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COMPLEXITY REDUCTION OF RBF MULTIUSER DETECTORS FOR DS-CDMA

IN AWGN AND RAYLEIGH FADING CHANNELS USING GENETIC ALGORITHM

ABSTRACT

The optimum detector for direct sequence code division multiple access (DS-CDMA) signals

has a computational complexity which increases exponentially with the number of users. The

number of users in a real-life CDMA system may become very high which makes the optimum

detector impractical and expensive to implement. Thus, several suboptimal multiuser detectors

(MUD) which have lower computational complexities than that of the optimum detector were

proposed. Due to the decision boundary introduced by the optimum detector, nonlinear detectors

outperform linear detectors. Radial basis function (RBF) MUD is a nonlinear suboptimal

detector which can perfectly approximate this nonlinear decision boundary. However, RBF

MUD suffers from structural complexity since the number of its centers increases exponentially

with the number of users. In this thesis, a new method to reduce the number of center functions

of the RBF MUD using genetic algorithm (GA) and least mean squares (LMS) algorithm

is proposed. The performance of the method is tested via computer simulations which are

performed in both AWGN and multipath fading channels. Simulation results showed that

the proposed method immensely reduces the complexity of the RBF MUD with a negligible

performance degradation.

Keywords: DS-CDMA, radial basis function network, radial basis function multiuser detector,

genetic algorithm.
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DD-KBÇE �IÇ�IN RTF ÇOK KULLANICILI SEZ�IC�ILER�IN TBGG VE RAYLEIGH

SÖNÜMLEMEL�I KANALLARDA GENET�IK ALGOR�ITMA �ILE

KARMAŞALARININ AZALTILMASI

ÖZ

Do�grudan dizili kod bölüşümlü çoklu erişim (DD-KBÇE) için tasarlanm�ş olan optimum

sezicinin hesaplama karmaşas� kullan�c� say�s� ile oranl� olarak üssel bir şekilde artmaktad�r.

Bu durum, bir CDMA sistemindeki kullan�c� say�s� çok fazla olabilece�gi için, optimum seziciyi

gerçeklenmesi pahal� ve pratik olmayan bir sezici k�lmaktad�r. Bu yüzden, hesaplama karmaşas�

optimum seziciden daha az olan birçok alt-optimum çok kullan�c�l� sezici (ÇKS) tasarlanm�şt�r.

Optimum sezicinin karar s�n�r� do�grusal de�gildir. Bu nedenle, do�grusal olmayan alt-optimum

sezicilerin başar�m� do�grusal olanlardan daha iyidir. Radyal taban fonksiyon (RTF) ÇKS bu

do�grusal olmayan karar s�n�r�na mükemmel bir şekilde yaklaşan bir alt-optimum sezicidir.

Ancak, RTF ÇKS'nin yap�s�ndaki merkez fonksiyonlar�n say�s�, dolay�s�yla yap�sal karmaşas�

sistemdeki kullan�c� say�s� ile oranl� olarak üssel bir şekilde artmaktad�r. Bu tezde, RTF

ÇKS'nin merkez say�lar�n� genetik algoritma (GA) ve en küçük ortalama kareler (EKOK)

algoritmas� ile eniyileme yaparak azaltan yeni bir yöntem önerilmiştir. Önerilen yöntemin

performans�, TBGG ve çokyol sönümlemeli kanallarda gerçekleştirilen benzetimler ile test

edilmiştir. Benzetim sonuçlar�, önerilen yöntemin RTF ÇKS'nin yap�sal karmaşas�n�, düşük

bir performans kayb� ile, çok büyük oranda azaltabildi�gini göstermiştir.

Anahtar Sözcükler: DD-KBÇE, radyal taban fonksiyon a�g�, radyal taban fonksiyon çok

kullan�c�l� sezici, genetik algoritma.
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CHAPTER ONE

INTRODUCTION

Within the last decay, more people have get involved with the technology as it gets available

at a lower price. Today, a cellular phone is not a luxury anymore and computers are at least

ten times cheaper than they had been ten years ago. As the technology grows, not only the

manufacture costs but also the physical sizes of the technological devices are decreased. This

makes more people to prefer notebook personal computers and handhelds to desktop computers

which are relatively bulky and heavy. As people get "mobile" they ask to be "connected". In

other words, the demand for the mobile communication increases rapidly as the manufacturers

make small, portable and smart devices. Today, a mobile network operator has to provide a

variety of services including fax, E-mail, fast Internet, multimedia transfer etc. in addition to

the telephony service. The operator also has to deal with more users who demand to transmit

voice and data within a cell. From an engineering point of view, more services and users lead

to a demand for more bandwidth. Since the frequency spectrum available for the commercial

mobile communications is not in�nite, a smarter method to multiplex the users who share

a common channel is needed. It must be also possible to provide a particular user more

bandwidth who shares the same channel with other users.

A promising technology is the code division multiple access (CDMA) which is a spread

spectrum-based access method and has taken a signi�cant role in cellular and personal

communication systems in the last decades. It has already been in commercial use in 2.5G

and 3G mobile communications.

CDMA assigns unique spreading codes to different users which allows multiple users to

communicate simultaneously using the same frequency band. Spread spectrum communication

has become popular due to its advantages like jamming and interference resistance, signal

hiding, low probability of intercept, good multipath performance, secure communications,

improved spectral ef�ciency over other access methods (Jung et al., 1993). Of the many

spread spectrum-based multiple access schemes available, the most widely used one is the

direct sequence CDMA (DS-CDMA) scheme. In DS-CDMA, the transmitter multiplies each

user's transmitted signal by a unique signature waveform; the received signal is a superposition

of all user's signals which overlap in time and frequency.
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The conventional detector for DS-CDMA passes the received signal through a bank of �lters

matched to the corresponding users' unique signature waveform, signs the output, and decides

on the information bits. Here, each user is treated separately as a signal and the others are

considered as interference or noise. This interference is commonly called as multiple access

interference (MAI). In conventional single user detection, due to MAI, there is a problem called

near-far effect which refers to the situation that the users near the receiver supplies more power

to the receiver than those far from the receiver. Hence, several power control techniques are

proposed to overcome near-far effect (Babich et al., 2004).

There is a second approach where the information of multiple users are used jointly to

detect the information of a particular user. This approach is called joint multiuser detection.

Here, MAI is treated as a part of information rather than noise (Verdu, 1986). Optimum

multiuser detector offers superior performance over the conventional detector in terms of near-

far resistance with the cost of computational complexity which increases exponentially with

the increasing number of users. In a real life CDMA system, there will probably be very large

number of users which would make the optimum detector impractical and very expensive to

implement. Thus, researchers tried to develop suboptimal receivers which have reasonable

computational complexities, are near-far resistant and have performances close to that of the

optimum detector. Decorrelating detector is one of these suboptimal receivers which is linear,

near-far resistant, and has a computational complexity proportional to the number of users

(Lupas & Verdu, 1989a,b). Decorrelating detector introduces performance improvement over

conventional detector in terms of MAI but it suffers from noise enhancement.

It has been shown that nonlinear receivers outperform linear receivers since the optimal

decision boundary in DS-CDMA is nonlinear (Mulgrew, 1996). Multistage detector (MSD)

(Varanasi & Aazhang, 1990) is a nonlinear detector which improves each stage's estimate by

subtracting the estimate of the MAI obtained by the previous stage. Performance of an MSD

can reach close to that of the optimum detector but it depends highly on the initial estimate,

which is usually provided by the conventional detector or decorrelating detector.

Aazhang et al. (1992) were the �rst who had designed a nonlinear multiuser detector based

on neural networks. Two structures employing multilayer perceptrons were proposed for the

demodulation of spread spectrum signals in Gaussian channels by Aazhang et al. (1992).

Nonlinear detector structures based on neural networks or polynomial series may provide near-
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optimum performance but they also suffer from high complexity (Cruickshank, 1996, Tanner

& Cruickshank, 1997). It is also possible to design a MUD based on a radial basis function

network (RBFN) (Cruickshank, 1996). An RBFN is considered as a neural network because of

its structure and is a typical model of approaching a local extremum (Hush, 1993). It has been

used in nonlinear approximation, pattern recognition, and other �elds such as signal processing

(Chen, 1995), automation (Fabri & Kadirkamanathan, 1996), system modelling (Elanayar &

Shin, 1994), and etc.

Radial basis function multiuser detector (RBF MUD) was originally introduced by

Cruickshank (1996) and further investigated by Tanner & Cruickshank (1998), Sessler et al.

(2000, 2001), Wei et al. (2004). Two types of RBF MUD's were introduced by Tanner &

Cruickshank (1998) where one of them operates at symbol rate and the other one at chip rate,

named by the authors as preprocessing based receiver (PPB) and chip level based receiver

(CLB) respectively. In this thesis we have dealt with CLB RBF MUD's; and this receiver will

be shortly regarded as "RBF MUD".

1.1 Motivation and Innovation

An RBF MUD needs no training since it is fully determined when the spreading codes of

all users and the channel impulse response are known. However, when the number of users are

large, the RBF MUD gets impractical since its structural complexity increases exponentially

with the increasing number of users. A preprocessing method was proposed by Tanner &

Cruickshank (1998) to reduce the complexity of the RBF MUD and the resultant RBF MUD

was named as PPB RBF MUD; this work was further investigated by Ko et al. (2001).

Performance analysis of CLB and PPB receivers for ULTRA-TDDwere investigated by Sessler

et al. (2001) and it was shown that these receivers achieve low bit error rates (BER) even for

time-variant multipath propagation channels like pedestrian and vehicular environments.

The number of neurons in the hidden layer of an RBFN may become excessive, even equal

to the number of training samples due to the training process. This problem spawned an area

of research on optimization of RBFN structures. One particular tool for optimization of RBFN

structures is the genetic algorithm (GA). The common approach is representing the network

as a string and optimizing the structure by applying GA operators to these strings (Harpham

et al., 2004). A different method is introduced by Whitehead & Choate (1996) where, instead
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of each string representing a network, the whole GA population represents one network. Many

methods aiming to optimize the RBFNwith GA are well documented by Harpham et al. (2004).

A method for reducing the number of neurons (centers) in the hidden layer of RBF MUD

using genetic algorithm was proposed by Wei et al. (2004). By discarding the low-contribution

centers, the complexity of the receiver is reduced fromO(2LU ) toO(P )where U is the number

of users, L is the number of taps in the dispersive multipath fading channel, and P is the GA's

population size. But the performance of the receiver highly depends on the training set and

BER stops decreasing and remains constant with the increasing Eb=N0 rates.

In this thesis, a new method that reduces the number of centers in RBF MUD using GA is

proposed. Instead of selecting centers from supercenters (Wei et al., 2004), our method starts

with a small number of centers which are randomly selected from supercenters and applies

modi�cations to the center vectors. From another point of view, it changes the location of

the centers in the space. This new method also searches for the best variance values for each

center by starting with an initial value of noise variance and applying operations of GA at each

generation. The resultant structure has signi�cantly reduced number of centers in comparison

with 2U and resulting center vectors are different from the supercenter vectors. Due to the

�exibility of the location and variance value of each center function, the resultant RBF structure

can perfectly represent the DS-CDMA space and achieve near-optimum performance even in

high Eb=N0 rates.

1.2 Thesis Organization

The current chapter is a brief introduction into code division multiple access (CDMA),

CMDAmultiuser detectors (MUD), radial basis function MUD (RBFMUD), and the proposed

optimization method. This chapter ends with the thesis organization.

Chapter two give information about direct sequence CDMA (DS-CDMA) system in more

detail. It gives brief information about spread spectrum communications and multiple access

communication and then CDMA signal model is de�ned in the AWGN. Then, the signal

model for DS-CDMA and its vector notation in both AWGN and multipath channels are given.

Autocorrelation and cross correlation properties of several spreading sequences are discussed
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in the chapter. Chapter ends giving a brief information about the current and past commercial

systems that use CDMA.

Chapter three focuses on the detectors designed to receive CDMA signals and discriminate

user's data from each other. The optimum detector and several linear and nonlinear suboptimum

detectors are introduced. The detectors are considered in terms of their resistance to multiple

access interference (MAI), and to near-far problem; computational complexity; and achievable

system performance.

Chapter four introduces an alternative MUD to the ones introduced in chapter three called

radial basis function MUD (RBFMUD) which is originally introduced by Cruickshank (1996).

After a brief review about radial basis function networks, the structure of the RBFMUD in both

AWGN and multipath channels are considered. It is shown that the structural complexity of the

RBF MUD increases exponentially with the number of users, thus it is stated that a method is

needed to reduce its complexity.

Chapter �ve introduces the proposed method to reduce the structural complexity of RBF

MUD. After a brief review about genetic algorithm, the de�nition of the problem is stated and

the method is introduced by the help of a simple example. Details of the method is given

through the end of the chapter.

Computer simulation method and the simulation results for the effects of the number of

centers, initial population, number of generations, mutation probability, and population size

both in AWGN and multipath fading channels are presented in chapter six.

The last chapter summarizes and discusses the motivation and the method presented in this

thesis.



CHAPTER TWO

DIRECT SEQUENCE CODE DIVISION MULTIPLE ACCESS

This chapter introduces direct sequence code division multiple access (DS-CDMA). Prior

to the introduction of DS-CDMA, a brief information on spread spectrum communications

and multiple access communications is given. Next, the signal model for DS-CDMA and

its vector notation in both AWGN and multipath channels are given. After a review about

the characteristics of several spreading sequences, a brief information about current and past

commercial CDMA systems are introduced.

2.1 Spread Spectrum Communication

Spread spectrum communications are originated from military and space applications. The

main distinguishing feature of the spread spectrum signals used for the transmission of digital

information is that their bandwidth W is much greater than the information rate R in bits/s.

In other words, the bandwidth expansion factor Be = W=R for a spread spectrum signal is

much greater than unity. A second important feature introduced by the spread spectrum signals

is pseudorandomness, which makes the signals appear similar to random noise and dif�cult to

demodulate by receivers other than the intended ones (Proakis, 2001).

To be speci�c, spread spectrum signals are used for:

� Hiding a signal by transmitting it at low power and, thus, making it dif�cult for an

unintended listener to detect in the presence of background noise.

� Message privacy in the presence of other listeners.

� Combating the detrimental effects of interference due to jamming.

� Suppressing the interference arising from other users of the channel.

A message may be hidden in the background noise by spreading its bandwidth with coding

and transmitting the resultant signal at a low average power. Because of its low power level, the

transmitted signal is said to be "covert." It has a low probability of being intercepted (detected)

by a casual listener and, hence, is also called a low-probability-of-intercept (LPI) signal.

6
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Message privacy may be obtained by superimposing a pseudorandom pattern on a

transmitted message. The message can be demodulated by the intended receivers, who know

the pseudorandom pattern or key used at the transmitter, but not by any other receivers who do

not have knowledge of the key.

The jammer that is trying to disrupt the communication may have prior knowledge of the

overall channel bandwidth and the type of modulation (PSK, FSK, etc.). More sophisticated

jammers may mimic the signal emitted by the transmitter if the signal is encoded using block

and convolutional codes and confuse the receiver. It is possible to overcome this problem by

introducing a randomness in the transmitter. The spectrum of the information signal is spread

using a pseudorandom code which is known by the intended receiver but not by the jammer.

Thus, the jammer must synthesize and transmit an interfering signal without the knowledge of

the pseudorandom pattern.

Interference from the other users arises in multiple access communication systems in which

a number of users share a common channel bandwidth. It is possible to overcome this multiple

access interference (MAI) by spreading each users information data with uncorrelated codes

(Proakis, 2001). This method will be explained in more detail throughout the chapter.

Modulator

Pseudorandom 
pattern 

generator

Demodulator

Pseudorandom 
pattern 

generator

ChannelInformation Output

Figure 2.1: Basic elements of a spread spectrum digital communication system.

The block diagram of the basic elements of a spread spectrum digital communication system

is given in Fig. 2.1. The pseudorandom pattern generators at both the modulator and the

demodulator side are identical to each other and they generate a pseudonoise (PN) binary-

valued sequence. This sequence is impressed on the transmitted signal at the modulator and

removed from the received signal at the demodulator. Spread spectrum digital communication

systems are mainly categorized by the modulation technique used. There are many types

of spread spectrum digital communication systems of which two commonly used ones are
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considered: If the modulation type used is phase shift keying (PSK) and the phase of the carrier

is shifted pseudorandomly according to the pattern from the PN generator in the modulation

stage, the resulting modulated signal is called a direct sequence (DS) spread spectrum signal.

If the modulation types used is frequency shift keying (FSK) and the frequency of the carrier

signal is changed according to the pattern from the PN generator, the resultant modulated signal

is called a frequency hopped (FH) spread spectrum signal.

2.2 Multiple Access Communication

Multiple access communication is a type of multiuser communication system in which a

large number of users share a common channel bandwidth. At any given time, a subset of these

users may transmit information simultaneously over the common channel to corresponding

receivers. There are several ways to accommodate multiple users to send information through

the same channel. The simplest way is subdividing the available channel bandwidth into a

number of subchannels which do not overlap in frequency. This method is called frequency

division multiple access (FDMA) and is used in voice and data transmission over wireline

channels. Fig. 2.2 depicts FDMA in time, frequency, and power domain. It can be seen from

Fig. 2.2 that a subchannel is assigned to a user and the transmission bandwidth is limited to the

bandwidth of that subchannel.

User 1 User 2 User U

t

f

P

Subchannel 1     Subchannel 2                                         Subchannel 3

Figure 2.2: Frequency division multiple access (FDMA).
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Another multiple access technique is subdividing the frame duration, Tf , into time durations

which do not overlap in time. This method is called time division multiple access (TDMA) and

is used for digital data and voice transmission. In TDMA, a user transmits information during

the particular time slot which is assigned to that user. A TDMA system supporting U users in

each channel is shown Fig. 2.3.

t

f

P

User 1
User 2

User U

User 1
User 2

User U

CHANNEL 1 CHANNEL 2

Figure 2.3: Time division multiple access (TDMA).

In both FDMA and TDMA, since the channel is successfully partitioned into subchannels,

each user may transmit and receive data without interfering other users. But in some systems

like computer communication networks and mobile cellular communication networks the

possibility of a user to go silent (not transceiving any data) is high. In such networks, FDMA

and TDMA tend to be inef�cient since some of the available frequency or time slots do not

carry information when the user is inactive. Inef�ciently designed FDMA and TDMA systems

also limits the number of users that can transmit and receive information simultaneously over

a channel. An alternative method to FDMA and TDMA is code division multiple access

(CDMA).

In CDMA, information from multiple users is not separated by different frequency or time

slots but by different (unique for the user) spreading codes. Two main types of CDMA are

the direct sequence code division multiple access (DS-CDMA) and frequency hopped code

division multiple access (FH-CDMA). DS-CDMA is considered in this thesis and interested

reader is referred to Proakis (2001) for more information about FH-CDMA.
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2.3 Direct Sequence Code Division Multiple Access

Direct sequence code division multiple access (DS-CDMA) is a type of multiple access

communication technique. In DS-CDMA each user share a common channel or sub-channel

by transmitting signals which overlap in both time and frequency as it can be seen from Fig. 2.4.

Each user is assigned a unique spreading sequence which spreads the data from that particular

user to the entire frequency band of the channel. The spreading sequences also allow the

receiver to separate the information transmitted by multiple users from each other. In this

section the CDMA signal model in both non-dispersive AWGN and multipath channels will be

introduced.

t

f

P

User 1

User 2
User 3
User 4

User 1

User 2
User 3
User 4

UPLINK DO W NLINK

Figure 2.4: Code division multiple access (CDMA).

2.3.1 DS-CDMA Signal Model

We will limit our discussion to synchronous CDMA transmission. Let the CDMA channel

to be shared by U independent users. Each user is assigned a signature waveform su(t),

su(t) =
N�1X
n=0

Su;np(t� nTc); 0 � t � T (2.3.1)

whereN is the length of the spreading sequence for user u, Su;n 2 (�1;+1) is the nth chip of

the spreading sequence, T is the bit interval, p(t) is a pulse of duration Tc, and Tc = T=N is

the chip interval. It is assumed that all U spreading sequences have the unit energy, i.e.,Z T

0
s2u(t)dt = 1 (2.3.2)
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The cross correlation between spreading sequences plays an important role on the

performance of the detectors and is de�ned as

�ij(�) =

Z T

�c

si(t)sj(t� �)dt (2.3.3)

where � is the delay. For synchronous transmission � = 0; thus Eqn. 2.3.3 becomes

�ij(0) =

Z T

0
si(t)sj(t)dt (2.3.4)

Let the kth data bit which is transmitted by user u be denoted by Du(k) 2 (�1;+1), then the

equivalent low-pass signal x(t) for user u may be expressed as

xu(t) =
p
"u

1X
k=�1

Du(k)su(t� kT ); 1 � u � U (2.3.5)

where "u is the signal energy per bit. The transmitted superposition signal for the U users may

be expressed as

x(t) =

UX
u=1

xu(t) =

UX
u=1

p
"u

1X
k=�1

Du(k)su(t� kT ) (2.3.6)

and in the non-dispersive additive white Gaussian noise (AWGN) channel the received signal

will become

y(t) = x(t) + g(t) (2.3.7)

where g(t) is the Gaussian noise with double sided power spectral density N0=2.

2.3.2 DS-CDMA Signal Model in Vector Notation

Since sampled signals are used in the signal processing task, it will be more convenient to

rewrite the Eqn. 2.3.7 in a vector notation (Tanner, 1998). In de�ning the radial basis function

multiuser detector (RBF MUD) in chapter four and in the simulation environment in chapter

six it is assumed that the DS-CDMA signals transmitted by U independent users to be bit

and chip synchronous with equal power which is normalized to 1 which is a situation that may

be realized in a downlink (base to mobile) scenario in a cellular mobile communication system.

Thus, in this section, it is found convenient to de�ne the vector notations for

DS-CDMA signals under these assumptions.
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2.3.2.1 Non-Dispersive AWGN Channel

Let us denote the kth data bit transmitted by user u by Du(k) 2 (�1;+1), the unique

spreading code of length N which is assigned to user u by Su, and each chip in the spreading

code by Su;n 2 (�1;+1); n = 1; 2; :::; N . Then the received signal at chip rate in the presence

of AWGN may be expressed as

y(kN + n) =
UX
u=1

Du(k)Su;n + g(kN + n) (2.3.8)

where g(kN +n) is the added noise component with the variance �2n = N0=2 andN0=2 is the

double-sided noise power spectral density.

Let us give an example of a CDMA system that is supporting four users. First ten binary

bits of four users and each user's spreading sequence of length eight chips are shown in Fig.

2.5.a and Fig. 2.5.b respectively. Each bit of the user data is spread into eight chips with the

corresponding spreading sequence and the resultant signal forms are given in Fig. 2.6.a. The

DS-CDMA signal is shown in Fig. 2.6.b and it can be seen that it is simply the sum of all the

signals that are given in Fig. 2.6.a. However, the signal shown in Fig. 2.6.b is the output of the

transmitter. The form of the DS-CDMA signal that is corrupted with AWGN is straightforward

and will not be considered.

Since the user's transmitted bits are synchronized, we may write the vector representation

of chip level expression y(kN + n) of the received signal by

y(k) =
h
y(kN + 1) y(kN + 2) � � � y(kN + n)

iT
(2.3.9)

where y(k) is a vector of length N .

2.3.2.2 Multipath Channel

Prior to the introduction of the vector notation of the DS-CDMA signals in multipath

channel, we will discuss the term called interchip interference (ICI). It may seen from Fig.

2.7 that a number of L � 1 head chips of a sequence in the multipath environment is affected

by the previous transmitted sequence, and a number of L � 1 tail chips will affect the next
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Figure 2.5: (a) User data, (b) spreading sequences.



14

10 20 30 40 50 60 70 80
−2

0

2

D
1[k

] x
 S

1,
n

n

10 20 30 40 50 60 70 80
−2

0

2

D
2[k

] x
 S

2,
n

n

10 20 30 40 50 60 70 80
−2

0

2

D
3[k

] x
 S

3,
n

n

10 20 30 40 50 60 70 80
−2

0

2

D
4[k

] x
 S

4,
n

n

(a)

10 20 30 40 50 60 70 80
−5

−4

−3

−2

−1

0

1

2

3

4

5

x[
n]

n

(b)

Figure 2.6: (a) Spread data, (b) CDMA data.
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transmitted sequence. This problem is called interchip interference (ICI) and in commercial

CDMA systems RAKE receivers are (Mohr & Kottkamp, 1996) used in combatting with

the ICI. RAKE's can be considered as FIR �lters where the weights are convolution of the

spreading sequence of the user and the channel impulse response Hch.

N+L-1 Chips

Current Symbol

Previous Symbol

Next Symbol

Direction of Transmission

Figure 2.7: Interchip interference (ICI).

It is possible to model the multipath channel using a �nite impulse response (FIR) structure

with L taps (Proakis, 2001). In conventional CDMA systems, base station transmits a pilot

tone and the receiver estimates the channel response by monitoring this tone.

Let the channel be a stationary L tap with the impulse Hch(z) = h1 + h2z
�1 + � � � +

hLz
�L+1, then the received signal at chip rate becomes

y(kN + n) = h1

UX
u=1

Du(k)Su;n + h2

UX
u=1

Du(k)Su;n�1 + � � �

+hL

UX
u=1

Du(k)Su;n�L+1 + g(kN + n)

(2.3.10)

where g(kN +n) is the added noise component with the variance �2n = N0=2 andN0=2 is the

double-sided noise power spectral density. The vector representation of chip level expression

y(kN + n) of the received signal becomes

y(k) =
h
y(kN � L+ 2) � � � y(kN + 1) y(kN + 2) � � � y(kN + n)

iT
(2.3.11)

where y(k) is a vector of length N + (L� 1).

2.4 Spreading Sequences

In DS-CDMA, each user's data is spread by a spreading sequence prior to transmission and

the received data is correlated with the same spreading sequence in order to detect the user's
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transmitted data. The autocorrelation and cross correlation properties of different spreading

sequences play an important role in terms of system performance, thus these properties of

several spreading sequences will be considered in this section.

2.4.1 PN-Sequences

Pseudo-Noise (PN) sequences are noise-like binary sequences. Most common and well

known PN sequences include maximal length sequences or m sequences in short, Gold

sequences, and Kasami sequences. Information on other important PN sequences can be found

in (Simon et al., 1994).

2.4.1.1 Maximal Length Sequences

Maximal length sequences (m sequences) are generated using m-stage linear feedback shift

registers as illustrated in Fig. 2.8. An m sequence has length n = 2m�1 bits and is periodic

with period n. Each period of the sequence contains 2m�1 ones and 2m�1 � 1 zeros.

1 2 3 4 m-1 m. . . . . 

∑

Output

m stages

Figure 2.8: M-stage linear feedback shift register.

In CDMA, the autocorrelation function properties of the spreading sequences are exploited

in order to optimally combine the multipath signals of a particular user (Hanzo et al., 2003).

The periodic autocorrelation function of a periodic PN sequence is de�ned as

Ra(j) =

i=nX
i=1

SiSi+j (2.4.1)

where n is the period of the sequence. The autocorrelation function of an ideal pseudorandom

sequence would have the properties thatRa(0) = n andRa(j) = 0 for 1 � j � n�1 (Proakis,
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2001). The periodic autocorrelation function of an m sequence is given by

Ra(j) =

8><>:
n (j = 0)

�1 1 � j � n� 1
(2.4.2)

Off-peak values of Ra(j) relative to the peak value Ra(j)= Ra(0) = �1=n is small for large

values of n which makes the m sequences to be considered as ideal in terms of autocorrelation

function.

In CDMA, cross correlation properties of a spreading sequence are as important as the

autocorrelation properties since the multiple access interference diminishes as the spreading

sequences gets mutually orthogonal. The periodic cross correlation function between pairs of

m sequences can have relatively high peaks which leads to an undesirable situation in CDMA

(Proakis, 2001).

2.4.1.2 Gold Sequences

Gold sequences have better cross correlation properties than m sequences and are generated

by linearly combining a pair of m sequences which are called preferred sequences and exhibit

a three-valued cross correlation function with values f�1;�t(m); t(m)� 2g, where

t(m) =

8><>:
2(m+1)=2 + 1 (odd m)

2(m+2)=2 + 1 (even m)
(2.4.3)

A number of n Gold sequences can be generated by taking the modulo-2 sum of one of the

preferred sequences shifted n times and the other sequence itself (Hanzo et al., 2003). Since

the original sequences can be included in the set we may generate n+ 2 Gold sequences from

a pair of m sequences. Gold sequences exhibit lower peak cross-correlations than m sequences

which leads to a desirable situation in CDMA.

2.4.1.3 Kasami Sequences

Kasami sequences have optimal cross correlation values, reaching the Welch lower bound

(Simon et al., 1994, Proakis, 2001). The lower bound on the cross-correlation between any pair
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of binary sequences of period n in a set ofM sequences is:

Rmax � n
r
M � 1
Mn� 1 (2.4.4)

The procedure for the generation of the Kasami sequences is similar to that for the generation

of Gold codes and is given in (Simon et al., 1994).

2.4.2 Orthogonal Sequences

In contrast to PN sequences orthogonal sequences have zero cross correlation. However

they are only attractive in perfectly synchronized environments such as in the down-link of

mobile communications since they exhibit zero cross correlation only when there is no offset

between the sequences. In fact, their cross correlation functions exhibit higher peak values at

non-zero offsets than that of PN sequences. Their autocorrelation properties are usually not

attractive either (Hanzo et al., 2003).

The best-known orthogonal sequences are probably Walsh sequences which are generated

by the method called the Hadamard transform (Peterson et al., 1995). Orthogonal Gold sequences

show reasonable cross correlation and off-peak autocorrelation values, while providing perfect

orthogonality in the zero-offset case (Hanzo et al., 2003). In this section we will consider the

generation of the Walsh codes. The methods and information about other types of orthogonal

sequences can be found in (Hanzo et al., 2003).

2.4.2.1 Walsh Sequences

Generation of the Walsh sequences is easy. First, let us de�ne a one by one dimensional

zero matrix as

H1 =
h
0
i

(2.4.5)

and apply Hadamard transform (Peterson et al., 1995) toH1 to generateH2

H2 =

240 0

0 1

35 (2.4.6)

where the Hadamard transform is de�ned as

H2n =

24Hn Hn

Hn
�Hn

35 (2.4.7)
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Each column or row of an n by n dimensional Hadamard matrix corresponds to a Walsh

sequence of length n. Every Walsh sequence is orthogonal to all other Walsh sequences that

are formed up from the same Hadamard matrix.

Let us give an example for the case n = 3. By applying the Hadamard transform toH1 for

2 times we will end up with 8 by 8 Hadamard matrix which is

H8 =

266666666666666666664

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1

377777777777777777775

(2.4.8)

2.5 Commercial DS-CDMA Systems

The �rst notable commercial applications of CDMA were initiated in the mobile satellite

systems, e.g. Iridium, Globalstar (Doany, 1998, Lyons et al., 1998). Iridium and Globalstar are

low Earth orbit (LEO) satellite constellation for telephone and low-speed data communications.

Later, CDMA has also found applications in digital cellular mobile communications.

2.5.1 IS-95

Interim Standard 95 (IS-95) is a 2G mobile telecommunications standard and it is the

�rst CDMA-based digital cellular standard pioneered by Qualcomm and approved by the US

Telecommunications Industry Association. The brand name for IS-95 is "cdmaOne". IS-95 is

also known as TIA-EIA-95.

In the downlink of IS-95 the user data is convolutional coded and spread, which leads to

a channel chip rate of 1.2288 Mchip/s. The modulation scheme is QPSK. User data is spread

with a Walsh code of length 64 and in order to ensure privacy it is encrypted by a long PN

sequence with a period of 242�1. The downlink channel consists of a pilot, a synchronization,
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up to 7 paging and up to 63 traf�c channels. Of special interest is the pilot channel, which

allows a mobile to acquire the timing of the channel, provides a phase reference for coherent

demodulation, and provides each mobile with a means for signal strength comparisons between

base stations to determine when to handoff. The pilot channel is also modulated by the base

station with a speci�c short PN code (Tanner, 1998).

In the uplink of IS-95 the modulation scheme is orthogonal QPSK (OQPSK) in order to

operate in the optimal range of the mobile's power ampli�er. The uplink channel consists of

access and traf�c channels. The access channel is used by the mobile to initiate communication

with the base station and to respond to paging messages. All data transmitted is convolutionally

encoded, block interleaved, OQPSK modulated, and spread with a short PN code with period

of 215 � 1 prior to transmission (Tanner, 1998). In both the uplink and the downlink the base

station and the mobile RAKE receivers (Proakis, 2001) are used.

IS-95 is used in the USA, South Korea, Canada, Mexico, India, Israel, Australia, Sri Lanka,

Venezuela, Brazil and China. It is now being supplanted by IS-2000 (CDMA2000), a latter

CDMA-based standard.

2.5.2 CDMA2000

CDMA2000 is a hybrid 2.5G / 3G protocol of mobile telecommunication standards that

use CDMA. The CDMA2000 is a direct successor to 2G CDMA, IS-95 (cdmaOne). There are

several CDMA2000 standards called CDMA2000 1xRTT, CDMA2000 EV-DO, and

CDMA2000 EV-DV.

1xRTT is a standard also known as IS-2000 and it almost doubles the capacity of IS-95 by

adding 64 more traf�c channels to the downlink, orthogonal to (in quadrature with) the original

set of 64. Today, CDMA2000 is in use in many countries.



CHAPTER THREE

DS-CDMA DETECTORS

This chapter reviews detector structures for DS-CDMA. Chapter starts with an introduction

of optimum detector, and continues with the reviews on suboptimum detectors. Conventional

detector and decorrelating detector as linear receivers and multistage detector (MSD) as a

nonlinear receiver are introduced. Finally, the chapter ends with a comparison of the detectors

introduced throughout the chapter.

3.1 Optimum Detector

The optimum detector is de�ned as the detector that selects the most probable sequence of

bits fDu(k);�1 � k � 1; 1 � u � Ug given the received signal y(t) (Proakis, 2001).

In additive white Gaussian noise, it is suf�cient to consider the signal received in one signal

interval, say 0 � t � T , to determine the optimum detector. From Eqns. 2.3.6 and 2.3.7 we

may write the received signal when k = 0 in AWGN as

y(t) =
UX
u=1

p
"uDu(0)su(t) + g(t) (3.1.1)

The optimum detector computes the log-likelihood function

�(D) =

Z T

0

"
y(t)�

UX
u=1

p
"uDu(0)su(t)

#2
dt (3.1.2)

and selects the information sequence fDu(0); 1 � u � Ug that minimizes �(D). If we expand

the integral in Eqn. 3.1.2 we obtain

�(D) =

Z T

0
y2(t)dt� 2

UX
u=1

p
"uDu(0)

Z T

0
y(t)su(t)dt

+

UX
v=1

UX
u=1

p
"v"uDv(0)Du(0)

Z T

0
sv(t)su(t)dt

(3.1.3)

The cross correlation of the received signal with each of the U spreading sequences is de�ned

as

ru =

Z T

0
y(t)su(t)dt; 1 � u � U (3.1.4)

The �rst term in Eqn. 3.1.3 is same for any information sequence Du(0) and does not provide

any relevance thus may be neglected. Using Eqns. 3.1.4 and 2.3.4 we may rewrite the Eqn.

21
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3.1.3 in the form of correlation metrics as

C(r;D) = 2
UX
u=1

p
"uDu(0)ru �

UX
v=1

UX
u=1

p
"v"uDv(0)Du(0)�uv(0) (3.1.5)

These correlation metrics may be expressed in the vector notation as

C(r;D) = 2DT r�DTRD (3.1.6)

where

r =
h
r1 r2 � � � rU

iT
(3.1.7)

and

D =
hp
"1D1(0)

p
"2D2(0) � � � p

"UDU (0)
iT

(3.1.8)

andR is the correlation matrix

R =

26664
�11(0): �12(0) � � � �1v(0)
...

... . . . ...

�u1(0) �u2(0) � � � �uv(0)

37775 (3.1.9)

In optimum detector, the received signal is passed through U matched �lters (correlators)

and the correlator outputs are fed into a detector which computes the 2U possible correlation

metrics for each sequence and selects the sequence that gives the largest correlation metric. It

is observed that the optimum detector requires the knowledge of energies of the received signal

and its computational complexity grows exponentially with the increasing number of users.

3.2 Suboptimum Detectors

The computational complexity of the optimum detector grows exponentially with the

increasing number of users since it calculates 2U metrics for U users sharing the channel.

In a real life CDMA system, there will probably be very large number of users which would

make the optimum detector impractical and very expensive to implement. Thus, a lot of effort

is given to develop suboptimum detectors which have reasonable computational complexities,

are near-far resistant and have performances close to that of the optimum detector.

3.2.1 Conventional Detector

Conventional detector simply match-�lters the received signal with the spreading waveform

of the user and makes a decision based on the single correlator output. Thus, conventional
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detector neglects the presence of other users in the channel. Multiple access interference (MAI)

and the channel noise are assumed to be additive white Gaussian.

If the received signal is in the form of Eqn. 3.1.1 than the match �lter output for user u will

be given as

ru =

Z T

0
y(t)su(t)dt

=

UX
v=1

p
"vDv(0)�uv(0) +

Z T

0
g(t)su(t)dt

(3.2.1)

To simplify the equations the noise component for user u in bit interval k is de�ned as

gu(k) =

Z (k+1)T

kT
g(t)su(t)dt (3.2.2)

Since the noise g(t) is white and Gaussian with the power spectral density N0=2, from Eqn.

2.3.2 it follows that the variance of the noise component is

E
�
g2u(k)

�
=
1

2
N0

Z T

0
s2u(t)dt =

1

2
N0 (3.2.3)

We may rewrite Eqn. 3.2.1 by fragmenting the �rst term as

ru =
p
"uDu(0) +

UX
v=1
v 6=u

p
"vDv(0)�uv(0) + gu(0) (3.2.4)

The middle term in Eqn. 3.2.4 represents the interference from the other users and it equals

to zero if all spreading sequences fsu(t); 1 � u � Ug are orthogonal to each other. Thus,

the conventional detector is optimum and its complexity grows linearly with the number of

users. But, if one or more of the spreading sequences are not orthogonal, the multiple access

interference may not be neglected. The interference from a user may become excessive if that

user is transmitting at a higher power level than the other users. This situation is called near-far

problem and power control techniques are required to combat this problem.

3.2.2 Decorrelating Detector

Let us de�ne the signal vector r that represents the output of the U matched �lters as

r = RD+ g (3.2.5)

where

D =
hp
"1D1(0)

p
"2D2(0) � � � p

"UDU (0)
iT

(3.2.6)
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and the noise vector is

g =
h
g1(0) g2(0) � � � gU (0)

iT
(3.2.7)

with a covariance

E(ggT ) =
N0
2
R (3.2.8)

Since the noise is Gaussian, the PDF of r is a U -dimensional Gaussian with mean RD and

covarianceR. That is,

p(r j D) = 1p
(N0�)U detR

exp

�
� 1

N0
(r�RD)T R�1 (r�RD)

�
(3.2.9)

The decorrelating detector calculates the best linear estimate ofD which is the value ofD that

minimizes the likelihood function

�(D) = (r�RD)T R�1 (r�RD) (3.2.10)

where the optimization yields

D0 = R�1r (3.2.11)

Finally, the detected symbols are obtained by taking the sign of each element ofD0

D̂ = sgn(D0) (3.2.12)

Eqn. 3.2.11 represents a linear transformation on the signal vector which consists of the outputs

of U matched �lters. Thus, computational complexity of the decorrelating detector increases

linearly with U .

Now let us consider a scenario where two users are sharing the same channel. Then the

correlation matrix of the spreading sequences and its inverse would be

R =

241 �

� 1

35 (3.2.13)

R�1 =
1

1� �2

24 1 ��

�� 1

35 (3.2.14)

Recall from Eqn. 2.3.4 that the cross-correlation between two spreading sequences is de�ned

as

� =

Z T

0
s1(t)s2(t)dt (3.2.15)

Let the received signal be in the form

r(t) =
p
"1D1s1(t) +

p
"2D2s2(t) + g(t) (3.2.16)
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Then the signal vector r de�ned by Eqn. 3.2.5 becomes

r =

24p"1D1 + �p"2D2 + g1
�
p
"1D1 +

p
"2D2 + g2

35 (3.2.17)

where g1 and g2 are the noise components at the output of the matched �lters. The best linear

estimate ofD calculated by the decorrelating detector is

D0 = R�1r

=

24p"1D1 + (g1 � �g2)=(1� �2)p
"2D2 + (g2 � �g1)=(1� �2)

35 (3.2.18)

It can be seen from Eqn. 3.2.18 that the decorrelating detector successfully eliminated the

interference terms between two users and it does not need the information of the power levels

of the users.

A �gure of merit for the performance of a multiuser detector is the probability of bit error

which is de�ned by

Pu(u) = Q
�p

2u

�
(3.2.19)

where u = "u=N0, "u is the signal energy per bit, andN0=2 is the power spectral density of the

AWGN. Since the interference of the other users are completely eliminated in the decorrelating

detector we may write the probability of error of a particular user u as

Pu = Q
�p

"u=�2u

�
(3.2.20)

where �2u is the variance of the noise in the uth element of the estimate D0: For the example

of two user case, the noise component is

g =
g1 � �g2
1� �2 (3.2.21)

and the variance of the noise is

�21 =
E[(g1 � �g2)]2
E[(1� �2)]2 =

E[g21]� E[�2 ]� E[g22]
(1� �2)2 =

(N0=2)(1� �2)
(1� �2)2 =

1

1� �2
N0
2

(3.2.22)

and the probability of error for u = 1 is

P1 = Q

 r
2"1
N0

(1� �2)
!

(3.2.23)

It can be seen from Eqn. 3.2.23 that the noise variance is increased by a of factor (1 � �2)�1

which can be considered as a disadvantage of the decorrelating detector.
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3.2.3 Multistage detector

Multistage detector employs multiple iterations in detecting the user bits and cancelling the

interference. It starts with the output of any of the suboptimum detectors for the �rst stage.

If we suppose that the multistage detector starts with the output of the decorrelating detector,

then the estimate in the �rst stage is

b̂11 = sgn(r1 � r2�)

b̂21 = sgn(r2 � r1�)
(3.2.24)

and the second stage would be

b̂12 = sgn(r1 �
p
"2b̂21�)

b̂22 = sgn(r2 �
p
"1b̂11�)

(3.2.25)

and the third stage
b̂13 = sgn(r1 �

p
"2b̂22�)

b̂23 = sgn(r2 �
p
"1b̂12�)

(3.2.26)

where b̂ij is the estimate in the jth stage for the ith user in the above equations.

The computation is generally terminated when the average change between iterations is zero

or less than a prede�ned value. It can be seen that the overall performance of the detector highly

depends on the initial estimate which is provided by any other suboptimum detector. Multistage

detector has received considerable attention by many researchers (Varanasi & Aazhang, 1990,

Buehrer et al., 1999).

3.3 Comparison of the Detectors

The optimum detector selects the most probable sequence of bits given the received signal

but its computational complexity increases exponentially with the number of users in the

channel. In a real life CDMA system, there will probably be very large number of users

which would make the optimum detector impractical and very expensive to implement. Thus,

researchers tried to develop suboptimal detectors which have reasonable computational

complexities, are near-far resistant and have performances close to that of the optimum detector.

The conventional detector passes the received signal through a bank of �lters matched to

the corresponding users' unique spreading sequences, signs the output, and decides on the
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information bits. If the cross correlations between the spreading sequences are zero, that is

they are orthogonal, the conventional detector is optimum and its computational complexity

increases linearly with the number of users. But if the spreading sequences are not orthogonal

to each other its performance considerably decreases due to multiple access interference (MAI).

It's performance gets even worse if one or more of the users in the channel are transmitting

relatively at high power. This problem is generally called "near-far effect."

Decorrelating detector is a suboptimal detector which is linear, near-far resistant, and has

a computational complexity proportional to the number of users (Lupas & Verdu, 1989a,b).

Decorrelating detector introduces performance improvement over conventional detector in

terms of MAI but it suffers from noise enhancement.

Multistage detector (MSD) is a nonlinear detector which improves each stage's estimate

by subtracting the estimate of the MAI obtained by the previous stage (Varanasi & Aazhang,

1990). Performance of an MSD can reach close to that of the optimum detector but it depends

highly on the initial estimate, which is usually provided by the conventional detector or

decorrelating detector.



CHAPTER FOUR

RADIAL BASIS FUNCTION MULTIUSER DETECTOR

This chapter introduces the usage of radial basis function networks (RBFN) as multiuser

detectors for DS-CDMA. First section gives a brief review about radial basis function networks,

and the structure of the RBF MUD in both AWGN and multipath channels are considered in

the following section. Final section discusses the complexity of the RBF MUD.

4.1 Radial Basis Function Networks

A Radial Basis Function Network (RBFN) is a type of neural network which uses radial

basis functions as the activation functions. Originally, the RBFN was developed for data

interpolation in multi-dimensional space (Micchelli, 1986, Powell, 1987, Dyn, 1987) and it

has been used in a wide range of areas like time series prediction, function approximation,

control theory, communications, and etc.

∑w2

w1

wN

)(2 xφ

)(xNφ

)(1 xφ

x y

Figure 4.1: The structure of an radial basis function network.

An RBFN consists of three layers as shown in Fig. 4.1. The input layer connects the

network to the environment while the second layer applies a nonlinear transformation from the

input space to the hidden space. In most applications, the hidden space has a higher dimension

than the input space. The output layer sums the output of the basis functions after suitable

weighting. The equation that de�nes an RBFN is

y =

NX
i=1

wi�(jjx� cijj) (4.1.1)
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where x is the input vector, wi is the weight of the ith basis function output's path, N is the

number of neurons in the hidden layer, and �(�) is a radially symmetric function with ci as its

center. Hence, the vector ci is usually called as the center. The most common basis function

used in the RBFN's is the Gaussian kernel

�(�) = exp

�
� �2

2�2

�
(4.1.2)

where �2 is the variance that controls the radius of the in�uence of the basis function, and �2

is the euclidean distance between the input vector and the center vector.

There have been many methods proposed to determine the parameters of an RBFN. The

most common method is grouping the training samples with k-means algorithm, selecting the

centers from the means, and using the least mean squares (LMS) algorithm to determine the

weights in the third layer.

4.2 Radial Basis Function Multiuser Detector (RBF MUD)

An alternative DS-CDMA detector to the ones introduced in the previous chapter is the

radial basis function multiuser detector (RBF MUD) which is introduced by Cruickshank

(1996). It's structure is based on radial basis function network and is fully determined when the

spreading sequences of all users and the channel impulse response are known. Hence, it needs

no training (Tanner & Cruickshank, 1998). The structure of the RBF MUD and construction of

the center vectors of it in both AWGN and multipath channels are considered in this section.

4.2.1 RBF MUD for AWGN Channel

4.2.1.1 The structure of the detector

The structure of the RBF MUD is shown in Fig. 4.2. The RBF MUD needs a set ofM basis

functions (centers). The most common basis function used in the RBFN is the Gaussian kernel

�m(y(k)) = exp

�
�jjy(k)� cmjj

2

2�2

�
(4.2.1)

where, cm; m = 1; 2; :::;M are the center vectors of length N , M is the number of center

vectors that are introduced by the RBF MUD for each 2U possible received signal where U is
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the number of users in the Gaussian channel. Since the vector set cm; m = 1; 2; :::;M contains

all of the possible received signal vectors, y(k), these centers are also called as supercenters.

Variance of the Gaussian center function, �2, equals to variance of the added noise component,

�2n. It worths mentioning that the noise power and the spreading code of all users must be

known at the detector to form an RBF MUD structure.

Figure 4.2: The structure of the radial basis function multiuser

detector.

The output layer of the RBF MUD consists of linear weights which are denoted by

wm;u; m = 1; 2; :::;M . The outputs of the center functions are linearly weighted by wm;u,

summed up and fed into sign operator, resulting the detected symbol for user u, D̂u

D̂u(k) = sgn

 
MX
m=1

wm;u�m(y(k))

!
(4.2.2)

where y(k) is the vector of length N containing the DS-CDMA signal of U users distorted

by AWGN. The weights, wm;u, in the output layer of the RBF MUD are chosen from the

code matrix. Construction of the code matrix which comprises all combinations of all users

and supercenter matrix which has supercenter vectors as its rows will be explained in the

following section.

4.2.1.2 Construction of Supercenter and Code Matrices

The supercenter matrix, C, contains all possible received DS-CDMA signals of U users in

AWGN channel as its rows, and is derived using the formula

C = DS (4.2.3)
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where S is the U �N matrix, comprising the spreading codes of length N of all U users and

expressed as

S =

26666666664

ST1

ST2
...

STU�1

STU

37777777775
(4.2.4)

where Su is the N � 1 spreading code vector of user u.

In Eqn. 4.2.3D is theM � U code matrix which contains all possible bit combinations as

its rows whereM = 2U and is expressed as

D =

26666666664

�1 �1 � � � �1

�1 �1 � � � +1
...

... . . . ...

+1 +1 � � � �1

+1 +1 � � � +1

37777777775
(4.2.5)

Thus, Eqn. 4.2.3 can be written in the expanded form

C = DS =

26666666664

�ST1 � ST2 � � � � � STU�1 � STU
�ST1 � ST2 � � � � � STU�1 + STU
� � � � � � � � � � � � � � � � � � � � � � � � � � �

+ST1 + S
T
2 + � � �+ STU�1 � STU

+ST1 + S
T
2 + � � �+ STU�1 + STU

37777777775
(4.2.6)

Each row in Eqn. 4.2.6 represents a center vector of the RBF MUD and the weights wm;u in

Eqn. 4.2.2 are selected frommth row and uth column of matrixD (Cruickshank, 1996).

4.2.2 RBF MUD for Multipath Channel

4.2.2.1 The structure of the detector

The structure of the RBF MUD for multipath channel is the same with the structure for the

AWGN channel which is shown in Fig. 4.2. The basis function used is again the Gaussian

kernel

�m(y(k)) = exp

�
�jjy(k)� cmjj

2

2�2

�
(4.2.7)
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where, cm; m = 1; 2; :::;M are the center vectors of length N + (L � 1), N is the length of

the spreading sequences, L is the number of taps of the multipath channel,M is the number of

center vectors that are introduced by the RBFMUD for each 23U possible received signal where

U is the number of users in the channel. As in AWGN, the vector set

cm; m = 1; 2; :::;M contains all of the possible received signal vectors, y(k), these centers

are called as supercenters. Variance of the Gaussian center function, �2, equals to variance of

the added noise component, �2n.

4.2.2.2 Construction of Supercenter and Code Matrices

In order to construct the supercenter matrix for the multipath channel, the L-tap impulse

response Hch of the channel has to be known at the detector. As it is discussed in Section

2.3.2.2, we have to deal with interchip interference (ICI) in a multipath environment. It

is possible to realize the convolution of the spreading sequences with the channel impulse

response using matrix algebra in order to combat with ICI while constructing the RBF MUD

that operates in the multipath environment.

The supercenter matrix for the multipath channel is de�ned by Tanner (1998) as

CMP = SMPHT (4.2.8)

where H is an (N + L � 1) � 3N Toeplitz matrix constructed using the channel impulse

response Hch, and N is the length of the spreading sequence. The �rst N � L+ 1 columns in

H is zero. As an example for the case L = 3 and N = 4, the matrixH would be

H =

26666666666664

0 0 h3 h2 h1 0 0 0 0 0 0 0

0 0 0 h3 h2 h1 0 0 0 0 0 0

0 0 0 0 h3 h2 h1 0 0 0 0 0

0 0 0 0 0 h3 h2 h1 0 0 0 0

0 0 0 0 0 0 h3 h2 h1 0 0 0

0 0 0 0 0 0 0 h3 h2 h1 0 0

37777777777775
(4.2.9)

The SMP in Eqn. 4.2.8 is the Hadamard product of extended code matrix DMP and U � 3N

matrix comprising the spreading sequences of lengthN of all U users for the previous, current,

and next symbols, thus

SMP = DMP �
h
S S S

i
(4.2.10)
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where S is de�ned in Eqn. 4.2.4 and the Hadamard product of two matricesA andB is de�ned

as

(A �B)ij = aijbij (4.2.11)

The extended code matrix DMP is a 23U � 3U matrix which contains all possible bit

combinations of previous, current, and next symbols for the U users as it rows and it is in

the form

DMP =

26666666664

�1 �1 � � � �1

�1 �1 � � � +1
...

... . . . ...

+1 +1 � � � �1

+1 +1 � � � +1

�1 �1 � � � �1

�1 �1 � � � +1
...

... . . . ...

+1 +1 � � � �1

+1 +1 � � � +1

�1 �1 � � � �1

�1 �1 � � � +1
...

... . . . ...

+1 +1 � � � �1

+1 +1 � � � +1

37777777775
(4.2.12)

and it can be partitioned into three sub-matrices in order to simplify the notation

DMP =
h
DP DC DN

i
(4.2.13)

where DP , DC , and DN are 23U � U matrices representing the previous, current, and next

code matrices respectively. Substituting Eqns. 4.2.13 and 4.2.4 into Eqn. 4.2.10 we have

SMP =
h
DP DC DN

i
�
h
S S S

i

=

26664DP

26664
ST1
...

STU

37775 DC

26664
ST1
...

STU

37775 DN

26664
ST1
...

STU

37775
37775 (4.2.14)

Each row in the matrix CMP represents a center vector of the RBF MUD for the multipath

channel and the weight wm;u in Eqn. 4.2.2 must be selected frommth row and uth column of

matrixDc (Cruickshank, 1996).

4.3 Complexity of the RBF MUD

Although RBF MUD needs no training and it is fully de�ned when the spreading sequences

of all users and the channel impulse response are known, its structural complexity increases

exponentially with the number of users. Its structural complexity gets even worse in the

multipath environment since the number of centers needed to span the received signal space

of a U user DS-CDMA equals to 23U . In a real-life CDMA system there will probably be a
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large number of users in the channel thus, RBF MUD is impractical to realize both in AWGN

and multipath channels. Thus, a noticeable number of researchers have tried to reduce the

structural complexity of the RBF MUD (Tanner & Cruickshank, 1998, Sessler et al., 2001, Wei

et al., 2004). In this thesis, a new method that uses genetic algorithm to reduce the structural

complexity of the RBF MUD is proposed where the method is introduced in detail in the next

chapter.

The reader should realize that RBF MUD whose structure is given in this chapter and our

optimization method which will be introduced in the next chapter is valid under the assumption

that the DS-CDMA signals transmitted by U independent users to be bit and chip synchronous

with equal power which is normalized to 1 which is a situation that may be realized in a

downlink (base to mobile) scenario in a cellular mobile communication system.



CHAPTER FIVE

COMPLEXITY REDUCTION OF RBF MUD USING GA

This chapter introduces the proposed method to reduce the structural complexity of the

radial basis function multiuser detector. First section brie�y reviews the genetic algorithm,

then the de�nition of the problem is stated in the next section. The method is introduced by the

help of a simple example in the following section and then details of the method are given.

5.1 Genetic Algorithm (GA)

The genetic algorithm (GA) (Goldberg, 1989, Tang et al., 1996) is a stochastic search

method based on the laws of natural selection, biological evolution, and genetics which operates

as an entirely different optimization procedure among other optimization methods (like calculus

based techniques, enumerative techniques, etc.) In general, a basic GA consists of three

operations: Selection, Genetic Operation, and Replacement. Fig. 5.1 shows the �ow diagram

of a simple GA.

Population

Parent 
Mating

Offspring

Fitness 
Function

Fitness Value

Fitness Value

Selection

Crossover / Mutation

Replacement

Figure 5.1: Simple genetic algorithm cycle.

In the GA, the population consists of a group of chromosomes where each of them represents

a solution to the problem. A chromosome is a string of numbers, usually it is a vector of

binary digits. Initial population may be generated randomly or manually if there is an initial

guess about the solution. At each iteration, all of the chromosomes are evaluated and their

35
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�tness values are calculated. According to their �tness values, a probability of selection is

assigned to each one of them. A particular group of chromosomes (parents) are selected

and genetic recombination (crossover) is applied to pairs of parents to generate the offsprings.

Some of the offsprings are mutated with a pre-de�ned probability and a new population whose

chromosomes would be the parents of the next generation is created.

The GA cycle ends when a desired criterion is satis�ed, where the criterion may be de�ned

as the number of generations, �tness value, and etc. Due to this simulated evolution, the

chromosome with the best �tness value in the �nal population can become a highly evolved

solution to the problem.

5.2 De�nition of the problem

The RBF MUD uses all the centers in the supercenter matrix C (see Eqns. 4.2.3 and

4.2.8) and acts as a maximum likelihood symbol detector (MLSD) in AWGN, so it reaches

to the optimum performance (Tanner & Cruickshank, 1998). However, the number of rows

in matrix C (which is also the number of centers in the RBF MUD) is equal to 2U in non-

dispersive AWGN channel and 23U in multipath channels where U is the number of users in

the channel. When the number of users in the channel is large, the structure of RBF MUD gets

too complicated since its number of centers increases exponentially with the increasing number

of users, U . Thus, a need for structure optimization of this detector arises, especially when the

number of users in the channel is large.

The input space of a DS-CDMA system hasN dimensions in AWGN channels andN+L�1

dimensions in multipath channels whereN is the length of the spreading codes that are assigned

to each user in the system and L is the number of paths in the channel. Low dimensional views

of the input space of a DS-CDMA system can be insightful using multidimensional scaling

techniques one of which is the self organizing map (SOM). SOM is a subtype of arti�cial

neural networks and it is trained using unsupervised learning to produce low dimensional

representation of the training samples while preserving the topological properties of the input

space. In Fig. 5.2, plot of the SOM for user one, u = 1, is shown for a particular

DS-CDMA system where six users are in the AWGN channel, U = 6; and each user has a

spreading code of length eight, N = 8. Two dimensional representation of the original eight
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Figure 5.2: SOM for a user in a DS-CDMA system of 6 users.

dimensional DS-CDMA space suggests that the space can be represented by less than 2U basis

functions. The problem is to �nd the best center locations and variation values of the basis

functions. Another problem is determining the minimum number of centers to be used. These

optimization problems can be solved by the GA. In other words, the structure of the RBFMUD

can be optimized using the GA. The proposed method will be explained with the help of an

example in detail.

5.3 A Simple Example

In the traditional RBF MUD, there are M = 2U centers in AWGN, and each center has a

variance which is equal to the variance of the added noise, �2n. In the proposed RBF MUD,

the center vectors are not chosen from the set of supercenter vectors and the variance of each

center can take any value. This RBF MUD structure shall be further explained with the help of

the following example of the simplest case:

The supercenter matrix of an RBF MUD receiving a DS-CDMA signal which is a

superposition of signals from two users sharing the same AWGN channel, U = 2; and having
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Walsh spreading codes of length two, N = 2, and the spreading codes are S1 =
h
+1 +1

i
and S2 =

h
+1 �1

i
for the �rst and second user respectively, can be calculated using Eqn.

4.2.6, as

C = DS =

26666664
�1 �1

�1 +1

+1 �1

+1 +1

37777775
24+1 +1

+1 �1

35 =
26666664
�2 0

0 �2

0 +2

+2 0

37777775 (5.3.1)

These four supercenter vectors, cm; m = 1; 2; 3; 4; Gaussian basis functions, �m where

m = 1; 2; 3; 4, and their variations, �2m where m = 1; 2; 3; 4 are shown in Fig. 5.3.a. In

the original de�nition of RBF MUD by Cruickshank (1996) and in related works by Tanner &

Cruickshank (1998), Sessler et al. (2001), Wei et al. (2004), the variation of all the centers has

been chosen to be constant and equal to the noise variance, �2n

�2m = �
2
n 8m; m = 1; 2; :::;M (5.3.2)

whereM = 2U is the number of centers and U is the number of users in the channel.
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Figure 5.3: Centers and variances of (a) traditional RBF MUD and (b) GA assisted RBF

MUD.

It is possible to reduce the number of centers by allowing the center locations to be anywhere

in the DS-CDMA space and setting different variance values to different basis functions. By

doing so, the RBF MUD can cover the whole space with a less number of centers, with a

very little performance degradation in terms of BER, and with less structural complexity. In

Fig. 5.3.b, the center vectors, Gaussian basis functions, and associated variations of each basis
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function are shown. As it is seen in Fig. 5.3.b, the center vectors of the proposed RBF MUD

are not chosen from the vector set of supercenters

c0k 6= cm; k = 1; 2; :::;K; m = 1; 2; :::;M (5.3.3)

where c0k is the k
th center vector of the prosed RBFMUD and cm is themth supercenter vector

of the traditional RBF MUD. As it is also seen in Fig. 5.3.b, the variances of Gaussian basis

functions of the proposed RBF MUD are different for each center

�2i 6= �2j ; i 6= j; 1 � i < j � K (5.3.4)

This �exibility of the proposed method lets a center to represent more than one supercenter

which leads to a considerable amount of performance increase in terms of computational

complexity, especially when the number of users, U , is large.

5.4 Optimizing the RBF MUD Structure in AWGN with GA

Optimizing the structure of the RBF MUD starts with a randomly selected small subset of

supercenter vector set. In other words, the K � N matrix C0 is generated by selecting from

the rows ofM � N matrix C in Eqn. 4.2.6. Initial variances of centers are set to be equal to

the noise variance, �2n. Then, center vector locations and variances of each center function are

optimized to get better BER's by using a GA.

Each member of the population is formed as

Ip;i =
h
c01;i c02;i � � � c0K;i �21;i �22;i � � � �2K;i

i
(5.4.1)

where p = 1; 2; :::; P is the member number, P is the population size, and i is the generation

number. As it is seen in Eqn. 5.4.1, each member of the population represents a different

RBF MUD structure. At each generation of the GA, the RBF MUD structures de�ned by each

member of the population are formed up and tested with as input set of a prede�ned size. The

�tness function of each member is de�ned as

f = 1�BER (5.4.2)

where BER is the bit error rate of the RBF MUD whose structure is de�ned by the associated

member. Thus, the GA minimizes BER though maximizing the �tness function. At each
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iteration, the members with the best �tness function are selected. Then GA operators like

crossover and mutation are applied to these members and a new population is generated. The

optimization is terminated when the number of iterations reaches to a prede�ned value.

Since the optimized locations of the center vectors are different from the locations of the

supercenter vectors, the weight values in the output layer of the RBF MUD,

wm;m = 1; 2; ::;M , can not be determined from the columns of the code matrix D. Thus,

the weight values are calculated by using the least mean squares (LMS) algorithm for each

member at each iteration of the GA. When the algorithm terminates, the member with the

best BER is selected to be the centers and variances of the RBF MUD and associated weights

calculated by the LMS become the weights of the output layer of the RBF MUD.

5.5 Optimizing the RBF MUD Structure in Multipath Channel with GA

The method for optimizing the RBF MUD structure in multipath channel is similar to the

one in AWGN. It is possible to generate K � (N + L � 1) matrix C0 again by randomly

selecting from the rows ofM � (N + L� 1) matrixCMP in Eqn. 4.2.8. But sinceM = 23U

and N can be very large, dimensions of the matrix CMP can get very high, thus it would be

cumbersome to generate this matrix. Instead, a number of P integers can be randomly selected

in the interval 1 � p � 23U . Then, it is straightforward to generate only pth rows of the code

matrixDMP given in Eqn. 4.2.12 and then calculating P rows of the matrix CMP .

Since the dimension of the input space is greater than it is in AWGN, it is recommended to

run the GA with a larger population size and number of iterations. Again, the weight values

are calculated by using the LMS algorithm for each member at each iteration of GA.



CHAPTER SIX

SIMULATION RESULTS

This chapter gives the simulation method and the results of the several tests de�ned to

measure the performance of the proposed method. First section gives the performance criteria

used in the simulation results and next section de�nes the method used in the simulations.

Following sections give bit error rate plots and comments on the corresponding plots for the

several tests de�ned.

6.1 Performance Criteria

The performance criteria used in our simulations is the bit error probability of the multiuser

detectors. Since the evaluation of the probability of error for the optimum detector is extremely

dif�cult, we may use the probability of error of a single user detector in the absence of the other

users as a lower bound which is de�ned as

Pe() = Q
�p

2
�

(6.1.1)

where  = "=N0, " is the signal energy per bit, N0=2 is the power spectral density of the

AWGN, and the Q(x) is the Q-function de�ned as

Q(x) =
1

2
erfc

�
xp
2

�
(6.1.2)

Thus the probability of error for a single user detector in AWGN is

Pe =
1

2
erfc

�r
"

N0

�
(6.1.3)

For multipath channels the probability of error for a single user detector (Proakis, 2001) is

de�ned as

Pe = Q

0BB@
vuut2"

�PL
k=1 hk

�
LN0

1CCA (6.1.4)

where L is the number of paths, and hk is the impulse response of the kth path of the channel.

Due to the complexity of the radial basis function multiuser detector, a time-invariant multipath

channel used in our simulations with the channel impulse response given as

Hch(z) = 0:3482 + 0:8704z
�1 + 0:3482z�2 (6.1.5)

41



42

Thus, the received DS-CDMA signal at chip rate becomes

y(kN + n) = 0:3482
UX
u=1

Du(k)Su;n + 0:8704
UX
u=1

Du(k)Su;n�1

+0:8704
UX
u=1

Du(k)Su;n�2 + g(kN + n)

(6.1.6)

In Fig. 6.1 plots for the probability of error of single user detectors in both AWGN channel and

3-tap multipath fading channel with an impulse response of Eqn. 6.1.5 is given. This curves

represent a lower bound on the performance of the detectors tested in our simulations.
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Figure 6.1: Probability of error for a single user detector.

6.2 Simulation Method

A DS-CDMA system with 20 users having Walsh spreading sequences of length 32 in non-

dispersive channel distorted by AWGN is simulated. Since the number of supercenters is very

high for 3-tap multipath fading channel, the number of users in the system is limited to 10 for

multipath case. A number of 104 equiprobable bits for training and 107 bits for testing are

generated for each user. As explained in chapter four, code matrixD and supercenter matrixC

are generated for U = 20 and N = 32. Each member (chromosome) in the initial population

of GA is formed up as follows:

Ip;0 =
h
c01;0 c02;0 � � � c0K;0 �21;0 �22;0 � � � �2K;0

i
(6.2.1)
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Table 6.1: Genetic Algorithm parameters used in different tests.

Test for Test for Test for Test for

Number of Number of Mutation Population

Centers Generations Probability Size

Number of Centers 20, 60 and 80 40 40 40

Population Type Double Vector Double Vector Double Vector Double Vector

Population Size 40 40 40 20, 40 and 60

Selection Function Stoc. Uniform Stoc. Uniform Stoc. Uniform Stoc. Uniform

Mutation Function Gaussian Gaussian Uniform Gaussian

Crossover Function Scattered Scattered Scattered Scattered

Mutation Probability Shrink:0.75; Shrink:0.75; 0.001, 0.1 Shrink:0.75;

Scale:0.5 Scale:0.5 and 0.5 Scale:0.5

Crossover Probability 0.8 0.8 0.8 0.8

Number of Generations 50 50 and 200 50 50

where cx;0; x = 1; 2; :::;K, vectors are selected randomly from the rows of supercenter matrix

C. Each row of matrix C is selected only once in the same chromosome. Initial variance

values in Eqn.6.2.1, �2y;0; y = 1; 2; :::;K, are set to be equal to the variance of the added noise

component, �2n.

Not only the transmitted data of a selected user but also the transmitted data of all the users

in the channel are detected in both the train and test stages of our simulations. This is done by

updating the weights of the RBF MUD which are calculated at each iteration of the training

stage and in the beginning of the testing stage by the LMS algorithm for that particular user.

Of many parameters which may effect the GA RBF MUD's performance, the parameters

that may have signi�cant effect on the results are tested for different values. These parameters

are as follows: number of centers used in the structure, initial population, number of generations

produced by the GA, mutation probability of the GA and population size (number of members

in the population) of the GA. RBF MUD and GA parameters used in the tests are presented in

Table 1. Effects of these parameters on the performance of the detector will be explained in the

following subsections in the light of the simulation results.
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6.3 Results in AWGN Channel

6.3.1 Test for the Effect of Number of Centers
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Figure 6.2: Simulations resuts of test for number of centers.

Three GA assisted RBF MUD's with different number of centers are simulated. Numbers

of centers are selected to be 20, 60, and 80. In order to operate at optimum performance,

an RBF MUD needs 220 centers to support 20 users. Thus, increasing the number of centers

would improve the performance of the detector. BER versus Eb=N0 plot for the GA assisted

RBF MUD having different number of centers is given in Fig. 6.2, where K is the number of

centers of the GA RBF MUD. As can be seen in Fig. 6.2, K = 80 gives the best performance

where this result meets the theoretical assumption stating the performance improvement due

to the increase of the number of centers. When K = 20, the detector is unable to provide a

near-optimum performance. However, due to the �exible structure of the proposed detector,

even in the case of 20 centers, its BER performance is about 1 dB better than the performance

of the detector proposed by Wei et al. (2004) which forms up an RBF MUD by selecting the

most in�uential supercenters as the centers.

The RBF MUD needs 220 centers to operate while the method proposed in this thesis

reduces this number to 80. The complexity reduction ratio is a considerable amount which
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is about 1=13000 on a rough calculation. Performance loss in the new detector is about 0.6 dB

for a BER of 10�3.

6.3.2 Test for the Effect of Initial Population and Number of Generations

The performance of the GA depends on the choice of initial population. GA would provide

better performance if the algorithm is started with an initial population whose members are

close to the solution to the optimization problem. In our case, the members in the population

represent the center vectors and variance values of the basis functions which forms up the RBF

MUD. Thus, the method would converge to optimum structure faster if the initial population

were set close to the �nal structure. Hence, we start the GA with an initial population whose

members are formed up by randomly selecting the centers from a number of 220 supercenters.
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Figure 6.3: Simulations resuts of test for initial population.

In Fig. 6.3, BER versus Eb=N0 plots are shown for the RBF MUD's which are optimized

by the GA starting with different initial populations. In this test, the GA is terminated when

the number of generations reached to 50. It is seen in Fig. 6.3 that starting with the �rst

and third initial populations has lead the GA to generate RBF MUD's which have identical

and better performances than the RBF MUD which was generated by the GA started with the

second initial population. But starting with the same initial population and terminating the
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GA at 200 generations instead of 50, the resultant optimized RBF MUD provided the identical

performance with the other RBF MUD's. Thus, the effect of the initial population on the

performance of the resultant RBF MUD can be eliminated by letting the algorithm to generate

more populations.

6.3.3 Test for the Effect of Mutation Probability

The recommended mutation probability range in the literature (Goldberg, 1989) is

10�3 � 10�2. Since our strings (members in the population) are represented by real numbers

and no encoding is used, the space that is needed to be scanned is real valued and there are

in�nite number of locations for a center to be located. Hence, we would need a high mutation

probability to search the space effectively. According to Fig. 6.4, the GA with a mutation

probability close to the upper recommended limit, 0.05, generated an RBF MUD with the

best performance. A probability that is less than the recommended lower limit, 0.0005, or a

probability that is much greater than the upper limit, 0.5, ends up with an RBF MUD of worse

performance.
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Figure 6.4: Simulations resuts of test for mutation probability.
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6.3.4 Test for the Effect of Population Size

In GA, increasing the number of members in the population to be evolved decreases the

probability of algorithm to be stuck at local maxima. In this test, populations of different sizes

are generated and optimized via the GA. The algorithm is again stopped at the same number

of generations for each population. Observing Fig. 6.5, we may conclude that a GA evolving a

population of greater size would generate an RBF MUD with better performance.
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Figure 6.5: Simulations resuts of test for population size.

6.4 Results in Multipath Fading Channel

The number of centers for the RBF MUD supporting 10 users in a 3-tap multipath fading

channel are reduced to 20, 60, and 100. It can be seen in Fig. 6.6.a that the proposed method

reduced the number of centers from 230 to 100 with a slight performance degradation. When

K = 20 and K = 60 the detector is unable to provide a near-optimum performance. If we

consider the case forK = 100, the complexity reduction ratio is a considerable amount which

is about 1=107 on a rough calculation. Performance loss in the new detector is about 1 dB for

a BER of 10�3.
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In Fig. 6.6.b bit error rate performances of two RBF MUDS where one of them is generated

after 50 iterations of GA and the other is generated after 150 iterations are shown. We may

conclude that the performance of the optimized RBF MUD may be increased further if we let

the genetic algorithm run more iterations.
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Figure 6.6: Simulations resuts of (a) test for number of centers and (b)

test for number of generations in multipath fading channel.



CHAPTER SEVEN

CONCLUSIONS

Optimum detector for DS-CDMA selects the most probable sequence of transmitted bits

given the received signal and it provides superior performance. On the other hand its

computational complexity increases exponentially with the number of users in the channel.

Since the number of users in a real-life CDMA system may become very high, the

implementation of the optimum detector would be very impractical and expensive. Several

linear and nonlinear suboptimal detectors are proposed in the literature. The main goal of the

researchers while developing a suboptimum detector is to achieve a computational complexity

that is less than that of the optimum detector.

Radial basis function multiuser detector proposed by Cruickshank (1996) is a suboptimum

DS-CDMA detector. It is based on radial basis function networks and is fully determined when

the spreading sequences of the users and the channel impulse response are known. However, it

has a structural complexity that increases exponentially with the number of users. The number

of centers needed to realize an RBF MUD equals to 2U to support U users. The situation

in multipath environment is even worse since the number of centers needed to span the input

space equals to 23U for an RBF MUD supporting U users.

Using a multidimensional scaling technique, self organizing map (SOM) in this case, a two

dimensional representation of the original N dimensional DS-CDMA space is obtained and it

is shown that the input space of the detector can be represented by an RBF MUD which has a

fewer number of centers than 2U . Based on this idea, a new method is proposed which reduces

the number of centers of the RBF MUD by using genetic algorithm (GA) as the optimization

tool.

The proposed optimization method, starts with a prede�ned number of centers which are

selected from the supercenters and sets the initial variance of these centers to noise variance.

This prede�ned number is very small compared to the number of supercenters. It is expected

that the genetic algorithm will evolve an RBF MUD structure which gives the minimum bit

error rate (BER), by applying small changes to the locations of the centers and center variances

at each iteration. The proposed method is tested with a variety of parameters via computer

simulations and promising results are obtained.
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The structural complexity of an RBF of MUD in AWGN channel is decreased by a ratio

of about 1=13000. This ratio is about 1=107 for an RBF MUD in a 3-tap multipath fading

channel. It is observed that by increasing the number of centers, population size, and number of

generations, the proposed method generates an RBF MUD with a performance

that is even closer to the single user performance.

Consequently, the proposed method successfully reduces the complexity of the RBF MUD

for DS-CDMA by minimizing the number of center functions using GA. By determining the

optimal values of the centers and the variances of the radial basis functions through GA, the

complexity of the RBF MUD is reduced from O(2U ) to O(K), where K is a predetermined

number of centers, in the expense of negligible performance degradation compared to the single

user detector.
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