

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

PC-BASED CONTROL OF HEXAPOD

by

Halil ŞAHBAZ

January, 2007

İZMİR

PC-BASED CONTROL OF HEXAPOD

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Mechanical Engineering, Machine Theory and Dynamics Program

by

Halil ŞAHBAZ

January, 2007

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “PC-BASED CONTROL OF HEXAPOD”

completed by HALİL ŞAHBAZ under supervision of PROF.DR. HİRA

KARAGÜLLE and we certify that in our opinion it is fully adequate, in scope and

in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Hira KARAGÜLLE

 Supervisor

 Assist.Prof.Dr. Zeki KIRAL Assist.Prof.Dr. Aysun BALTACI

(Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENT

I am greatly indebted to my thesis supervisor Prof. Dr. Hira KARAGÜLLE for

kindly providing guidance and interest throughout the development of this study.

I would like to thank to Research Assistant Levent MALGACA, Research

Assistant Hasan ÖZTÜRK, Instructor Kemal VAROL from the Machine Theory and

Dynamics Program and my colleague Burcu GÜNERİ, and my all friends, for their

all kind of supports during the period of my study.

This thesis is a part of a research project (TÜBİTAK, Project number:104M373).

Therefore, I would also like to thank to The Scientific & Technological Research

Council of Turkey (TÜBİTAK) for the support to the project.

This thesis is dedicated to my father, my mother and my sister. I would like to

thank them for their support, patience and sacrifice.

Halil ŞAHBAZ

iv

PC-BASED CONTROL OF HEXAPOD

ABSTRACT

In this study, the aim is to control an hexapod with PC-based control. In this

manner, a 6-DOF parallel manipulator known as hexapod used in the areas such as

precise manufacturing and medicine is examined. For the experimental study, an

hexapod is designed and manufactured. Simulations are done in VisualNASTRAN to

determine actuator lengths of the hexapod. Actuators of the hexapod are linear step

motors. In order to control the hexapod, an integrated VisualBASIC program which

uses VisualNASTRAN is developed. The program runs simulation, takes simulation

results as inputs and controls linear step motors via PC-based motion controllers.

Point-to-point open loop control is applied. Positions of the hexapod in consequence

of controlling are measured with a coordinate measuring machine (CMM) and results

are presented. Furthermore, for another experimental study, a servo motor

experimental rig is set with three AC servo motors which are actuators of a 3-DOF

serial manipulator on which the hexapod will be attached. Simulations are done in

VisualNASTRAN to determine actuator positions. VisualBASIC programs whose

inputs are simulation results are developed to control servo motors according to

different control methods and algorithms via PC-based motion control cards. Open

loop and closed loop path tracking control are applied. Results are presented. Motors

are successfully followed reference curves and give good responses regarding

proposed algorithms.

Keywords: Hexapod, micro-positioning, PC-based motion control, step motor

control, servo motor control.

v

HEGZAPODUN BİLGİSAYAR TABANLI KONTROLÜ

ÖZ

Bu çalışmada amaç bilgisayar tabanlı kontrol ile bir hegzapodu kontrol etmektir.

Bu bağlamda, hassas üretim ve tıp gibi alanlarda kullanılan hegzapod olarak bilinen

6 serbestlik dereceli bir paralel manipülatör incelenmiştir. Deneysel çalışma için, bir

hegzapod tasarlanmış ve imal edilmiştir. Hegzapodun tahrik elemanlarının

uzunluklarını belirlemek için VisualNASTRAN’da simülasyonlar yapılmıştır.

Hegzapodun tahrik elemanları adım motor sürücülü doğrusal motorlardır.

Hegzapodun kontrolü için VisualNASTRAN’ı kullanan bir entegre VisualBASIC

programı geliştirilmiştir. Program simülasyonu çalıştırır, simülasyon sonuçlarını

girdi olarak alır ve bilgisayar tabanlı hareket kontrol üniteleri aracılığıyla adım motor

sürücülü doğrusal motorları kontrol eder. Noktadan noktaya açık devre hareket

kontrolü uygulanmıştır. Hegzapodun kontrol sonucundaki konumları, bir koordinat

ölçüm makinesi ile ölçülmüş ve sonuçlar sunulmuştur. Ayrıca, diğer bir deneysel

çalışma için üzerine hegzapodun bağlanacağı bir 3 serbestlik dereceli seri

manipülatörün tahrik elemanları olan üç AC servo motor ile, bir servo motor deney

düzeneği kurulmuştur. Tahrik elemanlarının konumlarını belirlemek için

VisualNASTRAN’da simülasyonlar yapılmıştır. Servo motorların değişik kontrol

yöntemleri ve algoritmalara göre bilgisayar tabanlı hareket kontrol kartları üzerinden

kontrolü için, girdileri simülasyon sonuçları olan VisualBASIC programları

geliştirilmiştir. Açık devre ve kapalı devre yörünge izleme kontrolü uygulanmıştır.

Sonuçlar sunulmuştur. Motorlar önerilen algoritmalara göre hedef eğrileri başarıyla

takip etmiş ve iyi cevaplar vermişlerdir.

Anahtar sözcükler: Hegzapod, mikro-konumlandırma, bilgisayar tabanlı hareket

kontrolü, adım motor kontrolü, servo motor kontrolü.

vi

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE – INTRODUCTION .. 1

1.1 Robot Manipulators... 3

1.1.1 Parallel Manipulators... 3

1.1.2 Serial Manipulators.. 6

1.2 Controllers and Actuators.. 7

1.2.1 Controllers ... 7

1.2.2 Actuators.. 7

1.2.2.1 Linear Step Motors .. 8

1.2.2.2 AC Servo Motors ... 9

1.3 Literature Review.. 10

CHAPTER TWO – INITIAL DESIGN OF THE HEXAPOD 13

2.1 Introduction ... 13

2.2 Initial Design ... 13

2.3 Kinematic Analysis ... 14

2.4 Kinetic Analysis .. 15

CHAPTER THREE – SELECTION OF APPROPRIATE ACTUATORS AND

JOINTS ... 16

3.1 Introduction ... 16

3.2 Selecting Appropriate Linear Actuators.. 16

3.3 Selecting Appropriate Joints ... 18

vii

CHAPTER FOUR –

DESIGN AND MANUFACTURING OF THE HEXAPOD 21

4.1 Introduction ... 21

4.2 Design of the Hexapod .. 22

4.2.1 Generating 2D and 3D Drawings of Parts ... 22

4.2.2 Testing the Hexapod with VisualNASTRAN ... 23

4.3 Manufacturing of the Hexapod.. 27

4.4 Hexapod Control System... 29

CHAPTER FIVE – SIMULATION AND CONTROLLING OF THE

HEXAPOD.. 35

5.1 Introduction ... 35

5.2 Simulation and Controlling of the Hexapod.. 36

5.2.1 A Developed VisualBASIC Program for Simulation and Control.......... 36

5.2.2 Simulation and Inverse Kinematic Analysis of the Hexapod.................. 38

5.2.3 Controlling of the Hexapod ... 40

CHAPTER SIX – TEST RESULTS OF THE HEXAPOD 42

6.1 Introduction ... 42

6.2 Tests and Results ... 42

CHAPTER SEVEN–CONTROLLING OF AC SERVO MOTOR SYSTEMS . 56

7.1 Introduction ... 56

7.2 Design and Inverse Kinematic Analyses of a 3-DOF Serial Manipulator 56

7.3 AC Servo Motor Experimental Rig... 58

7.3.1 The Experimental Rig.. 58

7.3.2 Connections of Servo Motors and Drivers .. 60

7.3.3 Adjusting Servo Motor Parameters ... 63

7.4 Controlling of AC Servo Motors... 65

7.5 Results of the Controlling Servo Motor Systems.. 78

viii

CHAPTER EIGTH – CONCLUSIONS... 80

REFERENCES... 82

APPENDIX A – PROPERTIES OF ADLINK PCI 8132 AND PCI 8164

MOTION CONTROL CARDS... 88

A.1 Features of PCI 8132 and PCI 8164 ... 88

A.2 Fundamental Commands of PCI 8132 and PCI 8164 90

APPENDIX B – ACCELERATION – DECELERATION SINUSOID.............. 91

B.1 Definition of the Acceleration – Deceleration Sinusoid................................. 91

B.2 Creating Samples of the Sinusoid by VisualBASIC....................................... 91

APPENDIX C– 2D MANUFACTURING DRAWINGS OF THE HEXAPOD . 93

APPENDIX D – VISUALBASIC PROGRAM FOR SIMULATION AND

CONTROLLING OF THE HEXAPOD .. 101

APPENDIX E – VISUALBASIC PROGRAM FOR CONTROLLING OF

SERVO MOTOR SYSTEMS.. 113

CHAPTER ONE

INTRODUCTION

Controlling of robot manipulators in micron ranges is an important issue of

developing technology. Micro-positioning robots have a wide variety of applications

from surgery robots to space shuttles. These robots can precisely follow a path

described with respect to the work. Working with more precise motions and making

more precise machines decrease errors which might come into existence because of

effects of standard machines and workers. By more precise manufacturing machines,

dimensions of manufactured parts become more accurate. Machines which made by

more accurate parts work with less errors. Thus, machines make much more accurate

and reliable products. Parallel manipulators are used for micro-positioning. Best-

known type of parallel manipulators is hexapod. Hexapods are suitable for micro-

positioning, because hexapods have 6 degrees of freedom.

In this thesis, PC-based control of a 6-DOF parallel manipulator namely hexapod

is comprised. In this manner, hexapod for micro-positioning and controlling of

actuators of a serial manipulator on which the parallel manipulator will be attached at

future works are considered. Actuators of the hexapod and the serial manipulator are

linear step motors and brushless AC servo motors, respectively. These actuators are

controlled by PC-based motion control cards. Point-to-point open loop control is

applied to linear step motors, so to hexapod; and open loop and closed loop control is

applied to servo motors for path following.

In chapter one, there is introductory knowledge about the thesis. In the second

chapter, in order to determine minimum requirements of actuators and joints of

hexapod, an initial design is considered. In the third chapter, supplied actuators and

joints are presented. In the fourth chapter, the hexapod is designed and manufactured.

And control system of the hexapod is created. In the fifth chapter, the hexapod is

simulated according to manufactured hexapod and controlled with respect to

simulation results with developed programs. In the following chapter, positions of

the hexapod are measured and the results are presented. In the seventh chapter, an

 1

 2

experimental rig is set with actuators of the designed serial 3-DOF manipulator;

different control algorithms are examined with developed programs. It is tried to find

which control algorithm and gain coefficients are appropriate for the system.

Simulations are done with VisualNASTRAN (MSC Software Corp., 2006). In

order for programming, VisualBASIC (MSDN, 2006) is used. 3D solid modelling

and 2D manufacturing drawings are accomplished by I-Deas and SolidWorks

(SolidWorks Corp., 2006) solid modelling programs. 3D models of designed serial

manipulator are created with ABAQUS (Abaqus Inc., 2006) analysis program. An

integrated analysis is performed.

This thesis is a part of a research project (TUBITAK, Project number:104M373).

Some sections of the thesis are created by taking consideration of the project reports

of Karagülle, H., Sarıgül, S., Kıral, Z., Varol, K., & Malgaca, L. (01 July 2006, 01

July 2007). The flow chart of the integrated analysis can be seen in Figure 1.1.

Researches of the project is followed the flow chart.

Integrated Analysis for Design of Mechatronic Systems

Work

Design (Solid modelling, assembly)

Figure 1.1 The flow chart of the integrated analysis.

Kinetic analysis (Rigid body dynamics)

Kinematic analysis

Static deformations, vibration, fatigue
(with finite element) analyses

Selections of actuation and
measurement systems, control design

and analyses

Evaluation /
Optimisation

Manufacturing

 3

This thesis particularly contains “selection of actuation and measurement systems,

control design and analyses” part of the flow chart (Fig. 1.1).

Because of examining robot manipulators with PC-based motion control, the

explanations about them will be useful.

1.1 Robot Manipulators

Robots are used in many varied applications, from welding to surgery. A machine

has to be able to do followings for being a robot: getting information from

surroundings; doing something physical, such as moving or manipulating objects;

reprogrammable, it can do different things; function autonomously and / or interact

with human beings. Robot name comes from a play whose name is Rossum’s

Universal Robots of Czech writer Karel Capek, published in 1921 (McKerrow,

1991). Robotic Institute of America defines a robot as: “A robot is a re-

programmable multi-functional manipulator designed to move material, parts, tools,

or specialized devices, through variable programmed motions for the performance of

a variety of tasks.” (Tsai, 1999).

Robot manipulators are divided into parallel robot manipulators and serial robot

manipulators with respect to their kinematic chains. If manipulators having an open

kinematic chain structure, are called serial manipulators; having a closed kinematic

chain, are called parallel manipulators.

1.1.1 Parallel Manipulators

A parallel manipulator is a closed chain mechanism which has two platforms

(base and moving platform) connected together by at least two independent

kinematic chains. Moving platform is connected to the fixed base by several limbs or

legs. Typically the number of limbs is equal to the number of degrees of freedom

 4

such that every limb is controlled by one actuator and all the actuators can be

mounted at or near the fixed base (Tsai, 1999).

The parallel manipulators have some advantages such as higher stiffness and

greater load-to-weight ratio because each actuated leg has to carry only a part of

payload. This is quite energy efficient and the robot can handle heavy loads. In

situations, where the accuracy, high speed and stiffness are more important than

workspace, parallel manipulators can be alternative to serial ones whereas reduced

workspace, difficult mechanical design, more complex direct kinematics and

complex control algorithms are the main disadvantages of them.

Parallel manipulators came into existence when Gough & Whitenhall (1962)

devised a six-linear jack system as a universal tire-testing machine. Stewart (1965)

designed an aircraft simulator with a platform and six actuators. Thus, 6-DOF

parallel manipulators namely hexapods, are also known as Stewart – Gough

platforms. A schematic view of an hexapod is given in Figure 1.2.

Figure 1.2 A schematic view of an hexapod.

 5

A hexapod producer company called PI (Physik Instrumente Co., 2006) is

announces advantages of hexapods as:

• Lower inertia,

• Better dynamic behaviour,

• Smaller package size,

• Higher stiffness,

• No accumulation of position errors,

• Reduced run out errors,

• No moving cables: better repeatability and reliability.

Application areas of hexapods are presented from PI Company (Physik

Instrumente Co., 2006) as following:

• Alignment and tracking of optics, electron beams, lasers, etc.,

• Satellite testing equipment,

• Surgical robots,

• Micromachining,

• Micromanipulation (life sciences),

• X-ray diffraction measurements,

• Semiconductor handling systems,

• Tool control for precision machining and manufacturing,

• Fine positioning of active secondary mirror platforms in astronomical

telescopes.

In Figure 1.3, hexapods in surgical applications can be found.

 6

Figure 1.3 Hexapods in surgical applications.

1.1.2 Serial Manipulators

Serial manipulators are used to be the most common type of robot manipulators.

They have open kinematic chain and serially connected links. This type of

manipulators has the advantages of to be able to achieve high velocities and

accelerations because the end-effector moves generally faster than the actuated links

and their workspaces are relatively high. They have also larger workspace than

parallel manipulators. Serial manipulators do not have energy efficiency because all

actuators have to actuate other links and actuators through the end point. A serial

type robot manipulator is presented in Figure 1.4.

Figure 1.4 A serial manipulator (Puma type)

 7

1.2 Controllers and Actuators

1.2.1 Controllers

Motors can be controlled by PC-based, stand-alone or hybrid systems. A hybrid

system is a sum of PC-based and stand-alone units. In this thesis, motors are

controlled by ADLINK PCI 8132 and PCI 8164 motion control cards (Adlink Inc.,

2006) as PC-based motion control. Comprehensive knowledge about PCI 8132 and

PCI 8164 motion control card can be found in Appendix A.

PC-based systems require a PC to run all time when the process is running. Stand-

alone units do not require a PC to run. However, they might use a PC for

programming. Hybrid units contain a PC and a stand-alone unit. Hybrid units run

without PCs but use PCs to add more functions. A comparison table is complied in

Table 1.1 (Custom Solutions Inc., 2006).

Table 1.1 Comparison of PC-based, stand-alone and hybrid systems.

 PC-based Stand-alone Hybrid

Reliability
Low
(Because of PC and
software failures)

High
(Because they do not
require PCs)

The same as stand-alone
units

Cost Low High Highest

Power
consumption

High
(Because of PCs) Low

Higher
(Because they are a sum
of two other systems)

Equipment size High Low Highest

Noise High
(Because of PCs) Low The same as stand-alone

units.

1.2.2 Actuators

In this study, electrical motors such as linear step motors for actuation of the

hexapod and AC servo motors for actuation of the serial manipulator are controlled.

 8

An electrical motor is a machine which converts electric energy into mechanical

energy. When an electric current is passed through a wire loop which is in a

magnetic field, the loop will rotate and the rotating motion is transmitted to a shaft,

providing useful mechanical work. A traditional electric motor consists of a

conducting loop that is mounted on a rotational shaft. The electrical current fed in by

carbon blocks called brushes and enters the loop through two slip rings. The

magnetic field around the loop supplied by an iron core field magnet causes the loop

to turn when current is flowing through it.

1.2.2.1 Linear Step Motors

Step motors are driven by a train of electrical pulses. Pulse train results rotational

speed. The stator is wound as two separate coils, which produce magnetic fields

offset angularly by half a rotor pole. These coils are pulsed alternately to produce a

rotating magnetic field. The rotor which is polarized with alternating north and south

poles aligns itself with this field, and rotates with it. Each pulse turns the rotor

through a fixed angle (one step) and consequently, angular position change is

proportional to the number of pulses. Accurate open loop control of the rotational

velocity is achieved by controlling the pulse rate. Step motor can slip during rapid

acceleration of high inertia loads, thus, for accurate open loop control, the pulse

frequency has to be varied during times of acceleration. Feedback control is used

with step motors in situations where accuracy is required (McKerrow, 1991).

Advantages of step motors are as the followings (Baldor Co., 2006):

• Step motors can be simply controlled,

• Step motors have good results at constant loads,

• Step motors have good results at positional accuracy,

• Costs of step motors are low.

 9

Disadvantages of step motors are as the followings (Baldor Co., 2006):

• Step motors can lose steps,

• Step motors are not good at varying loads,

• Step motors have energy inefficiency,

• Step motors can have resonance problems,

• Step motors have large motor sizes.

Linear step motors change motion of output shafts from rotational motion to linear

motion, due to a spindle-nut mechanism. Thus, rotational motion is changed to linear

motion, basically. Linear motors are more useful than hydraulic-pneumatic systems

which require pumps and compressors and conditioning the air. Because linear

motors are driven by electricity; linear motors provide direct linear motion without

the potential complications associated with pneumatic and hydraulic systems,

without mechanical linkages such as ball screws or rack-and-pinion systems and

without noise, oil and large working environments.

1.2.2.2 AC Servo Motors

This kind of motor works with the electrical current flow in the laminate core

loop. The speed of AC induction motors is set roughly by the motor construction and

the frequency of the current. In order to control the motor speed, it is necessary to

use a mechanical transmission. The rotor circuit can be connected to various external

control circuits to obtain greater flexibility. In recent years the AC servo has taken

over from the DC servo as the standard drive. These modern motors give higher

power output and are almost silent in operation. As they have no brushes, they are

very reliable and require almost no maintenance in operation.

AC servo motors divided into synchronous and asynchronous (induction) motor.

A synchronous motor is basically the same as an asynchronous motor. However it is

slightly different from rotor construction. The rotor construction enables a

 10

synchronous motor to rotate at the same speed (in synchronisation) as the stator field.

(Yaskawa, 2002).

Advantages of servo motors are (Baldor Co., 2006):

• Servo motors have high performance,

• Servo motors have high speeds available with specialized controls,

• Servo motors have wide variety of components,

• Small size.

Disadvantages of servo motors are (Baldor Co., 2006):

• High performances of servo motors are limited by controls and controllers,

• High speed torque of servo motors are limited by commutator or electronics,

• Servo motors have higher costs compared to step motors.

1.3 Literature Review

6-DOF parallel manipulators were firstly used by Gough & Whitehall (1962) as a

tire-testing machine. The testing machine was consisted of a six-linear jack system.

Stewart (1965) designed a 6-DOF parallel manipulator for the usage of flight

simulator. A systematic study of kinematic structures of parallel manipulators was

made by Hunt (1983). Since then, parallel manipulators have been taking interests of

researchers.

Wendlandt & Sastry (1994) examined a Stewart platform for endoscopy in order

to design and control. The researchers aimed the platform to follow a circled path.

McInroy (1999) investigated controlling of hexapods by dynamic modelling. Base

accelerations were included and the model was experimentally verified. A

comprehensive literature review study was made by Dasgupta & Mruthyunjaya

(2000). The study contained all topics about hexapods and researches related to these

 11

topics made until the publication year. An important study about parallel

manipulators was the investigating new kinematic structures for parallel

manipulators (Gao, Li, Zhao, Jin & Zhao, 2002). In that study, researchers developed

new types of composite links. Joint types related to degree of freedom were

presented. Alizade & Bayram (2004) classified parallel manipulators according to

their platform types and connections between them. In another study, active vibration

control of an hexapod was achieved with sensitivity weightened linear quadratic

Gaussian (SWLQG) controller (Hauge & Campbell, 2004). Inverse kinematics,

forward kinematics, error analysis and workspace evaluation were examined in the

paper of Jelenkovic, Jakobovic & Budin (2004). Drive singularities of parallel

manipulators were investigated by Ider (2005). Kim, Cho & Lee successfully

controlled a 6-DOF parallel manipulator, namely hexapod, with respect to robust

nonlinear control. The researchers considered friction of each actuator because

friction may degrade control performance. In this manner, in order to determine

friction values, a friction estimator was used.

There are many researches about controlling of servo motors and step motors.

Van de Straete, Degezelle, De Schutter & Belmans (1998) have investigated servo

motor selection criterions for mechatronic applications. Servo motors were modelled

and simulated by using their mechanical and electrical properties in the paper of

Dulger, Kirecci, & Topalbekiroglu (2001). By fuzzy logic control, an ultrasonic

motor (Bal, Bekiroglu, Demirbas, & Colak, 2004) and a DC servo motor

(Khongkoom, Kanchanathep, Nopnakeepong, Tamthong, Tunyasrirut, & Kagawa,

2000), (Lin, 1994) and (Lu, 1997) were controlled. Dandil, Gokbulut, & Ata (2004)

and Lin & Wai (1998) investigated, respectively, asynchronous motors and

synchronous motors with hybrid controllers which were adjusted by proportional-

integral (PI) controllers via neural networks. Servo motors were controlled by

various type control methods such as H∞ robust control (Ximei & Qingding, 2005),

adaptive fuzzy sliding-mode (Lin & Chiu, 1998), variable structure approach

(Hashimoto, Yamamoto, Yanagisawa, & Harashima, 1988), micro-processor based

robust control (Tzou & Wu, 1990) and learning approach (Han, Kim, Ha, Lee, &

Park, 1995). Lin, Jan, Hwang, & Tsai (2003) studied kinematic analyses of hexapods

 12

and controlling of AC servo motors which were used as actuators of hexapods in

their study. Controlling of AC servo motors were achieved by using an estimator

which estimated the rotor position as feedback (Yoneya, Yoshimaru, & Togari,

2000). Comparison of different servo motor drivers can be found in the study of

Yamamoto & Shinohara (1996). Grimbleby (1995) and Crnosija, Adjukovic, &

Kuzmanovic (1999) made studies on closed loop control algorithms of step motors

and controlled step motors by using these algorithms. Mort, Abbod, & Linkens

(1995) compared step motors which controlled by open loop control with

proportional-integral (PI) controllers, and DC servo motors which controlled by

closed loop fuzzy logic control. These two types of motors and methods gave good

responses.

Studies about PC-based control systems are as followings: Path tracking of a 3-

DOF CNC machine with circular and linear interpolation was examined; and

tracking error was desired to decrease to minimum (Yang, & Hong, 2001). Ku,

Larsen, & Cetinkunt (1998) used PC-based motion control cards for nano-positioning

diamond machining tools. They also controlled the system by neural network.

Noorani (1990) dealt with controlling of a 6-DOF robot manipulator actuated by step

motors by giving position and orientation inputs via a computer.

 13

CHAPTER TWO

INITIAL DESIGN OF THE HEXAPOD

2.1 Introduction

There are a lot of different structures of hexapods. After reviewing the literature,

some different structures were created manually in VisualNASTRAN, to examine

which type is optimal with respect to joint positions. In this chapter, different joint

positions are tried and kinematic and kinetic analyses are performed in

VisualNASTRAN.

2.2 Initial Design

In order to test different joint positions and to find characteristics of actuators and

joints, a basic model is created (Karagülle et al., 2006). The model is shown in

Figure 2.1.

Figure 2.1 Basic model of hexapod

14

The basic model consists of a movable upper platform, a fixed lower platform and

linear actuators. There are coordinates on the joint nodes on the platforms.

Coordinates are assigned due to joint positions and linear actuators are created as

constraints between coordinates on the upper platform and coordinates on the lower

platform.

A world coordinate system is placed into the centre of lower platform of hexapod.

For the design in Figure 2.1, diameter of the lower platform is 250 mm, diameter of

the upper platform is 348 mm. Joints on the lower platform are placed 17.5 mm

above with respect to world coordinate system and on a circle whose diameter is 200

mm; and the angle between closest joints is 20 degrees. Joints on the upper platform

are placed 7.5 mm below of the centre of upper platform in the z direction and on a

circle whose diameter is 298 mm; and the angle between joints is 60 degrees.

2.3 Kinematic Analysis

A VisualBASIC program is developed to create “prescribed motion”. Vx, Vy, Vz,

Wx, Wy, and Wz values are assigned as prescribed motion. These are created with the

VisualBASIC program with respect to a velocity sinusoid given in Appendix B

(Karagülle et al., 2006). Inputs of the program are:

tp = 3: t1 = 0.2 * tp: n = 21

xa = 0: ya = 0: za = 0.23: thxa = 0: thya = 0: thza = 0

xb = 0: yb = 0.03: zb = 0.2: thxb = 10: thyb = 0: thzb = 0

Where, tp (s) is the period of motion, t1 (s) is acceleration and deceleration time, n

is number of samples, xa, ya, za, thxa, thya, thza are components of the initial position

and xb, yb, zb, thxb, thyb, thzb are components of the final position of the centre of the

upper platform. Units of distances and rotations are meters and degrees, respectively.

It is desired the upper platform to move (0, 0, 0.23; 0, 0, 0) world coordinate point

to (0, 0.03, 0.2; 10, 0, 0) world coordinate point in 3 seconds. 0.6 seconds is

15

acceleration time and 0.6 seconds is deceleration time and 1.8 seconds is constant

velocity motion time (Karagülle et al., 2006).

After inserting prescribed motion components into the program, forces of the

actuators are selected as zero. Thus, the upper platform moves only with velocity

inputs. Meters are assigned to linear actuators to measure actuator lengths. Meters

give lengths of actuators while the program is running. Meter values are saved for

kinetic analysis in a file. Data of meters from this file can be taken by a

VisualBASIC program. By comparing the values, maximum actuator length change

is found as 47.58 mm.

2.4 Kinetic Analysis

In the kinetic analysis, “prescribed motion” option of the upper platform is

disabled in VisualNASTRAN. Actuator lengths are assigned with values which have

been saved after kinematic analysis. Fx = -10 N, Fy = -10 N, Fz = -100 N force inputs,

and Tx = 1 Nm, Ty = -1 Nm, Tz = 0 Nm torque inputs are applied to the centre of the

upper platform. Duration of the motion is taken 3 s and number of samples is 21

likewise the kinematic analysis. Constraint tension meters are created on the linear

actuator constraints to measure actuator forces. Meters read the forces which

occurred when the motion progresses. After the motion is stopped, maximum

actuator force is found as 54.563 N with a subroutine of the VisualBASIC project

which is developed (Karagülle et al., 2006).

Minimum requirements of linear motors and spherical joints are determined.

According to results of the initial design, linear actuators have to have minimum

47.58 mm stroke and minimum 54.563 N force requirements. Spherical joints must

have big tilt angle and high precision. These results are used while searching

appropriate linear motors and joints.

 16

CHAPTER THREE

SELECTION OF APPROPRIATE ACTUATORS AND JOINTS

3.1 Introduction

Choosing appropriate actuators and joints is an important part of creating an

hexapod; because, active parts of an hexapod are linear motors and joints. Other parts

are rigidly connected. In this chapter, choosing procedure of actuators and joints and

properties of them are presented.

3.2 Selecting Appropriate Linear Actuators

Linear motors and joints were searched over the world and correspondences were

made with companies which have web sites. Products were compared in terms of

minimum stroke and minimum force requirements found from kinematic and kinetic

analyses of the initial design (see Chapter 2). The values are 47.58 mm for minimum

stroke and 54.563 N for minimum force requirements of linear actuators. They were

also compared in terms of containing feedback devices, dimensions, precisions,

velocities, weights, costs and delivery times. Suitable linear motors of companies

which reply inquiries are presented Table 3.1.

After the comparing process, 4000 pulses/rev precision encoders attached 43K4U

– 05 – 032ENG type linear motors of HSI Company (HSI Co., 2006) are supplied.

One of the linear motors is shown in Figure 3.1. Technical properties of them are

given in Table 3.2. The dimensions of the motors are presented in Figure 3.2 and

additional knowledge about dimensions is given in Table 3.3. In addition, linear

motors of PI Company (PI Co., 2006) might be also a good decision for future

works.

17

Table 3.1 Linear motor companies and suitable linear motors.

 Stroke

(mm)

Force

(N)

Precision

(μm)

Velocity

(mm/s)

Dimension

(mm)

Weight

(g)

Type Cost

(USD)

PI 50 60 0.5 40 27 x 196 650 DC servo 2900

Ultra

Motion
50.8 335 10 80 42x42x135 -

Stepper

motor
730

Oriental 40 100 5 30 42x42x180 800
Stepper

motor
1500

HSI 50.8 220 1.5 76 43x43x162 241
Stepper

motor
120

Intelidrives - 90 12 - - -
3 phase

brushless

1700-

2000

Linmot 100 122 100 4000 227+
740+

460
AC servo -

Iai 50 78.4 20 165 42x47x243 600 AC servo -

Servoram 54 105 - 1370 84x84x182 7000 Servoram 5244

Figure 3.1 43K4U – 05 – 032ENG type linear motor of HSI Company.

Table 3.2 Technical properties of 43K4U – 05 – 032ENG type linear motor.

Connection

type

Operating

voltage

(VDC)

Power

(W)

Step angle

(deg)

Precision

(μm)

Stroke

(mm)

Force

(N)

Velocity

(mm/s)

Bipolar 5 7 0.9 1.5 50.8 220 76

Encoder

Motor shaft

External stop

18

Figure 3.2 Dimensions of 43K4U – 05 – 032ENG type linear motor of HSI Company.

Table 3.3 Additional dimensions of 43K4U – 05 – 032ENG type linear motor of HSI Company.

Stroke

Inch (mm)

Dimension “A”

Inch (mm)

Dimension “B”

Inch (mm)

2.00 (50.8) 2.28 (57.9) 1.66 (42.2)

3.3 Selecting Appropriate Joints

As a result of comparing spherical joints which are determined by searching the

joint suppliers all over the world, twelve items of SRJ008C type 2.5 μm precision

spherical joints, shown in Figure 3.3, of Hephaist Company (Hephaist Co., 2006) are

supplied. Technical properties and dimensions are given in Table 3.4.

For investigating effects of different joint types over the precision at future works,

twelve items of SSF.00.06 type spherical joints, shown in Figure 3.4, of Schaublin

Company (Schaublin SA Co., 2004) from RS Company (RS Co., 2006) and six items

of U5-13 161 type universal joints, shown in Figure 3.5, of Lenze Company (Lenze

Co., 2006) are provided. Technical properties of the spherical joints and the universal

joints are presented in Table 3.5 and Table 3.6, respectively.

19

Figure 3.3 SRJ008C type spherical joint of Hephaist Company.

Table 3.4 Technical properties and dimensions of SRJ008C type spherical joint of Hephaist Company.

A B C D E F G H K M N
Force

(N)

Weight

(kg)

30 24 7 4 16 12 M5×0.5 5.5 3.4 11 2 540 0.06

Figure 3.4 SSF.00.06 type spherical joint.

Table 3.5 Properties of SSF.00.06 type spherical joint.

Dimensions (mm) Static force (N)

b D H O W Radial Axial

6 18 6.75 8.96 9 980 240

20

Figure 3.5 U5-13 161 type universal joint.

Table 3.6 Properties of U5-13 161 type universal joint.

Nominal Torque (Nm)

(200 rev/min, for 10° max.)

d

(mm)

D

(mm)

C

(mm)

L1

(mm)

L2

(mm)

Weight

(kg)

22 10 22 12 24 48 0.10

 21

CHAPTER FOUR

DESIGN AND MANUFACTURING OF THE HEXAPOD

4.1 Introduction

Parts of the hexapod except from standard parts such as actuators and spherical

joints are designed and manufactured. In this chapter, design and manufacturing of

parts of the hexapod are presented. Control and driver systems of the hexapod are

also set; and these systems are carried out. Simulation view of the hexapod is shown

in Figure 4.1. Manufactured hexapod is given in Figure 4.2.

Figure 4.1 Simulation view of the hexapod.

22

Figure 4.2 Manufactured hexapod.

4.2 Design of the Hexapod

4.2.1 Generating 2D and 3D Drawings of Parts

Parts of the hexapod except from standard parts such as linear actuators and

spherical joints are designed. Linear motor and spherical joint dimensions which are

in Chapter 3 are taken as the base for design. Design of the parts is done with I-Deas

solid modelling program. The parts are saved in “iges” format. Modifications of the

parts are made with SolidWorks solid modelling program, if needed. Solid models of

standard parts are also created for simulation (Karagülle et al., 2007).

Firstly, 3D solid models of all parts including linear motors and spherical joints

are created. These parts are saved into “igs” extended files (Karagülle et al., 2007).

Then “iges” files are imported manually into VisualNASTRAN to test joint locations

on the upper and lower platforms. The model is constructed manually in the program

(Fig. 4.1). Joint locations on the upper platform are not changed. However, joint

locations on the lower platform are changed until the parts are not collided in the

simulation when the hexapod goes to its limit points. The angle between closest joint

locations on the lower platform is designated. After that, details of the platforms are

determined. Thus, the parts are designed and 3D models of the parts are created.

23

2D manufacturing drawings are generated from the 3D solid parts in I-Deas.

These drawings are presented in Appendix C (Karagülle et al., 2007).

4.2.2 Testing the Hexapod with VisualNASTRAN

“iges” formatted files of all parts which have been created of the hexapod are

imported into the program. The parts are renamed. The original names and the

VisualNASTRAN names of parts are in Table 4.1.

Table 4.1 Original names and VisualNASTRAN names of the parts.

Original names VisualNASTRAN names

Lower platform pa

Base of spherical joint on the lower platform sa

Shaft of spherical joint on the lower platform lsa

Lower connection part lca

Base of linear motor lma

Encoder lea

Upper connection part lda

Stud bolt sp

Shaft of linear motor lmb

Joint connection part lcb

Shaft of spherical joints on the upper platform lsb

Base of spherical joints on the upper platform sb

Upper platform pb

Coordinates which will connect parts to each other are located onto the parts.

Coordinate locations with respect to body coordinates of each body are given in

Table 4.2. In the table, rj notation is used for rigid joint, sj notation is used for

spherical joint and lm notation is used for linear motor. Coordinates on the lower

platform are changed regarding the angle between closest joints. This angle (φb) is

changed 20 deg. to 30 deg., to test colliding of parts if occurs. Coordinates of “pa”

and “pb” is created by a developed Matlab program which is below:

24

% b means base platform, p means upper platform
clc, clear

Db = 348; Dp = 250; Rt = 25;

Rb = (Db-2*Rt)/2; Rp = (Dp-2*Rt)/2;

fib = 30*pi/180; fip = 60*pi/180; % joint angles

b1x = Rb*cos(fib/2); b1y = Rb*sin(fib/2);

b2x = Rb*cos(120*pi/180-fib/2); b2y = Rb*sin(120*pi/180-fib/2);

b3x = Rb*cos(120*pi/180+fib/2); b3y = Rb*sin(120*pi/180+fib/2);

b4x = Rb*cos(240*pi/180-fib/2); b4y = Rb*sin(240*pi/180-fib/2);

b5x = Rb*cos(240*pi/180+fib/2); b5y = Rb*sin(240*pi/180+fib/2);

b6x = Rb*cos(-fib/2); b6y = Rb*sin(-fib/2);

p1x = Rb*cos(fip/2); p1y = Rb*sin(fip/2);

p2x = Rb*cos(120*pi/180-fip/2) ; p2y = Rb*sin(120*pi/180-fip/2);

p3x = Rb*cos(120*pi/180+fip/2) ; p3y = Rb*sin(120*pi/180+fip/2);

 p4x = Rb*cos(240*pi/180-fip/2); p4y = Rb*sin(240*pi/180-fip/2);

p5x = Rb*cos(240*pi/180+fip/2) ; p5y = Rb*sin(240*pi/180+fip/2);

 p6x = Rb*cos(-fip/2); p6y = Rb*sin(-fip/2);

Parts are connected after coordinate settling (Table 4.2). The table is arranged

according to the order of connections of assembly. Firstly lower platform is fixed to

the ground and upper platform is located on (0, 0, 0.4) point (z = 400mm) with

respect to world coordinates. Bases of spherical joints (1 to 6) are rigidly connected

on the lower platform with respect to Table 4.2. Then parts named lsa, lca, lma and

lea, lda and sp are rigidly connected, respectively; and five copies are created. After

that lmb, lcb and lsb are rigidly connected, respectively; and five copies are created.

Bases of other spherical joints (1 to 6) are rigidly connected on the upper platform

with respect to Table 4.2. This step is demonstrated in Figure 4.3.

Connecting bodies are generated between the centres of the spherical joints on

lower platform e.g. sa1-s1 and the centres of spherical joints on the upper platform

e.g. sb1-s1. Thus, orientations of axes are found. The orientations, for φb = 30 deg,

are in Table 4.3. These values are written into the orientations properties boxes of the

25

bodies of six linear motors (lma) and six shafts of linear motors (lmb). Thus axes

orientations are done.

Table 4.2 Coordinate locations of the hexapod for one axis and for φb = 30 deg.

Part Coordinate X1) Y1) Z1) Rx1) Ry1) Rz1)
Pa-fix 0 0 0 0 0 0
Pa-j1 143.922948 38.564037 5.5-1=4.5 0 0 0
Pa-j2 -38.564037 143.922948 5.5-1=4.5 0 0 0
Pa-j3 -105.358910 105.358910 5.5-1=4.5 0 0 0
Pa-j4 -105.358910 -105.358910 5.5-1=4.5 0 0 0
Pa-j5 -38.564037 -143.922948 5.5-1=4.5 0 0 0

Pa

Pa-j6 143.922948 -38.564037 5.5-1=4.5 0 0 0
Sa1-j1 0 0 0 0 0 0 Sa
Sa1-s1 0 0 7 0 0 0
Lsa1-s1 0 0 28 0 180 0 Lsa
Lsa1-c0 0 0 8 0 180 0
Lca1-c0 0 0 40 0 180 0
Lca1-c11a 21.566 -21.566 0 0 180 0
Lca1-c12a 21.566 21.566 0 0 180 0
Lca1-c13a -21.566 21.566 0 0 180 0

Lca

Lca1-c14a -21.566 -21.566 0 0 180 0
Sp1-c11a 0 0 27 0 0 0
Sp1-c11b 0 0 -27 0 0 0
Sp1-c12a 0 0 27 0 0 0
Sp1-c12b 0 0 -27 0 0 0
Sp1-c13a 0 0 27 0 0 0
Sp1-c13b 0 0 -27 0 0 0
Sp1-c14a 0 0 27 0 0 0

Sp (4 copies)

Sp1-c14b 0 0 -27 0 0 0
Lma1-c1 0 0 33.2 0 0 0
Lma1-c2 0 0 0 0 0 0

Lma

Lma1-l1 0 0 -56.9 0 0 0
Lea Lea1-c1 0 0 0 0 0 0

Lda1-c2 0 0 0 0 0 0
Lda1-c11b 21.566 -21.566 0 0 0 0
Lda1-c12b 21.566 21.566 0 0 0 0
Lda1-c13b -21.566 21.566 0 0 0 0

Lda

Lda1-c14b -21.566 -21.566 0 0 0 0
Lmb1-l1 0 0 133.9 0 0 0 Lmb
Lmb1-c1 0 0 142.9932 0 0 0
Lcb1-c1 0 0 2.3 0 0 0 Lcb
Lcb1-c2 0 0 22 0 0 0
Lsb1-c2 0 0 26 0 180 0 Lsb
Lsb1-s1 0 0 6 0 180 0
Sb1-s1 0 0 7 0 180 0 Sb
Sb1-j1 0 0 0 0 180 0
Pb-j1 129.037785 74.5 -5+1=-4.5 0 0 0
Pb-j2 0 149 -5+1=-4.5 0 0 0
Pb-j3 -129.037785 74.5 -5+1=-4.5 0 0 0
Pb-j4 -129.037785 -74.5 -5+1=-4.5 0 0 0
Pb-j5 0 -149 -5+1=-4.5 0 0 0

Pb

Pb-j6 129.037785 -74.5 -5+1=-4.5 0 0 0
1) Dimensions: X, Y and Z are mm; Rx, Ry and Rz are degree.

26

Figure 4.3 Connections of parts.

Table 4.3 Orientations of the axes for φb = 30 deg.

Axis Rx1) Ry1) Rz1)
1 -5.27128754 -2.17930829 22.3996672
2 -0.746796351 5.65389711 -82.4631226
3 4.52990963 -3.46806031 142.637208
4 -4.52990963 -3.46806031 37.3627917
5 0.746796351 5.65389711 -97.5368774
6 5.27128754 -2.17930829 157.600333

1) Dimensions: Rx, Ry and Rz are degree.

Bases of spherical joints (sai-s1 and sbi-s1) and shafts of spherical joints (lsai-s1

and lsbi-s1) are connected with spherical joint constraints. Then, rigid joint on slot

constraints are defined between lmai-l1 and lmbi-l1. Due to this constraint, the

movements of axes will be inside of the axes orientations. After that linear motor

constraints are created between lmai-l1 and lmbi-l1. Where, i = 1, 2, …, 6 as numbers

of axes.

Due to the upper platform is located on (0, 0, 0.4) point (z = 400 mm), the linear

motors are not closed. In order to close them, linear motors are selected. Properties

27

window is clicked in VisualNASTRAN. On the configuration window, point-to-point

constraint option is disabled. After that, z input box is checked. Lengths of linear

motors can be controlled by writing the desired value in the z input box. If z = 0 is

written, then linear motors are fully closed. After writing desired value which

describes lengths of linear motors, the point-to-point constraint option is enabled

again. Thus, simulation of the hexapod is manually prepared by VisualNASTRAN.

In order to test colliding; φb is changed 20 deg to 30 deg. Hexapod is moved to

end points and parts are observed. It is observed that no risk is occurred when φb =

30 deg. Therefore, the angle between closest joints on lower platform (φb) is decided

as 30 deg.

4.3 Manufacturing of the Hexapod

After generating 2D manufacturing drawings (Appendix C), parts are

manufactured. All parts are made from stainless steel (AISI304, 1.4401 standards).

This section is compiled from the second TUBITAK report (Karagülle et al., 2007).

Hexapod consists of a lower platform, joints, lower connection parts, linear

motors, upper connection parts, stud bolts, joint connection parts and an upper

platform. Linear motors (HSI 43K4U – 05 – 032ENG) and spherical joints (Hephaist

SRJ008C) are purchased. Names, numbers and perspective views of 3D solid models

of manufactured parts are given in Table 4.4.

The lower platform is made by cutting with laser system (model: Trumph) and

after lathing. Joint locations are precisely processed with a milling machine (model:

Foreman). Platform bores of joints are located by a divider and drilled by the milling

machine. The upper platform is made by the same methods applied to the lower

platform.

Lower connection parts are manufactured by welding. The planar parts are cut by

a laser system. Bores are marked by laser and drilled by a drilling machine.

28

Cylindrical parts are manufactured with CNC lathing machine (model: Goodway

GLS200). Cylindrical parts are located into the centre of the planar parts and then

welded. After that, the parts are cleaned by lathing. Upper connection parts are cut

and marked by a laser system and drilled by the milling machine (Karagülle et al.,

2007).

Table 4.4 Manufactured parts.

Part number Part name Items
Perspective view of the 3D

solid model of parts

1 Lower platform 1

2 Upper platform 1

3 Joint connection part 6

4 Lower connection part 6

5 Upper connection part 6

6 Stud bolt 24

29

Stud bolts and joint connection parts are manufactured by CNC lathing machine.

In order to prevent them from contacting to the motors, one surface of the stud bolts

are milled. Joint connection parts are made by lathing cylindrical sides and milling

the wrench edges.

Assembly of the hexapod is made by the following assembly flow: Firstly

spherical joints are screwed to first and second parts shown in Table 4.4. Third parts

(Table 4.4) are screwed to joints. Fifth parts are screwed to linear motors with 4-40

socket head cap screws (length = 3/8 inch). Fourth parts are attached to linear motors

via fifth parts and sixth parts. This subassembly is rigidly connected by screwing

fourth parts to spherical joints of the lower platform. Then shafts of linear motors are

screwed to third parts which are attached to joints of the upper platform (Table 4.4).

Therefore, the hexapod is manufactured and assembled (Karagülle et al., 2007).

4.4 Hexapod Control System

The hexapod control system consists of linear motor drivers, PCI motion control

cards and a power supply. A schematic view of the system is shown in Figure 4.4.

The control system is also shown in Figure 4.5. A portable control panel is designed

and manufactured for the control system. A detailed view of the control panel is in

Figure 4.6. The control panel comprises a power supply, a distributor of the power

supply, PCI motion control cards, linear motor drivers and cables. In the control

panel and hexapod control system, PCI 8132 card is connected to 1st and 2nd drivers,

PCI 8164 card is connected to 3rd, 4th, 5th and 6th drivers. Drivers and control cards

need 24VDC power for operation. This power is supplied from the 24VDC power

supply and allocated by the manufactured distributor of the power supply.

30

Figure 4.4 A schematic view of the control system.

Figure 4.5 A view of the control system.

PC CMM

 Control
panel

Hexapod

Linear
motor

PCI 8132 PCI 8164

24VDC
Power supply

Distributor of
power supply

1. driver 2. driver 3. driver 4. driver 5. driver 6. driver

1. motor 2. motor 3. motor 4. motor 5. motor 6. motor

31

Figure 4.6 A detailed view of the control panel.

A schematic view of a linear motor driver is shown in Figure 4.7. Input ports and

output ports of linear motor drivers are Pin T2 and Pin T1, respectively. Connections

between Pin T2 and motion control cards make differences for PCI 8132 and PCI

8164 control cards.

Figure 4.7 A schematic view of a linear motor driver.

Matches of required pins to drive motors, between PCI 8132 control card, power

supply and Pin T2 of linear motor drivers are presented in Table 4.5. Furthermore,

matches of required pins between PCI 8164 control card, power supply and Pin T2 of

linear motor drivers are presented in Table 4.6.

Drivers
(1, 2)

PCI 8132

24VDC
power
supply

Manufactured
distributor of
power supply

PCI 8164

Bus cables SJ pin
cables

Drivers
(3, 4, 5, 6)

32

Table 4.5 Pin matches between PCI 8132 control card, power supply and linear motor drivers.

Linear motor drivers (Pin T2) SJ(1-2) pin outputs for PCI 8132

Pin number Signal Pin number Signal

3 Clock input 2 Out -

10 Direction control 4 Dir -

11 Enable control 8 Servo on

1 GND Ground

2 +24VIN
Power supply

+24VDC

Table 4.6 Pin matches between PCI 8164 control card, power supply and linear motor drivers.

Linear motor drivers (Pin T2) Bus cable for PCI 8164

Pin number Signal Pin number
Cable shape and

colour
Signal

3 Clock input 13 Pink (-) Out -

10 Direction control 12 Red (-) Dir -

1 GND Ground

2 +24VIN
Power supply

+24VDC

1st and 2nd pins of Pin T2 of linear motor drivers (Table 4.5 and Table 4.6) are

power input pins. 3rd pin and 10th pin are for pulse (clock) input and for direction

input, respectively. 11th pin is optionally used for motor enable/disable option. In

order to control linear motor drivers via a PC, J1 jumpers which are on linear motor

drivers have to be opened and switches (Fig. 4.7) have to be adjusted according to

Table 4.7 which gives adjustments of switches.

Table 4.7 Switch adjustments of linear motor drivers.

Switch number 1 2 3 4 5 6

Position Open Close Close Close Close Close

Linear motor drivers consumes 0.7 A electrical current. To set motor current: it is

ensured that power is applied to motors. Switch 3 (Table 4.7) is turned to open

position. A high impedance voltmeter is connected to VREF + and – terminals on the

33

driver board. Potentiometer P2 on the board is adjusted until voltmeter shows the

reference voltage (Vref) which is as following formula:

Vref = 0.5 x motor current (4.1)

Where, units of motor current and Vref are ampere and volt. For the used linear

motors, motor current is 0.7 A/phase. Therefore, adjusted reference voltage is 0.350

V.

Open collector type encoders have been attached to linear motors to take

feedbacks. Cable connections between encoders and PCI motion control cards have

to be made to take feedback signals. 1st and 4th pins of the encoder cables are for

power supply. 3rd pin, 5th pin and 2nd pin of the encoder cables transmit A phase

signals, B phase signals and index signals, respectively. Connecting these pins to PCI

cards are different for PCI 8132 and PCI 8164. Encoder cable connections for PCI

8132 are presented in Table 4.8.

Table 4.8 Encoder cable connections for PCI 8132.

Linear motor encoder cable SJ(3-4) pin for PCI 8132 Explanation

Cable

number

Cable

colour
Signal

Pin

number
Signal

1 Brown GND 10 GND

2 White Index 8 EZ -

3 Blue Channel A 4 EA -

5 Yellow Channel B 6 EB -

7 EZ +

3 EA +

4 Orange +5VDC

5 EB +

There is +5VDC in 6th pin of

Pin T2 or in 1st and 2nd pins of

SJ3-4. Any of these pins have

to be bridged with 3rd, 5th and

7th pins of bus cable and 4th pin

of encoder cable.

34

1st and 2nd pins of SJ3 and SJ4 sockets of the PCI 8132 card or 6th pins of Pin T2

of linear motor drivers can be used to have +5VDC for encoders. EA+, EB+ and

EZ+ input pins of PCI 8132 card have to be bridged with +5VDC. Because types of

encoders are open collector and type of the control cards is line driver.

Encoder cable connections for PCI 8164 are presented in Table 4.9. Bus cables

are connected to CNA sockets of the PCI 8164 card. There is no +5VDC pin in bus

cables. Thus, encoder power supply is achieved by taking +5VDC from 6th pins of

linear motor drivers. EA+, EB+ and EZ+ pins of the PCI 8164 card are also bridged

with +5VDC similar to pins of PCI 8132.

Table 4.9 Encoder cable connections for PCI 8164.

Linear motor encoder cable Bus cable for PCI 8164 Explanation

Cable

number

Cable

colour
Signal

Pin

number

Cable shape

and colour
Signal

1 Brown GND 10 White (-) GND

2 White Index 15 Green (-) EZ -

3 Blue Channel A 16 Blue (-) EA -

5 Yellow Channel B 17 Light blue (-) EB -

5 Green EZ +

6 Blue EA +

4 Orange +5VDC

7 Light blue EB +

There is +5VDC in 6th

pin of Pin T2. This pin

has to be bridged with

5th, 6th and 7th pins of

the bus cable and 4th

pin of encoder cable.

CHAPTER FIVE

SIMULATION AND CONTROLLING OF THE HEXAPOD

5.1 Introduction

In this chapter, it is desired to simulate and control the hexapod. Simulation is

performed by VisualNASTRAN. Simulation gives values of inverse kinematic

solution as outputs. Controlling of the hexapod is achieved by a developed

VisualBASIC program. This program manages VisualNASTRAN and takes outputs

of VisualNASTRAN as inputs (Karagülle et al., 2007).

The designed hexapod is shown in Figure 5.1. For this hexapod, dimensions of the

fixed lower platform: diameter is 348 mm, thickness is 11 mm and the angle between

closest joints is 30 deg. The centres of spherical joints are on a circle whose diameter

is 298 mm and 6 mm above from the upper surface of the fixed lower platform.

Dimensions of the movable upper platform: diameter is 250 mm, thickness is 10 mm

and the angle between closest joints is 60 deg. The centres of spherical joints are on a

circle whose diameter is 200 mm and 6 mm below from the lower surface of the

movable upper platform. Distance in the z direction between the upper surface of the

lower platform and the lower surface of the upper platform is 233.1362 mm when the

actuators, consequently the hexapod, are fully closed. Stroke of the linear motors is

50.8 mm and maximum tilt angle of the joints is 45 deg. Global z axis is

perpendicular to the line which ties centres of the 1st spherical joint and the 6th

spherical joint. Global x-y plane is parallel to the surface of the lower platform.

Direction of the global z axis is along a line which goes to the upper platform from

the lower platform.

 35

 36

Y

X

Z

Figure 5.1 Designed hexapod

5.2 Simulation and Controlling of the Hexapod

5.2.1 A Developed VisualBASIC Program for Simulation and Control

VisualNASTRAN has API (Application Programming Interface) property.

Therefore, it can be programmed by VisualBASIC. By programming

VisualNASTRAN, design and inputs can be parametrical. Any changes are possible

by changing the parameters. Application can be easy and rapid. Simulation and

controlling of hexapod are achieved by a VisualBASIC program. This program

assembles solid parts, simulates the hexapod and solves inverse kinematic analyses

and controls linear motors as point-to-point application via PCI motion control cards.

The name of the program is “hexapod1.vbp”. It contains “hexapod1.frm” and

modules listed in Table 5.1 (Karagülle et al., 2007).

 37

Table 5.1 Modules of the VisualBASIC project named hexapod1.vbp.

assemble.bas Assembles hexapod in VisualNASTRAN

simulate.bas Makes inverse kinematic analysis of hexapod and determines length of linear

actuators.

move.bas Determines parameters of ADLINK PCI motion control cards by using lengths,

which come from simulation, of linear actuators and moves hexapod to desired

position.

adlink_init.bas Initials ADLINK PCI motion control cards.

pci_8132.bas Contains commands of ADLINK PCI 8132 motion control card. This module

comes with the installation CD of PCI motion control cards.

pci_8164.bas Contains commands of ADLINK PCI 8164 motion control card. This module

comes with the installation CD of PCI motion control cards.

First of all, components of PCI motion control cards have to be added onto the

form. They can be added to project by selecting from menu: project > components

window and “DAQBench PCI8132 Motion Control Card ActiveX Control” and

“DAQBench PCI8164 Motion Control Card ActiveX Control”. These components

have to be inserted onto the form. Then, the names are changed as B_8132 for PCI

8132 and B_8164 for PCI 8164. After that, Pci_8132.bas and Pci_8164.bas modules

are inserted into the project. Thus, preparations of control cards are finished.

When the developed VisualBASIC program is run, Figure 5.2 is viewed. The

program is given in Appendix D (Karagülle et al., 2007).

Ends
program

Assembly

Motion -
forward

Move

Manually
move

Actuator
lengths

Motion -
inverse

Figure 5.2 Interface of the program.

 38

5.2.2 Simulation and Inverse Kinematic Analysis of the Hexapod

A VisualNASTRAN model is constructed with simple 3D models according to

real hexapod, in order to have a rapid process. Detailed 3D models might be slowed

the programs. There are an upper moving platform (pb), a fixed lower platform (pa),

a rectangular part (lsa) which represents constant part of a link and a cylindrical part

(lsb) which represents moving part of a link in the basic kinematic model. These

parts are in dimensions of designed hexapod. These parts can be seen in Figure 5.3

(Karagülle et al., 2007).

Figure 5.3 Basic model parts of the hexapod

Two axes are added to the lsa and lsb parts for assembly. Then five copies are

created. The file is saved as “hexapod1.wm3”. The VisualBASIC program which is

described above is run. By clicking “assembly” command button, parts are

automatically renamed, aligned to their attachment directions. Constraints such as

rigid joints, spherical joints and linear motors are created. In order to define

“prescribed motion” to upper platform, sliders are inserted for Vx, Vy, Vz, Wx, Wy and

Wz of upper platform. These sliders are used as input boxes. To measure length

changes of links, meters are assigned to linear motors. Force values of linear motors

 39

are set as zero. Also, in order to determine the position and orientation of the upper

platform, meters are assigned to it. Thus, assembly is finished. The file is saved as

“hexapodi.wm3”. The model can be seen in Figure 5.4 (Karagülle et al., 2007).

Y

X

Z

Figure 5.4 Basic model of the hexapod.

Input values of xp, yp, zp, θxp, θyp and θzp are inserted into inp_inverse.txt and the

file is saved. xp, yp and zp are desired positions of the movable upper platform in mm

along x, y and z directions, respectively. When all linear motors are fully retracted, xp

= 0, yp = 0 and zp = 0. Assume that, movable axis system which is in the centre of

upper platform is x1, y1 and z1. Desired rotation about x1 is θxp; desired rotation about

y1 is θyp and then desired rotation about z1 is θzp. Angles are in degrees. When all

linear motors are fully retracted, θxp = 0, θyp = 0 and θzp = 0.

When “motion inverse” command button is clicked, the VisualBASIC program

takes actual position information of hexapod from VisualNASTRAN program in a

 40

loop. Error is generated by subtracting actual position from desired position. The

VisualBASIC program multiples error with gain coefficient and sends velocity

values to VisualNASTRAN, and it is run for one step. The loop is finished when the

upper platform reaches desired position with acceptable errors. Simulation is done

and length changes of linear motors are generated by meters which are attached to

linear motors (Karagülle et al., 2007).

After simulation is done, “actuator lengths” command button is clicked.

Therefore, length outputs of linear motors can be taken from VisualNASTRAN. Tilt

angles of spherical joints are computed with these outputs. Then a comparison about

lengths of linear motors and tilt angles is started in order to determine whether the

hexapod is in workspace or not. If angles or lengths exceed their maximum values,

the hexapod is not in the workspace and then the program gives an error message

(Karagülle et al., 2007).

5.2.3 Controlling of the Hexapod

Open loop position control is applied to hexapod via linear motors. Point – to –

point applications are processed. PC-based motion control is achieved over ADLINK

PCI 8132 and PCI 8164 motion control cards.

Control of hexapod manipulator is based on inverse kinematics (Jelenkovic et al.,

2004). The simulation (inverse kinematic solution) gives length changes of linear

motors with respect to time. These values are taken as inputs. If the “Move”

command button is clicked on the VisualBASIC interface (see Fig. 5.2), pulse

numbers which will be applied to linear motors are determined with respect to the

difference between initial position and final position of the moving upper platform.

In order to start and stop movement simultaneously, velocities are determined by

using interpolation. The maximum velocity is chosen as 3000 pulse/s. The biggest

distance extracted (or retracted) linear motor has the biggest velocity (3000 pulse/s).

The slowest linear motor with respect to the motion moves the less.

 41

Hexapod which has been manufactured is moved by simulation results after

determining command parameters of motion control cards with respect to position

and velocity data. Fundamental commands of the motion control cards are given in

Appendix A.

T velocity profile command is used fundamentally in the program. The commands

are as following formulas (5.1) and (5.2):

B_8164.StartTAMove(axis, pos, svel, mvel, tacc, tdec) (5.1)

B_8132.StartTMove(axis, pos, svel, mvel, tacc, tdec) (5.2)

Where, axis is the working axis number, pos is position input (pulse), svel is

starting velocity (pulse/s), mvel is maximum velocity (pulse/s), tacc is acceleration

time (s) and tdec is deceleration time (s). For the applications, they are taken that svel

= 0 and tacc = tdec = 0.01 s. mvel is determined as 3000 pulse/s for the axis which

has maximum length change. mvel for other axes is calculated by interpolation

explained above.

Pulse numbers are position information. Pulse numbers are calculated according

to lengths of axes (linear motors), as follows:

00075.0
i

i
dis

pos = , i = 1, 2, …, 6 (5.3)

Where, dis is length changes, which is found by inverse kinematic solution, of the

linear motors, pos is numbers of pulses. If 1 pulse is sent, then linear motors move

0.75 μm; because step motors are bipolar. Precision of motors is 1.5 μm, 2 pulses

give this value regarding bipolar type. The entire control codes are in Appendix D

(Karagülle et al., 2007). Consequently, commands (5.1) and (5.2) are sent linear

motors as point – to – point open loop control via motion control cards.

CHAPTER SIX

TEST RESULTS OF THE HEXAPOD

6.1 Introduction

In this chapter, test results of the hexapod whose manufacturing is discussed in

Chapter 4 are presented. Tests are made by the developed VisualBASIC program

which is explained in Chapter 5. Test results occurred from desired position (xp, yp,

zp) and orientation (θxp, θyp, θzp), which are explained in Chapter 5, of the movable

upper platform are measured by a coordinate measuring machine (CMM). Model of

the CMM is Euro-C-A9106 of Mitutoyo Company (Mitutoyo Corp., 2006). Precision

of the CMM is 5 μm.

6.2 Tests and Results

Positions of the upper platform are measured by CMM. In order to test, global

axis system of the CMM is translated to global axis system of the hexapod. xp and yp

is measured by creating a circle element using lateral faces of the upper platform. zp,

αp, βp and γp is determined by measuring the plane of upper surface of the upper

platform. αp, βp and γp are angles between x, y and z axes and z1 axis which is

attached to upper platform, respectively. αp, βp and γp can be generated from θxp, θyp

and θzp with a transformation. The transformation codes is in Sub CMM () subroutine

of the developed VisualBASIC program which is presented in Appendix D.

At the initial position of the upper platform, position and rotation are xp = 0, yp =

0, zp = 0, αp = 90, βp = 90 and γp = 0 and length changes of linear motors are zero.

The upper platform is moved 14 times to different positions and then returned to the

initial position. Average values are found for initial position errors. Average values

are: xp0 = 189.6429 μm, yp0 = -179.7143 μm, zp0 = -36.7 μm; α0 = 89.97167 deg, β0 =

90.03476 deg, and γ0 = 0.04667 deg. Therefore, errors at the initial position for xp, yp,

zp, αp, βp and γp are calculated by subtracting xp, yp, zp, αp, βp, and γp from xp0, yp0, zp0,

α0, β0, and γ0, respectively. Thus, errors are εxo = 189.6429 μm, εyo = -179.7143 μm,

 42

 43

εzo = -36.7 μm, εαo = -0.02833 deg, εβo = 0.03476 deg, εxo = 0.04667 deg, respectively.

Test results for initial position errors can be shown in Figure 6.1. Initial position

errors and maximum deviations from averages can be found in Table 6.1. Maximum

deviations from averages give repeatability.

Measurement

Average

Measurement

Average

(a) (b)

Measurement

Average

Measurement

Average

 (c) (d)

Measurement

Average

Measurement

Average

 (e) (f)

Figure 6.1 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results of initial position tests.

 44

Table 6.1 Results of initial position.

ages of errors 2, 3
Maximum deviations from Desired position 1 Aver

xp, yp, zp
 αp, βp, γp

εx, εy, εz
εα, εβ, εγ

averages, respectively 2, 3

0 , 0 , 189.6429 , -1 -36.7 38.6 , 40.7 , 71.5
 , 0.01833

0
90 , 90 , 0

79.7143 ,
-0.02833 , 0.03476 , 0.04667 0.00944 , 0.03698

1) Units of displaceme , resp

he upper platform is moved to three different positions from the initial position

for

Ta 2 Results of (5, 0, 10; 90, 90, 0), (-2.5, 4.33013, 10; 90, 90, 0) and (-2.5, -4.33013, 10; 90, 90,

tion 1 Averages of errors 2, 3
Maximum deviations from

nts and angles are mm and degree ectively.

2) Units of displacements and angles are μm and degree, respectively.

3) Error = measured position – desired position.

T

 10 times with αp = 90 deg, βp = 90 deg, γp = 0 deg. The upper platform is

manually adjusted for initial position after every movement. Test results are

measured by CMM. Test results of xp = 5, yp = 0, zp = 10, αp = 90, βp = 90 and γp = 0

position; xp = -2.5, yp = 4.33013, zp = 10, αp = 90, βp = 90 and γp = 0 position and xp =

-2.5, yp = -4.33013, zp = 10, αp = 90, βp = 90 and γp = 0 position are presented in

Figure 6.2, Figure 6.3 and Figure 6.4, respectively. Desired positions, averages of

errors obtained from measured positions and maximum deviations from averages at

initial position are given in Table 6.2.

ble 6.

0) positions.

Desired posi
xp, yp, zp
 αp, βp, γp

εx, εy, εz
εα, εβ, εγ

averages, respectively 2, 3

5 , 0 ,

20.3429 , 21.6 .4999 66.7 , 64.4 , 10
8

10
90 , 90 , 0

857 , -43
-0.0090 , 0.0274 , 0.0243 0.0235 , 0.0138 , 0.026

-2.5 , 4.33013 , 10 99
90 , 90 , 0

184.9429 , -87.7843 , -36.19
0.00003 , 0.0098 , 0.0084

63.3 , 81.8 , 31.7
.0106 0.0106 , 0.0239 , 0

-2.5 , -4.33013 , 10
90 , 90 , 0

174.6429 , 117.5557 , -44.1
0.0131 , 0.0295 , 0.0081

64 , 41.4 , 8.6
0.0117 , 0.0061 , 0.0183

1) Units of displaceme degree, resp

.

nts and angles are mm and ectively.

2) Units of displacements and angles are μm and degree, respectively.

3) Error = desired position – measured position + initial position errors

 45

Measurement

Average

Measurement

Average

 (a) (b)

Figure 6.2 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp =

5, yp = 0, zp = 10, αp = 90, βp = 90 and γp = 0).

Measurement

Average

(e) (f)

Measurement

Average

(a)

Measurement

Average

Measurement

Average
Measurement

Average

(c) (d)

 46

Measurement

Average

Measurement

Average

 (a) (b)

Measurement

Average

Measurement

Average

 (c) (d)

Measurement

Average

Measurement

Average

 (e) (f)

Figure 6.3 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

2.5, yp = 4.33013, zp = 10, αp = 90, βp = 90 and γp = 0).

 47

Figure 6.4 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

2.5, yp = -4.33013, zp = 10, αp = 90, βp = 90 and γp = 0).

(a)

Measurement

Average
Measurement

Average

(b)

Measurement

Average

Measurement

Average

(c) (d)

Measurement

Average

Measurement

Average

(e) (f)

 48

The upper platform is moved to (0, 0, 25; 90, 90, 0) position from (0, 0, 0; 90, 90,

0) position. Then, the upper platform is moved from (0, 0, 25; 90, 90, 0) position to

(5, 5, 35; 90, 90, 0) position; then, from this position to (-5,-5, 15; 90, 90, 0) position;

then, from previous position to (5, -5, 35; 90, 90, 0) position and then from last

position to (-5, 5, 15; 90, 90, 0) position for 5 times. Test results are measured by

CMM. Test results of translational motions when the upper platform is parallel (αp =

90, βp = 90 and γp = 0) to the lower platform are presented in Figure 6.5, Figure 6.6,

Figure 6.7, Figure 6.8, Figure 6.9, and Table 6.3. The table contains desired

positions, averages of errors obtained from measured positions and maximum

deviations from averages.

Measurement

Average

(b) (a)

Measurement

Average

Measurement

Average

Measurement

Average

 (c) (d)

 49

Measurement

Average

Measurement

Average

 (e) (f)

Figure 6.5 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp =

0, yp = 0, zp = 25, αp = 90, βp = 90 and γp = 0).

Measurement

Average

Measurement

Average

 (a) (b)

Measurement

Average

Measurement

Average

 (c) (d)

 50

Measurement

Average

Measurement

Average

 (e) (f)

Figure 6.6 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp =

5, yp = 5, zp = 35, αp = 90, βp = 90 and γp = 0).

Measurement

Average

Measurement

Average

(a) (b)

Measurement

Average

Measurement

Average

 (c) (d)

 51

 (e) (f)

Figure 6.7 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

5, yp = -5, zp = 15, αp = 90, βp = 90 and γp = 0).

Measurement

Average

Measurement

Average

 (a) (b)

Measurement

Average

Measurement

Average

 (c) (d)

 52

Measurement

Average

Measurement

Average

 (e) (f)

Figure 6.8 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = 5,

yp = -5, zp = 35, αp = 90, βp = 90 and γp = 0).

Measurement

Average

Measurement

Average

 (a) (b)

Measurement

Average

Measurement

Average

 (c) (d)

 53

Measurement

Average

Measurement

Average

 (e) (f)

Figure 6.9 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

5, yp = 5, zp = 15, αp = 90, βp = 90 and γp = 0).

Table 6.3 Results of specified positions.

Desired
position 1
xp, yp, zp
 αp, βp, γp

Averages of errors 2, 3

εx, εy, εz
εα, εβ, εγ

Maximum deviations from averages,
respectively 2, 3

0 , 0 , 25
90 , 90 , 0

125.6429 , 17.2857 , -297.7
0.00156 , 0.02798 , 0.01989

5 , 3 , 3.8
0.0040 , 0.0093 , 0.0227

5 , 5 , 35
90 , 90 , 0

20.4429 , -98.5143 , -459.5
-0.01439 , 0.02870 , 0.03061

7.2 , 2.8 , 3
0.00283 , 0.01172 , 0.0105

-5 , -5 , 15
90 , 90 , 0

230.4429 , 115.0857 , -122.3
0.01639 , 0.02948 , 0.00806

4.2 , 3.2 , 1.8
0.00222 , 0.00222 , 0.00222

5 , -5 , 35
90 , 90 , 0

12.4429 , 145.8857 , -452.7
-0.00105 , 0.04537 , 0.02395

6.2 , 7.6 , 2.2
0.00283 , 0.00283 , 0.00283

-5 , 5 , 15
90 , 90 , 0

225.6429 , -103.9643 , -128.99
0.00292 , 0.01601 , 0.01125

4 , 6.2 , 1.5
0.00292 , 0.00292 , 0.00292

1) Units of displacements and angles are mm and degree, respectively.

2) Units of displacements and angles are μm and degree, respectively.

3) Error = desired position – measured position + initial position errors.

In order to measure rotational precision, upper platform is moved to αp = 97 deg,

βp = 95.955 deg, γp= 9.20972 deg rotational position from αp = 90 deg, βp = 90 deg,

γp = 0 deg when the upper platform is at xp = 0 mm, yp = 0 mm and zp = 25 mm. This

motion is repeated 10 times and test results are measured. Test results of rotational

motion of hexapod are given in Figure 6.10 and Table 6.4. The table has the desired

 54

position; averages of errors calculated from measured angular positions and

maximum deviations from averages.

Measurement

Average
Measurement

Average

 (a) (b)

Measurement

Average

(c)
Figure 6.10 (a) αp, (b) βp and (c) γp measurement results for desired position (αp = 97, βp = 95.955 and

γp = 9.20972).

Table 6.4 Results of rotational motion.

Desired position 1
 αp, βp, γp

Averages of errors 1 ,2

εα, εβ, εγ
Maximum deviations from
averages, respectively 1, 2

97 , 95.955 , 9.20972 -0.3239 , 0.1108 , -0.1326 0.004 , 0.004 , 0.014

1) Units of angles are degree.

2) Error = desired position – test result position + initial position errors

 55

As a result, there are initial position errors (Fig. 6.1 and Table 6.1) when all linear

motors are fully closed. Fig. 6.2, Fig. 6.3, Fig. 6.4 and Table 6.2 may give an idea

about precisions and repeatability, because motions are started from the initial point.

However, in those tests linear motors are manually closed by using the program.

Therefore, deviations are high in these motions. Limit switches attached to linear

motors can be used to fully close the linear motors instead of manual closing. Thus,

the upper platform of the hexapod can be set in the same point at the initial position.

Therefore, precision and repeatability regarding the motions which are started from

the initial position can be improved.

Five different points (Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig 6.8, Fig. 6.9 and Table 6.3)

are also tested. Hexapod is moved to every point in a sequence. In addition,

rotational motion (Fig. 6.10 and Table 6.4) is tested. Consequence of these tests,

repeatability values namely maximum deviations are about desired values. However,

measured positions and desired positions are different. This difference can not be

considered for motions in a sequence, because errors of previous motion effect actual

motion, and errors of actual motion effect following motion. Maximum deviations

are important in these motions. It is observed that, the hexapod moves to

approximately same positions. This means, hexapod can move right positions after

calibrating it.

Making precise holes into which joints are precisely placed, in the joint location

points on the platforms can improve initial position errors. Diameters of holes should

approximately equal to diameters of bases of joints, in order for precise assembly.

As results of measurements, it is observed that precision of the hexapod is worse

than repeatability. This difference can be caused by initial position errors, and initial

position errors can be caused by manufacturing errors and assembly errors.

Simulations contain no manufacturing and assembly errors. Precision can be

increased by simulating the system with initial position errors or making more

precise manufacturing and assembly.

CHAPTER SEVEN

CONTROLLING OF AC SERVO MOTOR SYSTEMS

7.1 Introduction

Motors can be controlled by PC-based units or programmable stand-alone units in

automation systems. In this chapter, controlling of servo motors is carried out by

ADLINK PCI motion control cards. For the experimental study, an experimental rig

is constructed and VisualBASIC programs are developed to control simultaneously

three OMRON brushless AC servo motors (Omron Corp., 2006) over the cards. In

the programs, reference velocity and position curves are taken as inputs, and the

parameters of the commands of ADLINK control cards are determined. In this study,

servo motors are thought as actuators of a 3-DOF serial manipulator on which the

hexapod will be attached.

7.2 Design and Inverse Kinematic Analyses of a 3-DOF Serial Manipulator

Solid models of parts of a 3-DOF manipulator are created parametrically in

ABAQUS. Parameters of parts are written in a file whose extension is “py”. Then, by

running the script with ABAQUS, solid parts are drawn. The designed manipulator is

given in Figure 7.1 (Karagülle et al., 2007).

Solid parts are saved as in the “iges” format. Inverse kinematic analyses are

achieved by VisualNASTRAN. “igs” extended solid model files are imported into

VisualNASTRAN. Because of API property of the program, assemblies and analyses

in it, might be done by VisualBASIC programs and changed rapidly in consequence

of parametrical changes (Karagülle et al., 2007).

Parts are constrained in VisualNASTRAN. p0 is fixed to ground; revolute motors

are described between p0 and p1, p1 and p2 and p2 and p3a. p3a and p3b are rigidly

 56

 57

connected together. Then, orientation and angular velocity meters are assigned to

revolute motor constraints to determine angular velocities and angular positions of

actuators (Karagülle et al., 2007).

p0

p1

p2

p3a

p3b

End point

Figure 7.1 The designed 3-DOF serial manipulator.

For inverse kinematic analyses, a weightless part (pend) is created at the end of

the manipulator. This part is attached rigidly to p3b part. Starting and final positions

of the end point is determined. Between these points, linear motion is supposed.

Velocity inputs of the end point are generated with respect to velocity sinusoid (see

Appendix B) (Karagülle et al., 2007).

Generated velocity values are applied to end point as “prescribed motion”. Inverse

kinematic analysis is solved by VisualNASTRAN. Results of the solution are angular

velocities and angular positions of the actuator. These curves are inputs of control

algorithms.

 58

7.3 AC Servo Motor Experimental Rig

7.3.1 The Experimental Rig

AC servo motors are thought as actuators of a 3-DOF serial manipulator. The

experimental rig set up with Omron brushless AC servo motors, are shown in Figure

7.2, schematically.

PCI 8132 and PCI 8164 motion control cards of Adlink Company and three items

brushless AC servo motors and their servo drivers of Omron Company are used in

the experimental rig. The experimental rig which is set up at laboratory is given in

Figure 7.3 (a).

PCI8164

1. Connector

1. Servo motor
driver

1. Motor 2. Motor 3. Motor

24VDC
power supply

24VDC
for brake

PCI8132

2. Connector 3. Connector

2. Servo motor
driver

3. Servo motor
driver

220VAC

Figure 7.2 Servo motor experimental rig.

Maximum frequency of PCI 8132 is 2.4 million pulses/s and of PCI 8164 is 6.55

million pulses/s. Comprehensive knowledge about the cards are in Appendix A.

These cards are placed into a PC. Communication with the cards is achieved over

terminal boards. Terminal boards, Figure 7.3 (b), linked to connectors manufactured

to connect control cards and servo motor drivers, via bus cables.

 59

(a)

PC

Connectors

Power supply
distributor
connector

Servo motor
drivers

(

 Connectors

 Power

Bus cables

Terminal of
PCI8164

Terminal of
PCI8132

Servo
driver cable

b)

Motor driver
cable

(R88A-CAWA)
and

encoder cable
(R88A-CRWA)

Servo motor
(SGMAH-

A3AAA6CD-
OY)

with planetary
gear

Servo driver
cable

Servo motors
(SGMAH-

01AAA6CD-
OY) with
planetary

 (c)

Figure 7.3 (a), (b), (c) The experimental rig.

 60

Omron AC servo motors are shown in Figure 7.3 (c). Technical properties of

motors and types of motor drivers are given in Table 7.1. Encoders are serially

attached to motors. Servo motor drivers have one motor driving capacity. 203123

type Maxon planetary gears (Maxon Co., 2006) whose reduction ratio is 74 are

assembled to servo motors. Flanges and pinion gears are designed and manufactured

in order to assemble motors and gears.

Table 7.1 Properties of servo motors.

Motor
Number Motor Type Voltage

(VAC)
Current

(A)
Power

(W)
Torque
(Nm)

Revolution
(rev/min)

Encoder
type

Encoder
resolution
(2048 x 4

p/rev)

Servo
motor

driver type

1
SGMAH –

01AAA6CD
– OY

220 0.91 100 0. 18 3000 Incremental 13 bite SGDH –
01AE–OY 3

2
SG

01AAA6CD
– OY

3000 Incremental 13 bite SGDH –
01AE–OY

MAH –
220 0.91 100 0.318

3
SGMAH –

A3AAA6CD
– OY

220 0.44 30 0.095 3000 Incremental 13 bite SGDH –
A3AE–OY

7.3.2 Connections of Servo Motors and Drivers

Connections between AC servo motors, AC servo motor drivers and a PC are

realized as Figure 7.4. R88A – CAWA type cables make connections between

drivers and motors. Encoder feedback signals are sent to drivers via R88A – CRWA

type cables.

Figure 7.4 Front panel view of a motor driver.

CN2

CN1

CN3

Power
onn ns

(See

c ectio

Figure 7.6)

Indicators

Driver cable
R88A-CAWA

Socket of an
encoder cable
R88A-CRWA

Socket of the
com
cable between

driver and PC, to
ju s
of a driver

munication

ad st parameter

Sock r
cable

et of a drive

 61

Motion control cards are powered with 24VDC via their CN1 socket. To connect

servo motor drivers to motion control cards, a connector is designed. Bus cables are

used between motion control cards and the manufactured connector. Pin assignment

of a bus cable is shown in Figure 7.5 and data of these pins are given in Table 7.2.

Figure 7.5 Pin assignments of bus cables.

Output sig , DIR + and DIR -.in Table 7.2.

Th

 Z

reference position signals (EZ +) and (EZ -) of encoders, respectively.

Table 7.2 Values o

Bus ca CNA 1 – 4

11

nals to drive motors are OUT +, OUT -

ese signals are motor velocity (frequency) adjustment signals (OUT +, OUT -) and

motor direction adjustment signals (DIR +) and (DIR -), respectively. Input signals to

take feedback from encoder are EA +, EA -, EB +, EB -, EZ +, EZ -. These signals

are output signals of A phase (EA +) and (EA -), B phase (EB +) and (EB -) and

f bus cable.

ble CNA 1 - 4 Bus cable

Pin numbers Signal Colour Signal Pin numbers Colour

1 Empty Brown IGND 11 Brown (–)

2 DIR - Red DIR + 12 Red (–)

3 Pink Pink (–) OUT - OUT + 13

4 Yel Yellow (–) Empty low Empty 14

5 Green EZ + 15 Green (–) EZ -

6 Blue EA + 16 Blue (–) EA -

7 Light blue EB + 17 Light blue (–) EB -

8 Purple ERC 18 Purple (–) INP

9 Gray +24V (Out) 19 Gray (–) RDY

10 White IGND 20 White (–) IGND

20

1 10

 62

Bus cables come from CNA output sockets of the PCI 8164 motion control card

tor driver cables come from CN1 output socket of drivers,

via manuf nnectors. ections are able 7.3.

OUT , OUT - , DIR - cables (Table 7.3) are wired on the

connec to + - CW, + CC CW pins drive respectively. In the

same way, EA + , EB , EZ – are w , - A, , +

Z, - Z p s, resp y. Besides hange mo f the sleep” to ”, 24

VDC a grou the powe ly are co cted IN and R pins,

respectively.

Table 7.3 Cables connected on the con

Driver cable Bus cable

are connected to servo mo

actured co These conn given in T

 + , DIR + pins of bus

tor CW, W, - C of r cables,

, EA -, EB + -, EZ + pins ired to + A + B, - B

in ectivel , to c de o drivers “ “run

nd nd of r supp nne to +24V UN

nector.

Cable Colour Signal Cable
numbers Colour Signal numbers

7 Gray / red (-) +CW 3 Pink Out +

8 Gray / black (-) -CW 13 Pink (-) Out -

11 Yellow / red (-) +CCW 2 Red Dir +

12 Yellow / black (-) -CCW 12 Red (-) Dir -

19 Gray / red (--) +Z 5 Green EZ +

20 Gray / black (--) -Z 15 Green (-) EZ -

33 Orange / red (---) +A 6 Blue EA +

34 Orange / black (---) -A 16 Blue (-) EA -

35 Gray / black (---) -B 17 Light blue (-) EB -

36 Gray / red (---) +B 7 Light blue EB +

40 Pink / black (---) RUN Ground

47 Gray / red (----) +24VIN
Power
supply +24VDC

rivers pared b p les a r cable –

CAWA) on the front panels as shown in Figure 7.6. It is important to correctly

connect U, d groun power les to the front panels and 24 VDC

to B pins of the m es mechanical brakes of the motors.

Motor d are pre y wiring ower cab nd drive s (R88A

V, W phases an ds of cab

otor cables. 24VDC releas

 63

M r en 8A – WA) are nnec sockets (Fig. 7.4)

on t ron rs. The re, taking feedback signals is possible. Motor

enco cab driver ca are attac d to ts on the m s.

The CN3

communication cab MON

Wi ters are separately loaded to

drivers. Program

the program tor has to be

adjusted. Rigidity nvironment. If the rigidity is

adjusted higher than necessity, motor shaft makes vibrations. Besides, motor current

 over the program. Then parameters are

oto coder cables (R8 CR co ted to CN2

he f t panel of drive refo

der les and motor bles he their socke otor

Figure 7.6 Power connections of a driver.

7.3.3 Adjusting Servo Motor Parameters

 socket (Fig. 7.4) of a driver is lined to a COM port of a PC via a RS

le. Necessary parameters are adjusted and loaded with W

nE Version 2.0 program of the drivers. Parame

 controls only one servo motor.

Drivers have to be opened and motor brakes have to be released before running

 and adjusting parameters. Firstly, rigidity of the m

L1

L2

+ 1

+ 2
-

Power in
220VAC

L1C

L2C

B1

B2

U

V

W
Ground

U, V, W
and

ground
pins of
motor
cable Ground

o

 has to be suitable for working e

and voltage are adjusted by auto tuning

 64

adjusted with respect to Table 7.4. Parameters which are different from factory

set

SGDH-01AE-OY
type servo motor

driver

SGDH-A3AE-
OYtype servo
motor driver

tings are saved by selecting “save adjustments”.

Table 7.4 Adjusted parameters of servo motor drivers.

Pa meters Explanations Value Value ra
Pn000 Direction and control type selection 0010H 0010H
Pn001 Alarm types 1002H 1000H

Pn002 Velocity and torque control and feedback
selection 0000H 0000H

Pn003 Analogue control 0002H 0002H
Pn100 Speed loop responsiveness 30 20
Pn101 Speed loop integral time constant 3000 4500
Pn102 Position loop responsiveness 30 20
Pn103 Inertia ratio 1180 962
Pn104 Speed loop responsiveness 2 40 80
Pn105 Speed loop integral time constant 2 2000 2000
Pn106 Position loop responsiveness 40 40
Pn107 Bias rotational speed 1 1
Pn Speed cont l settings 10B ro 0004H 0004H
Pn10F P control switching 10 10
Pn110 Onlin ting e auto-tuning set 3110H 3110H
Pn200 Position control setting 0010H 0010H
Pn201 Enc ate oder divider r 16384 16384
Pn202 Electronic gear ratio (numerator) 4 4
Pn203 Electronic inator) ge enomar ratio (d 1 1
Pn207 Position control setting 0000 0H 000 H
Pn50A Input signal selection 1 8100H 8100H
Pn50B Input signal selection 2 6 6 548H 548H

 param extended If there is no meter

file available, parame justed according to Table 7.4. Furthermore,

th meters can the front pan e drivers.

ion of the m 8. So, 2048 pulses have to be sent over the

PC rol card

be changed by adjusting Pn202 and Pn203 parameters (Table 7.4). For example, if

Pn202 / Pn203 is 8 (originally 4), then the requested pulses are 2048 x 2 = 4096.

These eters can be saved in an “usr” file. para

ters have to be ad

ese para be adjusted by using els of th

Precis otor encoders is 204

I cont s to r for one revolution; however, this value can otate motor shafts

 65

7. olling of A

 is possible to program ADLINK control cards with VisualBASIC. PCI 8132

an

 commands

which are not recognized by VisualBASIC (see Chapter 5.2.1).

tion

eter input boxes on the form are colorized

with different colours. Thus, parameter input boxes irrelevant to the selected motion

pro

Figure 7.7 The test program developed to control one servo motor

with open loop control.

4 Contr C Servo Motors

It

d PCI 8164 components are added into the project and onto the form of the project.

PCI8132.bas and PCI8164.bas modules, which come with the installation CD of the

motion control cards, are also added to project. These modules contain

A VisualBASIC based test program is developed to control one servo motor

uniquely via PCI 8132 card. This program is shown in Figure 7.7. In this program,

there are all motion types that PCI 8132 control card has. When selecting a mo

profile on the program, required param

file are locked. Different motion types are tested via PCI 8132 card with respect

to open loop control.

Ends the
program

Open/close
servos

Direction

Change
speed on
fly

Input
parameters

Motion
style

ber

Stop

Clear
parameters Feedback

v ues

Axis
num

al

 66

Position input must be pulse numbers and velocity input must be pulse numbers

per a second; however, for comprehensibility, position is taken in meters (or degrees)

and velocity is taken in revolution per minute. Position and velocity values of motors

are 2048 pulse/rev and 2048 pulse/s, respectively. These inputs are calculated as

following:

pdngearp .
360
2048

= (7.1)

pmngear
r

p .
.2

2048

0π
= (7.2)

vdngearv .
60

2048
= (7.3)

here, p is position value whose unit is pulse, pd is angular position of output

sh

losed loop control of two servo motors is tested by a different developed

VisualBASIC program is giv

are wanted servo motors to follow simultaneously are sent to motors over the

program. Equations (7.1), (7.2) and (7.3) are also used in this program. T

(trapezoidal) motion is used as motion prof otion profiles are se

one after another with respect to a time interval Δt. Error signals are generated by

taking feedback. New positions are calculated according to closed loop control.

Motors follow the curves with accep ble errors and at the right time. Co

motion profile is:

W

aft of the gear attached to the motor (degree), pm (meter) is linear movement of

output shaft of the gear, v is velocity value (pulse/s), vd is angular velocity of output

shaft of the gear (rev/min), ngear is reduction ratio, r0 (m) is radius of shaft or pulley

etc. attached to the shaft of gear.

C

. This program en in Figure 7.8. Reference curves which

ile. T m nt to motors

ta mmand of T

B_8164.StartTAMove(axis, pos, svel, mvel, tacc, tdec) (7.4)

 67

Parameters of this command are: axis is the working axis number, pos is position

value (pulse), svel (pulse/s) is starting velocity, mvel (pulse/s) is maximum velocity,

tacc and tdec are acceleration and deceleration times in terms of second. In this

program total motion time and time interval are taken as 20 s and dt = 0.05025 s,

respectively. Formulation of reference curves are given as following equation:

)
20

sin(360 iti
π

θ = , i = 1, 2 (7.5)

Where,
iθ and t are in units of degree and second, respectively. Equation (7.1) is

used to change degree to pulse numbers.

Figure 7.8 Closed control program of two servo motors.

Tracking curves successfully follow the reference curves by using this program

because of using full T motion profiles in a

sequence. Motors accelerate and decelerate in all motion steps of the sequence.

Another VisualBASIC program is developed to control simultaneously three AC

servo motors for open loop and closed loop control principles. This program is

shown in Figure 7.9. The entire codes of the developed VisualBASIC program are in

Linear

Circular
interpolation

curves

e

Feedback
v ues

Motion
tim

interpolation

al

Starts the
motion

Reference
and

tracking

Reference
and
tracking
curves

(Fig.7.8), however, motor shafts vibrate

 68

Appendix E. In this program different control methods and algorithms are carried

out. The end point of the manipulator is moved linearly from (0.51171, 0.3705, 0)

point to (0, 0.5, 0.3) point at simulation which is in Section 7.2. Results whose inputs

are angular position – time curves which are generated from inverse kinematic

analyses are presented. Total motion time is 5 s, and number of samples is ns = 41.

undamental commands for open loop control whose input is velocity (first and

second algorithms) are given in Table 7.5. In these algorithms, motors change their

starting velocities to second step velocities in the time interval dt with first

command. Then with a loop, maximum velocities are changed in time interval dt by

means of second command. Time constraint is achieved by internal counter of the

card in first algorithm and “sleep” command in second algorithm. Results are

exhibited in Figure 7.10 and Figure 7.11.

Figure 7.9 Control program of three servo motors with different algorithms.

Control
algorithms

PCI8164

Feedback

Plotting
areas

F

 69

Table 7.5 Control algorithms.

Control
method Input Algorithm

number Fundamental commands Property

1

Time constraint is
achieved by
internal counter.
Acceleration time
is equal to the
sampling time.

Velocity

2

B_8164.TVMove(axis, svel, mvel, dt)

B_8164.VChange(axis, mvel, dt) Time constraint is
achieved by
“sleep” command.
Acceleration time
is equal to the
sampling time.

Open
loop

Position 3 B_8164.StartTAMove(axis, pos, svel, mvel,
tacc, tdec)

Position 4

kperr(k) = kp*(ang(k+1) - pos(k-1))
kverr(k) =npuls(k+1)
B_8164.StartTAMove (axis, kperr(k),
npuls(k), kverr(k), dt, 0)

Position
and

velocity
5

kperr(k) = kp*(ang(k+1) - pos(k-1))
kverr(k) = kv*(npuls(k+1) - v(k-1))
B_8164.StartTAMove (axis, kperr(k),
npuls(k), kverr(k), dt, 0)

6

kperr(k) = k*(ang(k) - pos(k - 1))
kang(k) = ang(k + 1) + kperr(k)
B_8164.StartTAMove (axis, kang(k),
npuls(k), npuls(k+1), dt, 0)

Closed
loop

Acceleration time
is equal to the

g time. samplin

Position

7

kperr(k) = k*(ang(k) - pos(k - 1))
kang(k) = ang(k + 1) – ang(k) + kperr(k)
B_8164.StartTRMove (axis, kang(k),
npuls(k), npuls(k+1), dt, 0)

Reference

Tracking

(a)

 70

Reference

ing

Track

(b)

Reference

Tracking

Figure 7.10 (a) the first axis, (b) the second axis, (c)

the third axis results for the first algorithm.

(c)

Reference

Tracking

(a)

 71

Reference

Tracking

(b)

.

Fundamental command for open loop control whose input is position (third

algorithm) is given in Table 7.5. In this algorithm, sampling time dt is equal to

acceleration time and the command is sequentially sent to motors with a time interval

dt. Time constraint is achieved by internal counter of the card. Results are presented

in Figure 7.12.

Reference

Tracking

(c)

Figure 7.11 (a) the first axis, (b) the second axis, (c)

the third axis results for the second algorithm

 72

Figure 7.12 (a) the first axis, (b) the second axis, (c)

the third axis results for the third algorithm.

Reference

Tracking

(c)

(b)

Reference

Tracking

Reference

Tracking

(a)

 73

A block diagram of the closed loop control which is used in the fourth and the

fifth algorithms is given in Figure 7.13. In the block diagram, inputs are position in

ter

kperr and kverr are respectively position and velocity inputs. kv = 1

and v = 0 are taken for only position inputted control. Fundamental commands of

these control algorithms are given in Table 7.5. Results are presented in Figure 7.14

and Figure 7.15 for the fourth and the fifth algorithms respectively.

Figure 7.13 Closed loop block diagram for the fourth and the fifth

algorithms.

ms of pulses and velocity in terms of pulse/s; outputs are angular position and

angular velocity. Where, kp and kv are position gain coefficient and velocity gain

coefficient, respectively; ang is position input comes from inverse kinematic

analysis, npuls is velocity input, pos is position feedback, v is velocity feedback, axis

is axis number,

 kp

 kv

 PCI
 cards

 Motor

 Encoder

+

-

 θ

 ,
•

θ

 kperr

 kverr

 ang

 npuls

 pos

 v

Reference

Tracking

(a)

 74

Reference

Tracking

(b)

Reference

Figure 7.14 (a) the first axis, (b) the second axis, (c)

the third axis results, for kp = 0.7 and kv = 1, for the

fourth algorithm.

Tracking

(c)

The sixth and the seventh algorithms are offered because of instability of the

system occurred by the fourth and the fifth algorithms. Block diagram of the closed

loop control which is used in the sixth and the seventh algorithms is given in Figure

7.15. Fundamental commands of these control algorithms are given in Table 7.5.

Absolute motion (TAMove) is used in the sixth algorithm and relative motion

(TRMove) is used in the seventh algorithm. Reference point is taken a constant point

for absolute motion and finishing point of previous motion for relative motion. k is

gain coefficient and kang is position input. It is necessary to take ka = 1 for TRMove

 75

and ka = 0 fo r k = 0.5, in

Figure 7.17 f nd in Figure 7.18 for k = 0.9.

Figure 7.15 Closed loop control block diagram for the sixth and

the seventh algorithms

r TAMove. Results of these algorithms are in Figure 7.16 fo

or k = 0.7 a

k PCI
Card Motor

Encoder

+

-

θ ,
•

θ kperr (k) ang (k)

pos (k-1)

-

+

+
ang (k+1)

kang (k)

ka

Reference

Tracking

(a)

Reference

Tracking

(b)

 76

Reference

Figure 7.16 (a) the first axis, (b) the second axis, (c)

the third axis results for k = 0.5 for the sixth and the

seventh algorithms.

Tracking

(c)

Reference

Tracking

(a)

Referenc
e

Reference

Tracking

(b)

 77

Reference

Tracking

Figure 7.17 (a) the first axis, (b) the second axis, (c)

the third axis results for k = 0.7 for the sixth and the

seventh algorithms.

(c)

Reference

Tracking

(a)

Reference

Tracking

(b)

 78

Reference

Tracking

(c)
Figure 7.18 (a) the first axis, (b) the second axis, (c)

the third axis results for k = 0.9 for the sixth and the

seventh algorithms.

7.5 Results of the Controlling Servo Motor Systems

In this chapter, an experimental rig is set and inverse kinematic analyses are done.

PC-based motion control of motors is realized according to the outputs of the

analyses.

For the motor control system, it is observed that open loop control responses very

well and the tracking curves resulted from closed loop control algorithms follow the

reference curves with acceptable errors. Thus, errors are minimized.

For closed loop control, it is observed that the sixth and the seventh algorithms

(see Table 7.5) whose block diagram is shown in Figure 7.15 give more accurate

results (Fig.7.16, Fig. 7.17 and Fig. 7.18) than the fourth and the fifth algorithms (see

Table 7.5), whose block diagram is given in Figure 7.13. The sixth and the seventh

algorithms prevent instabilities that come into existence compared to the fourth and

the fifth algorithms (Fig. 7.14). It is studied that system gives good responses in 0.5 –

0.9 interval of the the gain (k) is 0.7

(Fig.7.16, Fig.7.17

gain coefficient (k) and the best responses when

 and Fig.7.18).

 79

In position inputted algorithms shown in Table 7.5, dt time interval is equated to

acceleration time for T motion profile and next motion is sent after dt, instead of

using full T motion profile in a sequence (Fig. 7.8). Thus, vibrations on the shaft of

the motors are reduced and smoother motions are obtained.

It is observed that using the internal counters of the cards as timer for time

constraint makes better responses than using “sleep” command in algorithms. In the

end of motions, motors are successfully followed the reference curves.

Tracking curves are generated by taking feedback values from the encoders

attached to the rears of servo motors. Closed loop control tracking curves can be

improved by taking feedback values from external encoders attached to the shafts of

gears instead of using the encoders of servo motors.

For all algorithms, it is accomplished that motions finish in the time constraint

which is given.

 80

CHAPTER EIGTH

CONCLUSIONS

A six degree of freedom parallel robot manipulator called hexapod is discussed in

order for PC-based control of hexapod. A design is made as a result of inverse

kinematic analyses. Standard parts are determined and supplied. Other parts are

manufactured after creating 2D and 3D drawings. A control panel is created and

connections are made.

Analyses are done with VisualNASTRAN 4D. VisualNASTRAN is controlled by

developed VisualBASIC programs. Created solid parts are imported into

VisualNASTRAN. Inverse kinematic analyses whose inputs are positions and

orientations of the movable upper platform are solved. Lengths of linear motors are

found. Point – to – point open loop control is applied to the hexapod by using lengths

of linear motors. ADLINK PCI motion control cards are used to drive linear motors.

Obtained results of hexapod according to specific motions and initial position

errors are measured by the CMM. As results of measurements, it is observed that

precision of the hexapod is worse than repeatability as seen in Chapter 6. This

difference can be caused by initial position errors, and initial position errors can be

caused by manufacturing errors and assembly errors. Simulations contain no

manufacturing and assembly errors. Precision can be increased by simulating the

system with initial position errors or making more precise manufacturing and

assembly.

Repeatability values obtained from motions which start from initial position are

worse than repeatability values obtained from motions which start from any positions

in the workspace. Because, the initial position is set by closing linear motors

manually. Limit switches attached to linear motors can be used to fully close the

linear motors instead of manual closing. Thus, the upper platform of the hexapod can

be set in the same point at the initial position; and precision and repeatability

regarding the motions which are started from the initial position can be improved.

81

Making precise holes into which joints are precisely placed in the joint location

points on the platforms can decrease initial position errors. Diameters of holes should

approximately equal to diameters of bases of joints, in order for precise assembly.

Besides, hexapods are very expensive robots in the market. It is achieved that the

hexapod is created much cheaper than the commercial hexapods which are sold in

the market.

In addition, brushless AC servo motor systems on which the hexapod will be

attached are also examined. In order to control motors, a three degrees of freedom

serial manipulator is designed. Solid models of the manipulator are created. Solid

models are used in VisualNASTRAN for analyses. Inverse kinematic analyses are

done with respect to specific motions. An experimental rig is developed to test the

system. VisualBASIC programs are developed to control brushless AC servo motors.

Different algorithms are tested. Outputs of analyses are used as inputs of control

algorithms. As a result of testing, appropriate control methods and algorithms are

determined (Chapter 7).

For the motor control system, it is observed that open loop control responses very

well and the tracking curves resulted from closed loop control algorithms follow the

reference curves with acceptable errors. Thus, errors are minimized. For closed loop

control algorithms, the sixth and the seventh algorithms prevent instabilities that

come into existence compared to the fourth and the fifth algorithms (Fig. 7.14). It is

studied that system gives good responses in 0.5 – 0.9 interval of the gain coefficient

(k) and the best responses when the gain (k) is 0.7 (Fig.7.16, Fig.7.17 and Fig.7.18).

Tracking curves successfully follow reference curves in a desired time constraint.

Tracking curves are generated by taking feedback values from the encoders

attached to the rears of servo motors. Closed loop control tracking curves can be

improved by taking feedback values from external encoders attached to the shafts of

gears instead of using the encoders of servo motors.

REFERENCES

Abaqus Inc. (2006). Abaqus. Retrieved 2006, from www.abaqus.com.

Adlink Technology Inc. (2006). Adlink Technology. Retrieved 2006, from

www.adlinktech.com.

Alizade, R., & Bayram, C. (2004). Structural Synthesis of Parallel Manipulators.

Mechanism and Machine Theory, 39, 857-870.

Bal, G., Bekiroglu, E., Demirbas, S., & Colak, I. (2004). Fuzzy Logic Based DSP

Controlled Servo Position Control for Ultrasonic Motor. Energy Conversion and

Management, 45, 3139-3153.

Baldor Electric Company. (2007). Baldor. Retrieved January 07, 2007, from

http://www.baldor.com/.

Crnosija, P., Ajdukovic, S., & Kuzmanovic, B. (1999). Microcomputer

Implementation of Optimal Algorithms for Closed-Loop Control of a Hybrid

Stepper Motor Drives. IEEE, 1, 679-683.

Custom Solutions Inc. (December 05, 2006). Custom Solutions. Retrieved December

22, 2006, from http://www.csi3.com/PC_Stand.htm.

Dandil, B., Gokbulut, M., & Ata, F. (2004). Doğrusal Olmayan Yük Şartlarındaki

Asenkron Motorun YSA-PI Hız Denetimi. Firat Universitesi Fen ve Muhendislik

Bilimleri Dergisi, 16 (1), 39-48.

Dasgupta, B., & Mruthyunjaya, T.S. (2000). The Stewart Platform Manipulator: A

Review. Mechanism and Machine Theory, 35, 15-40.

 82

 83

Dulger, L.C., Kirecci,A., & Topalbekiroglu, M. (2001). AC Servomotorlarının

Modellenmesi , Simulasyonu ve Hareket Denetiminde Kullanılması. 10. Ulusal

Mak. Teo. Sempozyumu Bil. Kit., 1, 181-189.

Gao, F., Li, W., Zhao, X., Jin. Z., & Zhao H. (2002). New Kinematic Structures for

2-, 3-, 4-, and 5- DOF Parallel Manipulator Designs. Mechanism and Machine

Theory, 37, 1395-1411.

Gough, V.E., & Whitehall, S.G. (1962). Universal Tyre Test Machine. Proceedings

of the 9th International Technical Congress (FISITA), 1, 177.

Grimbleby, J.B. (1995). A Simple Algorithm for Closed Loop Control of Stepping

Motors. IEE Proc.-Electr. Power Appl., 142 (1), 5-13.

Han, S.H., Kim, Y.H., Ha, I.J., Lee, S.T., & Park, J.J. (1995). A Learning Approach

to High Precision Speed Control of Servo Motors. IEEE, 26 (3), 221-226.

Hashimoto, H., Yamamoto, H., Yanagisawa, S., & Harashima, F. (1988). Brushless

Servo Motor Control Using Variable Structure Approach. IEEE Transactions on

Industry Applications, 24 (1), 160-170.

Hauge, G.S., & Campbell, M.E. (2004). Sensors and Control of a Space-Based Six-

Axis Vibration Isolation System. Journal of Sound and Vibration, 269, 913-931.

Haydon Switch & Instrument (HSI) Corp. (2006). Haydon Switch & Instrument.

Retrieved 2006, from www.hsi-inc.com.

Hephaist Seiko Company Ltd. (2006). Hephaist Seiko. Retrieved 2006, from

http://www.schaublin.ch/e/index.htm.

Hunt, K.H. (1983). Structural Kinematics of In-Parallel-Actuated Robot Arms.

ASME J. Mech. Transm. Autom. Des., 105, 705-712.

 84

Ider, S.K. (2005). Inverse Dynamics of Parallel Manipulators in the Presence of

Drive Singularities. Mechanism and Machine Theory, 40, 33-44.

Jelenkovic, L., Jakobovic, D., & Budin, L. (2004). Hexapod Structure Evaluation as

WEB Service. Proceedings of the 1st International Conference on Informatics and

Robotics (ICINCO), 1.

Karagülle, H., Sarıgül, S., Kıral, Z., Varol, K., & Malgaca, L. (01 July 2006). Mikro-

konumlandırıcı Robot Tasarımı ve Prototip İmalatı. TÜBİTAK Araştırma Projesi

1. Dönem Gelişme Raporu, Project No: 104M373.

Karagülle, H., Sarıgül, S., Kıral, Z., Varol, K., & Malgaca, L. (01 January 2007).

Mikro-konumlandırıcı Robot Tasarımı ve Prototip İmalatı. TÜBİTAK Araştırma

Projesi 2. Dönem Gelişme Raporu, Project No: 104M373.

Khongkoom, N., Kanchanathep, A., Nopnakeepong, S., Tamthong, S., Tunyasrirut,

S., & Kagawa, R. (2000). Control of the Position DC Servo Motor by Fuzzy

Logic. IEEE/ASME Transactions on Mechatronics, 3, 354-357.

Kim, H.S., Cho, Y.M., & Lee, K. (2005). Robust Nonlinear Task Space Control for 6

DOF Parallel Manipulator. Automatica, 41, 1591-1600.

Ku, S.S., Larsen, G., & Cetinkunt, S. (1998). Fast Tool Servo Control for Ultra-

Precision Machining at Extremely Low Rates. Mechatronics, 8, 381-393.

Lenze Company. (2006). Lenze. Retrieved 2006, from http://www.lenze.de/en.

Lin, C.L., Jan, H.Y., Hwang, T.S., & Tsai, R.C. (2003). Control Design for a Mixed

Rotary and Linear Motors Based Manipulator. Proceedings of the 2003

IEEE/ASME International Conference on Advanced Intelligent Mechatronics

(AIM 2003), 1, 1298-1303.

 85

Lin, F.J., & Chiu, S.L. (1998). Adaptive Fuzzy Sliding-Mode Control for PM

Synchronous Servo Motor Drives. IEE Proc.-Control theory Appl., 145 (1), 63-

72.

Lin, F.J., & Wai, R.J. (1998). Hybrid Controller using a Neural Network for a PM

Synchronous Servo-Motor Drive. IEE Proc.-Electr. Power Appl., 3, 223-230.

Lin, Y.C. (1994). The Application of Fuzzy Logic Control to Speed Control of a DC

Servo Motor System. Proceedings of the American Control Conference, 3, 590-

594.

Lu, C.H. (1997). Design and Implementation of a Digitalized Fuzzy Controller for

DC Servo Drives. IEEE International Conference on Intelligent Processing

Systems, 1, 242-246.

Maxon Motor Company. (2006). Maxon Motor. Retrieved 2006, from

www.maxonmotor.com.

McInroy, J. (1999). Dynamic Modelling of Flexure Jointed Hexapods for Control

Purposes. Proceedings of the 1999 IEEE International Conference on Control

Applications, 1, 508-513.

McKerrow, P.J. (1991). Introduction to Robotics. Sydney: Addison-Wesley

Publishing Company.

Mitutoyo Corporation. (2006). Mitutoyo Corp. Retrieved 2006, from

http://www.mitutoyo.co.jp/eng/index.html.

Mort, N., Abbod, M.F., & Linkens, D.A. (1995). Comparative Study of Fuzzy DC

Servo Motors and Stepper Motors for Mechatronic Systems. IEE Colloquium on

Innovations in Manufacturing Control Through Mechatronics, 6, 1-5.

 86

MSC Software Corporation. (2006). MSC Software. Retrieved 2006, from

www.mscsoftware.com.

MSDN. (2007). Microsoft Corporation. Retrieved January 14, 2007, from

http://msdn2.microsoft.com/en-us/vbasic/default.aspx.

Noorani, R.I. (1990). Microcomputer-Based Robot Arm Control. Mathematical and

Computer Modelling, 14, 450-455.

Omron Corporation. (2006). Omron. Retrieved 2006, from www.omron.com.

Physik Instrumente (PI) Company. (2006). PI. Retrieved 2006, from www.pi.com.

RS Company. (2006). RS Company Turkey. Retrieved 2006, from

www.rsturkey.com.

Schaublin SA Corporation. (2004). Schaublin SA. Retrieved 2006, from

http://www.schaublin.ch/e/index.htm.

SolidWorks Corporation. (2007). SolidWorks. Retrieved January 14, 2007, from

www.solidworks.com.

Stewart, D. (1965). A Platform with Six Degrees of Freedom. Proceedings of the

Institution of Mechanical Engineers, 180, 371-386.

Tsai, L.W. (1999). Robot Analysis (The Mechanics of Serial and Parallel

Manipulators). New York: John Wiley & Sons Inc.

Tzou, Y.Y., Wu, H.J. (1990). Multimicroprocessor-Based Robust Control of an AC

Induction Servo Motor. IEEE Transactions on Industry Applications, 26 (3), 441-

449.

 87

Van de Straete, H.J., Degezelle, P., De Schutter, J., & Belmans, R.J.M. (1998). Servo

Motor Selection Criterion for Mechatronic Applications. IEEE/ASME

Transactions on Mechatronics, 3 (1), 43-50.

Wendlandt, J.M., & Sastry, S.S. (1994). Design and Control of a Simplified Stewart

Platform for Endoscopy. Proceedings of the 33rd IEEE Conference on Decision

and Control, 1, 357-362.

Ximei, Z., & Qingding, G. (2005). H∞ Robust Control Based on International Model

Theory for Linear Permanent Magnet Synchronous Motor. Proceedings of the

Eighth International Conference on Electrical Machines and Systems (ICEMS

2005), 2, 1613-1616.

Yamamoto, K., & Shinohara, K. (1996). Comparison Between Space Vector

Modulation and Subharmonic Methods for Current Harmonics of DSP - Based

Permanent - Magnet AC Servo Motor Drive System. IEE Proc.-Electr. Power

Appl., 143 (2), 151-156.

Yang, M.Y., & Hong, W.P. (2001). A PC-NC Milling Machine with New

Simultaneous 3-Axis Control Algorithm. International Journal of Machine Tools

& Manufacture, 41, 555-566.

Yaskawa. (2002). Σ-II Series SGMBH/SGDH User’s Manual. Tokyo: Yaskawa

Electric Corporation.

Yoneya, A., Yoshimaru, K., & Togari, Y. (2000). Self-Sensing Control of AC-Servo

Motor with DSP Oriented Observer. IEEE, 1, 560-565.

 88

APPENDIX A

PROPERTIES OF ADLINK PCI 8132 AND PCI 8164 MOTION CONTROL

CARDS

A.1 Features of PCI 8132 and PCI 8164

The PCI 8132 and PCI 8164 cards are 2 axes and 4 axes motion control cards with

PCI interface, respectively. It can generate high frequency pulse trains to drive

stepping motors and servo motors. Multiple PCI 8132 and PCI 8164 cards can be

used in one system. Incremental encoder interface provide the ability to correct for

positioning errors generated by inaccurate mechanical transmissions (Adlink Inc.,

2006).

The following lists summarize the main features of the PCI 8132 motion control

card. The information listed below can be found at Adlink Co. (Adlink Inc., 2006).

• 32-bit PCI bus, plug and play.

• 2 axes of step and direction pulse output for controlling stepping or

servomotor.

• Maximum pulse output frequency: 2.4Mpps, linear, trapezoidal or S curve

velocity profile drive.

• 2 axes circular and linear interpolation.

• 0~268.435.455 or –134.217.728 to +134.217.727, 28-bit up/down counter for

incremental encoder feedback.

• Home switch, index signal, positive and negative limit switches interface

provided for all axes.

• Programmable interrupt sources.

• Change speed on the fly.

• Position compare and trigger signal output.

• Simultaneous start/stop motion on multiple axes.

• Manual pulser input interface.

• Software supports maximum up to 12 PCI 8132 cards (24 axes) operation.

89

• PCI 8132 library and utility for DOS library and Windows 95/98/NT DLL.

• Internal reference clock: 9.8304 MHz.

• Pulse rate setting steps: 0 to 2.4Mpps.

• Position comparison range:-8,388,608 ~ +8388607 (24 bit).

• Position pulse setting range: 0~268,435,455 pulses (28-bit).

The following lists summarize the main features of the PCI 8164 motion control

card. The information listed below can be found at Adlink Co. (Adlink Inc., 2006).

• 32-bit PCI bus, plug and play.

• 4 axes of step and direction pulse output for controlling stepping or

servomotor.

• 6.55MPPS maximum pulse output frequency, linear, trapezoidal, or S-Curve

velocity profile drive.

• Any 2 of 4 axes circular interpolation.

• Any 2-4 of 4 axes linear interpolation.

• Continuous interpolation for contour following motion.

• Change position and speed on the fly.

• Change speed by condition comparing.

• 13 home return modes with auto searching.

• Hardware backlash compensator and vibration suppression.

• 2 software end-limits for each axis.

• 0~268.435.455 or –134.217.728 to +134.217.727, 28-bit up/down counter for

incremental encoder feedback.

• 2-axis high speed position latch input.

• 2-axis position compare trigger output with 4k FIFO auto loading.

• Simultaneous start/stop motion on multiple axes.

• Manual pulser input interface.

• Software supports a maximum of up to 12 PCI-8164 cards (48 axes)

operation in one system.

• Libraries and utilities support DOS, Windows® 9X/NT/2000/XP, and Linux.

90

• 19.66 MHz internal reference clock.

• Pulse rate setting ranges (pulse ratio = 1: 65535).

• Position pulse setting range (28-bit): -134,217,728 to +134,217,728.

A.2 Fundamental Commands of PCI 8132 and PCI 8164

Fundamental commands of PCI motion control cards used in the programs with

respect of VisualBASIC are presented in Table A.1. Suitable commands which are

related to desired motion profile and feedback type, can be selected from the Table

A.1.

Table A.1 Fundamental commands of the motion control cards

Commands for PCI 8132 Commands for PCI 8164 Explanation

B_8132_set_pls_outmode B_8164.Axis0.OutputMode Type of the motion.

B_8132_set_cnt_src B_8164_set_feedback_src

External encoder (0 means

external encoder, 1means internal

encoder; they are opposite for PCI

8132).

B_8132_get_position B_8164_get_position Reads feedback.

B_8132_start_t_move B_8164_tv_move Trapezoidal constant motion.

B_8132_start_s_move B_8164_sv_move S profile constant motion.

B_8132_v_stop B_8164_sd_stop Stops the motion.

B_8132_start_ts_move B_8164_start_tr_move Trapezoidal relative motion.

B_8132_start_ta_move B_8164_start_ta_move Trapezoidal absolute motion.

B_8132_start_rs_move B_8164_start_sr_move S profile relative motion.

B_8132_start_ra_move B_8164_start_sa_move S profile absolute motion.

B_8132_start_move_xy

B_8164_start_tr_line2 (3,4)

B_8164_start_ta_line2 (3,4)

B_8164_start_sr_line2 (3,4)

B_8164_start_sa_line2 (3,4)

Linear interpolation with respect

to motion profile and desired 2 (or

3 or 4) axes.

B_8132_arc_xy
B_8164_start_a_arc2

B_8164_start_r_arc2

Circular interpolation with respect

to motion profile and desired 2

axes.

B_8132_v_change B_8164_v_change Changes speed on fly.

 91

APPENDIX B

ACCELERATION – DECELERATION SINUSOID

B.1 Definition of the Acceleration – Deceleration Sinusoid

Velocity – time graph for velocity profiles which are used as velocity inputs is

given in Figure B.1 (Karagülle et al., 2006).

Figure B.1 Velocity – time graph for velocity inputs.

Duration of the motion is tp and there is acceleration in 0 - t1 time interval and

deceleration between tp - t1 time interval and tp. Constant velocity which is between t1

and tp – t1, is V0. Acceleration and deceleration curves are a quarter sinus curves.

Suppose that the value of whatever positions or angular degrees of freedom is SA at t

= 0 and SB at t = tp. V0 is found by equalling SB – SA to the area under the velocity

curve.

B.2 Creating Samples of the Sinusoid by VisualBASIC

A developed VisualBASIC subroutine which finds samples of velocity values

whose inputs are SA, SB, tp, Ns and N1 is presented below. If Δt is sampling period, Ns

(Δt) = tp and N1 (Δt) = t1 (Karagülle et al., 2006).

V
el

oc
ity

Time

92

Rem: Inputs: sa, sb, tp, ns, n1 Results: ts(k), sv(k)

dt = tp / ns: t1 = n1 * dt: w = pi / (2 * t1): t2 = tp - t1

v0 = (sb - sa) / (2 / w + (t2 - t1)): t = 0

For k = 0 To n1

 sv(k) = v0 * Sin(w * t): ts(k) = t: t = t + dt

Next k

For k = n1 + 1 To ns - n1 – 1

 sv(k) = v0: ts(k) = t: t = t + dt

Next k

For k = ns - n1 To ns

 sv(k) = v0 * Cos(w * (t - t2)): ts(k) = t: t = t + dt

Next k

Return

 93

APPENDIX C

2D MANUFACTURING DRAWINGS OF THE HEXAPOD

In this appendix, 2D drawings of parts, which are manufactured, of the hexapod is

presented. The drawings are generated from 3D solid models of the hexapod in I-

Deas solid modelling program (Karagülle et al., 2007).

The assembly of one axis is shown at Page 94. Part names which are related to

part numbers of the assembly are given in Table C.1.

Table C.1 Identification of the assembly numbers.

Number Item Full name Name

1 1 Lower platform pa

2 4 M3 nut of stud bolt spn

3 4 M3 stud bolt sp

4 1 Shaft of spherical joint lsa

5 1 Spherical joint sa

6 1 Joint connection part lcb

7 1 Linear motor lma

8 1 Lower connection part lca

9 1 Upper connection part lda

10 4 Capscrews M3x10

11 4 Capscrews M3x15

12 1 Upper platform pb

2D drawings of the lower platform and the upper platform are presented at Page

95 and Page 96, respectively. The joint connection part is at Page 97. The lower

connection part and the upper connection part of the motor are given at Page 98 and

Page 99, respectively. The part named stud bolt, which connects the lower

connection part and the upper connection part, is shown at Page 100.

 101

APPENDIX D

VISUALBASIC PROGRAM FOR SIMULATION AND CONTROLLING

OF THE HEXAPOD

Private Sub Command1_Click()

 Call assemble1

End Sub

Private Sub Command10_Click()

 v0puls = 3000: t1 = 0.01

 dis = -dis0 / 0.00075: Call move_motors

End Sub

Private Sub Command2_Click()

 Call forward1

End Sub

Private Sub Command3_Click()

 Call inverse1

End Sub

Private Sub Command4_Click()

 Call rmeter1

End Sub

Private Sub Command6_Click()

 Call move1

End Sub

Private Sub Command7_Click()

 End

End Sub

Private Sub Command8_Click()

 xc = InputBox("Motor number:"): If xc = "" Then Exit Sub

 nmotor = Val(xc): Text1.Text = Str(nmotor) + "," + Str(dis0)

End Sub

102

Private Sub Command9_Click()

 xc = InputBox("Distance:"): If xc = "" Then Exit Sub

 dis0 = Val(xc): Text1.Text = Str(nmotor) + "," + Str(dis0)

End Sub

Private Sub Form_Activate()

 Call adlink0

End Sub

Private Sub Form_Load()

 nmotor = 1: dis0 = 0.5: pi = 4 * Atn(1)

 Form1.Caption = "Hexapod1"

 WindowState = 2: Form1.AutoRedraw = True

 Text1.Text = ""

 Command1.Caption = "Assemble"

 Command3.Caption = "Motion-inverse"

 Command4.Caption = "Actuator lengths"

 Command2.Caption = "Motion-forward"

 Command6.Caption = "Move"

 Command10.Caption = "move_0"

 Command8.Caption = "motor"

 Command9.Caption = "dis0"

 Command7.Caption = "end"

 End Sub

-----Assemble.bas-----

Public Const fl0 = "d:\hexapod1\"

Public doc As Object, pi As Double

Public xsa(6), ysa(6), xsb(6), ysb(6) As Double

Public konwm As Integer

Public pad1, pat1, par2, pafi1 As Double

Public pbd1, pbt1, pbr2, pbfi1 As Double

Public heph_c, h1, l1, r0 As Double

Public ns, nframe As Integer

Public dt As Double

Public zsa, zsb As Double

Sub const0()

 pi = Atn(1) * 4

103

 pad1 = 0.011: pat1 = 0.001: par2 = 0.174 - 0.025: pafi1 = 30 * pi / 180

 pbd1 = 0.01: pbt1 = pat1: pbr2 = 0.125 - 0.025: pbfi1 = 60 * pi / 180

 heph_c = 0.007: h1 = 244.1362 / 1000

 ns = 20: nframe = 5: dt = 0.001

 '---

 Call heph1: x = xsb(1) * 1000 - xsa(1) * 1000: y = ysb(1) * 1000 - ysa(1) * 1000

 zsa = 0.5 * pad1 - pat1 + heph_c: zsb = -0.5 * pbd1 + pbt1 - heph_c

 z = (h1 - 0.5 * pad1 - 0.5 * pbd1 - zsa + zsb) * 1000

 l1 = Sqr(x ^ 2 + y ^ 2 + z ^ 2): r0 = l1 - (0.18 + 0.01) * 1000

 pbz0 = (h1 - 0.5 * pad1 - 0.5 * pbd1) * 1000

End Sub

Sub assemble1() ‘Assembles parts

 xc = InputBox("Continue", , "y"): If xc <> "y" Then Exit Sub

 Call wm3d0: If doc.Name <> "hexapod1.WM3" Then Exit Sub

 Call heph2

 Call name1

 Call align1

 Call cmeter1

End Sub

Sub align1() ‘Align parts

 z = h1 - 0.5 * pad1 - 0.5 * pbd1 - zsa + zsb

 cj = "1": GoSub 60

 cj = "2": GoSub 60

 cj = "3": GoSub 60

 cj = "4": GoSub 60

 cj = "5": GoSub 60

 cj = "6": GoSub 60

 Exit Sub

 60 b1c = "lsa" + cj: b2c = "lsb" + cj: kj = Val(cj)

 x = xsb(kj) - xsa(kj): y = ysb(kj) - ysa(kj)

 rx = Atn(-y / z): cos2 = Sqr(y * y + z * z) / l1: sin2 = x / l1: ry = Atn(sin2 / cos2)

 a = doc.Bodies(b1c).SetConfig(xsa(kj), ysa(kj), 0.5 * h1, rx, ry, 0)

 a = doc.Bodies(b2c).SetConfig(xsa(kj), ysa(kj), 0.5 * h1, rx, ry, 0)

 c1c = "sa-s" + cj: c2c = "lsa-s" + cj

 Set c1 = doc.Coords(c1c): Set c2 = doc.Coords(c2c)

 Call doc.Constraints.CreateConstraint(3, 3, c2, c1)

104

 c1c = "sb-s" + cj: c2c = "lsb-s" + cj

 Set c1 = doc.Coords(c1c): Set c2 = doc.Coords(c2c)

 Call doc.Constraints.CreateConstraint(3, 3, c2, c1)

 c1c = "lma-l" + cj: c2c = "lmb-l" + cj

 Set c1 = doc.Coords(c1c): Set c2 = doc.Coords(c2c)

 Call doc.Constraints.CreateConstraint(4, 1, c2, c1)

 Call doc.Constraints.CreateConstraint(7, 1, c2, c1)

 nc = doc.Constraints.Count: doc.Constraints(nc).Name = "la" + cj

 doc.Constraints("la" + cj).ActuatorValue.value = 0

 Return

End Sub

Sub cmeter1() ‘Constraint meters

 cj = "la1": cjj = "-l": GoSub 50

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la1").ID) & "].length"

 cj = "la2": GoSub 50

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la2").ID) & "].length"

 cj = "la3": GoSub 50

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la3").ID) & "].length"

 cj = "la4": GoSub 50

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la4").ID) & "].length"

 cj = "la5": GoSub 50

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la5").ID) & "].length"

 cj = "la6": GoSub 50

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la6").ID) & "].length"

 '---

 Exit Sub

 50 a = doc.Meters.Add(): n = doc.Meters.Count: doc.Meters(n).Name = cj + cjj

 doc.Meters(n).AllocateColumns (2): doc.Meters(n).Visible = False

 Return

End Sub

Sub name1() ‘Renames

 doc.Bodies("Copy of lsa1").Name = "lsa2"

 doc.Bodies("Copy (2) of lsa1").Name = "lsa3"

 doc.Bodies("Copy (3) of lsa1").Name = "lsa4"

 doc.Bodies("Copy (4) of lsa1").Name = "lsa5"

 doc.Bodies("Copy (5) of lsa1").Name = "lsa6"

 '---

105

 doc.Bodies("Copy of lsb1").Name = "lsb2"

 doc.Bodies("Copy (2) of lsb1").Name = "lsb3"

 doc.Bodies("Copy (3) of lsb1").Name = "lsb4"

 doc.Bodies("Copy (4) of lsb1").Name = "lsb5"

 doc.Bodies("Copy (5) of lsb1").Name = "lsb6"

 '---

 doc.Coords("Copy of lsa-s1").Name = "lsa-s2"

 doc.Coords("Copy (2) of lsa-s1").Name = "lsa-s3"

 doc.Coords("Copy (3) of lsa-s1").Name = "lsa-s4"

 doc.Coords("Copy (4) of lsa-s1").Name = "lsa-s5"

 doc.Coords("Copy (5) of lsa-s1").Name = "lsa-s6"

 '---

 doc.Coords("Copy of lsb-s1").Name = "lsb-s2"

 doc.Coords("Copy (2) of lsb-s1").Name = "lsb-s3"

 doc.Coords("Copy (3) of lsb-s1").Name = "lsb-s4"

 doc.Coords("Copy (4) of lsb-s1").Name = "lsb-s5"

 doc.Coords("Copy (5) of lsb-s1").Name = "lsb-s6"

 '---

 doc.Coords("Copy of lma-l1").Name = "lma-l2"

 doc.Coords("Copy (2) of lma-l1").Name = "lma-l3"

 doc.Coords("Copy (3) of lma-l1").Name = "lma-l4"

 doc.Coords("Copy (4) of lma-l1").Name = "lma-l5"

 doc.Coords("Copy (5) of lma-l1").Name = "lma-l6"

 '---

 doc.Coords("Copy of lmb-l1").Name = "lmb-l2"

 doc.Coords("Copy (2) of lmb-l1").Name = "lmb-l3"

 doc.Coords("Copy (3) of lmb-l1").Name = "lmb-l4"

 doc.Coords("Copy (4) of lmb-l1").Name = "lmb-l5"

 doc.Coords("Copy (5) of lmb-l1").Name = "lmb-l6"

 '---

End Sub

Sub heph1() ‘Parameters

 bc = "pa": R = par2

 fi = 0.5 * pafi1: k = 1: GoSub 100

 fi = 120 * pi / 180 - 0.5 * pafi1: c1c = "sa-s2": k = 2: GoSub 100

 fi = 120 * pi / 180 + 0.5 * pafi1: c1c = "sa-s3": k = 3: GoSub 100

 fi = 240 * pi / 180 - 0.5 * pafi1: c1c = "sa-s4": k = 4: GoSub 100

 fi = 240 * pi / 180 + 0.5 * pafi1: c1c = "sa-s5": k = 5: GoSub 100

106

 fi = -0.5 * pafi1: k = 6: GoSub 100

 '---

 bc = "pb": R = pbr2

 fi = 0.5 * pbfi1: c1c = "sb-s1": k = 1: GoSub 100

 fi = 120 * pi / 180 - 0.5 * pbfi1: c1c = "sb-s2": k = 2: GoSub 100

 fi = 120 * pi / 180 + 0.5 * pbfi1: c1c = "sb-s3": k = 3: GoSub 100

 fi = 240 * pi / 180 - 0.5 * pbfi1: c1c = "sb-s4": k = 4: GoSub 100

 fi = 240 * pi / 180 + 0.5 * pbfi1: c1c = "sb-s5": k = 5: GoSub 100

 fi = -0.5 * pbfi1: c1c = "sb-s6": k = 6: GoSub 100

 Exit Sub

 '---

 100 x = R * Cos(fi): y = R * Sin(fi)

 If bc = "pa" Then xsa(k) = x: ysa(k) = y

 If bc = "pb" Then xsb(k) = x: ysb(k) = y

 Return

End Sub

Sub heph2() ‘Parameters

 z = h1 - 0.5 * pad1 - 0.5 * pbd1: a = doc.Bodies("pb").SetConfig(0, 0, z, 0, 0, 0)

 '---

 bc = "pa": z = 0.5 * pad1 - pat1 + heph_c

 c1c = "sa-s1": x = xsa(1): y = ysa(1): GoSub 100

 c1c = "sa-s2": x = xsa(2): y = ysa(2): GoSub 100

 c1c = "sa-s3": x = xsa(3): y = ysa(3): GoSub 100

 c1c = "sa-s4": x = xsa(4): y = ysa(4): GoSub 100

 c1c = "sa-s5": x = xsa(5): y = ysa(5): GoSub 100

 c1c = "sa-s6": x = xsa(6): y = ysa(6): GoSub 100

 '---

 bc = "pb": R = pbr2: z = -0.5 * pbd1 + pbt1 - heph_c

 c1c = "sb-s1": x = xsb(1): y = ysb(1): GoSub 100

 c1c = "sb-s2": x = xsb(2): y = ysb(2): GoSub 100

 c1c = "sb-s3": x = xsb(3): y = ysb(3): GoSub 100

 c1c = "sb-s4": x = xsb(4): y = ysb(4): GoSub 100

 c1c = "sb-s5": x = xsb(5): y = ysb(5): GoSub 100

 c1c = "sb-s6": x = xsb(6): y = ysb(6): GoSub 100

 Exit Sub

 '---

 100 doc.Coords.Add: n = doc.Coords.Count

 Set doc.Coords(n).Body = doc.Bodies(bc): doc.Coords(n).Name = c1c

107

 a = doc.Coords(n).SetConfig(x, y, z, 0, 0, 0)

 Return

End Sub

Sub wm3d0() ‘Initialize

 If konwm > 0 Then Exit Sub

 Set wm = GetObject(, "WM3D.Application"): Set doc = wm.ActiveDocument

 Call const0: konwm = 1

 doc.AccuracySettings.IntegrationStepsPerFrame = nframe

 doc.AccuracySettings.IntegrationSecondsPerStep = dt / nframe

 doc.RunControl.ActionType = 1

 doc.RunControl.Condition.Formula = "frame()=" + Str(ns)

End Sub

-----Simulate.bas-----

Public pbz0 As Double, kerror As Integer

Public pbx As Double, pby As Double, pbz As Double

Public pbrx As Double, pbry As Double, pbrz As Double

Public ra(6) As Double, la(6) As Double

Public thc As String, th As Double

Sub inverse1() ‘Inverse kinematics

 Call m0: If doc.Name <> "hexapodi.WM3" Then Exit Sub

 a = doc.Bodies("pb").GetConfig(pbx, pby, pbz, pbrx, pbry, pbrz)

 Open fl0 + "inp_inverse.txt" For Input As 1

 Input #1, xb, yb, zb, rxb, ryb, rzb: Close #1: zb = pbz0 + zb

 px = pbx * 1000: py = pby * 1000: pz = pbz * 1000

 rxa = pbrx * 180 / pi: rya = pbry * 180 / pi: rza = pbrz * 180 / pi

 Form1.Cls

 Form1.Print px, py, pz, rxa, rya, rza: Form1.Print xb, yb, zb, rxb, ryb, rzb

 xc = InputBox("Continue", , "y"): If xc <> "y" Then Exit Sub

 kp = 0: kpd = 50: aep = 0.0001: aer = 0.00001

 doc.RunTo 0: k = 0

 10 If k = ns Then MsgBox ("Convergence error"): GoTo 30

 pbx = doc.Meters("pbpos").Y1(k) * 1000

 pby = doc.Meters("pbpos").Y2(k) * 1000

 pbz = doc.Meters("pbpos").y3(k) * 1000

 rxa = doc.Meters("pbrot").Y1(k) * 180 / pi

108

 rya = doc.Meters("pbrot").Y2(k) * 180 / pi

 rza = doc.Meters("pbrot").y3(k) * 180 / pi

 k = k + 1: kp = kp + kpd

 epx = xb - pbx: epy = yb - pby: epz = zb - pbz

 erx = rxb - rxa: ery = ryb - rya: erz = rzb - rza: kerror = 0

 doc.Inputs("pbvx").value = kp * epx

 doc.Inputs("pbvy").value = kp * epy

 doc.Inputs("pbvz").value = kp * epz

 doc.Inputs("pbwx").value = kp * erx

 doc.Inputs("pbwy").value = kp * ery

 doc.Inputs("pbwz").value = kp * erz

 doc.RunTo k

 If Abs(epx) > aep Then kerror = 1

 If Abs(epy) > aep Then kerror = 1

 If Abs(epz) > aep Then kerror = 1

 If Abs(erx) > aer Then kerror = 1

 If Abs(ery) > aer Then kerror = 1

 If Abs(erz) > aer Then kerror = 1

 If kerror = 0 Then GoTo 30

 GoTo 10

 30 doc.Inputs("pbvx").value = 0

 doc.Inputs("pbvy").value = 0

 doc.Inputs("pbvz").value = 0

 doc.Inputs("pbwx").value = 0

 doc.Inputs("pbwy").value = 0

 doc.Inputs("pbwz").value = 0

 doc.RunTo ns

End Sub

Sub rmeter1() ‘Reads meters

 If konwm = 0 Then

 Set wm = GetObject(, "WM3D.Application"): Set doc = wm.ActiveDocument: Call const0

End If

 n = ns: Form1.Cls

 a = doc.Bodies("pb").GetConfig(pbx, pby, pbz, pbrx, pbry, pbrz)

 Form1.Print pbx * 1000, pby * 1000, pbz * 1000

 Form1.Print pbrx * 180 / pi, pbry * 180 / pi, pbrz * 180 / pi

 Call cmm: Form1.Print

 If doc.NumFrames < ns Then

109

 Form1.Print "ns=0"

 doc.Inputs("pbvx").value = 0: doc.Inputs("pbvy").value = 0

 doc.Inputs("pbvz").value = 0: doc.Inputs("pbwx").value = 0

 doc.Inputs("pbwy").value = 0: doc.Inputs("pbwz").value = 0: n = 0: doc.RunTo 0

 End If

 ra(1) = doc.Meters("la1-l").Y1(n) - r0

 ra(2) = doc.Meters("la2-l").Y1(n) - r0

 ra(3) = doc.Meters("la3-l").Y1(n) - r0

 ra(4) = doc.Meters("la4-l").Y1(n) - r0

 ra(5) = doc.Meters("la5-l").Y1(n) - r0

 ra(6) = doc.Meters("la6-l").Y1(n) - r0

 If ns = 0 Then doc.Reset: doc.EraseHistory

 Cx = Cos(pbrx): sx = Sin(pbrx): Cy = Cos(pbry): sy = Sin(pbry)

 cz = Cos(pbrz): sz = Sin(pbrz): kerror = 0

 For k = 1 To 6

 lla = l1 + ra(k)

 zz = (-Cx * sy * cz + sx * sz) * xsb(k) * 1000 + (Cx * sy * sz + sx * cz) * ysb(k) * 1000

 zz = zz + Cx * Cy * zsb * 1000 + pbz * 1000: z = zz - zsa * 1000

 x = Sqr(lla * lla - z ^ 2): fia = Atn(x / z) * 180 / pi

 '---

 x = (xsa(k) - pbx) * 1000: y = (ysa(k) - pby) * 1000: z = (zsa - pbz) * 1000

 zz = sy * x - Cy * sx * y + Cy * Cx * z: z = -zz + zsb * 1000 '

 x = Sqr(lla * lla - z ^ 2): fib = Atn(x / z) * 180 / pi

 Form1.Print ra(k), fia, fib

 If ra(k) < 0 Or ra(k) > 45 Then: kerror = 1

 If fia > 35 Or fib > 35 Then: kerror = 1

 Next k

 If kerror = 1 Then MsgBox ("Error")

End Sub

Sub cmm() ‘Transformation

 Cx = Cos(pbrx): Cy = Cos(pbry): cz = Cos(pbrz)

 sx = Sin(pbrx): sy = Sin(pbry): sz = Sin(pbrz)

 x = sy: y = -sx * Cy: z = Cx * Cy

 cfi = x: GoSub 25: alpha = th: alphac = thc

 cfi = y: GoSub 25: beta = th: betac = thc

 cfi = z: GoSub 25: gama = th: gamac = thc

 Form1.Print

 Form1.Print alphac, betac, gamac

110

 Form1.Print alpha, beta, gama

 Exit Sub

 25 If cfi = 0 Then th = 90: Return

 sfi = Sqr(1 - cfi * cfi): th = Atn(sfi / cfi) * 180 / pi

 If th < 0 Then th = th + 180

 30 thd = (th - Fix(th)) * 60: ths = Fix(((thd - Fix(thd)) * 60))

 thd = Fix(thd): thc = Str(Fix(th)) + " " + Str(thd) + " " + Str(ths)

 Return

End Sub

Sub forward1() ‘Forward kinematics

 MsgBox ("Correct module"): Exit Sub

 Call m0: If doc.Name <> "hexapodf.WM3" Then Exit Sub

 Open fl0 + "inp_forward.txt" For Input As 1

 For k = 1 To 6: Input #1, la(k): Next k: Close #1

 Form1.Cls: Form1.Print la(1), la(2), la(3), la(4), la(5), la(6): MsgBox ("")

 doc.Inputs("la1").value = la(1) + r0

 doc.Inputs("la2").value = la(2) + r0

 doc.Inputs("la3").value = la(3) + r0

 doc.Inputs("la4").value = la(4) + r0

 doc.Inputs("la5").value = la(5) + r0

 doc.Inputs("la6").value = la(6) + r0

 doc.Run

End Sub

Sub m0() ‘Reset

 Call wm3d0: doc.Reset: doc.EraseHistory

 Call doc.Bodies("pb").SetInitialVelocity(0, 0, 0, 0, 0, 0)

End Sub

Sub cmm2dec() ‘Arcmin to degree

 j = 3: If Mid(thc, 4, 1) = ":" Then j = 4

 th = Val(Mid(thc, 1, j - 1)) + Val(Mid(thc, j + 1, 2)) / 60 + Val(Mid(thc, j + 4, 2)) / 3600

End Sub

-----Move.bas-----

Public rp(6) As Double, disa(6) As Long

Public nmotor As Integer, dis0 As Double, dis As Double

111

Public v0p(6) As Long, t1p(6) As Double

Public v0puls As Long, t1 As Double

Public dismax As Long, dismin As Long

Sub move_motors() ‘Control

 Form1.Print dis, t1, v0puls: GoTo 30

 If dis = 0 Then GoTo 30

 If nmotor = 1 Then naxis = 0: GoTo 10

 If nmotor = 2 Then naxis = 1: GoTo 10

 If nmotor = 3 Then naxis = 0: GoTo 20

 If nmotor = 4 Then naxis = 1: GoTo 20

 If nmotor = 5 Then naxis = 2: GoTo 20

 If nmotor = 6 Then naxis = 3: GoTo 20

 10 a = Form1.B_8132.StartTMove(naxis, dis, 0, v0puls, t1, t1): GoTo 30

 20 a = Form1.B_8164.StartTRMove(naxis, dis, 0, v0puls, t1, t1)

 30

End Sub

Sub move1() ‘Control

 v0max = 3000: t1max = 0.01

 If konwm = 0 Then

 Set wm = GetObject(, "WM3D.Application"): Set doc = wm.ActiveDocument: Call const0

 End If

 Call rmeter1: If kerror > 0 Then Exit Sub

 If doc.NumFrames < ns Then MsgBox ("ns=0"): Exit Sub

 rp(1) = doc.Meters("la1-l").Y1(0) - r0

 rp(2) = doc.Meters("la2-l").Y1(0) - r0

 rp(3) = doc.Meters("la3-l").Y1(0) - r0

 rp(4) = doc.Meters("la4-l").Y1(0) - r0

 rp(5) = doc.Meters("la5-l").Y1(0) - r0

 rp(6) = doc.Meters("la6-l").Y1(0) - r0

 For k = 1 To 6: disa(k) = CInt((ra(k) - rp(k)) / 0.00075): Next k

 dismax = Abs(disa(1))

 For k = 2 To 6

 If dismax < Abs(disa(k)) Then dismax = Abs(disa(k))

 Next k

 Form1.Print

 For k = 1 To 6

 dis = -disa(k): td = dismax / v0max + t1max: t2 = td - 2 * t1max: t1p(k) = t1max

112

 If Abs(dis) < v0max * t1max Then t1p(k) = 0.5 * td: t2 = 0

 v0p(k) = CInt(Abs(dis) / (t1p(k) + t2))

 Form1.Print rp(k), ra(k), dis, t1p(k), v0p(k)

 Next k

 xc = InputBox("Continue", , "y"): If xc <> "y" Then Exit Sub

 Call adlink1

End Sub

Sub adlink1() ‘Control

 For nmotor = 1 To 6

 dis = -disa(nmotor): t1 = t1p(nmotor): v0puls = v0p(nmotor)

 Call move_motors

 Next nmotor

 doc.EraseHistory

End Sub

-----Adlink_init.bas-----

Sub adlink0() ‘Initials cards

 Form1.B_8132.Axis0.OutputMode = OUT_DIR

 Form1.B_8132.Axis1.OutputMode = OUT_DIR

 Form1.B_8132.Axis0.InputMode = db4X_AB_PHASE

 Form1.B_8132.Axis1.InputMode = db4X_AB_PHASE

 '----

 Form1.B_8164.Axis0.OutputMode = OUT_RISING_DIR_HIGH

 Form1.B_8164.Axis1.OutputMode = OUT_RISING_DIR_HIGH

 Form1.B_8164.Axis2.OutputMode = OUT_RISING_DIR_HIGH

 Form1.B_8164.Axis3.OutputMode = OUT_RISING_DIR_HIGH

 Form1.B_8164.Axis0.InputMode = NORMAL_LOW_4X_AB_PHASE

 Form1.B_8164.Axis1.InputMode = NORMAL_LOW_4X_AB_PHASE

 Form1.B_8164.Axis2.InputMode = NORMAL_LOW_4X_AB_PHASE

 Form1.B_8164.Axis3.InputMode = NORMAL_LOW_4X_AB_PHASE

End Sub

APPENDIX E

VISUALBASIC PROGRAM FOR CONTROLLING OF SERVO MOTOR

SYSTEMS

Dim fl0 As String

Private Sub Command1_Click()

Call path

End Sub

Private Sub Command10_Click()

Call mot2

End Sub

Private Sub Command11_Click()

Call mot3

End Sub

Private Sub Command12_Click()

Call mot4

End Sub

Private Sub Command13_Click()

Call mot5

End Sub

Private Sub Command14_Click()

Call mot7

End Sub

Private Sub Command2_Click()

Call savep

End Sub

Private Sub Command3_Click()

Call move1

End Sub

 113

 114

Private Sub Command4_Click()

Call readp

End Sub

Private Sub Command5_Click()

Call move3li

End Sub

Private Sub Command6_Click()

Call pnt0

End Sub

Private Sub Command7_Click()

Call stop1

End Sub

Private Sub Command8_Click()

Call mot6

End Sub

Private Sub Command9_Click()

Call mot1

End Sub

Private Sub Form_Load()

fl0 = "d:\r06\": ' fl0 = app.path + "\"

WindowState = 2

Form1.Caption = "PC-BASED MOTION CONTROL"

Command1.Caption = "Get Vel.": Command2.Caption = "End"

Command3.Caption = "Move1": Command4.Caption = "Read Pos."

Command5.Caption = "Move3_li": Command6.Caption = "Test"

Command7.Caption = "Stop": Command8.Caption = "Closed loop with abs."

Command9.Caption = "Mot with clk": Command10.Caption = "Mot with sleep"

Command11.Caption = "Mot. with pos control"

Command12.Caption = "Mot. with closed loop pos control"

Command13.Caption = "Mot. with closed loop pos and vel control"

Command14.Caption = "Closed loop with rel."

Text1.Text = "": Text5.Text = "": Text6.Text = ""

Picture1.AutoRedraw = True: Picture2.AutoRedraw = True: Picture3.AutoRedraw = True

 115

Form1.AutoRedraw = True

a = B_8164_set_feedback_src(0, 0): a = B_8164_set_feedback_src(1, 0): a =

B_8164_set_feedback_src(2, 0)

B_8164.Axis0.OutputMode = OUT_RISING_DIR_LOW

B_8164.Axis1.OutputMode = OUT_RISING_DIR_LOW

B_8164.Axis2.OutputMode = OUT_RISING_DIR_LOW

End Sub

Private Sub Timer1_Timer()

Dim fb0 As Double: Dim fb1 As Double: Dim fb2 As Double

Dim vb0 As Double: Dim vb1 As Double: Dim vb2 As Double

a = B_8164_get_position(0, fb0): a = B_8164_get_position(1, fb1): a =

B_8164_get_position(2, fb2)

fb0 = fb0 * 360 / nenc / ngear: fb1 = fb1 * 360 / nenc / ngear: fb2 = fb2 * 360 / nenc / ngear

Text2.Text = fb0: Text3.Text = fb1: Text4.Text = fb2

a = Form1.B_8164.GetCurrentSpeed(0, vb0): a = Form1.B_8164.GetCurrentSpeed(1, vb1): a =

Form1.B_8164.GetCurrentSpeed(2, vb2)

vb0 = vb0 * 360 / nenc / ngear: vb1 = vb1 * 360 / nenc / ngear: vb2 = vb2 * 360 / nenc / ngear

Text7.Text = vb0: Text8.Text = vb1: Text9.Text = vb2

End Sub

----Module----

Public Const nmax1 = 256, pi = 3.141593, nenc = 2048, ngear = 74, Tacc = 0.001

Public fl0 As String: Public a, ns As Integer

Public yr0(nmax1), yr1(nmax1), yr2(nmax1) As Single

Public yrm0(nmax1), yrm1(nmax1), yrm2(nmax1) As Single

Public dt, tr(nmax1), thr0(nmax1), ang0(nmax1), thr1(nmax1), ang1(nmax1), thr2(nmax1),

ang2(nmax1) As Single

Public npuls0(nmax1), npuls1(nmax1), npuls2(nmax1)

Public pos0(nmax1) As Double: Public pos1(nmax1) As Double: Public pos2(nmax1) As Double

Public v0(nmax1) As Double: Public v1(nmax1) As Double: Public v2(nmax1) As Double

Public perr0(nmax1), perr1(nmax1), perr2(nmax1), verr0(nmax1), verr1(nmax1), verr2(nmax1) As

Double

Public kperr0(nmax1), kperr1(nmax1), kperr2(nmax1), kverr0(nmax1), kverr1(nmax1),

kverr2(nmax1) As Double

Public kang0(nmax1), kang1(nmax1), kang2(nmax1) As Double

Public ftim0 As Double: Public tim0(nmax1) As Double: Public tim1(nmax1) As Double: Public

tim2(nmax1) As Double

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

 116

Sub mot7() ‘Algorithm 7

Form1.Cls: Call path

coe = InputBox("pos. gain"): If coe = "" Then Exit Sub

Call initialm

perr0(1) = ang0(1) - pos0(0): kperr0(1) = coe * perr0(1)

perr1(1) = ang1(1) - pos1(0): kperr1(1) = coe * perr1(1)

perr2(1) = ang2(1) - pos2(0): kperr2(1) = coe * perr2(1)

kang0(1) = ang0(2) - ang0(1) + kperr0(1)

kang1(1) = ang1(2) - ang1(1) + kperr1(1)

kang2(1) = ang2(2) - ang2(1) + kperr2(1)

a = Form1.B_8164.StartTRMove(0, kang0(1), npuls0(1), npuls0(2), dt, 0)

a = Form1.B_8164.StartTRMove(1, kang1(1), npuls1(1), npuls1(2), dt, 0)

a = Form1.B_8164.StartTRMove(2, kang2(1), npuls2(1), npuls2(2), dt, 0)

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1,

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1))

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0))

If ftim0 < dt * 10000000 Then GoTo 10

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

perr0(k) = ang0(k) - pos0(k - 1): kperr0(k) = coe * perr0(k)

perr1(k) = ang1(k) - pos1(k - 1): kperr1(k) = coe * perr1(k)

perr2(k) = ang2(k) - pos2(k - 1): kperr2(k) = coe * perr2(k)

kang0(k) = ang0(k + 1) - ang0(k) + kperr0(k)

kang1(k) = ang1(k + 1) - ang1(k) + kperr1(k)

kang2(k) = ang2(k + 1) - ang2(k) + kperr2(k)

a = Form1.B_8164.StartTRMove(0, kang0(k), npuls0(k), npuls0(k + 1), dt, 0)

a = Form1.B_8164.StartTRMove(1, kang1(k), npuls1(k), npuls1(k + 1), dt, 0)

a = Form1.B_8164.StartTRMove(2, kang2(k), npuls2(k), npuls2(k + 1), dt, 0)

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1,

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k))

ftim0 = tim0(k) - tim0(k - 1): 'If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1))

If ftim0 < dt * 10000000 Then GoTo 20

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

 117

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub mot6() ‘Algorithm 6

Form1.Cls: Call path

coe = InputBox("pos. gain"): If coe = "" Then Exit Sub

Call initialm

perr0(1) = ang0(1) - pos0(0): kperr0(1) = coe * perr0(1)

perr1(1) = ang1(1) - pos1(0): kperr1(1) = coe * perr1(1)

perr2(1) = ang2(1) - pos2(0): kperr2(1) = coe * perr2(1)

kang0(1) = ang0(2) + kperr0(1)

kang1(1) = ang1(2) + kperr1(1)

kang2(1) = ang2(2) + kperr2(1)

a = Form1.B_8164.StartTAMove(0, kang0(1), npuls0(1), npuls0(2), dt, 0)

a = Form1.B_8164.StartTAMove(1, kang1(1), npuls1(1), npuls1(2), dt, 0)

a = Form1.B_8164.StartTAMove(2, kang2(1), npuls2(1), npuls2(2), dt, 0)

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1,

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1))

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0))

If ftim0 < dt * 10000000 Then GoTo 10

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

perr0(k) = ang0(k) - pos0(k - 1): kperr0(k) = coe * perr0(k)

perr1(k) = ang1(k) - pos1(k - 1): kperr1(k) = coe * perr1(k)

perr2(k) = ang2(k) - pos2(k - 1): kperr2(k) = coe * perr2(k)

kang0(k) = ang0(k + 1) + kperr0(k)

kang1(k) = ang1(k + 1) + kperr1(k)

kang2(k) = ang2(k + 1) + kperr2(k)

a = Form1.B_8164.StartTAMove(0, kang0(k), npuls0(k), npuls0(k + 1), dt, 0)

a = Form1.B_8164.StartTAMove(1, kang1(k), npuls1(k), npuls1(k + 1), dt, 0)

a = Form1.B_8164.StartTAMove(2, kang2(k), npuls2(k), npuls2(k + 1), dt, 0)

 118

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1,

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k))

ftim0 = tim0(k) - tim0(k - 1): 'If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1))

If ftim0 < dt * 10000000 Then GoTo 20

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub mot5() ‘Algorithm 5

Form1.Cls: Call path

coep = InputBox("pos. gain"): If coep = "" Then Exit Sub

coev = InputBox("vel. gain"): If coev = "" Then Exit Sub

Call initialm

npuls0(1) = 0: npuls1(1) = 0: npuls2(1) = 0

perr0(1) = ang0(2) - pos0(0): kperr0(1) = coep * perr0(1)

perr1(1) = ang1(2) - pos1(0): kperr1(1) = coep * perr1(1)

perr2(1) = ang2(2) - pos2(0): kperr2(1) = coep * perr2(1)

verr0(1) = npuls0(2) - v0(0): If npuls0(2) < 0 Then verr0(1) = npuls0(2) + v0(0): kverr0(1) =

coev * verr0(1)

verr1(1) = npuls1(2) - v1(0): If npuls1(2) < 0 Then verr1(1) = npuls1(2) + v1(0): kverr1(1) =

coev * verr1(1)

verr2(1) = npuls2(2) - v2(0): If npuls2(2) < 0 Then verr2(1) = npuls2(2) + v2(0): kverr2(1) =

coev * verr2(1)

a = Form1.B_8164.StartTAMove(0, kperr0(1), npuls0(1), kverr0(1), dt, 0)

a = Form1.B_8164.StartTAMove(1, kperr1(1), npuls1(1), kverr1(1), dt, 0)

a = Form1.B_8164.StartTAMove(2, kperr2(1), npuls2(1), kverr2(1), dt, 0)

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): 'a = Form1.B_8164.GetGeneralCounter(1,

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1))

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0))

If ftim0 < dt * 10000000 Then GoTo 10

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

 119

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

perr0(k) = ang0(k + 1) - pos0(k - 1): kperr0(k) = coep * perr0(k)

perr1(k) = ang1(k + 1) - pos1(k - 1): kperr1(k) = coep * perr1(k)

perr2(k) = ang2(k + 1) - pos2(k - 1): kperr2(k) = coep * perr2(k)

verr0(k) = npuls0(k + 1) - v0(k - 1): If npuls0(k + 1) < 0 Then verr0(k) = npuls0(k + 1) + v0(k -

1): kverr0(k) = coev * verr0(k)

verr1(k) = npuls1(k + 1) - v1(k - 1): If npuls1(k + 1) < 0 Then verr1(k) = npuls1(k + 1) + v1(k -

1): kverr1(k) = coev * verr1(k)

verr2(k) = npuls2(k + 1) - v2(k - 1): If npuls2(k + 1) < 0 Then verr2(k) = npuls2(k + 1) + v2(k -

1): kverr2(k) = coev * verr2(k)

a = Form1.B_8164.StartTAMove(0, kperr0(k), kverr0(k - 1), kverr0(k), dt, 0)

a = Form1.B_8164.StartTAMove(1, kperr1(k), kverr1(k - 1), kverr1(k), dt, 0)

a = Form1.B_8164.StartTAMove(2, kperr2(k), kverr2(k - 1), kverr2(k), dt, 0)

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): ' a = Form1.B_8164.GetGeneralCounter(1,

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k))

ftim0 = tim0(k) - tim0(k - 1): ' If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1))

If ftim0 < dt * 10000000 Then GoTo 20

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub mot4() ‘Algorithm 4

Form1.Cls: Call path

coe = InputBox("pos. gain"): If coe = "" Then Exit Sub

Call initialm

perr0(1) = ang0(2) - pos0(0): kperr0(1) = coe * perr0(1)

perr1(1) = ang1(2) - pos1(0): kperr1(1) = coe * perr1(1)

perr2(1) = ang2(2) - pos2(0): kperr2(1) = coe * perr2(1)

a = Form1.B_8164.StartTAMove(0, kperr0(1), npuls0(1), npuls0(2), dt, 0)

a = Form1.B_8164.StartTAMove(1, kperr1(1), npuls1(1), npuls1(2), dt, 0)

a = Form1.B_8164.StartTAMove(2, kperr2(1), npuls2(1), npuls2(2), dt, 0)

 120

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1,

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1))

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0))

If ftim0 < dt * 10000000 Then GoTo 10

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

perr0(k) = ang0(k + 1) - pos0(k - 1): kperr0(k) = coe * perr0(k)

perr1(k) = ang1(k + 1) - pos1(k - 1): kperr1(k) = coe * perr1(k)

perr2(k) = ang2(k + 1) - pos2(k - 1): kperr2(k) = coe * perr2(k)

a = Form1.B_8164.StartTAMove(0, kperr0(k), npuls0(k), npuls0(k + 1), dt, 0)

a = Form1.B_8164.StartTAMove(1, kperr1(k), npuls1(k), npuls1(k + 1), dt, 0)

a = Form1.B_8164.StartTAMove(2, kperr2(k), npuls2(k), npuls2(k + 1), dt, 0)

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1,

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k))

ftim0 = tim0(k) - tim0(k - 1): 'If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1))

If ftim0 < dt * 10000000 Then GoTo 20

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub mot3() ‘Algorithm 3

Form1.Cls: Call path: Call initialm

a = Form1.B_8164.StartTAMove(0, ang0(2), npuls0(1), npuls0(2), dt, 0)

a = Form1.B_8164.StartTAMove(1, ang1(2), npuls1(1), npuls1(2), dt, 0)

a = Form1.B_8164.StartTAMove(2, ang2(2), npuls2(1), npuls2(2), dt, 0)

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): 'a = Form1.B_8164.GetGeneralCounter(1,

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1))

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0))

If ftim0 < dt * 10000000 Then GoTo 10

 121

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

a = Form1.B_8164.StartTAMove(0, ang0(k + 1), npuls0(k), npuls0(k + 1), dt, 0)

a = Form1.B_8164.StartTAMove(1, ang1(k + 1), npuls1(k), npuls1(k + 1), dt, 0)

a = Form1.B_8164.StartTAMove(2, ang2(k + 1), npuls2(k), npuls2(k + 1), dt, 0)

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1,

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k))

ftim0 = tim0(k) - tim0(k - 1): ' If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1))

If ftim0 < dt * 10000000 Then GoTo 20

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub mot2() ‘Algorithm 2

Form1.Cls: Call path: Call initialm

a = Form1.B_8164.TVMove(0, npuls0(1), npuls0(2), dt)

a = Form1.B_8164.TVMove(1, npuls1(1), npuls1(2), dt)

a = Form1.B_8164.TVMove(2, npuls2(1), npuls2(2), dt)

Sleep (dt * 1000)

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

a = Form1.B_8164.VChange(0, npuls0(k + 1), dt)

a = Form1.B_8164.VChange(1, npuls1(k + 1), dt)

a = Form1.B_8164.VChange(2, npuls2(k + 1), dt)

Sleep (dt * 1000)

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

 122

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

If npuls0(k) > 0 And npuls0(k + 1) < 0 Then Form1.B_8164.Axis0.OutputMode =

OUT_RISING_DIR_HIGH

If npuls0(k) < 0 And npuls0(k + 1) > 0 Then Form1.B_8164.Axis0.OutputMode =

OUT_RISING_DIR_HIGH

If npuls1(k) > 0 And npuls1(k + 1) < 0 Then Form1.B_8164.Axis1.OutputMode =

OUT_RISING_DIR_HIGH

If npuls1(k) < 0 And npuls1(k + 1) > 0 Then Form1.B_8164.Axis1.OutputMode =

OUT_RISING_DIR_HIGH

If npuls2(k) > 0 And npuls2(k + 1) < 0 Then Form1.B_8164.Axis2.OutputMode =

OUT_RISING_DIR_HIGH

If npuls2(k) < 0 And npuls2(k + 1) > 0 Then Form1.B_8164.Axis2.OutputMode =

OUT_RISING_DIR_HIGH

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub mot1() ‘Algorithm 1

Form1.Cls: Call path: Call initialm

a = Form1.B_8164.TVMove(0, npuls0(1), npuls0(2), dt)

a = Form1.B_8164.TVMove(1, npuls1(1), npuls1(2), dt)

a = Form1.B_8164.TVMove(2, npuls2(1), npuls2(2), dt)

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1,

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1))

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0))

If ftim0 < dt * 10000000 Then GoTo 10

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(1))

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a =

Form1.B_8164.GetPosition(2, pos2(1))

For k = 2 To ns - 1

a = Form1.B_8164.VChange(0, npuls0(k + 1), dt): a = Form1.B_8164.VChange(1, npuls1(k +

1), dt): a = Form1.B_8164.VChange(2, npuls2(k + 1), dt)

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): ' a = Form1.B_8164.GetGeneralCounter(1,

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k))

ftim0 = tim0(k) - tim0(k - 1): ' If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1))

 123

If ftim0 < dt * 10000000 Then GoTo 20

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(k))

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a =

Form1.B_8164.GetPosition(2, pos2(k))

If npuls0(k) > 0 And npuls0(k + 1) < 0 Then Form1.B_8164.Axis0.OutputMode =

OUT_RISING_DIR_HIGH

If npuls0(k) < 0 And npuls0(k + 1) > 0 Then Form1.B_8164.Axis0.OutputMode =

OUT_RISING_DIR_HIGH

If npuls1(k) > 0 And npuls1(k + 1) < 0 Then Form1.B_8164.Axis1.OutputMode =

OUT_RISING_DIR_HIGH

If npuls1(k) < 0 And npuls1(k + 1) > 0 Then Form1.B_8164.Axis1.OutputMode =

OUT_RISING_DIR_HIGH

If npuls2(k) > 0 And npuls2(k + 1) < 0 Then Form1.B_8164.Axis2.OutputMode =

OUT_RISING_DIR_HIGH

If npuls2(k) < 0 And npuls2(k + 1) > 0 Then Form1.B_8164.Axis2.OutputMode =

OUT_RISING_DIR_HIGH

Next k

Call closem: Call plot2: Call write1: MsgBox ("")

End Sub

Sub initialm() ‘Initials algorithms

a = Form1.B_8164.SetContinuousMove(0, 1): a = Form1.B_8164.SetContinuousMove(1, 1): a

= Form1.B_8164.SetContinuousMove(2, 1)

a = Form1.B_8164.FixSpeedRange(0, 100000): a = Form1.B_8164.FixSpeedRange(1,

100000): a = Form1.B_8164.FixSpeedRange(2, 100000)

a = Form1.B_8164.SetGeneralCounter(0, 3, 0): a = Form1.B_8164.SetGeneralCounter(1, 3, 0):

a = Form1.B_8164.SetGeneralCounter(2, 3, 0)

a = Form1.B_8164.SetPosition(0, ang0(1)): a = Form1.B_8164.SetPosition(1, ang1(1)): a =

Form1.B_8164.SetPosition(2, ang2(1))

a = Form1.B_8164.GetCurrentSpeed(0, v0(0)): a = Form1.B_8164.GetCurrentSpeed(1, v1(0)):

a = Form1.B_8164.GetCurrentSpeed(2, v2(0))

a = Form1.B_8164.GetPosition(0, pos0(0)): a = Form1.B_8164.GetPosition(1, pos1(0)): a =

Form1.B_8164.GetPosition(2, pos2(0))

a = Form1.B_8164.GetGeneralCounter(0, tim0(0)): a = Form1.B_8164.GetGeneralCounter(1,

tim1(0)): a = Form1.B_8164.GetGeneralCounter(2, tim2(0))

End Sub

 124

Sub closem() ‘Closes algorithms

a = Form1.B_8164.SDStop(0, Tacc): a = Form1.B_8164.SDStop(1, Tacc): a =

Form1.B_8164.SDStop(2, Tacc)

a = Form1.B_8164.GetGeneralCounter(0, tim0(ns)): a = Form1.B_8164.GetGeneralCounter(1,

tim1(ns)): a = Form1.B_8164.GetGeneralCounter(2, tim2(ns))

ftim0 = tim0(ns) - tim0(0): If ftim0 < (tim1(ns) - tim1(0)) Then ftim0 = (tim1(ns) - tim1(0)): If

ftim0 < (tim2(ns) - tim2(0)) Then ftim0 = (tim2(ns) - tim2(0))

a = Form1.B_8164.GetCurrentSpeed(0, v0(ns)): a = Form1.B_8164.GetCurrentSpeed(1,

v1(ns)): a = Form1.B_8164.GetCurrentSpeed(2, v2(ns))

a = Form1.B_8164.UnFixSpeedRange(0): a = Form1.B_8164.UnFixSpeedRange(1): a =

Form1.B_8164.UnFixSpeedRange(2)

Form1.Print ftim0

a = Form1.B_8164.GetPosition(0, pos0(ns)): a = Form1.B_8164.GetPosition(1, pos1(ns)): a =

Form1.B_8164.GetPosition(2, pos2(ns))

For k = 1 To ns: yr0(k) = ang0(k): yr1(k) = ang1(k): yr2(k) = ang2(k): Next k

For k = 1 To ns: yrm0(k) = pos0(k - 1): yrm1(k) = pos1(k - 1): yrm2(k) = pos2(k - 1): Next k

End Sub

Sub write1() ‘Writes data into a file

fl0 = "d:\r06\": flth = fl0 + "r06wr.txt"

Open flth For Output As 1

t = 0

For k = 1 To ns

Print #1, Str(t), Str(yr0(k)), Str(yrm0(k)), Str(yr1(k)), Str(yrm1(k)), Str(yr2(k)), Str(yrm2(k))

t = t + dt

Next k

Close #1

End Sub

Sub path() ‘Creates reference curve data

fl0 = "d:\r06\"

flth = fl0 + "r06p.txt": Open flth For Input As 1

For k = 1 To 4: Line Input #1, xc: Next k: k = 0

10 If EOF(1) = -1 Then GoTo 20

k = k + 1: Input #1, t, xc, xc, th0, xc, xc, xc, xc, th1, xc, xc, xc, xc, th2, xc, xc, xc, xc, r0, xc,

xc, xc, r1, xc, xc, xc, r2

tr(k) = t: thr0(k) = th0: ang0(k) = r0: thr1(k) = th1: ang1(k) = r1: thr2(k) = th2: ang2(k) = r2

GoTo 10

20 Close #1: ns = k

 125

dt = tr(2) - tr(1)

For k = 1 To ns: npuls0(k) = thr0(k) * ngear * nenc / 360: npuls1(k) = thr1(k) * ngear * nenc /

360: npuls2(k) = thr2(k) * ngear * nenc / 360: Next k 'npuls velocity

For k = 1 To ns: ang0(k) = ang0(k) * ngear * nenc / 360: ang1(k) = ang1(k) * ngear * nenc /

360: ang2(k) = ang2(k) * ngear * nenc / 360: Next k 'ang position

Form1.B_8164.Axis0.OutputMode = OUT_RISING_DIR_LOW

Form1.B_8164.Axis1.OutputMode = OUT_RISING_DIR_LOW

Form1.B_8164.Axis2.OutputMode = OUT_RISING_DIR_LOW

End Sub

Sub stop1() ‘Stops all axes

a = Form1.B_8164.SDStop(0, 0.001)

a = Form1.B_8164.SDStop(1, 0.001)

a = Form1.B_8164.SDStop(2, 0.001)

End Sub

Sub move3li() ‘Three axes linear interpolation

Dim ax(2) As Integer

ngear = 74: th01 = 0: th02 = -30: th11 = 0: th12 = -40: th21 = 0: th22 = -50: dt = 1

th0 = th02 - th01: th1 = th12 - th11: th2 = th22 - th21

th0 = th0 * 2048 * ngear / 360: th1 = th1 * 2048 * ngear / 360: th2 = th2 * 2048 * ngear / 360

a = Form1.B_8164.SetPosition(0, 0): a = Form1.B_8164.SetPosition(1, 0): a =

Form1.B_8164.SetPosition(2, 0)

ax(0) = 0: ax(1) = 1: ax(2) = 2

a = Form1.B_8164.StartTRLine3(ax, th0, th1, th2, 0, 100000, 0.01, 0.01)

End Sub

Sub move1() ‘Move one axis

naxis = 0: th1 = 0: th2 = 360: dt = 1

dth = th2 - th1: dth = dth * nenc * ngear / 360

svel = 0: mvel = (dth - 3 * svel * Tacc) / (dt - 3 * Tacc): SVacc = (mvel - svel) / 3

a = Form1.B_8164.StartSRMove(naxis, dth, svel, mvel, Tacc, Tacc, SVacc, SVacc)

End Sub

Sub readp() ‘Reads position (feedback)

Dim fdb0 As Double: Dim fdb1 As Double: Dim fdb2 As Double

a = Form1.B_8164.GetPosition(0, fdb0): fdb0 = fdb0 * 360 / nenc / ngear

a = Form1.B_8164.GetPosition(1, fdb1): fdb1 = fdb1 * 360 / nenc / ngear

a = Form1.B_8164.GetPosition(2, fdb2): fdb2 = fdb2 * 360 / nenc / ngear

 126

Form1.Text1.Text = fdb0: Form1.Text5.Text = fdb1: Form1.Text6.Text = fdb2

End Sub

Sub savep() ‘Saves last positions into a file

Dim fdb0 As Double

Dim fdb1 As Double

Dim fdb2 As Double

a = Form1.B_8164.GetPosition(0, fdb0): a = Form1.B_8164.GetPosition(1, fdb1): a =

Form1.B_8164.GetPosition(2, fdb2)

Open fl0 + "lastp.txt" For Output As 1

Print #1, fdb0, Chr(9), fdb1, Chr(9), fdb2

Close #1

End

End Sub

Sub plot2() ‘Plots curves on the screen

yr0max = yr0(1): yr0min = yr0max: yr1max = yr1(1): yr1min = yr1max: yr2max = yr2(1):

yr2min = yr2max

For k = 2 To ns

If yr0min > yr0(k) Then yr0min = yr0(k): If yr0max < yr0(k) Then yr0max = yr0(k)

If yr1min > yr1(k) Then yr1min = yr1(k): If yr1max < yr1(k) Then yr1max = yr1(k)

If yr2min > yr2(k) Then yr2min = yr2(k): If yr2max < yr2(k) Then yr2max = yr2(k)

Next k

Form1.Picture1.Cls: Form1.Picture2.Cls: Form1.Picture3.Cls

Form1.Picture1.Scale (0, 0.9 * yr0max)-(1.01 * tr(ns), 1.1 * yr0min)

Form1.Picture2.Scale (0, 0.9 * yr1max)-(1.01 * tr(ns), 1.1 * yr1min)

Form1.Picture3.Scale (0, 0.9 * yr2max)-(1.01 * tr(ns), 1.1 * yr2min)

Form1.Picture1.PSet (tr(1), yr0(1)): Form1.Picture2.PSet (tr(1), yr1(1)): Form1.Picture3.PSet

(tr(1), yr2(1))

For k = 2 To ns: Form1.Picture1.Line -(tr(k), yr0(k)): Form1.Picture2.Line -(tr(k), yr1(k)):

Form1.Picture3.Line -(tr(k), yr2(k)): Next k

Form1.Picture1.PSet (tr(1), yrm0(1)): Form1.Picture2.PSet (tr(1), yrm1(1)):

Form1.Picture3.PSet (tr(1), yrm2(1))

For k = 2 To ns: Form1.Picture1.Line -(tr(k), yrm0(k)): Form1.Picture2.Line -(tr(k), yrm1(k)):

Form1.Picture3.Line -(tr(k), yrm2(k)): Next k

End Sub

	thesis
	cp1
	cp2
	cp3
	cp4
	cp5
	cp6
	cp7
	cp8_conclusions
	references
	appA
	appB
	appC1
	appC2
	Assembly
	Lower platform
	Upper platform
	Motor joint connection
	Lower connection part
	Upper connection part
	Stud bolt

	appD
	appE

