 4 
c1.1=portc.1 
c2.1=portc.2 
c3.1=portc.3 
c4.1=portc.4 
pause 4 
c1.0=portc.1 
c2.0=portc.2 
c3.0=portc.3 
c4.0=portc.4 
'sol algıla 
 
sonuc [5] = 0 
if c4.3=0 then sonuc[5]=2 
if c3.3=0 then sonuc[5]=4 
if c2.3=0 then sonuc[5]=6 
if c1.3=0 then sonuc[5]=7 
sonuc [6] = 0 
if c4.2=0 then sonuc[6]=2 
if c3.2=0 then sonuc[6]=4 
if c2.2=0 then sonuc[6]=6 
if c1.2=0 then sonuc[6]=7 
 
 
startd: 
 
while portd.3=1 
Wend 
while portd.3=0 
Wend 
pause 2 
d4.3=portd.4 
d5.3=portd.5 
d6.3=portd.6 
d7.3=portd.7 
pause 4 
d4.2=portd.4 
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d5.2=portd.5 
d6.2=portd.6 
d7.2=portd.7 
pause 4 
d4.1=portd.4 
d5.1=portd.5 
d6.1=portd.6 
d7.1=portd.7 
pause 4 
d4.0=portd.4 
d5.0=portd.5 
d6.0=portd.6 
d7.0=portd.7 
 
'sol algıla 
sonuc [3] = 0 
if d7.3=0 then sonuc[3]=2 
if d6.3=0 then sonuc[3]=4 
if d5.3=0 then sonuc[3]=6 
if d4.3=0 then sonuc[3]=7 
sonuc [4] = 0 
if d7.2=0 then sonuc[4]=2 
if d6.2=0 then sonuc[4]=4 
if d5.2=0 then sonuc[4]=6 
if d4.2=0 then sonuc[4]=7 
 
startb: 
 
while portc.5=1 
Wend 
while portc.5=0 
Wend 
pause 2 
c6.3=portc.6 
c7.3=portc.7 
d0.3=portd.0 
d1.3=portd.1 
 
pause 4 
c6.2=portc.6 
c7.2=portc.7 
d0.2=portd.0 
d1.2=portd.1 
pause 4 
c6.1=portc.6 
c7.1=portc.7 
d0.1=portd.0 
d1.1=portd.1 
pause 4 
c6.0=portc.6 
c7.0=portc.7 
d0.0=portd.0 
d1.0=portd.1 
'sol algıla 
 
sonuc [1] = 0 
if d1.3=0 then sonuc[1]=2 
if d0.3=0 then sonuc[1]=4 
if c7.3=0 then sonuc[1]=6 
if c6.3=0 then sonuc[1]=7 
sonuc [2] = 0 
if d1.2=0 then sonuc[2]=2 
if d0.2=0 then sonuc[2]=4 
if c7.2=0 then sonuc[2]=6 
if c6.2=0 then sonuc[2]=7 
 
serin2 portb.5,16468,[wait("M "),dec cmu_mx,wait(" "),dec cmu_my,wait(" "),dec 
cmu_x1,wait(" "),dec cmu_y1,wait(" "),dec cmu_x2,wait(" "),dec cmu_y2,wait(" "),dec 
cmu_pix,wait(" "),dec cmu_yog] 
 
rref = 0 
lref = 0 
 
If cmu_mx <= 40 Then ' Fuzzy tablosu  Sol 
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l_cmu = ((40 - cmu_mx) * 100) / 40 
rref = rref + (20 * l_cmu) / 100 
End If 
 
If cmu_mx >= 40 Then ' Fuzzy tablosu  Sag 
r_cmu = ((cmu_mx - 40) * 100) / 40 
lref = lref + (20 * r_cmu) / 100 
End If 
 
If cmu_mx = 0 Then GoTo arama 
enson_gordugu = cmu_mx 
If hareketli_mi = 0 Then hareketli_mi = 1: rref = 0: lref = 0: GoTo send 
 
'CMU Fuzzy tablosu  Orta 
If cmu_mx >= 20 And cmu_mx <= 60 Then 
If cmu_mx < 40 Then 
m_cmu = ((cmu_mx - 20) * 100) / 20 
Else 
m_cmu = ((60 - cmu_mx) * 100) / 20 
End If 
rref = rref + (50 * m_cmu) / 100 
lref = lref + (40 * m_cmu) / 100 
End If 
 
'ultrasonik Fuzzy 
if sonuc[1]>sonuc[2] then 
fuzzy_ultra[0]=sonuc[1] 
Else 
fuzzy_ultra[0]=sonuc[2] 
End If 
 
if sonuc[3]>sonuc[4] then 
fuzzy_ultra[1]=sonuc[3] 
Else 
fuzzy_ultra[1]=sonuc[4] 
End If 
 
if sonuc[5]>sonuc[6] then 
fuzzy_ultra[2]=sonuc[5] 
Else 
fuzzy_ultra[2]=sonuc[6] 
End If 
 
 
For i = 0 To 2 
select case fuzzy_ultra[i] 
Case 2 
fuzzy_ultra [i] = 29 
Case 4 
fuzzy_ultra [i] = 57 
Case 6 
fuzzy_ultra [i] = 71 
Case 7 
fuzzy_ultra [i] = 100 
End Select 
Next 
 
'Ultrasonic karar tablosu 
if sonuc[1]+sonuc[2]>0 then rref = rref+(20*fuzzy_ultra[0])/100 
if sonuc[3]>2 and sonuc[4]>2 then rref=0:lref=0:goto send 
if sonuc[5]+sonuc[6]>0 then lref = lref+(20*fuzzy_ultra[2])/100 
 
If rref > 50 Or lref > 50 Then 'hızların 50 yi gecmemesi gerekli 
If lref > rref Then 
rref = rref - (lref - 50) 
lref = 50 
Else 
lref = lref - (rref - 50) 
rref = 50 
End If 
End If 
 
send: 
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serout PORTB.6,N9600,["L",lref,"R",rref] 
serout2 PORTb.3,16780,["$RF 
ULtra[",#sonuc[1],",",#sonuc[2],",",#sonuc[3],",",#sonuc[4],",",#sonuc[5],",",#sonuc[
6],"] CMU[",#cmu_mx,"] L",#lref," R",#rref," END",13,10] 
 
GoTo start 
 
arama: 
hareketli_mi = 0 
if sonuc[3]>2 and sonuc[4]>2 then rref=0:lref=0:goto send 
rref = 20: lref = 0 
If enson_gordugu > 40 Then: lref = 20: rref = 0 
 
GoTo send 
 
End 
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