
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

A HOME NETWORKING APPLICATION FOR
CONTROLLING HOUSEHOLD APPLIANCES

by

Olgun ÜNAL

October, 2007

ĐZM ĐR

A HOME NETWORKING APPLICATION FOR
CONTROLLING HOUSEHOLD APPLIANCES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Master of Science in

Computer Engineering, Computer Engineering Program

By

Olgun ÜNAL

October, 2007

ĐZM ĐR

 ii

M.Sc. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “A HOME NETWORKING APPLICATION

FOR CONTROLLING HOUSEHOLD APPLIANCES” completed by OLGUN

ÜNAL under supervision of INS. DR. M. KEMALŞİŞ and we certify that in our

opinion it is fully adequate, in scope and in quality, as a thesis for the degree of

Master of Science.

INS. DR. M. KEMAL ŞİŞ

Supervisor

PROF. DR. HALDUN KARACA ASSC. PROF. DR. ADİL ALPKOÇAK

(Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, “Ins. Dr. M. Kemal ŞĐŞ” for his support

and patience.

My great thanks to my wife for patiently motivating me to finalize this thesis

on time and I appreciate her supreme technical help to build up the application of

the thesis.

I also would like to thank my parents for supporting me in my whole education

life.

 iv

A HOME NETWORKING APPLICATION FOR CONTROLLING

HOUSEHOLD APPLIANCES

ABSTRACT

In this thesis, a consumer electronics product that is related with Home

Networking is considered to be built up with a special software and hardware

application combination.

The software application consists of three parts, which are independent each other

and communicating via dedicated communication protocols; one is Embedded

Control Server’s embedded software, which is developed from the scratch with using

Keil C compiler and development environment on the 8051 platform in ANSI C

programming language. Second part is at the PC side that provides an HTTP server

and a Web Based User Interface to the outside world via internet. In addition, it

stores all the inputs from the WBUI in to a database. This software application is

developed in Java programming language by Eclipse development environment from

Apache Software Foundation. In addition, the last part is the port access application

at PC side that can send and receive data via the serial port and update the common

database with the web server. This application is also developed in Java by Eclipse

IDE

The hardware application includes a demo board of the Keil Software that has

8051 microcontroller and the device representative units with port expander

integrated circuits that are controlled via I2C protocol.

With using the combination of developed software and hardware applications

above I have built up a Home Control Network, which provides ability to user to

access a device at home from any internet accessed PC in the world. This application

is intentionally built up very flexible to give chance to user to extend the application

easily. To do this, user can change parameters provided via web interface. Also the

 v

application can be developed according to the user requests and can be downloaded

to ECS easily via same communication interface that port application uses.

Keywords : Home Network, Control, Embedded Systems, 8051, I2C, port expander,

UART, protocol definition, Web Server, port control

 vi

EV CĐHAZLARININ B ĐR EV AĞI UYGULAMASIYLA YÖNET ĐLMESĐ

ÖZ

Bu tezde özel bir yazılım ve donanım kombinasyonuyla oluşturulan bir ev kontrol

ağı uygulaması ele alınmış olup bu uygulama bir tüketici elektroniği ürünü haline

getirilmiştir.

Yazılım uygulaması 3 bağımsız bölümün haberleşmesi esasına dayanmaktadır.

Birinci yazılım, gömülü kontrol sunucusu (ECS) içerisinde yeralıp, uygulama

geliştirme süreci tamamen sıfırdan başlayarak Keil C derleyici ve geliştirme ortamı

kullanılarak tamamlanmıştır. Ayrıca bu yazılım daha sonra kullanıcının isteğine göre

değiştirilip mevcut haberleşme kanalları üzerinden kolaylıkla yazılım güncellemesi

yapılabilmektedir. Đkinci yazılım PC tarafında yeralıp bir HTTP sunucu görevi

yapmaktadır. Bu sunucu ev ağını dış dünyaya bağlamakta ve ev ağının kontrolü için

bir kullanıcı arayüzü sunmaktadır. Aynı zamanda bu kullanıcı arayüzünden girilen

veriler bir veritabanında saklanmaktadır. Bu yazılım Java programlama dili ile Eclips

entegre geliştirme ortamında geliştirilmi ştir. Üçüncü yazılım yine PC tarafında olup,

web server yazılımıyla ortak veridabanındaki değişiklikleri PC’nin seri portu

üzerinden ECS’e gönderme ve ECS’den seri port üzerinden gelen verileri ortak

databasede güncelleme görevlerini yapmaktadır. Bu yazılım da Java programlama

dili kullanılarak Eclips ortamında geliştirilmi ştir.

Donanım uygulaması bir adet 8051 mikroişlemci uygulama kartı ve ev cihazlarını

temsil etmek için kullanılan port genişletme entegre devlerinden kurulmuş 3 adet

üniteden oluşmaktadır. Bu ünitelerle haberleşme bir IC kontrol standartı olan I2C ile

yapılmaktadır.

Yukarıda sayılan yazılım ve donanım bileşenlerinin kombinasyonu yardımıyla bir

ev ağı yönetim uygulaması yapılmıştır. Bu uygulama kullanıcısına dünyanın

herhangi bir yerinden intenet bağlantısı olan bir PC aracılığıyla ev ağını yönetme

imkanı vermektedir.

 vii

Anahtar kelimeler : Ev ağı, kontrol, gömülü sistemler, 8051, I2C, port genişletme,

UART, protokol tanımlama, web sunucu, port kontrol

 viii

CONTENTS

Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGMENTS ... iii

ABSTRACT..iv

ÖZ..vi

CHAPTER ONE - INTRODUCTION...1

1.1 Home Networking Concept.. 1

1.2 Home Networking Systems.. 2

1.2.1 Embedded Controller Based System... 2

1.2.2 PC Centric Systems... 2

1.3 Home Networking Applications... 2

 1.3.1 Implemented Applications... 3

1.3.1.1 Simply Run... 3

1.3.1.2 Simply Stop.. 3

1.3.1.3 Retrieve Significant Data... 3

1.3.1.4 Write Significant Data.. 3

1.3.1.5 Time Application.. 3

1.3.1.6 Relative Application... 3

1.3.2 Embedded Control Protocol (ECP) ... 4

1.4 General Home Networking Applications ..4

1.4.1 Controlling Household Devices... 4

1.4.2 Computing and Resource Sharing... 4

1.4.3 Entertainment and Information.. 5

 ix

1.4.4 Communications ... 5

CHAPTER TWO - DESIGN BASIS OF THE SOFTWARE APPLICAT ION..6

2.1 Embedded Control Server (ECS)...….. 6

2.1.1 User Interface... 7

2.1.2 Application...8

2.1.3 System..8

2.1.4 Drivers..…. 8

2.1.5 Datalink..…. 10

2.1.5.1 I2C..…. 10

2.1.5.2 UART... 11

2.1.6 Physical Layer – Hardware.. 12

2.1.7 Architecture of the 8051 Microcontroller.. 13

2.1.7.1 Memory Organization...…. 13

2.1.7.2 Bit processing and Boolean logic... 14

2.1.7.3 Addressing Modes.. 14

2.1.7.4 Interrupts on the 8051.. 14

2.1.7.5 On-Board Timer/Counters ... 14

2.1.7.6 On-Board UART.. 15

2.1.7.7 I2C.. 15

2.1.7.8 Analog to Digital Converters... 15

2.1.7.9 Watchdog Timers... 16

2.1.7.10 Using C with the 8051.. 16

2.2 Embedded Control Client / Web Server... 17

2.2.1 Web Based Used Interface (WBUI) .. 18

2.2.2 Web Server Application and database link.. 20

2.2.3 Control Application and database link... 20

2.2.4 Device Message Database (DMDB).. 21

 x

CHAPTER THREE - HARDWARE ARCHITECTURE.............. 22

3.1 Embedded Control Server (ECS)…………………………………… 22

3.1.1 Microcontroller……………………………………………………..... 22

3.1.1.1 EEPROM……………………………………………………..... 22

3.1.1.2 Real Time Clock………………………………………….....… 23

3.1.1.3 General Purpose I/O Port…………………………………....... 23

3.1.1.4 UART interface……………………………………………...... 23

3.1.1.5 I2C interface………………………………………………….... 23

3.1.1.6 Memory ………………………………………………………... 24

3.1.1.7 Processor……………………………………………………...... 24

3.1.2 Household Interface Devices (Port Expander)…………………… 24

3.2 Embedded Control Client and Web Server (Computer Workstation)…25

3.2.1 Central Processor Unit (CPU)………………………………………

 26

3.2.2 Ethernet Adapter……………………………………………………..... 26

3.2.3 USB Controller……………………………………………………...... 26

CHAPTER FOUR - THE PROTOCOLS USED IN THE APPLICATIO N...... 28

4.1 Embedded Server Protocol (ECP)...28

4.1.1 Headers:...29

4.1.1.1 Read / Write byte...29

4.1.1.2 Address byte..29

4.1.1.3 ASD0 (Application Code)... 30

4.1.1.4 ASD1 (Second)30

4.1.1.5 ASD2 (Minute)30

4.1.1.6 ASD3 (Hour) 30

4.1.1.7 ASD4 (Day)31

 xi

4.1.1.8 ASD5 (Month)31

4.1.1.9 ASD6 (Year)31

4.1.1.10 ASD7 and ASD8 (Time Offset and Unit)............................. 31

4.1.1.11 ASD9 (Relative Device)... 32

4.1.1.12 ASD10 (Relative Value)... 32

4.1.1.13 ASD11 (Relative State)32

4.1.1.14 ASD12 (Device Pin number)..33

4.1.1.15 ASD13 (Device Pin state)..33

4.1.1.16 ASD14, ASD15 (Reserved bytes).. 33

4.1.2 Fetching ECP Messages..34

4.1.3 Processing ECP Messages..35

4.2 Used Protocols at ECC Side..36

4.2.1 ODBC...37

4.2.1.1 JDBC-ODBC bridges...37

4.2.1.2 ODBC-JDBC bridges..38

4.2.2 TCP/IP..39

4.2.2.1 Network Interface Layer...39

4.2.2.2 Internet Layer...40

4.2.2.3 Transport Layer..40

4.2.2.4 Application Layer..41

4.2.2.5 Apache Tomcat HTTP Server..41

CHAPTER FIVE - DEVELOPMENT ENVIRONMENTS............ 42

5.1 ECS Application Development Environment...................................... 43

5.2 ECC Application Development Environment...................................... 44

CHAPTER SIX - APPLICATION PRODUCT SPECIFICATIONS... 46

 xii

6.1 Representating the Product and Units...46

6.2 Predefined Applications...49

6.2.1 Simply Run..49

6.2.2 Simply Stop..49

6.2.3 Retrieve Significant Data..50

6.2.4 Write Significant Data..50

6.2.5 Time Application..50

6.2.6 Relative Application..51

CHAPTER SEVEN - CONCLUSION.. 52

REFERENCES... 53

APENDIX -ABBREVATIONS.. 54

1

 CHAPTER ONE

1 INTRODUCTION

1.1 Home Networking Concept

Home networking is the collection of elements that process, manage, transport,

and store information, enabling the connection and integration of multiple

computing, control, monitoring and communication devices in the home.

Until recently, the home network has been largely ignored. However, the rapid

proliferation of personal computers (PCs) and the Internet in most of the homes,

advancements in telecommunications technology, and progress in the development

of smart household devices have increasingly emphasized the last 100 feet of any

consumer-related network

Furthermore, as these growth and advancement trends continue, the need for

simple, flexible, and reliable home networks will greatly increase.

 Figure 1.1 A generic home networking concept.

2

1.2 Home Networking Systems

1.2.1 Embedded Controller Based System

In this system, the microprocessor-based digital switch acts as the

communications server, addressing and routing data traffic throughout the home.

I used a special protocol that I suggested in the application called Embedded

Control Protocol (ECP), which handles the communication between the Embedded

Control Server (ECS) and Embedded Control Client (ECC). ECC can be based on a

standard PC system.

1.2.2 PC Centric Systems

This is an alternative technology that can be used as well for Home Networking

Control. Some software and hardware suppliers provide home-networking solutions

via a wireless LAN, using the home's PC as the central control element. Reflects a

wireless home LAN configuration in which one PC acts as a master to the network. It

provides network addressing and routing between the home and the internet.

This straightforward approach simply marries familiar PC technology to new

home-networking technology. It also represents some consumer-marketplace

challenges to ultimate mass-market success.

1.3 My Home Networking Application

The implemented applications and protocols in the product of the application of

this thesis can be found below. The details of each application will be explained in

chapter six.

3

1.3.1 Implemented Applications

1.3.1.1 Simply Run

When this application runs, the data will be written to device 1 as 0xFF, which

enables all 8 of the pins of device 1, and all the LEDs will be switched ON without

taking care of the previous state of the pins.

1.3.1.2 Simply Stop

When this application runs, the data will be written to the device as 0x00 and all

the LEDs will be switched OFF without taking care of the previous state of the pins.

1.3.1.3 Retrieve Significant Data

When this application runs, ECS responds with the message that contains the

current states of the each pin of the device.

1.3.1.4 Write Significant Data

This application is used to set each pin of the specified device with the indicated

value in binary form without taking care of the current state of the pins.

1.3.1.5 Time Application

This application is used to control the related device according to any of the

specified time and period. After entering value of 3 as application code, the time

parameters also need to be entered according to the explanations in product

specification chapter.

1.3.1.6 Relative Application

This application is used for establishing a correlation between the devices.

Therefore, the state of the devices can be changed according to any of the other

device.

4

1.3.2 Embedded Control Protocol (ECP)

ECP is used for the communication between the Embedded Control Server (ECS)

and Embedded Control Client (ECC). The signaling is based on the UART standard,

which provides the sequence of serial data transfer. The details about the protocol

will be explained in chapter four.

1.4 General Home Networking Applications

1.4.1 Controlling Household Devices

Home networking can allow controls within the house, such as temperature and

lighting, to be managed though the network and even remotely through the Internet.

The network can also be used for home security monitoring with network cameras.

Figure 1.2 A simple representation of a home control network.

1.4.2 Computing and Resource Sharing

Home networking allows all users in the household to access the Internet and

applications at the same time. In addition, files (not just data, but also audio and

video depending on the speed of the network) can be swapped and peripherals such

5

as printers and scanners can be shared. There is no longer the need to have more than

one Internet access point, printer, scanner, or in many cases, software packages.

1.4.3 Entertainment and Information

Home networks support entertainment services like interactive gaming, digital and

streaming audio/video and hybrid Internet-TV services like WebTV and DirecTV.

Home entertainment networks will connect the following:

• Traditional consumer electronic products such as stereo components, TVs and

VCRs

• Convergence based devices such as MP3 players, Internet-enabled gaming consoles

and set top boxes.

• Computing products such as PCs, modems and residential gateways.

1.4.4 Communications

Home networking allows easier and more efficient communication between users

within the household and better communication management with outside

communications. Phone, fax, and e-mail messages can be routed intelligently. Access

to the Internet can be attained at multiple places in the home with the use of

terminals and Webpads.

 6

 CHAPTER TWO

2 DESIGN BASIS OF THE SOFTWARE APPLICATION

2.1 Embedded Control Server (ECS)

Embedded Control Server is the heart of our Home Control Network application,

which coordinates the over all network and runs independently. Software

Architecture of Embedded Control Server is divided in to several layers as in the

figure below.

 Figure 2.1 The software architecture of Embedded Control Server.

User Interface

System

Protocol.c

System.c

timers.c

Drivers
Eeprom.c PortEx.c RTC.c

Data link
uart.c I2C.c

Application
application.c

Phisical Layer -- HARDWARE

8051 uC

Eeprom

7

2.1.1 User Interface

To control and re-configure the embedded system, there is an interface needs to be

provided to the user, then user can access to the system and manupulate the state of

the system. In that sense, the User Interface refers o textual information of the

embedded program to the user, and by the control sequences (such as keystrokes

with the computer keyboard), the user employs to control the embedded program.

The information received and sent via the user interface is presented via a

terminal emulator's program display output. The terminal emulator program can be

work like a dummy terminal and uses the serial communication standard of UART.

Here in the Figure 2.2 below there is a snapshot of a simple terminal emulator

window.

 Figure 2.2 An example of the textual user interface in the terminal emulator window.

8

2.1.2 Application

It interfaces directly to and performs common application services for the

application processes; it also issues requests to the middleware layer. In this layer,

device control requests are processed via a function named “DeviceController” in the

embedded code. This function is called if any data is updated in the device register

map. Then it retrieves data from all the device address spaces in the memory and

checks which parameter is changed regarding each individual devices. If any change

occurs for a device, device controller function processes the new data according to

the specific device implementation.

2.1.3 System

This layer consists of the system resources, which are available for entire structure

such as drivers, application and data link. There are some of system facilities in this

layer that can be provided to other layers. The main module of the system is the

“protocol” that is responsible of transferring the messages to outside world and

processing the messages coming from there. Then the entire embedded system will

use the processed messages.

2.1.4 Drivers

A driver typically communicates with the device through a bus or

communications subsystem to which the hardware is connected. When a calling

program invokes a routine in the driver, the driver issues commands to the device.

Once the device sends data back to the driver, the driver may invoke routines in the

original calling program. Drivers are hardware-dependent and system-specific. They

usually provide the interrupt handling required for any necessary asynchronous time-

dependent hardware interface. Device drivers simplify programming by acting like a

translator between a device and the applications that use it. The higher-level code can

be written independently of whatever specific hardware device it may control. Every

version of a device requires its own specialized commands. In contrast, most

applications access devices by using high-level, generic commands. The driver

9

accepts these generic statements and converts them into the low-level commands

required by the device . In our application, we have the following device drivers,

Non-Volatile Memory (Eeprom), Real Time Clock (RTC) and Household Devices

(Port expander).

The base functions in Eeprom are as following.

void eeprom_write(u16 adr, u8 dat);

Writes data (dat) to the related address (adr) of the NVM

u8 eeprom_read(u16 adr);

Reads data from the related address (adr) and returns the read value in u8 type

The base functions in RTC are as following.

void rtc_config(void);

Configures the Real time clock settings of the microcontroller

void rtc_CountTime_interrupt(void);

Executes the interrupt routine when the timer produces the related interrupt.

void rtc_PrintCurrentTime(void);

Prints the current time to UART channel

void rtc_SetCurrentTime(void);

Starts asking user for setting the time via user interface.

The base functions in Port expander are as following.

u8 PortEx_getport(PortEx_devID device);

Gets the 8-bit data of the specified port (device) and returns the data.

void PortEx_setport(PortEx_devID device, u8 value);

Sets the 8 bit data to specified port(device)

u8 PortEx_getpin (PortEx_devID device, u8 pin);

Gets the 1-bit data from the specified port’s (PortEx_devID device) specified pin (u8

pin)

void PortEx_setpin (PortEx_devID device, u8 pin, u8

value);

Sets the 1-bit data of the specified port’s (PortEx_devID device) specified pin.

10

2.1.5 Datalink

Data link is the mean of connecting one location to another for the purpose of

transmitting and receiving data. It can also be an assembly, consisting of parts of two

data terminal equipments and the interconnecting data circuit that is controlled by a

link protocol enabling data to be transferred from a data source to a data sink.

In our application, we have two base communication protocol used in the datalink

layer, I2C and UART

2.1.5.1 I2C

I²C is a multi-master serial computer bus invented by Philips that is used to attach

low-speed peripherals to an embedded system. The name stands for Inter-Integrated

Circuit and is pronounced I-squared-C and also, incorrectly, I-two-C. I²C uses only

two bidirectional open-drain lines, Serial Data (SDA) and Serial Clock (SCL), pulled

up with resistors. Typical voltages used are +5 V or +3.3 V although systems with

other, higher or lower, voltages are permitted.

Figure 2.3 An example of I2C bus configuration.

 Here are some of the features of the I2C-bus:

• Only two bus lines are required; a serial data line (SDA) and a serial clock

line (SCL).

• Each device connected to the bus is software addressable by a unique address

and simple master/slave relationships exist at all times; masters can operate as

11

master-transmitters or as master-receivers.

• It is a true multi-master bus including collision detection and arbitration to

prevent data corruption if two or more masters simultaneously initiate data

transfer.

• Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100

kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode, up to 1 Mbit/s

in Fast-mode plus, or up to 3.4 Mbit/s in the High-speed mode.

• On-chip filtering rejects spikes on the bus data line to preserve data integrity.

• The number of ICs that can be connected to the same bus is limited only by a

maximum bus capacitance. More capacitance may be allowed under some

conditions.

In our application, we use I2C to communicate with the port expander ICs

(PCF8574) that is representing each of the household device.

2.1.5.2 UART

Universal Asynchronous Receiver/Transmitter is a type of "asynchronous

receiver/transmitter", a piece of computer hardware that translates data between

parallel and serial interfaces. Used for serial data telecommunication, a UART

converts bytes of data to and from asynchronous start-stop bit streams represented as

binary electrical impulses. UARTs are commonly used in conjunction with other

communication standards such as RS-232. UARTs are now commonly included in

microcontrollers

12

 Figure 2.4 A sample data stream of a UART communication.

In asynchronous communication, data is preceded with a start bit which indicates

to the receiver that a word (a chunk of data broken up into individual bits) is about to

begin. To avoid confusion with other bits, the start bit is twice the size of any other

bit in the transmission. The end of a word is followed by a stop bit, which tells the

receiver that the word has come to an end, that it should begin looking for the next

start bit, and that any bits it receives before getting the start bit should be ignored. To

insure data integrity, a parity bit is often added between the last bit of data and the

stop bit. The parity bit makes sure that the data received is composed of the same

number of bits in the same order in which they were sent. See the diagram in Figure

2.4 for a portrayal of how asynchronous communication works.

2.1.6 Physical Layer – Hardware

 Details of this layer will be considered in the Chapter of Hardware

Architecture.

13

2.1.7 Architecture of the 8051 Microcontroller

The 8051 family of microcontrollers is based on an architecture, which is highly

optimized for embedded control systems. It is used in a wide variety of applications

from military equipment to automobiles to the keyboard on your PC.

The basic architecture consists of the following features:

• 32 discrete I/O pins (4 groups of 8) which can be individually accessed

• Two 16 bit timer/counters

• Full duplex UART

• 6 interrupt sources with 2 priority levels

• 128 bytes of on board RAM

• Separate 64K byte address spaces for DATA and CODE memory

2.1.7.1 Memory Organization

The 8051 architecture provides the user with three physically distinct memory

spaces. Each memory space consists of contiguous addresses from zero to the

maximum size, in bytes, of the memory space. Address overlaps are resolved by

utilizing instructions which refer specifically to a given address space.

 Figure 2.5 8051 memory architecture.

14

2.1.7.2 Bit processing and Boolean logic

The 8051 contains a single bit Boolean processor that can be used to perform

logical operations on any of the 128 addressable bits in the BIT segment, the 128

addressable bits in the SFRs, and any of the 32 I/O lines (port 0 through port 3). The

8051 can perform OR, AND, XOR, complement, set, and clear operations on bits as

well as moving bit values as one would normally move byte values.

2.1.7.3 Addressing Modes

The 8051 is capable of performing direct and indirect memory accesses on its

various memory spaces. These are the typical methods through which processor

systems access memory. Direct accesses are characterized by presence of the address

of the accessed variable in the instruction itself. These accesses can only be

performed on the DATA segment and the SFRs.

2.1.7.4 Interrupts on the 8051

The basic 8051 supports six interrupt sources: two external interrupts, two

timer/counter interrupts, and a serial byte in/out interrupt. These interrupt sources

force the processor to vector to one of five locations in the lowest part of the CODE

address space (serial input and serial output interrupts share the same vector). The

interrupt service routine must either reside there or be branched to from there.

2.1.7.5 On-Board Timer/Counters

The standard 8051 has two timer/counters (other 8051 family members have

varying amounts), each of which is a full 16 bits. Each timer/counter can be function

as a free running timer (in which case they count processor cycles) or can be used to

count falling edges on the signal applied to their respective I/O pin (either T0 or T1).

When used as a counter, the input signal must have a frequency equal to or lower

than the instruction cycle frequency divided by 2 (ie: the oscillator frequency /24)

since the incoming signal is sampled every instruction cycle, and the counter is

incremented only when a 1 to 0 transition is detected (which will require two

15

samples). If desired, the timer/counters can force a software interrupt when they

overflow.

2.1.7.6 On-Board UART

The 8051 features an on board, full duplex UART that is under software control.

The UART is configured via the SCON (Serial Control) SFR. The SCON register

allows the user to select the UART mode, enable reception, and check UART status.

2.1.7.7 I2C

A new form of inter-device communication becoming popular is the I2C (inter-

integrated circuit) interface created and popularized by Phillips. I2C is a serial format

data link, which uses two wires (one for data and one for clock) and can have many

drops to varying devices. Each device has its own ID on the link to which it will

respond, data transfers are bi-directional, and the bus can have more than one master.

Phillips has been a leader in adding I2C capability to the 8051. Hardware wise, two

I/O pins are taken from port 1 for the I2C interface and a set of SFRs are added to

control the I2C and aid in implementing the protocol of this interface.

2.1.7.8 Analog to Digital Converters

Analog to digital converters are peripherals, which are not available on every

8051 family member, but are common enough that they were worth discussing in this

overview. A/D converters are usually controlled via some master register (usually

called ADCON) which is given one of the empty locations in the SFR memory

segment. The ADCON register allows the user to select the channel to be used for

A/D conversion, to start a new conversion and to check the status of a current

conversion.

16

2.1.7.9 Watchdog Timers

Watchdog timers are available on an expanding group of 8051 family members.

The purpose of a watchdog timer is to reset the controller if the timer is not fed by a

specific sequence of operations within a specified amount of time. This prevents

coincidental reloading of the watchdog by runaway software.

2.1.7.10 Using C with the 8051

When designing software for a smaller embedded system with the 8051, it is very

commonplace to develop the entire product using assembly code. With many

projects, this is a feasible approach since the amount of code that must be generated

is typically less than 8 kilobytes and is relatively simple in nature. If a hardware

engineer is tasked with designing both the hardware and the software, he or she will

frequently be tempted to write the software in assembly language. The trouble with

projects done with assembly code can is that they can be difficult to read and

maintain, especially if they are not well commented. Additionally, the amount of

code reusable from a typical assembly language project is usually very low. Use of a

higher-level language like C can directly address these issues.

A program written in C is easier to read than an assembly program. Since a C

program possesses greater structure, it is easier to understand and maintain. Because

of its modularity, a C program can better lend itself to reuse of code from project to

project. The division of code into functions will force better structure of the software

and lead to functions that can be taken from one project and used in another, thus

reducing overall development time.

A high order language such as C allows a developer to write code, which

resembles a human’s, thought process more closely than does the equivalent

assembly code. The developer can focus more time on designing the algorithms of

the system rather than having to concentrate on their individual implementation. This

will greatly reduce development time and lower debugging time since the code is

more understandable.

17

By using a language like C, the programmer does not have to be intimately

familiar with the architecture of the processor. This means that a someone new to a

given processor can get a project up and running quicker, since the internals and

organization of the target processor do not have to be learned. Additionally, code

developed in C will be more portable to other systems than code developed in

assembly. Many target processors have C compilers available, which support ANSI

C.

2.2 Embedded Control Client / Web Server

As in the Figure 2.8 below, Software Architecture of Embedded Control Client

and Web Server have split in to several layers.

 Figure 2.6 Software architecture of Embedded Control Client.

Web based User Interface

Web Application to Device
Messages Database link

Port Control Application

Web Server Application

Control Application to Device
Messages Database link

Device Message Database (DMDB)
(Mirror of Embedded Control Server message database in EEPROM)

18

2.2.1 Web Based Used Interface (WBUI)

Web Based User Interface allows user to write data in to DMDB. Each parameter

for the each device can be individually set or get via this User Interface. Here below

in the figure, there are snapshots from how to enter values for a selected device from

the beginning.

 Figure 2.7 Snapshot for the login and welcome page.

 Figure 2.8 Snapshot for the “CHANGE DEVICE” submenu’s device selection phase.

19

 Figure 2.9 Snapshot when changing the parameters of device1.

 Figure 2.10 Snapshot when displaying the contents of the all devices.

20

2.2.2 Web Server Application and database link

Web Server Application provides to establish an HTTP server. This server

publishes the Web Based User Interface home page to access to DMDB. HTTP

server is based on the “Tomcat” from the Apache Software Foundation.

WEB SERVER APPLICATION
“TOMCAT”

INTERNET

Access Database

TCP/IP

O
D

BC

 Figure 2.11 Scheme of the web server application.

2.2.3 Control Application and database link

The port control application, which is written in java, checks the Device Message

Database and writes to the port in case any device information was updated in the

database. In addition, it listens the port in case any message was sent by the host and

gets the valid messages and updates the DMDB according to the valid message.

21

PORT CONTROL JAVA APPLICATION

Access Database
O

DBC

SE
R

IAL PO
R

T AC
C

E
SS

Virtual Com Port

 Figure 2.12 Scheme of the port control application.

2.2.4 Device Message Database (DMDB)

DMDB is an Access database filed as name of Home.mdb. Both Web server

application and Port Control application access to that database and update it

according to the requests comes from the user via Web UI or from the Embedded

Control Server.

 Figure 2.13 Contents of the device message database.

22

22

 CHAPTER THREE

3 HARDWARE ARCHITECTURE

3.1 Embedded Control Server (ECS)

Embedded Control Server consists of the following HW parts, which are shown,

in the Figure 3.1

 Figure 3.1 Hardware architecture of Embedded Control Server.

3.1.1 Microcontroller

Microcontroller has the following peripherals and units,

3.1.1.1 EEPROM

The EEPROM (also called as E2PROM) or Electrically Erasable Programmable

Read-Only Memory is a non-volatile storage chip used in computers and other

devices to store small amounts of volatile (configuration) data.

The size of the eeprom used in the reference application is 512 KB. This eeprom is

integrated in the same chip with the main microprocessor.

EMBEDDED CONTROL SETVER

uControlleruControlleruControlleruController

I2C BUSI2C BUSI2C BUSI2C BUS

Device #1 Device #2

Device #3 Device #4

EEPRO RTC

UART&USB
Interface

23

3.1.1.2 Real Time Clock

The real-time clock (RTC) is an internal clock (most often in the form of an

integrated circuit) that keeps track of the current time. Although the term often refers

to the devices in personal computers, servers and embedded systems, RTCs are

present in most any electronic device, which needs to keep accurate time.

Virtually all RTCs use a crystal oscillator. In many cases, the oscillator's

frequency is 32.768 kHz. This is the same frequency used in quartz clocks and

watches, and for the same reasons, namely that the frequency is exactly 215 cycles

per second, which is a convenient rate to use with simple binary counter circuits.

3.1.1.3 General Purpose I/O Port

The general-purpose input/output (GPIO) peripheral provides dedicated general-

purpose pins that can be configured as either inputs or outputs. When configured as

an output, you can write to an internal register to control the state driven on the

output pin. When configured as an input, you can detect the state of the input by

reading the state of an internal register

3.1.1.4 UART interface

Hardware of the UART is integrated in the same chip as microcontroller.

However, converter hardware converts the uart signals to USB signals. Then the

ECC only sees the USB signals via this converter. USB to UART converter hardware

acts as a translator between the ECC and the UART module of ECS.

3.1.1.5 I2C interface

8051 processor has built in I2C interface and registers which are linked to the

dedicated GPIO pins. Therefore, whenever an I2C message is sent by the

microcontroller the integrated I2C interface delivers the message in a proper format

in to the dedicated pins.

24

3.1.1.6 Memory

8051 controller has its own built in memory structure. There are 3 main memory

organization we can talk about, one is the Random Access Memory of the controller

which the runtime code runs on, the second is the flash memory that contains the

read only code data and the last is the non volatile memory that contain Read/write

data to be read or written in the run time by the current application.

3.1.1.7 Processor

8051 processor has a processor core that executes the instructions in the order that

program data provides in the proper way. One 8051 processor cycle consists of

twelve oscillator periods. Each of the twelve oscillator periods is used for a special

function by the 8051 core such as op code fetches and samples of the interrupt daisy

chain for pending interrupts. The time required for any 8051 instruction can be

computed by dividing the clock frequency by 12, inverting that result and

multiplying it by the number of processor cycles required by the instruction in

question. Therefore, if you have a system, which is using an 11.059MHz clock, you

can compute the number of instructions per second by dividing this value by 12. This

gives an instruction frequency of 921583 instructions per second. Inverting this will

provide the amount of time taken by each instruction cycle (1.085 microseconds).

3.1.2 Household Interface Devices (Port Expander)

The name of the chip that is used for interfacing the household device is

PCF8574. The PCF8574 is a silicon CMOS circuit. It provides general-purpose

remote I/O expansion for most microcontroller families via the two-line bidirectional

bus (I2C). The device consists of an 8-bit quasi-bidirectional port and an I2C-bus

interface. The PCF8574 has a low current consumption and includes latched outputs

with high current drive capability for directly driving LEDs. It also possesses an

interrupt line (INT) which can be connected to the interrupt logic of the

microcontroller. By sending an interrupt signal on this line, the remote I/O can

25

inform the microcontroller if there is incoming data on its ports without having to

communicate via the I2C-bus. This means that the PCF8574 can remain a simple

slave device.

Basic Features of the chip is as following;

· Operating supply voltage 2.5 to 6 V

· Low standby current consumption of 10 mA maximum

· I2C to parallel port expander

· Open-drain interrupt output

· 8-bit remote I/O port for the I2C-bus

· Compatible with most microcontrollers

· Latched outputs with high current drive capability for directly driving LEDs

· Address by 3 hardware address pins for use of up to 8 devices

· DIP16, or space-saving SO16 or SSOP20 packages.

3.2 Embedded Control Client and Web Server (Computer Workstation)

Embedded Control Client and Web Server consists of following hardware sub

parts

Figure 3.2 Hardware architecture of Embedded Control Client.

EMBEDDED CONTROL CLIENT & WEB SERVER

ETHERNET
ADAPTER

USB CONTROLLER

CPU

PCIPCIPCIPCI BUS BUS BUS BUS

26

3.2.1 Central Processor Unit (CPU)

CPUs provide the fundamental digital computer trait of programmability, and are

one of the necessary components found in computers of any era, along with primary

storage and input/output facilities. A CPU that is manufactured as a single integrated

circuit is usually known as a microprocessor. Beginning in the mid-1970s,

microprocessors of ever-increasing complexity and power gradually supplanted other

designs, and today the term "CPU" is usually applied to some type of

microprocessor.

3.2.2 Ethernet Adapter

A network card, network adapter or NIC (network interface card) is a piece of

computer hardware designed to allow computers to communicate over a computer

network. It is both an OSI layer 1 (physical layer) and layer 2 (data link layer)

device, as it provides physical access to a networking medium and provides a low-

level addressing system through the use of MAC addresses. It allows users to

connect to each other either by using cables or wirelessly.

 A network card typically has a twisted pair, BNC, or AUI socket where the

network cable is connected, and a few LEDs to inform the user of whether the

network is active, and whether or not there is data being transmitted on it. The

Network Cards are typically available in 10/100/1000 Mbit/s (Mbit/s). This means

they can support a transfer rate of 10 or 100 or 1000 Megabits per second

3.2.3 USB Controller

The USB controller is a universal serial bus (USB) peripheral interface device

designed specifically for applications that require isochronous data streaming. The

device is fully compatible with the USB Specifications. This kind of devices mostly

use a standard 8052 microcontroller unit (MCU) core with on-chip memory. The

27

MCU memory includes 4K bytes of program memory ROM that contains a boot

loader program. At initialization, the boot loader program downloads the application

program code to an 8K RAM from a nonvolatile memory on the printed-circuit board

(PCB). The MCU handles all USB control, interrupt and bulk endpoint transactions.

In addition, the MCU can handle USB isochronous endpoint transactions.

The USB interface includes an integrated transceiver that supports 12 Mb/s (full

speed) data transfers. In addition to the USB control endpoint, support is provided for

up to seven in endpoints and seven out endpoints. The USB endpoints are fully

configurable by the MCU application code using a set of endpoint configuration

blocks that reside in on-chip RAM. All USB data transfer types are supported.

 28

 CHAPTER FOUR

4 THE PROTOCOLS USED IN THE APPLICATION

4.1 Embedded Server Protocol (ECP)

This protocol is used for the communication between the Embedded Control

Server (ECS) and Embedded Control Client (ECC). The signaling is based on the

UART standard, which provides the sequence of serial data transfer.

ECS Protocol is based on 20 bytes of message stream at a time for each message.

The message format can be seen as in the Table 4.1 below.

Table 4.1 ECP message format.

0 Header Start 1 byte
1 read / write R/W 1 byte
2
3

Address Device Code 2 bytes

4
5

0 Application
Code 2 bytes

6
7

1 Second(*) 2 bytes

8
9

2 Minute(*) 2 bytes

10
11

3 Hour(*) 2 bytes

12
13

4 Day(*) 2 bytes

14
15

5 Month(*) 2 bytes

16
17

6 Year(*) 2 bytes

18
19

7 Time Offset(*) 2 bytes

20 8 Time Unit(*) 1 byte
21 9 Rel.Device(**) 1 byte
22 10 Rel.Value(**) 1 byte
23 11 Rel.State(**) 1 byte
24 12 Device Value 1 byte
25 13 1 byte
26 14 1 byte
27

Application
Specific

Data
(ASD)

15
Reserved

1 byte
28 Header Stop 1 byte

* : Time application parameter
** : Relative application parameter

29

The message can be split in to four main parts, which are Headers, Read/Write,

Address and Application Specific Data.

4.1.1 Headers:

These parts indicate the start and stop of the message. Protocol decoder sections

of ECS and ECC take the message in to account according to this start and stop

bytes. In our application, application Start byte is defined as 49 and Stop byte is

defined as 56 ASCII. So in a message stream like below;

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.1 Any dummy message stream to show how to detect a valid message.

After detecting the Start byte, the protocol application at the destination side

counts the data until the total number of bytes in a message is reached, and then the

last item is checked whether it is matching with the defined Stop byte.

4.1.1.1 Read / Write byte

This byte indicates that the message is sent to write a data to the destination or a

data to be read from the destination.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.2 Any dummy message stream to that includes read/write byte.

4.1.1.2 Address byte

Every start address corresponds to a command or event. Commands are sent by

the client side, which composes the use cases. According to the use cases, an order of

commands can be sent to the ECS and ECS’s software will process the command and

its contents. Events are created in the ECS according to the processed commands.

The results of the events are stored in to memory in a same structure of the contents

of the commands.

30

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.3 Address byte.

Start addresses must be aligned for the size of the contents. So the addresses can

be used as 0, 0+<contents size>, 0+2x<content size>, ... so on.. if this structure

changed, all the nvm content must be erased and re-written.

4.1.1.3 ASD0 (Application Code)

Includes 2 byte of data that represent the Application Code of the specified device

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.4 ASD0.

4.1.1.4 ASD1 (Second)

ASD1 is a 2 byte of data that represent the seconds (in Time Application) of the

time to be set for the command sent from client or the seconds of the event time.

 Figure 4.5 ASD1.

4.1.1.5 ASD2 (Minute)

ASD2 is a 2 byte of data that represent the minutes (in Time Application) of the

time to be set for the command sent from client or the minutes of the event time.

 Figure 4.6 ASD2.

4.1.1.6 ASD3 (Hour)

Hour is a 1 byte of data that represent the hours (in Time Application) of the time

to be set for the command sent from client or the hours of the event time.

 Figure 4.7 ASD3.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32

31

4.1.1.7 ASD4 (Day)

Day is a 1 byte of data that represent the days (in Time Application) of the time to

be set for the command sent from client or the days of the event time.

 Figure 4.8 ASD4.

4.1.1.8 ASD5 (Month)

Month is a 1 byte of data that represent the months (in Time Application) of the

time to be set for the command sent from client or the months of the event time.

 Figure 4.9 ASD5.

4.1.1.9 ASD6 (Year)

Year is a 1 byte of data that represent the years of the time (in Time Application)

to be set for the command sent from client or the years of the event time.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.10 ASD6.

4.1.1.10 ASD7 and ASD8 (Time Offset and Unit)

Consist of 3 bytes of the data. First 2 bytes represent (in Time Application) how

much offset will be add for the selected time part in unit. Next 1 byte represents (in

Time Application) which unit of the time data to be offset. For example, if it is six

the “Seconds” of the time data will be offset. So if the offset is 15 and the unit are six

that mean the 15 minutes offset of the current time to process this offset later on the

application.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.11 ASD7 and ASD8.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32

32

4.1.1.11 ASD9 (Relative Device)

This byte of data is used for indicating the relative device id in Relative

Application, which is one of the predefined applications with application code of

four.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.12 ASD9.

4.1.1.12 ASD10 (Relative Value)

This byte of data is used for indicating the relative value for the Relative

Application, which is one of the predefined applications with application code of

four.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.13 ASD10.

4.1.1.13 ASD11 (Relative State)

This byte of data is used for indicating the relative state for the Relative

Application, which is one of the predefined applications with the application code of

four. The value can be only set to On or Off via WBUI

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.14 ASD11.

33

4.1.1.14 ASD12 (Device Pin number)

This byte of data is used to indicate which pin of the specified device to be

controlled. The value range of this byte can be 0 to 7.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.15 ASD12

4.1.1.15 ASD13 (Device Pin state)

This byte of data is used to indicate the state of the selected pin number in

previous byte. The state can be only 1 or 0.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.16 ASD13

4.1.1.16 ASD14, ASD15 (Reserved bytes)

There are 2 bytes of space is reserved for any of the specific purpose to be used

later. In addition, the reason why it is 2 bytes is to align the memory address to 16

bytes for the convenient usage of the limited amount of the non-volatile memory in

the embedded system.

43 56 91 51 00 01 00 00 26 20 09 07 15 2 2 1 1 2 0 0 0 93 32
 Figure 4.17 ASD14 and ASD15

34

4.1.2 Fetching ECP Messages

According to the algorithm below, the ECP messages are detected and sent to

NVM to store.

Wait for getting a
byte from UART

Check the byte is
START byte or not

Get and store the
byte in the RAM

Check that the
byte is 20th byte
after START byte

Write the bytes
from 4th to 19th in

to EPPROM’s
address (3th byte)

Check time between two
bytes, is it smaller than

predefined protocol timeout
value?

Wait for getting
the next byte from

UART

Check that
20th byte is
STOP byte

Ignore all the
bytes stored in

RAM

 Figure 4.18 Flowchart of how to get the protocol messages

35

4.1.3 Processing ECP Messages

After getting the ECP messages, they need to be processed. Processing procedure

is completely depends on which application will be run. Therefore, the application

code byte in the memory for each device is always checked whenever the register

map in the nvm is updated. In case any update occurs in the register map, ECS own

main application checks the application code of the updated device. If the code is a

valid code and was defined in the ECS before then the application starts running

according to its related parameters in the memory.

Wait for Device
update

Check the variable
UpdatedDevice

Switch to updated device

Valid

Check the specified
Applciation Code for the

device

Not Valid

Run the updated device’s
application according to

specified application Code

Not Valid

Valid

Set
Appl.Code

= OxFF

 Figure 4.19 Algorithm of how to process ECS messages

36

4.2 Used Protocols at ECC Side

Embedded Control Client side software applications are communication each

other by using a protocol and the web server application are using another protocol to

communicate with outside world. The figure below explains how the applications are

connected and communicating with other applications.

 Figure 4.20 Diagram of the connections from top to bottom (from internet to serial port)

37

4.2.1 ODBC

Open Database Connectivity (ODBC) provides a standard software API method

for using database management systems (DBMS). The ODBC specification offers a

procedural API for using SQL queries to access data. An implementation of ODBC

will contain one or more applications, a core ODBC library, and one or more

"database drivers". The core library, independent of the applications and DBMS, acts

as an "interpreter" between the applications and the database drivers, whereas the

database drivers contain the DBMS-specific details. Thus, a programmer can write

applications that use standard types and features without concern for the specifics of

each DBMS that the applications may encounter. Likewise, database driver

implementers need only know how to attach to the core library. This makes ODBC

modular.

To write ODBC code that exploits DBMS-specific features requires more

advanced programming. An application must use introspection, calling ODBC

metadata functions that return information about supported features, available types,

syntax, limits, isolation levels, driver capabilities and more. Even when programmers

use adaptive techniques, however, ODBC may not provide some advanced DBMS

features. The ODBC 3.x API operates well with traditional SQL applications such as

OLTP, but it has not evolved to support richer types introduced by SQL:1999 and

SQL:2003.

4.2.1.1 JDBC-ODBC bridges

A JDBC-ODBC bridge consists of a JDBC driver, which employs the ODBC

driver to connect to the database. This driver translates JDBC method calls into

ODBC function calls. Programmers usually use such a bridge when a particular

database lacks a JDBC driver. Sun Microsystems included one such bridge in the

JVM, but viewed it as a stopgap measure while few JDBC drivers existed. Sun never

intended its bridge for production environments, and generally recommends against

its use. Independent data-access vendors now deliver JDBC-ODBC bridges which

support current standards for both mechanisms, and which far outperform the JVM

built-in.

38

4.2.1.2 ODBC-JDBC bridges

An ODBC-JDBC bridge consists of an ODBC driver, which uses the services of a

JDBC driver to connect to a database. This driver translates ODBC function calls

into JDBC method calls. Programmers usually use such a bridge when they lack an

ODBC driver for a particular database but have access to a JDBC driver.

 Figure 4.21 Schematic of the JDBC-ODBC bridge

The JDBC type 1 driver, also known as the JDBC-ODBC bridge is a database

driver implementation that employs the ODBC driver to connect to the database. The

driver converts JDBC method calls into ODBC function calls. The bridge is usually

used when there is no pure-Java driver available for a particular database.

39

4.2.2 TCP/IP

The TCP/IP model uses four layers that logically span the equivalent of the top six

layers of the OSI reference model. The following are the TCP/IP model layers,

starting from the bottom.

TRANSPORT

APPLICATION

INTERNET

NETWORK INTERFACE

 Figure 4.22 TCP/IP layers

4.2.2.1 Network Interface Layer

As its name suggests, this layer represents the place where the actual TCP/IP

protocols running at higher layers interface to the local network. This layer is

somewhat “controversial” in that some people do not even consider it a “legitimate”

part of TCP/IP. This is usually because none of the core IP protocols runs at this

layer. Despite this, the network interface layer is part of the architecture. It is

equivalent to the data link layer (layer two) in the OSI Reference Model and is

sometimes called the link layer.

On many TCP/IP networks, there is no TCP/IP protocol running at all on this

layer, because it is simply not needed. For example, if you run TCP/IP over an

40

Ethernet, then Ethernet handles layer two (and layer one) functions. However, the

TCP/IP standards do define protocols for TCP/IP networks that do not have their

own layer two implementation. These protocols, the Serial Line Internet Protocol

(SLIP) and the Point-to-Point Protocol (PPP), serve to fill the gap between the

network layer and the physical layer. They are commonly used to facilitate TCP/IP

over direct serial line connections (such as dial-up telephone networking) and other

technologies that operate directly at the physical layer.

4.2.2.2 Internet Layer

This layer corresponds to the network layer in the OSI Reference Model (and for

that, reason is sometimes called the network layer even in TCP/IP model

discussions). It is responsible for typical layer three jobs, such as logical device

addressing, data packaging, manipulation and delivery, and last but not least, routing.

At this layer, we find the Internet Protocol (IP), arguably the heart of TCP/IP, as well

as support protocols such as ICMP and the routing protocols (RIP, OSFP, BGP, etc.)

The new version of IP, called IP version 6, will be used for the Internet of the future

and is of course at this layer.

4.2.2.3 Transport Layer

This primary job of this layer is to facilitate end-to-end communication over an

internetwork. It is in charge of allowing logical connections to be made between

devices to allow data to be sent either unreliably (with no guarantee that it gets there)

or reliably (where the protocol keeps track of the data sent and received to make sure

it arrives, and re-sends it if necessary). It is also here that identification of the

specific source and destination application process is accomplished.

The formal name of this layer is often shortened to just the transport layer; the key

TCP/IP protocols at this layer are the Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). The TCP/IP transport layer corresponds to the layer of the

same name in the OSI model (layer four) but includes certain elements that are

arguably part of the OSI session layer. For example, TCP establishes a connection

41

that can persist for a long period of time, which some people say makes a TCP

connection more like a session.

4.2.2.4 Application Layer

This is the highest layer in the TCP/IP model. It is a rather broad layer,

encompassing layers five through seven in the OSI model. While this seems to

represent a loss of detail compared to the OSI model. The TCP/IP model better

reflects the “blurry” nature of the divisions between the functions of the higher layers

in the OSI model, which in practical terms often seem rather arbitrary. It really is

hard to separate some protocols in terms of which of layers five, six or seven they

encompass.

4.2.2.5 Apache Tomcat HTTP Server

Tomcat 3.x is the reference implementation of Sun's Java Server Pages 1.1 and the

Java Servlet 2.2 Specifications. Tomcat is a Servlet container, which means that Java

Servlets can be used within it to enable programmers to use the Servlet in such things

as web pages. Whereas a JSP web page has both HTML and Java JSP code within

the same document, a Servlet is a block of code that can be reused. These can then be

compiled once and distributed to run on any standards compliant Servlet Container.

A Servlet can be called directly to return HTML markup to a browser, but it is more

usual that a JSP page uses the abilities of the Servlet (By calling it methods) and

returns a custom representation of the returned data.

Servlets can do much more than return useful information for web pages,

however. For example, it is possible to create a Servlet that listens for remote

connections from an applet, say, and sends live stock information to the client

application. In this manner, a Servlet can be much more useful than a JSP/ASP page

or other usual web server extension. This technology allows programmers to develop

platform independent extensions that can be integrated simply with an existing web

server.

42

CHAPTER FIVE

5 DEVELOPMENT ENVIRONMENTS

5.1 ECS Application Development Environment

Software Development of the Embedded Control Server is based on the

programming language ANSI C. In ECS, there is a microcontroller from the NXP

(founded by Philips) part number of LPC935 and core with Intel 8051 processor. To

run the instructions in 8051 normally the application should be written in the 8051’s

instruction codes (assembly). However, there is a possibility to convert the C code to

the assembly language, there is a compiler used from the Keil Software Inc. In

addition, the complete development environment is provided by Keil that is called

Micro Vision that includes compiler, debugger, editor and all libraries for LPC935

microcontroller of NXP.

Figure 5.1 Keil Micro Vision editor window.

43

Keil’s 8051 compiler produces an HEX file as a downloadable image to the

LPC935 however, there is no programmer tool provides to download the image in to

the flash memory of the microcontroller. To do this job there is another tool provided

by Embedded Systems Academy, which is called FlashMagic.

 Figure 5.2 Graphical user interface of Flash Magic tool.

On the other hand, to make the downloading more automatized, there is a facility

to run the Flash Magic from command prompt that gives ability to write a batch file,

which can be run via Keil Micro Vision editor window.

44

5.2 ECC Application Development Environment

Software Development of the Embedded Control Server is based on the

programming language of JAVA from Sun Microsystems. To build and run the

written java code there is development environment used that is called Eclipse from

Apache Software Foundation.

Both the Port Control Application and Web Server Application are developed in

the same platform, which is Eclipse.

Figure 5.3 Eclipse editor window.

Eclipse consists of java builder, debugger and libraries. It provides to run also

Tomcat web server.

To run the Web Server application, also another platform is needed which is

called Tomcat. Tomcat is released by Apache Software Foundation.

45

 Figure 5.4 Apache Tomcat configuration window.

 46

CHAPTER SIX

6 APPLICATION PRODUCT SPECIFICATIONS

6.1 Representing the Product and Units

Application product consists of four hardware units. One central control unit,

which is called ECS (Embedded Control Server), and three device representative

units (represents any of a household appliance) which are including I2C controlled

port expanders.

 Figure 6.1 Product of the home network application.

47

Central control unit has onboard microcontroller and its environmental

components. It can write 8-bit data to each device and can read 8-bit data from each

device.

Figure 6.2 Embedded Control Server (ECS).

 Figure 6.3 Inside of ECS.

48

There are eight Leds on each of the device unit to show user the current data on

the device. In addition, to change the current data on the devices manually, there are

eight manual switches to set the each of the bit’s state to one or zero.

Figure 6.4 Device Representative Units (DRU).

 Figure 6.5 Inner side of a DRU.

49

6.2 Predefined Applications

There are many application can be defined in the ECS and each of the application

can be configured via the web interface. Each application has its own defined

application code, according to that code ECS decides which application will be

configured via web interface. However the applications can be extended freely by

easily, write the implementation in the ECS, we have now six of the predefined

applications.

6.2.1 Simply Run

Application Code of this application is one. After selecting the related device

when application code is submitted as one in the WBUI, the data will be written to

device 1 as 0xFF, which enables all 8 of the pins of device 1, and all the LEDs will

be switched ON without taking care of the previous state of the pins.

After entering one for the related device, rest of the messages to be entered in the

WBUI become useless and will not be taken care by the application in the ECS.

6.2.2 Simply Stop

Application Code of this application is two. After selecting the related device

when application code is submitted as two in the WBUI, the data will be written to

the device as 0x00, which enables all eight of the pins of the device, and all the LEDs

will be switched OFF without taking care of the previous state of the pins.

After entering two for the related device, rest of the messages to be entered in the

WBUI become useless and will not be taken care by the application in the ECS.

50

6.2.3 Retrieve Significant Data

Application code of this application is 28. After 28 is submitted via WBUI, ECS

responds with the message that contains the current states of the each pin of the

device. For example, if ECS returns 66, it means that eight of the pins are in order of

01000010.

6.2.4 Write Significant Data

Application code of this application is 29. After 29 is submitted via WBUI, ECS

will set the related device’s pins to that values in binary form without taking care of

the current state of the pins. For example if the data is entered as 66, ECS will set the

pins in order of 00111101.

6.2.5 Time Application

Application code of this application is three. This application is used to control the

related device according to any of the specified time and period. After entering three

as application code, the time parameters also need to be entered. For example, if the

user wants to set all the pins of device 1 as ON in the time of 20.09.2007 at 16:49:00

and will keep in this state for 15 minutes. In this scenario the following values should

be entered in WBUI;

Appl.Code : 3

Second : 00

Minute : 49

Hour : 16

Day : 20

Month : 09

Year : 07

Offset : 15

Offset Unit : Second

Rest of the parameters are not needed to be set

51

After submitting these values, ECS will start the time application and waits until this

entered time. When the system time reaches to the time entered as above, the device

is set as the binary value of 00111101 and the related LEDs are switched ON for 15

minutes. After 15 minutes, the value of the device switch back to the pervious value

before the time application sets.

6.2.6 Relative Application

Application code of this application is 4. This application is used for establishing

a correlation between the devices. Therefore, the state of the devices can be changed

according to any of the other device. The value of the device and relative device can

be all configured via the WBUI.

For example, if the user wants to set the all pins of Device1 as 1 when the second

pin of the Device 2 become 1. In this scenario user should enter the following values

for the Device 1 via WBUI;

Appl.Code : 4

Rel.Device : Device 2

Rel.Value : 2

Rel.State : On

Rest of the parameters is not needed to be set.

After submitting these values, ECS will start checking the value of the pin 2 of the

Device 2. Whenever it becomes 1, all pins of the device 1 will be set to ON.

 52

CHAPTER SEVEN

CONCLUSION

Today, with decreasing the costs and increasing the expectations of the people on high-

tech consumer electronics products, Home Networking concept becomes more popular.

Because the people want to be more comfortable and safe at their homes and now they

have more chance to find the related products, which cover the expectations of the people

at home.

The starting point of this thesis is to show what kind of possibilities can be implemented

as a Home Networking sense. Our application can be considered as a Home Control

Network by using an embedded system as host unit and a PC application as a client unit.

I choose to use an embedded system in my Home Control Network application because

the embedded systems are now more flexible and more powerful to implement especially

for control applications at home. Another key point is the robust feasibility and low power

consumption rather that PC based systems. I choose the Web Based User Interface as the

client of the embedded host, because Internet usage and web based applications are now

very common, easy to use for the user, and easy to port to every generic PC systems.

Combination of an embedded system with internet becomes also an attractive

application and interested me and others who deal with consumer electronics. The other

important point is the possibilities to extend the application according to the type of the

home appliance. The physical medium and the protocol to be used for communicating with

the devices can be also extended on the platform of the application of this thesis. Then the

relation between the devices and ECS can be as client-server model rather than master-

client.

From those all aspects, this reference home networking application that I have built up

is a good reference for the future home networking applications.

53

REFERENCES

Hitch Hiker (2001). Tomcat guide. The "Hitch-Hiker's guide to Tomcat" book

JDBC driver explanation. Retrieved August 10, 2007 from

http://en.wikipedia.org/wiki/JDBC-ODBC_Bridge

NXP Semiconductors (Founded by Philips) (2007). I2C-bus specifications. UM10204.

Matthew Chapman (1994). Programming basis in 8051. The Final Word On The 8051.

Philips Semiconductors (1995). Architecture of 8051. 80C51 family programmer’s guide.

Philips Semiconductors (1997). Product specifications of PCF8574. Datasheet of

PCF8574.

TCP/IP protocol suite. Retrieved August 10, 2007 from

http://www.tcpipguide.com/free/t_TCPIPInternetArchitectureandProtocolSuite.htm

APPENDIX

ABBREVATIONS

ASD : Application Specific Data
DMDB : Device Message Database
DRU : Device Representative Unit
ECC : Embedded Control Client
ECP : Embedded Control Protocol
ECS : Embedded Control Server
EEPROM : Electrically Erasable Programmable Read Only Memory
I2C : Inter ICs Communication
IC : Integrated Circuit
IDE : Integrated Development Environment
NVM : Non-Volatile Memory
ODBC : Open Data Base Connectivity
PCI : Peripheral Component Interconnect
SCL : Serial Clock
SDA : Serial Data
UART : Universal Asynchronous Receiver Transmitter
USB : Universal Serial Bus

