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MULTI-CRITERIA REAL-TIME SCHEDULING APPROACHES FOR 

DUAL RESOURCE CONSTRAINED MANUFACTURING SYSTEMS 

 

ABSTRACT 

 

Scheduling is a crucial issue that can have a deep impact over the performance of 

a manufacturing system and its efficiency. Due to such disturbances as in part 

arrivals, and in states of machines, tools, and operators, manufacturing systems have 

uncertain and dynamic nature, which requires real-time scheduling approaches. 

 

Up to date, numerous real-time scheduling approaches have been proposed for 

machine-only constrained systems. However, real-time scheduling of dual resource 

constrained (DRC) systems, which share a significant portion of manufacturing 

systems, is not common in scheduling literature. In DRC systems, the number of 

workers is typically less than the number of machines. Therefore, assignment of 

these workers to the machines in real time is also crucial as the worker capacity is a 

critical resource in completing jobs. 

 

Increased attention towards responsive manufacturing systems not only raises the 

importance of real-time scheduling of manufacturing systems, but also increases the 

significance of considering multiple performance measures in this decision making 

process. However, in the literature, there is no sufficient effort on multi-criteria 

scheduling of DRC systems. 

 

This research proposes three multi-criteria real-time scheduling approaches for 

DRC manufacturing systems to address the issues mentioned above. The first two 

approaches focus on the dynamic selection of appropriate set of rules, and use 

artificial neural networks (ANNs) and some multi-criteria decision making 

techniques to reduce computational complexity and cope with multiple performance 

measures. The first approach uses a fuzzy inference system (FIS), while the second 

utilizes a well-known multi-criteria decision making technique, PROMETHEE. The 



 v

third uses a fuzzy-based real-time scheduling approach for DRC manufacturing 

systems. 

 

In order to show the effectiveness of the proposed approaches, a number of 

experimental studies are performed. Their results show that the proposed approaches 

can be used in practice and provide satisfactory solutions for real-time scheduling of 

DRC systems. 

 

 

Keywords: Dual resource constrained (DRC) systems, Real-time scheduling, 

Multi-criteria scheduling, Artificial Neural Network, Fuzzy Logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 

 

ÇİFT KAYNAK KISITLI İMALAT SİSTEMLERİ İÇİN ÇOK KRİTERLİ – 

GERÇEK ZAMANLI ÇİZELGELEME YAKLAŞIMLARI 

 

ÖZ 

 

Çizelgeleme üretim sisteminin performansında ve verimliliğinde derin etkileri 

olan önemli bir konudur. Üretilen parçaların gelişlerinde ve üretimde kullanılan 

makina, teçhizat ve operatörlerin durumlarında meydana gelen bazı 

düzensizliklerden dolayı, üretim sistemleri belirsiz ve dinamik bir yapıya sahiptir ve 

bu yapı gerçek zamanlı çizelgeleme yaklaşımlarının kullanılmasını zorunlu kılar. 

 

Bugüne kadar, yalnızca makina kısıtlı üretim sistemleri için pek çok gerçek 

zamanlı çizelgeleme yaklaşımları geliştirilmiştir. Fakat üretim sistemlerinin önemli 

bir kısmını oluşturan çift kaynak kısıtlı (ÇKK) sistemlerin gerçek zamanlı 

çizelgelenmesi literatürde sıkça rastlanan bir alan değildir. ÇKK sistemlerde, 

genellikle işçi sayısı makina sayısından daha azdır. Bu yüzden, işçi kapasitesi işlerin 

tamamlanmasında kritik bir kaynak olduğunda, bu işçilerin makinalara gerçek 

zamanlı atanmaları da hayati bir karardır. 

 

Çevik imalat sistemlerine olan artan ilgi, bugünlerde yalnızca üretim sistemlerinin 

gerçek zamanlı çizelgelenmesinin önemini artırmakla kalmamakta, aynı zamanda 

karar verme sürecinde çoklu performans ölçütlerini dikkate almanın önemini de 

artırmaktadır. Fakat literatürde ÇKK sistemlerin çok kriterli çizelgelenmesi ile ilgili 

yeterince çaba sarf edilmemiştir. 

 

Bu çalışma ÇKK imalat sistemleri için üç çok kriterli gerçek zamanlı çizelgeleme 

yaklaşımı önermektedir. İlk iki yaklaşım uygun çizelgelenme kurallarının dinamik 

olarak seçimi üzerine odaklanmaktadır ve işlemsel karmaşıklığı azaltmak ve birden 

fazla performans ölçütünü dikkate alabilmek için yapay sinir ağları ile bazı çok 

kriterli karar verme teknikleri kullanmaktadır. İlk yaklaşım bir bulanık çıkarsama 
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sistemi kullanırken, ikincisi çok bilinen bir çok kriterli karar verme tekniği olan 

PROMETHEE’yi kullanmaktadır. Diğer bir taraftan, ÇKK imalat sistemleri için 

bulanık mantık tabanlı bir gerçek-zamanlı çizelgeleme yaklaşımı da önerilmektedir. 

 

Önerilen yaklaşımların etkinliğini göstermek için, bir takım deneysel çalışmalar 

gerçekleştirilmiştir. Bu çalışmaların sonuçları önerilen gerçek zamanlı çizelgeleme 

yaklaşımlarının pratik olarak kullanılabileceğini ve ÇKK imalat sistemlerinin gerçek-

zamanlı çizelgelenmesinde tatmin edici sonuçlar sağlayacağını göstermiştir.         

 

 

Anahtar Kelimeler: Çift kısıt kaynaklı (ÇKK) sistemler, Gerçek zamanlı 

çizelgeleme, Yapay sinir ağları, Bulanık mantık. 
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CHAPTER ONE 
INTRODUCTION 

 

In this chapter, the background, motivation and objectives of this thesis are 

introduced, and its organization is outlined. 

 

1.1 Background and Motivation 

 

Scheduling in a manufacturing environment is the process of deciding what 

happens when and where. That is, a schedule is a subset of the Cartesian product of 

three sets; there is a set of tasks (what) that must be done, there is a set of time 

periods or intervals (when), and there is a set of resources (where) that the tasks 

occupy as they execute (Parunak, 1991). Scheduling is a crucial issue that can have a 

deep impact over the performance of a (manufacturing) system and its efficiency 

(Petroni and Rizzi, 2002). 

 

Static scheduling approaches are used for almost deterministic systems. However, 

due to such disturbances as in part arrivals, and in states of machines, tools, and 

operators, manufacturing systems have uncertain and dynamic nature, which requires 

real-time scheduling approaches. 

 

The speed at which a control system makes production decisions affects the 

performance of the production system. Hence, scheduling and control actions need to 

occur quickly, i.e. they need to be done in ‘real-time’. Traditionally, real-time refers 

to the immediate response to some event in a system, such as process completions, 

part arrivals, or machine breakdowns. Responses include selecting parts for a 

machine, starting a machining process, and re-routing a part. The speed needed for a 

response may actually depend on system parameters such as the magnitude of part 

processing times and the flexibility of the system. For example, if part processing 

times are of the order of an hour, a response within five minutes may be considered 



 

 

2

‘real-time’. On the other hand, if they are of the order of fifteen minutes, a decision 

within one minute may be considered ‘real-time’ (Harmonosky and Robohn, 1991).

 

Various real-time scheduling approaches have been proposed so far. One of the 

most common approaches to real-time scheduling is to use dispatching rules (DPRs) 

(Pierreval and Mebarki, 1997). Although numerous DPRs have been developed over 

the years, with different levels of complexity and capability, there is no DPR that is 

globally better than all the others (Blackstone et al., 1982; Pierreval, 1992). Pierreval 

and Mebarki (1997) state that the efficiency of DPRs depends on the performance 

criteria as well as on the operating conditions. Under certain configurations of 

manufacturing systems and the performance criteria, some DPRs may perform better 

than the others. Hence, instead of using a single DPR for a long time, changing a 

DPR over successive short-time periods based on the current system state could 

improve the performance (Ishii and Talavage, 1991). Therefore, for flexible and 

dynamic scheduling decisions, an effective tool is required to help the decision 

maker in selecting the best rule for each particular state of the system. 

 

Simulation-based adaptive control approaches are commonly used to select the 

DPR that gives the best performance for each particular state of the system (e.g. see, 

Wu and Wysk (1989); Ishii and Talavage (1991); Kim and Kim (1994); Kutanoglu 

and Sabuncuoglu, 2001, Singh et al., 2007). In all these studies, the system state 

variables are periodically tested, and then analyzed by a simulation model which 

selects, from a large number of possible DPRs, the best scheduling rule which would 

be used in the system until the next scheduling point. The next scheduling point, i.e., 

rescheduling point, can be determined either by random events or discrete time 

periods (Sabuncuoglu and Kizilisik, 2003). Although simulation is a highly flexible 

tool that can be used analyzing complex systems (Chan and Chan, 2001) and can be 

efficiently used to represent the dynamic and stochastic manufacturing environment 

(Sabuncuoglu and Kizilisik, 2003), one of its most important shortcomings is that it 

is time consuming, since a number of simulation runs must be carried out before 

finding the best DPR. 
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Alternatively, artificial intelligence (AI) based approaches are used which 

necessitate prior and lesser simulation runs to determine the best DPR for each 

possible system state (Priore et al., 2006). Some researchers exploit such AI based 

approaches as machine learning and rule based to select the best DPR (e.g. Pierreval 

and Mebarki, 1997; Priore et al., 2006; Shnits and Sinreich, 2006), while some others 

utilize evolutionary heuristics to determine appropriate rules based on the current 

system configuration (e.g. Kunnathar et al. 2004; Piramuthu et al., 2000; Kim and 

Lee, 1996). Some attempts have also been made to combine simple DPRs through 

fuzzy logic to improve their efficiency (e.g. Grabot and Geneste, 1994; Fanti et al., 

1998; Chan et al., 2003). 

 

Besides DPRs and the approaches that select them dynamically as the state of the 

shop changes, a considerable amount of research have been directed to develop 

predictive/reactive scheduling approaches to deal with uncertain disruptions (e.g. 

Kim and Jeong, 1998; Sabuncuoglu and Karabuk, 1999; Sabuncuoglu and Kizilisik, 

2003). In such approaches, a predictive schedule is first generated. This schedule is 

then updated during the execution to cope with unexpected events (Sabuncuoglu and 

Kizilisik, 2003; Aytuğ et al., 2005). On the other hand, many authors have proposed 

robust scheduling methods that aim to obtain a schedule which minimizes the effects 

of disruptions on the primary performance measure of the schedule (Aytuğ et al., 

2005). 

 

Regardless of which type of real-time scheduling approach is developed, most of 

the studies in the literature are developed for FMSs and job shops. These approaches 

consider single resource (i.e. machine) constraints in general. Yet, dual resource 

constrained (DRC) systems also share a significant portion of manufacturing 

systems. In DRC systems, the number of workers is typically less than the number of 

machines. Therefore, assignment of these workers to the machines in real time is also 

crucial as the worker capacity is an essential resource to complete jobs. 

 

Scheduling in DRC systems is more complex, as not only machines, but also 

operators should be considered in the scheduling (Bokhorst et al., 2004). The 
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scheduling is performed by two primary types of worker assignment rules: “when” 

and “where” rules. The when-rule determines when a worker is considered to be 

transferred between work centres, while the where-rule determines to which work 

centre a worker is to be transferred (Bokhorst et al., 2004). 

 

As discussed earlier, with respect to machine-only constrained scheduling, most 

of the early research focus on the job DPRs (Liao and Lin, 1998). However, these 

DPRs alone are not adequate in worker-limited DRC environments (Kher and Fry, 

2001). In DRC systems, in addition to job DPRs, making right decisions on the 

timing of worker transfers (“when” rules) and the selection of the next task (“where” 

rules) are necessary to improve the shop performance. Some researchers have 

indicated that the worker assignment rules have a significant bearing on the 

performance of a DRC system (Weeks and Fryer, 1976; Malhotra and Kher, 1994; 

Bobrowski and Park, 1993). In such environments, poor decision making becomes 

more severe. 

 

Numerous “when” and “where” rules exist in the DRC literature. There are also 

numerous studies that propose different worker assignment rules, analyze their 

performances and select the best one via simulation according to the performance 

criterion selected (e.g. Fryer, 1973; Gunther, 1979; Nelson, 1967; Treleven and 

Elvers, 1987; Weeks and Fryer, 1976; Malhotra and Kher, 1994; Kher, 2000). In 

almost all these studies, a simulation model is used to represent the DRC system. 

 

Similar to job DPRs in machine-only constrained manufacturing systems, it has 

been indicated that the efficiency of these worker assignment rules are highly 

dependent on the performance criteria of interest and on system state conditions. 

Therefore, just as job DPRs, there is no worker assignment rule that is globally better 

than the others. When the operating conditions or the performance criteria are 

changed, the worker assignment rules currently used can become ineffective. 

Therefore, dynamic selection of worker assignment rules or some combination of 

them through AI techniques is required to improve a DRC system performance. 

There are three important points in this respect. 
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First, although various real-time scheduling approaches have been developed for 

machine-only constrained manufacturing systems, studies on real-time scheduling of 

DRC systems are not common in the literature. 

 

Second, most researchers have paid considerable attention to evaluate different 

DPR and worker assignment rule combinations in the DRC context. Many single-

performance measures have been studied, e.g. mean flow time and mean tardiness. 

Although all these applications are inherently multi-criteria decision making 

problems, there is no effort on the multi-criteria scheduling of DRC systems, except 

for the use of aggregated cost functions. However, several, and possibly conflicting, 

criteria might come about in the decision process, which makes it difficult to 

determine the right criterion. Moreover, because of the difference in the evaluation of 

each objective, it is difficult to define the unit cost for them. As a result, the overall 

objective function (aggregated cost function) applied to evaluate the performance of 

the schedules cannot be constructed reasonably (Lee et al., 2002). Therefore, a multi-

criteria aggregation scheme for DRC scheduling is required. 

 

Third, although job dispatching, worker assignment and route selection decisions 

have been extensively studied in the DRC literature, almost no research has been 

dedicated to solve these problems simultaneously. 

 

Consequently, effective tools are needed to help shop managers efficiently 

schedule machines and workers. These tools should consider real-time and multi-

criteria nature of DRC shops that generate job, worker and route schedules 

dynamically based on the state changes of the shop, which is the major motivator of 

this study. 

 

1.2 Research Objectives 

 

Motivated by the fact that scheduling decisions in DRC systems must be taken 

into consideration in real-time, this research proposes adaptive real-time DRC 
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schedulers capable of reacting to the changes in the system in a timely manner and 

satisfying the multiple objectives simultaneously. 

 

 Considering these facts, this research proposes three multi-criteria real-time 

scheduling approaches for DRC manufacturing systems. The first two approaches 

focus on the dynamic selection of appropriate set of rules, and use artificial neural 

networks (ANNs) and some multi-criteria decision making techniques to reduce 

computational complexity and cope with multiple performance measures. 

Specifically, these two approaches 
 

i.   determine the appropriate rule set dynamically, which includes the part 

dispatching rule, routing policy and “when” and “where” rules, over 

successive time periods as the state of the shop changes, 

ii. evaluate each competing rule set through ANNs that predict the 

performance of rule sets for a look-ahead window, 

iii. utilize multi-criteria decision making techniques to aggregate the multi-

criteria performance. The first approach uses a fuzzy inference system (FIS), 

while the second utilizes a well-known multi-criteria decision making 

technique, PROMETHEE. 

 

The third is a novel fuzzy-based real-time scheduling approach for DRC 

manufacturing systems. Specifically, this approach 

 

i.   makes real-time decisions about the part dispatching, the route selection and 

worker assignment rules each time a scheduling decision has to be made, 

ii. aggregates dispatching rules, part routings and “where” rules through fuzzy 

arithmetic to obtain a compromise solution for each rule type, 

iii. decides the part to be processed next, the routing alternative to be selected 

and the alternative machine which needs a worker through fuzzy priority 

indexes instead of using combinations of traditional rules, 

iv. determines when a worker should be transferred to another machine via 

Sugeno type FIS instead of traditional “when” rules, 
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v. improves the system performance through a reverse ANN module by 

updating the parameters of fuzzy functions considering the decision maker’s 

preferences. 

 

To summarize, the main objectives of this research are twofold. The first one is to 

develop novel adaptive real-time scheduling approaches for DRC manufacturing 

systems which focus on dynamic selection of traditional rules under multiple 

performance measures. The second one is to develop a fuzzy-based real-time 

scheduling approach for DRC systems to cope with the disadvantages of pre-

determined myopic traditional rules. 

 

1.3 Novel Contributions 

 

This research contributes to the DRC and real-time scheduling literature in various 

ways. 

 

• It proposes three real-time scheduling approaches for DRC manufacturing 

systems. Although the real-time manufacturing approaches have extensively 

been studied for machine-only constrained systems, studies on real-time 

scheduling of DRC systems are not common in the literature. 

  

• To the best of the author’s knowledge, multiple performance criteria are 

taken into consideration in scheduling DRC systems for the first time, except 

for the use of some cost functions. The literature review reveals that various 

researchers have paid considerable attention to evaluate different dispatching 

rule and worker assignment rule combinations in DRC context. Although all 

these applications are inherently multi-criteria decision making problems, 

there is no effort on the multi-criteria scheduling of DRC systems. 

 

• It is clear from the literature review that most researches on DRC scheduling 

are based on discrete event simulation. Although, in recent years, numerous 

AI techniques have been successfully applied to other scheduling problems, 
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little research has been devoted to the use of AI techniques, such as ANN and 

fuzzy logic, for DRC scheduling. This research uses such techniques. 

 

• To the best of the author’s knowledge, a fuzzy-based real-time scheduling 

approach has been proposed for the first time in the DRC literature. Up to 

date, various approaches based on fuzzy logic have been developed for 

machine-only constrained systems. Most of them deal with the scheduling 

problem of flexible manufacturing systems (FMSs) and focus on part 

dispatching and routing selection. Furthermore, to the best of the author’s 

knowledge, there is no effort on the use of fuzzy sets in DRC scheduling. 

 

• In DRC systems, some “where” rules are used to select the department to 

which the worker will be transferred next. This research proposes a novel 

fuzzy “where” rule for DRC systems, which combines various traditional 

“where” rules into a single fuzzy rule. On the other hand, the frequency of 

worker transfers is generally dictated by centralized, decentralized or 

parametric “when” rules. This research also proposes a novel fuzzy “when” 

rule based on Sugeno type FIS which lies in between the decentralized and 

centralized “when” rules in terms of flexibility. 

 

• Although job dispatching, worker assignment and route selection decisions 

have significant impact on the performance of DRC systems, there has been 

little research on investigating their interactions and obtaining best 

combinations for the current system state. The proposed approaches deal with 

all these decisions simultaneously. 

 

• Although real-life scheduling problems need to consider multiple objectives, 

only little research has been directed to use multi-criteria decision making 

techniques in scheduling problems. To the best of the author’s knowledge, the 

PROMETHEE multi-criteria decision making method is used to solve the 

scheduling problem for the first time. 
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• Different from the other fuzzy-based approaches, the proposed fuzzy 

approach offers an adaptive control scheme to update the system parameters 

during the scheduling period in order to achieve a decision maker’s changing 

aspiration levels and to adapt to the prevailing shop conditions. Although 

some researchers propose optimization algorithms to optimize these 

parameters for the entire scheduling period, to the best of the author’s 

knowledge, none of them use an adaptive control scheme which updates these 

parameters periodically. 

 

1.4 Organization of the Thesis 

 

The organization of the dissertation is as follows. 

 
Chapter 2 gives an overview of DRC manufacturing and real time scheduling, and 

a detailed literature review. An overview of solution approaches for real-time 

scheduling of machine-only constrained systems is also provided in this chapter.  

 
In Chapter 3, a brief overview is given on ANNs and fuzzy sets, and their use in 

scheduling problems. 

 

Chapter 4 introduces the proposed DRC real-time scheduling methodology that 

consists of three modules; simulation, ANNs, and FIS. By means of a DRC 

scheduling example, its performance under different system variation levels is also 

evaluated. The results are compared with single-pass and multi-pass simulation based 

real time scheduling methodologies.  

 
Chapter 5 proposes another integrated DRC real time scheduling methodology 

that incorporates simulation, ANNs and PROMETHEE approaches. The proposed 

methodology is tested in a hypothetical manufacturing system to prove its 

effectiveness over single-pass, multi-pass and the previously proposed approaches.  
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In Chapter 6, a real-time scheduling system incorporating an adaptive fuzzy 

system is proposed. This approach, instead of using standard dispatching rule sets, 

uses fuzzy priorities for parts dispatching and fuzzy routes considering multiple 

performance measures. An adaptive control mechanism that incorporates simulation 

and ANNs is then presented. Effectiveness of the proposed methodology is tested 

through several experimental analyses. 

  

Chapter 7 contains concluding remarks and identifies future research directions.
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CHAPTER TWO 

LITERATURE REVIEW ON DUAL RESOURCE CONSTRAINED 

MANUFACTURING SYSTEMS AND REAL-TIME SCHEDULING 

 

2.1 Introduction 

 

The main goal of the thesis is to develop novel real-time scheduling 

methodologies for dual resource constrained (DRC) manufacturing systems. Thus, 

this chapter introduces DRC manufacturing systems with an emphasis on their 

scheduling. This chapter also gives a detailed review on the real-time scheduling 

literature. 

 

2.2 DRC Manufacturing Systems 

 

Scheduling is a decision-making process that plays an important role in most 

manufacturing industries (Pinedo and Chao, 1999). There are various scheduling 

approaches depending on the manufacturing environment. Vast majority of the 

scheduling literature is devoted to machine-only constrained manufacturing systems. 

In such environments, generally, it is assumed that machines on the shop floor are 

fully staffed. However, in practice, it may not always be the case. Manufacturing 

environments in which machines and workers are the constraining recourses are 

called dual resource constrained (DRC) manufacturing systems. In a DRC setting, 

the number of workers is typically less than the number of available machines, and 

workers are cross-trained so that they can process jobs in different machines 

(Treleven, 1989). Shop floor management then addresses not only the scheduling of 

the parts to be processed, but also the workers needed to make machines available to 

reduce manufacturing costs caused by the inefficient use of workers. 

 

In one of the pioneering work of DRC literature, Nelson (1967) first considered 

operators as an additional constraint. With the increasing impact of multifunctional 

workers on shop performance, approaches to traditional machine-only constrained 
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scheduling has been changed to reflect the new requirements according to the role of 

workers in DRC systems. Some researches focus on the inclusion of the worker as a 

second constraint and indicate that shop floor performance is strongly affected by the 

efficiency of the machine/part, as well as that of the operator (Elvers and Treleven, 

1985; Huang et al., 1984; Treleven, 1989; Fryer, 1975, Chen, 1995). This situation 

becomes more severe in DRC shops (Treleven and Elvers, 1985). Since DRC 

systems necessitate worker assignment decisions besides job assignments to 

machines, these decisions are crucial when worker capacity is a critical resource in 

completing the job (Mosier and Mahmodi, 2002). 

 
In DRC systems, generally, the scheduling of workers is handled by two primary 

types of worker assignment rules, “when” and “where”. The when-rule determines 

when a worker is considered to be transferred between work centers while the where-

rule determines to which work centre the worker should be transferred (Bokhorst et 

al., 2004). Therefore, the scheduling of a DRC manufacturing system is more 

complicated than the scheduling of a machine-only constrained system.  

 

There are various studies that investigate the performance of DRC manufacturing 

systems under different operating conditions. In an early review paper, Treleven 

(1989) categorizes the researches on DRC systems into two groups addressing the 

design and operating issues. While worker flexibility is considered to be the most 

important design factor in the study, decisions on dispatching rules and worker 

assignment rules are listed as the operating issues. In another review paper, 

Hottenstein and Bowman (1998) categorized sixteen simulation studies of DRC 

systems according to five main dimensions: worker flexibility, centralization of 

control, worker assignment rules, queue disciplines and the cost of transferring 

workers. 

 

Since the analytical models include simplifications that are not always valid in 

practice, hence they are not efficient for large-scale DRC scheduling, researchers 

have paid considerable attention to develop heuristic based approaches for the DRC 

scheduling problem. Several simulation based scheduling studies have investigated 
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dynamic worker assignment heuristics which include decisions on when and where 

to move the workers, i.e., when-where rule pairs, (Yildiz and Tunali, 2007). Studies 

indicate that the importance of choosing the appropriate assignment policy depends 

on the certain shop characteristics (Fryer, 1973; Gunther, 1979; Nelson, 1967; 

Treleven and Elvers, 1985; Weeks and Fryer, 1976; Malhotra and Kher, 1994; Kher, 

2000). 

 

In the next section, simulation based DRC scheduling studies are classified 

according to five dimensions by adopting and updating the classification scheme 

proposed by Hottenstein and Bowman (1998). 

 

2.2.1 Worker Flexibility  

 

The concept of worker flexibility or cross training plays a major role in the 

success of DRC systems. Worker flexibility in general refers to the responsiveness of 

a system to variations in the supply and demand of workers (Yue, et al., 2007). The 

use of multitasking workers helps in reacting to unbalanced work loads where the 

bottleneck location changes from period to period (Cochran and Horng, 2007). 

 

There are two levels of worker flexibility (Felan and Fry, 2001): single-level 

flexibility and multi-level flexibility. In the case of the single level flexibility, every 

worker is trained to operate a machine in the same number of departments (Felan and 

Fry, 2001). Figure 2.1 illustrates a different type cross-training level for a simple 

five-worker five-task system (Inman et al., 2004). In the no-cross-training case, each 

worker is trained to perform only one task type. In the total cross-training, all 

workers can perform all task types. On the other hand, the multi-level flexibility can 

be regarded as the situation in which workers are trained to work in a different 

number of departments (Yildiz, 2003). A multi-level flexibility could occur because 

some workers, regardless of seniority, are motivated to learn new tasks more than 

other, less motivated, workers (Felan and Fry, 2001). 
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Figure 2.1 Schematic representation of cross-training strategies (Inman, et.al., 2004) 

 

Worker flexibility can also be characterized by another type of flexibility: 

homogeneous or heterogeneous. Homogeneous worker flexibility can be regarded as 

the situation in which workers have the same level of proficiency at performing their 

assigned tasks (Felan and Fry, 2001). Although workers provide the same level of 

cross training in the heterogeneous worker flexibility case as well, they have 

different level proficiency when performing their assigned tasks (Bokhorst et al., 

2004). The worker flexibility has been studied in numerous studies; e.g. see Allen, 

1963; Nelson, 1967; Malhotra et al., 1993; Brusco and Johns, 1998; Kher et al., 

1999; Molleman and Slomp, 1999; Felan and Fry, 2001; Slomp and Molleman, 2002; 

Hopp et al., 2004; Bokhorst et al., 2004; Inman et al., 2004; Yue et.al., 2007.  
 

Allen (1963), being first to introduce multi-level flexibility, showed that by cross-

training workers, DRC systems can utilize their workforce more efficiently. Then, 

Nelson (1967, 1970) investigated the effects of homogeneous and heterogeneous 

worker flexibility on the performance of DRC systems. The results showed that 

single level flexibility with both homogeneous and heterogeneous workers can 

improve the system performance.    

 

Some researchers investigated the effects of worker flexibility with homogeneous 

workers (e.g. Fryer, 1973, 1974a, 1974b, 1975, 1976; Hogg et al., 1975a, 1975b; 

Elvers and Treleven 1985; Treleven and Elvers 1985, Scudder 1986; Park 1991), and 

heterogeneous workers (e.g. Rochette and Sadowski, 1976; Hogg et al., 1977; 
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Malhotra et al., 1992). The results show that significant improvement on the 

performance can be achieved by a minimal level of flexibility rather than total 

worker flexibility. 

 

Park and Bobrowski (1989) studied on single-level worker flexibility with 

homogeneous workers. Although the main aim of the study was to investigate the job 

release mechanisms in DRC manufacturing, the effects of the degree of worker 

flexibility were also investigated by considering it as an experimental factor. The 

results indicate that when workers have more than two skills, performance cannot be 

significantly improved anymore. In another study, Bobrowski and Park (1993) 

considered heterogeneous workers. The research showed that worker assignment 

rules which consider the worker efficiency perform better than all the other rules 

which do not take into account worker flexibility. 

 

Felan, Fry and Philipoom (1993) evaluate the impact of varying levels of worker 

flexibility and worker staffing on the performance of a DRC hybrid job shop. This 

comparison is based on two alternatives: i) implementing an extensive training 

programme to develop cross trained workers ii) hiring more workers. The results 

showed that the shop performance can be improved by using both strategies. 

Although hiring new workers is a more effective strategy in terms of shop 

performances, it is more costly than implementing a training programme. They also 

point out that increasing the degree of worker flexibility is more effective when the 

cost is the major criterion.  

 

Although it has been confirmed by numerous researchers that worker flexibility 

improves the system performance under a variety of different shop designs, the cost 

of gaining this flexibility has not been studied extensively. In order to evaluate the 

cost of worker flexibility alternatives, the following criteria are commonly used in 

the DRC literature: the total number of worker transfers, server transfer delays, and 

heterogeneous efficiencies of the transferred worker (Malhotra et al., 1995). 
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Worker transfer delays are firstly considered by Gunther (1979) to show the 

effects of these delays on the system performance. In this study, the workers are not 

considered as productive while they are moving. Besides, dispatching rules, when 

rules, where rules, and worker transfer delays are considered as the experimental 

factors in the study. The results show that any increment in time required for the 

transfers increases the mean flow time. In another study, Gunther (1981) expanded 

his earlier model by including information access delays. An information access 

delay can be defined as the amount of time that is required for a worker to obtain the 

updated information necessary to make the appropriate transfer decision (Treleven, 

1989).     

 

 Firstly, Malhotra et al. (1993) considered the cost of gaining flexibility in terms 

of worker attrition and learning effects during the cross training phase. They assumed 

that workers do not have full efficiencies in their new workstations and can only 

reach full efficiency after a learning process. The worker attrition and learning 

effects are evaluated under different scenarios. The experimental results indicate that 

the greatest benefits are achieved when interdepartmental worker flexibility is 

incrementally introduced into the system. Additionally, gaining flexibility is affected 

by the learning environment, which depends on the initial processing time of jobs 

and the learning rate of workers. In another study, Kher and Malhotra (1994) 

extended this study by considering worker transfer delay. Afterwards, Fry, Kher and 

Malhotra (1995) modeled the case of gaining workforce flexibility in DRC job shops 

that have high learning costs and the presence of the worker attrition. The results 

show that the combination of worker flexibility and attrition rate significantly affects 

the shop performance. An increment in the worker flexibility causes much greater 

improvement on the system performance, while it results in increments in the cost as 

well. On the other hand, decreasing attrition results in much less dramatic 

improvement on the system performance. Kher et al. (1999) extended the work of 

Malhotra et al. (1993) by including forgetting. The results of this study show that if 

the worker attrition and forgetting rates is high in the system, which means that the 

workers never gain full flexibility, to train a worker for even two different kinds of 

skills may not improve the performance of the system as expected.  
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Felan and Fry (2001) investigate the effects of the mixture of cross training in a 

DRC job shop. It is indicated that it is better to have a mix of workers with no 

flexibility and some workers with very high flexibility rather than all workers with 

equal flexibility. 

 

Bokhorst, Slomp and Gaalman (2004) present a “WHO” rule used to select one 

worker out of several available workers to be transferred to a work centre. In order to 

investigate the effects of “who” rules on the system performances, the cases of 

homogeneous and heterogeneous workers were considered. The results showed that 

the characteristics of the DRC shop influence the impact of the ‘WHO’ rule. 

 

 Yue, Slomp, Molleman and Zee (2007) investigated the effects of cross-training 

policies in a DRC parallel job shop where new part types are frequently introduced 

into the system. Different cross-training policies related to the level of 

multifunctionality, the pattern of skill overlaps, and the distribution of skills among 

workers are considered. The results show that the frequency of new part type 

introduction should be considered in the selection of a cross-training policy. 

 

Several researchers have studied on the worker flexibility in cellular 

manufacturing. Some of them investigate the effects of worker allocation on the shop 

performance, e.g., Askin and Iyer (1993); Russell et al. (1991) and Wirth et al. 

(1993). Some others indicate that worker assignment policy and cross training of 

workers have important impacts on the performance of cellular manufacturing 

systems, e.g., Morris and Tersine (1994); Suresh (1994), Shafer and Charnes (1995), 

Chen (1995). 

 

Jensen (2000) investigated the relationship between staffing level and shop layout. 

The results indicate that strict cell shops provide superior flow time and tardiness 

performance under conditions of moderate and low staffing levels. Kannan and 

Jensen (2004) investigate the effects of worker assignment on the performance of a 

DRC cellular manufacturing system. It is assumed that processing time decreased 
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with the operator task repetition. Results show that worker assignments significantly 

influence the shop performance in the presence of worker learning. Slomp, Bokhorst 

and Molleman (2005) developed an integer programming model to select workers to 

be cross-trained for particular machines in a cellular manufacturing environment. In 

the model developed, the training costs are traded off the workload balance among 

workers in a manufacturing cell. Djassemi (2005) investigates the performance of a 

cellular manufacturing system with a variable demand and flexible work force 

through simulation. The results indicate that the flexibility of cellular manufacturing 

in reacting to unbalanced work load can be improved by using flexible cross trained 

workers.     

 

In summary, all the studies above show that a DRC shop with a flexible workforce 

can have better performance in terms of almost all criteria than a shop with no cross-

trained workers. Despite these benefits, some of the studies highlight that worker 

flexibility may cause some additional costs such as learning and forgetting costs 

(Yue et al., 2007). 

 

2.2.2 Centralization of Control  

 

The centralization of control is defined in DRC system research with the decision 

about when a cross trained worker is eligible for transfer to another work center 

(Hottenstein and Bowman, 1998). The centralized and decentralized rules are the 

most commonly used “when” rules. The centralized rule means that a worker is 

eligible for transfer after each job he has finished in a work centre. The decentralized 

rule means that a worker is only eligible for transfer after finishing the job if the 

work centre becomes idle (Bokhorst et al., 2004). Many researches have investigated 

the effects of these rules under different DRC manufacturing environments 

(Hottenstein and Bowman, 1998). Some researchers only consider centralized control 

(Gunther, 1979, 1981; Malhotra et al., 1993; Treleven, 1987), while some others use 

only decentralized control (Elvers and Treleven, 1985; Treleven and Elvers, 1985; 

Treleven, 1988). 
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Nelson (1970) and Gunther (1979) investigate worker assignment rules in DRC 

shop with heterogeneous resources and homogeneous resources, respectively. While 

worker transfer delays are not considered in the earlier study, the later considers 

transfer delay times. The results of both studies show that the selection of the “when” 

rule affects the system performance. Different from Nelson (1970), Gunther (1979) 

indicates that the decentralized rule performs better than the centralized control when 

transfer delay times are considered. 

 

Fryer (1973) showed that interdivisional and intradivisional transfers with 

centralized control are more effective than interdivisional and intradivisional 

transfers with decentralized control. In another study, Fryer (1974b) investigates the 

performance of a new parametric when-rule which allows the worker to be 

transferred to another work center, only if the number of jobs in queue is below a 

certain level. 

 

Weeks and Fryer (1976) investigates the effects of dispatching rules, “when-

where” rules and due date assignment rules on the system performance. Similar to 

previous studies, the centralized and decentralized rules are selected as “when” rules. 

The results of the study show that the centralized rule performs better than the 

decentralized rule. 

 

Treleven (1987) studies three “pull” variations of the “when” worker assignment 

rule for DRC manufacturing systems. Three parametric “when” rules are defined, 

which consider the number of parts in queue. Experimental results indicate that 

“when” rules have impacts on the performance of a DRC system. In this study, the 

centralized control is suggested to be used when the transfer times are significant. 

The results also confirmed that the proposed rules have superior performances than 

the traditional when rules. 

 

Park and Bobrowski (1989) studied four experimental factors, which are two 

release mechanisms, three levels of worker flexibility, two “when” rules and two 

levels of due date tightness. The effects of centralized and decentralized “when” 
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rules on the system performance are investigated under different situations with full 

and partial cross trained homogeneous workers. During the experiments, the system 

performance is measured as a cost function with cost terms related to the inventory, 

the late penalty, and worker transfers. Results of the experiments show that the 

worker cross-training does not have a significant effect on the system performance in 

the case of the centralized control. Also, the centralization policy with a lower cross 

training performs better than the decentralization policy with a higher cross training. 

Among the alternatives with lower worker cross training, the centralized control 

ensures the maximum benefit.  

 

In another study, Bobrowski and Park (1993) work on the assignment of 

heterogeneous workers to work centers. Five “when” rules are investigated in this 

study to determine when a worker is available for transfer to another machine: “i) 

centralized ii) decentralized iii) efficiency rule: move immediately if the worker can 

move to the work center where the worker is more efficient iv) follower rule: move 

when the worker finishes the number of jobs which were there at arrival v) 

normalized queue rule: move when normalized queue length is less than the target 

value, which is estimated through a prior simulation.” The five when rules and seven 

where rules are simulated in order to minimize the flow time for each job. Results 

show that “efficiency when” rule provides superior system performance.   

 

Malhotra and Kher (1994) investigated worker assignment policies in DRC job 

shops with heterogeneous workers. They also consider transfer delay times. It should 

be noted that these features are simultaneously modeled firstly in the DRC literature. 

Two “when rules” (centralized and decentralized) and five “where” rules are tested in 

such environments. Results indicate that decentralized “when” rule improves the 

system performance in the DRC shops considered.  

 

Kher (2000) evaluated the relative importance of worker assignment and 

dispatching rules in offering a near-perfect delivery performance to vital customers 

served by the firm. Three different “when” rules are used, i) centralized ii) 

decentralized iii) a modified version of the decentralized rule. The modified rule 



 

 

21

incorporates information about high priority jobs in the current department, and does 

not allow a worker to be transferred until all high priority jobs in the current 

department have been processed. Results of the study show that a relatively high 

level customer service can be achieved for high priority orders only when the 

proposed rules are used. 

 

Suresh and Slomp (2005) compared the performance of virtual cellular 

manufacturing systems with functional layouts and physical cellular layout in a DRC 

context. They studied four experimental factors which are worker flexibility, lot size, 

set-up reduction and worker assignment rules. While the centralized and 

decentralized “when” rules were used, the LNQ rule was used as the “where” rule. 

Flow time and WIP were selected as the performance measures. Transfer delays are 

also considered. The results of experimental analysis show that the centralized rule is 

marginally better than the decentralized rule. 

 

Yildiz and Tunali (2007) proposed a novel methodology that integrates the 

response surface methodology and simulation to develop a worker assignment policy 

for CONWIP controlled DRC manufacturing systems. A two stage simulation 

optimization procedure that involves response surface methodology (RSM) is 

developed to determine on the length of periodic controls for evaluating the current 

system status. To evaluate the alternatives, a cost based performance measure and the 

number of worker transfers are considered. The results of this study show that the 

proposed methodology outperforms other flexibility control approaches with respect 

to the mean cycle time and the unit penalty cost especially in systems with fewer 

numbers of machines. 

 

Although the decentralized “when” rule is less flexible than the “centralized” rule 

(Kher and Fry, 2001), many researches recommended its use because any increment 

in worker transfers will results in a deterioration in the effective worker capacity. 

The centralized rule causes more number of worker transfers than the decentralized 

rule. However, when transfer delays are considered, the flow times increase in 

centralized control due to the frequent worker transfers (Suresh and Slomp, 2005). 
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Additionally, the centralized rule could give superior performance in the case of 

heterogeneous workers. 

 

2.2.3 Where Rules  

 

Besides the “when” rule, the “where” rule that helps to determine where the 

worker should be reassigned when a worker is eligible for transfer is an important 

decision for scheduling of DRC manufacturing systems (Hottenstein and Bowman, 

1998).  Commonly used “where” rules are random, to the work center first come first 

served (FCFS), to the work center with shortest operation time (SOPT), to the work 

center with largest number in queue (LNQ) (Fryer, 1973; Weeks and Fryer, 1976; 

Gunther, 1979; Treleven and Elvers, 1985; Park Bobrowski and Park, 1993; Kher, 

2000). The appropriate use of “where” rules leads to substantial improvement in the 

shop performance and this decision depends on the scheduling of machines 

(Hottenstein and Bowman 1998). 

 

Up to date, the effects of “where”  rules on the system performance have been 

investigated by many researchers and different conclusions can be drawn from these 

studies. In one of the earliest work of DRC literature, Nelson (1967) reports that the 

use of different “where” worker assignment rules could improve the mean and 

variance of flow time simultaneously. However, Fryer (1973), Weeks and Fryer 

(1976), and Treleven and Elvers (1985) indicate that these rules do not have 

significant effects on the shop performance, except for flow/queue time variance 

criterion (Treleven, 1989). Fryer (1973) analyzed effects of LNQ and LWT (work 

center with the job in the queue which has been in the system the longest period of 

time) “where” rules on the system performance. In one of the most comprehensive 

studies in DRC literature, Treleven and Elvers (1985) analyzed eleven “where” rules 

in the DRC shop with homogeneous partial cross trained workers. The classical 

“where” rules, FCFS, SOPT, EDD (work center whose queue has the job with the 

earliest due date), CR (work center whose queue has the job with the smallest critical 

ratio), LST and LNQ (i.e., classical “where” rules), were used in this study. 

Additionally, the new five where rules that use an average priority value of all jobs in 
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queue were proposed and their effects on the performance of the DRC shop were 

evaluated. These are AFISFS (earliest average entry into the system of all jobs in 

queue), ASOPT (shortest average processing time of all jobs in queue), AEDD 

(earliest average due date of all jobs in its queue), ACR (lowest average critical ratio 

of all jobs in its queue), AST (lowest average slack per remaining number of 

operations of all jobs in its queue). The experimental results show that none of the 

“where” rules performs significantly better than the others. Kher and Malhotra 

(1994) studied two “where” rules: FISFS and LST. Results of the study confirmed 

prior studies which report that the “where” rules do not have a significant impact on 

shop performance. 

 

On the other hand, some researchers report that the appropriate choice of “where” 

rules affect the performance of DRC systems with respect to shop characteristics. 

Weeks and Fryer (1976) examined the impact of LNQ, LWT and LST (work center 

whose queue has the job with the least slack time per operation remaining) rules on 

the performance of a DRC job shop. The results indicate that the rule which 

considers the time in the system of the jobs in queue is the optimal assignment rule in 

terms of all performance measures. 

 

Hogg, Phillips and Maggard (1977) investigated the performance of two where 

rules in a DRC shop with heterogeneous workers. These are “first arrived in the 

system first served (FASFS)” and “most efficient (MEF)” rules. In their study, three 

different types of worker efficiency schemes were modeled. When comparing the 

performance of the “where” rules, it is assumed that the centralized control is 

selected as the “when” rule. The results of the study illustrate that the FASFS 

performs superior in the case of homogeneous workers. On the other hand, MEF 

gives better results for heterogeneous workers. 

 

Gunther (1979) examined the impact of SOPT, LNQ and FISFS rules. In his 

study, SOPT and LNQ are modified by including worker transfer times. He reports 

that the SOPT rule improves the mean flow time performance even when transfer 

delay times are considered. 
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Treleven (1987) compares the performance of the proposed “pull” worker 

assignment rules that integrate “when” and “where” rules with those of traditional 

push rules. The results of this study show that the new rules perform well in 

comparison to the traditional “push” rules.  

 

Bobrowski and Park (1993) analyzed the effects of “where” rules on the mean 

flow time performance of DRC systems with heterogeneous workers besides the 

effects of “when” rules. In the research, seven “where” rules are tested: LNQ, MLNQ 

(modified queue length by efficiency of the worker at the work center), NQL 

(normalized queue length; move to the work centre with the NQL value closest to the 

target value, which is estimated through a prior simulation), MEF, SOPT, LTST 

(least total slack loss rule), and LAST (Least aggregate slack rule). Results indicated 

that the MEF rule performs better than the others. Malhotra and Kher (1994) 

performed a similar study to show the impacts of five where rules on performance of 

DRC systems. In their study, it is assumed that the workers are heterogeneous and 

significant transfer delay times exist. The “where” rules used are: i) FISFS, ii) 

SOPT1 (smallest processing time and transfer time), iii) SOPT2 (modified version of 

SOPT1 by processing time by efficiency of the worker), iv) LNQ, v) MEF.  Similar 

to the results of Bobrowski and Park (1993), the rules that use worker efficiency 

information provide better results than the other traditional “where” rules. 

 

Liao and Lin (1998) studied a real life production system in a manufacturing 

company producing sewing machine parts. The production system is a DRC job shop 

with sequence-independent set-up times, a make-to-order policy, and equal-sized 

transfer batches. The performance measure is the mean absolute lateness. Two 

worker assignment rules are: (i) longest number in queue and (ii) a novel method. In 

the novel method, the priority is given by considering the amount of investment, set-

up time and unit processing time. Results of the experimental studies show that the 

combination of modified due date rule for dispatching and the LNQ rule for the 

“where” rule gives a superior performance. 
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Cochran and Horng (1999) and Horng and Cochran (2001) introduced 

multitasking workers in Just-in-Time (JIT) environments. Different from other 

studies, the performance of the traditional “when –where” rule combinations were 

investigated in the DRC-JIT environment. While the centralized and decentralized 

control were used as “when” rules, FISFS, LNQ, MEF, SOPT1 and SOPT2 were 

considered as the “where” rules. In addition to the traditional rules, novel “when” 

and “where” rules were proposed for the JIT production system. The proposed 

“when” rule, called the bottleneck rule, allows the worker transfer when the number 

of unsatisfied production kanbans of the station drops to a predetermined level after a 

job is completed. The novel “where” rule assigns the multitasking worker to the 

bottleneck station which is the closest one to the last station. Additionally, a decision 

support system that integrates simulation and response surface methodology is 

developed. Results showed that the new rule-pairs perform well in the JIT production 

system. 

 

Kher (2000) analyzed the effects of three worker assignment rules. These rules 

include customer identity based information to allocate workers to different 

departments. LNQ, longest queue of high priority jobs and the high priority job with 

the earliest due date rules are used as the “where” rules. The experimental results 

show that the “where” rules that consider customer information give superior 

performance for high priority jobs. Kher and Fry (2001) extend this study by 

considering additional tools that can be used by managers in DRC shops such as 

worker flexibility and worker assignment rules. They studied four experimental 

factors that include two different percentages of high-priority orders, six levels of 

flexibility, two “when” rules, two “where” rules and two part dispatching rules. The 

first “where” rule is EDD which assigned the worker to the work center that contains 

the job with the earliest due date. The second “where” rule, EDDP, selects a work 

center that contains vital customer orders with earliest due dates. Results show that 

the “when” rule has more impacts on the performance of the system than the “where” 

rules. Experimental results also show that there were insignificant differences 

between the two “where” rules. 
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Jensen (2000) examined the performances of LNQ, EDD and CYC (cyclic) 

worker assignment rules on a DRC job shop, in a hybrid cell layout and in a strict 

cellular configuration. Experimental results show that EDD gives better performance 

than the other rules under the centralized control rule. Similar results have been 

obtained by the work of Suresh and Gaalman (2000). This study compares the 

performance of the functional layout with those of the cellular manufacturing. 

Worker flexibility, lot size, set-up reduction, worker assignment rules and scheduling 

rules are considered as the experimental factors. The results indicate that the LNQ 

rule with centralized control gives significantly lowest flow ratios. 

 

Chen (1995) developed heuristic approaches for the single operator scheduling 

problem in Group Technology (GT) cells. The heuristic consists of Cycle Switching 

Rules (CSR) to deal with production environments covering a longer decision 

horizon and (2) Dynamic Scheduling Rules (DSR) to deal with environments 

covering the shorter decision horizon. The implementation of the CSR and DSR is 

performed by some IF-THEN-ELSE rules considering the changing dynamic 

situations. The results indicate that both CSR and DSR outperform the internal rules. 

However, the proposed heuristics can only deal with the single-operator scheduling 

problem. Therefore, the author stated that the operator’s scheduling for multi 

operator problem should be developed; however, the combinatorial explosion makes 

this problem difficult to solve.    

 

Mosier and Mahmoodi (2002) studied the group scheduling heuristics in a DRC, 

automated manufacturing cell. In this study, it is assumed that the workers are only 

responsible for set-up, tear-downs and loads/unloads. Three worker scheduling 

policies are used to determine which work centers need a worker: i) select the 

workstation with the largest total number of jobs in all of the subfamily queues, ii) 

select the workstation whose next job requires the least amount of set-up time, iii) 

select the workstation whose next job entered the shop first. Three performance 

measures are considered as mean tardiness, mean flow time, and average proportion 

of jobs tardy. The results of the experiments indicate that, in a DRC cell 
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environment, policies for allocating workers to tasks have very little impact on the 

system performance. 

 

Kannan and Jensen (2004) examined the impact of worker assignments in a DRC 

cellular shop in which processing times decrease with operator task repetition. LNQ 

and EDD are selected as main “where” rules. Then, to examine the impact of intra 

versus inter-cell assignments, four “where” heuristics are developed by modifying 

these rules. In the first two rules, LNQ and EDD are applied to machines not 

currently staffed (LNQ-U and EDD-U) regardless of where the machines are. The 

third and fourth rules, LNQ-P and EDD-P, allow operators to be transferred outside 

their primary cell only if there is no remaining job in their primary cell. The 

combination of two “when” rules and six “where” rules are analyzed for the three 

levels of learning rates and three levels of staffing levels. The results show in all 

cases that the EDD heuristic has the advantage in all type of “where” rules. The 

relative performance of worker assignment rules depends both on the rate at which 

the operators learn and on the staffing constraints. 

 

2.2.4 Queue Discipline 

 

In most of the DRC studies, the queue discipline (part dispatching rules) has not 

been the primary interest. However, many of the studies investigated the interaction 

between several queue discipline and worker assignment rules (Hottenstein and 

Bowman, 1998). They reported that the use of right “where” rules lead to substantial 

improvement in the shop performance and this decision is not independent of parts 

schedules (Hottenstein and Bowman, 1998). Treleven (1989) emphasizes that the 

choice of part dispatching rules has a significant impact on the shop performance of 

DRC systems. 

 

A queue discipline is defined by Blackstone et. al. (1982) as the selection of the 

next job to be processed from a set of jobs awaiting service. The selection of queue 

disciplines for DRC systems is based on the previous studies in the machine limited 

systems (Lee, 1997). The queue disciplines in DRC studies are summarized in Table 
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2.1. The table extends and updates the work of Hottenstein and Bowman (1998) that 

shows the dispatching rules in DRC systems. They are FISFS (First in System First 

Served), FIFO (First in First Out), SPT (Shortest Processing Time), EDD (Earliest 

Due Date), LST (Least Slack Time), CRT (Critical Ratio), and MODD (Modified 

Due Date). 
 

Table 2.1 Dispatching rules used in DRC systems 
Dispatching Rules Study 

FIFO FISFS SPT SLT EDD CRT 2Q CMDD MODD 
Nelson (1967) X X X       

Fryer (1973, 1974a, 1975)  X X       
Fryer (1974b)  X        

Weeks and Fryer (1976)  X X X      
Gunther (1979) X  X       
Gunther (1981) X  X       

Treleven and Elvers (1985)  X X X X X    
Elvers and Treleven (1985)  X X X X X    

Treleven (1987)   X X      
Treleven (1988)  X X X X     

Park and Bobrowski (1989)      X    
Park and Bobrowski (1993)      X    

Malhotra et.al (1993)     X     
Felan et.al. (1993)   X       

Malhotra and Kher (1994)     X     
Kher and Malhotra (1994)     X     
Morris and Tersine (1994) X         

Lee (1997)  X X  X     
Fredendall et. al. (1996)        X X 

Liao and Lin (1998)   X      X 
Kher (2000)     X  X   

Suresh and Slomp (2000) X  X       

Kher and Fry (2001)     X  X   

Kannan and Jensen (2004)   X       

Yue et.al., 2007 X         

 

Nelson (1967) indicates that assigning workers to a work center with a 

combination of the LNQ “where” rule and the SPT or FISFS dispatching rules is the 

most effective in reducing the mean and variance of the flow time. Fryer (1973); 

Fryer (1975) and Treleven (1987) report that SPT decreases mean flow time, but 

increases its variance. The results are also confirmed by Gunther (1979) that 

considers transfer delay times in a DRC shop. Weeks and Fryer (1976) report that the 

SPT rule yields a better performance than the due-date based slack rules for all 

performance measures, except for the variance of lateness. 

 

Fredendall et. al. (1994) used two dispatching rules to examine the impact of 

information usage in the dispatching rules on the system performance. Firstly, the 
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modified operation due date (MODD) is the maximum of operation time plus the 

current time, or the operation’s due date. Secondly, the critical machine due date 

(CMDD) uses the SPT rule at critical work centers and the EDD rule at non-critical 

work centers. The results indicate that no significant differences are observed 

between the MODD and CMDD rules for any performance measures. 

 

Kher and Fry (2001) compared the performance of a two-queue (2Q) and the EDD 

rules to investigate the impact of dispatching rules in a DRC shop where a near-

perfect deliver performance is necessary for vital customers. The 2Q rule includes 

two types of queues, one for high priority jobs and one for normal priority jobs. This 

rule requires that workers must process jobs from the high priority queues first. EDD 

is used to sequence the jobs in both queues. The results of the experiments show that 

the 2Q rule gives better performance for vital customer orders and a poorer 

performance for non-vital customers. 

 

Although most of the abovementioned studies report that different dispatching 

rules perform well in different DRC shop configurations, a general conclusion cannot 

be obtained about the performance of these rules. The experimental results show that 

DRC configurations (i.e., transfer delay times, worker efficiencies, etc.) and 

interaction between worker assignment rules and dispatching rules strongly affect the 

performance of the dispatching rule used.  

 

Patel et al. (1999) proposed a scheduling approach based on genetic algorithms 

(GAs) for DRC manufacturing systems. They compared six different dispatching 

rules according to eight different performance measures. Their methodology 

determines the best schedule given the DPRs. Its main disadvantage is that the 

problem size extensively limits the solution; it is time consuming even for small 

sized problems. 
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2.2.5 Evaluation Metrics 

 

Many performance measures are used for analyzing DRC manufacturing systems. 

Most of them are listed in Table 2.2. Although many studies considered more than 

one performance measure to evaluate scheduling and design of DRC manufacturing, 

most of them did not consider the aggregation of the performance measures. 

However, several, and possibly conflicting, criteria might come about in the decision 

process, which makes it difficult to determine the right criterion. This necessitates 

the multi-criteria evaluation of alternative rule combinations. 

 

Some researchers developed cost functions to evaluate performances of the 

investigated scheduling rules for DRC shops. Park and Bobrowski (1989) developed 

a cost function including inventory holding cost, late penalty and worker transfer 

cost.  Holding costs are proportional to the amount of work completed on a job. Late 

penalty charges are assessed as a dollar amount per hour for the work content job, 

and per time period late. Worker transfer costs are charged as a dollar amount per 

transfer. A similar cost function is used to evaluate order review rules and worker 

assignment rules by Fredenall et al. (1996). 

 

Yildiz and Tunali (2007) suggested a unit penalty cost function to implement their 

proposed worker flexibility policy for a CONWIP line. The cost function consists of 

four components: total machine cost per job produced in the line, total worker cost 

per job produced in the line, control cost per job, and total WIP carrying cost per job. 

To determine the optimum level of the design parameters considered, RSM is 

developed based on this cost function. 



                                                                                                                                             

Table 2.2 Performance measures 

Study Performance Measures 
 WU NJS NJSV MFT MFTV MLT LTV MT PLJ NWT MQT QTV NQT WIP S 
Allen (1963) X X              
Nelson (1967)  X X X X           
Fryer (1973, 1974a, 1974b, 1975)    X X     X      

Hogg et.al. (1975) X 
 

  X X      X  X  LBT 

Weeks and Fryer (1976)    X X X X  X X      
Gunther (1989)    X X     X     PTT 
Treleven and Elvers (1985)    X X    X X X X    
Elvers and Treleven (1985)    X X    X X X X    
Treleven (1987)      X X  X  X X    
Treleven (1988)     X       X    
Bobrowski and Park  (1989)    X    X X       
Felan et.al. (1993) X       X X X    X  
Malhotra et.al. (1993)    X    X X      DLV 
Malhotra and Kher (1994) X   X    X X       
Morris and Tersine (1994)    X          X MU 
Fry et.al. (1995)    X    X  X     DLV 
Chen (1995)               TR 
Liao and Lin      X          
Kher (2000)        X       RMST 
Jensen (2000)    X    X       RMST 
Felan and Fry (2001)        X X      DLV 
Mossier and Mahmoodi (2002)    X    X X      NJW 
Kannan and Jensen (2004)    X X   X        
Djassemi (2005)    X          X MU 
Yue et al. (2007)    X            
WU: worker utilization, NJS: Number of jobs in system, NJSV: variance of NJS, MFT: mean flow time, MFTV: variance of MFT, MLT: mean lateness, LTV: variance of MLT, MT: Mean Tardiness, 

PLJ: percentage of late job, NWT: number of worker transfer, MQT: mean queue time, QTV: variance of MQT, NQT: normalized queue time, WIP: work-in process inventory, S:special, LBT: worker 

blocking time, PTT: Percentage of time spent to transfer, DLV: direct worker variance, MU: machine utilization, TR: throughput rate,   RMST: root mean squared tardiness, NJW: number of job waiting 

worker transfer 
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Although all these applications are inherently multi-criteria decision making 

problems, the literature review reveals that there is no effort on the multi-criteria 

scheduling of DRC systems. However, in practice, a decision maker aims to find a 

schedule that meets each criterion or objective of the system at some level. As 

mentioned before, one of the main aims of this research is to fill this gap in the 

literature. 

 

All the aforementioned studies have pointed out that the efficiency of the worker 

assignment rules is highly dependent on the performance criteria of interest and on 

system state conditions. No single worker assignment rule pair performs well for all 

performance criteria and the system state conditions. When the operating conditions 

or selected performance criteria are changed, an immediate response is necessary. 

Therefore, given the variable performance of worker assignment rules, it would be 

interesting to change these rules dynamically according to system state changes. This 

requires a real-time scheduling mechanism in DRC systems. However, studies on 

real-time scheduling of DRC systems are not common in the literature. To the best of 

the author’s knowledge, there is only one simple work on real-time scheduling of 

DRC systems. Lee (1997) developed artificial intelligence based adaptive scheduling 

approaches to real-time scheduling of DRC manufacturing systems. He developed a 

state-dependent algorithm and compared it with regression metamodeling and neural 

network based scheduling algorithms. Because of its simplicity, neural network 

based approaches performed worse than the other approaches, even than the static 

scheduling approaches. Furthermore, the multi-criteria nature of the problem was not 

taken into account. 

 

Although studies on real-time scheduling of DRC systems are not common in the 

literature, various methods have been proposed for machine-only constrained 

manufacturing systems. These methods will be further discussed in the next section.  
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2.3 Real-time Scheduling 

 

Scheduling is a decision making process that plays an important role in most 

manufacturing and service industries (Pinedo and Chao, 1999).  Scheduling has been 

defined as “the art of assigning resources to tasks in order to insure the termination 

of these tasks in a reasonable amount of time” (Dempster, 1981). 

 

Successful management of all processes of a manufacturing firm requires many 

decisions. Decisions made at higher planning levels may affect the scheduling 

process directly (Pinedo and Chao, 1999). Figure 2.2 depicts a typical information 

flow in manufacturing systems. Scheduling requires the integration of many different 

kinds of data, e.g. process models, relationships between tasks and resources, 

definition of objectives and performance measures, and the underlying data 

structures and algorithms that tie them all together (Jones and Rabelo, 1998). 
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Figure2.2. Information flow diagram in a manufacturing system (Pinedo & Chao, 1999, pp.7) 

 

Graves (1981) and Patel (1997) introduced a functional classification scheme for 

scheduling problems as follows: 
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• Requirements generation:  

o Open shop: All production orders are generated by customer 

requests and no inventory is stocked (e.g., make to order) 

o Closed shop: All customer requests are satisfied from inventory 

(e.g., make to stock) 

• Processing complexity: It is concerned with the number of processing steps 

associated with each production task or item. 

o Single machine, single stage, 

o Parallel machine, single stage, 

o Flow shop, multistage, 

o Job shop, multistage. 

• Parameter variability  

o Deterministic: All parameters are known fixed.  

o Stochastic: All or some parameters are uncertain. 

• Scheduling environment (e.g. dynamic or static) 

o Static: It is considered if none of the initial data change overtime.  

o Dynamic: It is considered if the data change with time. 

 

Job processing has many distinctive characteristics and is often subject to some 

unusual constraints. Pinedo and Chao (1999) list some of the most common 

processing characteristics and constraints as follows: 

 

• Precedence constraints 

• Routing constraints 

• Material handling constraints  

• Sequence-dependent setup times and costs  

• Preemptions 

• Storage-space and waiting-time constraints 

 

Due to the complicated settings of most manufacturing systems, determining good 

schedules for these systems is difficult. Scheduling is considered to be the most 

difficult problem in manufacturing because of its NP-completeness (Patel, 1997). 
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Classical scheduling approaches usually solve the scheduling problem with optimal 

or suboptimal schedule (Xiang and Lee, 2007). Most of the problems are assumed as 

deterministic and static (Sabuncuoglu and Kizilişik, 2003). Additionally, the 

solutions can easily become infeasible in real manufacturing systems since they 

assume highly unrealistic assumptions. In reality, manufacturing systems are 

complex, dynamic, and stochastic systems with a wide variety of products, processes, 

production levels, and unexpected disturbances (Xiang and Lee, 2007). Mostly, it 

may be possible to formulate these problems, but solving these to optimality may 

require an enormous amount of computer time (Pinedo and Chao, 1999). Therefore, 

instead of the optimal solution, maintaining a feasible solution alone can sometimes 

be the only goal of the scheduling practice (Sabuncuoglu and Kizilisik, 2003). 

 

When a dynamic and stochastic manufacturing environment is encountered in 

which static scheduling may be impractical, the use of real-time scheduling 

approaches is required (Xiang and Lee, 2007). 

 
Sabuncuoglu and Hommertzheim (1992) defined real-time scheduling as follows: 

 

“Real-time scheduling is a short-term decision making process which generates 

and updates the schedule based on the current status of system and the overall 

system requirements.” 

 

Numerous real-time scheduling approaches have been developed for various 

manufacturing systems, including single machine systems, parallel machine systems, 

flow shops, job shops, and flexible manufacturing systems. However, as discussed in 

Section 2.2, the real-time scheduling of DRC systems is not common in the 

literature. DRC researches can be classified into: (1) testing the performance of 

several worker assignment rule pairs in terms of several criteria, and (2) designing 

dynamic worker assignment algorithms. 

 

As discussed before, similar to job DPRs in machine constrained manufacturing 

systems, it has been indicated in the DRC literature that the efficiency of the worker 
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assignment rules are highly dependent on the performance criteria of interest and on 

system state conditions. Unfortunately, just as job DPRs, there is no worker 

assignment rule that is globally better than all the others. When the operating 

conditions or selected performance criteria are changed, worker assignment rules 

currently selected can become ineffective with regard to the new conditions. 

Therefore, real-time control or dynamic selection of worker assignment rules is 

required to achieve improvement in overall system performance. 

 

Recall that, to cope with these problems, this research proposes three novel multi-

criteria real-time scheduling approaches for DRC systems. The two of them, which 

are based on the selection of traditional rule combinations, use ANN based real-time 

multi-criteria schedulers, which are activated over successive time periods. On the 

other hand, the third one uses a fuzzy-based on-line scheduler, which is activated 

each time a scheduling decision is to be made. 

 

Although various real-time scheduling approaches exist, the literature review in 

the next section focuses on simulation based, AI based and knowledge based 

completely reactive (on-line) real-time scheduling approaches. 

 

2.3.1 Real-time Scheduling Approaches 

 

Aytug et al. (2005) classify scheduling approaches with executional uncertainties 

into three categories based on the problem formulation: completely reactive, robust 

scheduling and predictive-reactive scheduling approaches. 

 

In completely reactive scheduling, no firm schedule is generated in advance and 

decisions are made locally in real-time. The on-line dispatching rules that create 

partial schedules based on local information are frequently used. Other dispatching 

rule-based approaches that allow the system to select these rules dynamically are also 

completely reactive approaches. Most of the machine learning based, knowledge 

based, neural network based and fuzzy logic based approaches in which one schedule 
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is made at a time when it is needed according to the changes in the system conditions 

are also classified into this category (Aytug et al., 2005). 

 

The robust scheduling approaches focus on creating a schedule which, when 

implemented, minimizes the effect of disruptions on the primary performance 

measure of the schedule (Aytug et al., 2005). For example, Wu and Storer (1994), 

Mehta and Uzsoy (1999) and O’Donovan et al. (1999) developed robust scheduling 

approaches that generate stable schedules. 

 

In predictive–reactive scheduling, scheduling is presented as a two step process. 

Firstly, a predictive schedule, which determines the planned start and completion 

times of operations of the jobs, is generated. Secondly, this schedule is then updated 

according to the unexpected disruptions (Aytug et al., 2005). For example, 

Sabuncuoglu and Karabuk (1999) proposed a filtered beam search based 

scheduling/rescheduling algorithm for a multi-resource FMS environment. The 

performances of several reactive policies are tested in the presence of machine 

breakdowns and processing time variations. In another study, Sabuncuoglu and 

Bayiz (2000) analyzed the effects of various shop floor configurations (the load 

allocation, system complexity and stochasticity) on the performance of on-line and 

off-line scheduling methods. They modeled several reactive policies. Results show 

that the relative performances of scheduling approaches are affected more by the 

system load while the system size has insignificant impact. Furthermore, they 

reported that the proposed methods based on the filtered-beam search outperform 

online dispatching rules when the load across machines are not uniform, and the 

performance of off-line scheduling method and on-line dispatching mechanisms 

provides close results when there is considerable uncertainty and variability in the 

system. Sabuncuoglu and Kizilisik (2003) proposed several reactive scheduling 

policies (when-to-schedule and how-to-schedule policies) and test their performances 

under various experimental conditions. The scheduling algorithm used in the 

rescheduling method is a heuristic based on the filtered beam search algorithm. In 

addition, the authors also compared online and offline scheduling approaches. In 

online scheduling, the least work remaining dispatching rule is selected for 



 

 

39

scheduling. The results indicate that as the frequency of rescheduling increases, the 

performance of the off-line scheduling algorithm gets better, and the variable time 

interval method is better than the fixed time interval method. They also reported that 

dispatching rules are found to be more robust to interruptions than the optimum-

seeking off-line scheduling algorithm. 

 

A comprehensive list of robust and reactive scheduling approaches can be found 

in a recent work of Aytug et al. (2005). 

 

Considering the above classification, the real-time multi-criteria scheduling 

procedures proposed in this thesis can be considered as a completely reactive 

scheduling approach. In the next section, completely reactive scheduling approaches 

are discussed in detail under two sub-sections: simulation-based and AI-based 

approaches. 

 

2.3.1.1 Simulation-Based Approaches 

 

Simulation-based approaches are generally used to present a comparative analysis 

of dispatching rules (DPRs) and to determine the best DPR with respect to the 

current system state. A dispatching rule is a rule that prioritizes all the jobs that are 

waiting for processing on a machine. The prioritization scheme may take into 

account of the attributes of the jobs and the machines, as well as the current time 

(Pinedo and Chao, 1999). Dispatching rules can be very simple or extremely 

complex (Pierreval and Mebarki, 1997). Although numerous DPRs have been 

proposed over the years, in different levels of complexity and capability, there is no 

DPR that is globally better than all the others (Blackstone et al., 1982; Pierreval, 

1992; Sabuncuoglu, 1998). Pierreval and Mebarki (1997) state that the efficiency of 

DPRs depends on the performance criteria employed as well as on the operating 

conditions of the manufacturing system. Instead of using a single dispatching rule for 

a long time, changing a dispatching rule over successive short-time periods based on 

the current system state could improve the performance (Ishii and Talavage, 1991). 

A tool is then required to help the decision maker select the best rule for each 
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particular state of the system for dynamic scheduling decisions. Due to the difficulty 

and inflexibility of analytical models, almost all studies employ discrete event 

simulation to evaluate the performance of DPRs under a specified system state (Ishii 

and Talavage, 1991).  
 

Simulation is a powerful tool to analyze complex, dynamic and stochastic 

systems.  In this regard, simulation-based adaptive control approaches are commonly 

used to select the DPR that gives the best performance. 

 

A simulation-based real-time scheduling system is usually composed of four main 

components (Yoon and Shen, 2006): “a monitoring system to collect data from the 

physical shop floor; a simulator to generate simulation models, run the models, and 

analyze their results; a decision-making system to generate decisions such as 

schedules and priority rules; and an execution system to control the shop floor”. 

Generally, a simulation-based real-time scheduling utilizes discrete event simulation 

to evaluate dispatching rules for a short time period. The rule with the best 

performance during the time period is then selected, and applied to the physical 

system. The evaluation/application process is carried on repeatedly, based on the 

relative short time frame. In the long run, the scheduling of the system consists of the 

combinations of different dispatching rules in each short time period (Wu and Wysk, 

1989).  

 

In simulation based approaches, the scheduling mechanism can be activated by 

significant operational changes (i.e., event-triggered) or at the end of each time 

interval, which is constant or non-constant. In the event-triggered (or event-driven) 

approaches, an initial schedule is generated at the beginning of a period and it is 

revised when such significant operational changes occur as major breakdowns, minor 

breakdown, and new part arrivals (Jeong and Kim, 1998). 

 

In the time-interval approaches, a simulation model is usually adopted to represent 

the manufacturing system. Then the system is periodically simulated to consider the 

system state changes. At the end of each period, the best DPR is chosen with respect 
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to the selected performance measures. The major motivation behind these approaches 

is that changing DPRs dynamically performs better than applying the same DPR 

during the whole simulation run (Wu and Wysk, 1989). 

 

In one of the earliest studies in real-time scheduling literature, Davis and Jones 

(1988) introduced a simulation-based decision support system for real-time 

scheduling of flexible manufacturing systems (FMSs) in stochastic environments. 

The scheduling problem is decomposed into a two-level decision making problem: 

scheduling and control. Simulation is used to determine the appropriate schedules. 

 

Wu and Wysk (1989) proposed a simulation based real-time scheduling algorithm 

for FMSs. The algorithm, called multi-pass scheduling algorithm, divides the time 

horizon into shorter intervals. At the beginning of each interval, the performance of 

alternative dispatching rules is evaluated with the simulation model, and the rule with 

the best performance is selected for the next time interval. The results show that the 

proposed approach gives better performance than a single pass scheduling algorithm 

which uses a single dispatching rule during the scheduling period. 

 

A number of other authors have followed Wu and Wysk (1989)’s work and 

extended it in various ways. Although Wu and Wysk (1989) considered constant 

lengths for scheduling interval, Ishi and Talavage (1991) proposed a transient based 

approach to define the next scheduling interval for the FMS scheduling. The 

proposed approach selects the dispatching rules for each time interval dynamically 

by a multi pass algorithm considering the changes of the system state. In order to 

eliminate the problem of censored data, they proposed four dispatching rule selection 

algorithms. Results of the experiments show that multi-pass scheduling algorithms 

perform better than the single-pass algorithm, and determining the length of 

scheduling period based on the system transient state makes the performance of the 

algorithm much more stable than using a constant short time period. In another study, 

Lee (1989) used a multi-pass real-time scheduling algorithm to maintain the overall 

performance above a certain level. Different from the above approaches, the next 
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scheduling point is triggered when the performance measures reach pre-specified 

thresholds. 

 

 In another study, Kim and Kim (1994) proposed a multi pass scheduling and 

control mechanism in which the discrete event simulation was used to evaluate the 

performances of DPRs and to select the best one with respect to the performance 

criterion. The real-time control system monitors the shop floor periodically and 

compares actual and estimated performance values continuously. The scheduling 

mechanism is triggered when either the difference between the actual and estimated 

performance values exceeds the preset performance limit, or a major disturbance 

occurs. Different from previous studies, Ishii and Talavage (1994) used a different 

rule on each machine in each period. Based on Kim and Kim (1994)’s work, Jeong 

and Kim (1998) proposed several scheduling strategies for operating the mechanisms 

by considering two factors that might influence the mechanism, i.e. the type of 

simulation model used in the mechanism and the time of determining new DPRs. 

 

 Kutanoglu and Sabuncuoglu (2001a) proposed iterative simulation-based 

scheduling mechanisms for manufacturing systems that operate in dynamic and 

stochastic environments. A multi-pass rule selection algorithm and the lead time 

iteration method were tested in a job shop with machine failure and processing time 

variations. The experimental results showed that the multi-pass or iterative algorithm 

is better than single–pass algorithms on average. In another study, Kutanoglu and 

Sabuncuoglu (2001b) tested various schedule repair heuristics based on rerouting 

developed for unexpected machine failures in dynamic job shop environments.  

 

Chan and Chan (2001) and Chan et al. (2003) analyzed dynamic DPRs by a 

preemptive method in FMSs.  Firstly, the decision maker prioritizes the goals in the 

order of importance. The model is then optimized using one goal at a time. The 

preemptive method is adopted to allow real-time machine dispatching in an FMS. 

The operational rules are changed when certain numbers of outputs are produced by 

the system. The results show that the proposed approach can improve the 

performance by changing the corresponding DPR at the right time. 
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Chong et al. (2003) proposed a simulation-based real-time scheduling mechanism 

to adapt to the prevailing manufacturing conditions. Both offline and online 

simulations are used in the scheduling mechanism. The offline simulation is used to 

build reference indices by comparing different scheduling approaches according to 

the modified mean flow time performances. The online simulation then uses these 

reference indices to select the best scheduling approach. 

 

Singh et al. (2007) proposed a multi-pass real-time scheduling methodology that 

considers several DPRs simultaneously for selecting a job for processing. The 

proposed methodology allows continuously monitoring of the attained values of the 

performance. It is seen from the results that the performance of the dynamic 

manufacturing system can be improved by changing DPRs corresponding to the 

worst performance criteria at the appropriate deterioration in the performance 

measures. 

 

Results of the studies based on the simulation and DPRs show that the proposed 

methodologies perform better than fixed (single-pass) scheduling methodologies. 

However, all these studies need a number of simulation runs before finding the best 

DPR at each rescheduling point. Therefore, it can be time consuming to use 

simulation-based real-time scheduling approaches.  

 

Some researchers proposed problem specific heuristics for real-time scheduling of 

manufacturing systems and analyzed the performance of these heuristics through 

simulation models (e.g. Yamamoto and Nof 1985; Ishii and Muraki, 1996; Mehta 

and Uzsoy 1999; O'Donovan et al., 1999; Akturk and Gorgulu, 1999). These 

heuristics do not guarantee to find an optimal schedule, but have the ability to find 

reasonably good solutions in a short time (Ouelhadj and Petrovic, 2007). 

 

 For example, Sabuncuoglu and Hommertzheim (1992) proposed an online 

dispatching algorithm for the FMS scheduling. The algorithm schedules the jobs on 

machine or an automated guided vehicle (AGV) one at a time as the status of the 
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system change. The proposed algorithm was compared with existing scheduling rules 

under different performance criteria. In general, the dynamic scheduling algorithm 

provides superior performance than the standard scheduling rules. In another study, 

Subramaniam et. al. (2000) developed three heuristics for machine selection and 

tested the performance of these heuristics by simulation. The results of the simulation 

study indicate that the performance of simple dispatching rules is significantly 

improved when used with machine selection rules. Tunali (1997) investigated 

whether employing flexible process plans instead of prefixed ones improves the 

performance of a job-shop type FMS in terms of mean flow time objective. The 

manufacturing system considered is subject to unexpected machine breakdowns. The 

results of simulation experiments indicate that employing a flexible routing approach 

which enables basing the routing decisions on the most current system status 

information helps to improve the dynamic adjustability of current schedule. 

 

Extensive discussion for simulation based real-time scheduling can be found in 

review studies of Vieira et. al., (2003); Yoon and Shen (2006); and Ouelhadj and 

Petrovic (2007). 

 

2.3.1.2 Artificial Intelligence-Based Approaches 

 

Alternatively, some researchers have paid attention to AI-based real-time 

scheduling approaches. Their basic motivation is that the selection of the best DPR at 

each rescheduling point can be performed more quickly through some AI techniques, 

e.g. neural networks, expert systems, knowledge-based, case based reasoning and 

fuzzy logic (Shi-jin et al., 2007). AI-based approaches also require some simulation 

runs of the manufacturing system at the outset to gain expertise about DPRs and the 

system behavior. This expertise is then used to determine the best DPR for each 

system state.  
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2.3.1.2.1 Knowledge-Based and Machine Learning Approaches. Up to date, many 

researches have developed numerous knowledge-based scheduling approaches (e.g. 

Alexander, 1985; Bullers et al., 1980; Kempf et al., 1991; Park et al., 1996; Zhang 

and Chen, 1999). Chandra and Talavage (1991) developed an intelligent part 

dispatching strategy for FMSs. A decision rule based reasoning algorithm is 

proposed which takes into account the current state and trends of the system. The 

performance of the proposed scheduler is compared with those of the DPRs. 

Simulation based experimental results show that significant improvements can be 

achieved by selecting dispatching rules via simple reasoning algorithms. 

 

Pierreval (1992) proposed an expert system method which dynamically selects a 

combination of DPR considering the production objectives. A numerical example is 

also provided for a simplified flow shop. The results illustrate that the proposed 

approach is capable of achieving better results than popular DPRs through 

dynamically altered DPRs. In another study, Pierreval and Mebarki (1997) developed 

a rule based scheduling strategy based on a dynamic selection of pre-determined 

DPRs. The proposed strategy selects the DPRs considering the prevailing states of 

the system in order to meet the primary objective and maintain good results on a 

secondary objective. The results show that the proposed scheduling strategy 

improves the mean tardiness and conditional mean tardiness criteria significantly 

compared to classical DPRs.      

 

Toni et al. (1996) developed a production scheduler based on a rule based experts 

system for solving the lot production scheduling problems. The proposed scheduler 

provides superior performance over single pass DPRs approach. However, it has the 

disadvantage of high computational time and requires the complete monitoring 

storing houses and work center backlogs. 

 

Kunnathar et al. (2004) proposed a rule based expert system for dynamic 

scheduling of job shops. It is compared with other classical DPRs strategies. Results 

show that the proposed approach gives good results in terms of mean flow time, 

mean tardiness and percentage of tardy job objectives.     
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Shnits and Sinreich (2006) developed a two-stage multi-criteria methodology for 

FMSs. The first stage deals with the selection of a dominant decision criterion and a 

relevant scheduling rule set through a rule-based algorithm. In the second stage, the 

best scheduling rule, which is expected to advance the selected criteria more than 

others, is selected through a look ahead multi-pass simulation. The proposed control 

methodology is compared to a selected group of scheduling policies using data 

envelopment analysis. The results show that the proposed approach provides superior 

results within reasonable computational time.   

 

Inductive learning (e.g. Shaw et al., 1992; Piramuthu et al, 1994;  Piramuthu et al., 

2000; Priore et al., 2006) and reinforcement learning (e.g. Kim and Lee, 1996; 

Zomaya et al., 1998; Agarwal et al., 2006) are adaptive knowledge-based dynamic 

scheduling systems. For example, Piramuthu et. al. (2000) proposed an adaptive 

scheduler for dynamic manufacturing systems. The rule selection logic is performed 

through the knowledge base generated by an inductive learning algorithm using a set 

of training examples. In the proposed knowledge based system, a genetic algorithm 

is also used to generate a knowledge base for sequencing applications. The major 

drawback of these systems is that solving complex problems is a difficult task 

because definitions of parameters and states are more complicated. 

 

2.3.1.2.2 Artificial Neural Network Based Approaches. Because of their flexibility 

and adaptability properties, many researches developed real-time scheduling 

methodologies based on artificial neural networks (ANNs) to schedule complex 

manufacturing systems (Arzi and Iaroslavitz, 1999; Chen, Huang, and Centeno, 

1999; Chen and Muraki, 1997; Li, Chen, and Lin, 2003). Generally, ANNs are used 

for two main purposes in the real-time scheduling literature.  Firstly, in most of the 

studies, ANNs are used for meta-modeling purposes to determine the performance of 

alternative schedules in each rescheduling point. Secondly, the scheduling is 

conducted through an ANN model. It is time consuming to obtain optimum schedule 

through the ANN and can be infeasible for large size and complex problems. 

Therefore, the use of ANNs for function approximation, pattern recognition, and 
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clustering is more powerful than for optimization of stochastic and dynamic 

manufacturing systems.  

 

Sim et al. (1994) developed an expert neural network, which integrates an expert 

system and a neural network, for dynamic scheduling of the job shop problem. The 

performance of the ANN is improved via the expert system developed by allowing 

the sub-networks to be trained separately. Each of the sub-networks corresponds to 

an activation environment represented by an arrival rate of jobs and the scheduling 

criterion. Results of the experiments illustrate that the proposed approach improves 

the performance of the ANN. 

 

Cho and Wysk (1993) developed a robust adaptive scheduler to support the 

intelligent work center controller. A BPNN was developed to generate several part 

dispatching strategies based on the workstation status. The generated strategies are 

then evaluated via the multi pass simulator and the best one which maximizes the 

system efficiency is selected. The results show that the scheduler provides a suitable 

support for scheduling of work centers. Son and Souza (1997) and Sun and Yih 

(1996) developed simulation and ANN based decision support systems for 

scheduling of work cells similar to the work of Wu and Wysk (1993). 

 

In another study, Geneste and Garbot (1997) developed two approaches, fuzzy 

inference system and BPNN. The experimental results show that the fuzzy inference 

system does not provide significant improvements. The NN model gives the weight 

of each candidate DPR with respect to the objectives of the workshop manager and 

characteristics of the work shop. The model gives a better solution than the fuzzy 

inference. 

 

Above studies use ANN models to rank appropriate scheduling rules. Different 

from the abovementioned approaches, Arzi and Iaroslavitz (1999) proposed an ANN 

based production control system for a flexible manufacturing cell. The proposed 

control system used the multi layer ANN to predict an FMS’s performance. The 

scheduling rule with the best predicted performance measure value is selected for the 
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next scheduling period at each rescheduling point. The proposed approach is 

compared with a decision tree based production control system and single pass 

scheduling approach. Results show that the proposed control system performed 

significantly better than other approaches compared. 

 

Priroe et al. (2006) proposed three different types of machine learning algorithms 

for dynamic scheduling of FMSs. They are case based reasoning, C.45 inductive 

learning and BPNN. The BPNN approach is similar to the one in Arzi and Iaroslavitz 

(1999). Simulation results indicate that proposed approaches provide significant 

improvements over existing DPRs.  

 

Multi layer BPNNs are used to develop decision support systems for real-time 

scheduling of manufacturing systems in the above studies. Different from these 

studies, Min et al. (1998) utilized competitive neural networks with Kohonen 

learning rule for real-time scheduling of FMSs. The developed NN model is used to 

classify the candidate DPRs that have similar overall performance. The proposed 

approach combined the competitive ANN and search algorithm to meet the multiple 

objectives given by the FMS operator. The competitive network generates the next 

decision rules based on the current decision rules, a current system status and 

performance measure. The simulation results indicate that the FMS scheduler is able 

to satisfy multiple objectives given by the operator. In their later work, Min and Yih 

(2003) proposed the same multi-objective scheduler to select dispatching rules for 

both machines and automated material handling systems, and to obtain the desired 

performance measures at the end of short production intervals for a semiconductor 

wafer fabrication system. 

 

Another approach for real-time scheduling is a hybrid approach that integrates 

many AI techniques. Rabelo et al. (1993) developed a scheme which integrates 

modular ANNs, parallel Monte-Carlo simulation, genetic algorithms and machine 

learning for scheduling of FMSs. Holter et al. (1995) developed an intelligent 

manufacturing controller which integrates neural networks and genetic algorithms for 

the single machine problem. Kim et al (1998) developed a multiple objective FMS 
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scheduler that integrates inductive learning, competitive neural networks and 

simulation. Although the hybrid approaches improve the scheduler performance, the 

computational effort and time are major drawbacks of such approaches, especially in 

the real-time scheduling of complex and large size manufacturing systems. 

 
Detailed discussion of ANN based scheduling approaches can be found in 

Sabuncuoglu (1998) and Akyol and Bayhan (2007). 

 

In recent years, agent based approaches to dynamic manufacturing scheduling 

have gained increasing attention (Shen, 2002; Xiang and Lee, 2007). There is a 

substantial evidence that multi-agent systems are one of the most promising 

approaches in building complex, robust, and cost-effective next-generation 

manufacturing scheduling systems because of their autonomous, distributed and 

dynamic nature, and robustness against failures (Parunak, 1996, 2000; Shen et al., 

2001; Brennan and Norrie, 2001; Xiang and Lee, 2007). Recently, Xiang and Lee 

(2007) developed an efficient agent-based dynamic scheduling based on the ant 

colony intelligence for real-world manufacturing systems. 

 

2.3.1.2.3 Scheduling Through the Fuzzy Approach. Fuzzy set theory-based 

scheduling models have been developed in modeling and solving different 

scheduling problems in mainly different ways. The following lists some of the 

scheduling problems solved through the fuzzy approach: 

 

• Such uncertain parameters as processing times and due dates are modeled 

by fuzzy numbers to yield their fuzzy counterparts, i.e. fuzzy processing 

times and due dates. In such problems, the solution is obtained through 

fuzzy arithmetic operations (Petrovic et al., 2007). 

 

• Fuzzy inference engines, i.e., fuzzy rules, are used to build aggregated 

dispatching rules so that multiple performance measures can be taken into 

account simultaneously (Srinoi, 2006). 
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• Fuzzy sets have been used to represent flexible constraints, such as release 

dates or due dates (Petrovic et al., 2007). 

 

• Fuzzy logic is used to select only the most appropriate dispatching rule 

from several candidates (Srinoi, 2006). 

 

• Fuzzy decision concept (Zadeh, 1970; Yager, 1978) is used to combine a 

set of heuristic rules in a single fuzzy dispatching criterion. The routing 

alternative to be selected or the part to be processed next is determined 

through the fuzzy dispatching criterion developed. 

 

The use of fuzzy sets to represent imprecise nature of parameters or flexible 

constraints is beyond the scope of this thesis. The interested reader can refer to the 

works of Guiffrida and Nagi (1998), and Chan and Chan (2004), which review the 

application of fuzzy set theory in solving scheduling problems. Therefore, this 

review focuses on the use of fuzzy sets in multi-criteria and dynamic scheduling 

problems. 

 

Some researchers introduce fuzzy-logic based multi-criteria decision making 

methods to rank the most suitable dispatching rule or the most satisfactory schedules 

based on a decision maker’s preferences. Kazeroni et al. (1997) evaluate different 

combinations of dispatching rules and machine selection rules by using a fuzzy 

multi-criteria decision making technique for an FMS. The alternative combinations 

are evaluated based on six performance measures: net profit, lead time, makespan, 

machine utilization, delay in input buffer, and WIP in input buffer. To obtain the 

performances of dispatching and machine selection rule combinations, a simulation 

model is run for each combination. To determine how an alternative satisfies an 

objective, a membership function is developed for each performance measure. Then 

the priority of each alternative is determined using fuzzy decision concept of Yager 

(1978). The weights of performance measure are determined via analytical hierarchy 

process (AHP). Finally, the alternative which has the highest priority is selected. 

Chan et al. (2002) also use the same methodology to evaluate the different 
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combinations of dispatching rules and machine selection rules. However, in this 

study, they use a different multi-criteria decision making method to select the 

scheduling rules, such as simple additive weighting, max-max, and max-min. 

 

Petroni and Rizzi (2002) present a fuzzy logic based group decision making tool 

to rank flow shop dispatching rules under multiple performance criteria. In this 

study, five alternative dispatching rules are evaluated by three decision makers in 

terms of three different performance measures through linguistic variables, such as 

worst, poor, fair, good and best. The relative weights of the performance measures 

are also determined by decision makers by linguistically assessing the importance of 

the performance measures. Finally, the fuzzy suitability index for each dispatching 

rule is obtained by means of a weighted average of fuzzified rating assigned by the 

decision makers. In order to rank the alternatives, fuzzy suitability indexes are 

defuzzified by Yager’s formula (1981). 

 

Lee et al. (2002) use some linguistic values to evaluate each criterion and to 

represent its relative weight for the schedules of a multi-criteria environment. The 

performance of a given schedule is determined by the fuzzy suitability index 

calculated by fuzzy arithmetic. Because of the combinatory property of the 

scheduling problem, a heuristic approach, the tabu search, is involved to find the 

most satisfactory schedule. It should be noted that while the abovementioned 

methods use fuzzy logic to rank dynamic dispatching rule pairs, this study aims to 

find a static schedule under multiple criteria. 

 

As mentioned before, some researchers apply fuzzy rule-based approaches to 

schedule manufacturing systems, which are continuously changing, under multiple 

performance criteria. Various forms of fuzzy rule-based approaches are developed to 

assist different scheduling problems. Some of them are used to determine priority of 

the parts waiting to be processed, while the others are used to select the most 

appropriate dispatching rule set based on the changing states. 
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Hintz and Zimmermann (1989) use fuzzy logic to control the releasing of parts 

into the systems and the scheduling of parts and tools in FMSs by aggregating 

dispatching rules. Results show that the proposed approach provides a good 

compromise solution of the three conflicting objectives. 

 

Grabot and Geneste (1994) combine several dispatching rules using fuzzy logic so 

as to obtain a compromise solution between job lateness, tardiness, and flow time 

performance measures. A number of fuzzy rules are developed to build aggregated 

dispatching rules. The results show that combining dispatching rules provides 

promising results, instead of using traditional rules that are only able to consider one 

criterion at a time. Custodio et al. (1994) propose a fuzzy decision system to select 

part routes, to sequence the parts in the queue and to control the production rate. 

 

Noumann and Gu (1997) proposed a fuzzy dispatching method in which the fuzzy 

rule base includes different scheduling aspects such as due dates and inventory levels 

as well as control aspects such as buffer levels and part process plans. There are two 

performance measures of interest; minimizing late parts and minimizing buffer 

levels. The proposed methodology contains an optimization mechanism for the 

weights. The results of this study indicate that the fuzzy dispatching method gives an 

improvement over certain existing dispatching rules. 

 

Yu et al. (1999) developed a multi-criteria FMS scheduling approach based on 

fuzzy inference systems. In the proposed approach, a fuzzy inference system is used 

to determine the current preference levels of the objectives considering changes of 

the production environment. A multi-criteria scheduling decision is then performed, 

using the partitioned combination of the preference levels. The results of this study 

demonstrate the applicability of the proposed approach. 

 

Tedford and Lowe (1999) present a scheduling system for flexible manufacturing 

systems which incorporates an adaptive fuzzy logic system. Task index and priority 

index for each task when moving from one stage to another and a resource index of 

each machine at the end of each week are determined using fuzzy rules. The tasks are 
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then backward scheduled to the selected machine considering these indexes. The 

results indicate that the proposed system performs better than traditional dispatching 

rules. 

 

Subramaniam et al. (2000) developed a fuzzy scheduling method that selects the 

appropriate dispatching rules from a list of candidate rules based on the prevailing 

conditions in the job shop. The selection of the dispatching rules is performed by a 

fuzzy inference system that evaluates the appropriateness of the rules considering 

relative work length, relative work remaining and relative work remaining in the next 

machine queue performance criteria. The results show that the fuzzy scheduler 

provides better performance than common dispatching rules. 

 

Lee et al. (2001) present a fuzzy adaptive scheduling method for an FMS part 

dispatching problem. An automated knowledge acquisition system is also developed 

to obtain effective scheduling rules for the FMS. A number of samples of 

representative state vectors are used in the knowledge acquisition phase. Distributed 

fuzzy sets are then employed in calculating the suitability index of the rules for the 

selected state vectors. Finally, the most appropriate rule is applied to the system. 

Simulation results show that the proposed method produces productive and robust 

schedules than common dispatching rules. 

 

Chan et al. (2002 and 2003) describe a real-time fuzzy expert system to determine 

routes of parts and to select the part to be processed next in an FMS. The authors use 

fuzzy logic in two different ways. In the first case, following weighted additive 

approach; different heuristic rules about route selection are combined into a single 

fuzzy priority rule. The weights of the rules are determined by the AHP. Then the 

route with the highest priority is selected for the part to be routed. In the second case, 

the part to be processed next is determined using a fuzzy inference system that 

combines shortest imminent operation time and slack per remaining number of 

operation rules. The proposed approach is compared with a number of combinations 

of traditional dispatching rules and route selection rules. The results of this study 

show that the proposed approach is a promising alternative. 
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Fanti et al. (1998) used the Yager’s weighted max-min approach to determine the 

priority of the jobs waiting to be processed. The proposed approach combines the 

SPT, EDD and LNQ rules to obtain a single fuzzy priority. The authors show that the 

weights of the rules strongly affect the performance of the proposed approach. 

Therefore, a genetic algorithm based search procedure is also proposed to obtain the 

best weight combination. The numerical experiments demonstrate the effectiveness 

of the proposed approach.     

 

Canbolat and Gundogar (2004) proposed a fuzzy logic-based scheduling system 

for job shops which combines the SPT, CR and next machine’s load rules to 

determine fuzzy priority of the job to be processed next. Fuzzy priority values of the 

jobs are calculated through a fuzzy inference system. The job with the highest 

priority is selected as the part to be processed next. The performance of the proposed 

approach is compared with those of traditional dispatching rules via simulation. The 

results indicate that the proposed approach provides significant improvements on 

mean flow time, mean tardiness, work in process and throughput simultaneously. 

 

Bilkay et al. (2004) proposed a two-stage fuzzy logic based algorithm for the job 

shop scheduling. The first stage deals with assigning priorities to part types to be 

processed considering the batch size, due date, total processing time and tool slots 

needed. The fuzzy priorities of the job types are determined using a Sugeno type 

fuzzy inference system. In the second stage, operation-machine allocation and 

scheduling is performed using another fuzzy inference system. A re-scheduling 

algorithm for machine failure is also proposed. The results of experiments show that 

the proposed approach improves the system efficiency. 

 

Another fuzzy logic based approach that selects machines and assigns jobs to the 

selected machines is developed for FMSs by Srinoi et al. (2006). In order to perform 

scheduling, a fuzzy inference system is developed with four fuzzy input variables: 

machine allocated processing time, machine priority, due date priority and setup time 

priority, and one output fuzzy variable; the job priority. The proposed approach is 
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compared with some other methods reported in the literature in terms of average 

machine utilization, meeting due dates, setup times, work in process and mean flow 

times. The results of the experiments show that the proposed approach gives better 

performance in most performance measures. 

 

Caprihan et al. (2006) developed a fuzzy logic based dispatching strategy to 

determine routes of jobs dynamically for an FMS. In the design of the proposed 

strategy, a fuzzy rule base is designed by combining two known dispatching rules: 

WINQ and NNIQ. Different from other studies in the literature, it is assumed that 

information delays exist in the FMS considered. Although these delays impact 

system performance adversely, the results show that the proposed approach performs 

better than WINQ and NNIQ rules to cope with the information delays. 

 

Petrovic et al. (2006) present a fuzzy logic based decision support system for the 

parallel machine scheduling/rescheduling problem. A predictive schedule that can 

absorb uncertain disruptions is generated in the first step. In the proposed approach, 

two types of decisions are also made by Sugeno type fuzzy inference engines: (i) 

when to schedule; (ii) which rescheduling method to use. The results show that the 

predictive schedule is effective, and the fuzzy inference engines perform well in 

rescheduling. 

 

2.4 Gaps in the Literature and the Motivation of the Proposed Research 

 

As evidenced by the current research on DRC literature, the significance of 

worker scheduling on shop floor performance is widely accepted. Overall, there exist 

two viewpoints in the DRC literature: 

 

• When to transfer workers between work centers, and the next work centers 

they are transferred to are important scheduling decisions as well as job 

dispatching. Interactions between several dispatching and worker 

assignment rules are also important. 
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• There is a strong need for a systematic approach to scheduling of DRC 

systems, especially for dynamically identifying appropriate “when” and 

“where” rules based on current shop floor conditions. 

 

A synthesis of the literature review presented reveals that there are five important 

and emerging issues in the current DRC literature, which leads to the several 

research questions related to the gaps in the literature: 

 

i. Dynamic selection of worker assignment rules: There are numerous studies that 

propose different worker assignment rules, analyze their performance and select the 

best one via simulation according to the performance criterion selected. Almost all of 

the papers surveyed stated that worker assignment rules have a significant bearing on 

the performance of a DRC system. In such environments, poor decision making 

becomes more severe. The literature also pointed out that, similar to job DPRs in 

machine-only constrained manufacturing systems, efficiency of worker assignment 

rules highly depends on the performance criteria of interest and on the system 

conditions. However, just as job DPRs, there is no worker assignment rule globally 

better than all the others. When the operating conditions or the performance criteria 

are changed, the worker assignment rules currently selected can become ineffective 

with regard to the new conditions. Therefore, dynamic selection of worker 

assignment rules is required to improve overall system performance. However, to the 

best of the author’s knowledge, only one study has been devoted on how to 

dynamically select the worker assignment rules based on the changing states. This 

fact leads to following research question: 

 

1) How can we develop effective real-time control systems which can help 

the shop manager determine the appropriate worker assignment rule set 

based on current system states? 

 

ii. Multi-criteria nature of the DRC scheduling problem: The literature review 

reveals that numerous researchers have paid considerable attention to evaluating 

different dispatching rule and worker assignment rule combinations in DRC systems. 
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Although all these applications are inherently multi-criteria decision making 

problems, the literature review reveals that there is no sufficient effort on multi-

criteria scheduling of DRC systems. However, several, and possibly conflicting, 

criteria might come about in the decision process, which makes it difficult to 

determine the right criterion. In other words, the decision maker aims to find a 

schedule that meets each criterion or objective of the system at some level. This fact 

leads to following research questions: 

 

2) How can we extent the proposed real-time scheduling methodology so that 

it can deal with multiple criteria? 

3) How such multi-criteria aggregation schemes as PROMETHEE and FIS 

can be used in multi-criteria scheduling of DRC systems? 

     

iii. Artificial intelligence in DRC scheduling: It is clear from the literature review that 

most researches on DRC scheduling are based on discrete event simulation. 

Although, in recent years, numerous AI techniques have been successfully applied to 

other scheduling problems, little research has been devoted to AI techniques, such as 

ANN and inductive learning, for DRC scheduling. Consequently, the research 

questions are: 

 

4) How can ANNs be used in modeling DRC manufacturing systems? 

5) How can they help decision makers improve DRC system performance? 

 

iv. The use of traditional worker assignment rules: Recall that this research proposes 

three multi-criteria real-time scheduling methodologies for DRC manufacturing 

systems. The first two methodologies focus on the dynamic selection of appropriate 

set of dispatching rules (DPRs), worker assignment rules and routing decisions of 

jobs with regard to multiple performance criteria. Although the proposed approaches, 

which change the scheduling rules according to state changes and multiple 

performance measures, achieve better results than each one of the competing rule set, 

their performances are subject to the performance of the dispatching rule sets. To 

cope with these drawbacks, various approaches based on fuzzy logic have been 
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presented for machine only constrained systems. Most of them deal with the 

scheduling problem of FMS type production systems and focus on part dispatching 

and routing selection. Furthermore, to the best of the author’s knowledge, there is no 

effort on the use of fuzzy sets in DRC scheduling. A fuzzy-based scheduling 

approach has not yet been proposed for DRC manufacturing systems. Considering 

this fact and the gaps in the literature, the related research questions are: 

 

6) How can we develop a fuzzy-based real-time scheduling system for DRC 

systems? 

7) How can the traditional “where” rules that consider only one criterion at a 

time be combined using fuzzy arithmetic? 

8) How can be traditional “when” rules improved through fuzzy reasoning? 

 

Besides the DRC literature, this chapter also provided a review on the real-time 

scheduling literature. In the light of this review, the following important and 

emerging issues in the current real-time scheduling literature should be addressed: 

 

v. Multi-criteria real-time scheduling. In the related literature, many single-

performance measures have been studied. Although some of the proposed 

approaches are able to cope with the bi-criteria scheduling problem, little research 

has been devoted on the use of multi-criteria decision making techniques in real-time 

scheduling approaches. In recent years, a well known multi-criteria decision making 

technique, PROMETHEE, have been utilized in a variety of real-life decision making 

problems. However, to the best of the author’s knowledge, PROMETHEE has not 

yet been applied in scheduling problems. These facts raise the same research 

question as: 

 

9) How can we develop a PROMETHEE based real-time scheduling 

approach in DRC systems? 

 

vi. Fuzzy real-time control approaches. The fuzzy real-time approaches in the 

literature include a number of variables that directly affect the performance of these 
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approaches, e.g. the weights and membership functions. Although some of them 

involve optimization algorithms to optimize these parameters, to the best of the 

author’s knowledge, none of them use an adaptive control scheme to update these 

parameters during the scheduling period in order to achieve a decision maker’s 

changing aspiration levels and to adapt to the current shop conditions. Considering 

this fact and the gap in the literature, the last research question of interest is: 

 

10) How can we extend the proposed fuzzy real-time scheduling approach so 

that it can also satisfy a decision maker’s changing preferences or maintain 

the current performance considering the prevailing shop conditions?
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CHAPTER THREE 

ARTIFICIAL INTELLIGENCE 

 

3.1 Introduction 
 

The growth in competition in advanced manufacturing industry, and the additional 

management challenges it brings, has motivated both practitioner and academic 

interest on the development of powerful techniques and technologies that can help to 

improve lead time performance, flexibility and responsiveness of companies. In 

today’s highly competitive, global operating environment, it is impossible to achieve 

these capabilities without intelligent manufacturing systems which provide real-time 

control of manufacturing processes. One of the features of intelligent systems is that 

they have real-time built-in capability to communicate with system’s environment, 

perceive changes and adapt to these changes (Monfared and Yang, 2005). 

 

In the past decade, increasing competitive pressure, the rapid pace of 

technological change and the recent trend on responsive manufacturing philosophy 

are motivating the firms to focus on artificial intelligence applications in 

manufacturing. Artificial intelligence (AI) is the generic name given to field of 

computer science dedicated to development of programs that attempt to replicate 

human intelligence (Fonseca and Navaresse, 2002). AI-based techniques have 

already being used in intelligent manufacturing for more than twenty years. 

 

In the literature, many definitions of AI exit. Some definitions of AI are listed 

below (Jang, et al., 1996): 

 

• “AI is the study of agents that exist in an environment, and perceive 

and act.” (Russell and Norving, 1995) 

 

• “AI is the art of making computers do smart things.” (Waldrop, 1987) 
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• “AI is programming style, where programs operate on data according 

to rules in order to accomplish goals.” (Taylor, 1988) 

 

• “AI is the activity providing such machines as computers with the 

ability to display behavior that would be regarded as intelligent if it were 

observed in humans.” (McLeod, 1979) 

 

Artificial neural networks (ANNs) and fuzzy logic (FL) are parts of the AI 

techniques that have gained an important role in solving problems with extreme 

difficulty or unknown analytical solutions (Fonseca and Navaresse, 2002). Lin and 

Lee (1996) define FL and ANNs as follows: 

 

“FL is based on the way of the brain deals with inexact information, while ANNs 

are modeled after the physical structure of the brain.”  

 

They also listed the similarities and differences between FL and ANNs (Lin and 

Lee, 1996): 

 

• Both of them are numerical model-free estimators and dynamical systems, 

• They share the common ability to improve the intelligence of systems 

working in uncertain, imprecise, and noisy environments,  

• Both ANNs and FL have been shown to have capability of modeling 

complex nonlinear processes to arbitrary degrees of accuracy, 

• While fuzzy systems combine fuzzy sets with fuzzy rules to produce 

overall complex nonlinear behavior, ANNs are trainable dynamical 

systems whose learning, noise-tolerance and generalization abilities grow 

out their connectionist structures, their dynamics and their distributed data 

representation. 

 

Over the years, many AI techniques have been developed for scheduling of 

manufacturing systems. Among them, ANNs and FL play important roles. 
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As mentioned in Chapter 1, the aim of this dissertation is to develop novel real-

time scheduling methodologies for DRC manufacturing systems. These 

methodologies include simulation, artificial neural networks, fuzzy sets and fuzzy 

inference systems. Therefore, this chapter is devoted to explain them to build the 

proposed methodologies in this research. A general overview of how ANNs and 

fuzzy sets are used in solving scheduling problems and what makes them appropriate 

tools for solving DRC scheduling problems are also given in this chapter. 

 

This chapter is further organized as follows. Section 3.2 is devoted to explain 

artificial neural networks. Section 3.3 presents brief explanation of fuzzy sets and 

fuzzy inference systems.  

   

3.2 Brief Overview of ANNs 
 

Artificial neural networks (ANNs) are simplified mathematical models of 

theorized mind and brain (Sabuncuoglu, 1998). In its most general form, an ANN 

can model the way in which the brain performs a particular function. ANNs simulate 

neurons interconnected in a similar manner as the human brain’s neurons (Fonseca 

et. al., 2003). 

 

In the pioneering work on neurocomputing, McCulloch and Pitts (1943) presented 

the fist mathematical model of a single biological neuron. After McCulloch and Pitts 

(1943)’s works, many studies have been presented to show the capabilities of neural 

networks. Since ANNs can successfully understand complex relationships between 

the input and output variables that are difficult or impossible to analytically relate, 

ANNs are preferred in many real-world problems, such as pattern matching and 

classification, function approximation, optimization, vector quantization, and data 

clustering (Lin & Lee, 1996; Potvin & Smith, 2003). The popularity of ANNs has 

been influenced by the numerous features offered by ANNs. These features can be 

identified as (Lee, 1997): 
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• Approximate nonlinear functions. 

• Little process understanding of the system required. 

• Ability to continually learn and adapt. 

• Robust (fault tolerant model). 

• Rapid computation. 

 

On the other hand, the main disadvantage is the lack of self-explanation 

(Metaxiotis and Psarras, 2003). Due to the high degree of interconnections among 

the neurons in a network, it will also require a considerable amount of time for 

training in the network (Sim et.al., 1994).  

 

During the late 1980s, the research on neural networks in manufacturing grew 

fast. Increasing competitive pressure, the rapid pace of technological change and the 

recent trend on just-in-time (JIT) manufacturing philosophy motivate firms to be 

more and more flexible in product design, process planning, scheduling and process 

control. It is clear that this may be achieved by building intelligent systems that can 

adapt to changes in their environment (Huang and Zhang, 1994). Today, ANNs is 

one of the most emerging research areas in AI to achieve these objectives. Different 

types of ANNs have been developed and applied in almost all area in manufacturing. 

Since this study presents ANN based scheduling approaches, a general overview of 

how ANNs are used in solving scheduling problems and what makes them 

appropriate tools for solving these problems are given in the following subsections. 

  
3.2.1 Basic characteristics and classification of ANN models 

 

The fundamental concept of ANNs is the structure of the information processing 

system. Basic components of these networks are the neurons connected to other 

neurons by means of connective links, each with associated weight. Every neuron 

applies an input, activation and an output function to its net input (sum of weighted 

input signals) to calculate its output. The combination of different functions 

determines the neuron model (Corsten and May, 1996). After receiving a proper 

training, ANNs are capable of achieving desired response to new inputs (Fonseca and 
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Navaresse, 2002). There are three basic elements of an ANN model, which is 

illustrated in Figure 3.1 (Haykin, 1999): 

 

• “A set of connecting links or synapses, each characteristic by a weight of 

its own. Specially, an input signal j connected to neuron k is multiplied by 

the synaptic weight wkj,  

• An adder, which sums the input signals weighted by the respective 

synapses of the neuron, and 

• An activation function, which limits the permissible amplitude range of 

the output signal some finite value. It defines the output of the neuron in 

terms of the induced local field, which is formed by the linear combiner 

output uk, and the bias bk. This externally applied bias is used in the 

training of the network.”  
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Figure 3.1 Non-linear model of a neuron (Haykin, 1999) 

 
The activation function, denoted by )(⋅ϕ , defines the output of an activation value 

of a neuron through its net input (Lin and Lee, 1996).  There are many different types 

of activation functions. Selection of the activation function depends on the particular 

problem considered (Ham and Kostanic, 2000). To explain these functions is beyond 

the scope of this thesis. A comprehensive explanation can be found in Haykin 

(1994). 
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Different classification schemes can be presented for ANNs. For example, Ham and 

Kostanic (2000) indicated that neural networks can be classified according to how 

they learn or type of training that is required, and the various applications they 

perform, those that use activation functions versus basis functions, whether they are 

recurrent or non-recurrent, and the type of training inputs.  

 

Haykin (1994) stated that ANNs may be classified according to network 

architectures. Since ANNs have a large number of highly interconnected processing 

elements that usually operate in parallel and are configured in regular architectures, 

an ANN can be specified by the structure that organizes these processing elements 

and the connection geometry among them, such as single-layer and multi-layer 

networks (Lin and Lee, 1996). Figure 3.2 illustrates two different network structure 

types. 
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Figure 3.2 a) Single layer feedforward network b) Multi layer feedforward network (Lin and 

Lee, 1996, p.211) 

 

Since no processing element output is an input to a node in the same layer or in a 

preceding layer, this type of networks are feedforward networks. The single layer 

and multi layer networks are feedforward networks (Lin and Lee, 1996). The other 

type of NNs is recurrent networks. It distinguishes itself from a feedforward neural 

network in that it has at least one feedback loop (Haykin, 1994). One of the 

consequences of these connections is that dynamical behaviors can be produced with 

recurrent networks (Lin and Lee, 1996).  
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The other important component in identifying an ANN is the learning rules. A 

learning rule is concerned with updating the connecting weights in an ANN.  In 

general, learning rules are classified into three categories: supervised learning, 

unsupervised learning, and reinforcement learning (Haykin, 1994).  

 

The developments of new neural network architectures have motivated the 

researchers to focus on the ANN applications on the scheduling and combinatorial 

optimization problems. These studies can be classified according to various 

classification factors such as processing complexity and scheduling criteria 

(Sabuncuoglu, 1996). Sabuncuoglu (1996) classified neural network types used in 

scheduling problems as follows: 

 

•  Multi-layer perceptrons, 

•  Hopfield network and other optimizing networks,  

•  Competitive networks,  
 

While Hopfield networks are used for solving combinatorial optimization 

problems, competitive networks are used for clustering data in manufacturing 

applications. Multi layered, feedforward, non-linear network models are commonly 

referred to as multilayer perceptrons (MLPs) (Fonseca et al., 2003). 

 

In the scheduling literature, the backpropagation based multi-layer network 

(BPNN) models are the most popular neural network models because of their ability 

to learn more complex mappings and strong mathematical foundation. Recall from 

Chapter 1 that this research presents three real-time scheduling approaches which 

include BPNN models. Therefore, in the next section, a detailed explanation of the 

backpropagation learning algorithm is given. 

 

3.2.2 Backpropagation ANN models 

 

A supervised learning neural network basically approximates the values of k 

dependent output variables as a function of n independent input variables, on the 
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basis of samples of the system behavior. It can be seen as an extended version of a 

multi-variable non-linear regression (Arzi and Iaroslavitz, 1999). BPNN, which is 

first introduced by Werbos (Werbos, 1974), is most widely used learning algorithm 

in neural networks. After the work of Werbos (1974), some other researchers have 

rediscovered this method several times, such as Parker (1982), LeCun (1985) and 

Rumelhart et al (1986). 

 

BPNNs have several advantages (Cho and Wysk, 1993): (i) They have an 

approximate answering capability even if the input data are quite noisy and 

incomplete. (ii) They can easily model complex and nonlinear relationships between 

inputs and outputs. (iii) Their response times are fast. (iv) Once they are trained, they 

yield satisfactory results even in the case of large scaling problem. 

 

The backpropagation algorithm is based on a “Least Mean Squares Approach” 

(Haykin, 1994). The training algorithm tries to minimize the error function by an 

iterative gradient algorithm. The error backpropagation process consists of two 

phases through the different layers of the network (Priore, et al, 2006): a forward 

pass and a backward pass. Haykin (1994) explains the basic steps of the BPNN 

learning as follows: 

 

 The error signal at the output neuron k at iteration n is calculated by Equation 

(3.1). 

 

)()()( nyndne kkk −=  (3.1) 

 

The value of squared error (SEk) for neuron k is defined by Equation 3.2.  

 

)(
2
1)( 2 nenSE kk =  (3.2) 

 

The sum of squared errors of the network can be defined by Equation (3.3). 
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∑
∈

=
Ck

k nen )(
2
1)( 2ξ  (3.3) 

 

C in Equation 3.3 includes all neurons in the output layer of the network. 

 
Let N denote the total number of patterns contained in the training set. The 

average squared error is obtained by summing )(nξ over n and then normalizing it 

with respect to N as in Equation 3.4.  

 

∑
=

=
N

n
av n

N 1

)(1 ξξ  (3.4) 

 

The weight adjustments are made appropriate to the respective errors computed 

for each pattern presented to the network. The net internal activity level vk(n) 

produced at the input of the nonlinearity associated with neuron k is calculated by 

Equation (3.5). 

 

∑
=

=
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i
kkik nynwnv

0
)()()(  (3.5) 

 

where p is the total number of inputs applied to neuron k. The synaptic weight 

wk0(n) equals the threshold kφ applied to neuron k. Hence the function signal yk(n) 

appearing at the output of neuron k at iteration n is defined by Equation (3.6). 

 

))(()( k nvny kk ϕ=  (3.6) 

 

Similar to the LMS algorithm, the backpropagation algorithm applies a correction 

)(nwkiΔ  to the synaptic weight )(nwki , which is proportional to the instantaneous 

gradient calculated by equation (3.7). 
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Hence, the use of Equation (3.7) yields 
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The correction )(nwkiΔ  applied to )(nwki is defined by the delta rule as follows 
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where η  is the rate of the learning parameter. Accordingly, the use of Equations 

(3.8) and (3.9) provides )()()( nynnw kkki ηδ−=Δ , where the local gradient )(nkδ is 

itself defined by 
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The computation of δ for each neuron necessitates knowledge of the derivative of 

the activation function )(⋅ϕ  associated with that neuron. It is clear that the activation 

function must be continuous to take its derivative. The sigmoid function is one of the 

most commonly used continuously differentiable nonlinear activation functions in 

MLPs. With respect to this activation function, )(nkϕ is calculated by: 
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The steps of the training algorithm are then given in Table 3.1. 
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Table 3.1 Backpropagation learning algorithms (Lin and Lee, 1996) 

Backpropagation learning algorithms 
Step 1. Choose η, α Є [0,1], maxξ (maximum tolerable error) .Initialize the weights to small 
random variables. 
Step2.Apply the nth input pattern to the input layer. yk(n) =xi(n) for all i where yk(n) is output of 
neuron k. 
Step 3. Propagate the signal forward through the network using )(nyk  
Step4.Compute error value and error signals )(nek for the output layer 
Step5: Propagate the errors backward to update the weights and compute error signals for the 
preceding layers. Compute theδ ’s of the network by proceeding backward, layer by layer. 

)](1)[()()( )()( nynynen kk
L

k
L

k −=δ                             for neuron k in output layer L 

)()()](1)[()( 1)1()()( nwnnynyn
j

ll
jk

l
k

l
k jk∑ ++−= δδ         for neuron k in hidden layer l 

Update the synaptic weights of the network in layer l according to delta rule 
 

)()]1()([)()1( )1()()( nynwnwnwnw l
i

l
k

l
ki

l
ki

l
ki

l
ki

−+−−+=+ ηδα  
Step6  Check whether the whole set of training data has been cycled once. If k<p, then 
k=k+1and go to step2; otherwise, go to step7. 
Step7. Check the error is acceptable If E<Emax., then terminate the training process and output 
the final weights; otherwise, avξ =0 and n=1, and initiate the new training epoch by going to 
step 2. 

 

3.3 Fuzzy Logic 
 

Besides ANNs, another way of realistically modeling a complex system is the use 

of fuzzy sets, which allow some degree of uncertainty or “fuzziness” in its 

description. Fuzzy sets, introduced by Zadeh (Zadeh, 1965), are a generalization of 

conventional set theory. Bezdek (1993) gives a simple definition as “a mathematical 

way to represent vagueness in everyday life”. Fuzzy set theory was firstly used for 

decision making by Belman and Zadeh (1970). Up to date, numerous fuzzy methods 

have been developed to solve different real-world problems. Different production 

scheduling problems have been solved using fuzzy logic based approaches. As 

mentioned in Chapter 2 in detail, numerous researchers have reported the potential of 

fuzzy logic based scheduling approaches in representing complex systems (Petrovic 

and Duenas, 2006), and in allowing simple knowledge representations of scheduling 

principles through fuzzy IF-THEN rules (Ioannidis and Tsourvelouidis, 2006). 

 

The main objective of this section is to review basic concepts of fuzzy set theory 

(FST) and fuzzy inference, which will be used in the proposed methodologies.  
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The basic definitions of fuzzy sets and fuzzy inference are given briefly in the 

following sections. 

  

3.3.1 Fuzzy sets 

 

In general, a fuzzy set is defined as follows (Sakawa, 1993, p.7): 

 

“Let X denotes a universal set. Then a fuzzy set F in X is defined as a set of 

ordered pairs { }XxxxF F ∈= |))(,( μ , where )(xFμ is called the membership 

function for the fuzzy set F. )(xFμ represents the grade of membership of x in F. 

Thus, the nearer the value of )(xFμ to unity is, the higher the grade of membership 

of x in F.” 

 

A fuzzy set F is expressed as follows (Sakawa, 1993): 

 

• When X is a finite set whose elements are x1, x2,…, xn,  

 

))}(,(),....,(,()),(,{( 2211 nFnFF xxxxxxF μμμ=  (3.12) 

 

• When X is infinite,  

 

∫= X F xxF /)(μ  (3.13) 

 

Where “ ∫ ”denote the set-theoretic “or”.  

 

Since the definition of fuzzy sets is completely different from those of classical set 

theory, basic definitions about fuzzy sets should be given for better understanding 

(Zimmerman, 1996; Terano et al., 1992): 

 

• “The support of a fuzzy set F, S(F), is the crisp set of all x∈X such that 

0)( >xFμ . 
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• A fuzzy set with a membership function that has a grade of 1 is called 

normal. In other words, A is called “normal” if and only if 1)(max =
∈

xFXx
μ . 

• A fuzzy set F is convex if 

[ ]1,0,,)},(),(min{))1(( 212121 ∈∈≥−+ λμμλλμ Xxxxxxx FFF  

• The crisp set of elements that belong to the fuzzy set F at least to the 

degree α is called the α-level set: 

})(|{ αμα ≥∈= xXxF F  

})(|{ αμα >∈= xXxF F  is called strong α-level set or strong α-cut”. 

Examples of an α - level set are illustrated in Figure 3.3. 
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Figure 3.3 Examples of α - level sets (Sakawa, 1993, p. 15) 

 

3.3.1.1 Basic Operations in Fuzzy Set Theory 

 

As known, the basic operations in classical set theory are those of intersection, 

union and complement. Fuzzy sets have also similar operations and provide a 

number of functions for aggregating two or more fuzzy sets or fuzzy relations; 

however these operations are defined using the membership functions. Consider two 

fuzzy sets A and B with membership functions μA(x) and μB(x) respectively. These 
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two fuzzy sets can be combined in different ways as follows (Sakawa, 1993; 

Zimmerman, 1996): 

 

• Intersection: The intersection of two fuzzy sets A and B is defined by the 

membership function )(xCμ of the intersection BAC ∩= as follows: 

Xxxxx BAC ∈= )},(),(min{)( μμμ , 

• Union: The union of two fuzzy sets A and B is defined by the membership 

function )(xDμ  of the union BAD ∪= as follows: 

Xxxxx BAD ∈= )},(),(max{)( μμμ , 

• Complementation: The membership function of the complement of a 

normalized fuzzy set A, denoted by A , is defined as follows: 

Xxxx AA ∈−= ),(1)( μμ . 

 

3.3.1.2 Fuzzy Numbers and Algebraic Operations 

 

A fuzzy number is a quantity whose value is imprecise. Fuzzy numbers are used 

to depict the real-world using imprecise numerical information.  A fuzzy number can 

be expressed in some membership function forms. L-R type fuzzy numbers are 

introduced by Dubois and Prade (1978) as follows (Sakawa, 1993, p.26): 

 

“A fuzzy number M is said to be an L-R fuzzy number if 
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where m is the mean value of M and α and β are left and right spreads, 

respectively, and a function L(.) is a left shape function satisfying 

(1) L(x)=L(-x) 

(2) L(0)=1 

(3) L(x) is nonincreasing on [0,∞).” 
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Symbolically, M is denoted by (m,α,β)LR . It is obvious that the different functions 

can be chosen for L(x), however the linear function is the most widely used one. A 

triangular linear fuzzy number can be expressed as ),,( βαmA = . If α−= ml  and 

β+= mu , the membership function of positive triangular fuzzy number A is defined 

as: 
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where l > 0 .  

 

Figure 3.4 illustrates a triangular membership function. 

)(~ xTμ

 
Figure 3.4 A triangular fuzzy number 

 

Since the characteristics of a fuzzy number are different from crisp numbers, the 

algebraic operations with fuzzy numbers are different from classical operations, and 

much more difficult compared with the algebraic operations of crisp numbers. 

 

Consider two L-R type fuzzy numbers M= (m,α,β)LR  and N= (n,γ,δ)LR. Dubois 

and Prade (1978) define the basic operations as follows (Zimmerman, 1996): 
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•  (m,α,β)LR ⊕ (n,γ,δ)LR = (m+n, α+γ, β+δ)LR  

• -(m,α,β)LR=(-m,β,α)LR  

• (m,α,β)LRΘ (n,γ,δ)LR = (m-n, α+δ, β+γ)LR  

• If M<0 and N>0, then 

(m,α,β)LR⊗ (n,γ,δ)LR ≅  (mn, mγ+nα, mδ+nβ)LR  

If M<0 and N>0, then 

(m,α,β)LR⊗ (n,γ,δ)LR ≅  (mn, nα-mδ+, nβ- mγ)RL  

If M<0 and N<0, then 

(m,α,β)LR⊗ (n,γ,δ)LR ≅  (mn,- nβ- mδ, -nα- mγ)RL 

  

 

3.3.1.3 Fuzzy Sets in Decision Making 

 

As stated before, most real-world problems are inherently a multiple criteria 

decision making problem. However, these problems generally occur in a somewhat 

uncertain environment. The performance of alternatives, constraints of the problem 

and goals of decision makers may not be known precisely. In such cases, classical 

decision making tools become insufficient to model, analyze and solve these 

problems (Araz, 2007). 

 

Belman and Zadeh (1970) indicated that much of the decision making in the real 

world takes place in an environment in which the goals, the constraints, and the 

consequences of possible actions are not known precisely. Then, they firstly 

introduced fuzzy goals, fuzzy constraints and fuzzy decision concepts (Sakawa, 

1993). Assume in a decision making problem that there are k fuzzy goals G1,..,Gk 

represented by their membership functions )(),...,(
1

xx
kGG μμ , and m fuzzy 

constraints C1,..,Cm represented by their membership functions )(),...,(
1

xx
mCC μμ . 

Belman and Zadeh (1970) defined fuzzy decision D and its membership function as 

follows: 
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mk CCGGD ∩∩∩∩∩= ...... 11   (3.16) 

))(),...,(),(),...,(min()(
11

xxxxx
mk CCGGD μμμμμ =  

 

The maximizing decision is then defined as (Sakawa, 1993): 

 

))(),...,(),(),...,(min(maximize)(maximize
11

xxxxx
mk CCGGXxDXx

μμμμμ
∈∈

=  (3.17) 

 

The concepts of fuzzy goal, fuzzy constraint and fuzzy decision have already been 

used for many types of decision problems. As discussed in Chapter 2, some 

researchers have paid more attention to develop scheduling methods that use fuzzy 

set theory. Some of them use membership functions to define fuzzy goals for routing 

selection problems (Chan et al. 2002; 2003), while the others select the most suitable 

dispatching rule based on linguistic fuzzy multi-criteria evaluation (Kazeroni et al., 

2002; Petroni and Rizzi, 2002). Besides, a lot of research efforts have been directed 

to use FIS for scheduling problems. Therefore, FIS is explained in the next section in 

detail. 

 

3.3.2 Fuzzy Inference System 

 

A fuzzy inference system (FIS) is a popular computer framework based on the 

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Because of its 

strong theoretical background and ease of use, it has already been applied to 

numerous decision making problems such as automatic control, data classification, 

decision analysis, expert systems, time series prediction, robotics, and pattern 

recognition (Jang et al., 1997). 

 

In the FIS, the solution of a problem comes from the ‘expert experience’ of a 

human operator in the design of the system. Generally, a decision maker describes 

the nonlinear input-output relationships through an IF-THEN structure which 

includes linguistic fuzzy variables, membership functions, fuzzy rules, implication 

processes and decomposition (Lin and Lee, 1996). The most important elements of 
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the IF-THEN structure are fuzzy rules which can be defined as follows (Zadeh, 

1977): 

 

 If (antecedent) then (consequent) 

 

The calculus of fuzzy IF-THEN rules is quite simple; all rules are evaluated in 

parallel, which is one of the more important characteristics of fuzzy inference 

systems (Yu et al., 1999). 

 

 The typical architecture of a FIS is comprised of three conceptual components 

(Jang et al., 1997): 

 

• a rule base, which contains a selection of fuzzy rules, 

• a database, which defines the membership functions used in the fuzzy rules,  

• a reasoning mechanism, which performs the inference procedure upon the rules 

and given facts to derive a reasonable output or conclusion. 

 

The inputs of a basic fuzzy inference system can be either fuzzy or crisp. After all 

rules have been defined, the reasoning process starts with the computation of all the 

rule-consequence pairs. Then the consequences are aggregated into one fuzzy set 

describing the possible actions (Zimmermann, 1996). The outputs are almost always 

fuzzy sets. When it is necessary to have a crisp output, defuzzification of the fuzzy 

output is needed. A fuzzy inference system with a crisp output is shown in Figure 3.5 

(Jang et al., 1997).  
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Figure 3.5 Block diagram for a fuzzy inference system (Jang et.al., 1997, p.74) 

 
The most frequently used FISs are Mamdani (1975) and Sugeno (Sugeno and 

Yasukawa, 1993) type FISs. These two types of inference systems vary somewhat in 

the way outputs are determined (Matlab Toolbox, 2007). In Mamdani type inference, 

the outputs are expected to be defined by fuzzy sets with their corresponding 

characteristic membership functions. The latter method requires that the membership 

functions of the output variable be only equal to a linear function or a constant. The 

following sub-sections are devoted to explain both types of inference systems. 

 

3.3.2.1 Mamdani Fuzzy Models 

 

The Mamdani fuzzy inference system (Mamdani and Assilian, 1975) is one of the 

first control systems that use fuzzy sets, and the most commonly used fuzzy 

methodology. Figure 3.6 illustrates how a two-rule Mamdani fuzzy inference system 

derives the overall output z when subjected to two crisp inputs x and y (Jang et al., 

1997). 

 



 

 

79

 
Figure 3.6 Diagramatic representation of Mamdani fuzzy inference system (Lin and 

Lee, 1996, p.155)  

 

The definition of linguistic variables and rules are the main design steps when 

implementing a Mamdani FIS. FIS rules are characterized by a collection of fuzzy 

IF-THEN rules in which the antecedents and consequents involve linguistic 

variables. The fuzzy rules describe the input-output relation of the system. The form 

of the FIS rules in the case of two-input-single-output systems is (Lin and Lee, 

1996): 

 

Ri: IF x is Ai, AND y is Bi, THEN z =Ci  i=1,2,…,n (3.18) 

 

where x,…,y and z are linguistic variables representing the process state variables 

and the control variable, respectively, and Ai, Bi and Ci are the linguistic values of the 

linguistic variables x,…,y and z in the universes of discourse U,…,V and W, 

respectively. 

 

In order to derive conclusions from a set of fuzzy if-then rules, the first step is to 

compute the degrees of membership of input values in the rule antecedes. Employing 

the minimum operator, the firing strength of rule R is: 
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{ })(,)(min input
Bi

input
AiR yx

i
μμα =   (3.19) 

 

This concept enables one to obtain the validity of the rule consequences. It is 

assumed that rules with a low degree of membership in the antecedent also have little 

validity and therefore cut off the consequence of fuzzy sets at the height of the 

antecedent degree of membership (Zimmerman, 1996). Formally,  

 

{ })(,min)( zz
iii CR

econsequenc
C μαμ =  (3.20) 

 

Fuzzy output distribution can now be derived by aggregating the consequences of 

all of the fuzzy rules using the maximum operator as follows: 

 

{ })(max)(
,..,1

zz consequnce
Cni

econsequenc
i

μμ
=

=  (3.21) 

  

It is important to note that Mamdani’s method takes into account all rules in a 

single stage and that no changing occurs. Thus the inference process in fuzzy control 

is much simpler than in most expert systems (Zimmerman, 1996). After the 

aggregation process, it is desired to come up with a single crisp output from a FIS 

using a defuzzification strategy. Explanations of the most popular defuzzification 

strategies can be found in the work of Jang et al. (1996).  

As mentioned before, Mamdani type inference has received much attention from 

the researchers who work on scheduling of manufacturing systems. Most of them use 

this type of inference engines to determine the states of the manufacturing system 

(Chan et al., 2003), select the most appropriate dispatching rule based on the 

conditions prevailing in the job shop (Subramaniam et al., 2000) or determine job 

priorities in real-time (Bilkay et al., 2004). 

 
3.3.2.2 Sugeno Fuzzy Models  

 

The Sugeno fuzzy model was proposed by Takagi, Sugeno and Kang (Takagi and 

Sugeno, 1985; Sugeno and Kang, 1988) in effort to develop a systematic approach to 
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generating fuzzy rules from a given input-output data set (Jang, et al., 1996). As 

mentioned before, different from Mamdani type inference, it requires that the 

membership functions of the output variable are only equal to a linear function or a 

constant. 

 

 A Sugeno inference system can be represented as follows: 

 

If x is A and y is B then z = f(x , y) (3.22) 

 

where A and B are fuzzy sets in the antecedent, while z = f (x, y) is a crisp function 

in the consequent (Jang, et al., 1996). The output is computed with the help of 

degrees of membership that are evaluated exactly as in the Mamdani controller. 
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Figure 3.9 shows the fuzzy reasoning procedure for the Sugeno fuzzy model. 
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Figure 3.9 Diagramatic representation of Sugeno fuzzy inference system (Jang, et.al., 1996, 

p.81) 
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Because it is a more compact and computationally efficient representation than a 

Mamdani system, the Sugeno system lends itself to the use of adaptive techniques for 

constructing fuzzy models. These adaptive techniques can be used to customize the 

membership functions so that the fuzzy system best models the data (Matlab 

Toolbox, 2007). As compared to Mamdani type systems, the use of Sugeno type 

inference systems is not common in the scheduling literature. 

 

3.4 Summary 

 

In this chapter, we gave a brief overview of the fundamentals of ANNs and Fuzzy 

set theory. Decision making in a fuzzy environment was also discussed. BPNN and 

fuzzy inference, which will be used throughout the remainder of this thesis, were 

explained in detail. 

 

In the next chapters, the proposed real-time DRC scheduling approaches are 

introduced.
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CHAPTER FOUR 

A NOVEL MULTI-CRITERIA REAL-TIME SCHEDULING APPROACH 

FOR DRC SYSTEMS THROUGH ANN AND FIS 

 

4.1 Introduction 

 

As emphasized in Chapter 2, with increasing importance of responsive 

manufacturing philosophy and effective scheduling decisions on the performance of 

shop floor, many firms are forced to adopt real-time scheduling methodologies. The 

literature review in Chapter 2 also reveals that there is a strong need for employing 

adaptive control-based mechanisms to determine scheduling rules dynamically to 

respond to changing manufacturing settings in Dual Resource Constrained (DRC) 

manufacturing systems. This research proposes three different real-time scheduling 

methodologies in this respect. The first two mainly deal with the dynamic selection 

of appropriate set of dispatching rules (DPRs), worker assignment rules and routing 

decisions of jobs with regard to multiple performance criteria. The third one uses a 

fuzzy priority-based control scheme to perform the dynamic scheduling of jobs, 

workers and routes rather than traditional DPRs, worker assignment rules and 

specific routing decisions.  

 

This chapter introduces the first methodology. More specifically, the first 

methodology schedules machines and operators through DPRs and worker 

assignment rules, respectively. Candidate DPRs and worker assignment rules are 

selected dynamically based on changing manufacturing states. The proposed 

methodology consists of three modules; simulation, Artificial Neural Networks 

(ANNs), and a Fuzzy Inference System (FIS). The multi-criteria nature of the 

dynamic scheduling problem is also handled by the FIS. 

 

As discussed in Chapter 2, although a number of methods have been proposed for 

dynamic scheduling problems (for DRC systems), most of them do not take into 

account the multi-criteria side of the problem. Therefore, the proposed methodology 
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is centered on developing a new multi-criteria adaptive control scheme based on 

neural networks and fuzzy inference for DRC systems. 

 

This chapter is organized as follows. Section 4.2 introduces the proposed real-time 

scheduling methodology. Its advantages are also discussed via simulation 

experiments in this section. Section 4.3 elaborates the experimental studies. The 

results are discussed in Section 4.4. Finally, concluding remarks are given in section 

4.5. 

 

4.2 A multi-criteria adaptive control scheme based on neural networks and 

fuzzy inference for DRC systems 

 

The proposed dynamic scheduling methodology, called MCDRC-FIS, schedules 

parts and operators through DPRs, routing rules and worker assignment rules. 

Candidate DPRs, routing rules and worker assignment rules are selected dynamically 

based on the changing states. This methodology alters not only part DPRs, routing 

rules and worker assignment rules but also the multi-criteria performance of the 

system in real time, which affects the selection of the appropriate scheduling rules. 

The methodology also provides a mechanism that is an interface with the shop floor 

monitoring and controlling the states, and actual performance measures of the 

manufacturing system. The basic structure of the methodology is given in Figure 4.1. 

 

It is assumed that the DRC system is operated for a pre-determined long time 

interval. The decisions about DPRs, routing rules and worker assignment rules to be 

applied should be made for short production intervals and updated at the beginning 

of each interval (decision point). 
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Figure 4.1 MCDRC-FIS architecture 

 

The MCDRC-FIS methodology consists of three modules; shop floor 

management, ANNs, and a FIS. The shop floor management module is responsible 

for applying required scheduling rules, and monitoring the system states and 

performance measures of the system. This module also includes a simulation module 

that generates a sample data to train and test ANNs. The sample data is made up of 

different combinations of decision variables (rule combinations) and system states. 

At the beginning of a scheduling period, ANNs are then used to estimate 

performances of candidate DPR, routing rule and worker assignment rule 

combinations for short production intervals based on system states. In other words, 

ANNs play the role of a look-ahead simulation model that produces the 

performances of all rule combinations during the next scheduling period. In order to 
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perform multi-criteria evaluation of alternative rule combinations, the FIS aggregates 

the performance values of the rule combinations generated by ANNs to yield an 

overall performance. The rule combination which will be used during the next 

production interval (scheduling period) is then determined based on this overall 

performance. 

 

The multi-criteria nature of the dynamic scheduling problem is also handled by 

the FIS. In machine-only constrained systems, most of the dynamic scheduling 

approaches consider optimization of a single manufacturing performance criterion, 

and in general use dispatching rules because they can be altered easily to adapt to 

changing manufacturing conditions. However, several, and possibly conflicting, 

criteria might come about in the decision process, which makes it difficult to 

determine the right criterion. These rules are not effective enough in such a multi-

criteria decision making environment. In this case, a scheduling system should 

prioritize these criteria, and determine an overall criterion based on this 

prioritization. In other words, the decision maker aims to find a schedule that 

satisfies all criteria or objectives simultaneously. 

 

4.2.1 The Simulator 

 

The simulator is used to create necessary data for training and testing ANNs. To 

do this, an experimental design is conducted for various system states and 

combinations of DPRs, routing rules and worker assignment rules. This study has 

developed a parametric simulator to easily model various DRC manufacturing 

configurations and create their schedules. Figure 4.2 shows the input and output data 

of the simulator. The input data are automatically read from a database to create a 

simulation model. The system is then simulated with respect to these experiment 

points. Training samples for ANNs are gathered from these simulation runs. This 

phase is carried out offline at the beginning of the scheduling. However, it is clear 

that in case of major system changes (in cases of major machine breakdowns, adding 

new machines, part types and routes or processing time changes), a new simulation 

should be performed. Accordingly, new training samples should be created. 
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Figure 4.2 Input and output data for the simulation model 

 

The basic steps of the simulator module are summarized in Figure 4.3. 

 
 

Define inputs of simulation model
• Physical system flow 
• Logical system flow 
• System assumption 
• Part information 
• Machine information 
• Operator information 

Define outputs of simulation model
• System state variables 
• System performance measures 

Build the simulation model
• Develop physical model 
• Select the warm-up period 
• Add variance reduction techniques 

Analyze validation and verification of the simulation 
model 

 
Figure 4.3 Basic steps of developing simulator 
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4.2.2 ANNs 

 

ANN models are used as meta-models. A meta-model is a mathematical 

approximation of a simulation model that represents the relationship between inputs 

and outputs of the system. The meta-modeling approach is helpful when the 

simulation becomes very large and costly. 

 

In general, regression analysis has been combined with simulation for building 

meta-models (Law and Kelton, 1991). However, regression meta-models have some 

drawbacks: it is limited to approximate a subset of the simulation domain, sensitive 

to deviations from statistical model assumptions, and it is possible to select incorrect 

functional form during the analysis (Fonseca et al., 2003). On the other hand, some 

researchers have stated that meta-modeling through Artificial Neural Network 

(ANN) models may overcome these disadvantages of traditional regression 

approaches (Fonseca et al., 2003; Kilmer et al., 1997).  

 

In this research, ANNs are used to estimate the performance measures at each 

decision point; obtained by applying alternative DPR, routing rule and worker 

assignment rule sets in the consecutive scheduling period. The proposed 

methodology utilizes backpropagation Neural Networks (BPNNs), which are well 

known pattern classifiers and function approximators (Lippman, 1987; Freeman and 

Sakapura, 1991; Priore et al., 2006). 

 

The backpropagation algorithm is derived from a “Least Mean Squares 

Approach”. The parameters of learning rate, momentum rate and activation function 

strongly affect the performance of ANNs, and there are not common methods to 

determine them. Generally, they are determined with trial and error. Some 

optimization techniques like genetic algorithms (GAs) can also be used. Yet these 

lengthen the solution time. MCDRC-FIS uses a GA solver embedded in the ANN 

tool to determine the learning rate and the number of neurons in the hidden layer, 

while the other parameters are determined with the trial and error basis. 
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As mentioned above, the training samples are gathered from the simulation runs. 

A training sample consists of the relevant inputs, such as system parameters (e.g. due 

date tightness factor), system state variables (e.g. Average Queue Length), current 

system performance measures (e.g. mean flow time), the scheduling rule 

combination applied in the previous production interval, and the next scheduling rule 

combination to be applied. The sample has one output, i.e. the performance value, 

obtained by applying the next scheduling rule combination. If more than one 

performance measure exists, an ANN model is constructed for each of them. The 

information about the inputs should be collected at the beginning in the scheduling 

period, while the outputs should be measured at the end of the period. The basic steps 

of developing ANN models are summarized in Figure 4.4. 

 

Although the training samples are obtained by simulation in the experiments, it is 

possible to get them from the actual data. Arzi and Iaroslavitz (1999) state that the 

performance of ANNs can be improved by gathering the actual samples continuously 

and retraining the ANNs periodically, while considering all the gathered samples. It 

is clear the proposed approach allows such a retraining phase. 

    

Since ANN models are trained and tested offline, the methods employing them 

can make decisions quickly. Hence, MCDRC-FIS has the advantage of a rapid 

response. At each decision point (the beginning of each scheduling period), the 

system parameters, system state variables, current system performance measures, the 

scheduling rule combination applied in the previous production interval, and the 

alternative scheduling rule combination to be applied in the next interval are fed to 

the ANNs related to the performance measures of interest. The performance 

measures of alternative rule combinations, obtained by applying the scheduling rule 

combinations, are estimated through the trained ANNs. Since the multiple 

performance criteria exist, the scheduling rule combination with the best 

compromised solution is then selected through the FIS module. 
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Figure 4.4 Basic steps of developing ANN models 
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4.2.3 The Fuzzy Inference System 

 

In many real-life scheduling problems, it is often desirable to achieve a 

compromise solution according to a number of different criteria. Such multi-criteria 

scheduling problems generally have been solved by either evaluating each objective 

separately or employing some overall cost functions. However, evaluation of each 

objective separately does not yield satisfactory results, and it is difficult to determine 

the costs in practice. The decision maker also aims to satisfy each objective at some 

level, and evaluate all the performance measures simultaneously. An aggregation 

function is therefore needed to obtain a compromise solution. In this respect, while 

the ANN models nonlinear relationships between system parameters and 

performance measures, a fuzzy inference system aggregates these performance 

measures to perform the aggregation of all the objectives. 

 

A Mamdani type FIS (Mamdani and Assilian, 1975) is used because of its ability 

in representing nonlinear systems. The methodology defines membership functions 

for each performance measure using linguistic variables such as “mean tardiness is 

LOW”, “mean tardiness is MEDIUM” and “mean tardiness is HIGH”. The inputs of 

the system are the values of performance measures of a specific rule combination.  

The output is a score of the selected rule combination which is used to evaluate 

alternatives. The membership for the output is also defined using five linguistic 

variables: VERYLOW, LOW, MEDIUM, HIGH and VERYHIGH. 

 

Recall that MCDRC-FIS periodically reviews the system status and, at each 

scheduling point, the performances of all alternative rule combinations that include 

DPR, alternative route and worker assignment rules are determined via ANN models. 

At this point, the FIS is run for all alternative rule combinations by feeding inputs 

into the FIS to obtain a score for each rule combination. The alternative with the 

highest score is then selected as the new scheduling rule combinations. The new rule 

combination that includes DPR, routing rule and worker assignment rule is utilized 

until the next scheduling point. 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V50-49TJJNM-1&_user=691192&_coverDate=12%2F31%2F2003&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038578&_version=1&_urlVersion=0&_userid=691192&md5=25bb0a8eba2e49ba29231d254cda959d#bib11#bib11
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4.2.4 Determining the Length of Scheduling Period 

 

As discussed above, the decision about when a new scheduling rule combination 

should be applied (determining the next scheduling point) is related to the length of 

the production intervals (scheduling periods). The length of the scheduling periods 

can be fixed or variable. MCDRC-FIS can be applied in both cases. 

 

In the fixed length scheduling period case, the performance of the manufacturing 

system is periodically monitored to respond to system changes. At each scheduling 

point, the performances of all alternative rule combinations that include DPR, routing 

rule and worker assignment rule are determined via ANN models. Then, the FIS is 

used to evaluate the alternatives and select the best one.  

 

In the variable length scheduling period case, an initial schedule is generated at 

the beginning of a period, and then the performance measures of the manufacturing 

system are monitored continuously and compared with some thresholds set by the 

decision maker. When the current values of the performance measures exceed the 

threshold values, the rescheduling mechanism is triggered (similar to the one in Lee 

(1989)). At each rescheduling point, MCDRC-FIS is employed to determine the next 

scheduling rule set. 

 

A hypothetical case problem is given in the next section to elaborate the 

methodology.  

 

4.3 Experimental Studies 

 

The experimental studies are classified into three groups: 

 

1. Comparison of the proposed scheduling approach with other scheduling 

approaches in different variation levels, 

2. Investigation of the effects of the length of the scheduling period on the 

performance of MCDRC-FIS 
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3. Comparison of the fixed length scheduling period and variable length scheduling 

period. 

 

The first group of the experimental studies compares the performance of 

MCDRC-FIS with fixed, random and multi-pass scheduling approaches. The effects 

of the variation levels of the manufacturing system considered are also investigated 

via the first experiments. During these experiments, it is assumed that the next 

scheduling point is determined periodically. Since the length of the scheduling period 

affects the performance of real-time scheduling approaches, the second group 

involves evaluating the effects of the length of the scheduling period on the 

performance of MCDRC-FIS. As discussed earlier, MCDRC-FIS can be applied in 

fixed and variable length scheduling period cases. Therefore, the third group of the 

experiments compares the two monitoring approaches. 

 

4.3.1 The Manufacturing System 

 

The hypothetical DRC manufacturing system consists of 24 departments. There 

are identical parallel machines in some departments. The total number of machines 

and workers is 31 and 15, respectively. Ten different part types are processed 

through flexible routings. The mean of processing time of jobs on each machine, 

alternative routes of each part types and the distance matrix for the departments are 

given in Appendix A. Other definitions are as follows. 

 

ijp  is processing time of job i on machine j for i = 1, 2,…, 10;  j = 1, 2,…, 31. 

iv  is the number of operations for job i 

id is due date of job i  

it  is arrival time of job i 

ijS is starting time of job i on machine j 

jIB is input buffer of machine j 

jOB is output buffer of machine j 
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ijQ  is entering time of job i on jIB  

K is due date allowance factor 

Ci is completion time of job i 

n is total number of jobs produced in the system 

m is total number of machines in the system  

o is total number of operators 

 

The main assumptions are: 

 

• The inter-arrival times for jobs are generated from the exponential 

distribution with a changing mean value in the scheduling period, i.e. the underlying 

process is non-stationary. 

• Transfer times for operators and parts between workstations are 0.75 min/unit 

distance. 

• The set-up times is considered as 20% of processing time. 

•  Machine breakdowns are not considered. 

• Workers are homogeneous. 

• Workers are full cross-trained. 

• Due dates of arriving jobs are calculated from the TWK method (Baker, 

1984) through Equation (4.1): 

 

∑
=

×+=
iv

1j
ijii )pK(td  (4.1) 

• Preemption of jobs is not allowed. 

• When a job arrives at an empty work centre, the operator is selected in a 

cyclic manner from available workers. 

 

The scheduling process is carried out by the shop manager who selects the worker 

assignment rules and dispatching rules in addition to the job routes. In other words, 

there are four decisions to be made. The first two are related to the “when” and 

“where” worker assignment rules to determine when to transfer a worker from a 

work center to another, and which work centre a worker to be transferred to, 
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respectively. The selection of parts by machines is related to the part scheduling 

rules, also called DPRs. Due to the routing flexibility, the selection of machines by 

parts should also be considered. These variables and rules are given in Table 4.1 (a), 

and their definitions in Table 4.1 (b). 
 

Table 4.1 (a) Decision variables and associated rules 

Decision 

Variable 

Associated Rules 

When rules 

Centralized Rule: A worker is eligible for transfer each time a 

current job is completed, even if the queue in the current work 

center contains more jobs 

Decentralized Rule: A worker is eligible for transfer only when 

idle 

Where rules 

The worker is transferred to the work center: 

• with the most jobs in queue (LNQ) 

• containing the job with the longest waiting time in queue (LWT) 

• containing the job with the shortest processing time and 

traveling time (MSPT) 

• containing the job with the earliest due date (EDDS) 

Machine selection 

by parts 

SNQ: Fewest waiting jobs for the machine 

SFT: Shortest flow time at an operation 

LAUF: Lowest average utilization first 

Part selection by 

machines 

FIFO: First in first out 

SPT: Shortest Processing Time  

EDD: Earliest due date 

SRPT: Shortest remaining processing times.  

CRT: Critical Ratio (Ratio-selects the job that has the lowest ratio 

of due date minus current date to total estimated remaining 

processing time. 

MST: Minimum Slack Time 

CR/SPT: (CRT2) Critical ratio/shortest processing time 

 
 

 

 

 

 



 

 

96

 

Table 4.1 (b) Definitions of the rules 

DPRs Definition 

First in First Out (FIFO) 
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As discussed earlier, the efficiency of the abovementioned rules highly depends 

on the performance criteria of interest and on the system states. Five performance 

measures are considered to evaluate the performance of the proposed methodology: 

 

• Mean Tardiness (MT):  
( )

n

dC
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n

i
ii∑

=

−
= 1

,0max
 (4.2) 

 

• Percentage of tardy job (%NTJ):  100% ×=
n

NTJNTJ  (4.3) 
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• Mean Flow Time (MFT): 
( )

n
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• Mean Queue Time (MQT): 
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• Work in Process (WIP) in the system at the any time. 

 

 

4.3.2 Experimental Design 

 

As discussed above, the proposed real-time scheduling approach consists of three 

main models: simulation, ANN and FIS. To execute the proposed methodology 

online, the simulation and ANN models must be first developed offline. In this 

phase, after inputs and appropriate parameters of the models are determined, the 

models are constructed according to the specification of the case problem considered. 

In the following subsections, the model development phases are given in detail.     

 

4.3.2.1 Data Collection 

 

A simulation model in ARENA 3.0 was constructed to represent the real shop 

floor in the experiments; and used to monitor the system, and to train and test the 

neural network models. The simulation model was validated by controlling some 

input-output relation for the case problem. 

 

  The manufacturing system is monitored for 60.000 minutes with a warm-up 

period of 15.000 minutes. The variance reduction technique of common random 

numbers (Pegden et al., 1990) is used for synchronization of random numbers so that 

the alternative rule combinations are compared under similar conditions. 20 

replications are run to estimate the performance measures. 
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The training and testing data required for the ANNs are obtained by simulation 

runs by randomly changing scheduling rule combination every production interval.  

In order to comprehensively represent the relationship between system state 

variables, selected rule combinations and performance measures, 1300 design points, 

which consist of the combination of some system state variables and rule 

combinations, are randomly selected. In the design points, the combination of current 

and next scheduling rule sets is randomly changed at each scheduling point. The 

length of each scheduling period is set to 5000 minutes. For each combination of the 

rules, input-output pairs are collected from the simulation model for short scheduling 

periods. The 1300 data set obtained from the simulation runs are used to train and 

test the ANNs.  

 

4.3.2.2 Training and Testing ANN models 

 

The performance of a metamodel depends on the selection of the inputs of ANN 

models to estimate the output of the system. Therefore, the effects of the candidate 

inputs on the ANN metamodel performance should be analyzed. Firstly, three system 

parameters are selected to analyze their effects on the performance measures. K is 

related to due date tightness, which is called the allowance factor and used in 

Equation 3.1 to determine the due date of each arriving job. The second one is the 

mean time between arrival times of jobs (A). The third one is the number of part 

types in the system (N). Many studies showed that these parameters have significant 

impact on the system performance (Kim and Jeong, 1998; Schintz et al, 2006). Their 

levels are given in Table 4.2. 

 
Table 4.2 The different levels of system parameters 

Decision Variables (Factors) Definition Level 

K Due date allowance factor 1-2-3-4-5-6-7-8 

A Arrival rate 4-5-6 

N Number of part types in system 6-7-8-9-10 

 

Using the data generated from a full factorial experimental design, involving 120 

experimental simulation runs, ANOVA (analysis of variance) is employed to 
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determine whether varying levels of factors or their interactions affect the process. 

They are summarized in Tables 4.3-4.7. As can be seen from the tables, these results 

indicate that the main effects of K, A and N have a significant impact on all 

performance measures. The two-way interaction effects between these parameters are 

also important for each performance measure, except for %NTJ. However, none of 

the performance measures are affected by the three-way interactions. 

 
Table 4.3 Full Factorial Analysis of K, A, N  for MT 

Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           3     2432558    2432558     810853  19,05  0,000 
2-Way Interactions     3     1660059    1660059     553353  13,00  0,000 
3-Way Interactions     1         181        181        181   0,00  0,948 
  Residual Error       152     6470516    6470516      42569 
  Total                159    10563314 

 
Table 4.4 Full Factorial Analysis of K, A, N for %NTJ 

Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           3  1148123856 1148123856  382707952 107.60  0.000 
2-Way Interactions     3    11238194   11238194    3746065   1.05  0.371 
3-Way Interactions     1     1051533    1051533    1051533   0.30  0.587 
  Residual Error       152   540610342  540610342    3556647 
  Total                159  1701023925 

 
Table 4.5 Full Factorial Analysis of K, A, N for MFT 

Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           3     2597079    2597079     865693  19.81  0.000 
2-Way Interactions     3     1663432    1663432     554477  12.69  0.000 
3-Way Interactions     1          95         95         95   0.00  0.963 
  Residual Error       152     6641916    6641916      43697 
  Total                159    10902522 

 
Table 4.6 Full Factorial Analysis of K, A, N for MQT 

Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           3      112894     112894    37631.5  20.01  0.000 
2-Way Interactions     3       72630      72630    24209.9  12.88  0.000 
3-Way Interactions     1           4          4        3.9   0.00  0.964 
 Residual Error       152      285815     285815     1880.4 
 Total                159      471343 

 
Table 4.7 Full Factorial Analysis of K, A, N for WIP 
Source               DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects          3      156489     156489    52163.0  21.13  0.000 
2-Way Interactions    3       94939      94939    31646.2  12.82  0.000 
3-Way Interactions    1           6          6        5.8   0.00  0.961 
Residual Error       152      375184     375184     2468.3 
Total                159      626618 
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To show the effects of the parameters on the system performances in detail, some 

design points are selected and the values of the performance measures are plotted 

against the factor levels of the parameters. In these figures, all the values of the 

performance measures are normalized according to the first experiment value. The 

design points of A= 4.5 and N = 9 are selected to show the effects of the values of K 

on the system performances. The results of these design points are illustrated in 

Figure 4.5. As can be seen from the figure, the increase in K improves the tardiness 

based performance measures such as MT and %NTJ. For the other performance 

measures, when K is 1, the minimum value of the performance measures is achieved. 

It can also be concluded from this figure that a reasonable range of the values of K is 

in between 1 and 7. However, when the value of K is higher than 7, there is no 

considerable impact on the performance measures. Consequently, this suggests that 

parameter K has a considerable effect on the system performance and should be 

selected as one of the inputs of the ANN models. 
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Figure 4.5 Effects of K on the system performance 

 

In order to investigate the effects of parameter A on the system performances, 

similar experiments should also be conducted. In this case, the value of K is set to 4 

and N to 9. As can be seen in Figure 4.6, when A increases, all performance measures 

decrease. It is clear that when the number of the job arrivals increases (if A 

decreases), the bottleneck situations occur more frequently. It causes deterioration in 
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the system performances. The results of the experiment also show that a reasonable 

range of the values of A is in between 4.5 and 6. Consequently, parameter A is 

selected as the second input of the ANN models. 
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Figure 4.6 Effects of A on the system performance 

 

Finally, the effects of the number of part types in the system, N, on the 

performance is investigated. The case of K=4 and A=4.5 are analyzed for this 

experiment. As can be seen in Figure 4.7, small changes in N affect the performance 

of the system. Consequently, N is selected as the third input parameter of the ANN 

models. 
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Figure 4.7 Effects of N on the system performance 
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As mentioned above, besides the system parameters K, A and N, some system 

state variables including system status variables and current system performance 

measures are also considered as the inputs of ANNs based meta-model for each 

performance measure. The system state variables considered are given in Table 4.8. 

 
Table 4.8 System state variables 

System state 
variables 

Definition 

MMU Mean Machine Utilization 
MOUTI Mean Operator Utilization 
MXOUTI Bottleneck Operator Utilization 
AQL Average Queue Length 
MOT Mean Operator Transfer Time 
CMT Current Mean Tardiness 
CNTJ Current Percentage of Tardy Jobs 
CMFT Current Mean Flow Time 
CMQT Current Mean Queue Time 
CWIP Current Work-in-Process Inventory 

 
To determine whether levels or values of the system state variables listed in Table 

4.8, and the system parameters listed in Table 4.9, including K, A, and N, affect the 

performance measures, their effects on the system performance are analyzed with 

ANOVA through the 1300 data set gathered from the simulation module. 
 

Table 4.9 System parameters 

System parameters Definition 
v11 Current when rule 
v12 Current where rule  
v13 Current part dispatching rule 
v14 Current alternative route selection rule 
v21 Next when rule 
v22 Next where rule  
v23 Next part dispatching rule 
v24 Next alternative route selection rule 
K Current due date tightness factor 
A Current mean arrival time  
N Current number of part type in the system 
 

It is observed from ANOVA results that all factors considered in the analysis have 

significant impact on the performance measures. Therefore, both the system 

parameters and the system state variables are considered as the inputs of the ANN 

based metamodeling to estimate the performance measures. The outputs are the 

performance measures considered. 
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In order to build an ANN model for each performance measure, the same 1300 

data set is used, 1000 and 130 of which are selected for training and cross validation 

of the ANN models, respectively. NeuroSolutions 4.0 software is used to develop the 

ANN models. The backpropagation learning algorithm is used for the training. When 

the number of learning epochs is greater than 20.000 or the mean square error is less 

than 0.0001, the learning process stops. The remaining 170 data set is used for the 

testing. 

 

Validity of a neural network depends on several design parameters, e.g. the 

number of hidden layers, the number of nodes in each hidden layer, the transfer 

function type, the learning rate, and momentum rate. In general, these design 

parameters are determined by trial and error (Savsar and Choueiki, 2000). In this 

study, only the number of the nodes in the hidden layer is determined through the 

genetic algorithm solver of NeuroSolutions 4. Some error measures, e.g. mean error 

(ME), mean absolute error (MAE), mean squared error (MSE), root MSE (RMSE), 

and percentage error (%error), are calculated for the validity of the neural network. 

Figure 4.8 depicts its topology. The test and design parameters of the trained ANN 

models are given in Table 4.10. 
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Figure 4.8 The structure of the ANN models developed 
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Table 4.10 Design parameters and test results for NN models 

PM # of HL 
# of 

neuron 
in HL1 

# of 
neuron 
in HL2 

# of 
neuron 
in HL3 

ME MAE MSE RMSE % Error 

MT 2 19 24 - 0.0047 0.0162 0.0020 0.0446 1.2996 

NTJ 3 1 1 1 0.0204 0.0647 0.0114 0.1070 0.1641 

MFT 2 20 19 - 0.0085 0.0216 0.0033 0.0578 2.4418 

MQT 1 23 - - 0.0064 0.0197 0.0029 0.0534 1.7071 

WIP 2 24 19 - 0.0077 0.0166 0.0004 0.0210 0.7966 

 

The results show that the ANN models provide accurate estimates for all 

performance measures. As discussed earlier, the scheduling of the DRC system is 

performed through the appropriate selection of the aforementioned DPRs, worker 

assignment rules and routes of the jobs. Therefore, any combination of scheduling 

rules should identify the time of worker transfers (determined by the when rule), the 

department to which the worker is transferred (where rule), the sequence of jobs in 

each department (DPRs) and the route of each job type. The trained ANN models are 

used at each rescheduling point to estimate the performance measures of each 

alternative rule combination, i.e. a rule set. 

 

4.3.2.3 The FIS Model 

 

Once the performance measure values, obtained by applying each scheduling rule 

combination (or rule sets), are determined through ANN models in terms of each 

performance measure, the FIS model should be constructed to aggregate the 

performance measures of each alternative rule combination and to rank the 

alternative combinations. 

 

As mentioned in Chapter 3, there are five steps in a fuzzy inference system (Yu 

et.al., 1999): 

 
Step 1: fuzzification of the input variables and output variables. Since there are 

five performance measures considered, the selection of DPRs, the routes of the job 

type and worker assignment rules depend on five fuzzy factors (variables); MT, NTJ, 

MFT, MQT and WIP. They are the input variables to determine the scheduling rule 

combination. The output variable is the score of each alternative which is used to 
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evaluate alternative rule combinations. Firstly, the membership functions must be 

defined for each input and output. The more the number of the membership functions 

to partition the region, the more the number of the rules needed (Canbolat and 

Gungor, 2003). While three membership functions (or linguistic variables) are 

defined for the inputs, the output (score) is represented by five membership functions 

(or linguistic variables). The type of the membership functions defined is triangular 

as shown in Figure 4.9. 

 

 
Figure 4.9 Membership functions of the inputs and the output 

 

Step 2: application of the fuzzy operators (AND or OR): In this case problem, the 

AND operator is used to define the input and output relation. 

  

Step 3: implication from the antecedent to the consequent: The rules which define 

relationships between the inputs and the output are developed by the decision maker. 
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Since each of MT, NTJ, MFT, MQ and WIP has three states, the total number of the 

rules is 243. Table 4.11 is a sample of these rules. 
 

Table 4.11 FIS rules 

Rule Definition 

Rule1. If MT is LOW and %NTJ is LOW and MFT is LOW and MQ is LOW and 

WIP is LOW then fuzzy priority is VERY HIGH. 

Rule2. If MT is LOW and %NTJ is LOW and MFT is MEDIUM and MQ is LOW 

and WIP is LOW then fuzzy priority is HIGH. 

………………………………………………………………………………………. 

Rule243. If MT is HIGH and %NTJ is HIGH and MFT is HIGH and MQ is 

HIGH and WIP is HIGH then fuzzy priority is VERY LOW. 

 

Step 4: aggregation of the consequences across the rules. As discussed in Section 

3.3.2.1, the maximum operator is used for the aggregation of the consequences. 

 

Step 5: defuzzification. In this study, the centroid method is used for the 

defuzzification of the variables. 

 

To show the effectiveness of the FIS model developed, the results of the 

scheduling rule combination selected by the FIS model are compared with those of 

five different alternatives. The alternatives are selected by minimizing only one 

performance measure at a time, e.g., minimum MT, and minimum %NTJ. Figure 

4.10 indicates that there is no alternative scheduling rule combination better than the 

other alternative solutions for all performance measures. Different solution 

alternatives have superior performances for different objectives. However, in real-life 

cases, the decision maker wants to reach a compromise solution instead of 

maximizing (or minimizing) only one objective at a time. It can be seen from the 

figure that the FIS models are efficient and flexible to achieve a compromise solution 

for more than one objective at a time.      
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Figure 4.10 The comparison of FIS and other single-objective approaches 

 

Recall that MCDRC-FIS reviews the system status periodically and changes the 

scheduling rule combination at each scheduling point, and the performance measures 

of all alternative rule combinations are determined via ANN models. At this point, 

the FIS is applied to all alternative solutions by feeding five inputs into the fuzzy 

inference system to obtain a score for each alternative rule combination. The 

alternative with the highest priority is selected for the next scheduling period. The 

new rule combination that includes job DPR, worker assignment rule and routing 

rule is then utilized till the next scheduling point. 
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4.4 Results and Discussions 

 

In this section, the performance of MCDRC-FIS is evaluated through the 

experiments classified into these three groups. The evaluations are in section 4.4.1, 

4.4.2, and 4.4.3, respectively. 

 

In the first group, the performance is evaluated by comparing the approach with 

the fixed, multi-pass (MULTIFIS) and random (RND) scheduling algorithms. 

 

The fixed scheduling selects a combination of decision variables (scheduling rule 

combination) according to the performance of the simulation results at the beginning 

of the planning period. The random scheduling algorithm selects a scheduling rule 

for each decision variable randomly in each short time interval. The performance of 

MCDRC-FIS is compared with those of the two scheduling mechanisms. 

 

The multi-pass scheduling algorithm, e.g. see Wu and Wysk (1989), Kim and Kim 

(1994), selects a combination of decision variables in each short scheduling interval. 

Each candidate scheduling rule combination is evaluated at each rescheduling point 

under the same manufacturing conditions. The appropriate scheduling rule 

combination is selected with respect to the results of a series of discrete event 

simulations (Kim and Kim, 1994). Since the computer time needed for the 

experiments can become overwhelming in the multi-pass algorithm, only five 

simulation replications are run to collect the data. Theoretically, more replications 

may be needed. However, the response time is more important for the real time 

scheduling methodologies. Due to the large number of replications for highly 

dynamic systems, hence high computation time, it would be time consuming at each 

decision point and the mechanism may not be used for the real-time scheduling 

purpose (Jeong and Kim, 1998). This is the main disadvantage of the multi-pass 

scheduling approaches.  
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In order to compare all these approaches with MCDRC-FIS, each alternative 

method is integrated with the FIS model to select the appropriate scheduling rule 

combination according to the decision maker’s preferences. 

 

4.4.1 Comparison of MCDRC-FIS with other Scheduling Approaches for Different 

Variation Levels 

 

In order to show the efficiency of MCDRC-FIS under different system variation 

(VR) levels, the scheduling approaches above are used in the DRC manufacturing 

system. Three problem sets are generated by altering system parameters K, A, N 

according to some distributions, shown in Table 4.12, during the planning period. 

Parameter change time also depends on another distribution called PCT. A parameter 

variation level is the variance of the parameter obtained from the simulation results, 

given in Table 4.13. 

 
Table 4.12 Test problems 

Test Problems System 

parameters Low variation (L) Medium variation (M) High variation (H) 

K uniform(1, 4) uniform(1, 6) expo(3) 

A uniform(4.5, 6) uniform(4.5, 8) uniform(4.5, 8) 

N uniform(8, 10) uniform(7, 10) uniform(6, 10) 

PCT uniform(1500, 3000) uniform(1000, 2000) expo(1500) 

Processing 

time distribution 
uniform(pij, 0.8pij)  normal(pij, 0.25pij)  normal(pij, 0.25pij)  

 

In this experiment, the length of the scheduling period (production interval) (p) is 

fixed and set to 5000 min.  To determine the fixed scheduling rule, all alternative 

decision rule combinations are evaluated through simulation at the beginning of the 

scheduling. All alternatives are evaluated by the FIS model developed and the best 

rule combination with the highest score is selected to be compared with the other 

methods. The rule combination of 2343 (v1=2 (decentralized), v2=3 (MSPT), v3=4 

(SRPT), v4=3 (LAUF)) is selected as the fixed scheduling rule to be employed, 

which is also the initial scheduling rule combination for all other methods. A rule 

combination is coded in such a way that the elements of the code represent the “when 
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rule”, “where rule”, “part dispatching rule” and “alternative route selection rule”, 

respectively. The value of each decision variable in the combination is equal to the 

rank of the variable in Table 4.1 (a). 

 
Table 4.13 Variance of the system parameters 

 Test Problems 

System parameters Low variation (L) Medium variation (M) High variation (H) 

Variance of K 2.025974 2.308561 3.94459 

Variance of A 0.881834 0.910354 1.297221 

Variance of NT 1.58825 1.627376 1.671291 

Variance of PCT 85977.4 217026.2 2399304 

 

The simulation results are shown in Table 4.14. Mean improvement percentages 

are given for each method at each decision point. An improvement percentage is 

((PMSk)- PMik)/ PMik)100, where PMik is the value of the kth performance measure 

for method i (i =1, 2, 3, and k =1, 2…5) and PMSk is the value of the kth performance 

measure for the fixed scheduling. In the table, there are nine decision points for each 

method (every scheduling period of 5000 minutes). Each row represents percentage 

improvements of the performance measures derived from the methods with respect to 

the fixed scheduling rule combination at each decision point. The computation times 

of the methods are given in the last column of Table 4.14. The changes of the 

performance measures during the scheduling period are also shown in Figure 4.11. 
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Table 4.14 % improvement with respect to the fixed scheduling for VR=L and p=5000 

%improvement according to fixed scheduling rule 2343 
Method v1 v2 v3 v4 

MT %NTJ MFT MQT WIP 

CPU 

(min)

2 3 4 3 0.00 0.00 0.00 0.00 0.00 204 

2 2 7 3 15.38 5.03 24.04 12.73 3.12 110 

2 1 6 3 14.13 3.89 18.13 3.14 12.77 102 

2 4 3 3 14.56 8.34 18.12 3.23 15.00 117 

2 2 1 3 13.44 9.85 17.82 12.79 0.61 180 

2 1 7 3 17.26 6.24 17.06 16.46 0.36 93 

1 2 6 3 29.57 11.74 22.62 19.79 8.36 93 

2 3 7 3 23.28 14.67 28.26 36.77 16.71 98 

MULTIFIS 

1 4 7 3 37.89 15.20 45.61 56.41 42.59 97 

2 3 4 3 0.00 0.00 0.00 0.00 0.00 204 

2 2 6 1 21.42 3.40 26.55 19.72 12.24 3 

2 2 7 1 31.70 2.07 26.28 19.68 23.15 3 

2 3 4 1 37.30 8.07 28.60 24.59 26.87 3 

2 2 6 1 43.29 9.60 31.70 38.22 19.02 3 

2 1 4 1 47.83 10.06 32.20 42.77 18.37 3 

2 1 7 3 53.65 11.53 35.42 49.61 23.80 3 

1 2 4 1 37.36 7.60 33.76 44.24 22.69 3 

MCDRC-FIS 

2 2 7 1 47.12 7.85 48.79 60.61 46.88 3 

2 3 4 3 0.00 0.00 0.00 0.00 0.00 204 

2 2 5 1 23.77 4.14 27.67 21.42 10.90 2 

1 2 7 2 -94.47 -15.82 -36.07 -140.91 -66.84 2 

2 1 7 1 -183.44 -17.97 -76.82 -206.83 -93.92 2 

2 1 3 2 -188.79 -20.60 -86.15 -174.14 -128.30 2 

2 4 3 1 -175.09 -19.07 -82.73 -161.25 -118.09 2 

2 1 3 3 -114.63 -13.56 -57.23 -104.24 -86.39 2 

2 2 4 3 -122.92 -7.24 -38.71 -73.01 -60.88 2 

RND 

2 4 6 3 -69.31 -4.68 -0.15 -12.00 -4.79 2 

 

It can be seen from the table that the strategies, except for the RND scheduling, 

that select a new scheduling rule combination during the scheduling period yield 

considerably better performance than the fixed scheduling. It is expected that the 

MULTIFIS methodology provides a better improvement than neural network based 

MCDRC-FIS methodology. The reason is that while MULTIFIS evaluates each 

alternative scheduling rule combination according to simulation results at each 

decision points, MCDRC-FIS evaluates each alternative scheduling rule combination 

according to the estimated values derived from the neural network models. 
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Although the system states are changed dynamically, MULTIFIS and MCDRC-

FIS perform well for each performance measure. At the end of the scheduling period, 

the MFT is reduced by 37.89% through MULTIFIS and by 47.12% through 

MCDRC-FIS. Similarly, the MT is reduced by 15.20% and 7.85%, %NTJ is reduced 

by 45.61% and 48.79%, MQT is reduced by 56.41% and 60.61%, WIP is reduced by 

42.59% and 46.89%. Although MULTIFIS requires more computational times, the 

results show that MCDRC-FIS gives better or closer solutions relative to MULTIFIS 

within short computation times. The main reason is that the ANN models developed 

provide a powerful tool to explain the relationship between decision variables and 

performance measures in spite of complex structure of the DRC manufacturing 

system. The results also show that MCDRC-FIS has the advantage of immediate 

response to changes in the system states. 

 

In order to emphasize the need for such a real time scheduling approach, the 

comparison between RND and fixed scheduling approaches would be interesting. As 

can be also seen in Figure 4.11, the RND yields the worst performance in all 

performance measures. Although the RND updates the schedule at each rescheduling 

point, it does not consider the state changes and does not provide any improvement 

in the final results. This result supports the claim that real time adaptive scheduling 

approaches, which alter the scheduling rules according to state changes, are needed 

in practice. 
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Figure 4.11 Simulation results for VR=L and p=5000 

 

The performances of the scheduling methods under medium and high variation 

levels are shown in Table 4.15 and 4.16, and in Figure 4.12 and 4.13. 
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Table 4.15 % improvement relative to the fixed scheduling for VR=M and p=5000 

% difference fixed scheduling rule 2343 
Method v1 v2 v3 v4 

MT %NTJ MFT MQT WIP 

2 3 4 3 0.00 0.00 0.00 0.00 0.00 

2 4 2 3 19.53 0.91 11.05 35.96 18.72 

2 3 2 1 28.35 12.42 11.81 36.34 19.43 

2 4 6 1 38.23 9.86 13.07 38.91 20.45 

2 4 2 3 34.89 15.01 13.23 38.92 20.46 

1 1 4 3 32.02 14.40 12.57 38.07 19.95 

2 1 4 3 28.46 16.48 12.29 37.43 19.65 

1 4 7 3 26.54 18.53 11.94 36.75 19.33 

MULTIFIS 

2 3 2 1 15.02 24.70 12.10 9.59 19.63 

2 3 4 3 0.00 0.00 0.00 0.00 0.00 

2 2 7 1 30.98 -1.71 12.24 37.19 20.13 

2 1 7 3 33.03 8.27 11.85 36.51 19.43 

2 1 4 1 39.48 6.70 12.64 37.84 20.01 

2 2 6 3 29.73 11.76 11.10 34.95 18.83 

1 2 4 1 31.79 11.90 11.62 35.07 19.41 

2 2 4 1 31.47 14.65 12.21 36.32 19.67 

1 2 7 1 31.14 16.63 12.15 35.93 19.54 

MCDRC-FIS 

2 1 7 3 17.95 22.82 11.89 7.54 19.41 

2 3 4 3 0.00 0.00 0.00 0.00 0.00 

1 3 5 1 -25.73 -0.23 7.08 36.19 19.67 

2 1 5 3 1.88 -0.66 1.80 35.00 18.87 

2 2 7 1 -44.99 -10.41 2.90 36.89 19.89 

1 3 6 2 -27.94 0.76 -4.88 8.55 -2.21 

2 4 7 2 -61.57 -9.51 -6.15 -8.74 -24.36 

2 3 5 2 3.58 -10.14 0.16 9.70 -38.20 

2 2 4 1 8.85 -5.54 -8.96 -23.58 -33.58 

RND 

2 3 2 2 -12.27 0.47 0.63 -92.90 -34.15 
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Figure 4.12 Simulation results for VR=M and p=5000 
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Table 4.16 % improvement relative to the fixed scheduling for VR= H and p=5000 

% difference fixed scheduling rule 2343 
Method v1 v2 v3 v4 

MT %NTJ MFT MQT WIP 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 4 2 3 -5.79 2.90 -3.83 -35.28 -0.85 
2 3 2 1 -2.15 2.76 -2.88 -16.80 -1.13 
1 4 6 1 -30.99 -1.51 -23.17 -74.29 -26.02 
2 4 2 3 -57.03 -1.66 -39.53 -108.91 -49.48 
2 1 4 3 -76.17 -1.38 -51.22 -153.30 -63.89 
1 1 4 3 -102.98 -1.67 -65.97 -197.43 -87.72 
2 4 7 3 -123.72 -1.90 -78.80 -260.30 -115.92 

MULTIFIS 

2 3 2 1 -195.88 -2.41 -78.40 -270.27 -140.78 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 2 7 1 16.95 4.18 8.93 6.99 11.97 
2 1 7 3 23.28 3.99 12.84 19.72 16.31 
2 1 4 1 28.21 4.25 16.25 24.84 16.25 
2 2 6 3 26.68 4.21 15.14 22.81 16.56 
2 2 4 1 28.66 4.02 16.42 24.26 18.54 
1 2 4 1 28.32 3.81 15.99 24.72 19.40 
2 2 7 1 32.63 3.97 18.74 29.49 18.77 

MCDRC-FIS 

1 1 7 3 30.29 3.87 17.20 26.61 17.47 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 3 5 1 -62.12 -1.47 -37.49 -137.01 -40.23 
2 1 5 3 -83.60 -2.46 -55.63 -140.09 -67.93 
2 2 7 1 -86.43 -0.92 -57.42 -141.98 -59.34 
2 3 6 2 -80.78 -1.18 -54.03 -131.46 -60.93 
2 4 7 2 -100.53 -2.28 -66.44 -155.00 -75.27 
2 3 5 2 -124.09 -2.45 -78.89 -192.93 -80.88 
2 2 4 1 -115.25 -2.00 -74.03 -172.53 -75.47 

RND 

2 3 2 2 -114.26 -3.48 -73.17 -165.55 -77.90 
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Figure 4.13 Simulation results for VR=H and p=5000 
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are generated and given in Table 4.17. Different variation levels and scheduling 

approaches may give different performances in all performance measures. 

Additionally, interaction effects between variation levels of the system and selected 

scheduling methods are also important. 

 
Table 4.17 Analysis of variance for the effects of the variation level and methods 

Analysis of Variance for MFT 
Source           DF        SS        MS        F           P 
VR                  2      29714     14857    36,82    0,000 
MTH               2      10894      5447    13,50     0,000 
Interaction      4       16751      4188    10,38     0,000 
Error              72      29056       404 
Total              80      86415 

Analysis of Variance for %NTJ 
Source           DF        SS         MS            F                P 
VR                 2       18831,54   9415,77  2105,25    0,000 
MTH              2        170,37      85,18     19,05        0,000 
Interaction     4         83,76       20,94      4,68          0,002 
Error              72       322,02       4,47 
Total              80       19407,69 
 

To show statistically the differences between the methods considered in terms of 

all performance measures, Least Significant Difference (LSD) (Montgomery, 2001) 

test is employed and the results are given in Table 4.18 for MT only. The results of 

statistical comparisons of the methods for other performance measures are also 

analyzed. The test results show that real time controlled scheduling approaches 

outperformed the fixed scheduling approach for all variation levels of the 

manufacturing system. In the low variation level, the differences between 

MULTIFIS and MCDRC-FIS are not statistically significant at the 95% confidence 

level. However, when the variation increases, the performance differences between 

the methods become significant. In the high variation level, MCDRC-FIS 

outperforms the others. The reason is that the simulation model is run with low 

replication numbers in MULTIFIS. Hence, the results derived from the simulation do 

not reflect the variation of the system. The overall results show that the proposed 

methodology, MCDRC-FIS, significantly improves the performance under different 

variation levels.  
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Table 4.18 Results of paired-t test for MT  

VR Method 95 % CI FOR  MEAN 
DIFFERENCE t-value p-value 

L Fixed-MULTIFIS (4.11; 29.20) 4.45 0.002 
L Fixed-MCDRC-FIS (13.94; 49.05) 6.02 0.000 
L MULTIFIS-MCDRC-FIS (4.75; 24.93) 1.62 0.145 
M Fixed-MULTIFIS (4.584; 9.066) 10.22 0.000 
M Fixed-MCDRC-FIS (5.629; 9.162) 14.05 0.000 
M MULTIFIS-MCDRC-FIS (-0.613; 1.755) 1.62 0.145 
H Fixed-MULTIFIS (-117.7; 9.4) -2.86 0.021 
H Fixed-MCDRC-FIS (9.50; 28.77) 6.67 0.000 
H MULTIFIS-MCDRC-FIS (4.9; 141.7) 3.6 0.007 

 

4.4.2 Effects of the Length of the Scheduling Period 

 

In this section, the effects of the length of scheduling periods (production 

intervals) on the performance of MCDRC-FIS are investigated. The different levels 

of fixed-time periods are analyzed under medium variation level. Three levels of 

period length are selected as 2500, 5000, and 15000. The results are given in Table 

4.19. 

 

As seen from Table 4.19, the length of the scheduling period is an important 

factor for the performance of MCDRC-FIS. The shortest time interval (p=2500) 

gives the worst results. This means that more frequent scheduling negatively affects 

the performance. The too-long monitoring period (p=15000) gives a worse solution 

than the medium time period. The results of the experiments show that the medium 

time period (p=5000) gives better results than short and long time periods. The 

choice of the appropriate time period can also be determined via some parameter 

optimization techniques. 
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Table 4.19 Comparison of different fixed time periods (p=period) 

Decision 
Variables Performance Measures Alternative 

v1 v2 v3 v4 MT %NTJ MFT MQT WIP 
2 3 4 3 16.46 34.18 92.38 4.73 14.78 
2 2 7 1 15.60 35.58 92.92 5.03 14.74 
2 1 7 3 15.38 33.17 93.71 5.14 14.94 
2 1 4 1 14.81 31.83 93.39 5.12 14.93 
2 2 6 3 17.62 31.39 96.73 5.77 15.57 
2 2 4 1 17.53 32.32 96.06 5.65 15.43 
2 2 4 1 17.43 32.41 96.12 5.69 15.58 
2 2 7 1 17.14 32.02 96.04 5.67 15.52 

P=5000 MCDRC-
FIS 

2 1 7 3 17.02 31.59 95.69 5.58 15.43 
2 3 4 3 16.43 28.82 93.83 4.81 14.85 
2 2 7 1 15.49 35.28 92.06 4.79 14.63 
2 1 7 3 16.24 34.45 94.46 5.31 15.01 
2 3 4 2 27.09 40.07 106.59 7.83 18.34 
2 2 7 1 40.88 39.72 123.15 10.87 19.84 
2 1 7 3 36.45 37.83 117.98 9.88 18.90 
2 1 4 1 32.83 35.76 114.20 9.17 18.28 
2 2 4 3 30.97 35.27 111.86 8.69 17.92 
2 1 4 1 29.41 34.56 110.31 8.39 17.73 
2 1 7 3 28.97 34.11 110.00 8.32 17.65 
2 2 4 1 27.63 34.33 108.15 7.98 17.34 
2 2 4 3 26.96 34.48 106.97 7.74 17.25 
2 2 4 3 26.82 34.96 106.42 7.63 17.18 
2 1 6 3 26.32 34.42 106.28 7.60 17.24 
2 1 6 3 26.13 34.24 105.80 7.50 17.14 
2 1 4 1 25.40 33.56 105.31 7.41 17.04 
2 2 6 3 24.99 33.28 104.68 7.28 16.92 

P=2500 MCDRC-
FIS 

2 1 6 3 24.53 32.87 104.10 7.17 16.82 
2 3 4 3 18.84 32.16 96.65 5.63 15.45 
2 2 7 1 17.49 32.30 96.04 5.63 15.41 p=15000 MCDRC-

FIS 
2 2 6 3 18.96 33.43 97.48 5.68 15.58 

   

 

4.4.3 Comparison of the Fixed Length Scheduling Period and Variable Length 

Scheduling Period 

 

In this section, the experiments focus on the comparison of the fixed and variable 

length scheduling periods by means of the proposed scheduling approach. As 

mentioned before, in the variable length scheduling period case, the performance 

measures are monitored continuously and compared with some thresholds. The 

thresholds are determined a priori by the decision maker to control the system 

according to his/her preferences. When the current values of the performance 
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measures exceed the threshold values, the rescheduling mechanism is triggered. The 

comparison is performed only for the medium variation level. At each scheduling 

point, MCDRC-FIS is employed to determine the next scheduling rule set. The 

results are given in Table 4.20. 
 

Table 4.20 Results of MCDRC-FIS for variable length scheduling periods 

Performance Measures 
  MT %NTJ MFT MQT WIP Decision Variables 

Thresholds 18 35 94 6 15 
v1 v2 v3 v4 Time Points      
2 3 4 3 16000 16.46 35.18 92.38 4.73 14.78 
2 2 7 1 23000 18.12 32.94 95.20 5.38 15.36 
2 1 7 3 27000 18.11 34.20 96.56 5.68 15.47 
2 1 4 1 32000 17.23 33.02 95.45 5.48 15.23 
2 1 7 3 41000 16.88 31.11 96.03 5.67 15.42 
2 2 4 1 47000 17.38 32.56 96.01 5.63 15.43 
2 2 4 3 60000 15.34 30.07 92.76 5.08 13.81 
 

Figure 4.14 compares the performance of MCDRC-FIS with fixed length 

scheduling periods with the performance of MCDRC-FIS with variable length 

scheduling period in terms of all performance measures at each scheduling point of 

the latter approach. 

 

The results show that MCDRC-FIS with variable length scheduling periods yields 

a better result than applying a fixed-time periodic review approach. It is also obvious 

that MCDRC-FIS with variable length scheduling periods is more responsive than 

the fixed-time periodic review with respect to system state changes.  
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Figure 4.14 Comparisons of fixed period and continuous review approach 

 

4.5 Summary 

 

In this chapter, a multi-criteria scheduling methodology for real-time scheduling 

for DRC manufacturing systems is proposed. This methodology, called MCDRC-

FIS, integrated simulation, ANN and FIS approaches to determine the appropriate 

scheduling rule combinations to satisfy all objectives set by a decision maker. It was 

compared with fixed and adaptive scheduling approaches. In general, MCDRC-FIS 

improves the performance significantly with respect to fixed scheduling approaches. 
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MCDRC-FIS was also compared with MULTIFIS, fixed and RND approaches for 

different levels of system variation. The results showed that MCDRC-FIS provides 

good solutions for all variation levels within short response times. 

 

In order to determine how frequently MCDRC-FIS should be used to update the 

scheduling rule set, a comparison of its performance under different fixed time 

periods is employed to determine the appropriate fixed time interval. Although the 

medium time interval gives the best results in the experiments, the length of the 

monitoring period is related to the system status and the criteria of interest. 

Therefore, a reasonable number of experiments should be performed to determine the 

right length of the scheduling periods. Finally, MCDRC-FIS with fixed length 

scheduling period is compared with variable length scheduling period-based 

MCDRC-FIS. The results of this set of experiments indicate that MCDRC-FIS with 

variable length scheduling periods is more sensitive to respond to the system state 

changes. 

 

As discussed before, multi-criteria scheduling problems generally need a process 

of the aggregation of multiple criteria. In the multi-criteria decision making 

literature, some researchers used outranking relations to form the aggregation 

models. In the next chapter, a novel real time scheduling approach is proposed which 

uses a well known outranking approach, PROMETHEE, for aggregation purposes.
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CHAPTER FIVE 

AN OUTRANKING-BASED MULTI-CRITERIA REAL-TIME 

SCHEDULING APPROACH FOR DRC SYSTEMS 

 

5.1 Introduction 

 

The first methodology, MCDRC-FIS introduced in Chapter 4, mainly deal with 

the dynamic selection of the set of dispatching rules (DPRs), worker assignment 

rules and routing decisions to yield a schedule considering multiple performance 

criteria, in which its multi-criteria feature is handled by a fuzzy inference. However, 

the performance of the fuzzy inference is subject to that of a human expert, although 

it successfully aggregates multiple objectives through linguistic variables. 

Furthermore, if the number of the inputs and of the membership functions to partition 

the region increases, the number of the rules needed also increases. In such cases, it 

may be difficult to determine the right rule, and would be helpful to use a more 

specific multi-criteria decision approach, e.g. PROMETHEE, to overcome these 

problems. 

 

This PROMETHEE based DRC scheduler also operates similar to MCDRC-FIS, 

and incorporates a simulation model and a BPNN besides PROMETHEE. 

 

As discussed in earlier chapters, although a number of methods have been 

proposed for the dynamic scheduling problem, one of their major shortcomings is 

that most of them do not consider the multi-criteria evaluation of alternative 

schedules. Furthermore, multi-criteria decision aid methods that evaluate the 

alternatives according to multiple, generally conflicting, criteria have not been 

extensively studied in the scheduling literature. Although there are numerous MCDM 

methods with different properties, e.g. AHP, multi-attribute utility theory, and 

TOPSIS, this research uses a well-known outranking method, PROMETHEE, 

introduced by Brans, et al., (1986), because it is the most suitable one for scheduling 

problems. It was one of the early MCDA outranking methods. It was designed for 

ranking alternatives from the best to the worst. Although it was applied in a large 
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variety of real-world decision making problems, to the best of the author’s 

knowledge, PROMETHEE has not been applied in any scheduling problems; 

machine-only or dual resource constrained. 

 

The reason to use PROMETHEE in this research is fivefold (Dulmin and 

Minnino, 2003): (i) it is able to deal with both qualitative and quantitative variables 

(nine-point linguistic scale must be used in AHP), (ii) it is able to manage 

compensatory effects and understand relations between criteria (linear weighting 

techniques such as cost functions and AHP are fully compensatory), (iii) it is able to 

deal with imprecise data through indifference and preference thresholds, (iv) once 

the parameters are defined at the beginning of a planning horizon, it can evaluate the 

alternatives automatically without the help of a decision maker (AHP requires a 

decision maker’s guide in each evaluation), (v) it is easy to understand and quick to 

apply in real-time.  

 

The rest of the chapter is organized as follows.  In section 5.2, a brief description 

of PROMETHEE is given. Section 5.3 is devoted to explain the proposed 

methodology. Section 5.4 presents an illustrative example. Conclusions are given in 

section 5.5. 

 

5.2 PROMETHEE 

 

5.2.1 Multi-criteria decision making (MCDM) 

 

A decision problem with more than one conflicting objective makes the solution 

more difficult. Multi-criteria decision making (MCDM) methods address such 

problems and the aggregation of their objectives (Araz, 2007). 

 

Zimmermann (1994) classified the MCDM into two categories: multi-objective 

decision making (MODM) and multi-attribute decision making (MADM). Doumpos 

and Zopounidis (2002) furthered this classification based on the variable type, 

discrete and continuous, as in Figure 5.1. 
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MADM methods describe the alternatives under multiple attributes and generally 

rank a set of predefined alternative from the best to the worst. Analytical hierarchy 

process (AHP), multi-attribute utility theory (MAUT) and outranking methods are 

the most known MADM methods (Doumpos and Zopounidis, 2002). 

 

 
 
 

 
 
 
 
 
 

 

 

Figure 5.1 Discrete and continuous decision making problems (Doumpos and Zopounidis, 2002, p.3) 

 

Outranking methods determine whether an alternative is preferred over another 

one. The basic principle of outranking is that alternative a will be preferred over b if 

a performs better than b on a majority of criteria, and there is no criterion such that b 

is strongly better than a (Le Teno and Mareschal, 1998). 

 

The other known MADM methods, MAUT and AHP, are fully compensatory. It 

means that a poor performance of an alternative on a criterion can be compensated 

by a good performance on another criterion. In contrast to MAUT, AHP or other 

weighting techniques, outranking methods are only partially compensatory (Dulmin 

and Mininno, 2003). In outranking methods, it is not necessarily true that the gain on 

one criterion compensates the lost on another (Geldermann et al., 2000). 

 

Families of ELECTRE and PROMETHEE are the most known and commonly 

used outranking methods. To the best of the author’s knowledge, outranking methods 

have not yet been applied to scheduling problems. In the proposed methodology, 

PROMETHEE is used to evaluate alternative scheduling rule combinations, which 
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consist of a set of DPR, worker assignment rule and routing rule, in each scheduling 

point. The next section gives a brief overview of the PROMETHEE methodology.    

 

5.2.2 PROMETHEE: Preference Ranking Organisation METHod for Enrichment 

Evaluations 

 

PROMETHEE (Brans and Vincke, 1985; Brans et al., 1986) is originally 

developed to select the best alternative among multiple alternatives or to rank the 

alternatives from the best to the worst. Up to date, several extensions have been 

proposed to deal with different decision making problems, such as PROMETHEE 

III, IV, V and PROMSORT (Araz, 2007). Since it is quite simple in conception and 

application compared to other methods for multi-criteria analysis (Goumas and 

Lygreou, 2003), a considerable research effort has been directed to use 

PROMETHEE based methods to solve real-life multi-criteria decision making 

problems.  

 

Let { }iaaA ,...,1=  denote a set of alternatives and gj(ai) represent the value of 

alternative ai on criterion gj (j=1,2,...,J). PROMETHEE ranks the alternatives based 

on pairwise comparisons. In order to compare two alternatives ai and ak, the 

difference of their values on each criterion is firstly determined: 

)()(),( kjijkij agagaad −= . For each pair of actions, a preference function Fj(ai,ak) 

that represents preference level of ai over ak on criterion j can be defined as follows,  

 

jkijjkij

jkijkij

jkijkij

paadqiffaaF

paadifaaF

qaadifaaF

<<<<

≥=

≤=

),(1),(0

),(1),(

),(0),(

 (5.1) 

 

If the difference ),( kij aad is smaller than a predefined indifference threshold qj, it 

means that two alternatives are indifferent on criterion j. Contrarily, if the difference 

),( kij aad is larger than a predefined preference threshold pj, it means that alternative 

ai is strictly preferred over alternative ak on criterion j. Otherwise, alternative ai has 
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some preference over alternative ak on criterion j determined through a preference 

function. Six different types of preference functions shown in Figure 5.2 have been 

suggested (Brans and Vincke, 1985). Since the alternatives are evaluated on more 

than one criterion, the preferences should be aggregated using the weights wj 

assigned to each criterion as follows: 

 

∑=Π ),(),( kijjki aaFwaa  (5.2) 

 

The quantification of how an alternative ai outranks all the remaining alternatives 

is represented by a leaving flow given in Equation 5.3. In the same manner, an 

entering flow is determined to show how alternative ai is outranked by all the 

remaining alternatives as in Equation 5.4. 

flowleavingxa
n

a
Ax
∑
∈

+ Π
−

= ),(
1

1)(φ  (5.3) 

flowenteringax
n

a
Ax
∑
∈

− Π
−

= ),(
1

1)(φ  (5.4) 

 

In PROMETHEE I, alternative ai is preferred to alternative ak, ai P ak, if the 

following conditions are hold:  

 

ai P ak if: )()( ki aa ++ ≥ φφ and )()( ki aa −− ≤ φφ . (5.5) 

 

In the indifference situation (ai I ak), there is no reason to say that any alternative 

is preferred to the other because two alternatives ai and ak have the same leaving and 

entering flows. 

 

ai I ak if: )()( ki aa ++ = φφ and )()( ki aa −− = φφ .  (5.6) 
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Figure 5.2 Types of preference functions (Figueira et al., 2004) 

 

Two alternatives are considered incomparable, aRb, if alternative ai has larger 

leaving flow than alternative ak, while ai has smaller entering flow than alternative 

ak, or vise verse. 

 

ai R ak if: )()( ki aa ++ > φφ  and )()( ki aa −− > φφ or 

              )()( ki aa ++ < φφ and )()( ki aa −− < φφ . (5.7) 

 

Since PROMETHEE I evaluation produces indifference and incomparability 

situations between alternatives, it provides partial rankings. If the decision maker 

wants to obtain a complete ranking, PROMETHEE II uses the net flow of each 

alternative which quantifies the position of each alternative with respect to the 

remaining alternatives. On the other hand, the larger the net flow, the better the 

alternative. 

 

)()()( aaa −+ −= φφφ  net flow (5.9) 
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5.3 A multi-criteria adaptive control scheme based on neural networks and 

PROMETHEE 

 

In the previous chapter, the proposed methodology, MCDRC-FIS, is described in 

detailed. In this chapter, the second approach, MCDRC-PRO, for real time 

scheduling of DRC manufacturing systems is introduced. MCDRC-PRO also 

schedules machines and operators through DPRs and worker assignment rules. In 

addition to DPRs and worker assignment rules, routing decisions are also determined 

dynamically based on the changing states. The difference from MCDRC-FIS is that 

MCDRC-PRO alters the multi-criteria scheduling decisions through PROMETHEE. 

The methodology provides a mechanism that is an interface with the shop floor 

monitoring and controlling the states and actual performance measures of the 

manufacturing system. 

 

As seen in Figure 5.3, MCDRC-PRO also consists of three modules; simulation, 

Artificial Neural Networks (ANNs), and PROMETHEE. Simulation and ANNs 

modules are the same as those of MCDRC-FIS. As mentioned in previous chapters, 

simulation is mainly used to generate a sample data to train and test ANNs. ANNs 

are then used to estimate performance measures generated by candidate DPR, routing 

rule and worker assignment rule combinations at each decision point. PROMETHEE 

then aggregates the performance values of the combinations of the decision variables 

at each decision point generated by ANNs and provides the user with a global rating 

of each alternative. The decision maker can then determine which decision variable 

combinations to use based on this overall performance. 
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Figure 5.3 MCDRC-PRO architecture 

 

Similar to MCDRC-FIS, MCDRC-PRO operates in two phases: An offline 

module development phase and an online scheduling phase. Before the methodology 

for the real-time scheduling is applied, ANN and PROMETHEE modules must be 

built in the offline phase. 

 

The detailed description of the simulator was given in the Chapter 4. Recall that 

the simulator is mainly used to create necessary data for training and testing ANNs. 

 

ANNs are used to estimate the corresponding performance measures, obtained by 

applying the candidate DPR, routing rule and worker assignment rule combinations, 

at each decision point. The detailed descriptions of the ANN models are also given in 

Chapter 4. Therefore, in this chapter, the use of PROMETHEE module is focused.   
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5.3.1 Multi-criteria evaluation of the alternatives by PROMETHEE 

 

In order to evaluate the performance of alternative rule sets, they must be 

compared in an objective and quantifiable way. Due to the conflicting nature of the 

performance measures, it is difficult to assess the quality of a rule set. A rule set with 

a superior performance on some performance indicators (criteria) can perform poorly 

in another performance indicator. Different rule sets may be the best performers on 

different criteria. However, finding a satisfactory compromise solution between 

objectives is more important than finding the best solution for only one objective. In 

order to obtain a satisfactory compromise solution, generally an aggregated cost 

function is used as a comparison measure. However, in real life, construction of the 

cost function is a difficult task because of incommensurable nature of some 

performance measures such as the number of tardy jobs, mean tardiness, mean flow 

time, and average machine utilization, etc. 

 

In MCDRC-PRO, a PROMETHEE-based aggregation methodology is proposed 

to evaluate alternative rule combinations. PROMETHEE enables the methodology to 

deal with qualitative and quantitative variables, to manage compensatory effects, to 

understand relations between criteria, and to compare the alternatives in a 

quantifiable way. 

   

The PROMETHEE should be developed in the offline phase based on preferences 

of the decision maker. It is clear that if the preferences of a decision maker change 

during scheduling periods, the parameters of PROMETHEE can be updated to 

represent the new requirements of the decision maker. The basic steps of this phase 

are summarized in Figure 5.4. 
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Define minimization or maximization of each criterion 

Define inputs of PROMETHEE model (criteria)
• Performance measures 

o MT 
o %NTJ 
o MFT 
o MQT 
o WIP 

 

Define weight of each criterion 

Define preference function shape of each criterion 

Define preference and indifference thresholds of each
criterion 

 
Figure 5.4 Inputs of PROMETHEE 

 

MCDRC-PRO periodically reviews the system status and, at each scheduling 

point (decision point), the performances of all alternative rule sets that include the 

DPR, routing rule and worker assignment rule are determined via ANN models. At 

this point, PROMETHEE finds the net flow value of each alternative through 

Equations 5.1-5.9 (Figure 5.5). The alternative scheduling rule combination with the 

highest net flow value is selected as the one to be used during the next scheduling 

period. This new rule set is utilized till the next scheduling point. 

 

In order to show the effectiveness of MCDRC-PRO, the case problem defined in 

Chapter 4 is utilized again in the following section. 
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Calculate the single criterion preference level of each 

alternative (rule combination) over other alternatives using 
Equation 5.1. 

Calculate aggregated preference level of each alternative 
over other alternatives using Equation 5.2. 

Calculate the leaving flow and entering flow of each 
alternative using Equation 5.3 and 5.4 

Calculate net flow of each alternative using Equation 5.9. 

Select the scheduling rule combination with the highest net 
flow value  

 

Figure 5.5 Selection of best scheduling rule combination through 

PROMETHEE  

 

5.4 An Illustrative Example 

 

The hypothetic DRC manufacturing system discussed in Chapter 3 is considered 

again in this chapter to show the applicability of the proposed methodology. As 

mentioned above, MCDRC-PRO consists of three modules. Since the simulation and 

ANN modules are the same as the modules of MCDRC-FIS, the simulation and 

ANN models developed in Chapter 4 are used in the experiments. Therefore, the 

development of PROMETHEE module is focused in this section. Then, the results of 

MCDRC-PRO for the case problems are discussed and compared with those of 

MCDRC-FIS. Finally, this section is concluded with the sensitivity analysis of the 

PROMETHEE.  

  

 



 

 

135

5.4.1 The PROMETHEE Module 

 

The inputs of the PROMETHEE are the performance measures previously 

defined, which are also called “criterion” in the remaining of this chapter. The 

parameters of the model, e.g. the weights, indifference and preference thresholds, 

and preference functions types, should be determined first by the decision maker. 

These parameters are given in Table 5.1. The linear preference function has been 

chosen to define the preference relation between the alternatives. The values of all 

performance measures are normalized between 0-100 according to minimum and 

maximum values of each performance measures at each rescheduling point. 

 
Table 5.1 Parameters for PROMETHEE  

Evaluation criteria Obj. Weight q p 

MT Min 0.25 1 5 

%NTJ Min. 0.20 1 5 

MFT Min. 0.25 2 10

MQT Min. 0.15 1 5 

WIP Min. 0.15 2 8 

 

After PROMETHEE is constructed through the Decision Lab 2000 software, the 

three cases, which are also described in the previous chapter and deal with the 

comparison of the proposed scheduling approach with other scheduling approaches 

for different variation levels, are exploited to evaluate the performance of MCDRC-

PRO. Three different levels of system variation, LOW, MEDIUM and HIGH, are 

also considered. In order to compare the performance of MCDRC-PRO with 

MCDRC-FIS under the same conditions, the manufacturing system is periodically 

monitored at every 5000 minutes to consider the system state changes. At the end of 

each period, the best DPR is chosen with respect to the selected performance 

measures by both approaches. The results of both approaches at each scheduling 

point are then compared.  

 

Firstly, the LOW variation case problem is considered. In the first scheduling 

point (at the end of the first period), in which the time is 20000 minute, all ANNs are 

fed forward. Each ANN provides the corresponding predicted performance measure 
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values of all alternative rule combinations. The values of the performance measures 

of each candidate rule combination are transmitted to PROMETHEE to select the 

best rule set. φ+(a) and φ-(a) of each alternative are calculated from PROMETHEE, 

and the alternatives are ranked from the best to the worst with respect to their net 

flow values. The normalized values of the performance measures, and φ+, φ- and φnet 

values of the best 20 alternatives are given in Table 5.2.  

 
Table 5.2 The evaluation matrix 

Alternative v1 v2 V3 v4 MT %NTJ MFT MQT WIP 
+φ  −φ  netφ  

81 2 1 4 1 19 14 18 6 18 0.824 0.047 0.777 
74 2 1 4 2 8 20 9 7 16 0.820 0.067 0.753 
58 2 2 4 1 27 10 16 3 33 0.815 0.068 0.747 
67 2 1 4 3 18 7 26 19 19 0.810 0.070 0.741 
53 2 2 4 2 17 17 1 13 33 0.813 0.080 0.733 
46 2 2 4 3 17 4 23 18 35 0.812 0.080 0.732 
22 2 3 7 3 23 8 24 22 17 0.793 0.073 0.720 
25 2 3 4 3 0 10 28 17 31 0.799 0.090 0.709 
71 2 1 7 2 24 18 25 8 0 0.773 0.084 0.689 
29 2 3 7 2 27 20 14 7 21 0.776 0.090 0.686 
50 2 2 7 2 44 14 4 10 18 0.777 0.101 0.676 
78 2 1 7 1 34 12 29 6 0 0.773 0.099 0.675 
32 2 3 4 2 1 23 12 7 39 0.781 0.111 0.670 
43 2 2 7 3 43 2 22 17 19 0.769 0.108 0.661 
36 2 3 7 1 36 14 23 1 21 0.760 0.099 0.661 
41 2 3 4 1 9 17 28 0 40 0.763 0.119 0.644 
61 2 2 7 1 57 8 13 1 15 0.757 0.130 0.628 
72 2 1 6 2 30 18 22 8 29 0.735 0.112 0.623 
64 2 1 7 3 30 6 39 23 2 0.750 0.133 0.617 
51 2 2 6 2 39 15 0 14 40 0.742 0.132 0.610 

 

If the mean tardiness were assumed as the sole criterion, alternative 25 should be 

selected. However, because of the poor performance of the alternative 25 on other 

criteria, PROMETHEE ranks this alternative in the 8th rank order. It should also be 

noted that although one alternative is better than other alternatives with respect to 

only one criterion, it is outranked by the others because of the worse performance on 

the other criteria. According to the PROMETHEE results, alternatives 81, 74 and 58 

are the best three performers. 

 

In order to highlight the effectiveness of the PROMETHEE, the performances of 

the rule combination selected by PROMETHEE is compared with those of the five 
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different alternatives selected based on only one performance measure at a time. For 

example, the first alternative has the minimum MT while the others minimizes 

%NTJ, MFT, MQT and WIP, respectively. The results are shown in Figure 5.6. The 

net flow value, which shows the strength of the alternative, of the alternative selected 

by PROMETHEE and the other alternatives are also plotted in the figure. 

 

Similar to the results obtained in Chapter 4, there is no alternative scheduling rule 

combination better than the other alternative solutions for all performance measures. 

Although five different solution alternatives have superior performances for different 

criteria, they perform badly in the others. In other words, they do not offer such a 

compromise solution. Therefore, the net flow values of these alternatives are low. On 

the other hand, the alternative selected by PROMETHEE has somewhat good 

performance in all criteria. Therefore, PROMETHEE is as efficient and flexible to 

obtain a compromise solution as the FIS approach. 
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Figure 5.6 The results of comparison of PROMETHEE and single objective for the first step 

 

In the light of the results, it can be noted that the best compromise solution is the 

81th alternative, which represents the following rules: “when” labor assignment rule 

is “Decentralized Rule”, “where” labor assignment rule is “LWT”, selection of 

machines by part is “LNQ”, selection of parts by machine is “SRPT”. After this 

schedule is selected from the PROMETHEE results, it is used in the scheduling 

system until the next scheduling period. In the second scheduling point, in which the 

time is 25000 minutes, MCDRC-PRO is applied again to select the best scheduling 

rule set for the next scheduling period. After the values of performance measures of 

each alternative are derived from the ANN models, PROMETHEE is recalled to 
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evaluate the alternatives. Figure 5.7 shows the PROMETHEE results at the second 

scheduling point. This procedure is repeated in the next scheduling periods. 

 

 
Figure 5.7 The PROMETHEE results for the second step 

 

5.4.2 Results and Discussion 

 

In this section, the performance of MCDRC-PRO is evaluated by comparing it 

with the fixed, multi-pass and MCDRC-FIS approaches. The random scheduling 

approach is not considered in this section because it already gives the worst 

performance in the previous chapter. As remembered, the fixed scheduling selects a 

scheduling rule combination according to the performance of the simulation results at 

the beginning of the scheduling period. The multi-pass scheduling algorithm, called 

MULTIFIS, selects a combination of decision variables at each rescheduling point 

from the results of a series of discrete event simulation performed under each rule 

combination. As mentioned before, it is extended with FIS so that it can deal with 

multiple performance measures. MCDRC-FIS explained in the previous chapter is 

also compared with MCDRC-PRO. 

 

Recall from chapter 4 that three different levels of system variation, LOW, 

MEDIUM and HIGH, are considered. The detailed information about the variation 

levels of the test problem is given in Table 3.17. The rule combination of 2343 

(v1=2, v2=3, v3=4, v4=3) is selected as the fixed scheduling rule to be employed, 

which is also the initial scheduling rule combination for all other methods. It should 

be remembered that this rule combination has the best performance among all fixed 

rule combinations. 
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The simulation results of the different scheduling approaches for the LOW case 

problem are shown in Table 5.3. Mean improvement percentages are given for each 

method at each decision point. As remembered, improvement percentages were 

computed as ((PMSk)- PMik)/ PMik)100, where PMik is the value of the kth 

performance measure for method i (i = 1, 2, 3, and k = 1, 2…5) and PMsk is the value 

of the kth performance measure for the fixed scheduling. In the table, there are nine 

decision points for each method. Each row represents percentage improvements of 

the performance measures derived from the methods with respect to the fixed 

scheduling rule combination at each decision point. The changes on the performance 

measures during the scheduling periods are also shown in Figure 5.9. 
 

Table 5.3 % improvement with respect to the fixed scheduling for VR=L and p=5000 

% difference fixed scheduling rule 2343 Method v1 v2 v3 v4 
MT %NTJ MFT MQT WIP 

2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 2 7 3 15.38 5.03 24.04 12.73 3.12 
2 1 6 3 14.13 3.89 18.13 3.14 12.77 
2 4 3 3 14.56 8.34 18.12 3.23 15.00 
2 2 1 3 13.44 9.85 17.82 12.79 0.61 
2 1 7 3 17.26 6.24 17.06 16.46 0.36 
1 2 6 3 29.57 11.74 22.62 19.79 8.36 
2 3 7 3 23.28 14.67 28.26 36.77 16.71 

MULTIFIS 

1 4 7 3 37.89 15.20 45.61 56.41 42.59 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 2 6 1 21.42 3.40 26.55 19.72 12.24 
2 2 7 1 31.70 2.07 26.28 19.68 23.15 
2 3 4 1 37.30 8.07 28.60 24.59 26.87 
2 2 6 1 43.29 9.60 31.70 38.22 19.02 
2 1 4 1 47.83 10.06 32.20 42.77 18.37 
2 1 7 3 53.65 11.53 35.42 49.61 23.80 
1 2 4 1 37.36 7.60 33.76 44.24 22.69 

MCDRC-
FIS 

2 2 7 1 47.12 7.85 48.79 60.61 46.88 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 1 4 1 28.04 5.37 29.67 23.69 13.35 
2 2 4 3 31.46 4.10 26.48 20.42 21.51 
2 1 4 3 28.85 8.38 24.76 17.25 22.17 
2 2 4 1 34.50 9.87 27.64 31.21 13.72 
2 2 4 1 39.48 10.06 28.09 35.84 13.41 
2 1 6 3 47.75 11.96 32.34 44.84 20.03 
2 2 4 3 41.70 14.72 36.38 49.80 26.22 

MCDRC-
PRO 

2 2 4 3 51.67 15.21 51.26 64.69 48.44 
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It should be noted from the table that the strategies that select a new dispatching 

rule combination during the scheduling period yield considerably better performance 

than the fixed scheduling. It should be highlighted that MCDRC-PRO gives the best 

improvement according to the fixed scheduling at the end of the scheduling periods. 

Although the system states are changed dynamically, MCDRC-PRO performs well 

for each performance measure. At the end of the scheduling periods, the MFT is 

reduced by 51.26%, the MT is reduced by 51.67%, the %NTJ is reduced by 15.21%, 

the MQT is reduced by 64.691%, and the WIP is reduced by 48.44%.  

 

  
Figure 5.8 Simulation results for variation L (VR=L) and p=5000 

 

As seen in Figure 5.8, MCDRC-PRO gives close results to MCDRC-FIS and 

MULTIFIS under the LOW variation level. Since MCDRC-FIS and MCDRC-PRO 

have similar structures, MCDRC-PRO has the same advantages over the fixed 

scheduling and MULTIFIS. In the previous chapter, MCDRC-FIS and MULTIFIS 

outperformed the fixed scheduling according to the results of the paired-t test. 
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Therefore, differences between the fixed scheduling and MCDRC-PRO are not 

investigated in this experiment, because MCDRC-PRO outperforms the fixed 

scheduling for each variation level of the DRC manufacturing system. Therefore, in 

this section, the results of MCDRC-PRO are compared with those of MCDRC-FIS. 

The results for the LOW variation level show that MCDRC-FIS and MCDRC-PRO 

provide good results for the real time scheduling of the DRC manufacturing system. 

In addition, PROMETHEE provides a flexible and efficient tool to aggregate the 

performance measures. In addition to these results, the performances of the 

scheduling methods under medium and high variation levels are shown in Table 5.4 

and 5.5, and in Figure 5.9 and 5.10, respectively. 

 
Table 5.4 % improvement with respect to the fixed scheduling for VR=M and p=5000 

% difference fixed scheduling rule 2343 
Method v1 v2 v3 v4 

MT %NTJ MFT MQT WIP 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 4 2 3 19.53 0.91 11.05 35.96 18.72 
2 3 2 1 28.35 12.42 11.81 36.34 19.43 
2 4 6 1 38.23 9.86 13.07 38.91 20.45 
2 4 2 3 34.89 15.01 13.23 38.92 20.46 
1 1 4 3 32.02 14.40 12.57 38.07 19.95 
2 1 4 3 28.46 16.48 12.29 37.43 19.65 
1 4 7 3 26.54 18.53 11.94 36.75 19.33 

MULTIFIS 

2 3 2 1 15.02 24.70 12.10 9.59 19.63 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 2 7 1 30.98 -1.71 12.24 37.19 20.13 
2 1 7 3 33.03 8.27 11.85 36.51 19.43 
2 1 4 1 39.48 6.70 12.64 37.84 20.01 
2 2 6 3 29.73 11.76 11.10 34.95 18.83 
1 2 4 1 31.79 11.90 11.62 35.07 19.41 
2 2 4 1 31.47 14.65 12.21 36.32 19.67 
1 2 7 1 31.14 16.63 12.15 35.93 19.54 

MCDRC-
FIS 

2 1 7 3 17.95 22.82 11.89 7.54 19.41 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 1 4 1 28.21 0.52 12.06 36.81 19.87 
2 1 4 1 33.87 11.33 12.09 35.83 19.70 
2 1 4 3 37.37 8.88 12.32 37.03 19.70 
1 2 4 3 31.77 14.07 11.80 35.67 19.10 
2 1 7 1 32.52 13.33 11.92 35.97 19.71 
2 1 6 3 30.09 15.63 12.04 36.41 19.38 
1 1 4 3 27.34 18.07 11.59 35.42 18.98 

MCDRC-
PRO 

2 1 4 3 13.31 24.27 11.32 6.33 18.72 
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Table 5.5 % improvement with respect to the fixed scheduling for VR=H and p=5000 

% difference fixed scheduling rule 2343 
Method v1 v2 v3 v4 

MT %NTJ MFT MQT WIP 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 4 2 3 -5.79 2.90 -3.83 -35.28 -0.85 
2 3 2 1 -2.15 2.76 -2.88 -16.80 -1.13 
1 4 6 1 -30.99 -1.51 -23.17 -74.29 -26.02 
2 4 2 3 -57.03 -1.66 -39.53 -108.91 -49.48 
2 1 4 3 -76.17 -1.38 -51.22 -153.30 -63.89 
1 1 4 3 -102.98 -1.67 -65.97 -197.43 -87.72 
2 4 7 3 -123.72 -1.90 -78.80 -260.30 -115.92 

MULTIFIS 

2 3 2 1 -195.88 -2.41 -78.40 -270.27 -140.78 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 2 7 1 16.95 4.18 8.93 6.99 11.97 
2 1 7 3 23.28 3.99 12.84 19.72 16.31 
2 1 4 1 28.21 4.25 16.25 24.84 16.25 
2 2 6 3 26.68 4.21 15.14 22.81 16.56 
2 2 4 1 28.66 4.02 16.42 24.26 18.54 
1 2 4 1 28.32 3.81 15.99 24.72 19.40 
2 2 7 1 32.63 3.97 18.74 29.49 18.77 

MCDRC-
FIS 

1 1 7 3 30.29 3.87 17.20 26.61 17.47 
2 3 4 3 0.00 0.00 0.00 0.00 0.00 
2 1 4 1 16.95 4.18 8.93 6.99 11.97 
2 1 4 3 22.15 4.44 12.30 19.22 14.93 
1 2 4 1 27.79 4.58 16.08 23.98 16.34 
1 1 4 3 26.82 4.65 15.39 23.73 16.31 
2 2 4 3 26.40 4.62 15.14 22.11 15.82 
2 1 4 3 25.44 4.68 14.39 20.86 15.57 
2 2 6 1 26.97 4.55 15.30 22.11 15.43 

MCDRC-
PRO 

2 2 6 1 27.17 4.40 15.31 22.73 16.15 
 
As seen from Tables 5.4 and 5.5 and Figures 5.10 and 5.11, MCDRC-FIS and 

MCDRC-PRO provide similar results and outperform other scheduling approaches in 

terms of solution quality and response time. The difference between MCDRC-FIS, 

which utilizes FIS, and MCDRC-PRO, which utilizes PROMETHEE, lies only in 

their aggregation methods used to evaluate alternatives under multiple criteria. The 

differences between the two approaches are investigated statistically in terms of all 

performance measures through the paired-t test. The results are given in Table 5.6. 
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Figure 5.9 Simulation results for variation M (VR=M) and p=5000 
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Figure 5.10 Simulation results for variation M (VR=H) and p=5000 

 
Table 5.6 Results of the paired t-test 

VR Performance Measures 95 % CI FOR  MEAN 
DIFFERENCE t-value p-value 

L MT (-6.39; 3.19) -0.79 0.454 
L %NTJ (-0.11; 3.07) 2.20 0.064 
L MFT (-6.22; 4.03) -0.51 0.629 
L MQT (-1.15; 0.83) -0.38 0.715 
L WIP (-1.49; 0.45) -1.28 0.242 
M MT (-0.78; 0.15) -1.61 0.152 
M %NTJ (0.49; 0.87) 8.65 0.00* 
M MFT (-0.48; 0.33) -0.44 0.676 
M MQT (-0.07; 0.04) -0.69 0.512 
M WIP (-0.09; 0.03) -1.05 0.327 
H MT (-2.94; -0.21) -2.72 0.03* 
H %NTJ (0.19; 0.48) 5.44 0.001* 
H MFT (-2.86; -0.06) -2.47 0.043* 
H MQT (-0.55; 0.01) -2.29 0.056 
H WIP (-0.66; -0.07) -2.91 0.023* 

* There is a difference in the two means at a significance level of 0.05. 
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As seen in Table 5.6, the test results show that the differences between MCDRC-

FIS and MCDRC-PRO are not statistically significant at the 95% confidence level 

for each performance measure in the low variation level. In the medium variation 

level, there is a difference in only the %NTJ performance measure at a significance 

level of 0.95. According to the confidence interval of the mean difference between 

MCDRC-FIS and MCDRC-PRO, it is concluded that MCDRC-PRO gives better 

solution than MCDRC-FIS for the %NTJ performance measure. But, there is no 

difference statistically between their results with respect to the other performance 

measures. Furthermore, the difference between MCDRC-FIS and MCDRC-PRO in 

the high level variation is statistically significant at the 95% confidence level for all 

performance measure, except for MQT. Considering the confidence intervals of the 

mean difference for MT, MFT and WIP, it can be said that MCDRC-PRO 

outperforms MCDRC-FIS. However, MCDRC-FIS outperforms MCDRC-PRO for 

%NTJ. When the variation levels of the system increase, the difference between 

MCDRC-FIS and MCDRC-PRO becomes more significant.  

 

Consequently, all analyses show that MCDRC-FIS and MCDRC-PRO provide 

flexible, efficient and quick solutions for the real time scheduling of DRC 

manufacturing systems. Both FIS and PROMETHEE modules of the proposed 

approaches successfully ensure the multi-criteria evaluation of the scheduling rule 

combinations. Both of them provide compromise solutions according to the decision 

maker’s preferences. 

 

As mentioned earlier, the performance of the PROMETHEE models depends on 

the parameters selected in the model development phase. These parameters are 

selected by the decision maker according to his/her preferences. In the next section, 

the sensitivity analysis of the parameters is performed for the PROMETHEE. 
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5.4.3 Sensitivity analysis for PROMETHEE 

 

In this section, the robustness of MCDRC-PRO is tested. Every multi-criteria 

method requires the determination of some parameters, e.g. some thresholds, and 

weights. It is important to know the influence they have on the rankings when small 

changes occur in their values, because decision makers generally cannot fix correctly 

their exact values (Brans et al., 1986). The robustness of the rankings must be 

demonstrated by analyzing the sensitivity in the change of the parameters. 

 

Besides the ‘‘base case’’, i.e. the parameters in Table 5.1, a number of sensitivity 

analyses should be carried out at the medium variation level. 

 

• The values of indifference and preference thresholds are increased with respect 

to the ‘‘basic solution’’ by +25%, +50% and +100%. 

 

• The values of indifference and preference thresholds are decreased with respect 

to the ‘‘basic solution’’ by -25%, -50% and -100%. 

 

Firstly, the thresholds of the indifference and preference are altered. Then, in the 

first scheduling point, the scheduling rule combination to be applied is selected 

through MCDRC-PRO. The simulation results of the experiments are compared to 

the ‘‘fixed scheduling approach’’ derived at the second scheduling point. A summary 

of the results obtained is given in Table 5.7. It can be seen from the table that small 

changes in the threshold values do not cause any change in the selected alternative 

rule combination. If considerable changes occur in the threshold values, a different 

scheduling rule combination may be selected. Therefore, it can be concluded that the 

small changes in the values of the thresholds do not have a strong effect on the 

results of MCDRC-PRO.  
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Table 5.7 Results of the difference thresholds (weights: 0.25, 0.20, 0.25, 0.15, and 0.15 for MT, 

%NTJ, MFT, MQT and WIP, respectively; preference function: linear)  

DVs Performance Measures Experiments* Indiference 
Threshold 

Preference 
Threshold v1 v2 v3 v4 MT %NTJ MFT MQT WIP 

B 1 5 2 1 4 1 16.23 34.80 93.10 5.06 14.78 
1 1.25 6.25 2 1 4 1 16.23 34.80 93.10 5.06 14.78 
2 1.5 7.5 2 1 4 1 16.23 34.80 93.10 5.06 14.78 
3 2 10 2 1 4 1 16.23 34.80 93.10 5.06 14.78 
4 0.75 3.75 2 1 4 1 16.23 34.80 93.10 5.06 14.78 
5 0.5 2.5 2 1 4 1 16.23 34.80 93.10 5.06 14.78 
6 0 0 2 1 4 1 16.23 34.80 93.10 5.06 14.78 

Fixed 2 3 4 3 22.61 34.98 105.87 8.01 18.45 
* B is base case, 1-2-3: Increased threshold by 25%, 50%, 100%, 4-5-6 : Decreased threshold by 25%, 
50%, 100% 

 

To show the effects of the weights on the performance of the PROMETHEE 

model, a second experiment is conducted. In order to reflect the relative importance 

of performance measures for different decision makers, different weight structures 

are generated. Table 5.8 shows the alternative solutions according to a decision 

maker’s point of view. As it is expected, the results show that different weight 

combinations may give different solutions at each decision point. 

 
Table 5.8 Results of the difference weights (Preference function: Linear, Indifference threshold: 1, 

Preference threshold: 5, DVs: decision variables)  

Weight DVs Performance Measures 
MT %NTJ MFT MQT WIP v1 v2 v3 v4 MT %NTJ MFT MQT WIP 
0.6 0.1 0.1 0.1 0.1 2 1 4 2 15.03 36.90 93.38 4.32 18.26 
0.1 0.6 0.1 0.1 0.1 2 2 7 3 17.49 29.63 91.48 4.60 14.17 
0.1 0.1 0.6 0.1 0.1 2 3 7 1 18.24 41.11 89.23 4.30 13.81 
0.1 0.1 0.1 0.6 0.1 2 2 4 1 16.12 41.09 89.48 4.14 13.87 
0.1 0.1 0.1 0.1 0.6 2 1 7 1 15.92 41.21 89.29 4.31 13.68 
0.2 0.2 0.2 0.2 0.2 2 3 7 1 15.74 41.11 89.23 4.30 13.81 
0.3 0.3 0.2 0.1 0.1 2 3 7 3 15.68 39.04 91.73 4.64 14.21 
0.35 0.2 0.35 0.05 0.05 2 3 4 1 15.47 40.97 89.37 4.73 14.84 

 
Furthermore, it should be pointed out that, for a given weight structure, there are 

several scheduling rule combinations that have PROMETHEE II net flow values 

close to those of the best scheduling rule combination. The results in Table 5.9 are 

obtained based on the base case described in Table 5.1. It should be noted that all of 
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the rule combinations in Table 5.9 can be selected for the next scheduling period, 

since all of them provide very close performances on all criteria.  
 

Table 5.9 Results of the best six alternatives 

Alternatives v1 v2 V3 v4 MT %NTJ MFT MQT WIP 
+φ  −φ  netφ  

81 2 1 4 1 16.23 34.80 93.10 5.06 14.78 0.824 0.047 0.777 
74 2 1 4 2 15.03 36.90 93.38 4.32 18.26 0.820 0.067 0.753 
58 2 2 4 1 16.12 41.09 89.48 4.14 13.87 0.815 0.068 0.747 
67 2 1 4 3 16.54 41.08 89.47 4.36 14.07 0.810 0.070 0.741 
53 2 2 4 2 17.18 40.98 90.32 4.36 14.03 0.813 0.080 0.733 
46 2 2 4 3 17.26 41.37 90.54 4.40 13.99 0.812 0.080 0.732 

 

It is obvious that a decision maker can find different solutions by using different 

weight structures that reflect her/his preferences. The results show that the 

appropriate selection of the parameters has a significant effect on the performance. 

Hence, the sensitivity analysis of the parameters should be performed at the 

developing phase of the PROMETHEE. 

 

5.4. Summary 

 

Scheduling of DRC manufacturing systems has inherently multi-criteria features.  

Decision makers may be interested in more than one performance measures 

simultaneously, such as mean flow time and mean tardiness. However, to the best of 

our knowledge, the multi-criteria real-time scheduling of DRC systems has not yet 

been studied. Therefore, effective methodologies that have the capability of 

evaluating and continually monitoring the performance of DRC manufacturing 

systems and selecting the appropriate scheduling rule combinations considering 

system changes are needed. 

 

In this chapter, a multi-criteria real time scheduler, MCDRC-PRO, was presented. 

This scheduler deals with the dynamic selection of appropriate set of scheduling 

rules with regard to multiple performance criteria of interest by integrating a 

simulation model, ANNs and a well known multi-criteria decision aid method, 

PROMETHEE. All analyses show that MCDRC-PRO provides flexible, efficient and 

fast solutions for the real time scheduling of DRC manufacturing systems. 
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As discussed in previous chapters, this research proposes three different real time 

scheduling procedures for DRC systems. In the next chapter, the third one, a fuzzy 

priority based real time DRC scheduler, is proposed that incorporates simulation, 

fuzzy sets and ANNs. 
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CHAPTER SIX 

A FUZZY PRIORTY RULE BASED REAL-TIME SCHEDULING 

APPROACH FOR DRC SYSTEMS 

 

6.1 Introduction 

 

As mentioned in earlier chapters, there are some shortcomings of dispatching 

rules (Subramaniam et al., 2000): (i) they do not consider all of the available 

resources at the same time, (ii) they do not allow for the use of multiple criteria in the 

scheduling process, (iii) their rigid structure excludes the use of other useful 

information that may be available for scheduling, (iv) there is no single universal 

dispatching rule, and the choice of a suitable dispatching rule depends on the nature 

of the scheduling problem and the performance measure of interest. 

  

MCDRC-FIS and MCDRC-PRO overcome the abovementioned shortcomings 

through dynamically selecting appropriate dispatching rules (DPRs), worker 

assignment rules and job routes to determine the best rule set within some 

predetermined sets with regard to multiple performance criteria of interest. The rule 

set with the best compromise performance is then applied in the shop floor until the 

next rescheduling point determined through either a certain time period or 

predetermined thresholds of the performance measures. However, they inherit the 

drawback of the fact that these predetermined sets may limit their performances, i.e. 

their performances are subject to the performances of the predetermined dispatching 

rule sets. 

 

To cope with the drawbacks above, many approaches based on fuzzy logic have 

been proposed for machine-only constrained systems. As discussed in Chapter 2, 

some of these studies use a fuzzy inference system (FIS) to prioritize and rank the 

alternative dispatching rules or routing alternatives, (e.g. see Geneste and Grabot, 

1997; Yu et al., 1999; Subramaniam et al.,2000; Caprihan et al., 2006), some of them 

perform multi-criteria evaluation of part dispatching rules through fuzzy arithmetic 

(Chan et al., 2002; Petroni and Rizzi, 2002), while some others develop a fuzzy 
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priority index to prioritize routing alternatives (Chan et al., 2002). Yet most studies 

deal with the FMS scheduling problem and focus on part dispatching and routing 

selection. To the best of our knowledge, a fuzzy-based scheduling approach has not 

been developed for DRC manufacturing systems. Furthermore, most of them do not 

consider multiple decision points simultaneously, and aim either to determine the 

part dispatching rule or to select the routing alternative. Different from these studies, 

Chan et al. (2002) propose a fuzzy decision system for an FMS to assign priorities to 

the parts waiting to be processed and to determine the parts routes. However, the 

authors did not provide any adaptive control scheme in their approach to allow the 

decision maker to alter his/her preferences. 

 

This chapter proposes an adaptive fuzzy-based real-time scheduling system to 

overcome the abovementioned difficulties. This approach, called MCDRC-Fuzzy, 

defines fuzzy priorities for the parts and routes considering multiple performance 

measures, instead of using standard dispatching rules and routing rules, and 

introduces novel “fuzzy where” rules. Moreover, instead of using traditional 

centralized and decentralized “when” rules, one set of “Sugeno type” rules is 

proposed. To the best of the author’s knowledge, the “fuzzy-where-rule” and “fuzzy-

when-rule” concepts have not been considered before in DRC research. 

 

Different from the previous fuzzy-based approaches, an indirect estimation 

procedure for the parameters specified by the decision maker, such as weights of 

fuzzy goals, is also developed. The system parameters are altered by the help of 

reverse NN metamodeling in order to satisfy the decision maker’s objectives. The 

use of the fuzzy priorities, routes, “where” and “when” rules provides a compromise 

solution that represents the decision maker’s point of view more realistically. 

 

The rest of the chapter is organized as follows. In section 6.2, a brief description 

of the proposed methodology is given. Section 6.3 is devoted to experimental studies. 

Finally, a chapter summary is given in section 6.4. 

 

 



 

 

153

6.2 A Fuzzy Priority Rule Based Real-Time Scheduling Approach for DRC 

Systems 

 

The methodology is illustrated in Figure 6.1. MCDRC-Fuzzy schedules the 

system continuously using the real time system status information. Fuzzy-based 

scheduler helps to define priorities of alternatives for scheduling decisions 

considering all of the traditional rules. Additionally, MCDRC-Fuzzy allows the 

decision maker to define desired performance measures for the next scheduling 

period. The parameters of the fuzzy scheduler are then updated using the ANN 

model. 
 

Fuzzy part 
dispatching rules 

Are  
the results 

satisfactory for 
decision 
maker? 

Y

N

Update the fuzzy 
parameter using 

NN MODEL 

Decide the 
priorities and 

Schedule system 

Fuzzy routing 
selection 

Fuzzy “where” 
rules 

Evaluation through fuzzy 
membership functions 

Fuzzy “when” 
rules 

Evaluation through fuzzy 
inference system 

Fuzzy Scheduler

Building 
ANN models 

DRC Manufacturing Shop Floor Simulator 

Shoop Floor Management

Database 
System state 
variables & 
Performance 
Measures & 

Job Data 

Online data 
collection 

Training 
Samples 

Current System Status 
Performance Measures 

Job Data 

Updated 
weights 

Performance 
 Measures 

Current 
weights 

Define desired 
performance 

measures 

Samples 
for 

Offline 
Training
&Testing 

 
Figure 6.1 The flow of the proposed methodology 
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As seen in Figure 6.1, three sub-modules exist in the methodology: (1) simulator, 

(2) ANN module, (3) fuzzy scheduler. The simulation module is the same as that of 

MCDRC-FIS and MCDRC-PRO. As mentioned in previous chapters, simulation is 

mainly used to generate sample data to train and test ANNs. The fuzzy scheduler 

module uses some fuzzy rules in guiding the scheduling process. Different from the 

previous studies, it realizes four multi-criteria scheduling decisions simultaneously. 

The ANN module must be built in the offline phase. Recall that ANN models were 

used to estimate performance measures generated by candidate DPR and worker 

assignment rule combinations at each decision point in MCDRC-FIS and MCDRC-

PRO. ANN models are also trained for reverse simulation metamodeling and used to 

update the parameters of the fuzzy membership functions of the fuzzy goals in 

MCDRC-Fuzzy. In the next section, brief descriptions of these modules are given. 

 

6.2.1 Simulator 

 

Recall that the simulator is used to create necessary data for training and testing 

ANNs and to represent the DRC shop floor in the experiments. In addition to the 

simulation models described in previous chapters, the simulation model developed in 

this chapter features real-time adaptive fuzzy scheduling. In other words, the fuzzy 

scheduler is embedded into the simulation model. The decisions about the jobs 

waiting to be processed in the queues, alternative routes of each job to be moved 

from one machine to another, when the workers should be transferred from one 

machine to another, and where the worker should move are evaluated in real-time. 

Although the simulator schedules production with the fuzzy scheduler module, it is 

also able to schedule production using traditional job dispatching rules, alternative 

routes and when and where rules.  
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6.2.2 ANN module 

 

In MCDRC-FIS and MCDRC-PRO, the efforts have been directed to develop 

direct simulation metamodelings through ANNs in order to estimate performance 

measures generated by candidate DPR rules and worker assignment rules at each 

decision point based on the system state. Contrarily, in MCDRC-Fuzzy, a reverse 

ANN model is used. In reverse simulation metamodeling approaches, contrarily to 

direct metamodeling approaches, the outputs of the simulation (performance 

measures) are used as the inputs and design parameters of the system as the outputs 

for the metamodel. 

 

The main advantage of the reverse simulation metamodeling approach is that it is 

less iterative than the direct simulation metamodeling approach (Nasereddin and 

Mollaghasemi, 1999). Once a metamodel is built, it is used for determining design 

parameters according to required performance measures determined by decision 

makers. However, in the direct simulation metamodeling approach, a simulation 

metamodel is built to determine the best design at each decision phase. Hence, it 

takes a longer time. The steps of the reverse ANNs developed are summarized in 

Figure 6.2. 
 

In MCDRC-Fuzzy, system parameters, system status variables, current system 

performance measures, and expected achievement levels of performance measures 

are taken as the input of the neural network model, and the parameters of fuzzy goals 

are taken as the output of the neural network model. By this way, parameters of the 

fuzzy priority functions are updated according to the decision maker’s aspiration 

levels (desired performance measures) for the next production period. 
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Figure 6.2 Basic steps of developing reverse ANN models 
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6.2.3 Fuzzy Scheduler 

 

In a DRC manufacturing system, generally there are four decision points (DPs). 

The first two arise when a part arrives in the system or a machine becomes idle, as in 

all manufacturing environments. When a machine becomes idle and more than one 

part awaits in the queue, a part has to be selected to be processed next (DP1). When a 

part releases the machine, the part should select its next route (DP2). The third and 

fourth DPs are special for DRC manufacturing systems and related to decisions on 

the timing of worker transfers (“when” rules, DP3) and the selection of the next work 

center (“where” rules, DP4). 

 

The proposed fuzzy scheduler includes two types of fuzzy based approaches. In 

the first approach, the fuzzy set theory is employed to model the compromises 

between criteria and membership functions to balance the elementary rules. In the 

second approach, a fuzzy inference model is developed. The first approach is used 

for selecting part routes (DP1), sequencing the parts for machining (DP2) and 

deciding which work centre a worker is to be transferred to (DP4). On the other 

hand, a FIS is defined to determine whether it is necessary to transfer a worker to 

another work center (DP3). It should be highlighted that fuzzy based scheduling 

approaches have not yet been proposed for DRC manufacturing systems. 

Furthermore, recall that the use of a fuzzy inference for “when” rules is also a 

novelty. 

 

The proposed fuzzy scheduling rules for each DP are discussed in the following 

subsections. 

 

6.2.3.1 Fuzzy Part Selection by Machines 

 

As mentioned before, MCDRC-FIS and MCDRC-PRO use dispatching rules for 

determining the sequence of the jobs for machining and provide some simplified 

guidelines. In the literature, numerous dispatching rules exist, each of which operates 

in such a way that only one objective is satisfied. For example, many studies show 
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that the shortest processing time (SPT) rule minimizes mean flow time (MFT), while 

the earliest due date (EDD) rule minimizes mean tardiness (MT). 

 

Recall that there are five performance measures (objectives) considered in this 

research, namely MFT, MT, percentage of number of tardy job (%NTJ), mean queue 

time (MQT), and work-in-process (WIP). Since the individual rules are often 

dependent on the selected performance criterion, the characteristics of the shop, or 

the jobs themselves (Caprihan et al., 2006), the proposed methodology applies fuzzy 

set theory to form aggregated fuzzy dispatching rules to minimize the 

abovementioned performance measures. In other words, the goal is to obtain a 

comprise priority to satisfy all objectives at some level. In order to determine the 

fuzzy priorities of job i to be processed on machine m, a fuzzy dispatching strategy is 

developed based on four input variables: the processing time of job i on machine m, 

the slack time of job i, the waiting time of job i in the input buffer of machine m, and 

the remaining processing time of job i. Note that each of these input variables is used 

in defining some elementary dispatching rules. One can satisfy all objectives 

simultaneously at some level by aggregating them. A fuzzy membership function is 

then set up for each input as follows to evaluate the contribution of the attributes of 

each job to be processed to the compromise solution: 

 

• For the processing time of job i: 
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where 

miP , is the processing time of ith job on mth machine,  

i is the job number and i = 1, 2,..., I 

m is the machine number and m = 1, 2,…, M 

r is the route number and r = 1, 2,…, R 
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Pmax is maximum processing time, 

Pmin is minimum processing time. 

 

• For the slack time of job i: 
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where 

Ddatei is due date of job i, 

Slacki  is Ddatei minus current time, 

Smax is maximum slack, 

Smin is minumum slack. 

 

• For the waiting time of job i: 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤

<<
−

−

≥

=

min

max,min
minmax

min,

max,

0

1

WWaitif

WWaitWif
WW
WWait

WWaitif

i

mi
mi

mi

wμ  (6.3) 

 

where 

Waiti, m is waiting time of job i in input buffer of machine m, 

Wmax is maximum waiting time, 

Wmin is minumum waiting time. 

 

• For the remaining processing time of job i: 
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where 

Ri is remaining processing time of job i, 

RPmax is maximum remaining time, 

RPmin is minimum remaining time. 

 

The fuzzy membership functions of these four inputs are illustrated in Figure 6.3. 

 

 
Figure 6.3 Membership functions of processing time (a), slack time (b), waiting time (c), 

remaining time (d) 

 

For each part in the queue, the membership functions provide individual fuzzy 

priorities in terms of all the inputs. To obtain a compromise fuzzy priority, these 

individual priorities should be aggregated. Chan et al. (2002) proposed a weighted 

additive approach to find the final membership of all alternative routings. The 
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weighted additive model selects the part with the maximum weighted sum of the 

achievement levels of the fuzzy goals as follows.  
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where 

Wj= weight of objective j; j=1,…,J; 

µi,j= membership of part i to goal j, 

µDPRi= final priority of part i. 

 
The part with max {µDPRi} is then selected. 

 

Up to date, numerous methods have been proposed to determine the weights of 

the objectives such as analytic hierarchy process (AHP) (Saaty, 1980), weighted least 

square method (Chu, Kalaba, & Spingarn, 1979), and the entropy method (Shannon, 

1948). Additionally, several fuzzy approaches have been developed to determine 

weights in a fuzzy environment. A detailed explanation of these approaches can be 

found in the work of Lai & Hwang (1994). 

 

It is clear that the weighted additive approach is fully compensatory. In this study, 

besides the weighted additive approach, two other aggregation functions, which have 

already been used in other multi-criteria decision making problems, are also 

proposed to find the fuzzy priority of parts. These functions are defined as follows: 

 

• Max-Max approach:  

The priority of part i: 

 ],....,,max[.... ,2,1,,2,1, JiiiJiiiDPRi
μμμμμμμ =∪∪∪=   

The part with max {µDPRi} is then selected. 

 

• “Fuzzy or” approach: 

The priority of part i: 
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where γ  is the coefficient of compensation defined within the interval [0,1]. The part 

with max { µDPRi} is then selected. 

 

It can easily be seen that while weighted additive approach is fully compensatory, 

Max-max approach does not allow that the goals with a high degree of membership 

are not traded off against the goals with a low degree of membership. On the other 

hand, “fuzzy or” approach involves both a compensatory operator and a non-

compensatory operator. It is clear that various fuzzy operators can be proposed for 

scheduling problems in the same manner. 

 

Each time a sequencing of parts needs to be obtained, MCDRC-Fuzzy evaluates 

the aggregated fuzzy priorities for each part in the queue. Then the part with the 

highest priority is selected to be processed. 

 

6.2.3.2 Fuzzy Routing Selection 

 

In the same manner with the fuzzy part selection, MCDRC-Fuzzy performs 

routing selection using an aggregated fuzzy membership function. In this case, the 

output variable is an aspiration level of the routing decision (µRSr), which defines the 

priority of route r. Each time a part needs to be dispatched, MCDRC-Fuzzy evaluates 

fuzzy priorities for each potential route given the four inputs: (i) the number of the 

parts in the queue of the next machine in route r, (ii) total processing time of all parts 

in the queue of the next machine in route r, (iii) utilization of the next machine in 

route r, (iv) the total remaining time of the part in route r. The route with the highest 

fuzzy priority is then selected as the target route of the part (similar as Chan et al., 

2002). In a similar fashion with the fuzzy part selection, one of the three types of 

aggregation functions can be used to find the final fuzzy priority. 
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Unlike most approaches, in which when a route is selected for a part, the route 

does not change during the simulation, e.g. see Chan et al., 2002, MCDRC-Fuzzy 

allows the route to change during the simulation according to the changes in the 

system state. This improves the scheduling flexibility, hence its performance. 

 

To perform the routing selection, the membership functions of the goals should be 

defined as follows: 

 

• For the number of the parts in the queue of the next machine in each 

alternative route: 
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where 

NQr is number of parts in the next queue in route r 

NQmax is maximum number of parts in queue 

NQmin is minimum number of parts in queue 

 

• For the total processing time of all parts in the queue of the next machine in 

route r: 
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where 

TPTr is total processing time of all parts (including the processing time of the 

job to be routed) in the queue of the next machine in route r 

TPTmax is maximum value of total processing time 
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TPTmin is minimum value of total processing time 

 
• For the average utilization of the next machine in each alternative route: 
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where 

UTIr is average utilization of the next machine in route r, 

NQmax is maximum utilization, 

NQmin is minimum utilization. 

 
• For the remaining processing time of the part being processed in each 

alternative route: 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<
−
−

≤

=

max

maxmin
minmax

max

min

0

1

RTRTif

RTRTRTif
RTRT
RTRT

RTRTif

r

r
r

r

RTr
μ  (6.10) 

 

where 

RTr is the remaining processing time of the part being processed in route r, 

RTmax is maximum remaining processing time of the part, 

RTmin is minimum remaining processing time of the part. 

 
The aggregated membership function is then calculated by using one of the 

three types of aggregation functions explained in section 6.2.3.1. 
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6.2.3.3 Fuzzy “Where” Rule 

 

As discussed before, the appropriate selection of worker assignment rules in 

addition to dispatching rules is one of the most important decisions in DRC 

manufacturing systems. “Where” rules are used to select the department to which the 

worker will be transferred. Recall that an appropriate “where” rule is selected from a 

list of candidate rules in MCDRC-FIS and MCDRC-PRO based on the prevailing 

conditions in the system. These rules are LNQ (the work center with the most jobs in 

queue), LWT (the work center with the job with the longest waiting time in queue), 

MTPT (the work center with the minimum total processing time and traveling time), 

EDDS (the work center with the job with the earliest due date). However, similar to 

job DPRs in machine-only constrained manufacturing systems, it has been indicated 

that the efficiency of the worker assignment rules highly depends on the performance 

criteria of interest and on the system state conditions. However, just as job DPRs, 

there is no worker assignment rule that is globally better than all the others. 

Therefore, the proposed fuzzy scheduler would be a good alternative to decide which 

machine is selected by a worker to be transferred. To the best of our knowledge, a 

fuzzy “where” rule is a novelty in DRC research. 

 

Each time a worker is ready to be transferred, MCDRC-Fuzzy evaluates fuzzy 

priorities for each potential machine based on the four inputs: the number of the parts 

in the queue of machine m, the longest waiting time of the parts in this queue, the 

sum of the total processing times of the parts in this queue and the transfer time of 

the worker to machine m, and the earliest due date of the parts in this queue. The 

machine with the highest fuzzy priority is then selected as the next machine the 

worker will be transferred to. In a similar fashion with the fuzzy part selection and 

route selection, one of the three types of aggregation functions can be used to find 

the final fuzzy priority. 

 

Membership functions of the fuzzy goals can then be defined as follows: 
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• For the number of the parts in the queue of machine m: 
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where 

NQm is number of parts in the queue of mth machine 

NQmax is maximum number of part in queue 

NQmin is minimum number of part in queue 

 
• For the longest waiting time of the parts in the queue of machine m: 
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where 

WaitM is longest waiting time of jobs in the input buffer of machine m 

Wmax is maximum waiting time 

Wmin is minumum waiting time 

 

• For the sum of the total processing time of the part waiting in the queue of 

machine m and transfer time of the worker to machine m 
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where 

TPT2m is the sum of the total processing time of the part waiting in the queue 

of machine m and traveling time of the worker to machine m, 

TPT2max is maximum value of the sum of the of total processing time of the 

part waiting in the queue of machine m  and traveling time of worker to machine 

m 

TPT2min is minimum value of the sum of total processing time of the part 

waiting in the queue of machine m and traveling time of worker to machine m. 

 
• For the earliest due date of the parts in the queue of machine m: 
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where 

SLi,m is slack time of the job i with earliest due date in the input buffer of 

machine m, 

SLmax is maximum slack time, 

SLmin is minimum slack time.   

 
The aggregated membership function is then defined through one of the three 

types of aggregation functions explained in previous sections. In this methodology, 

each aggregated priority membership function is calculated at each decision point to 

schedule the jobs and operators dynamically. 

 

6.2.3.4 Fuzzy “When” Rule 

 

As mentioned before, “when” rules are used to dictate the frequency of worker 

transfers (Kher, 2000). The most commonly used “when” rules are the centralized 

and decentralized rules. The decentralized “when” rule may be less flexible 

compared to the centralized rule (Kher and Fry, 2001) because it considers worker 
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transfers only when the work centre becomes idle. In this research, a novel fuzzy 

“when” rule is also proposed which lies in between the decentralized and centralized 

rule. 

The proposed fuzzy “when” rule is based on Sugeno type FIS and aims to answer 

the question of when it is necessary to transfer a worker to another work center. The 

use of a fuzzy inference in determining when to transfer a worker is also a novelty. 

 

The Sugeno type FIS considers two linguistic variables: the number of the jobs in 

queue (NQ) and the urgency of the jobs in queue (UQ). These variables take three 

imprecise values: low, medium and high. Their membership functions are given in 

Figure 6.4. 

 

 
low medium high 

1 

0 

μ 

NQ 

low medium high 
1 

0 

μ

UQ 
b) a) 

 
Figure 6.4 Fuzzy membership functions to represent the number of jobs in queue (a) 
and the urgency of jobs in queue (b). 

 

Recall from chapter 3 that the antecedent of Sugeno type FIS involves some 

linguistic variables and the consequent is a crisp action with associated weights. 

Therefore, there are two crisp consequences: transfer (T) or do not transfer (DNT). 

Since each of NQ and UQ has three states, the number of the total rules is nine. Table 

6.1 gives these rules. 

 
Table 6.1 Fuzzy rules 

  Fuzzy Rules 
      k     
  1 2 3 4 5 6 7 8 9 
IF NQ Low Low Low Medium Medium Medium High High High 
AND UQ Low Medium High Low Medium High Low Medium High 
THEN  T DNT DNT DNT DNT DNT T T DNT 
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Since MCDRC-Fuzzy uses a zero order Sugeno model, the constant output value 

(zk) of making “transfer (T)” decision is set to one while the constant value (zk) of 

making “do not transfer (DNT)” decision is set to zero (see figure 6.5). The output 

level of each rule is weighted by the firing strength wk of the rule (Matlab toolbox, 

2007). The firing strength of each rule can be calculated using “and operator” as 

follows: 

 

)}(),(min{ uqnqw UQNQk μμ= , where µNQ and µUQ are the membership functions 

for inputs NQ and UQ, respectively. The final output (FO) is the weighted average of 

all the outputs of the rules, defined as  
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Decision D is then defined as follows: 
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Figure 6.5 The proposed fuzzy model framework for fuzzy “when” rule 
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An illustrative case study is given in the next section to demonstrate the 

methodology and to address some issues. 

 

6.3 Experimental Studies 

 

The issues addressed in the experiments are: 

 

a) Does each of fuzzy part selection, fuzzy routing selection, fuzzy “where” 

and fuzzy “when” rules have an impact on the performance measures? 

 

b) Does MCDRC-Fuzzy outperform MCDRC-FIS and MCDRC-PRO? 

 

c) Does the proposed “max-max” and “fuzzy or” aggregation functions 

outperform the weighted additive approach? 

 

d) Does MCDRC-Fuzzy also perform well under different situations such as 

multi level flexible and heterogeneous workers? 

  

e) Can the performance of MCDRC-Fuzzy be improved by the help of ANNs 

by updating the parameters of fuzzy functions? 

 

6.3.1 Experiment 1 – the performances of fuzzy rules versus elementary rules 

 

Hypothesis 1: Since the proposed fuzzy scheduler assigns priorities to parts, 

routes and machines based on the conditions prevailing in the system, its 

performance cannot be inferior to other dispatching rules, route selection rules or 

worker assignment rules. 

 

To verify hypothesis 1, the individual performances of fuzzy rules are compared 

with those of the elementary rules. First of all, the performance of the fuzzy part 

dispatching rule (FDPR) is compared with those of the traditional dispatching rules 

in terms of the five performance measures. In order to find the final fuzzy priorities 
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of the parts, the weighted additive approach is used with a weight structure of (0.30, 

0.30,0.20, 0.20) for processing time, slack time, waiting time and remaining 

processing time objectives,  respectively. In this comparison, a rule combination of 

233 (v1=2 (decentralized), v2=3 (MSPT), v4=3 (LAUF)) is selected for other 

decision points respectively; i.e. the “when” rule, the “where” rule and route 

selection rule. These rules are fixed in the first experiment.  

 

Eight simulation runs, seven for the traditional dispatching rules and one for the 

fuzzy rule, are conducted over a period of 50,000 hours under the medium variation 

level. The results are illustrated in Figure 6.6. Duncan’s multiple range test  and 

Fisher least significant difference (LSD) test were used to compare traditional 

dispatching rules and fuzzy dispatching rule. The mean differences were separated 

with Duncan’s test at 0.1% level of significance for each performance measures, as 

can be seen in Table 6.2 - 6.6. In the tables, different groups show that there are 

significant differences between pairs of the mean of DPRs. In addition to the 

multiple range test, the results of Fisher’s LSD test are given in Appendix B. 
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Figure 6.6 Comparison of different part dispatching rules 

 

Table 6.2 Duncan’s Multiple Range Test for MT (Subset for alpha = .01) 
Duncan Group  

V3 N 1 2 
Fuzzy-DPR 20 15.44  
RPROTIME 20  22.45 
SPT 20  23.03 
EDD 20  24.89 
MST 20  25.05 
CRT 20  25.09 
FIFO 20  25.44 
CRT’ 20  26.84 

Sig.  1.000 .162 
 

Table 6.3 Duncan’s Multiple Range Test for %NTJ 
Subset for alpha = .01   

V3 N 1 2 3 
Fuzzy-DPR 20 29.3862   
RPROTIME 20  44.71  
SPT 20  46.96 46.96 
EDD 20  51.69 51.69 
CRT2 20  51.92 51.92 
MST 20  52.22 52.22 
FIFO 20  52.81 52.81 
CRT 20   53.40 

Sig.  1.000 .015 .057 
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Table 6.4 Duncan’s Multiple Range Test for MFT 
Subset for alpha = .01  

V3 N 1 2 3 
Fuzzy-DPR 20 91.54   
RPROTIME 20  111.32  
SPT 20  112.56 112.56 
EDD 20  118.96 118.96 
FIFO 20  119.29 119.29 
MST 20  119.29 119.29 
CRT 20   119.92 
CRT2 20   120.41 

Sig.  1.000 .010 .013 
 

Table 6.5 Duncan’s Multiple Range Test for MQT 

Subset for alpha = .01  
V3 N 1 2 3 

Fuzzy-DPR 20 4.67   
RPROTIME 20  6.43  
SPT 20  6.65 6.65 
EDD 20  7.85 7.85 
MST 20  7.91 7.91 
FIFO 20  7.91 7.91 
CRT 20   8.03 
CRT2 20   8.12 

Sig.  1.000 .015 .018 
 

Table 6.6 Duncan’s Multiple Range Test for WIP 

Subset for alpha = .01  
V3 N 1 2 

Fuzzy-DPR 20 14.79  
RPROTIME 20  19.61 

SPT 20  19.84 
EDD 20  20.96 
FIFO 20  21.02 
MST 20  21.02 
CRT 20  21.14 

CRT2 20  21.22 
Sig.  1.000 .018 

 

The Duncan’s test and LSD test show that there are significant differences 

between traditional dispatching rules and the fuzzy DPR. The results can also be seen 

in Figure 6.6.  All the results demonstrated that the fuzzy scheduler outperforms the 

other dispatching rules with respect to all criteria. Note that each of the traditional 

dispatching rules considers only one criterion, while the fuzzy scheduler considers all 

the criteria. For example, the SPT rule considers only the part with the shortest 

processing time, and EDD the part with earliest due date. The mean tardiness and 

mean flow time benefited the most from the fuzzy approach. 
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In order to investigate the performance of the fuzzy routing selection, each 

combination of the route selection rules is simulated using each of these rules in turn. 

During these experiments, the other decision variables are set to the rule combination 

of 234 (v1=2 (decentralized), v2=3 (MSPT), v3=4 (RPT)) for the “when” rule, 

“where” rule and part dispatching rule, respectively. To find the final fuzzy priorities 

of the alternative routes, the weighted additive approach is used with a weight 

structure of (0.30, 0.30, 0.20, 0.20) for the number of parts in queue, sum of the total 

processing time and transfer time, utilization, and remaining processing time 

objectives, respectively. 

 

 
Figure 6.7 Comparison of different route selection rules 

 

The results in Figure 6.7 highlight the superiority exhibited by the fuzzy route 

selection over other traditional rules. The results of Duncan’s and Fisher’s LSD tests 

given in Appendix B also confirm these results. These results are in harmony with 
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the findings in the related literature. Some researchers also indicate that fuzzy based 

part dispatching rules (e.g. see Tedford and Lowe, 1999; Chan et al., 2002; Canpolat 

and Gundogar, 2004; Chan et al., 2003) and fuzzy route selection rules (e.g. see Chan 

et al., 2002; Chan et al., 2003; Sirino et al., 2006) outperform the traditional rules. 

However, recall that fuzzy worker assignment rules have not yet been developed for 

DRC systems. Therefore, the analysis of the fuzzy worker assignment rules is the 

major concern in this section. 

 

Recall that this chapter proposes a novel fuzzy “where” rule for DRC systems 

through the combination of the four important criteria considered by the traditional 

“where” rules separately. These are the number of parts in the queue of machine m, 

the longest waiting time of the parts in this queue, the sum of the total of the 

processing times of the parts in this queue and transfer time of the worker to machine 

m from this machine, and the earliest due date of the parts in this queue. It is clear 

that to apply a balance between the elementary rules, these criteria should be 

aggregated through a function. Similar to the part and route selection, the weighted 

additive approach is used for the aggregation with a weight structure of (0.30, 0.20, 

0.30, 0.20). 

 

Figure 6.8 shows a comparison of the multi-criteria performance measures of the 

traditional “where” rules with the results of MCDRC-Fuzzy. The proposed fuzzy 

“where” rule outperforms other conventional “where” rules in terms of all criteria. 

An important advantage of the proposed fuzzy “where” rule is that it adapts to 

changes in the system. 

 

While the conventional “where” rules perform relatively well in some criteria, 

they yield poor performance on the other criteria. For example, the longest waiting 

time (LW) rule provides good results on MQT and %NTJ while it is the worst 

performer on the other criteria. On the other hand, the proposed fuzzy “where” rule 

improves the performance of the DRC system in terms of all criteria. 
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Figure 6.8 Comparison of different “where” rules 

 

Finally, to show the effectiveness of the proposed fuzzy “when” rule, it is 

compared with two traditional “when” rules, centralized and decentralized. The 

results are in Figure 6.9. As mentioned before, the proposed fuzzy “when” rule is 

based on Sugeno-type FIS model and operates using pre-defined fuzzy rules. These 

rules involve two linguistic variables: number of parts in queue and urgency of jobs 

in queue. Therefore, the proposed fuzzy “when” rule incorporates information about 

both urgency of parts and the number of parts while the traditional rules consider 

only certain conditions. 
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Figure 6.9 Comparison of different “when” rules 

 

The results in Figure 6.9 highlight that the proposed fuzzy “when” rule works 

superior to both centralized and decentralized rules in all the performance measures. 

The major advantage of the fuzzy “when” rule is that it can operate as both 

centralized and decentralized rules according to prevailing shop conditions. If the 

number of parts in the queue is high and some of them are urgent, then the fuzzy 

“when” rule operates in a similar fashion with the decentralized rule and do not allow 

the worker transfer. On the other hand, if the number of parts in the queue is low and 

their average urgencies are also quite low, then the fuzzy “when” rule operates as the 

centralized rule and allows the worker to be transferred before the input buffer of the 

machine becomes empty. It should be pointed out that the decentralized rule works 

better than the centralized rule in terms of MT, MFT, MQT and WIP objectives. The 

centralized rule only outperforms the decentralized rule in %NTJ. It is frequently 
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reported in the literature that, in a DRC environment with transfer delays, the 

decentralized “when” rule is recommended instead of the centralized rule. The results 

of Duncan’s and Fisher’s LSD tests given in Appendix B also confirm these results. 

Yet this study shows that the proposed fuzzy rule outperforms both rules. 

 

6.3.2 Experiment 2 – Comparison of MCDRC-Fuzzy with MCDRC-FIS and 

MCDRC-PRO approaches 

 

Since the previous experiments show that MCDRC-PRO and MCDRC-FIS 

outperform Multi-FIS and all static scheduling approaches, these approaches are not 

considered in this comparison. 

 

Recall from Chapter 4 that three variation levels were considered in the 

experiments. In this experiment, low, medium and high variation levels are also 

considered in comparing the proposed approaches. Furthermore, during the 

experiments, the scheduling rule combinations obtained by MCDRC-FIS and 

MCDRC-PRO are updated at every 5000 minutes. Although MCDRC-Fuzzy also has 

the capability of updating the parameters through the reverse ANN module according 

to changes in the system, it is assumed that the parameters have been set up in the 

beginning and fixed until the next scheduling point. Note that, in this experiment, 

MCDRC-Fuzzy utilizes the fuzzy scheduler for all decision points simultaneously. 

 

The summary results of the scheduling methods under low, medium and high 

variation levels are in Table 6.7, 6.8 and 6.9, respectively, and in Figure 6.10, 6.11 

and 6.12, respectively. While the figures show the results of each approach at each 

rescheduling point, the tables demonstrate the percentage improvements achieved by 

MCDRC-Fuzzy relative to MCDRC-FIS and MCDRC-PRO at the end of each 

rescheduling period. 
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Table 6.7 % improvement achieved by MCDRC-Fuzzy relative to MCDRC-FIS and MCDRC-PRO 

for VR=L  

 Rescheduling Performance Measures 
 Points MT %NTJ MFT MQT WIP 

1 39.53 20.93 23.77 33.52 29.79 
2 43.19 19.38 26.71 35.95 21.88 
3 29.71 18.48 19.16 24.13 17.17 
4 24.83 16.67 16.25 19.18 14.85 
5 14.46 14.80 11.79 10.32 9.64 
6 9.15 14.57 9.50 5.51 8.96 
7 11.96 15.55 10.68 7.79 9.83 
8 28.61 21.88 18.53 24.81 18.70 

MCDRC-
FUZZY 

vs 
MCDRC-

FIS 

9 31.99 22.47 20.23 27.26 19.48 
1 39.53 20.93 23.77 33.52 29.79 
2 37.96 17.70 23.45 32.62 20.88 
3 29.95 16.76 18.93 23.43 18.90 
4 33.77 16.39 20.52 26.34 19.99 
5 25.93 14.55 16.74 19.45 15.19 
6 21.68 14.56 14.68 15.72 14.17 
7 21.89 15.14 14.75 15.75 14.08 
8 23.29 15.36 15.18 16.48 14.82 

MCDRC-
FUZZY 

vs 
MCDRC-

PRO 

9 25.58 15.74 16.18 18.87 17.04 
 

These results are in agreement with the results obtained in the previous section 

where it was noted that individual fuzzy rules outperform each traditional rule in 

terms of all criteria. Since the performances of MCDRC-FIS and MCDRC-PRO are 

subject to those of the traditional rules, MCDRC-Fuzzy outperforms these 

approaches for each variation level in terms of all criteria. Results of Duncan’s 

multiple range tests and the LSD test are also given in Appendix B. Test results show 

MCDRC-Fuzzy outperforms these approaches for each variation level in terms of all 

criteria except for MT and MQT for low variation level and MQT for high variation 

level. In the low variation level, the MT and MQT performance in MCDRC-PRO 

and MCDRC-Fuzzy are not statistically distinguishable. Additionally, differences 

between performance of MQT for MCDRC-FIS and MCDRC-Fuzzy are not 

statistically significant for the high variation level. However, note that the variation 

level of the system parameters could affect the system performance. MCDRC-FIS 

and MCDRC-PRO show similar performance for all performance measures in all 

variation levels.  
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Table 6.8 % improvement achieved by MCDRC-Fuzzy relative to MCDRC-FIS and MCDRC-PRO 

for VR=M  

 Rescheduling Performance Measures 
 Points MT %NTJ MFT MQT WIP 

1 51.98 21.55 19.35 30.14 18.84 
2 36.69 22.34 17.36 24.92 16.59 
3 36.69 23.97 17.49 24.36 17.04 
4 30.52 23.44 16.51 21.82 16.44 
5 34.96 23.74 17.84 25.03 17.73 
6 35.45 22.43 17.94 26.45 17.77 
7 36.26 21.78 18.07 27.05 18.12 
8 35.59 22.04 18.04 27.28 17.88 

MCDRC-
FUZZY 

vs 
MCDRC-

FIS 

9 36.27 22.15 18.23 27.73 18.08 
1 51.98 21.55 19.35 30.14 18.84 
2 39.12 20.60 17.53 25.37 16.86 
3 35.88 21.35 17.26 25.17 16.76 
4 32.87 21.60 16.81 22.83 16.77 
5 33.02 21.70 17.19 24.18 17.46 
6 34.75 21.15 17.66 25.43 17.46 
7 37.51 20.87 18.22 26.95 18.41 
8 38.96 20.67 18.56 27.86 18.45 

MCDRC-
FUZZY 

vs 
MCDRC-

PRO 

9 39.68 20.65 18.76 28.67 18.77 
 

Table 6.9 % improvement achieved by MCDRC-Fuzzy relative to MCDRC-FIS and MCDRC-PRO 

for VR=H  

 Rescheduling Performance Measures 
 Points MT %NTJ MFT MQT WIP 

1 33.87 9.13 22.27 36.07 23.89 
2 34.72 9.52 22.84 38.33 20.05 
3 24.03 10.08 17.95 23.79 16.71 
4 21.83 9.69 16.62 19.76 16.51 
5 20.44 9.01 16.00 18.13 14.59 
6 19.79 9.12 15.42 17.51 12.77 
7 20.98 10.37 16.04 17.64 12.09 
8 15.67 10.94 13.37 11.73 13.23 

MCDRC-
FUZZY 

vs 
MCDRC-

FIS 

9 19.19 11.16 15.33 16.07 15.10 
1 33.87 9.13 22.27 36.07 23.89 
2 34.72 9.52 22.84 38.33 20.05 
3 25.13 9.66 18.46 24.27 18.06 
4 22.28 9.38 16.79 20.67 16.41 
5 20.30 8.60 15.76 17.14 14.84 
6 22.26 8.55 16.69 19.78 15.59 
7 24.04 9.55 17.60 21.65 16.08 
8 22.21 10.40 16.88 20.09 16.66 

MCDRC-
FUZZY 

vs 
MCDRC-

PRO 

9 22.65 10.67 17.22 20.29 16.43 
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Figure 6.10 Simulation results for VR=L 

MT

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9
MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

%NTJ

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9

MCDRC-FIS
MCDRC-PRO
"MCDRC-FUZZY"

MFT

85

95

105

115

125

135

145

155

1 2 3 4 5 6 7 8 9
MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

MQT

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

WIP

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9
MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY



 

 

182

 
Figure 6.11 Simulation results for VR=M 

 
 

Although MCDRC-Fuzzy provides better results in all cases, the difference 

between the performance measures is more significant in the medium variation level. 

This is probably because it is relatively easy to achieve a good performance for all 

the proposed approaches in the low variation. Additionally, the high variation in the 

system parameters may result in a progressively increasing deterioration in the 

system performance under all scheduling approaches. However, the results obtained 

in previous chapters and this chapter show that the proposed approaches provide 

robust performances in all variation levels. 
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Figure 6.12 Simulation results for VR=H 

 

 

It should also be indicated that the performance of MCDRC-Fuzzy can be 

improved in real-time by updating its parameters according to the changes in the 

system state. This issue will be discussed in detail in further sections. 

 

Although the fuzzy approach outperforms MCDRC-FIS and MCDRC-PRO, one 

cannot easily conclude that it should be selected as the scheduling strategy for DRC 

systems. The proposed approaches should also be compared considering the 

applicability criteria. MCDRC-FIS and MCDRC-PRO require the extensive 

information about the system status only at each rescheduling point. On the other 
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performance. Building such a highly automated information system may be very 

expensive. This is the major drawback of MCDRC-Fuzzy like other real-time 

scheduling approaches. 

 
 6.3.3 Experiment 3 – Comparison of Different Aggregation Functions 

 

As mentioned before, MCDRC-Fuzzy needs an aggregation function to obtain 

final priorities for part selection, route selection and “where” rule decisions. In this 

study, besides the weighted additive approach, “max-max” and “fuzzy-or” 

approaches are proposed as the alternative aggregation functions for the evaluation of 

alternative scheduling decisions. During this experiment, the efficiencies of the 

aggregation functions are investigated in the medium variation level. 

 

Recall that the weighted additive and max-max aggregation functions are special 

cases of the “fuzzy or” function. In the “fuzzy or” function, if one sets the coefficient 

of compensation γ  to zero, the function becomes the weighted additive one. 

Contrarily, the “fuzzy or” function can be used as the max-max function by setting 

the value of γ  to one. Figure 6.13 shows the relative performance of the fuzzy 

approach for different values of γ . 
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Figure 6.13 The results of MCDRC-Fuzzy for different values of γ . 

 

In the light of the results in Figure 6.13, it can be pointed out that MCDRC-Fuzzy 

provides different solutions for different values of γ . However, it should be indicated 

that MCDRC-Fuzzy with γ =0.1 gives better results in almost all objectives, except 

for %NTJ, than the weighted additive approach ( γ =0). This shows that the use of 

“fuzzy or” function provides a promising alternative framework in solving scheduling 

problems of DRC systems. 
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6.3.4 Experiment 4 – Testing the performance of MCDRC-Fuzzy in the case of 

varying worker efficiency 

 

As mentioned before, in a DRC system, the number of workers is typically less 

than the number of available machines, and workers are cross trained so that they can 

process jobs in different departments (Kher, 2000). In this study, so far, it is assumed 

that each worker has the ability to work at each work center, and workers have 

homogenous efficiencies. However, in most real-life DRC cases, workers can 

process jobs with varying efficiency levels, and some workers are unable to work at 

some work centers.  The objective of this comparison is to examine the claim that 

MCDRC-Fuzzy, which uses fuzzy rules in the scheduling of DRC systems, achieves 

better results even in the case of varying worker efficiency than the traditional 

“when” and “where” rules. 

 

In order to perform this experiment, small changes have been made in the 

simulation model of the manufacturing system. Varying efficiency levels are defined 

for each worker and the processing times of the parts are updated according to a new 

worker efficiency structure (see Appendix A). Furthermore, an additional “where” 

rule, which is the most frequently used method in such cases, is incorporated into the 

model. This rule, called “Most efficient (ME)”, assigns the workers to those work 

centers where they are most efficient (Treleven, 1989). The fuzzy membership 

function is also defined for this rule and embedded into the fuzzy scheduler module.   

 

In DRC research with transfer delays, the decentralized “when” rule is 

recommended (Kher, 2000; Malhotra and Kher, 1994), while the centralized rule is 

recommended if workers process parts with varying efficiency levels (Kher, 2000; 

Malhotra and Kher, 1994). Some prior studies have also recommended the “most 

efficient where” rule in the case of both transfer delay and varying worker efficiency 

levels (Malhotra and Kher, 1994). Recall that the case problem considered in this 

section models both transfer delays and varying worker efficiency levels. Therefore, 

in order to show the efficiency of MCDRC-Fuzzy in such cases, it is compared with 

two alternatives that combine recommended traditional rules. The first rule 
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combination (DC) includes decentralized “when” rule, ME “where” rule, RPT part 

dispatching rule and LAUF route selection rule. In the second alternative (C), the 

centralized control is the “when” rule. The comparison is performed for the medium 

variation level. The results are in Figure 6.14. 

 

 
Figure 6.14 Comparison of MCDRC-Fuzzy with the traditional rule pairs 

 

As can be remembered, in the base case of this dissertation that models only 

transfer delays, the decentralized “when” rule provided a better performance than the 

centralized rule in terms of all criteria. However, when both transfer delays and 

worker efficiencies are considered, the traditional rule pair that includes the 

centralized rule outperforms those including the decentralized rule in the four 

criteria. On the other hand, MCDRC-Fuzzy, which includes fuzzy “when” and 

“where” rules, significantly improves the DRC system performance. 
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6.3.5 Experiment 5 – Improving the performance of MCDRC-Fuzzy through 

ANNs 

 

The results of the experiments discussed above reveals that the performance of 

MCDRC-Fuzzy can be improved by changing its parameters. Changing the weights 

of fuzzy goals is a possible way. However, some issues then arise related to adjusting 

the weights. At this point, this research proposes the use of reverse ANNs to 

determine the weights of fuzzy goals considering the changes in the system states 

and the decision makers’ aspiration levels. 

 

In order to build the ANN model, DRC manufacturing systems is simulated for a 

lengthy period, which consists of a sequence of short production intervals, i.e. 5000 

minutes. Data collection is performed in two steps. In the first step, the simulation 

run is executed for a number of scheduling periods using a random sequence of the 

weights of fuzzy goals. The number of scheduling periods and the weights of fuzzy 

goals for each period are determined arbitrarily. This step is executed to reach a 

random point in DRC manufacturing system state space (e.g. Arzi and Iaroslavitz, 

1999). In the second step, the values of the current system status, the performance 

measures and the current weights of the fuzzy goals are observed at the end of the 

previous production interval, i.e. period t-1. A new set of weights of fuzzy goals for 

the next production interval, i.e. period t, is then randomly selected. At the end of the 

current production interval, the system status at the end of the previous production 

interval, i.e. period t-1, the performance measures at the end of period t and the 

weights of the fuzzy goals used in the period t are collected.  In the same manner, 

2200 data sets, which consist of the combination of the weights of fuzzy goals, are 

randomly generated. During the production intervals, the current and next 

combination of weights are also randomly selected. 
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1760 and 220 of these 2200 data set are used to train and cross validation of the 

ANN models, respectively. NeuroSolutions 4.0 software is used to develop the ANN 

models. The backpropagation learning algorithm is applied to train the ANN models. 

When the number of learning epochs is greater than 20,000 or the mean square error 

is less than 0.0001, the learning process stops. The remaining 220 combinations are 

used for the testing. 

 

As discussed before, the performance of neural networks depends on several 

design parameters, e.g. the number of hidden layers, the number of nodes in each 

hidden layer, the transfer function type, the learning rate, and momentum rate. Some 

error measures, e.g. mean error (ME), mean absolute error (MAE), mean squared 

error (MSE), root MSE (RMSE), percentage error (%error), are calculated for the 

validity of the neural network. The test and design parameters of the trained ANN 

models are given in Table 6.10. 

 
Table 6.10 Design parameter and test result for the ANN model 

# of Hidden Layer # of neuron in 
Hidden Layer ME MAE MSE RMSE % Error 

1 60 -0.02 0.01 0.00 0.03 3.28 
 

To update the parameters at each state, the reverse ANN model, which has already 

been trained and tested, is run with the inputs of the system parameters, system status 

variables, current system performance measures and new aspiration levels of each 

performance measure. The outputs are the new value of weights of the fuzzy goals. It 

is assumed that the decision maker updates the parameters at the beginning of each 

production interval, i.e. at each 5000 minutes. 

 

In order to demonstrate how the performance of MCDRC-Fuzzy can be improved 

through reverse ANNs, a hypothetic case problem with fixed system parameters is 

considered. Different from the case problems considered in the previous sections, the 

system parameters, i.e. K, A and N, is fixed to 2, 4.5 and 10, respectively, in order to 

be able to show the effects of the weights of fuzzy goals on the system performances 

more clearly. Furthermore, since the primary interest is the effect of the current 

weights of fuzzy goals on the system performance during the current production 
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interval, the performance measures observed only in the current interval are 

considered instead of the cumulative ones. The results of the proposed approach, 

called FuzzyD-NN, are compared with those of two different methods.  

 

In the first method, it is assumed that once the parameters of MCDRC-Fuzzy are 

determined, it is not allowed to change these parameters during the whole scheduling 

horizon (FuzzyS). The same set of parameters with those used in previous 

experiments is also used in this situation. It should be noted that it is already verified 

that these parameters provide superior performance over all other approaches. In the 

second method, the weights of the fuzzy goals are randomly changed at the 

beginning of each production interval. Two randomly selected weight structures, 

called FuzzyD-RND1 and FuzzyD-RND2, are compared with FuzzyD-NN.    

 

In FuzzyD-NN case, it is assumed that the decision maker updates the parameters 

at the beginning of each production interval. However, it is possible that the 

rescheduling points can be determined by the decision maker with continuous review 

approach. In such cases, if the decision maker is satisfied with the current 

performance, he does not need to update the parameters during the scheduling 

period. During the experiments, it is assumed that the decision maker set the 

aspiration levels of the goals to the best values of the performance measures obtained 

during the simulation experiments. The initial values of the parameters are the same 

set of parameters with those used in previous experiments. The comparative results 

are given in Figure 6.15 and Table 6.11. 
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Figure 6.15 Comparison of the dynamic and fixed weights 
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Table 6.11 Simulation Results for Alternative Weight Update Methods 

Method Time MT %NTJ MFT MQT WIP 
25000 74.95 89.31 141.13 15.41 32.08
30000 72.29 86.89 137.60 14.70 30.54
35000 78.49 88.71 144.16 15.90 32.28
40000 80.53 91.85 146.10 16.54 33.36
45000 78.19 88.41 144.06 15.75 31.99
50000 83.66 90.58 150.00 16.96 33.63
55000 79.99 89.12 146.21 16.31 32.87

FuzzyS  

60000 66.28 86.79 131.68 13.65 29.17
25000 74.95 89.31 141.13 15.41 32.08
30000 72.29 86.89 137.60 14.70 30.54
35000 45.16 80.52 110.05 9.81 24.48
40000 46.70 84.31 111.41 10.40 25.48
45000 43.04 79.27 108.04 9.43 23.87
50000 55.46 84.47 121.18 11.83 27.15
55000 46.94 82.26 112.49 10.32 25.22

FuzzyD-NN 

60000 39.61 80.08 104.41 8.84 22.95
25000 74.95 89.31 141.13 15.41 32.08
30000 71.04 89.62 136.83 14.56 30.56
35000 85.19 90.72 150.51 17.49 34.66
40000 98.21 88.30 164.02 19.53 36.43
45000 86.87 91.83 153.44 17.54 34.25
50000 101.31 89.95 167.57 20.43 37.88

FuzzyD-
RND1 

55000 84.77 85.87 150.59 16.86 33.11
25000 74.95 89.31 141.13 15.41 32.08
30000 71.00 89.04 136.72 14.50 30.56
35000 73.56 89.51 138.89 15.32 31.79
40000 76.64 88.44 142.49 15.46 31.59
45000 81.73 91.15 148.13 16.60 33.20
50000 97.81 89.28 163.97 19.68 37.06
55000 73.19 86.48 139.05 14.73 30.52

FuzzyD-
RND2 

60000 70.95 86.19 136.29 14.62 30.29
 

The weights of fuzzy goals used in each production interval are given in Table 

6.12-6.14. 
 

Table 6.12 Weight Combinations for FuzzyD-RND1 

Time w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 
25000 0.30 0.30 0.20 0.20 0.30 0.30 0.20 0.20 0.30 0.30 0.20 0.20 
30000 0.07 0.91 0.83 0.02 0.37 0.19 0.85 0.51 0.13 0.90 0.09 0.03 
35000 0.80 0.85 0.63 0.93 0.50 0.54 0.06 0.19 0.02 0.42 0.82 0.71 
40000 0.56 0.84 0.68 0.03 0.63 0.35 0.28 0.38 0.99 0.11 0.45 0.33 
45000 0.06 0.77 0.99 0.47 0.72 0.60 0.67 0.42 0.21 0.75 0.26 0.21 
50000 0.04 0.85 0.57 0.58 0.48 0.83 0.97 0.16 0.88 0.61 0.34 0.99 
55000 0.13 0.69 0.19 0.24 0.47 0.78 0.37 0.95 0.22 0.26 0.39 0.35 
60000 0.73 0.12 0.64 0.61 0.92 0.25 0.44 0.13 0.32 0.32 0.94 0.04 
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Table 6.13 Weight Combinations for FuzzyD-RND2 

Time w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 
25000 0.30 0.30 0.20 0.20 0.30 0.30 0.20 0.20 0.30 0.30 0.20 0.20 
30000 0.41 0.00 0.32 0.30 0.41 0.31 0.11 0.22 0.41 0.42 0.10 0.10 
35000 0.10 0.53 0.10 0.41 0.00 0.49 0.28 0.20 0.32 0.20 0.21 0.21 
40000 0.22 0.50 0.29 0.05 0.21 0.43 0.22 0.21 0.20 0.42 0.18 0.22 
45000 0.11 0.68 0.12 0.11 0.52 0.21 0.11 0.22 0.12 0.43 0.32 0.14 
50000 0.27 0.23 0.33 0.11 0.71 0.03 0.22 0.10 0.04 0.28 0.31 0.41 
55000 0.22 0.12 0.43 0.32 0.31 0.29 0.09 0.28 0.32 0.31 0.31 0.11 
60000 0.12 0.32 0.31 0.42 0.32 0.30 0.21 0.22 0.21 0.21 0.21 0.41 

 
Table6. 14 Weight Combinations for FuzzyD-NN 

Time w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 
25000 0.30 0.30 0.20 0.20 0.30 0.30 0.20 0.20 0.30 0.30 0.20 0.20 
30000 0.26 0.13 0.37 0.24 0.23 0.14 0.02 0.54 0.05 0.53 0.19 0.28 
35000 0.20 0.08 0.43 0.29 0.53 0.11 0.00 0.47 0.33 0.37 0.11 0.17 
40000 0.20 0.25 0.21 0.29 0.35 0.19 0.00 0.55 0.11 0.43 0.16 0.33 
45000 0.16 0.18 0.32 0.28 0.55 0.15 0.03 0.47 0.21 0.42 0.10 0.25 
50000 0.16 0.36 0.25 0.24 0.36 0.15 0.02 0.65 0.22 0.41 0.10 0.31 
55000 0.84 0.84 0.04 0.74 0.74 0.84 0.05 0.04 0.04 0.84 0.04 0.84 
60000 0.03 0.51 0.61 0.16 0.18 0.01 0.04 0.80 0.17 0.58 0.25 0.17 

 
 

As seen in Figure 6.15, the parameters directly affect the MCDRC-Fuzzy 

performance. The results from this set of experiments show that updating the 

parameters of MCDRC-Fuzzy through ANN will create a better result than both 

applying in a single parameter combination in a static manner and changing the 

parameters randomly. It should be indicated that updating the parameters can 

improve the performance even if the initial parameters are selected randomly. 

However, it is recommended to determine the initial parameters through the trained 

ANN model. 

 

6.4 Summary 

   

In this chapter, a real-time scheduling system incorporating an adaptive fuzzy 

system, called MCDRC-Fuzzy, was proposed. MCDRC-Fuzzy defines fuzzy 

priorities for the parts and routes considering multiple performance measures, instead 

of using traditional dispatching rules and routing rules. Moreover, fuzzy “where” and 

“when” rules were proposed for the first time in DRC research. The results of the 



 

 

194

experiments indicate that MCDRC-Fuzzy outperforms the other approaches 

proposed in Chapter 4 and 5. 
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CHAPTER SEVEN 

CONCLUSION 

 

7.1 Summary and Concluding Remarks 

 

Increasing attention towards responsive manufacturing systems not only raises the 

importance of real-time scheduling of manufacturing systems, but also increases the 

significance of considering multiple performance measures in this decision making 

process. Extensive literature review indicates that numerous real-time scheduling 

approaches have been proposed for machine-only constrained systems. However, 

real-time scheduling of dual resource constrained (DRC) systems, which share a 

significant portion of manufacturing systems, have not been extensively explored. 

Furthermore, numerous researchers have paid considerable attention to evaluate 

different dispatching rule and worker assignment rule combinations in DRC systems. 

Although all these applications are inherently multi-criteria decision making 

problems, the literature review reveals that there is no sufficient effort on multi-

criteria scheduling of DRC systems. 

 

This research has focused on the development of adaptive real-time DRC 

schedulers capable of reacting to the changes in the system in a timely manner and 

satisfying the multiple objectives simultaneously. Considering these facts, this 

research has proposed three multi-criteria real-time scheduling approaches for DRC 

manufacturing systems. The first two approaches focus on the dynamic selection of 

appropriate set of rules, and use artificial neural networks (ANNs) and some multi-

criteria decision making techniques to reduce computational complexity and cope 

with multiple performance measures. The first approach uses a fuzzy inference 

system (FIS), while the second utilizes a well-known multi-criteria decision making 

technique, PROMETHEE. The third approach proposed a fuzzy-based real-time 

scheduling approach for DRC manufacturing systems. 

 

In the first methodology, called MCDRC-FIS, candidate DPRs, routing rules and 

worker assignment rules were selected dynamically based on the changing states. 
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The decisions about DPRs, routing rules and worker assignment rules to be applied 

were made for short production intervals and updated at the beginning of each 

interval (decision point). A simulation module that generates a sample data to train 

and test ANNs was developed. At the beginning of a scheduling period, ANNs were 

then used to estimate performances of alternative rule sets for short production 

interval based on system states. Multiple performance measures of alternative rule 

combinations were aggregated using a FIS. The rule combination for the next 

production interval was then determined based on this overall performance. A 

number of experiments were performed to test the effectiveness of MCDRC-FIS. In 

the first group of the experimental studies, the performance of MCDRC-FIS was 

compared with those of fixed, random and multi-pass scheduling approaches. The 

effects of the length of the scheduling period on the performance of MCDRC-FIS 

were also investigated through the second group of experiments. The third group of 

the experiments focused on the comparison of the effects of fixed length and variable 

length scheduling periods on the performance of MCDRC-FIS. 

 

The results of the experiments indicated that applying MCDRC-FIS provided 

superior results comparable with those of fixed, random and multi-pass scheduling 

approaches. Although the results are somewhat dependent on system conditions 

tested, MCDRC-FIS outperformed fixed and random scheduling approaches at each 

case. The results also showed that the differences between MCDRC-FIS and the 

multi-pass approach are not statistically significant in low and medium variation 

level of the system. However, when the variation increases, MCDRC-FIS provided 

superior results than the multi-pass approach. Simulation experiments also showed 

that better results can be obtained by MCDRC-FIS through determining the 

appropriate length of the scheduling period. An important aspect of a real-time 

scheduling approach is its ability to make required decisions in short times (Arzi and 

Iaroslavitz, 1999). In MCDRC-FIS, due to the ANN’s rapid computation feature and 

its ability to continually learn and adapt, computation time required to predict the 

performances of alternative rule combinations is short enough to use MCDRC-FIS in 

real-time. 
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In the second approach, called MCDRC-PRO, an alternative real-time multi-

criteria DRC scheduler that operates in a similar way to MCDRC-FIS was proposed. 

Instead of using FIS, the multi-criteria nature of the dynamic scheduling problem 

was handled by a multi-criteria decision aid method, PROMETHEE. The 

performance of MCDRC-PRO was evaluated by comparing it with the fixed, multi-

pass and MCDRC-FIS approaches. The results of the experiments showed that 

MCDRC-FIS and MCDRC-PRO provided similar results and outperformed other 

scheduling approaches in terms of the solution quality and response time. The 

robustness of MCDRC-PRO was demonstrated by analyzing the sensitivity in the 

change of the parameters. Experimental results also showed that while the small 

changes in the values of thresholds do not have a strong effect on the results of 

MCDRC-PRO, the weights of the performance measures have important impacts on 

the values of the performance measures. 

 

This research also proposed a real-time scheduling system incorporating an 

adaptive fuzzy system. The proposed approach, called MCDRC-Fuzzy, defines fuzzy 

priorities for parts and routes considering multiple performance measures, instead of 

using standard rule sets. In MCDRC-Fuzzy, “fuzzy where” rules, which aggregate 

several traditional “where” rules, were developed to select the department to which 

the worker would be transferred. Moreover, instead of using traditional centralized 

and decentralized “when” rules, one set of “Sugeno type” rules was developed to 

support the “when” rules. The experimental results showed that significant 

improvements can be achieved through MCDRC-Fuzzy. MCDRC-Fuzzy 

outperformed each combination of traditional rules, MCDRC-FIS and MCDRC-PRO 

in terms of all criteria. The performance of MCDRC-fuzzy was also investigated 

under different conditions such as the case of varying worker efficiency. The 

simulation experiments showed that the proposed fuzzy approach, which uses fuzzy 

rules in the scheduling of DRC systems, achieves better results even in the case of 

varying worker efficiency than the traditional “when” and “where” rules in the 

literature. Furthermore, in this research, a reverse ANN was proposed to determine 

the weights of fuzzy goals considering the changes in decision makers’ aspiration 

levels. The results of the experiments indicated that the parameters directly affect the 
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performance of MCDRC-Fuzzy, and updating the parameters of MCDRC-Fuzzy 

would create a better result than applying in a single parameter combination in a 

static manner. 

 

From these results, it is concluded that the proposed real-time scheduling 

approaches may be practically used and can provide satisfactory solutions for real-

time scheduling of DRC systems. 

 

7.2 Directions for future research  

 

While this research was conducted, several areas that can be investigated in the 

future have come to light. Topics worthy of future investigation are listed as follows:  

 

1) MCDRC-FIS and MCDRC-PRO focus on the dynamic selection of 

appropriate set of dispatching rules (DPRs), worker assignment rules and 

routing decisions of jobs with regard to multiple performance criteria of 

interest. Although some case studies proved that the proposed 

methodologies give satisfactory solutions in practice, their performances are 

subject to those of pre-determined traditional rules. In this research, only a 

limited number of rules were used. It is expected that the system’s 

performance can be improved by considering more DPRs, routing rules and 

worker assignment rules. Furthermore, the proposed approaches only deal 

with the four important decision in DRC systems; i.e. part dispatching, 

routing, “where” and “when” worker assignment decisions. Other important 

decisions can also be studied by including corresponding rules, e.g. 

dispatching of material handling vehicles. 

 

2) MCDRC-FIS and MCDRC-PRO use ANNs as a look-ahead simulation 

model that produces the performances of all rule combinations during the 

next look-ahead window. Although the effects of scheduling period length 

on the performance of the proposed approaches were investigated, the 
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effects of the length of the look-ahead window on the ANN performance 

should also be investigated. 

 

3) In this research, it is assumed that the length of the scheduling period is 

determined either by constant time periods or pre-determined thresholds. In 

the latter case, the thresholds need to be adapted to the system configuration, 

the operating conditions and the production objectives (Pierreval and 

Mebarki, 1997). Some simulation-optimization techniques may be used to 

determine these thresholds. Furthermore, it would be interesting to use a 

fuzzy inference system to determine whether it is necessary to change 

current scheduling rule combination considering the current system states. 

 

4) More realistic examples which include minor and major machine 

breakdowns need to be investigated to understand the performance of the 

proposed approaches under such situations. Kutanoglu and Sabuncuoglu 

(2001b) indicate that dynamic priority dispatching techniques can be 

improved using additional policies specifically designed to reduce effects of 

such disruptions. Therefore, it would be interesting to extend this research 

by including some reactive policies against machine failures. 

 

5) This research mainly focused on the selection of appropriate “where” and 

“when” rules based on chancing system states. Besides “where” and “when” 

rules, Bokhorst et al. (2004) proposed some “who” rules to determine which 

worker should be transferred to the work centre that requires a worker. This 

thesis can be extended by considering these “who” rules in the decision 

making process and exploring their impact on the DRC system. 

 

6) The concept of worker flexibility plays a major role in the success of DRC 

systems. As discussed in Chapter 2, worker flexibility can also be 

characterized by different ways, such as homogeneous or heterogeneous, 

and single-level flexibility or multi-level flexibility. Therefore, the effects of 

the worker flexibility on the performance of the proposed approaches should 



 

 

200

be further investigated. Another interesting area for future research should 

be to investigate the performance of the proposed approaches when worker 

attrition and learning effects are considered. 

 

7) In this study, it is assumed that the information access delay is negligible. 

However, in some real-life DRC shop floors, the type of automation built in 

the DRC system, the quality of information technologies used and the 

control strategies executed cause information delays. Caprihan et al.(2006) 

reported that such delays can cause significant deteriorations in the 

performance of FMSs. As discussed in Chapter 2, only few research efforts 

have been directed to deal with information delays in DRC systems. 

Therefore, one of the further research studies should be to investigate the 

performance of the proposed approaches on whether they can deal with 

information delays in DRC systems. 

 

8) The results of MCDRC-fuzzy reveal that its performance can be improved 

by chancing its parameters. In this research, the parameters of MCDRC-

fuzzy were determined at each scheduling period via a reverse ANN based 

on the desired performance values of the objectives. Therefore, optimizing 

the parameters for each scheduling period was beyond the scope of this 

research. However, developing an evolutionary simulation-optimization 

model, which selects the parameters guaranteeing good compromise 

solution for all system performances, is still open for future research. 

 

9) In MCDRC-fuzzy, fuzzy “where” rules are obtained using the membership 

function concept of fuzzy sets while fuzzy inference is utilized to develop 

fuzzy “when” rules. Developing a fuzzy inference-based “where” rule can 

also be considered as a future research topic. 

 

10) In MCDRC-PRO, PROMETHEE was used to evaluate alternative rule 

combinations and select the best one over successive short-time periods 

based on the current system state. On the other hand, after each operation, 
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PROMETHEE can be used to evaluate alternative actions, and select a part 

to be processed, to decide the route of a part, to determine when a worker 

should be transferred to another work center or to choose which work center 

needs a worker. One of the further research studies should be to embed 

PROMETHEE into the shop floor management module. 

 

11) It may also be interesting to apply other multi-criteria decision making 

approaches, such as ELECTRE and TOPSIS, to real-time scheduling 

problems. 

 

12) One of the other issues for future research may be to determine the 

appropriate parameters required for ANNs, such as the number of hidden 

layers and the number of training epochs, based on an automatic parameter 

controlling method. 
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A2. Production Routes and Processing Times for Product Type 1 (MCk is kth 
machine department) 
 
 
 
 
 
 
 
 
 
 

A3. Production Routes and Processing Times for Product Type 2 (MCk is kth 
machine department) 
 
 
 
 
 
 
 
 
 
 
 
 

Machine   
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24   
 0.45 0.30 0.15 0.45 0.30 1.05 0.30 0.30 0.75 0.45 0.15 0.60 0.15 1.20 1.05 0.45 0.60 1.05 0.60 0.90 0.60 0.90 0.75 1 
  0.15 0.30 0.30 0.15 1.35 0.60 0.45 1.05 0.60 0.30 0.90 0.45 1.50 1.35 0.75 0.15 1.35 0.15 1.20 0.75 1.05 0.90 2 
   0.15 0.45 0.30 1.20 0.45 0.30 0.90 0.45 0.15 0.75 0.30 1.35 1.20 0.60 0.30 1.20 0.30 1.05 0.60 0.90 0.75 3 
    0.30 0.15 1.20 0.45 0.45 0.75 0.60 0.15 0.75 0.30 1.35 1.20 0.60 0.30 1.20 0.45 1.05 0.60 0.90 0.75 4 
     0.15 1.50 0.75 0.75 1.20 0.90 0.45 1.05 0.60 1.65 1.50 0.90 0.15 1.50 0.30 1.35 0.90 1.35 1.20 5 
      1.35 0.60 0.45 1.05 0.60 0.30 0.90 0.45 1.50 1.35 0.75 0.15 1.35 0.30 1.20 0.75 1.05 0.90 6 
       0.75 0.90 0.30 0.75 1.05 0.45 0.90 0.15 0.15 0.60 1.50 0.30 1.50 0.15 0.60 0.30 0.45 7 
        0.30 0.45 0.15 0.30 0.30 0.15 0.90 0.75 0.15 0.75 0.75 0.75 0.60 0.30 0.60 0.45 8 
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           0.30 0.30 0.15 0.90 0.75 0.15 0.75 0.75 0.75 0.60 0.15 0.45 0.30 11
            0.60 0.15 1.20 1.05 0.45 0.45 1.05 0.45 0.90 0.45 0.75 0.60 12
             0.45 0.75 0.60 0.15 1.05 0.60 1.05 0.45 0.15 0.30 0.15 13
              1.05 0.90 0.30 0.60 0.90 0.60 0.75 0.45 0.75 0.60 14
               0.30 0.75 1.65 0.45 1.65 0.30 0.75 0.45 0.60 15
                0.60 1.50 0.15 1.50 0.15 0.60 0.30 0.45 16
                 0.90 0.60 0.90 0.45 0.15 0.45 0.30 17
                  1.50 0.15 1.35 0.90 1.20 1.05 18
                   1.50 0.15 0.60 0.30 0.45 19
                    1.35 0.90 1.20 1.05 20
                     0.45 0.15 0.30 21
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A4. Production Routes and Processing Times for Product Type 3 (MCk is kth 
machine department) 
 
 

 

 
 
 
 
 
 
A5. Production Routes and Processing Times for Product Type 4 (MCk is kth 
machine department) 
 
 
 
 
 
 
 
 

 
 
 
  
 
 
A6. Production Routes and Processing Times for Product Type 5 (MCk is kth 
machine department) 
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A7. Production Routes and Processing Times for Product Type 6 (MCk is kth 
machine department) 
 
 
 
 
 
 
 
 
 
A8. Production Routes and Processing Times for Product Type 7 (MCk is kth 
machine department) 
 
 
 

 
 
 
 
 
 
 
A9. Production Routes and Processing Times for Product Type 8 (MCk is kth 
machine department) 
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A10. Production Routes and Processing Times for Product Type 9 (MCk is kth 
machine department) 
 
 
 
 
 
 
 
 
 
 
 
 
A11. Production Routes and Processing Times for Product Type 10 (MCk is kth 
machine department) 
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A12. Worker Efficiency Matrix  
 
  WORKER NUMBER 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1.00 0.90 0.85 0.00 0.00 0.85 1.00 0.90 0.00 0.95 0.00 0.90 1.00 0.00 0.00 
2 0.00 1.00 0.85 0.00 0.00 0.95 0.00 0.90 0.85 1.00 0.00 0.00 0.95 1.00 0.85 
3 0.00 0.00 1.00 0.95 0.85 1.00 0.00 0.85 0.00 0.00 0.90 0.95 1.00 0.00 0.00 
4 0.00 0.95 0.00 1.00 1.00 0.75 1.00 0.00 0.95 0.00 0.90 1.00 0.00 0.85 0.00 
5 0.85 0.95 0.00 0.95 1.00 0.90 0.00 0.85 0.00 0.00 1.00 0.00 0.90 0.00 0.95 
6 0.00 0.95 0.85 0.90 1.00 1.00 0.00 0.00 0.85 0.00 0.95 1.00 0.00 0.00 1.00 
7 1.00 0.00 0.00 0.00 0.95 0.95 1.00 0.00 0.95 0.00 0.85 0.95 0.00 0.85 0.85 
8 1.00 0.00 1.00 0.95 0.90 0.00 0.90 0.85 0.95 0.85 0.00 0.00 0.00 0.00 1.00 
9 0.00 0.95 1.00 0.00 1.00 0.95 0.00 0.00 1.00 0.90 0.85 0.00 0.85 0.00 0.85 

10 0.00 0.00 0.95 1.00 0.00 0.00 0.00 0.90 0.95 1.00 0.85 0.00 0.85 0.00 1.00 
11 0.85 0.00 0.95 0.00 0.00 0.90 0.90 1.00 0.90 0.85 0.00 0.00 0.00 1.00 0.95 
12 1.00 0.85 0.95 1.00 0.85 0.85 0.00 0.00 0.00 0.85 1.00 0.00 0.00 1.00 0.00 
13 0.95 0.85 0.00 0.00 0.90 1.00 0.00 0.90 0.00 0.85 0.00 0.90 1.00 1.00 0.00 
14 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.85 0.00 0.90 0.85 0.95 1.00 0.00 
15 1.00 0.85 0.00 0.00 0.90 0.95 1.00 0.00 0.95 0.00 0.00 0.90 0.90 0.00 1.00 
16 0.00 0.95 0.00 0.90 0.00 0.85 0.90 0.00 0.85 1.00 1.00 0.00 0.00 0.90 1.00 
17 1.00 0.00 0.95 0.00 0.90 0.00 0.95 0.90 0.00 0.95 0.00 0.00 1.00 0.00 1.00 
18 1.00 0.00 1.00 0.00 0.95 0.00 0.00 0.90 0.00 0.90 0.00 1.00 0.85 0.90 0.00 
19 0.00 0.00 0.95 1.00 0.00 0.00 0.85 0.85 0.00 0.00 1.00 0.85 0.90 1.00 0.00 
20 0.85 0.85 0.00 1.00 0.00 0.00 0.90 0.00 0.00 0.85 0.95 1.00 0.95 0.00 0.95 
21 0.95 1.00 0.90 1.00 0.00 0.00 0.85 1.00 0.85 0.90 0.00 0.00 0.00 0.95 0.00 
22 0.00 0.00 0.85 0.00 1.00 0.90 1.00 0.00 0.90 0.85 0.90 0.95 0.00 1.00 0.00 
23 0.00 0.00 0.00 0.85 0.00 0.95 1.00 0.00 0.85 1.00 0.85 1.00 0.00 0.00 0.90 
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24 0.00 0.95 0.00 1.00 0.95 0.00 1.00 0.95 0.00 0.00 0.00 1.00 0.90 1.00 0.85 
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 APPENDIX B 
 
 
STATISTICAL TESTS FOR COMPARISION BETWEEN TRADIONAL RULES AND 

FUZZY RULES USING SPSS 11.0 

 
B.1 ANOVA for part DPRs (α = 0.01) 

ANOVA

1,761.726 7 251.675 3.536 .002
10,818.270 152 71.173
12,579.997 159
9,148.043 7 1,306.863 14.971 .000

13,268.660 152 87.294
22,416.703 159
13,405.781 7 1,915.112 24.187 .000
12,035.384 152 79.180
25,441.166 159

205.564 7 29.366 9.680 .000
461.134 152 3.034
666.698 159
662.919 7 94.703 27.096 .000
531.262 152 3.495

1,194.181 159

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.
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B.2 Multiple comparison of part DPRs with LSD test for MT (α = 0.01) 

Multiple Comparisons

Dependent Variable: MT
LSD

2.4009 2.66782 .370 -4.5582 9.3601
.5466 2.66782 .838 -6.4125 7.5058

2.9853 2.66782 .265 -3.9739 9.9445
.3433 2.66782 .898 -6.6159 7.3025
.3878 2.66782 .885 -6.5713 7.3470

-1.4032 2.66782 .600 -8.3624 5.5560
9.9991* 2.66782 .000 3.0399 16.9583

-2.4009 2.66782 .370 -9.3601 4.5582

-1.8543 2.66782 .488 -8.8135 5.1049
.5844 2.66782 .827 -6.3748 7.5435

-2.0576 2.66782 .442 -9.0168 4.9016
-2.0131 2.66782 .452 -8.9723 4.9461
-3.8041 2.66782 .156 -10.7633 3.1550
7.5982* 2.66782 .005 .6390 14.5573
-.5466 2.66782 .838 -7.5058 6.4125
1.8543 2.66782 .488 -5.1049 8.8135

2.4387 2.66782 .362 -4.5205 9.3979
-.2033 2.66782 .939 -7.1625 6.7559
-.1588 2.66782 .953 -7.1180 6.8004

-1.9498 2.66782 .466 -8.9090 5.0094
9.4525* 2.66782 .001 2.4933 16.4116

-2.9853 2.66782 .265 -9.9445 3.9739
-.5844 2.66782 .827 -7.5435 6.3748

-2.4387 2.66782 .362 -9.3979 4.5205

-2.6420 2.66782 .324 -9.6012 4.3172
-2.5975 2.66782 .332 -9.5566 4.3617
-4.3885 2.66782 .102 -11.3477 2.5707
7.0138* 2.66782 .009 .0546 13.9730
-.3433 2.66782 .898 -7.3025 6.6159
2.0576 2.66782 .442 -4.9016 9.0168

.2033 2.66782 .939 -6.7559 7.1625
2.6420 2.66782 .324 -4.3172 9.6012

.0445 2.66782 .987 -6.9147 7.0037
-1.7465 2.66782 .514 -8.7057 5.2127
9.6558* 2.66782 .000 2.6966 16.6150
-.3878 2.66782 .885 -7.3470 6.5713
2.0131 2.66782 .452 -4.9461 8.9723

.1588 2.66782 .953 -6.8004 7.1180
2.5975 2.66782 .332 -4.3617 9.5566
-.0445 2.66782 .987 -7.0037 6.9147

-1.7910 2.66782 .503 -8.7502 5.1681
9.6113* 2.66782 .000 2.6521 16.5704
1.4032 2.66782 .600 -5.5560 8.3624
3.8041 2.66782 .156 -3.1550 10.7633
1.9498 2.66782 .466 -5.0094 8.9090
4.3885 2.66782 .102 -2.5707 11.3477
1.7465 2.66782 .514 -5.2127 8.7057
1.7910 2.66782 .503 -5.1681 8.7502

11.4023* 2.66782 .000 4.4431 18.3615
-9.9991* 2.66782 .000 -16.9583 -3.0399
-7.5982* 2.66782 .005 -14.5573 -.6390
-9.4525* 2.66782 .001 -16.4116 -2.4933
-7.0138* 2.66782 .009 -13.9730 -.0546
-9.6558* 2.66782 .000 -16.6150 -2.6966
-9.6113* 2.66782 .000 -16.5704 -2.6521

-11.4023* 2.66782 .000 -18.3615 -4.4431

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7
8

(J) MTH

1
2
3
4
5
6
7

8

(J) MTH

FIFO

SPT

EDD

RPR**

CRT

MST

CRT2

FDPR*
**

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
99% Confidence Interval

The mean difference is significant at the .01 level.*. 
 

** RPRO is RPROTIME 
***FDPR is Fuzzy DPR 
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B.3 Multiple comparison of part DPRs LSD test for %NTJ (α = 0.01) 

Multiple Comparisons

Dependent Variable: NTJ
LSD

5.8522 2.95455 .049 -1.8550 13.5593
1.1163 2.95455 .706 -6.5908 8.8234
8.0979* 2.95455 .007 .3908 15.8050
-.5937 2.95455 .841 -8.3008 7.1135
.5877 2.95455 .843 -7.1194 8.2949
.8853 2.95455 .765 -6.8218 8.5924

23.4217* 2.95455 .000 15.7145 31.1288
-5.8522 2.95455 .049 -13.5593 1.8550

-4.7358 2.95455 .111 -12.4430 2.9713
2.2457 2.95455 .448 -5.4614 9.9529

-6.4458 2.95455 .031 -14.1530 1.2613
-5.2644 2.95455 .077 -12.9716 2.4427
-4.9669 2.95455 .095 -12.6740 2.7403
17.5695* 2.95455 .000 9.8624 25.2766
-1.1163 2.95455 .706 -8.8234 6.5908
4.7358 2.95455 .111 -2.9713 12.4430

6.9816 2.95455 .019 -.7256 14.6887
-1.7100 2.95455 .564 -9.4171 5.9971

-.5286 2.95455 .858 -8.2357 7.1785
-.2310 2.95455 .938 -7.9382 7.4761

22.3054* 2.95455 .000 14.5982 30.0125
-8.0979* 2.95455 .007 -15.8050 -.3908
-2.2457 2.95455 .448 -9.9529 5.4614
-6.9816 2.95455 .019 -14.6887 .7256

-8.6916* 2.95455 .004 -16.3987 -.9844
-7.5102 2.95455 .012 -15.2173 .1970
-7.2126 2.95455 .016 -14.9197 .4945
15.3238* 2.95455 .000 7.6167 23.0309

.5937 2.95455 .841 -7.1135 8.3008
6.4458 2.95455 .031 -1.2613 14.1530
1.7100 2.95455 .564 -5.9971 9.4171
8.6916* 2.95455 .004 .9844 16.3987

1.1814 2.95455 .690 -6.5257 8.8885
1.4790 2.95455 .617 -6.2282 9.1861

24.0153* 2.95455 .000 16.3082 31.7225
-.5877 2.95455 .843 -8.2949 7.1194
5.2644 2.95455 .077 -2.4427 12.9716

.5286 2.95455 .858 -7.1785 8.2357
7.5102 2.95455 .012 -.1970 15.2173

-1.1814 2.95455 .690 -8.8885 6.5257

.2976 2.95455 .920 -7.4096 8.0047
22.8340* 2.95455 .000 15.1268 30.5411

-.8853 2.95455 .765 -8.5924 6.8218
4.9669 2.95455 .095 -2.7403 12.6740

.2310 2.95455 .938 -7.4761 7.9382
7.2126 2.95455 .016 -.4945 14.9197

-1.4790 2.95455 .617 -9.1861 6.2282
-.2976 2.95455 .920 -8.0047 7.4096

22.5364* 2.95455 .000 14.8292 30.2435
-23.4217* 2.95455 .000 -31.1288 -15.7145
-17.5695* 2.95455 .000 -25.2766 -9.8624
-22.3054* 2.95455 .000 -30.0125 -14.5982
-15.3238* 2.95455 .000 -23.0309 -7.6167
-24.0153* 2.95455 .000 -31.7225 -16.3082
-22.8340* 2.95455 .000 -30.5411 -15.1268
-22.5364* 2.95455 .000 -30.2435 -14.8292

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

1

2

3

4

5

6

7

8

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
99% Confidence Interval

The mean difference is significant at the .01 level.*.  
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B.4 Multiple comparison of part DPRs with LSD test for MFT (α = 0.01) 
 

Multiple Comparisons

Dependent Variable: MFT
LSD

6.7294 2.81390 .018 -.6109 14.0696
.3304 2.81390 .907 -7.0098 7.6707

7.9659* 2.81390 .005 .6257 15.3061
-.6302 2.81390 .823 -7.9704 6.7100
-.0059 2.81390 .998 -7.3462 7.3343

-1.1269 2.81390 .689 -8.4671 6.2134
27.7492* 2.81390 .000 20.4090 35.0895
-6.7294 2.81390 .018 -14.0696 .6109

-6.3989 2.81390 .024 -13.7391 .9413
1.2365 2.81390 .661 -6.1037 8.5768

-7.3595* 2.81390 .010 -14.6998 -.0193
-6.7353 2.81390 .018 -14.0755 .6049
-7.8562* 2.81390 .006 -15.1964 -.5160
21.0199* 2.81390 .000 13.6797 28.3601

-.3304 2.81390 .907 -7.6707 7.0098
6.3989 2.81390 .024 -.9413 13.7391

7.6355* 2.81390 .007 .2952 14.9757
-.9606 2.81390 .733 -8.3008 6.3796
-.3364 2.81390 .905 -7.6766 7.0039

-1.4573 2.81390 .605 -8.7975 5.8829
27.4188* 2.81390 .000 20.0786 34.7590
-7.9659* 2.81390 .005 -15.3061 -.6257
-1.2365 2.81390 .661 -8.5768 6.1037
-7.6355* 2.81390 .007 -14.9757 -.2952

-8.5961* 2.81390 .003 -15.9363 -1.2559
-7.9718* 2.81390 .005 -15.3120 -.6316
-9.0928* 2.81390 .002 -16.4330 -1.7525
19.7834* 2.81390 .000 12.4431 27.1236

.6302 2.81390 .823 -6.7100 7.9704
7.3595* 2.81390 .010 .0193 14.6998
.9606 2.81390 .733 -6.3796 8.3008

8.5961* 2.81390 .003 1.2559 15.9363

.6243 2.81390 .825 -6.7160 7.9645
-.4967 2.81390 .860 -7.8369 6.8435

28.3794* 2.81390 .000 21.0392 35.7197
.0059 2.81390 .998 -7.3343 7.3462

6.7353 2.81390 .018 -.6049 14.0755
.3364 2.81390 .905 -7.0039 7.6766

7.9718* 2.81390 .005 .6316 15.3120
-.6243 2.81390 .825 -7.9645 6.7160

-1.1209 2.81390 .691 -8.4612 6.2193
27.7552* 2.81390 .000 20.4150 35.0954
1.1269 2.81390 .689 -6.2134 8.4671
7.8562* 2.81390 .006 .5160 15.1964
1.4573 2.81390 .605 -5.8829 8.7975
9.0928* 2.81390 .002 1.7525 16.4330
.4967 2.81390 .860 -6.8435 7.8369

1.1209 2.81390 .691 -6.2193 8.4612

28.8761* 2.81390 .000 21.5359 36.2163
-27.7492* 2.81390 .000 -35.0895 -20.4090
-21.0199* 2.81390 .000 -28.3601 -13.6797
-27.4188* 2.81390 .000 -34.7590 -20.0786
-19.7834* 2.81390 .000 -27.1236 -12.4431
-28.3794* 2.81390 .000 -35.7197 -21.0392
-27.7552* 2.81390 .000 -35.0954 -20.4150
-28.8761* 2.81390 .000 -36.2163 -21.5359
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FIFO
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CRT
MST
CRT2
FDPR

(J) MTH

1

2

3

4

5

6

7

8

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
99% Confidence Interval

The mean difference is significant at the .01 level.*.  
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B.5 Multiple comparison of part DPRs with LSD test for MQT (α = 0.01) 

Multiple Comparisons

Dependent Variable: MQT
LSD

1.2641 .55080 .023 -.1727 2.7009
.0639 .55080 .908 -1.3729 1.5007

1.4839* .55080 .008 .0471 2.9207
-.1136 .55080 .837 -1.5504 1.3231
.0015 .55080 .998 -1.4352 1.4383

-.2088 .55080 .705 -1.6456 1.2280
3.2451* .55080 .000 1.8083 4.6819

-1.2641 .55080 .023 -2.7009 .1727

-1.2002 .55080 .031 -2.6369 .2366
.2199 .55080 .690 -1.2169 1.6566

-1.3777 .55080 .013 -2.8145 .0591
-1.2625 .55080 .023 -2.6993 .1743
-1.4729* .55080 .008 -2.9097 -.0361
1.9810* .55080 .000 .5442 3.4178
-.0639 .55080 .908 -1.5007 1.3729
1.2002 .55080 .031 -.2366 2.6369

1.4200 .55080 .011 -.0168 2.8568
-.1776 .55080 .748 -1.6143 1.2592
-.0624 .55080 .910 -1.4992 1.3744
-.2727 .55080 .621 -1.7095 1.1640
3.1812* .55080 .000 1.7444 4.6179

-1.4839* .55080 .008 -2.9207 -.0471
-.2199 .55080 .690 -1.6566 1.2169

-1.4200 .55080 .011 -2.8568 .0168

-1.5976* .55080 .004 -3.0344 -.1608
-1.4824* .55080 .008 -2.9192 -.0456
-1.6928* .55080 .003 -3.1296 -.2560
1.7611* .55080 .002 .3244 3.1979

.1136 .55080 .837 -1.3231 1.5504
1.3777 .55080 .013 -.0591 2.8145

.1776 .55080 .748 -1.2592 1.6143
1.5976* .55080 .004 .1608 3.0344

.1152 .55080 .835 -1.3216 1.5520
-.0952 .55080 .863 -1.5320 1.3416
3.3587* .55080 .000 1.9219 4.7955
-.0015 .55080 .998 -1.4383 1.4352
1.2625 .55080 .023 -.1743 2.6993

.0624 .55080 .910 -1.3744 1.4992
1.4824* .55080 .008 .0456 2.9192
-.1152 .55080 .835 -1.5520 1.3216

-.2104 .55080 .703 -1.6472 1.2264
3.2435* .55080 .000 1.8067 4.6803

.2088 .55080 .705 -1.2280 1.6456
1.4729* .55080 .008 .0361 2.9097

.2727 .55080 .621 -1.1640 1.7095
1.6928* .55080 .003 .2560 3.1296

.0952 .55080 .863 -1.3416 1.5320

.2104 .55080 .703 -1.2264 1.6472

3.4539* .55080 .000 2.0171 4.8907
-3.2451* .55080 .000 -4.6819 -1.8083
-1.9810* .55080 .000 -3.4178 -.5442
-3.1812* .55080 .000 -4.6179 -1.7444
-1.7611* .55080 .002 -3.1979 -.3244
-3.3587* .55080 .000 -4.7955 -1.9219
-3.2435* .55080 .000 -4.6803 -1.8067
-3.4539* .55080 .000 -4.8907 -2.0171

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

1

2

3

4

5

6

7

8

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
99% Confidence Interval

The mean difference is significant at the .01 level.*.  
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B.6 Multiple comparison of part DPRs with LSD test for WIP (α = 0.01) 
 

Multiple Comparisons

Dependent Variable: WIP
LSD

1.1869 .59120 .046 -.3553 2.7291
.0587 .59120 .921 -1.4834 1.6009

1.4127 .59120 .018 -.1295 2.9549
-.1134 .59120 .848 -1.6556 1.4288
-.0008 .59120 .999 -1.5430 1.5414
-.1925 .59120 .745 -1.7347 1.3497
6.2378* .59120 .000 4.6957 7.7800

-1.1869 .59120 .046 -2.7291 .3553

-1.1281 .59120 .058 -2.6703 .4140
.2258 .59120 .703 -1.3164 1.7680

-1.3003 .59120 .029 -2.8424 .2419
-1.1877 .59120 .046 -2.7298 .3545
-1.3794 .59120 .021 -2.9215 .1628
5.0510* .59120 .000 3.5088 6.5931
-.0587 .59120 .921 -1.6009 1.4834
1.1281 .59120 .058 -.4140 2.6703

1.3540 .59120 .023 -.1882 2.8961
-.1721 .59120 .771 -1.7143 1.3701
-.0595 .59120 .920 -1.6017 1.4827
-.2512 .59120 .671 -1.7934 1.2909
6.1791* .59120 .000 4.6369 7.7213

-1.4127 .59120 .018 -2.9549 .1295
-.2258 .59120 .703 -1.7680 1.3164

-1.3540 .59120 .023 -2.8961 .1882

-1.5261 .59120 .011 -3.0683 .0161
-1.4135 .59120 .018 -2.9556 .1287
-1.6052* .59120 .007 -3.1474 -.0630
4.8251* .59120 .000 3.2830 6.3673

.1134 .59120 .848 -1.4288 1.6556
1.3003 .59120 .029 -.2419 2.8424

.1721 .59120 .771 -1.3701 1.7143
1.5261 .59120 .011 -.0161 3.0683

.1126 .59120 .849 -1.4296 1.6548
-.0791 .59120 .894 -1.6213 1.4631
6.3512* .59120 .000 4.8091 7.8934

.0008 .59120 .999 -1.5414 1.5430
1.1877 .59120 .046 -.3545 2.7298

.0595 .59120 .920 -1.4827 1.6017
1.4135 .59120 .018 -.1287 2.9556
-.1126 .59120 .849 -1.6548 1.4296

-.1917 .59120 .746 -1.7339 1.3505
6.2386* .59120 .000 4.6964 7.7808

.1925 .59120 .745 -1.3497 1.7347
1.3794 .59120 .021 -.1628 2.9215

.2512 .59120 .671 -1.2909 1.7934
1.6052* .59120 .007 .0630 3.1474

.0791 .59120 .894 -1.4631 1.6213

.1917 .59120 .746 -1.3505 1.7339

6.4303* .59120 .000 4.8882 7.9725
-6.2378* .59120 .000 -7.7800 -4.6957
-5.0510* .59120 .000 -6.5931 -3.5088
-6.1791* .59120 .000 -7.7213 -4.6369
-4.8251* .59120 .000 -6.3673 -3.2830
-6.3512* .59120 .000 -7.8934 -4.8091
-6.2386* .59120 .000 -7.7808 -4.6964
-6.4303* .59120 .000 -7.9725 -4.8882

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

FIFO
SPT
EDD
RPRO
CRT
MST
CRT2
FDPR

(J) MTH

1

2

3

4

5

6

7

8

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
99% Confidence Interval

The mean difference is significant at the .01 level.*.  
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B.7 ANOVA for routing selection rules (α = 0.01) 

ANOVA

4,657.366 3 1,552.455 17.828 .000
6,617.945 76 87.078

11,275.311 79
11,160.153 3 3,720.051 43.365 .000
6,519.660 76 85.785

17,679.813 79
26,621.024 3 8,873.675 85.750 .000
7,864.683 76 103.483

34,485.707 79
244.946 3 81.649 21.156 .000
293.313 76 3.859
538.259 79

1,103.483 3 367.828 84.894 .000
329.291 76 4.333

1,432.775 79

Between Group
Within Groups
Total
Between Group
Within Groups
Total
Between Group
Within Groups
Total
Between Group
Within Groups
Total
Between Group
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.

 
 
B.8 DUNCAN Multiple Range Test for MT (Route Selection) (α = 0.05) 

MT

20 15.7283
20 22.4500
20 22.4836
20 36.6562

1.000 .991 1.000

FRT
UTI
SNQ
TWC
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
 
B.9 DUNCAN Multiple Range Test for %NTJ (Route Selection) (α = 0.05) 

NTJ

20 20.0740
20 44.7100
20 48.2667
20 48.4252

1.000 .237

FRT
UTI
TWC
SNQ
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.10 DUNCAN Multiple Range Test for MFT (Route Selection) (α = 0.05) 

MFT

20 79.0084
20 111.3200
20 114.8225
20 128.8315

1.000 .280 1.000

FRT
UTI
SNQ
TWC
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.11 DUNCAN Multiple Range Test for MQT (Route Selection) (α = 0.05) 

MQT

20 5.0216
20 6.4300
20 7.0231
20 9.8340

1.000 .343 1.000

FRT
UTI
SNQ
TWC
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.12 DUNCAN Multiple Range Test for WI (Route Selection) (α = 0.05) 

WIP

20 12.7414
20 19.6100
20 20.1998
20 22.7821

1.000 .373 1.000

FRT
UTI
SNQ
TWC
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.13 Multiple comparison of route selection rules with LSD test for MT (α = 0.05) 

Multiple Comparisons

Dependent Variable: MT
LSD

-14.1726* 2.9509 .0000 -20.0499 -8.2954
.0336 2.9509 .9910 -5.8437 5.9108

6.7553* 2.9509 .0248 .8781 12.6325
14.1726* 2.9509 .0000 8.2954 20.0499

14.2062* 2.9509 .0000 8.3290 20.0834
20.9279* 2.9509 .0000 15.0507 26.8051

-.0336 2.9509 .9910 -5.9108 5.8437
-14.2062* 2.9509 .0000 -20.0834 -8.3290

6.7217* 2.9509 .0255 .8445 12.5990
-6.7553* 2.9509 .0248 -12.6325 -.8781

-20.9279* 2.9509 .0000 -26.8051 -15.0507
-6.7217* 2.9509 .0255 -12.5990 -.8445

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ

TWC

UTI

FRT

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower BoundUpper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
 
B.14 Multiple comparison of route selection rules with LSD test for %NTJ (α = 0.05) 

Multiple Comparisons

Dependent Variable: NTJ
LSD

.1585 2.9289 .9570 -5.6750 5.9919
3.7152 2.9289 .2085 -2.1182 9.5486

28.3512* 2.9289 .0000 22.5178 34.1846
-.1585 2.9289 .9570 -5.9919 5.6750

3.5567 2.9289 .2284 -2.2767 9.3902
28.1927* 2.9289 .0000 22.3593 34.0262
-3.7152 2.9289 .2085 -9.5486 2.1182
-3.5567 2.9289 .2284 -9.3902 2.2767

24.6360* 2.9289 .0000 18.8026 30.4694
-28.3512* 2.9289 .0000 -34.1846 -22.5178
-28.1927* 2.9289 .0000 -34.0262 -22.3593
-24.6360* 2.9289 .0000 -30.4694 -18.8026

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ

TWC

UTI

FRT

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.15 Multiple comparison of route selection rules with LSD test for MFT (α = 0.05) 
Multiple Comparisons

Dependent Variable: MFT
LSD

-14.0091* 3.2169 .0000 -20.4160 -7.6021
3.5025 3.2169 .2797 -2.9045 9.9094

35.8141* 3.2169 .0000 29.4071 42.2210
14.0091* 3.2169 .0000 7.6021 20.4160

17.5115* 3.2169 .0000 11.1046 23.9185
49.8231* 3.2169 .0000 43.4162 56.2301
-3.5025 3.2169 .2797 -9.9094 2.9045

-17.5115* 3.2169 .0000 -23.9185 -11.1046

32.3116* 3.2169 .0000 25.9046 38.7185
-35.8141* 3.2169 .0000 -42.2210 -29.4071
-49.8231* 3.2169 .0000 -56.2301 -43.4162
-32.3116* 3.2169 .0000 -38.7185 -25.9046

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ

TWC

UTI

FRT

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
 
B.16 Multiple comparison of route selection rules with LSD test for MQT (α = 0.05) 

Multiple Comparisons

Dependent Variable: MQT
LSD

-2.8109* .6212 .0000 -4.0482 -1.5736
.5931 .6212 .3427 -.6442 1.8304

2.0015* .6212 .0019 .7642 3.2388
2.8109* .6212 .0000 1.5736 4.0482

3.4040* .6212 .0000 2.1667 4.6413
4.8124* .6212 .0000 3.5751 6.0497
-.5931 .6212 .3427 -1.8304 .6442

-3.4040* .6212 .0000 -4.6413 -2.1667

1.4084* .6212 .0262 .1711 2.6457
-2.0015* .6212 .0019 -3.2388 -.7642
-4.8124* .6212 .0000 -6.0497 -3.5751
-1.4084* .6212 .0262 -2.6457 -.1711

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ

TWC

UTI

FRT

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.17 Multiple comparison of route selection rules with LSD test for WIP (α = 0.05) 

Multiple Comparisons

Dependent Variable: WIP
LSD

-2.5822* .6582 .0002 -3.8932 -1.2713
.5898 .6582 .3731 -.7212 1.9008

7.4584* .6582 .0000 6.1474 8.7694
2.5822* .6582 .0002 1.2713 3.8932

3.1721* .6582 .0000 1.8611 4.4831
10.0406* .6582 .0000 8.7296 11.3516

-.5898 .6582 .3731 -1.9008 .7212
-3.1721* .6582 .0000 -4.4831 -1.8611

6.8686* .6582 .0000 5.5576 8.1796
-7.4584* .6582 .0000 -8.7694 -6.1474

-10.0406* .6582 .0000 -11.3516 -8.7296
-6.8686* .6582 .0000 -8.1796 -5.5576

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ
TWC
UTI
FRT

(J) MTH

SNQ

TWC

UTI

FRT

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
 
B.18 ANOVA for “where” rules (α = 0.05) 

ANOVA

1,409.374 4 352.343 5.787 .000
5,783.613 95 60.880
7,192.987 99
4,374.738 4 1,093.685 11.618 .000
8,942.920 95 94.136

13,317.659 99
8,278.493 4 2,069.623 37.922 .000
5,184.634 95 54.575

13,463.127 99
75.852 4 18.963 7.971 .000

226.013 95 2.379
301.865 99
279.030 4 69.757 29.102 .000
227.714 95 2.397
506.744 99

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.
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B.19 DUNCAN Multiple Range Test for MT (“Where” Rules) (α = 0.05) 

MT

20 17.4308
20 22.4500
20 26.8322
20 26.9042
20 26.9177

1.000 .102

FWHR
STWC
SDD
LNQ
LWT
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.20 DUNCAN Multiple Range Test for %NTJ (“Where” Rules) (α = 0.05) 
 

NTJ

20 29.9532
20 44.7100
20 46.7464
20 46.9648
20 46.9830

1.000 .507

FWHR
STWC
SDD
LNQ
LWT
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.21 DUNCAN Multiple Range Test for MFT (“Where” Rules) (α = 0.05) 

MFT

20 93.6701
20 111.3200
20 117.0441
20 117.2131
20 117.2288

1.000 1.000 .941

FWHR
STWC
SDD
LWT
LNQ
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.22 DUNCAN Multiple Range Test for MQT (“Where” Rules) (α = 0.05) 
 

MQT

20 5.0974
20 6.4300
20 7.2975
20 7.3291
20 7.3315

1.000 .094

FWHR
STWC
SDD
LWT
LNQ
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
  

 
B.23 DUNCAN Multiple Range Test for WIP (“Where” Rules) (α = 0.05) 

WIP

20 15.1113
20 19.1252
20 19.1544
20 19.1629
20 19.6100

1.000 .375

FWHR
SDD
LWT
LNQ
STWC
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.24 Multiple comparison of “where” rules with LSD test for MT (α = 0.05) 

Multiple Comparisons

Dependent Variable: MT
LSD

-.0135 2.4674 .9957 -4.9119 4.8849
4.4542 2.4674 .0742 -.4442 9.3526

.0720 2.4674 .9768 -4.8264 4.9704
9.4734* 2.4674 .0002 4.5750 14.3718

.0135 2.4674 .9957 -4.8849 4.9119

4.4677 2.4674 .0734 -.4307 9.3660
.0854 2.4674 .9724 -4.8129 4.9838

9.4869* 2.4674 .0002 4.5885 14.3853
-4.4542 2.4674 .0742 -9.3526 .4442
-4.4677 2.4674 .0734 -9.3660 .4307

-4.3822 2.4674 .0789 -9.2806 .5162
5.0192* 2.4674 .0447 .1209 9.9176
-.0720 2.4674 .9768 -4.9704 4.8264
-.0854 2.4674 .9724 -4.9838 4.8129
4.3822 2.4674 .0789 -.5162 9.2806

9.4015* 2.4674 .0002 4.5031 14.2998
-9.4734* 2.4674 .0002 -14.3718 -4.5750
-9.4869* 2.4674 .0002 -14.3853 -4.5885
-5.0192* 2.4674 .0447 -9.9176 -.1209
-9.4015* 2.4674 .0002 -14.2998 -4.5031

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ

LWT

STWC

SDD

FWHR

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig.
Lower
Bound

Upper
Bound

95% Confidence
Interval

The mean difference is significant at the .05 level.*.  
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B.25 Multiple comparison of “where” rules with LSD test for %NTJ (α = 0.05) 
Multiple Comparisons

Dependent Variable: NTJ
LSD

-.0182 3.06816 .995 -6.1093 6.0728
2.2548 3.06816 .464 -3.8363 8.3458

.2183 3.06816 .943 -5.8727 6.3094
17.0116* 3.06816 .000 10.9205 23.1026

.0182 3.06816 .995 -6.0728 6.1093

2.2730 3.06816 .461 -3.8181 8.3641
.2366 3.06816 .939 -5.8545 6.3276

17.0298* 3.06816 .000 10.9387 23.1209
-2.2548 3.06816 .464 -8.3458 3.8363
-2.2730 3.06816 .461 -8.3641 3.8181

-2.0364 3.06816 .508 -8.1275 4.0546
14.7568* 3.06816 .000 8.6657 20.8479

-.2183 3.06816 .943 -6.3094 5.8727
-.2366 3.06816 .939 -6.3276 5.8545
2.0364 3.06816 .508 -4.0546 8.1275

16.7932* 3.06816 .000 10.7022 22.8843
-17.0116* 3.06816 .000 -23.1026 -10.9205
-17.0298* 3.06816 .000 -23.1209 -10.9387
-14.7568* 3.06816 .000 -20.8479 -8.6657
-16.7932* 3.06816 .000 -22.8843 -10.7022

LNQ
LWT
STWC
SDD
FWHR

(J) MTH

LNQ
LWT
STWC
SDD
FWHR

(J) MTH

LNQ
LWT
STWC
SDD
FWHR

(J) MTH

LNQ
LWT
STWC
SDD
FWHR

(J) MTH

LNQ
LWT
STWC
SDD
FWHR

(J) MTH

LNQ

LWT

STWC

SDD

FWHR

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
 
B.26 Multiple comparison of “where” rules with LSD test for MFT (α = 0.05) 

Multiple Comparisons

Dependent Variable: MFT
LSD

.0157 2.33613 .995 -4.6221 4.6535
5.9088* 2.33613 .013 1.2710 10.5466

.1847 2.33613 .937 -4.4531 4.8225
23.5587* 2.33613 .000 18.9209 28.1965

-.0157 2.33613 .995 -4.6535 4.6221

5.8931* 2.33613 .013 1.2553 10.5309
.1690 2.33613 .942 -4.4688 4.8068

23.5430* 2.33613 .000 18.9052 28.1808
-5.9088* 2.33613 .013 -10.5466 -1.2710
-5.8931* 2.33613 .013 -10.5309 -1.2553

-5.7241* 2.33613 .016 -10.3619 -1.0863
17.6499* 2.33613 .000 13.0121 22.2877

-.1847 2.33613 .937 -4.8225 4.4531
-.1690 2.33613 .942 -4.8068 4.4688
5.7241* 2.33613 .016 1.0863 10.3619

23.3740* 2.33613 .000 18.7362 28.0118
-23.5587* 2.33613 .000 -28.1965 -18.9209
-23.5430* 2.33613 .000 -28.1808 -18.9052
-17.6499* 2.33613 .000 -22.2877 -13.0121
-23.3740* 2.33613 .000 -28.0118 -18.7362

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ

LWT

STWC

SDD

FWHR

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
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B.27 Multiple comparison of “where” rules with LSD test for MQT (α = 0.05) 

Multiple Comparisons

Dependent Variable: MQT
LSD

.0024 .48776 .996 -.9660 .9707

.9015 .48776 .068 -.0668 1.8698

.0340 .48776 .945 -.9343 1.0023
2.2340* .48776 .000 1.2657 3.2024
-.0024 .48776 .996 -.9707 .9660

.8991 .48776 .068 -.0692 1.8674

.0316 .48776 .948 -.9367 .9999
2.2317* .48776 .000 1.2633 3.2000
-.9015 .48776 .068 -1.8698 .0668
-.8991 .48776 .068 -1.8674 .0692

-.8675 .48776 .079 -1.8358 .1008
1.3326* .48776 .008 .3642 2.3009
-.0340 .48776 .945 -1.0023 .9343
-.0316 .48776 .948 -.9999 .9367
.8675 .48776 .079 -.1008 1.8358

2.2000* .48776 .000 1.2317 3.1684
-2.2340* .48776 .000 -3.2024 -1.2657
-2.2317* .48776 .000 -3.2000 -1.2633
-1.3326* .48776 .008 -2.3009 -.3642
-2.2000* .48776 .000 -3.1684 -1.2317

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ

LWT

STWC

SDD

FWHR

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
B.28 Multiple comparison of “where” rules with LSD test for WIP (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: WIP
LSD

.0086 .48959 .986 -.9634 .9805
-.4471 .48959 .363 -1.4190 .5249
.0377 .48959 .939 -.9342 1.0097

4.0517* .48959 .000 3.0797 5.0236
-.0086 .48959 .986 -.9805 .9634

-.4556 .48959 .354 -1.4276 .5163
.0292 .48959 .953 -.9428 1.0012

4.0431* .48959 .000 3.0711 5.0151
.4471 .48959 .363 -.5249 1.4190
.4556 .48959 .354 -.5163 1.4276

.4848 .48959 .325 -.4871 1.4568
4.4987* .48959 .000 3.5268 5.4707
-.0377 .48959 .939 -1.0097 .9342
-.0292 .48959 .953 -1.0012 .9428
-.4848 .48959 .325 -1.4568 .4871

4.0139* .48959 .000 3.0420 4.9859
-4.0517* .48959 .000 -5.0236 -3.0797
-4.0431* .48959 .000 -5.0151 -3.0711
-4.4987* .48959 .000 -5.4707 -3.5268
-4.0139* .48959 .000 -4.9859 -3.0420

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ
LWT
STWC
SDD
FWHR

(J)
MTH

LNQ

LWT

STWC

SDD

FWHR

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
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B.29 ANOVA for “when” rules (α = 0.01) 

ANOVA

18,977.752 2 9,488.876 119.550 .000
4,524.194 57 79.372

23,501.946 59
2,307.071 2 1,153.536 19.193 .000
3,425.816 57 60.102
5,732.888 59

19,213.462 2 9,606.731 109.171 .000
5,015.824 57 87.997

24,229.286 59
1,005.531 2 502.765 135.934 .000

210.820 57 3.699
1,216.351 59

495.217 2 247.608 75.391 .000
187.207 57 3.284
682.424 59

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.

 
 
B.30 DUNCAN Multiple Range Test for MT (“When” Rules) (α = 0.05) 

MT

20 16.7768
20 22.4500
20 57.0192

1.000 1.000 1.000

FWHN
DC
C
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.31 DUNCAN Multiple Range Test for %NTJ (“When” Rules) (α = 0.05) 

NTJ

20 29.9453
20 34.2401
20 44.7100

.085 1.000

FWHN
C
DC
Sig.

MTHDuncan
a

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 20,000.a. 
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B.32 DUNCAN Multiple Range Test for MFT (“When” Rules) (α = 0.05) 

MFT

20 93.8075
20 111.3200
20 137.3631

1.000 1.000 1.000

FWHN
DC
C
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.33 DUNCAN Multiple Range Test for MQT (“When” Rules) (α = 0.05) 

MQT

20 5.1244
20 6.4300
20 14.3875

1.000 1.000 1.000

FWHN
DC
C
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.34 DUNCAN Multiple Range Test for WIP (“When” Rules) (α = 0.05) 
 

WIP

20 15.1355

20 19.6100
20 22.0766

1.000 1.000 1.000

FWH
N
DC
C
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.35 Multiple comparison of “when” rules with LSD test for MT (α = 0.05) 
Multiple Comparisons

Dependent Variable: MT
LSD

34.5692* 2.81730 .000 28.9276 40.2107
40.2424* 2.81730 .000 34.6008 45.8839

-34.5692* 2.81730 .000 -40.2107 -28.9276

5.6732* 2.81730 .049 .0316 11.3147
-40.2424* 2.81730 .000 -45.8839 -34.6008
-5.6732* 2.81730 .049 -11.3147 -.0316

C
DC
FWHN

(J)
MTH

C
DC
FWHN

(J)
MTH

C
DC
FWHN

(J)
MTH

C

DC

FWHN

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.36 Multiple comparison of “when” rules with LSD test for %NTJ (α = 0.05) 
Multiple Comparisons

Dependent Variable: NTJ
LSD

-10.4699* 2.45157 .000 -15.3791 -5.5607
4.2948 2.45157 .085 -.6144 9.2039

10.4699* 2.45157 .000 5.5607 15.3791

14.7647* 2.45157 .000 9.8555 19.6739
-4.2948 2.45157 .085 -9.2039 .6144

-14.7647* 2.45157 .000 -19.6739 -9.8555

C
DC
FWHN

(J) MTH

C
DC
FWHN

(J) MTH

C
DC
FWHN

(J) MTH

C

DC

FWHN

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower BoundUpper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
B.37 Multiple comparison of “when” rules with LSD test for MFT (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: MFT
LSD

26.0431* 2.96643 .000 20.1029 31.9833
43.5556* 2.96643 .000 37.6154 49.4958

-26.0431* 2.96643 .000 -31.9833 -20.1029

17.5125* 2.96643 .000 11.5723 23.4526
-43.5556* 2.96643 .000 -49.4958 -37.6154
-17.5125* 2.96643 .000 -23.4526 -11.5723

C
DC
FWHN

(J) MTH

C
DC
FWHN

(J) MTH

C
DC
FWHN

(J) MTH

C

DC

FWHN

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower BoundUpper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
B.38 Multiple comparison of “when” rules with LSD test for MQT (α = 0.05) 

Multiple Comparisons

Dependent Variable: MQT
LSD

7.9575* .60816 .000 6.7396 9.1753
9.2630* .60816 .000 8.0452 10.4809

-7.9575* .60816 .000 -9.1753 -6.7396

1.3056* .60816 .036 .0877 2.5234
-9.2630* .60816 .000 -10.4809 -8.0452
-1.3056* .60816 .036 -2.5234 -.0877

C
DC
FWHN

(J)
MTH

C
DC
FWHN

(J)
MTH

C
DC
FWHN

(J)
MTH

C

DC

FWHN

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower BoundUpper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.39 Multiple comparison of “when” rules with LSD test for WIP (α = 0.05) 

Multiple Comparisons

Dependent Variable: WIP
LSD

2.4666* .57309 .000 1.3190 3.6142
6.9410* .57309 .000 5.7934 8.0886

-2.4666* .57309 .000 -3.6142 -1.3190

4.4745* .57309 .000 3.3269 5.6221
-6.9410* .57309 .000 -8.0886 -5.7934
-4.4745* .57309 .000 -5.6221 -3.3269

C
DC
FWHN

(J) MTH

C
DC
FWHN

(J) MTH

C
DC
FWHN

(J) MTH

C

DC

FWHN

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower BoundUpper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
B.40 ANOVA for proposed three approaches for VR=L (α = 0.05) 
 

ANOVA

3,196.328 2 1,598.164 2.668 .078
34,143.435 57 599.008
37,339.764 59
1,722.878 2 861.439 21.328 .000
2,302.249 57 40.390
4,025.127 59
7,164.163 2 3,582.081 5.888 .005

34,675.860 57 608.348
41,840.023 59

129.823 2 64.912 2.596 .083
1,425.205 57 25.004
1,555.028 59

309.503 2 154.751 5.659 .006
1,558.626 57 27.344
1,868.129 59

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.

 
 
B.41 DUNCAN Multiple Range Test for MT for VR=L (proposed approaches) (α = 0.05) 

MT

20 36.7320
20 49.3584 49.3584
20 54.0067

.108 .550

MCDRC-FUZZY
MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.42 DUNCAN Multiple Range Test for % NTJ for VR=L (proposed approaches) (α = 0.05) 

NTJ

20 44.5142
20 52.8869
20 57.4549

1.000 1.000 1.000

MCDRC-FUZZY
MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2 3
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.43 DUNCAN Multiple Range Test for MFT for VR=L (proposed approaches) (α = 0.05) 

MFT

20 101.0385

20 120.5446
20 126.6643

1.000 .436

MCDRC-FUZZY

MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.44 DUNCAN Multiple Range Test for MQT for VR=L (proposed approaches) (α = 0.05) 

MQT

20 9.5212
20 11.7355 11.7355
20 13.0899

.167 .395

MCDRC-FUZZY
MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.45 DUNCAN Multiple Range Test for WIP for VR=L (proposed approaches) (α = 0.05) 

WIP

20 21.3250
20 25.7065
20 26.4847

1.000 .640

MCDRC-FUZZY
MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.46 Multiple comparison of proposed approaches with LSD test for MT for VR=L (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: MT
LSD

4.6482 7.73956 .550 -10.8500 20.1464
17.2747* 7.73956 .030 1.7765 32.7729
-4.6482 7.73956 .550 -20.1464 10.8500

12.6265 7.73956 .108 -2.8717 28.1247
-17.2747* 7.73956 .030 -32.7729 -1.7765
-12.6265 7.73956 .108 -28.1247 2.8717

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
B.47 Multiple comparison of proposed approaches with LSD test for %NTJ for VR=L (α = 0.05) 

Multiple Comparisons

Dependent Variable: NTJ
LSD

4.5681* 2.00973 .027 .5437 8.5925
12.9407* 2.00973 .000 8.9163 16.9652
-4.5681* 2.00973 .027 -8.5925 -.5437

8.3727* 2.00973 .000 4.3482 12.3971
-12.9407* 2.00973 .000 -16.9652 -8.9163
-8.3727* 2.00973 .000 -12.3971 -4.3482

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
B.48 Multiple comparison of proposed approaches with LSD test for MFT for VR=L (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: MFT
LSD

6.1198 7.79967 .436 -9.4988 21.7383
25.6259* 7.79967 .002 10.0073 41.2444
-6.1198 7.79967 .436 -21.7383 9.4988

19.5061* 7.79967 .015 3.8875 35.1247
-25.6259* 7.79967 .002 -41.2444 -10.0073
-19.5061* 7.79967 .015 -35.1247 -3.8875

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.49 Multiple comparison of proposed approaches with LSD test for MQT for VR=L (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: MQT
LSD

1.3544 1.58125 .395 -1.8120 4.5208

3.5687* 1.58125 .028 .4023 6.7351

-1.3544 1.58125 .395 -4.5208 1.8120

2.2143 1.58125 .167 -.9521 5.3807

-3.5687* 1.58125 .028 -6.7351 -.4023
-2.2143 1.58125 .167 -5.3807 .9521

MCDRC-FIS
MCDRC-PRO

MCDRC-FUZZY
(J) MTH

MCDRC-FIS
MCDRC-PRO

MCDRC-FUZZY
(J) MTH

MCDRC-FIS
MCDRC-PRO

MCDRC-FUZZY
(J) MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
B.50 Multiple comparison of proposed approaches with LSD test for WIP for VR=L (α = 0.05) 

Multiple Comparisons

Dependent Variable: WIP
LSD

.7782 1.65361 .640 -2.5331 4.0895
5.1597* 1.65361 .003 1.8484 8.4710
-.7782 1.65361 .640 -4.0895 2.5331

4.3815* 1.65361 .010 1.0702 7.6928
-5.1597* 1.65361 .003 -8.4710 -1.8484
-4.3815* 1.65361 .010 -7.6928 -1.0702

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
B.51 ANOVA for proposed three approaches for VR=M (α = 0.05) 
 

ANOVA

612.793 2 306.397 3.931 .025
4,442.979 57 77.947
5,055.773 59

595.220 2 297.610 6.632 .003
2,558.034 57 44.878
3,153.253 59
4,236.021 2 2,118.011 27.089 .000
4,456.729 57 78.188
8,692.751 59

34.354 2 17.177 5.139 .009
190.525 57 3.343
224.879 59
110.558 2 55.279 18.970 .000
166.098 57 2.914
276.656 59

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.
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B.52 DUNCAN Multiple Range Test for MT for VR=M (proposed approaches) (α = 0.05) 

MT

20 10.8489
20 17.1056
20 18.0515

1.000 .736

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.53 DUNCAN Multiple Range Test for %NTJ for VR=M (proposed approaches) (α = 0.05) 
 

NTJ

20 24.5038
20 30.9317
20 31.4127

1.000 .821

MCDRC-FUZZY
MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
 
 
B.54 DUNCAN Multiple Range Test for MFT for VR=M (proposed approaches) (α = 0.05) 

MFT

20 78.2430
20 95.7527
20 96.3658

1.000 .827

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.55 DUNCAN Multiple Range Test for MQT for VR=M (proposed approaches) (α = 0.05) 
 

MQT

20 4.0304
20 5.6068
20 5.6629

1.000 .923

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.56 DUNCAN Multiple Range Test for WIP for VR=M (proposed approaches) (α = 0.05) 

WIP

20 12.6397
20 15.4677
20 15.5683

1.000 .853

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.57 Multiple comparison of proposed approaches with LSD test for MT for VR=M (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: MT
LSD

-.9459 2.79190 .736 -6.5366 4.6447
6.2567* 2.79190 .029 .6660 11.8474
.9459 2.79190 .736 -4.6447 6.5366

7.2026* 2.79190 .012 1.6120 12.7933
-6.2567* 2.79190 .029 -11.8474 -.6660
-7.2026* 2.79190 .012 -12.7933 -1.6120

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
 
B.58 Multiple comparison of proposed approaches with LSD test for %NTJ for VR=M (α = 0.05) 

Multiple Comparisons

Dependent Variable: NTJ
LSD

.4810 2.11844 .821 -3.7611 4.7231
6.9089* 2.11844 .002 2.6668 11.1510
-.4810 2.11844 .821 -4.7231 3.7611

6.4279* 2.11844 .004 2.1858 10.6700
-6.9089* 2.11844 .002 -11.1510 -2.6668
-6.4279* 2.11844 .004 -10.6700 -2.1858

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J) MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I) MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
 
B.59 Multiple comparison of proposed approaches with LSD test for MFT for VR=M (α = 0.05) 

Multiple Comparisons

Dependent Variable: MFT
LSD

-.6130 2.79622 .827 -6.2123 4.9863
17.5098* 2.79622 .000 11.9104 23.1091

.6130 2.79622 .827 -4.9863 6.2123

18.1228* 2.79622 .000 12.5235 23.7221
-17.5098* 2.79622 .000 -23.1091 -11.9104
-18.1228* 2.79622 .000 -23.7221 -12.5235

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO

MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZ
Y

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.60 Multiple comparison of proposed approaches with LSD test for MQT for VR=M (α = 0.05) 
Multiple Comparisons

Dependent Variable: MQT
LSD

-.0561 .57815 .923 -1.2138 1.1016
1.5764* .57815 .008 .4186 2.7341

.0561 .57815 .923 -1.1016 1.2138

1.6325* .57815 .007 .4748 2.7902
-1.5764* .57815 .008 -2.7341 -.4186
-1.6325* .57815 .007 -2.7902 -.4748

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
B.61 Multiple comparison of proposed approaches with LSD test for WIP for VR=M (α = 0.05) 
 
 

Multiple Comparisons

Dependent Variable: WIP
LSD

-.1006 .53981 .853 -1.1815 .9804
2.8280* .53981 .000 1.7470 3.9089
.1006 .53981 .853 -.9804 1.1815

2.9285* .53981 .000 1.8476 4.0095
-2.8280* .53981 .000 -3.9089 -1.7470
-2.9285* .53981 .000 -4.0095 -1.8476

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
B.62 ANOVA for proposed three approaches for VR=H (α = 0.05) 
 

ANOVA

5,499.927 2 2,749.963 4.548 .015
34,465.481 57 604.658
39,965.408 59
2,843.211 2 1,421.606 6.902 .002

11,740.324 57 205.971
14,583.535 59
10,195.796 2 5,097.898 9.941 .000
29,229.076 57 512.791
39,424.872 59

142.608 2 71.304 3.320 .043
1,224.292 57 21.479
1,366.901 59

280.192 2 140.096 8.164 .001
978.075 57 17.159

1,258.267 59

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

MT

NTJ

MFT

MQT

WIP

Sum of
Squares df Mean Square F Sig.

 
B.63 DUNCAN Multiple Range Test for MT for VR=H (proposed approaches) (α = 0.05) 

MT

20 39.3006
20 57.6162
20 61.1430

1.000 .652

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.64 DUNCAN Multiple Range Test for %NTJ for VR=H (proposed approaches) (α = 0.05) 

NTJ

20 51.4090
20 65.7446
20 66.2649

1.000 .909

MCDRC-FUZZY
MCDRC-PRO
MCDRC-FIS
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

 
B.65 DUNCAN Multiple Range Test for MFT for VR=H (proposed approaches) (α = 0.05) 

MFT

20 87.8019

20 113.5574
20 117.0251

1.000 .630

MCDRC-FUZZY

MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.66 DUNCAN Multiple Range Test for MQT for VR=H (proposed approaches) (α = 0.05) 

MQT

20 6.3531
20 9.2196 9.2196
20 9.9154

.055 .637

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
 

B.67 DUNCAN Multiple Range Test for WIP for VR=H (proposed approaches) (α = 0.05) 

WIP

20 14.7431
20 19.0260
20 19.5785

1.000 .675

MCDRC-FUZZY
MCDRC-FIS
MCDRC-PRO
Sig.

MTHDuncan

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
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B.68 Multiple comparison of proposed approaches with LSD test for MT for VR=H (α = 0.05) 
Multiple Comparisons

Dependent Variable: MT
LSD

-3.5268 7.77597 .652 -19.0979 12.0443
18.3156* 7.77597 .022 2.7445 33.8867
3.5268 7.77597 .652 -12.0443 19.0979

21.8424* 7.77597 .007 6.2713 37.4135
-18.3156* 7.77597 .022 -33.8867 -2.7445
-21.8424* 7.77597 .007 -37.4135 -6.2713

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
B.69 Multiple comparison of proposed approaches with LSD test for %NTJ for VR=H (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: NTJ
LSD

.5202 4.53840 .909 -8.5677 9.6082
14.8559* 4.53840 .002 5.7680 23.9439

-.5202 4.53840 .909 -9.6082 8.5677

14.3357* 4.53840 .003 5.2477 23.4237
-14.8559* 4.53840 .002 -23.9439 -5.7680
-14.3357* 4.53840 .003 -23.4237 -5.2477

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
B.70 Multiple comparison of proposed approaches with LSD test for MFT for VR=H (α = 0.05) 

Multiple Comparisons

Dependent Variable: MFT
LSD

-3.4677 7.16094 .630 -17.8073 10.8718
25.7555* 7.16094 .001 11.4160 40.0950
3.4677 7.16094 .630 -10.8718 17.8073

29.2232* 7.16094 .000 14.8837 43.5628
-25.7555* 7.16094 .001 -40.0950 -11.4160
-29.2232* 7.16094 .000 -43.5628 -14.8837

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
B.71 Multiple comparison of proposed approaches with LSD test for MQT for VR=H (α = 0.05) 

Multiple Comparisons

Dependent Variable: MQT
LSD

-.6958 1.46557 .637 -3.6306 2.2389
2.8665 1.46557 .055 -.0683 5.8012
.6958 1.46557 .637 -2.2389 3.6306

3.5623* 1.46557 .018 .6276 6.4971
-2.8665 1.46557 .055 -5.8012 .0683
-3.5623* 1.46557 .018 -6.4971 -.6276

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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B.72 Multiple comparison of proposed approaches with LSD test for WIP for VR=H (α = 0.05) 
 

Multiple Comparisons

Dependent Variable: WIP
LSD

-.5525 1.30993 .675 -3.1756 2.0706
4.2828* 1.30993 .002 1.6597 6.9059

.5525 1.30993 .675 -2.0706 3.1756

4.8354* 1.30993 .001 2.2123 7.4585
-4.2828* 1.30993 .002 -6.9059 -1.6597
-4.8354* 1.30993 .001 -7.4585 -2.2123

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS
MCDRC-PRO
MCDRC-FUZZY

(J)
MTH

MCDRC-FIS

MCDRC-PRO

MCDRC-FUZZY

(I)
MTH

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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