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PC-BASED CONTROL OF HEXAPOD 

 

ABSTRACT 

 

In this study, the aim is to control an hexapod with PC-based control. In this 

manner, a 6-DOF parallel manipulator known as hexapod used in the areas such as 

precise manufacturing and medicine is examined.  For the experimental study, an 

hexapod is designed and manufactured. Simulations are done in VisualNASTRAN to 

determine actuator lengths of the hexapod. Actuators of the hexapod are linear step 

motors. In order to control the hexapod, an integrated VisualBASIC program which 

uses VisualNASTRAN is developed. The program runs simulation, takes simulation 

results as inputs and controls linear step motors via PC-based motion controllers. 

Point-to-point open loop control is applied. Positions of the hexapod in consequence 

of controlling are measured with a coordinate measuring machine (CMM) and results 

are presented. Furthermore, for another experimental study, a servo motor 

experimental rig is set with three AC servo motors which are actuators of a 3-DOF 

serial manipulator on which the hexapod will be attached. Simulations are done in 

VisualNASTRAN to determine actuator positions. VisualBASIC programs whose 

inputs are simulation results are developed to control servo motors according to 

different control methods and algorithms via PC-based motion control cards. Open 

loop and closed loop path tracking control are applied. Results are presented. Motors 

are successfully followed reference curves and give good responses regarding 

proposed algorithms.  

 

Keywords: Hexapod, micro-positioning, PC-based motion control, step motor 

control, servo motor control. 

 

 



 

v 

HEGZAPODUN BİLGİSAYAR TABANLI KONTROLÜ 

 

ÖZ 

 

Bu çalışmada amaç bilgisayar tabanlı kontrol ile bir hegzapodu kontrol etmektir. 

Bu bağlamda, hassas üretim ve tıp gibi alanlarda kullanılan hegzapod olarak bilinen 

6 serbestlik dereceli bir paralel manipülatör incelenmiştir. Deneysel çalışma için, bir 

hegzapod tasarlanmış ve imal edilmiştir. Hegzapodun tahrik elemanlarının 

uzunluklarını belirlemek için VisualNASTRAN’da simülasyonlar yapılmıştır. 

Hegzapodun tahrik elemanları adım motor sürücülü doğrusal motorlardır. 

Hegzapodun kontrolü için VisualNASTRAN’ı kullanan bir entegre VisualBASIC 

programı geliştirilmiştir. Program simülasyonu çalıştırır, simülasyon sonuçlarını 

girdi olarak alır ve bilgisayar tabanlı hareket kontrol üniteleri aracılığıyla adım motor 

sürücülü doğrusal motorları kontrol eder. Noktadan noktaya açık devre hareket 

kontrolü uygulanmıştır. Hegzapodun kontrol sonucundaki konumları, bir koordinat 

ölçüm makinesi ile ölçülmüş ve sonuçlar sunulmuştur. Ayrıca, diğer bir deneysel 

çalışma için üzerine hegzapodun bağlanacağı bir 3 serbestlik dereceli seri 

manipülatörün tahrik elemanları olan üç AC servo motor ile, bir servo motor deney 

düzeneği kurulmuştur. Tahrik elemanlarının konumlarını belirlemek için 

VisualNASTRAN’da simülasyonlar yapılmıştır. Servo motorların değişik kontrol 

yöntemleri ve algoritmalara göre bilgisayar tabanlı hareket kontrol kartları üzerinden 

kontrolü için, girdileri simülasyon sonuçları olan VisualBASIC programları 

geliştirilmiştir. Açık devre ve kapalı devre yörünge izleme kontrolü uygulanmıştır. 

Sonuçlar sunulmuştur. Motorlar önerilen algoritmalara göre hedef eğrileri başarıyla 

takip etmiş ve iyi cevaplar vermişlerdir.   

 

Anahtar sözcükler: Hegzapod, mikro-konumlandırma, bilgisayar tabanlı hareket 

kontrolü, adım motor kontrolü, servo motor kontrolü. 
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CHAPTER ONE 

INTRODUCTION 

 

Controlling of robot manipulators in micron ranges is an important issue of 

developing technology. Micro-positioning robots have a wide variety of applications 

from surgery robots to space shuttles. These robots can precisely follow a path 

described with respect to the work. Working with more precise motions and making 

more precise machines decrease errors which might come into existence because of 

effects of standard machines and workers. By more precise manufacturing machines, 

dimensions of manufactured parts become more accurate. Machines which made by 

more accurate parts work with less errors. Thus, machines make much more accurate 

and reliable products. Parallel manipulators are used for micro-positioning. Best-

known type of parallel manipulators is hexapod. Hexapods are suitable for micro-

positioning, because hexapods have 6 degrees of freedom. 

 

In this thesis, PC-based control of a 6-DOF parallel manipulator namely hexapod 

is comprised. In this manner, hexapod for micro-positioning and controlling of 

actuators of a serial manipulator on which the parallel manipulator will be attached at 

future works are considered. Actuators of the hexapod and the serial manipulator are 

linear step motors and brushless AC servo motors, respectively. These actuators are 

controlled by PC-based motion control cards. Point-to-point open loop control is 

applied to linear step motors, so to hexapod; and open loop and closed loop control is 

applied to servo motors for path following.  

 

In chapter one, there is introductory knowledge about the thesis. In the second 

chapter, in order to determine minimum requirements of actuators and joints of 

hexapod, an initial design is considered. In the third chapter, supplied actuators and 

joints are presented. In the fourth chapter, the hexapod is designed and manufactured. 

And control system of the hexapod is created. In the fifth chapter, the hexapod is 

simulated according to manufactured hexapod and controlled with respect to 

simulation results with developed programs. In the following chapter, positions of 

the hexapod are measured and the results are presented. In the seventh chapter, an 

 1
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experimental rig is set with actuators of the designed serial 3-DOF manipulator; 

different control algorithms are examined with developed programs. It is tried to find 

which control algorithm and gain coefficients are appropriate for the system. 

 

Simulations are done with VisualNASTRAN (MSC Software Corp., 2006). In 

order for programming, VisualBASIC (MSDN, 2006) is used. 3D solid modelling 

and 2D manufacturing drawings are accomplished by I-Deas and SolidWorks 

(SolidWorks Corp., 2006) solid modelling programs. 3D models of designed serial 

manipulator are created with ABAQUS (Abaqus Inc., 2006) analysis program. An 

integrated analysis is performed. 

 

This thesis is a part of a research project (TUBITAK, Project number:104M373). 

Some sections of the thesis are created by taking consideration of the project reports 

of Karagülle, H., Sarıgül, S., Kıral, Z., Varol, K., & Malgaca, L. (01 July 2006, 01 

July 2007). The flow chart of the integrated analysis can be seen in Figure 1.1. 

Researches of the project is followed the flow chart. 

 

Integrated Analysis for Design of Mechatronic Systems 

Work 

Design (Solid modelling, assembly) 

 
Figure 1.1 The flow chart of the integrated analysis. 

Kinetic analysis (Rigid body dynamics) 

Kinematic analysis 

Static deformations, vibration, fatigue 
(with finite element) analyses 

Selections of actuation and 
measurement systems, control design 

and analyses 

Evaluation / 
Optimisation 

Manufacturing 
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This thesis particularly contains “selection of actuation and measurement systems, 

control design and analyses” part of the flow chart (Fig. 1.1). 

 

Because of examining robot manipulators with PC-based motion control, the 

explanations about them will be useful. 

 

1.1 Robot Manipulators 

 

Robots are used in many varied applications, from welding to surgery. A machine 

has to be able to do followings for being a robot: getting information from 

surroundings; doing something physical, such as moving or manipulating objects; 

reprogrammable, it can do different things; function autonomously and / or interact 

with human beings. Robot name comes from a play whose name is Rossum’s 

Universal Robots of Czech writer Karel Capek, published in 1921 (McKerrow, 

1991). Robotic Institute of America defines a robot as: “A robot is a re-

programmable multi-functional manipulator designed to move material, parts, tools, 

or specialized devices, through variable programmed motions for the performance of 

a variety of tasks.” (Tsai, 1999). 

 

Robot manipulators are divided into parallel robot manipulators and serial robot 

manipulators with respect to their kinematic chains. If manipulators having an open 

kinematic chain structure, are called serial manipulators; having a closed kinematic 

chain, are called parallel manipulators. 

 

1.1.1 Parallel Manipulators 

 

A parallel manipulator is a closed chain mechanism which has two platforms 

(base and moving platform) connected together by at least two independent 

kinematic chains. Moving platform is connected to the fixed base by several limbs or 

legs. Typically the number of limbs is equal to the number of degrees of freedom 
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such that every limb is controlled by one actuator and all the actuators can be 

mounted at or near the fixed base (Tsai, 1999). 

 

The parallel manipulators have some advantages such as higher stiffness and 

greater load-to-weight ratio because each actuated leg has to carry only a part of 

payload. This is quite energy efficient and the robot can handle heavy loads. In 

situations, where the accuracy, high speed and stiffness are more important than 

workspace, parallel manipulators can be alternative to serial ones whereas reduced 

workspace, difficult mechanical design, more complex direct kinematics and 

complex control algorithms are the main disadvantages of them.  

 

Parallel manipulators came into existence when Gough & Whitenhall (1962) 

devised a six-linear jack system as a universal tire-testing machine. Stewart (1965) 

designed an aircraft simulator with a platform and six actuators. Thus, 6-DOF 

parallel manipulators namely hexapods, are also known as Stewart – Gough 

platforms. A schematic view of an hexapod is given in Figure 1.2. 

 

 

 
Figure 1.2 A schematic view of an hexapod. 
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A hexapod producer company called PI (Physik Instrumente Co., 2006) is 

announces advantages of hexapods as: 

 

• Lower inertia, 

• Better dynamic behaviour, 

• Smaller package size, 

• Higher stiffness, 

• No accumulation of position errors, 

• Reduced run out errors, 

• No moving cables: better repeatability and reliability. 

 

 

Application areas of hexapods are presented from PI Company (Physik 

Instrumente Co., 2006) as following: 

 

• Alignment and tracking of optics, electron beams, lasers, etc., 

• Satellite testing equipment, 

• Surgical robots, 

• Micromachining,  

• Micromanipulation (life sciences), 

• X-ray diffraction measurements, 

• Semiconductor handling systems,  

• Tool control for precision machining and manufacturing, 

• Fine positioning of active secondary mirror platforms in astronomical 

telescopes. 

 

 

In Figure 1.3, hexapods in surgical applications can be found. 
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Figure 1.3 Hexapods in surgical applications. 

 

1.1.2 Serial Manipulators 

 

Serial manipulators are used to be the most common type of robot manipulators. 

They have open kinematic chain and serially connected links. This type of 

manipulators has the advantages of to be able to achieve high velocities and 

accelerations because the end-effector moves generally faster than the actuated links 

and their workspaces are relatively high. They have also larger workspace than 

parallel manipulators. Serial manipulators do not have energy efficiency because all 

actuators have to actuate other links and actuators through the end point. A serial 

type robot manipulator is presented in Figure 1.4. 

 

 
Figure 1.4 A serial manipulator (Puma type) 
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1.2 Controllers and Actuators  

 

1.2.1 Controllers 

 

Motors can be controlled by PC-based, stand-alone or hybrid systems. A hybrid 

system is a sum of PC-based and stand-alone units. In this thesis, motors are 

controlled by ADLINK PCI 8132 and PCI 8164 motion control cards (Adlink Inc., 

2006) as PC-based motion control. Comprehensive knowledge about PCI 8132 and 

PCI 8164 motion control card can be found in Appendix A. 

 

PC-based systems require a PC to run all time when the process is running. Stand-

alone units do not require a PC to run. However, they might use a PC for 

programming. Hybrid units contain a PC and a stand-alone unit. Hybrid units run 

without PCs but use PCs to add more functions. A comparison table is complied in 

Table 1.1 (Custom Solutions Inc., 2006). 

 
Table 1.1 Comparison of PC-based, stand-alone and hybrid systems. 

 PC-based Stand-alone Hybrid 

Reliability 
Low 
(Because of PC and 
software failures) 

High 
(Because they do not 
require PCs) 

The same as stand-alone 
units 

Cost Low High Highest  

Power 
consumption 

High 
(Because of PCs) Low 

Higher 
(Because they are a sum 
of two other systems) 

Equipment size High Low Highest 

Noise High 
(Because of PCs) Low The same as stand-alone 

units. 
 

 

1.2.2 Actuators  

 

In this study, electrical motors such as linear step motors for actuation of the 

hexapod and AC servo motors for actuation of the serial manipulator are controlled.  
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An electrical motor is a machine which converts electric energy into mechanical 

energy. When an electric current is passed through a wire loop which is in a 

magnetic field, the loop will rotate and the rotating motion is transmitted to a shaft, 

providing useful mechanical work. A traditional electric motor consists of a 

conducting loop that is mounted on a rotational shaft. The electrical current fed in by 

carbon blocks called brushes and enters the loop through two slip rings. The 

magnetic field around the loop supplied by an iron core field magnet causes the loop 

to turn when current is flowing through it. 

 

1.2.2.1 Linear Step Motors 

 

Step motors are driven by a train of electrical pulses. Pulse train results rotational 

speed. The stator is wound as two separate coils, which produce magnetic fields 

offset angularly by half a rotor pole. These coils are pulsed alternately to produce a 

rotating magnetic field. The rotor which is polarized with alternating north and south 

poles aligns itself with this field, and rotates with it. Each pulse turns the rotor 

through a fixed angle (one step) and consequently, angular position change is 

proportional to the number of pulses. Accurate open loop control of the rotational 

velocity is achieved by controlling the pulse rate. Step motor can slip during rapid 

acceleration of high inertia loads, thus, for accurate open loop control, the pulse 

frequency has to be varied during times of acceleration. Feedback control is used 

with step motors in situations where accuracy is required (McKerrow, 1991). 

 

Advantages of step motors are as the followings (Baldor Co., 2006): 

 

• Step motors can be simply controlled, 

• Step motors have good results at constant loads, 

• Step motors have good results at positional accuracy, 

• Costs of step motors are low. 
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Disadvantages of step motors are as the followings (Baldor Co., 2006): 

 

• Step motors can lose steps, 

• Step motors are not good at varying loads, 

• Step motors have energy inefficiency, 

• Step motors can have resonance problems, 

• Step motors have large motor sizes. 

 

Linear step motors change motion of output shafts from rotational motion to linear 

motion, due to a spindle-nut mechanism. Thus, rotational motion is changed to linear 

motion, basically. Linear motors are more useful than hydraulic-pneumatic systems 

which require pumps and compressors and conditioning the air. Because linear 

motors are driven by electricity; linear motors provide direct linear motion without 

the potential complications associated with pneumatic and hydraulic systems, 

without mechanical linkages such as ball screws or rack-and-pinion systems and 

without noise, oil and large working environments.  

 

1.2.2.2 AC Servo Motors 

 

This kind of motor works with the electrical current flow in the laminate core 

loop. The speed of AC induction motors is set roughly by the motor construction and 

the frequency of the current. In order to control the motor speed, it is necessary to 

use a mechanical transmission. The rotor circuit can be connected to various external 

control circuits to obtain greater flexibility. In recent years the AC servo has taken 

over from the DC servo as the standard drive. These modern motors give higher 

power output and are almost silent in operation.  As they have no brushes, they are 

very reliable and require almost no maintenance in operation. 

 

AC servo motors divided into synchronous and asynchronous (induction) motor. 

A synchronous motor is basically the same as an asynchronous motor. However it is 

slightly different from rotor construction. The rotor construction enables a 
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synchronous motor to rotate at the same speed (in synchronisation) as the stator field. 

(Yaskawa, 2002). 

 

Advantages of servo motors are (Baldor Co., 2006): 

 

• Servo motors have high performance, 

• Servo motors have high speeds available with specialized controls, 

• Servo motors have wide variety of components, 

• Small size. 

 

 

Disadvantages of servo motors are (Baldor Co., 2006): 

 

• High performances of servo motors are limited by controls and controllers, 

• High speed torque of servo motors are limited by commutator or electronics, 

• Servo motors have higher costs compared to step motors. 

 

1.3 Literature Review  

 

6-DOF parallel manipulators were firstly used by Gough & Whitehall (1962) as a 

tire-testing machine. The testing machine was consisted of a six-linear jack system. 

Stewart (1965) designed a 6-DOF parallel manipulator for the usage of flight 

simulator. A systematic study of kinematic structures of parallel manipulators was 

made by Hunt (1983). Since then, parallel manipulators have been taking interests of 

researchers. 

 

Wendlandt & Sastry (1994) examined a Stewart platform for endoscopy in order 

to design and control. The researchers aimed the platform to follow a circled path.  

McInroy (1999) investigated controlling of hexapods by dynamic modelling. Base 

accelerations were included and the model was experimentally verified. A 

comprehensive literature review study was made by Dasgupta & Mruthyunjaya 

(2000). The study contained all topics about hexapods and researches related to these 
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topics made until the publication year. An important study about parallel 

manipulators was the investigating new kinematic structures for parallel 

manipulators (Gao, Li, Zhao, Jin & Zhao, 2002). In that study, researchers developed 

new types of composite links. Joint types related to degree of freedom were 

presented. Alizade & Bayram (2004) classified parallel manipulators according to 

their platform types and connections between them. In another study, active vibration 

control of an hexapod was achieved with sensitivity weightened linear quadratic 

Gaussian (SWLQG) controller (Hauge & Campbell, 2004). Inverse kinematics, 

forward kinematics, error analysis and workspace evaluation were examined in the 

paper of Jelenkovic, Jakobovic & Budin (2004). Drive singularities of parallel 

manipulators were investigated by Ider (2005). Kim, Cho & Lee successfully 

controlled a 6-DOF parallel manipulator, namely hexapod, with respect to robust 

nonlinear control. The researchers considered friction of each actuator because 

friction may degrade control performance. In this manner, in order to determine 

friction values, a friction estimator was used.  

 

There are many researches about controlling of servo motors and step motors. 

Van de Straete, Degezelle, De Schutter & Belmans (1998) have investigated servo 

motor selection criterions for mechatronic applications. Servo motors were modelled 

and simulated by using their mechanical and electrical properties in the paper of 

Dulger, Kirecci, & Topalbekiroglu (2001). By fuzzy logic control, an ultrasonic 

motor (Bal, Bekiroglu, Demirbas, & Colak, 2004) and a DC servo motor 

(Khongkoom, Kanchanathep, Nopnakeepong, Tamthong, Tunyasrirut, & Kagawa, 

2000), (Lin, 1994) and (Lu, 1997) were controlled. Dandil, Gokbulut, & Ata (2004) 

and Lin & Wai (1998) investigated, respectively, asynchronous motors and 

synchronous motors with hybrid controllers which were adjusted by proportional-

integral (PI) controllers via neural networks. Servo motors were controlled by 

various type control methods such as H∞ robust control (Ximei & Qingding, 2005), 

adaptive fuzzy sliding-mode (Lin & Chiu, 1998), variable structure approach 

(Hashimoto, Yamamoto, Yanagisawa, & Harashima, 1988), micro-processor based 

robust control (Tzou & Wu, 1990) and learning approach (Han, Kim, Ha, Lee, & 

Park, 1995). Lin, Jan, Hwang, & Tsai (2003) studied kinematic analyses of hexapods 
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and controlling of AC servo motors which were used as actuators of hexapods in 

their study. Controlling of AC servo motors were achieved by using an estimator 

which estimated the rotor position as feedback (Yoneya, Yoshimaru, & Togari, 

2000). Comparison of different servo motor drivers can be found in the study of 

Yamamoto & Shinohara (1996). Grimbleby (1995) and Crnosija, Adjukovic, & 

Kuzmanovic (1999) made studies on closed loop control algorithms of step motors 

and controlled step motors by using these algorithms. Mort, Abbod, & Linkens 

(1995) compared step motors which controlled by open loop control with 

proportional-integral (PI) controllers, and DC servo motors which controlled by 

closed loop fuzzy logic control. These two types of motors and methods gave good 

responses. 

 

Studies about PC-based control systems are as followings: Path tracking of a 3-

DOF CNC machine with circular and linear interpolation was examined; and 

tracking error was desired to decrease to minimum (Yang, & Hong, 2001). Ku, 

Larsen, & Cetinkunt (1998) used PC-based motion control cards for nano-positioning 

diamond machining tools. They also controlled the system by neural network. 

Noorani (1990) dealt with controlling of a 6-DOF robot manipulator actuated by step 

motors by giving position and orientation inputs via a computer. 
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CHAPTER TWO 

INITIAL DESIGN OF THE HEXAPOD 

 

2.1 Introduction 

 

There are a lot of different structures of hexapods. After reviewing the literature, 

some different structures were created manually in VisualNASTRAN, to examine 

which type is optimal with respect to joint positions. In this chapter, different joint 

positions are tried and kinematic and kinetic analyses are performed in 

VisualNASTRAN.  

 

2.2 Initial Design 

 

In order to test different joint positions and to find characteristics of actuators and 

joints, a basic model is created (Karagülle et al., 2006). The model is shown in 

Figure 2.1. 

 

 
Figure 2.1 Basic model of hexapod 
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The basic model consists of a movable upper platform, a fixed lower platform and 

linear actuators. There are coordinates on the joint nodes on the platforms. 

Coordinates are assigned due to joint positions and linear actuators are created as 

constraints between coordinates on the upper platform and coordinates on the lower 

platform.  

 

A world coordinate system is placed into the centre of lower platform of hexapod. 

For the design in Figure 2.1, diameter of the lower platform is 250 mm, diameter of 

the upper platform is 348 mm. Joints on the lower platform are placed 17.5 mm 

above with respect to world coordinate system and on a circle whose diameter is 200 

mm; and the angle between closest joints is 20 degrees. Joints on the upper platform 

are placed 7.5 mm below of the centre of upper platform in the z direction and on a 

circle whose diameter is 298 mm; and the angle between joints is 60 degrees. 

 

2.3 Kinematic Analysis 

 

A VisualBASIC program is developed to create “prescribed motion”. Vx, Vy, Vz, 

Wx, Wy, and Wz values are assigned as prescribed motion. These are created with the 

VisualBASIC program with respect to a velocity sinusoid given in Appendix B 

(Karagülle et al., 2006). Inputs of the program are: 

 

tp = 3: t1 = 0.2 * tp: n = 21 

xa = 0: ya = 0: za = 0.23: thxa = 0: thya = 0: thza = 0 

xb = 0: yb = 0.03: zb = 0.2: thxb = 10: thyb = 0: thzb = 0 

 

Where, tp (s) is the period of motion, t1 (s) is acceleration and deceleration time, n 

is number of samples, xa, ya, za, thxa, thya, thza are components of the initial position 

and xb, yb, zb, thxb, thyb, thzb are components of the final position of the centre of the 

upper platform. Units of distances and rotations are meters and degrees, respectively. 

 

It is desired the upper platform to move (0, 0, 0.23; 0, 0, 0) world coordinate point 

to (0, 0.03, 0.2; 10, 0, 0) world coordinate point in 3 seconds. 0.6 seconds is 
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acceleration time and 0.6 seconds is deceleration time and 1.8 seconds is constant 

velocity motion time (Karagülle et al., 2006). 

 

After inserting prescribed motion components into the program, forces of the 

actuators are selected as zero. Thus, the upper platform moves only with velocity 

inputs. Meters are assigned to linear actuators to measure actuator lengths. Meters 

give lengths of actuators while the program is running. Meter values are saved for 

kinetic analysis in a file. Data of meters from this file can be taken by a 

VisualBASIC program. By comparing the values, maximum actuator length change 

is found as 47.58 mm.  

 

2.4 Kinetic Analysis 

 

In the kinetic analysis, “prescribed motion” option of the upper platform is 

disabled in VisualNASTRAN. Actuator lengths are assigned with values which have 

been saved after kinematic analysis. Fx = -10 N, Fy = -10 N, Fz = -100 N force inputs, 

and Tx = 1 Nm, Ty = -1 Nm, Tz = 0 Nm torque inputs are applied to the centre of the 

upper platform. Duration of the motion is taken 3 s and number of samples is 21 

likewise the kinematic analysis. Constraint tension meters are created on the linear 

actuator constraints to measure actuator forces. Meters read the forces which 

occurred when the motion progresses. After the motion is stopped, maximum 

actuator force is found as 54.563 N with a subroutine of the VisualBASIC project 

which is developed (Karagülle et al., 2006).   

 

Minimum requirements of linear motors and spherical joints are determined. 

According to results of the initial design, linear actuators have to have minimum 

47.58 mm stroke and minimum 54.563 N force requirements. Spherical joints must 

have big tilt angle and high precision. These results are used while searching 

appropriate linear motors and joints.  
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CHAPTER THREE 

SELECTION OF APPROPRIATE ACTUATORS AND JOINTS 

 

 

3.1 Introduction 

 

Choosing appropriate actuators and joints is an important part of creating an 

hexapod; because, active parts of an hexapod are linear motors and joints. Other parts 

are rigidly connected. In this chapter, choosing procedure of actuators and joints and 

properties of them are presented. 

 

 

3.2 Selecting Appropriate Linear Actuators 

 

Linear motors and joints were searched over the world and correspondences were 

made with companies which have web sites. Products were compared in terms of 

minimum stroke and minimum force requirements found from kinematic and kinetic 

analyses of the initial design (see Chapter 2). The values are 47.58 mm for minimum 

stroke and 54.563 N for minimum force requirements of linear actuators. They were 

also compared in terms of containing feedback devices, dimensions, precisions, 

velocities, weights, costs and delivery times. Suitable linear motors of companies 

which reply inquiries are presented Table 3.1. 

 

After the comparing process, 4000 pulses/rev precision encoders attached 43K4U 

– 05 – 032ENG type linear motors of HSI Company (HSI Co., 2006) are supplied. 

One of the linear motors is shown in Figure 3.1. Technical properties of them are 

given in Table 3.2. The dimensions of the motors are presented in Figure 3.2 and 

additional knowledge about dimensions is given in Table 3.3. In addition, linear 

motors of PI Company (PI Co., 2006) might be also a good decision for future 

works. 
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Table 3.1 Linear motor companies and suitable linear motors. 

 Stroke 

(mm) 

Force  

(N) 

Precision 

(μm) 

Velocity 

(mm/s) 

Dimension

(mm) 

Weight  

(g) 

Type  Cost  

(USD) 

PI 50 60 0.5 40 27 x 196 650 DC servo 2900 

Ultra 

Motion 
50.8 335 10 80 42x42x135 - 

Stepper  

motor 
730 

Oriental 40 100 5 30  42x42x180 800 
Stepper 

motor 
1500 

HSI 50.8 220 1.5 76 43x43x162 241 
Stepper 

motor 
120 

Intelidrives - 90 12 - - - 
3 phase 

brushless 

1700- 

2000 

Linmot 100 122 100 4000 227+ 
740+ 

460 
AC servo - 

Iai 50 78.4 20 165 42x47x243 600 AC servo - 

Servoram 54 105 - 1370 84x84x182 7000 Servoram 5244 

 

 

Figure 3.1 43K4U – 05 – 032ENG type linear motor of HSI Company. 

 
Table 3.2 Technical properties of 43K4U – 05 – 032ENG type linear motor. 

Connection 

type 

Operating 

voltage 

(VDC) 

Power

 

(W) 

Step angle 

(deg) 

Precision 

 

(μm) 

Stroke 

 

(mm) 

Force  

 

(N) 

Velocity 

 

(mm/s) 

Bipolar 5 7 0.9 1.5 50.8 220 76 

 

Encoder 

Motor shaft 

External stop 
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Figure 3.2 Dimensions of 43K4U – 05 – 032ENG type linear motor of HSI Company. 

 
Table 3.3 Additional dimensions of 43K4U – 05 – 032ENG type linear motor of HSI Company. 

Stroke 

Inch (mm) 

Dimension “A” 

Inch (mm) 

Dimension “B” 

Inch (mm) 

2.00 (50.8) 2.28 (57.9) 1.66 (42.2) 

 

 

3.3 Selecting Appropriate Joints 

 

As a result of comparing spherical joints which are determined by searching the 

joint suppliers all over the world, twelve items of SRJ008C type 2.5 μm precision 

spherical joints, shown in Figure 3.3, of Hephaist Company (Hephaist Co., 2006) are 

supplied. Technical properties and dimensions are given in Table 3.4. 

 

For investigating effects of different joint types over the precision at future works, 

twelve items of SSF.00.06 type spherical joints, shown in Figure 3.4, of Schaublin 

Company (Schaublin SA Co., 2004) from RS Company (RS Co., 2006) and six items 

of U5-13 161 type universal joints, shown in Figure 3.5, of Lenze Company (Lenze 

Co., 2006) are provided. Technical properties of the spherical joints and the universal 

joints are presented in Table 3.5 and Table 3.6, respectively. 
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Figure 3.3 SRJ008C type spherical joint of Hephaist Company. 

 
Table 3.4 Technical properties and dimensions of SRJ008C type spherical joint of Hephaist Company. 

A B C D E F G H K M N 
Force  

(N) 

Weight  

(kg) 

30 24 7 4 16 12 M5×0.5 5.5 3.4 11 2 540 0.06 

 

 

 
Figure 3.4 SSF.00.06 type spherical joint. 

 
Table 3.5 Properties of SSF.00.06 type spherical joint. 

Dimensions (mm) Static force (N) 

b D H O W Radial Axial 

6 18 6.75 8.96 9 980 240 
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Figure 3.5 U5-13 161 type universal joint. 

 
Table 3.6 Properties of U5-13 161 type universal joint. 

Nominal Torque (Nm) 

(200 rev/min, for 10° max.) 

d 

(mm) 

D 

(mm) 

C 

(mm) 

L1 

(mm) 

L2 

(mm) 

Weight 

(kg) 

22 10 22 12 24 48 0.10 
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CHAPTER FOUR 

DESIGN AND MANUFACTURING OF THE HEXAPOD 

 

 

4.1 Introduction 

 

Parts of the hexapod except from standard parts such as actuators and spherical 

joints are designed and manufactured. In this chapter, design and manufacturing of 

parts of the hexapod are presented. Control and driver systems of the hexapod are 

also set; and these systems are carried out. Simulation view of the hexapod is shown 

in Figure 4.1. Manufactured hexapod is given in Figure 4.2.  

 

 
Figure 4.1 Simulation view of the hexapod. 
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Figure 4.2 Manufactured hexapod. 

 

4.2 Design of the Hexapod 

 

4.2.1 Generating 2D and 3D Drawings of Parts 

 

Parts of the hexapod except from standard parts such as linear actuators and 

spherical joints are designed. Linear motor and spherical joint dimensions which are 

in Chapter 3 are taken as the base for design. Design of the parts is done with I-Deas 

solid modelling program. The parts are saved in “iges” format. Modifications of the 

parts are made with SolidWorks solid modelling program, if needed. Solid models of 

standard parts are also created for simulation (Karagülle et al., 2007). 

 

Firstly, 3D solid models of all parts including linear motors and spherical joints 

are created. These parts are saved into “igs” extended files (Karagülle et al., 2007). 

Then “iges” files are imported manually into VisualNASTRAN to test joint locations 

on the upper and lower platforms. The model is constructed manually in the program 

(Fig. 4.1). Joint locations on the upper platform are not changed. However, joint 

locations on the lower platform are changed until the parts are not collided in the 

simulation when the hexapod goes to its limit points. The angle between closest joint 

locations on the lower platform is designated. After that, details of the platforms are 

determined. Thus, the parts are designed and 3D models of the parts are created. 
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2D manufacturing drawings are generated from the 3D solid parts in I-Deas. 

These drawings are presented in Appendix C (Karagülle et al., 2007). 

 

4.2.2 Testing the Hexapod with VisualNASTRAN 

 

“iges” formatted files of all parts which have been created of the hexapod are 

imported into the program. The parts are renamed. The original names and the 

VisualNASTRAN names of parts are in Table 4.1. 

 
Table 4.1 Original names and VisualNASTRAN names of the parts. 

Original names VisualNASTRAN names 

Lower platform pa 

Base of spherical joint on the lower platform sa 

Shaft of spherical joint on the lower platform lsa 

Lower connection part lca 

Base of linear motor lma 

Encoder lea 

Upper connection part lda 

Stud bolt sp 

Shaft of linear motor lmb 

Joint connection part lcb 

Shaft of spherical joints on the upper platform lsb 

Base of spherical joints on the upper platform sb 

Upper platform pb 

 

 

Coordinates which will connect parts to each other are located onto the parts. 

Coordinate locations with respect to body coordinates of each body are given in 

Table 4.2. In the table, rj notation is used for rigid joint, sj notation is used for 

spherical joint and lm notation is used for linear motor. Coordinates on the lower 

platform are changed regarding the angle between closest joints. This angle (φb) is 

changed 20 deg. to 30 deg., to test colliding of parts if occurs. Coordinates of “pa” 

and “pb” is created by a developed Matlab program which is below: 
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% b means base platform, p means upper platform 
clc, clear 

Db = 348; Dp = 250; Rt = 25; 

Rb = (Db-2*Rt)/2; Rp = (Dp-2*Rt)/2; 

fib = 30*pi/180; fip = 60*pi/180; % joint angles 

b1x = Rb*cos(fib/2); b1y = Rb*sin(fib/2); 

b2x = Rb*cos(120*pi/180-fib/2); b2y = Rb*sin(120*pi/180-fib/2); 

b3x = Rb*cos(120*pi/180+fib/2); b3y = Rb*sin(120*pi/180+fib/2); 

b4x = Rb*cos(240*pi/180-fib/2); b4y = Rb*sin(240*pi/180-fib/2); 

b5x = Rb*cos(240*pi/180+fib/2); b5y = Rb*sin(240*pi/180+fib/2); 

b6x = Rb*cos(-fib/2); b6y = Rb*sin(-fib/2); 

 

p1x = Rb*cos(fip/2); p1y = Rb*sin(fip/2); 

p2x = Rb*cos(120*pi/180-fip/2) ; p2y = Rb*sin(120*pi/180-fip/2); 

p3x = Rb*cos(120*pi/180+fip/2) ; p3y = Rb*sin(120*pi/180+fip/2); 

 p4x = Rb*cos(240*pi/180-fip/2); p4y = Rb*sin(240*pi/180-fip/2); 

p5x = Rb*cos(240*pi/180+fip/2) ; p5y = Rb*sin(240*pi/180+fip/2); 

 p6x = Rb*cos(-fip/2); p6y = Rb*sin(-fip/2); 

 

Parts are connected after coordinate settling (Table 4.2). The table is arranged 

according to the order of connections of assembly. Firstly lower platform is fixed to 

the ground and upper platform is located on (0, 0, 0.4) point (z = 400mm) with 

respect to world coordinates. Bases of spherical joints (1 to 6) are rigidly connected 

on the lower platform with respect to Table 4.2. Then parts named lsa, lca, lma and 

lea, lda and sp are rigidly connected, respectively; and five copies are created. After 

that lmb, lcb and lsb are rigidly connected, respectively; and five copies are created. 

Bases of other spherical joints (1 to 6) are rigidly connected on the upper platform 

with respect to Table 4.2. This step is demonstrated in Figure 4.3. 

 

Connecting bodies are generated between the centres of the spherical joints on 

lower platform e.g. sa1-s1 and the centres of spherical joints on the upper platform 

e.g. sb1-s1. Thus, orientations of axes are found. The orientations, for φb = 30 deg, 

are in Table 4.3. These values are written into the orientations properties boxes of the 
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bodies of six linear motors (lma) and six shafts of linear motors (lmb). Thus axes 

orientations are done. 

 
Table 4.2 Coordinate locations of the hexapod for one axis and for φb = 30 deg. 

Part Coordinate X1) Y1) Z1) Rx1) Ry1) Rz1) 
Pa-fix 0 0 0 0 0 0 
Pa-j1 143.922948 38.564037 5.5-1=4.5 0 0 0 
Pa-j2 -38.564037 143.922948 5.5-1=4.5 0 0 0 
Pa-j3 -105.358910 105.358910 5.5-1=4.5 0 0 0 
Pa-j4 -105.358910 -105.358910 5.5-1=4.5 0 0 0 
Pa-j5 -38.564037 -143.922948 5.5-1=4.5 0 0 0 

Pa 
 

Pa-j6 143.922948 -38.564037 5.5-1=4.5 0 0 0 
Sa1-j1 0 0 0 0 0 0 Sa 
Sa1-s1 0 0 7 0 0 0 
Lsa1-s1 0 0 28 0 180 0 Lsa 
Lsa1-c0 0 0 8 0 180 0 
Lca1-c0 0 0 40 0 180 0 
Lca1-c11a 21.566 -21.566 0 0 180 0 
Lca1-c12a 21.566 21.566 0 0 180 0 
Lca1-c13a -21.566 21.566 0 0 180 0 

Lca 

Lca1-c14a -21.566 -21.566 0 0 180 0 
Sp1-c11a 0 0 27 0 0 0 
Sp1-c11b 0 0 -27 0 0 0 
Sp1-c12a 0 0 27 0 0 0 
Sp1-c12b 0 0 -27 0 0 0 
Sp1-c13a 0 0 27 0 0 0 
Sp1-c13b 0 0 -27 0 0 0 
Sp1-c14a 0 0 27 0 0 0 

Sp (4 copies) 
 

Sp1-c14b 0 0 -27 0 0 0 
Lma1-c1 0 0 33.2 0 0 0 
Lma1-c2 0 0 0 0 0 0 

Lma 

Lma1-l1 0 0 -56.9 0 0 0 
Lea Lea1-c1 0 0 0 0 0 0 

Lda1-c2 0 0 0 0 0 0 
Lda1-c11b 21.566 -21.566 0 0 0 0 
Lda1-c12b 21.566 21.566 0 0 0 0 
Lda1-c13b -21.566 21.566 0 0 0 0 

Lda 

Lda1-c14b -21.566 -21.566 0 0 0 0 
Lmb1-l1  0 0 133.9 0 0 0 Lmb 
Lmb1-c1 0 0 142.9932 0 0 0 
Lcb1-c1 0 0 2.3 0 0 0 Lcb 
Lcb1-c2 0 0 22 0 0 0 
Lsb1-c2 0 0 26 0 180 0 Lsb 
Lsb1-s1 0 0 6 0 180 0 
Sb1-s1 0 0 7 0 180 0 Sb 
Sb1-j1 0 0 0 0 180 0 
Pb-j1 129.037785 74.5 -5+1=-4.5 0 0 0 
Pb-j2 0 149 -5+1=-4.5 0 0 0 
Pb-j3 -129.037785 74.5 -5+1=-4.5 0 0 0 
Pb-j4 -129.037785 -74.5 -5+1=-4.5 0 0 0 
Pb-j5 0 -149 -5+1=-4.5 0 0 0 

Pb 

Pb-j6 129.037785 -74.5 -5+1=-4.5 0 0 0 
1) Dimensions: X, Y and Z are mm; Rx, Ry and Rz are degree. 
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Figure 4.3 Connections of parts. 

 
Table 4.3 Orientations of the axes for φb = 30 deg. 

Axis Rx1) Ry1) Rz1) 
1 -5.27128754 -2.17930829 22.3996672 
2 -0.746796351 5.65389711 -82.4631226 
3 4.52990963 -3.46806031 142.637208 
4 -4.52990963 -3.46806031 37.3627917 
5 0.746796351 5.65389711 -97.5368774 
6 5.27128754 -2.17930829 157.600333 

1) Dimensions: Rx, Ry and Rz are degree. 

 

Bases of spherical joints (sai-s1 and sbi-s1) and shafts of spherical joints (lsai-s1 

and lsbi-s1) are connected with spherical joint constraints. Then, rigid joint on slot 

constraints are defined between lmai-l1 and lmbi-l1. Due to this constraint, the 

movements of axes will be inside of the axes orientations. After that linear motor 

constraints are created between lmai-l1 and lmbi-l1. Where, i = 1, 2, …, 6 as numbers 

of axes. 

 

Due to the upper platform is located on (0, 0, 0.4) point (z = 400 mm), the linear 

motors are not closed. In order to close them, linear motors are selected. Properties 
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window is clicked in VisualNASTRAN. On the configuration window, point-to-point 

constraint option is disabled. After that, z input box is checked. Lengths of linear 

motors can be controlled by writing the desired value in the z input box. If z = 0 is 

written, then linear motors are fully closed. After writing desired value which 

describes lengths of linear motors, the point-to-point constraint option is enabled 

again. Thus, simulation of the hexapod is manually prepared by VisualNASTRAN. 

 

In order to test colliding; φb is changed 20 deg to 30 deg. Hexapod is moved to 

end points and parts are observed. It is observed that no risk is occurred when φb = 

30 deg. Therefore, the angle between closest joints on lower platform (φb) is decided 

as 30 deg. 

 

4.3 Manufacturing of the Hexapod 

 

After generating 2D manufacturing drawings (Appendix C), parts are 

manufactured. All parts are made from stainless steel (AISI304, 1.4401 standards). 

This section is compiled from the second TUBITAK report (Karagülle et al., 2007). 

 

Hexapod consists of a lower platform, joints, lower connection parts, linear 

motors, upper connection parts, stud bolts, joint connection parts and an upper 

platform. Linear motors (HSI 43K4U – 05 – 032ENG) and spherical joints (Hephaist 

SRJ008C) are purchased. Names, numbers and perspective views of 3D solid models 

of manufactured parts are given in Table 4.4. 

 

The lower platform is made by cutting with laser system (model: Trumph) and 

after lathing. Joint locations are precisely processed with a milling machine (model: 

Foreman). Platform bores of joints are located by a divider and drilled by the milling 

machine. The upper platform is made by the same methods applied to the lower 

platform.  

 

Lower connection parts are manufactured by welding. The planar parts are cut by 

a laser system. Bores are marked by laser and drilled by a drilling machine. 
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Cylindrical parts are manufactured with CNC lathing machine (model: Goodway 

GLS200). Cylindrical parts are located into the centre of the planar parts and then 

welded. After that, the parts are cleaned by lathing. Upper connection parts are cut 

and marked by a laser system and drilled by the milling machine (Karagülle et al., 

2007). 

 
Table 4.4 Manufactured parts. 

Part number Part name Items 
Perspective view of the 3D 

solid model of parts 

1 Lower platform 1 

 

2 Upper platform 1 

 

3 Joint connection part 6 

 

4 Lower connection part 6 

 

5 Upper connection part 6 

 

6 Stud bolt 24 
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Stud bolts and joint connection parts are manufactured by CNC lathing machine. 

In order to prevent them from contacting to the motors, one surface of the stud bolts 

are milled. Joint connection parts are made by lathing cylindrical sides and milling 

the wrench edges. 

 

Assembly of the hexapod is made by the following assembly flow: Firstly 

spherical joints are screwed to first and second parts shown in Table 4.4. Third parts 

(Table 4.4) are screwed to joints. Fifth parts are screwed to linear motors with 4-40 

socket head cap screws (length = 3/8 inch). Fourth parts are attached to linear motors 

via fifth parts and sixth parts. This subassembly is rigidly connected by screwing 

fourth parts to spherical joints of the lower platform. Then shafts of linear motors are 

screwed to third parts which are attached to joints of the upper platform (Table 4.4). 

Therefore, the hexapod is manufactured and assembled (Karagülle et al., 2007). 

 

 

4.4 Hexapod Control System 

 

The hexapod control system consists of linear motor drivers, PCI motion control 

cards and a power supply. A schematic view of the system is shown in Figure 4.4. 

The control system is also shown in Figure 4.5. A portable control panel is designed 

and manufactured for the control system. A detailed view of the control panel is in 

Figure 4.6. The control panel comprises a power supply, a distributor of the power 

supply, PCI motion control cards, linear motor drivers and cables. In the control 

panel and hexapod control system, PCI 8132 card is connected to 1st and 2nd drivers, 

PCI 8164 card is connected to 3rd, 4th, 5th and 6th drivers. Drivers and control cards 

need 24VDC power for operation. This power is supplied from the 24VDC power 

supply and allocated by the manufactured distributor of the power supply. 
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Figure 4.4 A schematic view of the control system. 

 

 

 

 
Figure 4.5 A view of the control system. 

PC CMM 

 Control 
panel 

Hexapod 

Linear 
motor 

PCI 8132 PCI 8164 

24VDC 
Power supply 

Distributor of 
power supply 

1. driver 2. driver 3. driver 4. driver 5. driver 6. driver 

1. motor 2. motor 3. motor 4. motor 5. motor 6. motor 
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Figure 4.6 A detailed view of the control panel. 

 

A schematic view of a linear motor driver is shown in Figure 4.7. Input ports and 

output ports of linear motor drivers are Pin T2 and Pin T1, respectively. Connections 

between Pin T2 and motion control cards make differences for PCI 8132 and PCI 

8164 control cards. 

 

 
Figure 4.7 A schematic view of a linear motor driver. 

 

Matches of required pins to drive motors, between PCI 8132 control card, power 

supply and Pin T2 of linear motor drivers are presented in Table 4.5. Furthermore, 

matches of required pins between PCI 8164 control card, power supply and Pin T2 of 

linear motor drivers are presented in Table 4.6. 

 

Drivers  
(1, 2)

PCI 8132 

24VDC 
power 
supply 

Manufactured 
distributor of 
power supply 

PCI 8164 

Bus cables SJ pin 
cables 

Drivers  
(3, 4, 5, 6) 
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Table 4.5 Pin matches between PCI 8132 control card, power supply and linear motor drivers. 

Linear motor drivers (Pin T2) SJ(1-2) pin outputs for PCI 8132 

Pin number Signal Pin number Signal 

3 Clock input 2 Out - 

10 Direction control 4 Dir - 

11 Enable control 8 Servo on 

1 GND Ground 

2 +24VIN 
Power supply 

+24VDC 

 

 
Table 4.6 Pin matches between PCI 8164 control card, power supply and linear motor drivers. 

Linear motor drivers (Pin T2) Bus cable for PCI 8164 

Pin number Signal Pin number 
Cable shape and 

colour 
Signal 

3 Clock input 13 Pink (-) Out - 

10 Direction control 12 Red (-) Dir - 

1 GND Ground 

2 +24VIN 
Power supply 

+24VDC 

 

1st and 2nd pins of Pin T2 of linear motor drivers (Table 4.5 and Table 4.6) are 

power input pins. 3rd pin and 10th pin are for pulse (clock) input and for direction 

input, respectively. 11th pin is optionally used for motor enable/disable option. In 

order to control linear motor drivers via a PC, J1 jumpers which are on linear motor 

drivers have to be opened and switches (Fig. 4.7) have to be adjusted according to 

Table 4.7 which gives adjustments of switches. 

 
Table 4.7 Switch adjustments of linear motor drivers. 

Switch number 1 2 3 4 5 6 

Position Open Close Close Close Close Close 

 

Linear motor drivers consumes 0.7 A electrical current. To set motor current: it is 

ensured that power is applied to motors. Switch 3 (Table 4.7) is turned to open 

position. A high impedance voltmeter is connected to VREF + and – terminals on the 
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driver board. Potentiometer P2 on the board is adjusted until voltmeter shows the 

reference voltage (Vref) which is as following formula: 

 

Vref  = 0.5 x motor current                  (4.1) 

 

Where, units of motor current and Vref are ampere and volt. For the used linear 

motors, motor current is 0.7 A/phase. Therefore, adjusted reference voltage is 0.350 

V. 

 

Open collector type encoders have been attached to linear motors to take 

feedbacks. Cable connections between encoders and PCI motion control cards have 

to be made to take feedback signals. 1st and 4th pins of the encoder cables are for 

power supply. 3rd pin, 5th pin and 2nd pin of the encoder cables transmit A phase 

signals, B phase signals and index signals, respectively. Connecting these pins to PCI 

cards are different for PCI 8132 and PCI 8164. Encoder cable connections for PCI 

8132 are presented in Table 4.8. 

 
Table 4.8 Encoder cable connections for PCI 8132. 

Linear motor encoder cable SJ(3-4) pin for PCI 8132 Explanation 

Cable 

number 

Cable 

colour 
Signal 

Pin 

number 
Signal  

1 Brown GND 10 GND  

2 White Index 8 EZ -  

3 Blue Channel A 4 EA -  

5 Yellow Channel B 6 EB -  

7 EZ + 

3 EA + 

4 Orange +5VDC 

5 EB + 

There is +5VDC in 6th pin of 

Pin T2 or in 1st and 2nd pins of 

SJ3-4. Any of these pins have 

to be bridged with 3rd, 5th and 

7th pins of bus cable and 4th pin 

of encoder cable. 
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1st and 2nd pins of SJ3 and SJ4 sockets of the PCI 8132 card or 6th pins of Pin T2 

of linear motor drivers can be used to have +5VDC for encoders. EA+, EB+ and 

EZ+ input pins of PCI 8132 card have to be bridged with +5VDC. Because types of 

encoders are open collector and type of the control cards is line driver. 

 

Encoder cable connections for PCI 8164 are presented in Table 4.9. Bus cables 

are connected to CNA sockets of the PCI 8164 card. There is no +5VDC pin in bus 

cables. Thus, encoder power supply is achieved by taking +5VDC from 6th pins of 

linear motor drivers. EA+, EB+ and EZ+ pins of the PCI 8164 card are also bridged 

with +5VDC similar to pins of PCI 8132. 

 
Table 4.9 Encoder cable connections for PCI 8164. 

Linear motor encoder cable Bus cable for PCI 8164 Explanation 

Cable 

number 

Cable 

colour 
Signal 

Pin 

number 

Cable shape 

and colour 
Signal  

1 Brown GND 10 White (-) GND  

2 White Index 15 Green (-) EZ -  

3 Blue Channel A 16 Blue (-) EA -  

5 Yellow Channel B 17 Light blue (-) EB -  

5 Green  EZ + 

6 Blue  EA + 

4 Orange +5VDC 

7 Light blue  EB + 

There is +5VDC in 6th 

pin of Pin T2. This pin 

has to be bridged with 

5th, 6th and 7th pins of 

the bus cable and 4th 

pin of encoder cable. 

 

 



 

CHAPTER FIVE 

SIMULATION AND CONTROLLING OF THE HEXAPOD 

 

 

5.1 Introduction 

 

In this chapter, it is desired to simulate and control the hexapod. Simulation is 

performed by VisualNASTRAN. Simulation gives values of inverse kinematic 

solution as outputs. Controlling of the hexapod is achieved by a developed 

VisualBASIC program. This program manages VisualNASTRAN and takes outputs 

of VisualNASTRAN as inputs (Karagülle et al., 2007).  

 

The designed hexapod is shown in Figure 5.1. For this hexapod, dimensions of the 

fixed lower platform: diameter is 348 mm, thickness is 11 mm and the angle between 

closest joints is 30 deg. The centres of spherical joints are on a circle whose diameter 

is 298 mm and 6 mm above from the upper surface of the fixed lower platform. 

Dimensions of the movable upper platform: diameter is 250 mm, thickness is 10 mm 

and the angle between closest joints is 60 deg. The centres of spherical joints are on a 

circle whose diameter is 200 mm and 6 mm below from the lower surface of the 

movable upper platform. Distance in the z direction between the upper surface of the 

lower platform and the lower surface of the upper platform is 233.1362 mm when the 

actuators, consequently the hexapod, are fully closed. Stroke of the linear motors is 

50.8 mm and maximum tilt angle of the joints is 45 deg. Global z axis is 

perpendicular to the line which ties centres of the 1st spherical joint and the 6th 

spherical joint. Global x-y plane is parallel to the surface of the lower platform. 

Direction of the global z axis is along a line which goes to the upper platform from 

the lower platform. 
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Y 

X 

Z 

 
Figure 5.1 Designed hexapod 

 

 

5.2 Simulation and Controlling of the Hexapod 

 

5.2.1 A Developed VisualBASIC Program for Simulation and Control 

 

VisualNASTRAN has API (Application Programming Interface) property. 

Therefore, it can be programmed by VisualBASIC. By programming 

VisualNASTRAN, design and inputs can be parametrical. Any changes are possible 

by changing the parameters. Application can be easy and rapid. Simulation and 

controlling of hexapod are achieved by a VisualBASIC program. This program 

assembles solid parts, simulates the hexapod and solves inverse kinematic analyses 

and controls linear motors as point-to-point application via PCI motion control cards. 

The name of the program is “hexapod1.vbp”. It contains “hexapod1.frm” and 

modules listed in Table 5.1 (Karagülle et al., 2007). 
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Table 5.1 Modules of the VisualBASIC project named hexapod1.vbp. 

assemble.bas Assembles hexapod in VisualNASTRAN 

simulate.bas Makes inverse kinematic analysis of hexapod and determines length of linear 

actuators. 

move.bas Determines parameters of ADLINK PCI motion control cards by using lengths, 

which come from simulation, of linear actuators and moves hexapod to desired 

position. 

adlink_init.bas Initials ADLINK PCI motion control cards. 

pci_8132.bas Contains commands of ADLINK PCI 8132 motion control card. This module 

comes with the installation CD of PCI motion control cards.  

pci_8164.bas Contains commands of ADLINK PCI 8164 motion control card. This module 

comes with the installation CD of PCI motion control cards. 

 

First of all, components of PCI motion control cards have to be added onto the 

form. They can be added to project by selecting from menu: project > components 

window and “DAQBench PCI8132 Motion Control Card ActiveX Control” and 

“DAQBench PCI8164 Motion Control Card ActiveX Control”. These components 

have to be inserted onto the form. Then, the names are changed as B_8132 for PCI 

8132 and B_8164 for PCI 8164. After that, Pci_8132.bas and Pci_8164.bas modules 

are inserted into the project. Thus, preparations of control cards are finished. 

 

When the developed VisualBASIC program is run, Figure 5.2 is viewed. The 

program is given in Appendix D (Karagülle et al., 2007). 
 

Ends 
program

Assembly 

Motion - 
forward

Move 

Manually 
move

Actuator 
lengths 

Motion - 
inverse 

 
Figure 5.2 Interface of the program. 
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5.2.2 Simulation and Inverse Kinematic Analysis of the Hexapod 

 

A VisualNASTRAN model is constructed with simple 3D models according to 

real hexapod, in order to have a rapid process. Detailed 3D models might be slowed 

the programs. There are an upper moving platform (pb), a fixed lower platform (pa), 

a rectangular part (lsa) which represents constant part of a link and a cylindrical part 

(lsb) which represents moving part of a link in the basic kinematic model. These 

parts are in dimensions of designed hexapod. These parts can be seen in Figure 5.3 

(Karagülle et al., 2007).  

 

 
Figure 5.3 Basic model parts of the hexapod 

 

Two axes are added to the lsa and lsb parts for assembly. Then five copies are 

created. The file is saved as “hexapod1.wm3”. The VisualBASIC program which is 

described above is run. By clicking “assembly” command button, parts are 

automatically renamed, aligned to their attachment directions. Constraints such as 

rigid joints, spherical joints and linear motors are created. In order to define 

“prescribed motion” to upper platform, sliders are inserted for Vx, Vy, Vz, Wx, Wy and 

Wz of upper platform. These sliders are used as input boxes. To measure length 

changes of links, meters are assigned to linear motors. Force values of linear motors 
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are set as zero. Also, in order to determine the position and orientation of the upper 

platform, meters are assigned to it. Thus, assembly is finished. The file is saved as 

“hexapodi.wm3”. The model can be seen in Figure 5.4 (Karagülle et al., 2007). 

 

Y 

X

Z

 
Figure 5.4 Basic model of the hexapod. 

 

Input values of xp, yp, zp, θxp, θyp and θzp are inserted into inp_inverse.txt and the 

file is saved. xp, yp and zp are desired positions of the movable upper platform in mm 

along x, y and z directions, respectively. When all linear motors are fully retracted, xp 

= 0, yp = 0 and zp = 0. Assume that, movable axis system which is in the centre of 

upper platform is x1, y1 and z1. Desired rotation about x1 is θxp; desired rotation about 

y1 is θyp and then desired rotation about z1 is θzp. Angles are in degrees. When all 

linear motors are fully retracted, θxp = 0, θyp = 0 and θzp = 0. 

 

When “motion inverse” command button is clicked, the VisualBASIC program 

takes actual position information of hexapod from VisualNASTRAN program in a 
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loop. Error is generated by subtracting actual position from desired position. The 

VisualBASIC program multiples error with gain coefficient and sends velocity 

values to VisualNASTRAN, and it is run for one step. The loop is finished when the 

upper platform reaches desired position with acceptable errors. Simulation is done 

and length changes of linear motors are generated by meters which are attached to 

linear motors (Karagülle et al., 2007). 

 

After simulation is done, “actuator lengths” command button is clicked. 

Therefore, length outputs of linear motors can be taken from VisualNASTRAN. Tilt 

angles of spherical joints are computed with these outputs. Then a comparison about 

lengths of linear motors and tilt angles is started in order to determine whether the 

hexapod is in workspace or not. If angles or lengths exceed their maximum values, 

the hexapod is not in the workspace and then the program gives an error message 

(Karagülle et al., 2007). 

 

5.2.3 Controlling of the Hexapod 

 

Open loop position control is applied to hexapod via linear motors. Point – to – 

point applications are processed. PC-based motion control is achieved over ADLINK 

PCI 8132 and PCI 8164 motion control cards. 

 

Control of hexapod manipulator is based on inverse kinematics (Jelenkovic et al., 

2004). The simulation (inverse kinematic solution) gives length changes of linear 

motors with respect to time. These values are taken as inputs. If the “Move” 

command button is clicked on the VisualBASIC interface (see Fig. 5.2), pulse 

numbers which will be applied to linear motors are determined with respect to the 

difference between initial position and final position of the moving upper platform. 

 

In order to start and stop movement simultaneously, velocities are determined by 

using interpolation. The maximum velocity is chosen as 3000 pulse/s. The biggest 

distance extracted (or retracted) linear motor has the biggest velocity (3000 pulse/s). 

The slowest linear motor with respect to the motion moves the less.  
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Hexapod which has been manufactured is moved by simulation results after 

determining command parameters of motion control cards with respect to position 

and velocity data. Fundamental commands of the motion control cards are given in 

Appendix A. 

 

T velocity profile command is used fundamentally in the program. The commands 

are as following formulas (5.1) and (5.2): 

 

B_8164.StartTAMove(axis, pos, svel, mvel, tacc, tdec)              (5.1) 

B_8132.StartTMove(axis, pos, svel, mvel, tacc, tdec)              (5.2) 

 

Where, axis is the working axis number, pos is position input (pulse), svel is 

starting velocity (pulse/s), mvel is maximum velocity (pulse/s), tacc is acceleration 

time (s) and tdec is deceleration time (s). For the applications, they are taken that svel 

= 0 and tacc = tdec = 0.01 s. mvel is determined as 3000 pulse/s for the axis which 

has maximum length change. mvel for other axes is calculated by interpolation 

explained above. 

 

Pulse numbers are position information. Pulse numbers are calculated according 

to lengths of axes (linear motors), as follows: 

 

00075.0
i

i
dis

pos =  , i = 1, 2, …, 6                 (5.3) 

 

Where, dis is length changes, which is found by inverse kinematic solution, of the 

linear motors, pos is numbers of pulses. If 1 pulse is sent, then linear motors move 

0.75 μm; because step motors are bipolar. Precision of motors is 1.5 μm, 2 pulses 

give this value regarding bipolar type. The entire control codes are in Appendix D 

(Karagülle et al., 2007). Consequently, commands (5.1) and (5.2) are sent linear 

motors as point – to – point open loop control via motion control cards.  

 

 



 

CHAPTER SIX 

TEST RESULTS OF THE HEXAPOD 

 

6.1 Introduction 

 

In this chapter, test results of the hexapod whose manufacturing is discussed in 

Chapter 4 are presented. Tests are made by the developed VisualBASIC program 

which is explained in Chapter 5. Test results occurred from desired position (xp, yp, 

zp) and orientation (θxp, θyp, θzp), which are explained in Chapter 5, of the movable 

upper platform are measured by a coordinate measuring machine (CMM). Model of 

the CMM is Euro-C-A9106 of Mitutoyo Company (Mitutoyo Corp., 2006). Precision 

of the CMM is 5 μm. 

 

6.2 Tests and Results  

 

Positions of the upper platform are measured by CMM. In order to test, global 

axis system of the CMM is translated to global axis system of the hexapod. xp and yp 

is measured by creating a circle element using lateral faces of the upper platform. zp, 

αp, βp and γp is determined by measuring the plane of upper surface of the upper 

platform. αp, βp and γp are angles between x, y and z axes and z1 axis which is 

attached to upper platform, respectively. αp, βp and γp can be generated from θxp, θyp 

and θzp with a transformation. The transformation codes is in Sub CMM () subroutine 

of the developed VisualBASIC program which is presented in Appendix D. 

 

At the initial position of the upper platform, position and rotation are xp = 0, yp = 

0, zp = 0, αp = 90, βp = 90 and γp = 0 and length changes of linear motors are zero. 

The upper platform is moved 14 times to different positions and then returned to the 

initial position. Average values are found for initial position errors. Average values 

are: xp0 = 189.6429 μm, yp0 = -179.7143 μm, zp0 = -36.7 μm; α0 = 89.97167 deg, β0 = 

90.03476 deg, and γ0 = 0.04667 deg. Therefore, errors at the initial position for xp, yp, 

zp, αp, βp and γp are calculated by subtracting xp, yp, zp, αp, βp, and γp from xp0, yp0, zp0, 

α0, β0, and γ0, respectively. Thus, errors are εxo = 189.6429 μm, εyo = -179.7143 μm, 
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εzo = -36.7 μm, εαo = -0.02833 deg, εβo = 0.03476 deg, εxo = 0.04667 deg, respectively. 

Test results for initial position errors can be shown in Figure 6.1. Initial position 

errors and maximum deviations from averages can be found in Table 6.1. Maximum 

deviations from averages give repeatability. 

 

Measurement 

Average 

Measurement 

Average 

(a) (b)  

Measurement 

Average 

Measurement 

Average 

 (c) (d) 

Measurement 

Average 

Measurement 

Average 

 (e) (f) 

Figure 6.1 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results of initial position tests. 
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Table 6.1 Results of initial position. 

ages of errors 2, 3
Maximum deviations from Desired position 1 Aver

xp, yp, zp
 αp, βp, γp

εx, εy, εz
εα, εβ, εγ

averages, respectively 2, 3

0 , 0 , 189.6429 , -1 -36.7 38.6 , 40.7 , 71.5 
 , 0.01833 

0 
90 , 90 , 0 

79.7143 , 
-0.02833 , 0.03476 , 0.04667 0.00944 , 0.03698

 

1) Units of displaceme , resp

he upper platform is moved to three different positions from the initial position 

for

Ta 2 Results of (5, 0, 10; 90, 90, 0), (-2.5, 4.33013, 10; 90, 90, 0) and (-2.5, -4.33013, 10; 90, 90, 

tion 1 Averages of errors 2, 3
Maximum deviations from 

nts and angles are mm and degree ectively. 

2) Units of displacements and angles are μm and degree, respectively. 

3) Error = measured position – desired position. 

 

 

T

 10 times with αp = 90 deg, βp = 90 deg, γp = 0 deg. The upper platform is 

manually adjusted for initial position after every movement. Test results are 

measured by CMM. Test results of xp = 5, yp = 0, zp = 10, αp = 90, βp = 90 and γp = 0 

position; xp = -2.5, yp = 4.33013, zp = 10, αp = 90, βp = 90 and γp = 0 position and xp = 

-2.5, yp = -4.33013, zp = 10, αp = 90, βp = 90 and γp = 0 position are presented in 

Figure 6.2, Figure 6.3 and Figure 6.4, respectively. Desired positions, averages of 

errors obtained from measured positions and maximum deviations from averages at 

initial position are given in Table 6.2. 

 
ble 6.

0) positions. 

Desired posi
xp, yp, zp
 αp, βp, γp

εx, εy, εz
εα, εβ, εγ

averages, respectively 2, 3

5 , 0 , 
 

20.3429 , 21.6 .4999 66.7 , 64.4 , 10 
8 

10 
90 , 90 , 0

857 , -43
-0.0090 , 0.0274 , 0.0243 0.0235 , 0.0138 , 0.026

-2.5 , 4.33013 , 10 99 
90 , 90 , 0 

184.9429 , -87.7843 , -36.19
0.00003 , 0.0098 , 0.0084 

63.3 , 81.8 , 31.7 
.0106 0.0106 , 0.0239 , 0

-2.5 , -4.33013 , 10 
90 , 90 , 0 

174.6429 , 117.5557 , -44.1 
0.0131 , 0.0295 , 0.0081 

64 , 41.4 , 8.6 
0.0117 , 0.0061 , 0.0183 

 

1) Units of displaceme  degree, resp

. 

nts and angles are mm and ectively. 

2) Units of displacements and angles are μm and degree, respectively. 

3) Error = desired position – measured position + initial position errors
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Measurement 

Average 

Measurement 

Average 

 (a)  (b) 
 

 

 
 

 
Figure 6.2 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = 

5, yp = 0, zp = 10, αp = 90, βp = 90 and γp = 0). 

 

 

Measurement 

Average 

(e) (f) 

Measurement 

Average 

(a) 

Measurement 

Average 

Measurement 

Average 
Measurement 

Average 

(c) (d) 
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Measurement 

Average 

Measurement 

Average 

 (a) (b) 

 

Measurement 

Average 

Measurement 

Average 

 (c) (d) 

 

Measurement 

Average 

Measurement 

Average 

 (e) (f) 

Figure 6.3 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

2.5, yp = 4.33013, zp = 10, αp = 90, βp = 90 and γp = 0). 
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Figure 6.4 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

2.5, yp = -4.33013, zp = 10, αp = 90, βp = 90 and γp = 0). 

 

(a) 

Measurement 

Average 
Measurement 

Average 

(b) 

Measurement 

Average 

Measurement 

Average 

(c) (d) 

Measurement 

Average 

Measurement 

Average 

(e) (f) 
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The upper platform is moved to (0, 0, 25; 90, 90, 0) position from (0, 0, 0; 90, 90, 

0) position. Then, the upper platform is moved from (0, 0, 25; 90, 90, 0) position to 

(5, 5, 35; 90, 90, 0) position; then, from this position to (-5,-5, 15; 90, 90, 0) position; 

then, from previous position to (5, -5, 35; 90, 90, 0) position and then from last 

position to (-5, 5, 15; 90, 90, 0) position for 5 times. Test results are measured by 

CMM. Test results of translational motions when the upper platform is parallel (αp = 

90, βp = 90 and γp = 0) to the lower platform are presented in Figure 6.5, Figure 6.6, 

Figure 6.7, Figure 6.8, Figure 6.9, and Table 6.3. The table contains desired 

positions, averages of errors obtained from measured positions and maximum 

deviations from averages.  

 

 

Measurement 

Average 

(b) (a) 

Measurement 

Average 

 
 

Measurement 

Average 

Measurement 

Average 

 (c) (d) 
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Measurement 

Average 

Measurement 

Average 

 (e) (f) 

Figure 6.5 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = 

0, yp = 0, zp = 25, αp = 90, βp = 90 and γp = 0). 

 

 

Measurement 

Average 

Measurement 

Average 

 (a) (b) 

 

Measurement 

Average 

Measurement 

Average 

 (c) (d) 
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Measurement 

Average 

Measurement 

Average 

 (e) (f) 

Figure 6.6 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = 

5, yp = 5, zp = 35, αp = 90, βp = 90 and γp = 0). 

 

 

Measurement 

Average 

Measurement 

Average 

(a) (b) 
 

 

Measurement 

Average 

Measurement 

Average 

 (c) (d) 
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 (e) (f) 

Figure 6.7 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

5, yp = -5, zp = 15, αp = 90, βp = 90 and γp = 0). 

 

 

Measurement 

Average 

Measurement 

Average 

 (a) (b) 

 

Measurement 

Average 

Measurement 

Average 

 (c) (d) 
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Measurement 

Average 

Measurement 

Average 

 (e) (f) 

Figure 6.8 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = 5, 

yp = -5, zp = 35, αp = 90, βp = 90 and γp = 0). 

 

 

Measurement 

Average 

Measurement 

Average 

 (a) (b) 

 

Measurement 

Average 

Measurement 

Average 

 (c) (d) 
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Measurement 

Average 

Measurement 

Average 

 (e) (f) 

Figure 6.9 (a) xp, (b) yp, (c) zp, (d) αp, (e) βp and (f) γp measurement results for desired position (xp = -

5, yp = 5, zp = 15, αp = 90, βp = 90 and γp = 0). 

 

 
Table 6.3 Results of specified positions. 

Desired 
position 1
xp, yp, zp
 αp, βp, γp

Averages of errors 2, 3

εx, εy, εz
εα, εβ, εγ

Maximum deviations from averages, 
respectively 2, 3

0 , 0 , 25 
90 , 90 , 0 

125.6429 , 17.2857 , -297.7 
0.00156 , 0.02798 , 0.01989 

5 , 3 , 3.8 
0.0040 , 0.0093 , 0.0227 

5 , 5 , 35 
90 , 90 , 0 

20.4429 , -98.5143 , -459.5 
-0.01439 , 0.02870 , 0.03061 

7.2 , 2.8 , 3 
0.00283 , 0.01172 , 0.0105 

-5 , -5 , 15 
90 , 90 , 0 

230.4429 , 115.0857 , -122.3 
0.01639 , 0.02948 , 0.00806 

4.2 , 3.2 , 1.8 
0.00222 , 0.00222 , 0.00222 

5 , -5 , 35 
90 , 90 , 0 

12.4429 , 145.8857 , -452.7 
-0.00105 , 0.04537 , 0.02395 

6.2 , 7.6 , 2.2 
0.00283 , 0.00283 , 0.00283 

-5 , 5 , 15 
90 , 90 , 0 

225.6429 , -103.9643 , -128.99 
0.00292 , 0.01601 , 0.01125 

4 , 6.2 , 1.5 
0.00292 , 0.00292  , 0.00292 

 

1) Units of displacements and angles are mm and degree, respectively. 

2) Units of displacements and angles are μm and degree, respectively. 

3) Error = desired position – measured position + initial position errors. 
 

In order to measure rotational precision, upper platform is moved to αp = 97 deg, 

βp = 95.955 deg, γp= 9.20972 deg rotational position from αp = 90 deg, βp = 90 deg, 

γp = 0 deg when the upper platform is at xp = 0 mm, yp = 0 mm and zp = 25 mm. This 

motion is repeated 10 times and test results are measured. Test results of rotational 

motion of hexapod are given in Figure 6.10 and Table 6.4. The table has the desired 
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position; averages of errors calculated from measured angular positions and 

maximum deviations from averages.  

 

 

Measurement 

Average 
Measurement 

Average 

 (a) (b) 

 

Measurement 

Average 

(c)  
Figure 6.10 (a) αp, (b) βp and (c) γp measurement results for desired position (αp = 97, βp = 95.955 and 

γp = 9.20972). 

 
Table 6.4 Results of rotational motion. 

Desired position 1
 αp, βp, γp

Averages of errors 1 ,2

εα, εβ, εγ
Maximum deviations from 
averages, respectively 1, 2

97 , 95.955 , 9.20972 -0.3239 , 0.1108 , -0.1326 0.004 , 0.004 , 0.014 
 

1) Units of angles are degree. 

2) Error = desired position – test result position + initial position errors 
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As a result, there are initial position errors (Fig. 6.1 and Table 6.1) when all linear 

motors are fully closed. Fig. 6.2, Fig. 6.3, Fig. 6.4 and Table 6.2 may give an idea 

about precisions and repeatability, because motions are started from the initial point. 

However, in those tests linear motors are manually closed by using the program. 

Therefore, deviations are high in these motions. Limit switches attached to linear 

motors can be used to fully close the linear motors instead of manual closing. Thus, 

the upper platform of the hexapod can be set in the same point at the initial position. 

Therefore, precision and repeatability regarding the motions which are started from 

the initial position can be improved.  

 

Five different points (Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig 6.8, Fig. 6.9 and Table 6.3) 

are also tested. Hexapod is moved to every point in a sequence. In addition, 

rotational motion (Fig. 6.10 and Table 6.4) is tested. Consequence of these tests, 

repeatability values namely maximum deviations are about desired values. However, 

measured positions and desired positions are different. This difference can not be 

considered for motions in a sequence, because errors of previous motion effect actual 

motion, and errors of actual motion effect following motion. Maximum deviations 

are important in these motions. It is observed that, the hexapod moves to 

approximately same positions. This means, hexapod can move right positions after 

calibrating it.  

 

Making precise holes into which joints are precisely placed, in the joint location 

points on the platforms can improve initial position errors. Diameters of holes should 

approximately equal to diameters of bases of joints, in order for precise assembly. 

 

As results of measurements, it is observed that precision of the hexapod is worse 

than repeatability. This difference can be caused by initial position errors, and initial 

position errors can be caused by manufacturing errors and assembly errors. 

Simulations contain no manufacturing and assembly errors. Precision can be 

increased by simulating the system with initial position errors or making more 

precise manufacturing and assembly. 
 

 



CHAPTER SEVEN 

CONTROLLING OF AC SERVO MOTOR SYSTEMS 

 

 

7.1 Introduction 

 

Motors can be controlled by PC-based units or programmable stand-alone units in 

automation systems. In this chapter, controlling of servo motors is carried out by 

ADLINK PCI motion control cards. For the experimental study, an experimental rig 

is constructed and VisualBASIC programs are developed to control simultaneously 

three OMRON brushless AC servo motors (Omron Corp., 2006) over the cards. In 

the programs, reference velocity and position curves are taken as inputs, and the 

parameters of the commands of ADLINK control cards are determined. In this study, 

servo motors are thought as actuators of a 3-DOF serial manipulator on which the 

hexapod will be attached. 

 

 

7.2 Design and Inverse Kinematic Analyses of a 3-DOF Serial Manipulator 

 

Solid models of parts of a 3-DOF manipulator are created parametrically in 

ABAQUS. Parameters of parts are written in a file whose extension is “py”. Then, by 

running the script with ABAQUS, solid parts are drawn. The designed manipulator is 

given in Figure 7.1 (Karagülle et al., 2007). 

 

Solid parts are saved as in the “iges” format. Inverse kinematic analyses are 

achieved by VisualNASTRAN. “igs” extended solid model files are imported into 

VisualNASTRAN. Because of API property of the program, assemblies and analyses 

in it, might be done by VisualBASIC programs and changed rapidly in consequence 

of parametrical changes (Karagülle et al., 2007).  

 

Parts are constrained in VisualNASTRAN. p0 is fixed to ground; revolute motors 

are described between p0 and p1, p1 and p2 and p2 and p3a. p3a and p3b are rigidly 
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connected together. Then, orientation and angular velocity meters are assigned to 

revolute motor constraints to determine angular velocities and angular positions of 

actuators (Karagülle et al., 2007).  

 

p0 

p1 

p2 

p3a 

p3b 

End point 

 
Figure 7.1 The designed 3-DOF serial manipulator. 

 

 

For inverse kinematic analyses, a weightless part (pend) is created at the end of 

the manipulator. This part is attached rigidly to p3b part. Starting and final positions 

of the end point is determined. Between these points, linear motion is supposed. 

Velocity inputs of the end point are generated with respect to velocity sinusoid (see 

Appendix B) (Karagülle et al., 2007).  

 

Generated velocity values are applied to end point as “prescribed motion”. Inverse 

kinematic analysis is solved by VisualNASTRAN. Results of the solution are angular 

velocities and angular positions of the actuator. These curves are inputs of control 

algorithms.  
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7.3 AC Servo Motor Experimental Rig 

 

7.3.1 The Experimental Rig 

 

AC servo motors are thought as actuators of a 3-DOF serial manipulator. The 

experimental rig set up with Omron brushless AC servo motors, are shown in Figure 

7.2, schematically.  

 

PCI 8132 and PCI 8164 motion control cards of Adlink Company and three items 

brushless AC servo motors and their servo drivers of Omron Company are used in 

the experimental rig. The experimental rig which is set up at laboratory is given in 

Figure 7.3 (a). 

 

 

PCI8164 

1. Connector 

1. Servo motor 
driver 

1. Motor 2. Motor 3. Motor 

24VDC 
power supply 

24VDC 
for brake 

PCI8132 

2. Connector 3. Connector  

2. Servo motor 
driver 

3. Servo motor 
driver 

220VAC 

Figure 7.2 Servo motor experimental rig. 

 

Maximum frequency of PCI 8132 is 2.4 million pulses/s and of PCI 8164 is 6.55 

million pulses/s. Comprehensive knowledge about the cards are in Appendix A. 

These cards are placed into a PC. Communication with the cards is achieved over 

terminal boards. Terminal boards, Figure 7.3 (b), linked to connectors manufactured 

to connect control cards and servo motor drivers, via bus cables.  
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(a) 

PC 

Connectors 

Power supply 
distributor 
connector

Servo motor 
drivers 

 

(

 Connectors 

     Power 

Bus cables 

Terminal of 
PCI8164 

Terminal of 
PCI8132 

Servo 
driver cable 

b) 

 

Motor driver 
cable  

(R88A-CAWA) 
and 

encoder cable  
(R88A-CRWA) 

Servo motor 
(SGMAH-

A3AAA6CD-
OY)  

with planetary 
gear 

Servo driver 
cable 

Servo motors 
(SGMAH-

01AAA6CD-
OY) with 
planetary 

                                                            (c) 

Figure 7.3 (a), (b), (c) The experimental rig. 
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Omron AC servo motors are shown in Figure 7.3 (c). Technical properties of 

motors and types of motor drivers are given in Table 7.1. Encoders are serially 

attached to motors. Servo motor drivers have one motor driving capacity. 203123 

type Maxon planetary gears (Maxon Co., 2006) whose reduction ratio is 74 are 

assembled to servo motors. Flanges and pinion gears are designed and manufactured 

in order to assemble motors and gears.  

 
Table 7.1 Properties of servo motors. 

Motor 
Number Motor Type Voltage 

(VAC) 
Current 

(A) 
Power 

(W) 
Torque 
(Nm) 

Revolution 
(rev/min) 

Encoder 
type 

Encoder 
resolution 
(2048 x 4 

p/rev) 

Servo 
motor 

driver type 

1 
SGMAH – 

01AAA6CD 
– OY 

220  0.91 100 0. 18 3000 Incremental  13 bite      SGDH – 
01AE–OY 3

2 
SG

01AAA6CD 
– OY 

3000 Incremental  13 bite      SGDH – 
01AE–OY 

MAH – 
220  0.91 100 0.318 

3 
SGMAH – 

A3AAA6CD 
– OY 

220  0.44 30 0.095 3000 Incremental  13 bite      SGDH – 
A3AE–OY 

 

7.3.2 Connections of Servo Motors and Drivers 

 

Connections between AC servo motors, AC servo motor drivers and a PC are 

realized as Figure 7.4. R88A – CAWA type cables make connections between 

drivers and motors. Encoder feedback signals are sent to drivers via R88A – CRWA 

type cables. 

 

 
Figure 7.4 Front panel view of a motor driver. 
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Indicators

Driver cable 
R88A-CAWA 

Socket of an 
encoder cable 
R88A-CRWA 

Socket of the 
com  
cable between 

driver and PC, to 
ju s 
of a driver 

munication

ad st parameter

Sock r 
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 61

Motion control cards are powered with 24VDC via their CN1 socket. To connect 

servo motor drivers to motion control cards, a connector is designed. Bus cables are 

used between motion control cards and the manufactured connector. Pin assignment 

of a bus cable is shown in Figure 7.5 and data of these pins are given in Table 7.2. 

 

 
Figure 7.5 Pin assignments of bus cables. 

 

Output sig , DIR + and DIR -.in Table 7.2. 

Th

 Z 

reference position signals (EZ +) and (EZ -) of encoders, respectively.  

 
Table 7.2 Values o

Bus ca CNA 1 – 4 

11 

nals to drive motors are OUT +, OUT -

ese signals are motor velocity (frequency) adjustment signals (OUT +, OUT -) and 

motor direction adjustment signals (DIR +) and (DIR -), respectively. Input signals to 

take feedback from encoder are EA +, EA -, EB +, EB -, EZ +, EZ -. These signals 

are output signals of A phase (EA +) and (EA -), B phase (EB +) and (EB -) and

f bus cable. 

ble CNA 1 - 4 Bus cable 

Pin numbers Signal  Colour  Signal   Pin numbers Colour  

1 Empty Brown  IGND 11 Brown (–) 

2 DIR - Red  DIR + 12 Red (–) 

3 Pink Pink (–) OUT - OUT + 13 

4 Yel Yellow (–)  Empty low  Empty 14 

5 Green  EZ + 15 Green (–) EZ - 

6 Blue  EA + 16 Blue (–) EA - 

7 Light blue EB + 17 Light blue (–) EB - 

8 Purple  ERC 18 Purple (–) INP 

9 Gray +24V (Out) 19 Gray (–) RDY 

10 White  IGND 20 White (–) IGND 

 

20 

1 10 
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Bus cables come from CNA output sockets of the PCI 8164 motion control card 

tor driver cables come from CN1 output socket of drivers, 

via manuf nnectors. ections are able 7.3. 

OUT , OUT - , DIR -  cables (Table 7.3) are wired on the 

connec  to + - CW, + CC CW pins drive  respectively. In the 

same way, EA + , EB , EZ –  are w , - A, , + 

Z, - Z p s, resp y. Besides hange mo f the sleep” to ”, 24 

VDC a  grou  the powe ly are co cted IN and R pins, 

respectively. 

 
Table 7.3 Cables connected on the con

Driver cable Bus cable 

are connected to servo mo

actured co These conn  given in T

 

 + , DIR +  pins of bus

tor CW, W, - C  of r cables,

, EA -, EB +  -, EZ + pins ired to + A + B, - B

in ectivel , to c de o  drivers “  “run

nd nd of r supp nne to +24V UN 

nector. 

Cable Colour  Signal   Cable 
numbers Colour  Signal   numbers 

7 Gray / red (-) +CW 3 Pink  Out + 

8 Gray / black (-) -CW 13 Pink (-) Out - 

11 Yellow / red (-) +CCW 2 Red  Dir + 

12 Yellow / black (-) -CCW 12 Red (-) Dir - 

19 Gray / red (--) +Z 5 Green  EZ + 

20 Gray / black (--) -Z 15 Green (-) EZ - 

33 Orange / red (---) +A 6 Blue  EA + 

34 Orange / black (---) -A 16 Blue (-) EA - 

35 Gray / black (---) -B 17 Light blue (-) EB - 

36 Gray / red (---) +B 7 Light blue EB + 

40 Pink / black (---) RUN Ground 

47 Gray / red (----) +24VIN 
Power 
supply  +24VDC 

 

 

rivers pared b  p les a r cable  – 

CAWA) on the front panels as shown in Figure 7.6. It is important to correctly 

connect U, d groun  power les to the front panels and 24 VDC 

to B pins of the m es mechanical brakes of the motors. 

 

Motor d  are pre y wiring ower cab nd drive s (R88A

V, W phases an ds of cab

otor cables. 24VDC releas
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M r en 8A – WA) are nnec  sockets (Fig. 7.4) 

on t ron rs. The re, taking feedback signals is possible. Motor 

enco  cab  driver ca  are attac d to ts on the m s. 

 

 

 

The CN3

communication cab MON 

Wi ters are separately loaded to 

drivers. Program

 

the program tor has to be 

adjusted. Rigidity nvironment. If the rigidity is 

adjusted higher than necessity, motor shaft makes vibrations. Besides, motor current 

 over the program. Then parameters are 

oto coder cables (R8  CR  co ted to CN2

he f t panel of drive refo

der les and motor bles he their socke otor

 
Figure 7.6 Power connections of a driver. 

7.3.3 Adjusting Servo Motor Parameters 

 socket (Fig. 7.4) of a driver is lined to a COM port of a PC via a RS 

le. Necessary parameters are adjusted and loaded with W

nE Version 2.0 program of the drivers. Parame

 controls only one servo motor. 

Drivers have to be opened and motor brakes have to be released before running 

 and adjusting parameters. Firstly, rigidity of the m

L1

L2

+ 1

+ 2
-

Power in 
220VAC 

L1C 

L2C

B1

B2

U 

V

W
Ground

U, V, W 
and 

ground 
pins of 
motor 
cable Ground 

o

 has to be suitable for working e

and voltage are adjusted by auto tuning
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adjusted with respect to Table 7.4. Parameters which are different from factory 

set

SGDH-01AE-OY 
type servo motor 

driver 

SGDH-A3AE-
OYtype servo 
motor driver 

tings are saved by selecting “save adjustments”.  
 

Table 7.4 Adjusted parameters of servo motor drivers. 

 
 

Pa meters Explanations  Value Value  ra
Pn000 Direction and control type selection 0010H 0010H 
Pn001 Alarm types 1002H 1000H 

Pn002 Velocity and torque control and feedback 
selection 0000H 0000H 

Pn003 Analogue control 0002H 0002H 
Pn100 Speed loop responsiveness 30 20 
Pn101 Speed loop integral time constant 3000 4500 
Pn102 Position loop responsiveness 30 20 
Pn103 Inertia ratio 1180 962 
Pn104 Speed loop responsiveness 2 40 80 
Pn105 Speed loop integral time constant 2 2000 2000 
Pn106 Position loop responsiveness 40 40 
Pn107 Bias rotational speed 1 1 
Pn  Speed cont l settings 10B ro 0004H 0004H 
Pn10F P control switching 10 10 
Pn110 Onlin ting e auto-tuning set 3110H 3110H 
Pn200 Position control setting 0010H 0010H 
Pn201 Enc ate oder divider r 16384 16384 
Pn202 Electronic gear ratio (numerator) 4 4 
Pn203 Electronic inator)  ge enomar ratio (d 1 1 
Pn207 Position control setting 0000  0H 000  H
Pn50A Input signal selection 1 8100H 8100H 
Pn50B Input signal selection 2 6  6  548H 548H

 

 param  extended If there is no meter 

file available, parame justed according to Table 7.4. Furthermore, 

th meters can  the front pan e drivers. 

ion of the m 8. So, 2048 pulses have to be sent over the 

PC rol card

be changed by adjusting Pn202 and Pn203 parameters (Table 7.4). For example, if 

Pn202 / Pn203 is 8 (originally 4), then the requested pulses are 2048 x 2 = 4096. 

 

These eters can be saved in an “usr”  file.  para

ters have to be ad

ese para  be adjusted by using els of th

 

Precis otor encoders is 204

I cont s to r  for one revolution; however, this value can otate motor shafts
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7. olling of A

 

 is possible to program ADLINK control cards with VisualBASIC. PCI 8132 

an

 commands 

which are not recognized by VisualBASIC (see Chapter 5.2.1). 

tion 

eter input boxes on the form are colorized 

with different colours. Thus, parameter input boxes irrelevant to the selected motion 

pro

 
Figure 7.7 The test program developed to control one servo motor 

with open loop control. 

 

4 Contr C Servo Motors  

It

d PCI 8164 components are added into the project and onto the form of the project. 

PCI8132.bas and PCI8164.bas modules, which come with the installation CD of the 

motion control cards, are also added to project. These modules contain

 

A VisualBASIC based test program is developed to control one servo motor 

uniquely via PCI 8132 card. This program is shown in Figure 7.7. In this program, 

there are all motion types that PCI 8132 control card has. When selecting a mo

profile on the program, required param

file are locked. Different motion types are tested via PCI 8132 card with respect 

to open loop control.  

 

 

Ends the 
program 

Open/close 
servos 
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speed on 
fly 
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Motion 
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Clear 
parameters Feedback 
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Position input must be pulse numbers and velocity input must be pulse numbers 

per a second; however, for comprehensibility, position is taken in meters (or degrees) 

and velocity is taken in revolution per minute. Position and velocity values of motors 

are 2048 pulse/rev and 2048 pulse/s, respectively. These inputs are calculated as 

following: 

 

pdngearp .
360
2048

=                  (7.1) 

 

pmngear
r

p .
.2

2048

0π
=                  (7.2) 

 

vdngearv .
60

2048
=                   (7.3) 

 

here, p is position value whose unit is pulse, pd is angular position of output 

sh

losed loop control of two servo motors is tested by a different developed 

VisualBASIC program  is giv

are wanted servo motors to follow simultaneously are sent to motors over the 

program. Equations (7.1), (7.2) and (7.3) are also used in this program. T 

(trapezoidal) motion is used as motion prof otion profiles are se

one after another with respect to a time interval Δt. Error signals are generated by 

taking feedback. New positions are calculated according to closed loop control. 

Motors follow the curves with accep ble errors and at the right time. Co

motion profile is:   

 

W

aft of the gear attached to the motor (degree), pm (meter) is linear movement of 

output shaft of the gear, v is velocity value (pulse/s), vd is angular velocity of output 

shaft of the gear (rev/min), ngear is reduction ratio, r0 (m) is radius of shaft or pulley 

etc. attached to the shaft of gear. 

 

C

. This program en in Figure 7.8. Reference curves which 

ile. T m nt to motors 

ta mmand of T 

 

B_8164.StartTAMove(axis, pos, svel, mvel, tacc, tdec)             (7.4) 
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Parameters of this command are: axis is the working axis number, pos is position 

value (pulse), svel (pulse/s) is starting velocity, mvel (pulse/s) is maximum velocity, 

tacc and tdec are acceleration and deceleration times in terms of second. In this 

program total motion time and time interval are taken as 20 s and dt = 0.05025 s, 

respectively. Formulation of reference curves are given as following equation: 

 

)
20

sin(360 iti
π

θ = , i = 1, 2                (7.5) 

 

Where, 
iθ  and t are in units of degree and second, respectively. Equation (7.1) is 

used to change degree to pulse numbers. 

 

Figure 7.8 Closed control program of two servo motors. 

Tracking curves successfully follow the reference curves by using this program 

because of using full T motion profiles in a 

sequence. Motors accelerate and decelerate in all motion steps of the sequence. 

   

Another VisualBASIC program is developed to control simultaneously three AC 

servo motors for open loop and closed loop control principles. This program is 

shown in Figure 7.9. The entire codes of the developed VisualBASIC program are in 

Linear 
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tim

interpolation 

al
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motion 

Reference 
and 

tracking

Reference 
and 
tracking 
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(Fig.7.8), however, motor shafts vibrate 
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Appendix E. In this program different control methods and algorithms are carried 

out. The end point of the manipulator is moved linearly from (0.51171, 0.3705, 0) 

point to (0, 0.5, 0.3) point at simulation which is in Section 7.2. Results whose inputs 

are angular position – time curves which are generated from inverse kinematic 

analyses are presented. Total motion time is 5 s, and number of samples is ns = 41. 

 

 

undamental commands for open loop control whose input is velocity (first and 

second algorithms) are given in Table 7.5. In these algorithms, motors change their 

starting velocities to second step velocities in the time interval dt with first 

command. Then with a loop, maximum velocities are changed in time interval dt by 

means of second command. Time constraint is achieved by internal counter of the 

card in first algorithm and “sleep” command in second algorithm. Results are 

exhibited in Figure 7.10 and Figure 7.11. 

 

Figure 7.9 Control program of three servo motors with different algorithms. 
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Table 7.5 Control algorithms. 

Control 
method Input  Algorithm 

number Fundamental commands Property  

1 

Time constraint is 
achieved by 
internal counter. 
Acceleration time 
is equal to the 
sampling time. 

Velocity  

2 

B_8164.TVMove(axis, svel, mvel, dt) 

B_8164.VChange(axis, mvel, dt) Time constraint is 
achieved by 
“sleep” command. 
Acceleration time 
is equal to the 
sampling time. 

Open 
loop 

Position  3 B_8164.StartTAMove(axis, pos, svel, mvel, 
tacc, tdec) 

Position  4 

kperr(k) = kp*(ang(k+1) - pos(k-1)) 
kverr(k) =npuls(k+1) 
B_8164.StartTAMove ( axis, kperr(k), 
npuls(k), kverr(k), dt, 0 )   

Position 
and 

velocity 
5 

kperr(k) = kp*(ang(k+1) - pos(k-1)) 
kverr(k) = kv*(npuls(k+1) - v(k-1)) 
B_8164.StartTAMove ( axis, kperr(k), 
npuls(k), kverr(k), dt, 0 )   

6 

kperr(k) = k*(ang(k) - pos(k - 1)) 
kang(k) = ang(k + 1) + kperr(k) 
B_8164.StartTAMove ( axis, kang(k), 
npuls(k), npuls(k+1), dt, 0 ) 

Closed 
loop 

Acceleration time 
is equal to the 

g time. samplin

Position  

7 

kperr(k) = k*(ang(k) - pos(k - 1)) 
kang(k) = ang(k + 1) – ang(k) + kperr(k) 
B_8164.StartTRMove ( axis, kang(k), 
npuls(k), npuls(k+1), dt, 0 ) 
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Track

(b)  

 

Reference 
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Figure 7.10 (a) the first axis, (b) the second axis, (c) 

the third axis results for the first algorithm. 
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Reference 
 
 

Tracking 

(b)  
 

. 

 

 

Fundamental command for open loop control whose input is position (third 

algorithm) is given in Table 7.5. In this algorithm, sampling time dt is equal to 

acceleration time and the command is sequentially sent to motors with a time interval 

dt. Time constraint is achieved by internal counter of the card. Results are presented 

in Figure 7.12. 

 

 

Reference 
 
 

Tracking 

(c) 

Figure 7.11 (a) the first axis, (b) the second axis, (c) 

the third axis results for the second algorithm
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Figure 7.12 (a) the first axis, (b) the second axis, (c) 

 
the third axis results for the third algorithm. 
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A block diagram of the closed loop control which is used in the fourth and the 

fifth algorithms is given in Figure 7.13. In the block diagram, inputs are position in 

ter

kperr and kverr are respectively position and velocity inputs. kv = 1 

and v = 0 are taken for only position inputted control. Fundamental commands of 

these control algorithms are given in Table 7.5. Results are presented in Figure 7.14 

and Figure 7.15 for the fourth and the fifth algorithms respectively.  

 

 
Figure 7.13 Closed loop block diagram for the fourth and the fifth 

algorithms. 

 

 

ms of pulses and velocity in terms of pulse/s; outputs are angular position and 

angular velocity. Where, kp and kv are position gain coefficient and velocity gain 

coefficient, respectively; ang is position input comes from inverse kinematic 

analysis, npuls is velocity input, pos is position feedback, v is velocity feedback, axis 

is axis number, 
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Reference 
 
 

Tracking 

(b)  

Reference 

 
Figure 7.14 (a) the first axis, (b) the second axis, (c) 

the third axis results, for kp = 0.7 and kv = 1, for the 

fourth algorithm. 

 
 

Tracking 

(c) 

 

The sixth and the seventh algorithms are offered because of instability of the 

system occurred by the fourth and the fifth algorithms. Block diagram of the closed 

loop control which is used in the sixth and the seventh algorithms is given in Figure 

7.15. Fundamental commands of these control algorithms are given in Table 7.5. 

Absolute motion (TAMove) is used in the sixth algorithm and relative motion 

(TRMove) is used in the seventh algorithm. Reference point is taken a constant point 

for absolute motion and finishing point of previous motion for relative motion. k is 

gain coefficient and kang is position input. It is necessary to take ka = 1 for TRMove 
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and ka = 0 fo r k = 0.5, in 

Figure 7.17 f nd in Figure 7.18 for k = 0.9. 

 

 
Figure 7.15 Closed loop control block diagram for the sixth and 

the seventh algorithms  
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Reference 
 
 

 
Figure 7.16 (a) the first axis, (b) the second axis, (c) 

the third axis results for k = 0.5 for the sixth and the 

seventh algorithms. 
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Reference 
 
 

Tracking 

 
Figure 7.17 (a) the first axis, (b) the second axis, (c) 

the third axis results for k = 0.7 for the sixth and the 

seventh algorithms. 
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Reference 
 
 

Tracking 

(c)  
Figure 7.18 (a) the first axis, (b) the second axis, (c) 

the third axis results for k = 0.9 for the sixth and the 

seventh algorithms. 

 

 

7.5 Results of the Controlling Servo Motor Systems 

 

In this chapter, an experimental rig is set and inverse kinematic analyses are done. 

PC-based motion control of motors is realized according to the outputs of the 

analyses. 

 

For the motor control system, it is observed that open loop control responses very 

well and the tracking curves resulted from closed loop control algorithms follow the 

reference curves with acceptable errors. Thus, errors are minimized. 

 

For closed loop control, it is observed that the sixth and the seventh algorithms 

(see Table 7.5) whose block diagram is shown in Figure 7.15 give more accurate 

results (Fig.7.16, Fig. 7.17 and Fig. 7.18) than the fourth and the fifth algorithms (see 

Table 7.5), whose block diagram is given in Figure 7.13. The sixth and the seventh 

algorithms prevent instabilities that come into existence compared to the fourth and 

the fifth algorithms (Fig. 7.14). It is studied that system gives good responses in 0.5 – 

0.9 interval of the  the gain (k) is 0.7 

(Fig.7.16, Fig.7.17

gain coefficient (k) and the best responses when

 and Fig.7.18).  
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In position inputted algorithms shown in Table 7.5, dt time interval is equated to 

acceleration time for T motion profile and next motion is sent after dt, instead of 

using full T motion profile in a sequence (Fig. 7.8). Thus, vibrations on the shaft of 

the motors are reduced and smoother motions are obtained. 

 

It is observed that using the internal counters of the cards as timer for time 

constraint makes better responses than using “sleep” command in algorithms. In the 

end of motions, motors are successfully followed the reference curves.  

 

Tracking curves are generated by taking feedback values from the encoders 

attached to the rears of servo motors. Closed loop control tracking curves can be 

improved by taking feedback values from external encoders attached to the shafts of 

gears instead of using the encoders of servo motors. 

 

For all algorithms, it is accomplished that motions finish in the time constraint 

which is given. 
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CHAPTER EIGTH 

CONCLUSIONS 

 

A six degree of freedom parallel robot manipulator called hexapod is discussed in 

order for PC-based control of hexapod. A design is made as a result of inverse 

kinematic analyses. Standard parts are determined and supplied. Other parts are 

manufactured after creating 2D and 3D drawings. A control panel is created and 

connections are made. 

 

Analyses are done with VisualNASTRAN 4D. VisualNASTRAN is controlled by 

developed VisualBASIC programs. Created solid parts are imported into 

VisualNASTRAN. Inverse kinematic analyses whose inputs are positions and 

orientations of the movable upper platform are solved. Lengths of linear motors are 

found. Point – to – point open loop control is applied to the hexapod by using lengths 

of linear motors. ADLINK PCI motion control cards are used to drive linear motors. 

 

Obtained results of hexapod according to specific motions and initial position 

errors are measured by the CMM. As results of measurements, it is observed that 

precision of the hexapod is worse than repeatability as seen in Chapter 6. This 

difference can be caused by initial position errors, and initial position errors can be 

caused by manufacturing errors and assembly errors. Simulations contain no 

manufacturing and assembly errors. Precision can be increased by simulating the 

system with initial position errors or making more precise manufacturing and 

assembly. 

 

Repeatability values obtained from motions which start from initial position are 

worse than repeatability values obtained from motions which start from any positions 

in the workspace. Because, the initial position is set by closing linear motors 

manually. Limit switches attached to linear motors can be used to fully close the 

linear motors instead of manual closing. Thus, the upper platform of the hexapod can 

be set in the same point at the initial position; and precision and repeatability 

regarding the motions which are started from the initial position can be improved.  
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Making precise holes into which joints are precisely placed in the joint location 

points on the platforms can decrease initial position errors. Diameters of holes should 

approximately equal to diameters of bases of joints, in order for precise assembly. 

 

Besides, hexapods are very expensive robots in the market. It is achieved that the 

hexapod is created much cheaper than the commercial hexapods which are sold in 

the market. 

 

In addition, brushless AC servo motor systems on which the hexapod will be 

attached are also examined. In order to control motors, a three degrees of freedom 

serial manipulator is designed. Solid models of the manipulator are created. Solid 

models are used in VisualNASTRAN for analyses. Inverse kinematic analyses are 

done with respect to specific motions. An experimental rig is developed to test the 

system. VisualBASIC programs are developed to control brushless AC servo motors. 

Different algorithms are tested. Outputs of analyses are used as inputs of control 

algorithms. As a result of testing, appropriate control methods and algorithms are 

determined (Chapter 7). 

 

For the motor control system, it is observed that open loop control responses very 

well and the tracking curves resulted from closed loop control algorithms follow the 

reference curves with acceptable errors. Thus, errors are minimized. For closed loop 

control algorithms, the sixth and the seventh algorithms prevent instabilities that 

come into existence compared to the fourth and the fifth algorithms (Fig. 7.14). It is 

studied that system gives good responses in 0.5 – 0.9 interval of the gain coefficient 

(k) and the best responses when the gain (k) is 0.7 (Fig.7.16, Fig.7.17 and Fig.7.18). 

Tracking curves successfully follow reference curves in a desired time constraint.  

 

Tracking curves are generated by taking feedback values from the encoders 

attached to the rears of servo motors. Closed loop control tracking curves can be 

improved by taking feedback values from external encoders attached to the shafts of 

gears instead of using the encoders of servo motors. 
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APPENDIX A 

PROPERTIES OF ADLINK PCI 8132 AND PCI 8164 MOTION CONTROL 

CARDS 

 

A.1 Features of PCI 8132 and PCI 8164 

 

The PCI 8132 and PCI 8164 cards are 2 axes and 4 axes motion control cards with 

PCI interface, respectively. It can generate high frequency pulse trains to drive 

stepping motors and servo motors. Multiple PCI 8132 and PCI 8164 cards can be 

used in one system. Incremental encoder interface provide the ability to correct for 

positioning errors generated by inaccurate mechanical transmissions (Adlink Inc., 

2006). 

 

The following lists summarize the main features of the PCI 8132 motion control 

card. The information listed below can be found at Adlink Co. (Adlink Inc., 2006). 

 

• 32-bit PCI bus, plug and play. 

• 2 axes of step and direction pulse output for controlling stepping or 

servomotor. 

• Maximum pulse output frequency: 2.4Mpps, linear, trapezoidal or S curve 

velocity profile drive. 

• 2 axes circular and linear interpolation. 

• 0~268.435.455 or –134.217.728 to +134.217.727, 28-bit up/down counter for 

incremental encoder feedback. 

• Home switch, index signal, positive and negative limit switches interface 

provided for all axes. 

• Programmable interrupt sources. 

• Change speed on the fly. 

• Position compare and trigger signal output. 

• Simultaneous start/stop motion on multiple axes. 

• Manual pulser input interface. 

• Software supports maximum up to 12 PCI 8132 cards (24 axes) operation. 
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• PCI 8132 library and utility for DOS library and Windows 95/98/NT DLL. 

• Internal reference clock: 9.8304 MHz. 

• Pulse rate setting steps: 0 to 2.4Mpps. 

• Position comparison range:-8,388,608 ~ +8388607 (24 bit). 

• Position pulse setting range: 0~268,435,455 pulses (28-bit). 

 

The following lists summarize the main features of the PCI 8164 motion control 

card. The information listed below can be found at Adlink Co. (Adlink Inc., 2006). 

 

• 32-bit PCI bus, plug and play. 

• 4 axes of step and direction pulse output for controlling stepping or 

servomotor. 

• 6.55MPPS maximum pulse output frequency, linear, trapezoidal, or S-Curve 

velocity profile drive. 

• Any 2 of 4 axes circular interpolation. 

• Any 2-4 of 4 axes linear interpolation. 

• Continuous interpolation for contour following motion. 

• Change position and speed on the fly. 

• Change speed by condition comparing. 

• 13 home return modes with auto searching. 

• Hardware backlash compensator and vibration suppression. 

• 2 software end-limits for each axis. 

• 0~268.435.455 or –134.217.728 to +134.217.727, 28-bit up/down counter for 

incremental encoder feedback. 

• 2-axis high speed position latch input. 

• 2-axis position compare trigger output with 4k FIFO auto loading. 

• Simultaneous start/stop motion on multiple axes. 

• Manual pulser input interface. 

• Software supports a maximum of up to 12 PCI-8164 cards (48 axes) 

operation in one system. 

• Libraries and utilities support DOS, Windows® 9X/NT/2000/XP, and Linux. 
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• 19.66 MHz internal reference clock. 

• Pulse rate setting ranges (pulse ratio = 1: 65535). 

• Position pulse setting range (28-bit): -134,217,728 to +134,217,728. 

 

 

A.2 Fundamental Commands of PCI 8132 and PCI 8164 

 

Fundamental commands of PCI motion control cards used in the programs with 

respect of VisualBASIC are presented in Table A.1. Suitable commands which are 

related to desired motion profile and feedback type, can be selected from the Table 

A.1.  

 
Table A.1 Fundamental commands of the motion control cards 

Commands for PCI 8132  Commands for PCI 8164  Explanation  

B_8132_set_pls_outmode B_8164.Axis0.OutputMode Type of the motion. 

B_8132_set_cnt_src B_8164_set_feedback_src 

External encoder (0 means 

external encoder, 1means internal 

encoder; they are opposite for PCI 

8132). 

B_8132_get_position B_8164_get_position Reads feedback. 

B_8132_start_t_move B_8164_tv_move Trapezoidal constant motion. 

B_8132_start_s_move B_8164_sv_move S profile constant motion. 

B_8132_v_stop B_8164_sd_stop Stops the motion. 

B_8132_start_ts_move B_8164_start_tr_move Trapezoidal relative motion. 

B_8132_start_ta_move B_8164_start_ta_move Trapezoidal absolute motion. 

B_8132_start_rs_move B_8164_start_sr_move S profile relative motion. 

B_8132_start_ra_move B_8164_start_sa_move S profile absolute motion. 

B_8132_start_move_xy 

B_8164_start_tr_line2 (3,4) 

B_8164_start_ta_line2 (3,4) 

B_8164_start_sr_line2 (3,4) 

B_8164_start_sa_line2 (3,4) 

Linear interpolation with respect 

to motion profile and desired 2 (or 

3 or 4) axes. 

B_8132_arc_xy 
B_8164_start_a_arc2 

B_8164_start_r_arc2 

Circular interpolation with respect 

to motion profile and desired 2 

axes. 

B_8132_v_change B_8164_v_change Changes speed on fly. 
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APPENDIX B 

ACCELERATION – DECELERATION SINUSOID 

 

B.1 Definition of the Acceleration – Deceleration Sinusoid 

 

Velocity – time graph for velocity profiles which are used as velocity inputs is 

given in Figure B.1 (Karagülle et al., 2006). 

 

 
Figure B.1 Velocity – time graph for velocity inputs. 

 

Duration of the motion is tp and there is acceleration in 0 - t1 time interval and 

deceleration between tp - t1 time interval and tp. Constant velocity which is between t1 

and tp – t1, is V0. Acceleration and deceleration curves are a quarter sinus curves. 

Suppose that the value of whatever positions or angular degrees of freedom is SA at t 

= 0 and SB at t = tp. V0 is found by equalling SB – SA to the area under the velocity 

curve. 

 

B.2 Creating Samples of the Sinusoid by VisualBASIC 

 

A developed VisualBASIC subroutine which finds samples of velocity values 

whose inputs are SA, SB, tp, Ns and N1 is presented below. If Δt is sampling period, Ns 

(Δt) = tp and N1 (Δt) = t1 (Karagülle et al., 2006). 

 

V
el

oc
ity

 

Time 
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Rem: Inputs: sa, sb, tp, ns, n1 Results: ts(k), sv(k) 

dt = tp / ns: t1 = n1 * dt: w = pi / (2 * t1): t2 = tp - t1 

v0 = (sb - sa) / (2 / w + (t2 - t1)): t = 0 

For k = 0 To n1 

     sv(k) = v0 * Sin(w * t): ts(k) = t: t = t + dt 

Next k 

For k = n1 + 1 To ns - n1 – 1 

     sv(k) = v0: ts(k) = t: t = t + dt 

Next k 

For k = ns - n1 To ns 

     sv(k) = v0 * Cos(w * (t - t2)): ts(k) = t: t = t + dt 

Next k 

Return 
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APPENDIX C 

2D MANUFACTURING DRAWINGS OF THE HEXAPOD 

 

In this appendix, 2D drawings of parts, which are manufactured, of the hexapod is 

presented. The drawings are generated from 3D solid models of the hexapod in I-

Deas solid modelling program (Karagülle et al., 2007).  

 

The assembly of one axis is shown at Page 94. Part names which are related to 

part numbers of the assembly are given in Table C.1. 

 
Table C.1 Identification of the assembly numbers. 

Number Item Full name Name 

1 1 Lower platform pa 

2 4 M3 nut of stud bolt spn 

3 4 M3 stud bolt sp 

4 1 Shaft of spherical joint lsa 

5 1 Spherical joint sa 

6 1 Joint connection part lcb 

7 1 Linear motor lma 

8 1 Lower connection part lca 

9 1 Upper connection part lda 

10 4 Capscrews M3x10 

11 4 Capscrews  M3x15 

12 1 Upper platform pb 

 

 

2D drawings of the lower platform and the upper platform are presented at Page 

95 and Page 96, respectively. The joint connection part is at Page 97. The lower 

connection part and the upper connection part of the motor are given at Page 98 and 

Page 99, respectively. The part named stud bolt, which connects the lower 

connection part and the upper connection part, is shown at Page 100. 
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APPENDIX D 

VISUALBASIC PROGRAM FOR SIMULATION AND CONTROLLING 

OF THE HEXAPOD 

 
Private Sub Command1_Click() 

 Call assemble1 

End Sub 

 

Private Sub Command10_Click() 

 v0puls = 3000: t1 = 0.01 

 dis = -dis0 / 0.00075: Call move_motors 

End Sub 

 

Private Sub Command2_Click() 

 Call forward1 

End Sub 

 

Private Sub Command3_Click() 

 Call inverse1 

End Sub 

 

Private Sub Command4_Click() 

 Call rmeter1 

End Sub 

 

Private Sub Command6_Click() 

 Call move1 

End Sub 

 

Private Sub Command7_Click() 

 End 

End Sub 

 

Private Sub Command8_Click() 

 xc = InputBox("Motor number:"): If xc = "" Then Exit Sub 

 nmotor = Val(xc): Text1.Text = Str(nmotor) + "," + Str(dis0) 

End Sub 
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Private Sub Command9_Click() 

 xc = InputBox("Distance:"): If xc = "" Then Exit Sub 

 dis0 = Val(xc): Text1.Text = Str(nmotor) + "," + Str(dis0) 

End Sub 

 

Private Sub Form_Activate() 

 Call adlink0 

End Sub 

 

Private Sub Form_Load() 

 nmotor = 1: dis0 = 0.5: pi = 4 * Atn(1) 

 Form1.Caption = "Hexapod1" 

 WindowState = 2: Form1.AutoRedraw = True 

 Text1.Text = "" 

 Command1.Caption = "Assemble" 

 Command3.Caption = "Motion-inverse" 

 Command4.Caption = "Actuator lengths" 

 Command2.Caption = "Motion-forward" 

 Command6.Caption = "Move" 

 Command10.Caption = "move_0" 

 Command8.Caption = "motor" 

 Command9.Caption = "dis0" 

 Command7.Caption = "end" 

 End Sub 

 

-----Assemble.bas----- 

 

Public Const fl0 = "d:\hexapod1\" 

Public doc As Object, pi As Double 

Public xsa(6), ysa(6), xsb(6), ysb(6) As Double 

Public konwm As Integer 

Public pad1, pat1, par2, pafi1 As Double 

Public pbd1, pbt1, pbr2, pbfi1 As Double 

Public heph_c, h1, l1, r0 As Double 

Public ns, nframe As Integer 

Public dt As Double 

Public zsa, zsb As Double 

Sub const0() 

 pi = Atn(1) * 4 
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 pad1 = 0.011: pat1 = 0.001: par2 = 0.174 - 0.025: pafi1 = 30 * pi / 180 

 pbd1 = 0.01: pbt1 = pat1: pbr2 = 0.125 - 0.025: pbfi1 = 60 * pi / 180 

 heph_c = 0.007: h1 = 244.1362 / 1000 

 ns = 20: nframe = 5: dt = 0.001 

 '--- 

 Call heph1: x = xsb(1) * 1000 - xsa(1) * 1000: y = ysb(1) * 1000 - ysa(1) * 1000 

 zsa = 0.5 * pad1 - pat1 + heph_c: zsb = -0.5 * pbd1 + pbt1 - heph_c 

 z = (h1 - 0.5 * pad1 - 0.5 * pbd1 - zsa + zsb) * 1000 

 l1 = Sqr(x ^ 2 + y ^ 2 + z ^ 2): r0 = l1 - (0.18 + 0.01) * 1000 

 pbz0 = (h1 - 0.5 * pad1 - 0.5 * pbd1) * 1000 

End Sub 

 

Sub assemble1()  ‘Assembles parts 

 xc = InputBox("Continue", , "y"): If xc <> "y" Then Exit Sub 

 Call wm3d0: If doc.Name <> "hexapod1.WM3" Then Exit Sub 

 Call heph2 

 Call name1 

 Call align1 

 Call cmeter1 

End Sub 

 

Sub align1()   ‘Align parts 

 z = h1 - 0.5 * pad1 - 0.5 * pbd1 - zsa + zsb 

 cj = "1": GoSub 60 

 cj = "2": GoSub 60 

 cj = "3": GoSub 60 

 cj = "4": GoSub 60 

 cj = "5": GoSub 60 

 cj = "6": GoSub 60 

 Exit Sub 

 

 60 b1c = "lsa" + cj: b2c = "lsb" + cj: kj = Val(cj) 

 x = xsb(kj) - xsa(kj): y = ysb(kj) - ysa(kj) 

 rx = Atn(-y / z): cos2 = Sqr(y * y + z * z) / l1: sin2 = x / l1: ry = Atn(sin2 / cos2) 

 a = doc.Bodies(b1c).SetConfig(xsa(kj), ysa(kj), 0.5 * h1, rx, ry, 0) 

 a = doc.Bodies(b2c).SetConfig(xsa(kj), ysa(kj), 0.5 * h1, rx, ry, 0) 

 c1c = "sa-s" + cj: c2c = "lsa-s" + cj 

 Set c1 = doc.Coords(c1c): Set c2 = doc.Coords(c2c) 

 Call doc.Constraints.CreateConstraint(3, 3, c2, c1) 
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 c1c = "sb-s" + cj: c2c = "lsb-s" + cj 

 Set c1 = doc.Coords(c1c): Set c2 = doc.Coords(c2c) 

 Call doc.Constraints.CreateConstraint(3, 3, c2, c1) 

 c1c = "lma-l" + cj: c2c = "lmb-l" + cj 

 Set c1 = doc.Coords(c1c): Set c2 = doc.Coords(c2c) 

 Call doc.Constraints.CreateConstraint(4, 1, c2, c1) 

 Call doc.Constraints.CreateConstraint(7, 1, c2, c1) 

 nc = doc.Constraints.Count: doc.Constraints(nc).Name = "la" + cj 

 doc.Constraints("la" + cj).ActuatorValue.value = 0 

 Return 

End Sub 

 

Sub cmeter1()  ‘Constraint meters 

 cj = "la1": cjj = "-l": GoSub 50 

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la1").ID) & "].length" 

 cj = "la2": GoSub 50 

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la2").ID) & "].length" 

 cj = "la3": GoSub 50 

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la3").ID) & "].length" 

 cj = "la4": GoSub 50 

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la4").ID) & "].length" 

 cj = "la5": GoSub 50 

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la5").ID) & "].length" 

 cj = "la6": GoSub 50 

 doc.Meters(n).Column(1).Formula = "constraint[" & (doc.Constraints("la6").ID) & "].length" 

 '--- 

 Exit Sub 

 50 a = doc.Meters.Add(): n = doc.Meters.Count: doc.Meters(n).Name = cj + cjj 

 doc.Meters(n).AllocateColumns (2): doc.Meters(n).Visible = False 

 Return 

End Sub 

 

Sub name1()   ‘Renames 

 doc.Bodies("Copy of lsa1").Name = "lsa2" 

 doc.Bodies("Copy (2) of lsa1").Name = "lsa3" 

 doc.Bodies("Copy (3) of lsa1").Name = "lsa4" 

 doc.Bodies("Copy (4) of lsa1").Name = "lsa5" 

 doc.Bodies("Copy (5) of lsa1").Name = "lsa6" 

 '--- 
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 doc.Bodies("Copy of lsb1").Name = "lsb2" 

 doc.Bodies("Copy (2) of lsb1").Name = "lsb3" 

 doc.Bodies("Copy (3) of lsb1").Name = "lsb4" 

 doc.Bodies("Copy (4) of lsb1").Name = "lsb5" 

 doc.Bodies("Copy (5) of lsb1").Name = "lsb6" 

 '--- 

 doc.Coords("Copy of lsa-s1").Name = "lsa-s2" 

 doc.Coords("Copy (2) of lsa-s1").Name = "lsa-s3" 

 doc.Coords("Copy (3) of lsa-s1").Name = "lsa-s4" 

 doc.Coords("Copy (4) of lsa-s1").Name = "lsa-s5" 

 doc.Coords("Copy (5) of lsa-s1").Name = "lsa-s6" 

 '--- 

 doc.Coords("Copy of lsb-s1").Name = "lsb-s2" 

 doc.Coords("Copy (2) of lsb-s1").Name = "lsb-s3" 

 doc.Coords("Copy (3) of lsb-s1").Name = "lsb-s4" 

 doc.Coords("Copy (4) of lsb-s1").Name = "lsb-s5" 

 doc.Coords("Copy (5) of lsb-s1").Name = "lsb-s6" 

 '--- 

 doc.Coords("Copy of lma-l1").Name = "lma-l2" 

 doc.Coords("Copy (2) of lma-l1").Name = "lma-l3" 

 doc.Coords("Copy (3) of lma-l1").Name = "lma-l4" 

 doc.Coords("Copy (4) of lma-l1").Name = "lma-l5" 

 doc.Coords("Copy (5) of lma-l1").Name = "lma-l6" 

 '--- 

 doc.Coords("Copy of lmb-l1").Name = "lmb-l2" 

 doc.Coords("Copy (2) of lmb-l1").Name = "lmb-l3" 

 doc.Coords("Copy (3) of lmb-l1").Name = "lmb-l4" 

 doc.Coords("Copy (4) of lmb-l1").Name = "lmb-l5" 

 doc.Coords("Copy (5) of lmb-l1").Name = "lmb-l6" 

 '--- 

End Sub 

 

Sub heph1()   ‘Parameters 

 bc = "pa": R = par2 

 fi = 0.5 * pafi1: k = 1: GoSub 100 

 fi = 120 * pi / 180 - 0.5 * pafi1: c1c = "sa-s2": k = 2: GoSub 100 

 fi = 120 * pi / 180 + 0.5 * pafi1: c1c = "sa-s3": k = 3: GoSub 100 

 fi = 240 * pi / 180 - 0.5 * pafi1: c1c = "sa-s4": k = 4: GoSub 100 

 fi = 240 * pi / 180 + 0.5 * pafi1: c1c = "sa-s5": k = 5: GoSub 100 
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 fi = -0.5 * pafi1: k = 6: GoSub 100 

 '--- 

 bc = "pb": R = pbr2 

 fi = 0.5 * pbfi1: c1c = "sb-s1": k = 1: GoSub 100 

 fi = 120 * pi / 180 - 0.5 * pbfi1: c1c = "sb-s2": k = 2: GoSub 100 

 fi = 120 * pi / 180 + 0.5 * pbfi1: c1c = "sb-s3": k = 3: GoSub 100 

 fi = 240 * pi / 180 - 0.5 * pbfi1: c1c = "sb-s4": k = 4: GoSub 100 

 fi = 240 * pi / 180 + 0.5 * pbfi1: c1c = "sb-s5": k = 5: GoSub 100 

 fi = -0.5 * pbfi1: c1c = "sb-s6": k = 6: GoSub 100 

 Exit Sub 

 '--- 

 100 x = R * Cos(fi): y = R * Sin(fi) 

 If bc = "pa" Then xsa(k) = x: ysa(k) = y 

 If bc = "pb" Then xsb(k) = x: ysb(k) = y 

 Return 

End Sub 

 

Sub heph2()   ‘Parameters 

 z = h1 - 0.5 * pad1 - 0.5 * pbd1: a = doc.Bodies("pb").SetConfig(0, 0, z, 0, 0, 0) 

 '--- 

 bc = "pa": z = 0.5 * pad1 - pat1 + heph_c 

 c1c = "sa-s1": x = xsa(1): y = ysa(1): GoSub 100 

 c1c = "sa-s2": x = xsa(2): y = ysa(2): GoSub 100 

 c1c = "sa-s3": x = xsa(3): y = ysa(3): GoSub 100 

 c1c = "sa-s4": x = xsa(4): y = ysa(4): GoSub 100 

 c1c = "sa-s5": x = xsa(5): y = ysa(5): GoSub 100 

 c1c = "sa-s6": x = xsa(6): y = ysa(6): GoSub 100 

 '--- 

 bc = "pb": R = pbr2: z = -0.5 * pbd1 + pbt1 - heph_c 

 c1c = "sb-s1": x = xsb(1): y = ysb(1): GoSub 100 

 c1c = "sb-s2": x = xsb(2): y = ysb(2): GoSub 100 

 c1c = "sb-s3": x = xsb(3): y = ysb(3): GoSub 100 

 c1c = "sb-s4": x = xsb(4): y = ysb(4): GoSub 100 

 c1c = "sb-s5": x = xsb(5): y = ysb(5): GoSub 100 

 c1c = "sb-s6": x = xsb(6): y = ysb(6): GoSub 100 

 Exit Sub 

 '--- 

 100 doc.Coords.Add: n = doc.Coords.Count 

 Set doc.Coords(n).Body = doc.Bodies(bc): doc.Coords(n).Name = c1c 
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 a = doc.Coords(n).SetConfig(x, y, z, 0, 0, 0) 

 Return 

End Sub 

 

Sub wm3d0()   ‘Initialize 

 If konwm > 0 Then Exit Sub 

 Set wm = GetObject(, "WM3D.Application"): Set doc = wm.ActiveDocument 

 Call const0: konwm = 1 

 doc.AccuracySettings.IntegrationStepsPerFrame = nframe 

 doc.AccuracySettings.IntegrationSecondsPerStep = dt / nframe 

 doc.RunControl.ActionType = 1 

 doc.RunControl.Condition.Formula = "frame()=" + Str(ns) 

End Sub 

 

-----Simulate.bas----- 

 

Public pbz0 As Double, kerror As Integer 

Public pbx As Double, pby As Double, pbz As Double 

Public pbrx As Double, pbry As Double, pbrz As Double 

Public ra(6) As Double, la(6) As Double 

Public thc As String, th As Double 

 

Sub inverse1()  ‘Inverse kinematics 

 Call m0: If doc.Name <> "hexapodi.WM3" Then Exit Sub 

 a = doc.Bodies("pb").GetConfig(pbx, pby, pbz, pbrx, pbry, pbrz) 

 Open fl0 + "inp_inverse.txt" For Input As 1 

 Input #1, xb, yb, zb, rxb, ryb, rzb: Close #1: zb = pbz0 + zb 

 px = pbx * 1000: py = pby * 1000: pz = pbz * 1000 

 rxa = pbrx * 180 / pi: rya = pbry * 180 / pi: rza = pbrz * 180 / pi 

 Form1.Cls 

 Form1.Print px, py, pz, rxa, rya, rza: Form1.Print xb, yb, zb, rxb, ryb, rzb 

 xc = InputBox("Continue", , "y"): If xc <> "y" Then Exit Sub 

 kp = 0: kpd = 50: aep = 0.0001: aer = 0.00001 

 doc.RunTo 0: k = 0 

 10 If k = ns Then MsgBox ("Convergence error"): GoTo 30 

 pbx = doc.Meters("pbpos").Y1(k) * 1000 

 pby = doc.Meters("pbpos").Y2(k) * 1000 

 pbz = doc.Meters("pbpos").y3(k) * 1000 

 rxa = doc.Meters("pbrot").Y1(k) * 180 / pi 
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 rya = doc.Meters("pbrot").Y2(k) * 180 / pi 

 rza = doc.Meters("pbrot").y3(k) * 180 / pi 

 k = k + 1: kp = kp + kpd 

 epx = xb - pbx: epy = yb - pby: epz = zb - pbz 

 erx = rxb - rxa: ery = ryb - rya: erz = rzb - rza: kerror = 0 

 doc.Inputs("pbvx").value = kp * epx 

 doc.Inputs("pbvy").value = kp * epy 

 doc.Inputs("pbvz").value = kp * epz 

 doc.Inputs("pbwx").value = kp * erx 

 doc.Inputs("pbwy").value = kp * ery 

 doc.Inputs("pbwz").value = kp * erz 

 doc.RunTo k 

 If Abs(epx) > aep Then kerror = 1 

 If Abs(epy) > aep Then kerror = 1 

 If Abs(epz) > aep Then kerror = 1 

 If Abs(erx) > aer Then kerror = 1 

 If Abs(ery) > aer Then kerror = 1 

 If Abs(erz) > aer Then kerror = 1 

 If kerror = 0 Then GoTo 30 

 GoTo 10 

 30 doc.Inputs("pbvx").value = 0 

 doc.Inputs("pbvy").value = 0 

 doc.Inputs("pbvz").value = 0 

 doc.Inputs("pbwx").value = 0 

 doc.Inputs("pbwy").value = 0 

 doc.Inputs("pbwz").value = 0 

 doc.RunTo ns 

End Sub 

 

Sub rmeter1()   ‘Reads meters 

 If konwm = 0 Then 

 Set wm = GetObject(, "WM3D.Application"): Set doc = wm.ActiveDocument: Call const0 

End If 

 n = ns: Form1.Cls 

 a = doc.Bodies("pb").GetConfig(pbx, pby, pbz, pbrx, pbry, pbrz) 

 Form1.Print pbx * 1000, pby * 1000, pbz * 1000 

 Form1.Print pbrx * 180 / pi, pbry * 180 / pi, pbrz * 180 / pi 

 Call cmm: Form1.Print 

 If doc.NumFrames < ns Then 
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 Form1.Print "ns=0" 

 doc.Inputs("pbvx").value = 0: doc.Inputs("pbvy").value = 0 

 doc.Inputs("pbvz").value = 0: doc.Inputs("pbwx").value = 0 

 doc.Inputs("pbwy").value = 0: doc.Inputs("pbwz").value = 0: n = 0: doc.RunTo 0 

 End If 

 ra(1) = doc.Meters("la1-l").Y1(n) - r0 

 ra(2) = doc.Meters("la2-l").Y1(n) - r0 

 ra(3) = doc.Meters("la3-l").Y1(n) - r0 

 ra(4) = doc.Meters("la4-l").Y1(n) - r0 

 ra(5) = doc.Meters("la5-l").Y1(n) - r0 

 ra(6) = doc.Meters("la6-l").Y1(n) - r0 

 If ns = 0 Then doc.Reset: doc.EraseHistory 

 Cx = Cos(pbrx): sx = Sin(pbrx): Cy = Cos(pbry): sy = Sin(pbry) 

 cz = Cos(pbrz): sz = Sin(pbrz): kerror = 0 

 For k = 1 To 6 

 lla = l1 + ra(k) 

 zz = (-Cx * sy * cz + sx * sz) * xsb(k) * 1000 + (Cx * sy * sz + sx * cz) * ysb(k) * 1000 

 zz = zz + Cx * Cy * zsb * 1000 + pbz * 1000: z = zz - zsa * 1000 

 x = Sqr(lla * lla - z ^ 2): fia = Atn(x / z) * 180 / pi 

 '--- 

 x = (xsa(k) - pbx) * 1000: y = (ysa(k) - pby) * 1000: z = (zsa - pbz) * 1000 

 zz = sy * x - Cy * sx * y + Cy * Cx * z: z = -zz + zsb * 1000 ' 

 x = Sqr(lla * lla - z ^ 2): fib = Atn(x / z) * 180 / pi 

 Form1.Print ra(k), fia, fib 

 If ra(k) < 0 Or ra(k) > 45 Then: kerror = 1 

 If fia > 35 Or fib > 35 Then: kerror = 1 

 Next k 

 If kerror = 1 Then MsgBox ("Error") 

End Sub 

 

Sub cmm()   ‘Transformation 

 Cx = Cos(pbrx): Cy = Cos(pbry): cz = Cos(pbrz) 

 sx = Sin(pbrx): sy = Sin(pbry): sz = Sin(pbrz) 

 x = sy: y = -sx * Cy: z = Cx * Cy 

 cfi = x: GoSub 25: alpha = th: alphac = thc 

 cfi = y: GoSub 25: beta = th: betac = thc 

 cfi = z: GoSub 25: gama = th: gamac = thc 

 Form1.Print 

 Form1.Print alphac, betac, gamac 
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 Form1.Print alpha, beta, gama 

 Exit Sub 

 25 If cfi = 0 Then th = 90: Return 

 sfi = Sqr(1 - cfi * cfi): th = Atn(sfi / cfi) * 180 / pi 

 If th < 0 Then th = th + 180 

 30 thd = (th - Fix(th)) * 60: ths = Fix(((thd - Fix(thd)) * 60)) 

 thd = Fix(thd): thc = Str(Fix(th)) + " " + Str(thd) + " " + Str(ths) 

 Return 

End Sub 

 

Sub forward1()  ‘Forward kinematics 

 MsgBox ("Correct module"): Exit Sub 

 Call m0: If doc.Name <> "hexapodf.WM3" Then Exit Sub 

 Open fl0 + "inp_forward.txt" For Input As 1 

 For k = 1 To 6: Input #1, la(k): Next k: Close #1 

 Form1.Cls: Form1.Print la(1), la(2), la(3), la(4), la(5), la(6): MsgBox ("") 

 doc.Inputs("la1").value = la(1) + r0 

 doc.Inputs("la2").value = la(2) + r0 

 doc.Inputs("la3").value = la(3) + r0 

 doc.Inputs("la4").value = la(4) + r0 

 doc.Inputs("la5").value = la(5) + r0 

 doc.Inputs("la6").value = la(6) + r0 

 doc.Run 

End Sub 

 

Sub m0()   ‘Reset 

 Call wm3d0: doc.Reset: doc.EraseHistory 

 Call doc.Bodies("pb").SetInitialVelocity(0, 0, 0, 0, 0, 0) 

End Sub 

 

Sub cmm2dec()  ‘Arcmin to degree 

 j = 3: If Mid(thc, 4, 1) = ":" Then j = 4 

 th = Val(Mid(thc, 1, j - 1)) + Val(Mid(thc, j + 1, 2)) / 60 + Val(Mid(thc, j + 4, 2)) / 3600 

End Sub 

 

-----Move.bas----- 

 

Public rp(6) As Double, disa(6) As Long 

Public nmotor As Integer, dis0 As Double, dis As Double 
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Public v0p(6) As Long, t1p(6) As Double 

Public v0puls As Long, t1 As Double 

Public dismax As Long, dismin As Long 

 

Sub move_motors()  ‘Control 

 Form1.Print dis, t1, v0puls: GoTo 30 

 If dis = 0 Then GoTo 30 

 If nmotor = 1 Then naxis = 0: GoTo 10 

 If nmotor = 2 Then naxis = 1: GoTo 10 

 If nmotor = 3 Then naxis = 0: GoTo 20 

 If nmotor = 4 Then naxis = 1: GoTo 20 

 If nmotor = 5 Then naxis = 2: GoTo 20 

 If nmotor = 6 Then naxis = 3: GoTo 20 

 10 a = Form1.B_8132.StartTMove(naxis, dis, 0, v0puls, t1, t1): GoTo 30 

 20 a = Form1.B_8164.StartTRMove(naxis, dis, 0, v0puls, t1, t1) 

 30 

End Sub 

 

Sub move1()  ‘Control 

 v0max = 3000: t1max = 0.01 

 If konwm = 0 Then 

 Set wm = GetObject(, "WM3D.Application"): Set doc = wm.ActiveDocument: Call const0 

 End If 

 Call rmeter1: If kerror > 0 Then Exit Sub 

 If doc.NumFrames < ns Then MsgBox ("ns=0"): Exit Sub 

 rp(1) = doc.Meters("la1-l").Y1(0) - r0 

 rp(2) = doc.Meters("la2-l").Y1(0) - r0 

 rp(3) = doc.Meters("la3-l").Y1(0) - r0 

 rp(4) = doc.Meters("la4-l").Y1(0) - r0 

 rp(5) = doc.Meters("la5-l").Y1(0) - r0 

 rp(6) = doc.Meters("la6-l").Y1(0) - r0 

 For k = 1 To 6: disa(k) = CInt((ra(k) - rp(k)) / 0.00075): Next k 

 dismax = Abs(disa(1)) 

 For k = 2 To 6 

 If dismax < Abs(disa(k)) Then dismax = Abs(disa(k)) 

 Next k 

 Form1.Print 

 For k = 1 To 6 

 dis = -disa(k): td = dismax / v0max + t1max: t2 = td - 2 * t1max: t1p(k) = t1max 
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 If Abs(dis) < v0max * t1max Then t1p(k) = 0.5 * td: t2 = 0 

 v0p(k) = CInt(Abs(dis) / (t1p(k) + t2)) 

 Form1.Print rp(k), ra(k), dis, t1p(k), v0p(k) 

 Next k 

 xc = InputBox("Continue", , "y"): If xc <> "y" Then Exit Sub 

 Call adlink1 

End Sub 

 

Sub adlink1()   ‘Control 

 For nmotor = 1 To 6 

 dis = -disa(nmotor): t1 = t1p(nmotor): v0puls = v0p(nmotor) 

 Call move_motors 

 Next nmotor 

 doc.EraseHistory 

End Sub 

 

-----Adlink_init.bas----- 

 

Sub adlink0()   ‘Initials cards 

 Form1.B_8132.Axis0.OutputMode = OUT_DIR 

 Form1.B_8132.Axis1.OutputMode = OUT_DIR 

 Form1.B_8132.Axis0.InputMode = db4X_AB_PHASE 

 Form1.B_8132.Axis1.InputMode = db4X_AB_PHASE 

 '---- 

 Form1.B_8164.Axis0.OutputMode = OUT_RISING_DIR_HIGH           

 Form1.B_8164.Axis1.OutputMode = OUT_RISING_DIR_HIGH 

 Form1.B_8164.Axis2.OutputMode = OUT_RISING_DIR_HIGH 

 Form1.B_8164.Axis3.OutputMode = OUT_RISING_DIR_HIGH 

 Form1.B_8164.Axis0.InputMode = NORMAL_LOW_4X_AB_PHASE 

 Form1.B_8164.Axis1.InputMode = NORMAL_LOW_4X_AB_PHASE 

 Form1.B_8164.Axis2.InputMode = NORMAL_LOW_4X_AB_PHASE 

 Form1.B_8164.Axis3.InputMode = NORMAL_LOW_4X_AB_PHASE 

End Sub 



APPENDIX E 

VISUALBASIC PROGRAM FOR CONTROLLING OF SERVO MOTOR 

SYSTEMS 

 
Dim fl0 As String 

 

Private Sub Command1_Click() 

Call path 

End Sub 

 

Private Sub Command10_Click() 

Call mot2 

End Sub 

 

Private Sub Command11_Click() 

Call mot3 

End Sub 

 

Private Sub Command12_Click() 

Call mot4 

End Sub 

 

Private Sub Command13_Click() 

Call mot5 

End Sub 

 

Private Sub Command14_Click() 

Call mot7 

End Sub 

 

Private Sub Command2_Click() 

Call savep 

End Sub 

 

Private Sub Command3_Click() 

Call move1 

End Sub 
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Private Sub Command4_Click() 

Call readp 

End Sub 

 

Private Sub Command5_Click() 

Call move3li 

End Sub 

 

Private Sub Command6_Click() 

Call pnt0 

End Sub 

 

Private Sub Command7_Click() 

Call stop1 

End Sub 

 

Private Sub Command8_Click() 

Call mot6 

End Sub 

 

Private Sub Command9_Click() 

Call mot1 

End Sub 

 

Private Sub Form_Load() 

fl0 = "d:\r06\": ' fl0 = app.path + "\" 

WindowState = 2 

Form1.Caption = "PC-BASED MOTION CONTROL" 

Command1.Caption = "Get Vel.": Command2.Caption = "End" 

Command3.Caption = "Move1": Command4.Caption = "Read Pos." 

Command5.Caption = "Move3_li": Command6.Caption = "Test" 

Command7.Caption = "Stop": Command8.Caption = "Closed loop with abs." 

Command9.Caption = "Mot with clk": Command10.Caption = "Mot with sleep" 

Command11.Caption = "Mot. with pos control" 

Command12.Caption = "Mot. with closed loop pos control" 

Command13.Caption = "Mot. with closed loop pos and vel control" 

Command14.Caption = "Closed loop with rel." 

Text1.Text = "": Text5.Text = "": Text6.Text = "" 

Picture1.AutoRedraw = True: Picture2.AutoRedraw = True: Picture3.AutoRedraw = True 
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Form1.AutoRedraw = True 

a = B_8164_set_feedback_src(0, 0): a = B_8164_set_feedback_src(1, 0): a = 

B_8164_set_feedback_src(2, 0) 

B_8164.Axis0.OutputMode = OUT_RISING_DIR_LOW 

B_8164.Axis1.OutputMode = OUT_RISING_DIR_LOW 

B_8164.Axis2.OutputMode = OUT_RISING_DIR_LOW 

End Sub 

 

Private Sub Timer1_Timer() 

Dim fb0 As Double: Dim fb1 As Double: Dim fb2 As Double 

Dim vb0 As Double: Dim vb1 As Double: Dim vb2 As Double 

a = B_8164_get_position(0, fb0): a = B_8164_get_position(1, fb1): a = 

B_8164_get_position(2, fb2) 

fb0 = fb0 * 360 / nenc / ngear: fb1 = fb1 * 360 / nenc / ngear: fb2 = fb2 * 360 / nenc / ngear 

Text2.Text = fb0: Text3.Text = fb1: Text4.Text = fb2 

a = Form1.B_8164.GetCurrentSpeed(0, vb0): a = Form1.B_8164.GetCurrentSpeed(1, vb1): a = 

Form1.B_8164.GetCurrentSpeed(2, vb2) 

vb0 = vb0 * 360 / nenc / ngear: vb1 = vb1 * 360 / nenc / ngear: vb2 = vb2 * 360 / nenc / ngear 

Text7.Text = vb0: Text8.Text = vb1: Text9.Text = vb2 

End Sub 

 

----Module---- 

Public Const nmax1 = 256, pi = 3.141593, nenc = 2048, ngear = 74, Tacc = 0.001 

Public fl0 As String: Public a, ns As Integer 

Public yr0(nmax1), yr1(nmax1), yr2(nmax1) As Single 

Public yrm0(nmax1), yrm1(nmax1), yrm2(nmax1) As Single 

Public dt, tr(nmax1), thr0(nmax1), ang0(nmax1), thr1(nmax1), ang1(nmax1), thr2(nmax1), 

ang2(nmax1) As Single 

Public npuls0(nmax1), npuls1(nmax1), npuls2(nmax1) 

Public pos0(nmax1) As Double: Public pos1(nmax1) As Double: Public pos2(nmax1) As Double 

Public v0(nmax1) As Double: Public v1(nmax1) As Double: Public v2(nmax1) As Double 

Public perr0(nmax1), perr1(nmax1), perr2(nmax1), verr0(nmax1), verr1(nmax1), verr2(nmax1) As 

Double 

Public kperr0(nmax1), kperr1(nmax1), kperr2(nmax1), kverr0(nmax1), kverr1(nmax1), 

kverr2(nmax1) As Double 

Public kang0(nmax1), kang1(nmax1), kang2(nmax1) As Double 

Public ftim0 As Double: Public tim0(nmax1) As Double: Public tim1(nmax1) As Double: Public 

tim2(nmax1) As Double 

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long) 
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Sub mot7()   ‘Algorithm 7 

Form1.Cls: Call path 

coe = InputBox("pos. gain"): If coe = "" Then Exit Sub 

Call initialm 

perr0(1) = ang0(1) - pos0(0): kperr0(1) = coe * perr0(1) 

perr1(1) = ang1(1) - pos1(0): kperr1(1) = coe * perr1(1) 

perr2(1) = ang2(1) - pos2(0): kperr2(1) = coe * perr2(1) 

kang0(1) = ang0(2) - ang0(1) + kperr0(1) 

kang1(1) = ang1(2) - ang1(1) + kperr1(1) 

kang2(1) = ang2(2) - ang2(1) + kperr2(1) 

a = Form1.B_8164.StartTRMove(0, kang0(1), npuls0(1), npuls0(2), dt, 0) 

a = Form1.B_8164.StartTRMove(1, kang1(1), npuls1(1), npuls1(2), dt, 0) 

a = Form1.B_8164.StartTRMove(2, kang2(1), npuls2(1), npuls2(2), dt, 0) 

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1, 

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1)) 

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If 

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0)) 

If ftim0 < dt * 10000000 Then GoTo 10 

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

perr0(k) = ang0(k) - pos0(k - 1): kperr0(k) = coe * perr0(k) 

perr1(k) = ang1(k) - pos1(k - 1): kperr1(k) = coe * perr1(k) 

perr2(k) = ang2(k) - pos2(k - 1): kperr2(k) = coe * perr2(k) 

kang0(k) = ang0(k + 1) - ang0(k) + kperr0(k) 

kang1(k) = ang1(k + 1) - ang1(k) + kperr1(k) 

kang2(k) = ang2(k + 1) - ang2(k) + kperr2(k) 

a = Form1.B_8164.StartTRMove(0, kang0(k), npuls0(k), npuls0(k + 1), dt, 0) 

a = Form1.B_8164.StartTRMove(1, kang1(k), npuls1(k), npuls1(k + 1), dt, 0) 

a = Form1.B_8164.StartTRMove(2, kang2(k), npuls2(k), npuls2(k + 1), dt, 0) 

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1, 

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k)) 

ftim0 = tim0(k) - tim0(k - 1): 'If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k 

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1)) 

If ftim0 < dt * 10000000 Then GoTo 20 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 

 



 117

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub mot6()   ‘Algorithm 6 

Form1.Cls: Call path 

coe = InputBox("pos. gain"): If coe = "" Then Exit Sub 

Call initialm 

perr0(1) = ang0(1) - pos0(0): kperr0(1) = coe * perr0(1) 

perr1(1) = ang1(1) - pos1(0): kperr1(1) = coe * perr1(1) 

perr2(1) = ang2(1) - pos2(0): kperr2(1) = coe * perr2(1) 

kang0(1) = ang0(2) + kperr0(1) 

kang1(1) = ang1(2) + kperr1(1) 

kang2(1) = ang2(2) + kperr2(1) 

a = Form1.B_8164.StartTAMove(0, kang0(1), npuls0(1), npuls0(2), dt, 0) 

a = Form1.B_8164.StartTAMove(1, kang1(1), npuls1(1), npuls1(2), dt, 0) 

a = Form1.B_8164.StartTAMove(2, kang2(1), npuls2(1), npuls2(2), dt, 0) 

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1, 

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1)) 

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If 

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0)) 

If ftim0 < dt * 10000000 Then GoTo 10 

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

perr0(k) = ang0(k) - pos0(k - 1): kperr0(k) = coe * perr0(k) 

perr1(k) = ang1(k) - pos1(k - 1): kperr1(k) = coe * perr1(k) 

perr2(k) = ang2(k) - pos2(k - 1): kperr2(k) = coe * perr2(k) 

kang0(k) = ang0(k + 1) + kperr0(k) 

kang1(k) = ang1(k + 1) + kperr1(k) 

kang2(k) = ang2(k + 1) + kperr2(k) 

a = Form1.B_8164.StartTAMove(0, kang0(k), npuls0(k), npuls0(k + 1), dt, 0) 

a = Form1.B_8164.StartTAMove(1, kang1(k), npuls1(k), npuls1(k + 1), dt, 0) 

a = Form1.B_8164.StartTAMove(2, kang2(k), npuls2(k), npuls2(k + 1), dt, 0) 
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20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1, 

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k)) 

ftim0 = tim0(k) - tim0(k - 1): 'If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k 

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1)) 

If ftim0 < dt * 10000000 Then GoTo 20 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub mot5()   ‘Algorithm 5 

Form1.Cls: Call path 

coep = InputBox("pos. gain"): If coep = "" Then Exit Sub 

coev = InputBox("vel. gain"): If coev = "" Then Exit Sub 

Call initialm 

npuls0(1) = 0: npuls1(1) = 0: npuls2(1) = 0 

perr0(1) = ang0(2) - pos0(0): kperr0(1) = coep * perr0(1) 

perr1(1) = ang1(2) - pos1(0): kperr1(1) = coep * perr1(1) 

perr2(1) = ang2(2) - pos2(0): kperr2(1) = coep * perr2(1) 

verr0(1) = npuls0(2) - v0(0): If npuls0(2) < 0 Then verr0(1) = npuls0(2) + v0(0): kverr0(1) = 

coev * verr0(1) 

verr1(1) = npuls1(2) - v1(0): If npuls1(2) < 0 Then verr1(1) = npuls1(2) + v1(0): kverr1(1) = 

coev * verr1(1) 

verr2(1) = npuls2(2) - v2(0): If npuls2(2) < 0 Then verr2(1) = npuls2(2) + v2(0): kverr2(1) = 

coev * verr2(1) 

a = Form1.B_8164.StartTAMove(0, kperr0(1), npuls0(1), kverr0(1), dt, 0) 

a = Form1.B_8164.StartTAMove(1, kperr1(1), npuls1(1), kverr1(1), dt, 0) 

a = Form1.B_8164.StartTAMove(2, kperr2(1), npuls2(1), kverr2(1), dt, 0) 

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): 'a = Form1.B_8164.GetGeneralCounter(1, 

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1)) 

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If 

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0)) 

If ftim0 < dt * 10000000 Then GoTo 10 

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 
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a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

perr0(k) = ang0(k + 1) - pos0(k - 1): kperr0(k) = coep * perr0(k) 

perr1(k) = ang1(k + 1) - pos1(k - 1): kperr1(k) = coep * perr1(k) 

perr2(k) = ang2(k + 1) - pos2(k - 1): kperr2(k) = coep * perr2(k) 

verr0(k) = npuls0(k + 1) - v0(k - 1): If npuls0(k + 1) < 0 Then verr0(k) = npuls0(k + 1) + v0(k - 

1): kverr0(k) = coev * verr0(k) 

verr1(k) = npuls1(k + 1) - v1(k - 1): If npuls1(k + 1) < 0 Then verr1(k) = npuls1(k + 1) + v1(k - 

1): kverr1(k) = coev * verr1(k) 

verr2(k) = npuls2(k + 1) - v2(k - 1): If npuls2(k + 1) < 0 Then verr2(k) = npuls2(k + 1) + v2(k - 

1): kverr2(k) = coev * verr2(k) 

a = Form1.B_8164.StartTAMove(0, kperr0(k), kverr0(k - 1), kverr0(k), dt, 0) 

a = Form1.B_8164.StartTAMove(1, kperr1(k), kverr1(k - 1), kverr1(k), dt, 0) 

a = Form1.B_8164.StartTAMove(2, kperr2(k), kverr2(k - 1), kverr2(k), dt, 0) 

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): ' a = Form1.B_8164.GetGeneralCounter(1, 

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k)) 

ftim0 = tim0(k) - tim0(k - 1): ' If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k 

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1)) 

If ftim0 < dt * 10000000 Then GoTo 20 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub mot4()   ‘Algorithm 4 

Form1.Cls: Call path 

coe = InputBox("pos. gain"): If coe = "" Then Exit Sub 

Call initialm 

perr0(1) = ang0(2) - pos0(0): kperr0(1) = coe * perr0(1) 

perr1(1) = ang1(2) - pos1(0): kperr1(1) = coe * perr1(1) 

perr2(1) = ang2(2) - pos2(0): kperr2(1) = coe * perr2(1) 

a = Form1.B_8164.StartTAMove(0, kperr0(1), npuls0(1), npuls0(2), dt, 0) 

a = Form1.B_8164.StartTAMove(1, kperr1(1), npuls1(1), npuls1(2), dt, 0) 

a = Form1.B_8164.StartTAMove(2, kperr2(1), npuls2(1), npuls2(2), dt, 0) 
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10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1, 

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1)) 

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If 

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0)) 

If ftim0 < dt * 10000000 Then GoTo 10 

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

perr0(k) = ang0(k + 1) - pos0(k - 1): kperr0(k) = coe * perr0(k) 

perr1(k) = ang1(k + 1) - pos1(k - 1): kperr1(k) = coe * perr1(k) 

perr2(k) = ang2(k + 1) - pos2(k - 1): kperr2(k) = coe * perr2(k) 

a = Form1.B_8164.StartTAMove(0, kperr0(k), npuls0(k), npuls0(k + 1), dt, 0) 

a = Form1.B_8164.StartTAMove(1, kperr1(k), npuls1(k), npuls1(k + 1), dt, 0) 

a = Form1.B_8164.StartTAMove(2, kperr2(k), npuls2(k), npuls2(k + 1), dt, 0) 

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1, 

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k)) 

ftim0 = tim0(k) - tim0(k - 1): 'If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k 

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1)) 

If ftim0 < dt * 10000000 Then GoTo 20 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub mot3()   ‘Algorithm 3 

Form1.Cls: Call path: Call initialm 

a = Form1.B_8164.StartTAMove(0, ang0(2), npuls0(1), npuls0(2), dt, 0) 

a = Form1.B_8164.StartTAMove(1, ang1(2), npuls1(1), npuls1(2), dt, 0) 

a = Form1.B_8164.StartTAMove(2, ang2(2), npuls2(1), npuls2(2), dt, 0) 

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): 'a = Form1.B_8164.GetGeneralCounter(1, 

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1)) 

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If 

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0)) 

If ftim0 < dt * 10000000 Then GoTo 10 
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a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

a = Form1.B_8164.StartTAMove(0, ang0(k + 1), npuls0(k), npuls0(k + 1), dt, 0) 

a = Form1.B_8164.StartTAMove(1, ang1(k + 1), npuls1(k), npuls1(k + 1), dt, 0) 

a = Form1.B_8164.StartTAMove(2, ang2(k + 1), npuls2(k), npuls2(k + 1), dt, 0) 

20  a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): 'a = Form1.B_8164.GetGeneralCounter(1, 

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k)) 

ftim0 = tim0(k) - tim0(k - 1): ' If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k 

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1)) 

If ftim0 < dt * 10000000 Then GoTo 20 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub mot2()   ‘Algorithm 2 

Form1.Cls: Call path: Call initialm 

a = Form1.B_8164.TVMove(0, npuls0(1), npuls0(2), dt) 

a = Form1.B_8164.TVMove(1, npuls1(1), npuls1(2), dt) 

a = Form1.B_8164.TVMove(2, npuls2(1), npuls2(2), dt) 

Sleep (dt * 1000) 

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

a = Form1.B_8164.VChange(0, npuls0(k + 1), dt) 

a = Form1.B_8164.VChange(1, npuls1(k + 1), dt) 

a = Form1.B_8164.VChange(2, npuls2(k + 1), dt) 

Sleep (dt * 1000) 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 
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a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

If npuls0(k) > 0 And npuls0(k + 1) < 0 Then Form1.B_8164.Axis0.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls0(k) < 0 And npuls0(k + 1) > 0 Then Form1.B_8164.Axis0.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls1(k) > 0 And npuls1(k + 1) < 0 Then Form1.B_8164.Axis1.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls1(k) < 0 And npuls1(k + 1) > 0 Then Form1.B_8164.Axis1.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls2(k) > 0 And npuls2(k + 1) < 0 Then Form1.B_8164.Axis2.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls2(k) < 0 And npuls2(k + 1) > 0 Then Form1.B_8164.Axis2.OutputMode = 

OUT_RISING_DIR_HIGH 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub mot1()   ‘Algorithm 1 

Form1.Cls: Call path: Call initialm 

a = Form1.B_8164.TVMove(0, npuls0(1), npuls0(2), dt) 

a = Form1.B_8164.TVMove(1, npuls1(1), npuls1(2), dt) 

a = Form1.B_8164.TVMove(2, npuls2(1), npuls2(2), dt) 

10 a = Form1.B_8164.GetGeneralCounter(0, tim0(1)): ' a = Form1.B_8164.GetGeneralCounter(1, 

tim1(1)): a = Form1.B_8164.GetGeneralCounter(2, tim2(1)) 

ftim0 = tim0(1) - tim0(0): 'If ftim0 > (tim1(1) - tim1(0)) Then ftim0 = (tim1(1) - tim1(0)): If 

ftim0 > (tim2(1) - tim2(0)) Then ftim0 = (tim2(1) - tim2(0)) 

If ftim0 < dt * 10000000 Then GoTo 10 

a = Form1.B_8164.GetCurrentSpeed(0, v0(1)): a = Form1.B_8164.GetCurrentSpeed(1, v1(1)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(1)) 

a = Form1.B_8164.GetPosition(0, pos0(1)): a = Form1.B_8164.GetPosition(1, pos1(1)): a = 

Form1.B_8164.GetPosition(2, pos2(1)) 

For k = 2 To ns - 1 

a = Form1.B_8164.VChange(0, npuls0(k + 1), dt): a = Form1.B_8164.VChange(1, npuls1(k + 

1), dt): a = Form1.B_8164.VChange(2, npuls2(k + 1), dt) 

20 a = Form1.B_8164.GetGeneralCounter(0, tim0(k)): ' a = Form1.B_8164.GetGeneralCounter(1, 

tim1(k)): a = Form1.B_8164.GetGeneralCounter(2, tim2(k)) 

ftim0 = tim0(k) - tim0(k - 1): ' If ftim0 > (tim1(k) - tim1(k - 1)) Then ftim0 = (tim1(k) - tim1(k 

- 1)): If ftim0 > (tim2(k) - tim2(k - 1)) Then ftim0 = (tim2(k) - tim2(k - 1)) 
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If ftim0 < dt * 10000000 Then GoTo 20 

a = Form1.B_8164.GetCurrentSpeed(0, v0(k)): a = Form1.B_8164.GetCurrentSpeed(1, v1(k)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(k)) 

a = Form1.B_8164.GetPosition(0, pos0(k)): a = Form1.B_8164.GetPosition(1, pos1(k)): a = 

Form1.B_8164.GetPosition(2, pos2(k)) 

If npuls0(k) > 0 And npuls0(k + 1) < 0 Then Form1.B_8164.Axis0.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls0(k) < 0 And npuls0(k + 1) > 0 Then Form1.B_8164.Axis0.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls1(k) > 0 And npuls1(k + 1) < 0 Then Form1.B_8164.Axis1.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls1(k) < 0 And npuls1(k + 1) > 0 Then Form1.B_8164.Axis1.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls2(k) > 0 And npuls2(k + 1) < 0 Then Form1.B_8164.Axis2.OutputMode = 

OUT_RISING_DIR_HIGH 

If npuls2(k) < 0 And npuls2(k + 1) > 0 Then Form1.B_8164.Axis2.OutputMode = 

OUT_RISING_DIR_HIGH 

Next k 

Call closem: Call plot2: Call write1: MsgBox ("") 

End Sub 

 

Sub initialm() ‘Initials algorithms 

a = Form1.B_8164.SetContinuousMove(0, 1): a = Form1.B_8164.SetContinuousMove(1, 1): a 

= Form1.B_8164.SetContinuousMove(2, 1) 

a = Form1.B_8164.FixSpeedRange(0, 100000): a = Form1.B_8164.FixSpeedRange(1, 

100000): a = Form1.B_8164.FixSpeedRange(2, 100000) 

a = Form1.B_8164.SetGeneralCounter(0, 3, 0): a = Form1.B_8164.SetGeneralCounter(1, 3, 0): 

a = Form1.B_8164.SetGeneralCounter(2, 3, 0) 

a = Form1.B_8164.SetPosition(0, ang0(1)): a = Form1.B_8164.SetPosition(1, ang1(1)): a = 

Form1.B_8164.SetPosition(2, ang2(1)) 

a = Form1.B_8164.GetCurrentSpeed(0, v0(0)): a = Form1.B_8164.GetCurrentSpeed(1, v1(0)): 

a = Form1.B_8164.GetCurrentSpeed(2, v2(0)) 

a = Form1.B_8164.GetPosition(0, pos0(0)): a = Form1.B_8164.GetPosition(1, pos1(0)): a = 

Form1.B_8164.GetPosition(2, pos2(0)) 

a = Form1.B_8164.GetGeneralCounter(0, tim0(0)): a = Form1.B_8164.GetGeneralCounter(1, 

tim1(0)): a = Form1.B_8164.GetGeneralCounter(2, tim2(0)) 

End Sub 
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Sub closem() ‘Closes algorithms 

a = Form1.B_8164.SDStop(0, Tacc): a = Form1.B_8164.SDStop(1, Tacc): a = 

Form1.B_8164.SDStop(2, Tacc) 

a = Form1.B_8164.GetGeneralCounter(0, tim0(ns)): a = Form1.B_8164.GetGeneralCounter(1, 

tim1(ns)): a = Form1.B_8164.GetGeneralCounter(2, tim2(ns)) 

ftim0 = tim0(ns) - tim0(0): If ftim0 < (tim1(ns) - tim1(0)) Then ftim0 = (tim1(ns) - tim1(0)): If 

ftim0 < (tim2(ns) - tim2(0)) Then ftim0 = (tim2(ns) - tim2(0)) 

a = Form1.B_8164.GetCurrentSpeed(0, v0(ns)): a = Form1.B_8164.GetCurrentSpeed(1, 

v1(ns)): a = Form1.B_8164.GetCurrentSpeed(2, v2(ns)) 

a = Form1.B_8164.UnFixSpeedRange(0): a = Form1.B_8164.UnFixSpeedRange(1): a = 

Form1.B_8164.UnFixSpeedRange(2) 

Form1.Print ftim0 

a = Form1.B_8164.GetPosition(0, pos0(ns)): a = Form1.B_8164.GetPosition(1, pos1(ns)): a = 

Form1.B_8164.GetPosition(2, pos2(ns)) 

For k = 1 To ns: yr0(k) = ang0(k): yr1(k) = ang1(k): yr2(k) = ang2(k): Next k 

For k = 1 To ns: yrm0(k) = pos0(k - 1): yrm1(k) = pos1(k - 1): yrm2(k) = pos2(k - 1): Next k 

End Sub 

 

Sub write1()   ‘Writes data into a file 

fl0 = "d:\r06\": flth = fl0 + "r06wr.txt" 

Open flth For Output As 1 

t = 0 

For k = 1 To ns 

Print #1, Str(t), Str(yr0(k)), Str(yrm0(k)), Str(yr1(k)), Str(yrm1(k)), Str(yr2(k)), Str(yrm2(k)) 

t = t + dt 

Next k 

Close #1 

End Sub 

 

Sub path()   ‘Creates reference curve data 

fl0 = "d:\r06\" 

flth = fl0 + "r06p.txt": Open flth For Input As 1 

For k = 1 To 4: Line Input #1, xc: Next k: k = 0 

10 If EOF(1) = -1 Then GoTo 20 

k = k + 1: Input #1, t, xc, xc, th0, xc, xc, xc, xc, th1, xc, xc, xc, xc, th2, xc, xc, xc, xc, r0, xc, 

xc, xc, r1, xc, xc, xc, r2 

tr(k) = t: thr0(k) = th0: ang0(k) = r0: thr1(k) = th1: ang1(k) = r1: thr2(k) = th2: ang2(k) = r2 

GoTo 10 

20 Close #1: ns = k 
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dt = tr(2) - tr(1) 

For k = 1 To ns: npuls0(k) = thr0(k) * ngear * nenc / 360: npuls1(k) = thr1(k) * ngear * nenc / 

360: npuls2(k) = thr2(k) * ngear * nenc / 360: Next k   'npuls velocity 

For k = 1 To ns: ang0(k) = ang0(k) * ngear * nenc / 360: ang1(k) = ang1(k) * ngear * nenc / 

360: ang2(k) = ang2(k) * ngear * nenc / 360: Next k         'ang position 

Form1.B_8164.Axis0.OutputMode = OUT_RISING_DIR_LOW 

Form1.B_8164.Axis1.OutputMode = OUT_RISING_DIR_LOW 

Form1.B_8164.Axis2.OutputMode = OUT_RISING_DIR_LOW 

End Sub 

 

Sub stop1()   ‘Stops all axes 

a = Form1.B_8164.SDStop(0, 0.001) 

a = Form1.B_8164.SDStop(1, 0.001) 

a = Form1.B_8164.SDStop(2, 0.001) 

End Sub 

 

Sub move3li()  ‘Three axes linear interpolation 

Dim ax(2) As Integer 

ngear = 74: th01 = 0: th02 = -30: th11 = 0: th12 = -40: th21 = 0: th22 = -50: dt = 1 

th0 = th02 - th01: th1 = th12 - th11: th2 = th22 - th21 

th0 = th0 * 2048 * ngear / 360: th1 = th1 * 2048 * ngear / 360: th2 = th2 * 2048 * ngear / 360 

a = Form1.B_8164.SetPosition(0, 0): a = Form1.B_8164.SetPosition(1, 0): a = 

Form1.B_8164.SetPosition(2, 0) 

ax(0) = 0: ax(1) = 1: ax(2) = 2 

a = Form1.B_8164.StartTRLine3(ax, th0, th1, th2, 0, 100000, 0.01, 0.01) 

End Sub 

 

Sub move1()   ‘Move one axis 

naxis = 0: th1 = 0: th2 = 360: dt = 1 

dth = th2 - th1: dth = dth * nenc * ngear / 360 

svel = 0: mvel = (dth - 3 * svel * Tacc) / (dt - 3 * Tacc): SVacc = (mvel - svel) / 3 

a = Form1.B_8164.StartSRMove(naxis, dth, svel, mvel, Tacc, Tacc, SVacc, SVacc) 

End Sub 

 

Sub readp()   ‘Reads position (feedback) 

Dim fdb0 As Double: Dim fdb1 As Double: Dim fdb2 As Double 

a = Form1.B_8164.GetPosition(0, fdb0): fdb0 = fdb0 * 360 / nenc / ngear 

a = Form1.B_8164.GetPosition(1, fdb1): fdb1 = fdb1 * 360 / nenc / ngear 

a = Form1.B_8164.GetPosition(2, fdb2): fdb2 = fdb2 * 360 / nenc / ngear 
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Form1.Text1.Text = fdb0: Form1.Text5.Text = fdb1: Form1.Text6.Text = fdb2 

End Sub 

 

Sub savep()   ‘Saves last positions into a file 

Dim fdb0 As Double 

Dim fdb1 As Double 

Dim fdb2 As Double 

a = Form1.B_8164.GetPosition(0, fdb0): a = Form1.B_8164.GetPosition(1, fdb1): a = 

Form1.B_8164.GetPosition(2, fdb2) 

Open fl0 + "lastp.txt" For Output As 1 

Print #1, fdb0, Chr(9), fdb1, Chr(9), fdb2 

Close #1 

End 

End Sub 

 

Sub plot2()   ‘Plots curves on the screen 

yr0max = yr0(1): yr0min = yr0max: yr1max = yr1(1): yr1min = yr1max: yr2max = yr2(1): 

yr2min = yr2max 

For k = 2 To ns 

If yr0min > yr0(k) Then yr0min = yr0(k): If yr0max < yr0(k) Then yr0max = yr0(k) 

If yr1min > yr1(k) Then yr1min = yr1(k): If yr1max < yr1(k) Then yr1max = yr1(k) 

If yr2min > yr2(k) Then yr2min = yr2(k): If yr2max < yr2(k) Then yr2max = yr2(k) 

Next k 

Form1.Picture1.Cls: Form1.Picture2.Cls: Form1.Picture3.Cls 

Form1.Picture1.Scale (0, 0.9 * yr0max)-(1.01 * tr(ns), 1.1 * yr0min) 

Form1.Picture2.Scale (0, 0.9 * yr1max)-(1.01 * tr(ns), 1.1 * yr1min) 

Form1.Picture3.Scale (0, 0.9 * yr2max)-(1.01 * tr(ns), 1.1 * yr2min) 

Form1.Picture1.PSet (tr(1), yr0(1)): Form1.Picture2.PSet (tr(1), yr1(1)): Form1.Picture3.PSet 

(tr(1), yr2(1)) 

For k = 2 To ns: Form1.Picture1.Line -(tr(k), yr0(k)): Form1.Picture2.Line -(tr(k), yr1(k)): 

Form1.Picture3.Line -(tr(k), yr2(k)): Next k 

Form1.Picture1.PSet (tr(1), yrm0(1)): Form1.Picture2.PSet (tr(1), yrm1(1)): 

Form1.Picture3.PSet (tr(1), yrm2(1)) 

For k = 2 To ns: Form1.Picture1.Line -(tr(k), yrm0(k)): Form1.Picture2.Line -(tr(k), yrm1(k)): 

Form1.Picture3.Line -(tr(k), yrm2(k)): Next k 

End Sub 
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