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MAGNETIC PROPERTIES OF THE SPIN-1 BLUME-EMERY-GRIFFITHS
MODEL IN THE PRESENCE OF MAGNETIC FIELD

ABSTRACT

Magnetic properties of the spin-1 Blume-Capel (BC) model and Blume-Emery-
Griffiths (BEG) model on square lattice are presented within the framework
of the effective-field theory (EFT) with correlations approximation method
and Monte Carlo simulation technique. We have improved the EFT method by
including the correlations between different spins which emerge when
expanding the identities. In order to do this, we have derived a set of linear
equations for the considered systems by taking as a basis the thermal averages
of a central spin and a perimeter spin at the site i, which is defined within the
spin identities and differential operator technique. By solving numerically the
set of linear equations derived for the Ising system with coordination number
q=4, we have evaluated all the spin correlation functions without using any kind
of decoupling approximation in the spin system under a longitudinal magnetic
field. The effects of the longitudinal magnetic field on magnetic properties of the
spin systems are discussed in detail. Numerical computations are performed and
the results are analyzed for the cases of the spin-1 BC model by using effective-
field theory with correlations and spin-1 BEG model by applying Monte Carlo
simulations on the square lattice, respectively. We have also evaluated the phase
diagrams for the spin-1 BC model on square lattice.

Keywords: I-EFT approximation, MC simulation, spin-1 Ising model, square
lattice.
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DI� MAGNET�K ALANIN VARLI�INDAK� SP�N-1
BLUME-EMERY-GRIFFITHS MODEL�N MAGNET�K ÖZELL�KLER�

ÖZ

Bu çalışmada, korelasyonlu efektif alan teorisi ve Monte Carlo simülasyon
tekniği temel alınarak kare örgüde spin-1 Blume-Capel (BC) ve Blume-Emery-
Griffiths (BEG) modelin manyetik özellikleri incelendi. Geliştirdiğimiz efektif
alan teorisinde, spin özdeşlikleri ve diferansiyel operotör tekniği ile
tanımlanmış, i konumunda bulunan komşu spinlerin ve merkezi spinin termal
ortalamaları temel alınarak, lineer eşitlikler kümesi elde edildi. Bu amaçla, en
yakın komşu sayısı q=4 olan spin-1 Blume-Capel modeli için türetilmiş olan
lineer eşitlikler kümesi sayısal olarak çözülerek, dış manyetik alan altındaki spin
sisteminde herhangi bir eşleme yaklaşımı kullanılmadan bütün korelasyon
fonksiyonları numerik olarak hesaplandı. Boyuna manyetik alanın, kristal alan
teriminin ve bikuadratik değiş-tokuş etkileşme teriminin, söz konusu sistemlerin
manyetik özellikleri üzerindeki etkileri ayrıntılı olarak tartışıldı. Sırasıyla, efektif
alan teorisi temel alınarak BC model, Monte Carlo simülasyon tekniği kullanılarak
ise BEG model için kare örgüde nümerik hesaplamalar yapıldı ve sonuçlar analiz
edildi. Ayrıca, kare örgüde spin-1 BC model için faz diyagramları ele alındı.

Anahtar sözcükler: I-EFT yaklaşımı, MC simülasyonu, spin-1 Ising modeli,
kare örgü.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

The Ising model has been one of the most actively studied systems in statistical

mechanics and has been used as an elementary model to describe the phenomena

of phase transition for cooperative physical systems. The reason is due to the fact

that they can describe fairly well numerous physical systems, such as magnetic

spin systems, binary alloys, lattice gas, and so on.

The simplest form of the Ising model appears in one-dimensional lattice (linear

chain) consisting of spin-1/2 atoms, with nearest-neighbor interactions and in the

absence of an external field. It was in this form that Ising proposed his model in

1925, in order to study the magnetic phase transition. However, he did not find

a long-range order at any finite temperature. Indeed, one may say that the Ising

chain undergoes a phase transition at zero temperature.

However, the two dimensional (square lattice) Ising model in the absence of

an external field does show a phase transition at a finite temperature, which was

solved exactly by Onsager in 1944 (Onsager, 1944). After Onsager’s solution,

the Ising model has been one of the most actively studied problems in statistical

mechanics. Some rigorous solutions have been given for the simple Ising model

with S=1/2 on one-dimensional and certain two-dimensional lattices.

In the other case, the model must be solved by approximation method or

numerical method, such as the molecular field approximation (MFA), the Bethe-

Peierls approximation (B-PA) (Bethe, 1935; Peierls, 1936), the Bethe lattice

approximation (BLA) (Tanaka & Uryu, 1981), in which the lattice is simplified

as an infinite Cayley tree with the coordination number z, the effective field

theory (EFT) (Kaneyoshi et al, 1981; Honmura & Kaneyoshi, 1979; Kaneyoshi et

1
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al, 1992b; Siqueira & Fittipaldi, 1986), the double-chain approximation (DCA)

(Yokota, 1988), which is a natural extension of the pair approximation, the cluster

variation method (CVM) (Micnas, 1979; Ng & Barry, 1978), the series expansion

method (SE) which is valid for temperatures either very high or very low compared

with the transition temperature (Baxter, 1982; Saul et al, 1974), the Monte Carlo

technique (MC) (Pawley et al, 1984; Rachadi & Benyoussef, 2004), and so on.

The transition temperatures obtained by the former seven approximation

methods are higher than the exact value, the B-PA and BLA give the same

transition temperatures for S = 1/2, and the DCA with the large cluster gives

the transition temperature closing mostly to the exact value. There are also many

results based on the renormalization-group methods, especially for the critical

region of the model.

The EFT is based on the identities valid for Ising systems, using the

differential operator technique, it converts the problem of calculation of the trace

for spin operator to calculation of the derivative of a given function. Therefore

the relation between the expectation value of a given spin and the multi-spin

correlation functions composed of its neighbor spins is obtained. Adopting the

Zernike approximation to decompose the multi-spin correlation function to the

multiplication of the single spin correlation functions, thus the magnetization of

the system can be calculated. Essentially, the EFT is a cluster method in which

the central spin and its neighbor spins are considered.

Because of the smaller cluster taken in the approximation, the results obtained

by the EFT are not too accurate. For example, the transition temperature kBTc/J

(where J is the exchange interaction between the nearest-neighbor spins) obtained

by EFT is 0.773 for S = 1/2 Ising model on the square lattice, and the exact

result is 0.567, the difference is apparent. By considering the fluctuation of

spins in decoupling of the multi-spin correlation function, the correlated effective

field theory (CEFT) improves the results, and gets 0.721 (Kaneyoshi et al, 1981;

Honmura & Kaneyoshi, 1979; Kaneyoshi et al, 1992b; Siqueira & Fittipaldi, 1986;

Kaneyoshi & Tamura, 1982).
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Further improvement of the decoupling approximation to the multi-spin

correlation function, called DA (Kaneyoshi, 2000), the result becomes 0.686. The

dimensionality of the system can not be distinguished in EFT approximation.

B-PA is also a cluster method (Bethe, 1935; Peierls, 1936), in which the central

spin and its neighbor spins are taken as a cluster, and the neighboring spins are

in an effective field produced by the other spins outside the cluster. The effective

field is determined by the condition that the expectation value of the central spin is

equal to that of the neighboring spins. From the point of view of the cluster taken

in the EFT and B-PA, the two methods are equal in approximation. It is indeed

proved that the CEFT is equivalent to B-PA in accuracy in calculation of the

transition temperature of system for S = 1/2 (Kaneyoshi et al, 1981; Honmura &

Kaneyoshi, 1979; Kaneyoshi et al, 1992b; Siqueira & Fittipaldi, 1986; Kaneyoshi

& Tamura, 1982). In addition, the B-PA approximation becomes exact on the

Bethe lattice (BLA) for S = 1/2 (Tanaka & Uryu, 1981), so the B-PA has been

applied to many areas for its clear physics idea and simple calculation, although

it can not distinguish the dimensionality of the system, too.

Because of its simplicity, the molecular-field approximation (MFA) has played

an important role for the description of cooperative phenomena since the concept

of the molecular field was introduced by Weiss in a phenomenological model for

ferromagnetism. The theory can be relied on for an appropriate description of

the major aspects of the phenomena being studied. However, the MFA has some

deficiencies, due to the neglect of correlations when MFA results are compared

with experiments. Improvements in this aspect have been sought by many

methods.

Moreover, like the EFT and B-PA, the MFA can not distinguish the

dimensionality of lattice, the formulae derived depend only on the coordination

number z, so the square lattice (z = 4) and kagomé lattice (z = 4) is same in

these approximation methods , and so are the two-dimensional triangular lattice

(z = 6) and the three-dimensional simple cubic lattice (z = 6).
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On the other hand, in the expanded Bethe-Peierls approximation, the system

is taken as a group of chains composed of a central chain and its nearest-neighbor

chains. The nearest-neighbor chains are in an effective field produced by the

other spins, which can be determined by the condition that the magnetization

of the central chain is equal to that of its nearest-neighbor chains. Unlike the

case in MFA, EFT and B-PA, the lattice dimensionality depends only on the

coordination numbers, the three-dimensional simple cubic (SC) lattice (z = 6)

and the two-dimensional triangular (TRI) lattice (z = 6) cannot be distinguished,

in the expanded Bethe-Peierls approximation, the lattice dimensionality of the

system can be distinguished in the formulations, so it can be used to study the

difference of the properties of the systems on SC and TRI lattices.

The aim of our work is to study the effects of crystal field interaction on the

magnetic properties of the spin systems in a magnetic field with

(or without) biquadratic exchange interaction by applying MC simulations and

using the introduced EFT approximation. The main difference of our introduced

EFT approximation used in this study, in comparison with

any decoupling approximation can be seen in the expanding of the right hand

side of the equations for thermal averages of the central spin and the perimeter

spin, respectively.

In the absence of a longitudinal magnetic field, we have discussed the

order parameter magnetization, susceptibility, internal energy, specific heat and

have investigated the phase diagrams of spin-1 Ising ferromagnetic system with

the coordination number q = 4 by applying Monte Carlo simulation technique

and introduced EFT approximation without using any kind of decoupling

approximation (DA) in the spin system with crystal field and biquadratic

exchange interaction (Polat et al, 2003).

It was found that the critical phase transition temperatures of spin-1 system

with crystal field and biquadratic exchange interaction obtained by using EFT

approximation are lower than those obtained by EFT in the literature, while the

results of our MC simulations are agree with those obtained by (Adler & Enting,
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1984; Fox & Guttman, 1973; Blote & Nightingale, 1985; Saul et al, 1974).

As far as we know, there are a few works for spin-1 system with crystal field

in a longitudinal external field and less attention has been given to calculate

the hysteresis loop, susceptibility, internal energy and specific heat, owing to

mathematical complexities. Therefore we want to study the spin-1 Ising model on

square lattice in the presence of a longitudinal magnetic field with

the use of MC simulations and introduced EFT approximation, in which the

correlations between different spins which emerge when expanding the

identities are included. This method is an alternative derivation of the Bethe-

Peierls approximation (BPA) (Bethe, 1935; Peierls, 1936), namely the (q +1) site

cluster theory (CT) with a central site and the q nearest-neighbor sites,

within the differential operator technique in the Ising models (Kaneyoshi, 1992).



CHAPTER TWO
SPIN SYSTEMS

The aim of this chapter is to describe some of the most fundamental models

of cooperative behavior. To model a physical system one route is to include, as

realistically as possible, all the complicated many body interactions and try to

obtain a quantitative prediction of the behavior by solving Schrodinger’s equation

numerically. The other extreme is to write down the simplest possible model that

still includes the essential physics and hope that it is tractable to analytic or

precise numerical solution. The aim here is often to study universal behavior

or to gain a qualitative understanding of the physics governing the behavior of

a given class of materials. It is the latter approach that we shall take here.

Despite the apparent simplicity of the models, they show a rich mathematical

structure and are in general difficult or, more usually, impossible to solve exactly.

Moreover, and perhaps surprisingly at first sight, they do provide valid and useful

representations of experimental systems. It is conventional and convenient to use

magnetic language and write the model Hamiltonians in terms of spin variables,

although they will turn out to be applicable to many non-magnetic systems. In

all the examples considered here the spins will lie on the sites i of a regular lattice.

Three-dimensional lattices, such as simple cubic, body-centered cubic, and face-

centered cubic, are familiar from conventional crystallography but we shall also

be interested in lattices in two dimensions.

2.1 Spin-1/2 Ising Model

Spin-1/2 Ising model was firstly introduced by Lenz (1920), and was later on

worked out in detail by his pupil Ising (1925). Originally, it was invented for the

phase transition of ferromagnets at the Curie temperature; however, in the course

of its time it was realized that with only slight changes the model can also be

6
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applied to other phase transitions, like order-disorder phase transitions in binary

alloys. Furthermore, the model may be applied to several modern problems of

many particle physics, for instance for the description of so-called spin glasses.

These are metals having amorphous instead of crystalline structures, which have

the interesting property of non-vanishing entropy at T = 0. Recently, it has been

realized that Ising’s idea (in modified form) could also explain pattern recognition

in schematic neural networks. Thus, this model gains more and more importance

for the development of models for the human brain.

The simplest form for the Hamiltonian of the spin-1/2 Ising model can be

written as

H = −J
∑
<ij>

SiSj − h
∑

i

Si

where Si = ±1/2. J > 0 corresponds to ferromagnetic case while J < 0

corresponds to antiferromagnetic case.

Ising studied the simplest possible model consisting simply of a linear chain

of spins, and showed that for this one-dimensional case there is no (non-zero)

critical temperature (i.e., the spins become aligned only at T = 0). Ten years

elapsed before Peierls showed that the two-dimensional model does have a non-

zero spontaneous magnetization, and can therefore be regarded as a valid model

of a ferromagnet.

In 1944, the physicist Lars Onsager, studying the two-dimensional Ising model

on a square lattice, was able to demonstrate by analytical means the existence

of a phase transition in the model, a result considered to be a landmark in the

physics of critical phenomena, (Yeomans, 2000).
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2.2 Spin-1 Ising Model

In addition to spin-1/2 Ising model, spin-1 Ising models are also encountered

in different fields of physics and continue to be one of the most actively studied

problems in statistical mechanics. For example, the most general Hamiltonian for

the spin-1 Ising model is

H = −J
∑
<ij>

SiSj −D
∑

i

S2
i −K

∑
<ij>

S2
i S

2
j − L

∑
<ij>

(
S2

i Sj + SiS
2
j

)− h
∑

i

Si

(2.2.1)

where Si = ±1, 0. This follows from allowing all possible terms Sα
i Sβ

j ; α, β =

0, 1, 2. Higher powers of the spin do not enter because S3
i = Si.

In contrast to the spin-1/2 Ising model, they are of particular importance,

because of the fundamental interest in the multi-critical phenomena of physical

systems, such as 3He −4 He mixtures, ternary alloys, meta-magnets and multi-

component fluids. In particular, the spin-1 Ising model with a crystal field

interaction is often called the Blume-Capel (BC) model (Capel, 1966; Blume,

1966) and the Blume-Emery-Griffiths (BEG) model (Blume & Emery & Griffiths,

1971) contains a biquadratic exchange interaction and a single ion anisotropy in

addition to the bilinear exchange interaction.

2.3 The q-State Potts Model

Many different spin models, some driven by theoretical and some by

experimental considerations, have been defined in the scientific literature. The

only other classical spin model that we shall define here is the q-state Potts model.

The relation of this system to the physisorption of krypton atoms on a graphite

surface provides an interesting example of how to construct a model Hamiltonian

with the correct symmetry.

To define the Potts model a q-state variable, αi = 1, 2, 3, ..., q, is placed on each
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lattice site. The interaction between the spins is described by the Hamiltonian

H = −J
∑
<ij>

δαiαj
(2.3.1)

δ is a Kronecker delta-function so the energy of two neighboring spins is −J if

they lie in the same state and zero otherwise. It is easy to convince oneself that

the Potts model has q equivalent ground states where all the spins are identical

but can take any one of the q values. As the temperature is increased there is a

transition to a paramagnetic phase which is continuous for q ≤ 4 but first-order

for q > 4 in two dimensions.

For q = 2, the Potts model is identical to the spin-1/2 Ising model. Note,

however, that for q = 3 the Hamiltonian (2.3.1) does not correspond to the first

term in equation (2.2.1) because the three states of the spin-1 Ising model are

not equivalent, (Yeomans, 2000).

2.4 Heisenberg Model

The restriction of the Ising model is that the spin vector can only lie parallel

to the direction of quantization introduced by the magnetic field. This means

that the Ising Hamiltonian can only prove useful in describing a magnet which is

highly anisotropic in spin space. There are physical systems, MnF2 for example,

which to a good approximation obey this criterion, but fluctuations of the spin

away from the axis of quantization must inevitably occur to some degree.

A more realistic model of many magnets with localized moments is

H = −Jz

∑
<ij>

Sz
i S

z
j − J⊥

∑
<ij>

(Sx
i Sx

j + Sy
i Sy

j )− h
∑

i

Sz
i (2.4.1)

where x, y and z labels are Cartesian axes in spin space. For J⊥ = Jz (2.4.1) can
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be written

H = −J
∑
<ij>

−→
Si .
−→
Sj − h

∑
i

Sz
i (2.4.2)

This is the Heisenberg model.

The Heisenberg model was introduced in 1928 and was discussed in some detail

as a model of ferromagnetism. It gives a reasonable description of the properties of

some magnetic insulators, such as EuS, and provides a microscopic Hamiltonian

describing the exchange interaction which leads to ferromagnetism. However,

it does not include the possibility of non-localized spins and assumes complete

isotropy in spin space. The most fundamental theoretical difference between the

Heisenberg and Ising models is that for the former the spin operators do not

commute. Therefore it is a quantum mechanical rather than a classical spin

model with corresponding greater difficulty in analytic or numerical treatments.

Quantum models can be mapped on to classical spin systems in one higher

dimension and there are some exact results for one-dimensional quantum models,

just as for two-dimensional classical models. Moreover, just as the Ising model

only has a finite temperature phase transition for d > 1, the Heisenberg model

orders at zero temperature unless d > 2. The classical limit of the Heisenberg

model can be constructed by taking the number of spin components to infinity and

normalizing the spin from
√

S(S + 1) to 1. The spins become three-dimensional

classical vectors. This limit, which leads to considerable simplifications in

theoretical work, is useful because the critical exponents of the classical and

quantum Heisenberg models are the same. This is an example of universality,

(Yeomans, 2000).



11

2.5 XY Model

A second quantum mechanical spin model is the X-Y model, equation (2.4.1)

obtained by putting Jz = 0 in the Hamiltonian

H = −J⊥
∑
<ij>

(Sx
i Sx

j + Sy
i Sy

j )− hx

∑
i

Sx
i (2.5.1)

This leads to spins which are two-dimensional, quantum mechanical vectors. The

X-Y model, like the Heisenberg model, only has a conventional phase transition

at non-zero temperature for d > 2. However, in d = 2 there is a transition at finite

temperatures to an unusual ordered phase with quasi long-range order. This is

marked by the correlations decaying algebraically for all temperatures, not just

at the critical point itself.



CHAPTER THREE
EFFECTIVE FIELD THEORY

3.1 Callen Identity and Differential Operator Technique

The Ising model of ferromagnetism is a model whereby, because of an extreme

field of anisotropy, only the z component of a spin exists. The Hamiltonian of

the model, in an external field h, is given by

H = −1

2

∑
i,j

Jijµiµj − h
∑

i

µi (3.1.1)

where the sums run N identical spins. µi is the dynamical variable which can

take two values, ±1, and Jij the exchange interaction between a site i and a

site j. That is to say, µi is the z component of a spin operator (Sz
i = (1/2)µi)

associated with the ion localized at the site i which can take spin up (µi = +1)

or down (µi = −1). The spin system is ordered when all spins are up (or down)

in a ferromagnet (Jij > 0). The magnetic field is added in order to break the

symmetry and favor the ordered phase to be up or down. The parameter that

measures the ordering of the system (or the long-range order parameter) is given

by m = 〈µi〉. In the ordered phase m 6= 0, while in the disordered phase m = 0.

The expectation value of the spin variable at the site i is given by

〈mi〉 =
1

Z
Trµie

−βH (3.1.2)

with

Z = Tre−βH (3.1.3)

where Tr means the sum over allowed states of the system. Here, β = 1/kBT ,

where kB is the Boltzmann constant and T is the absolute temperature.

We know now that an exact relation can be derived for the expectation value

12
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(3.1.2), when the Hamiltonian is given by (3.1.1). For the derivation, let us

separate the Hamiltonian (3.1.1) into two parts; one (denoted by Hi) which

includes all contribution associated with the site i, and the other (denoted by H
′)

which does not depend on the site i. Then, one has

H = Hi + H
′

(3.1.4)

with

Hi = −µiEi (3.1.5)

and

Ei =
∑
i,j

Jijµj + H (3.1.6)

where Ei is the operator expressing the local field on the site i. Here, notice that

the spin variables commute, i.e. [µi, µj] = 0, and hence

[Hi, H
′
] = [Hi, H] = 0 (3.1.7)

in the Ising model.

Because of the commutative relation, the expectation value (3.1.2) can be

expressed as

〈µi〉 =
1

Z

{
Tre−βH

[
trµi exp (−βHi)

tr exp (−βHi)

]}
(3.1.8)

where tr(i) =
∑+1

µi=−1 stands for the trace associated with the variable at the site

i. By doing the partial trace of µi, one obtains

〈µi〉 =
1

Z
Tr

[
e−βH tanh(βEi)

]
(3.1.9)

or

〈µi〉 = 〈tanh(βEi)〉

This is the identity first derived by Callen in 1963 (Callen, 1963). By extending

the above procedure, the identity can be easily generalized to

〈{fi}µi〉 = 〈{fi} tanh(βEi)〉 (3.1.10)
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where {fi} can take any function of the Ising variables as long as it is not a

function of the site i.

Furthermore, the above derivation of (3.1.9) can be also generalized to the

Ising model with a general spin S expressed by

H = −1

2

∑
i,j

JijS
z
i S

z
j − h

∑
i

Sz
i (3.1.11)

where Sz
i takes the (2S + 1) components allowed for a spin value S. Then, one

obtains

〈{fi}Sz
i 〉 = S〈{fi}Bs(βEi)〉 (3.1.12)

with

Ei =
∑

JijS
z
j + H (3.1.13)

where Bs(x) is the Brillouin function (Suzuki, 1965).

At this place, notice that the standard mean field theory can be obtained from

(3.1.9) or (3.1.12) by approximating the thermal average of the hyperbolic tangent

(or the Brillouin function) with the thermal average of Ei, i.e.,

〈tanh(βEi)〉 ≈ tanh(β〈Ei〉) (3.1.14)

or

〈Bs(βEi)〉 ≈ Bs(β〈Ei〉)

Thus, the exact identities (3.1.9), (3.1.10) and (3.1.12) give a way to improve the

mean field approximation.

First approach to Callen identity was introduced by Matsudai (Matsudaira,

1973). In order to treat the Callen identity (3.1.9), he noticed the following exact

relations which are valid for µ = ±1.

tanh(Kµ1) = Aµ1, A = tanh K, tanh[K(µ1 + µ2)] = B(µ1 + µ2)
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B =
1

2
tanh 2K, tanh[K(µ1 + µ2 + µ3)] = C1(µ1 + µ2 + µ3) + C2µ1µ2µ3

C1 =
1

4
(tanh 3K + tanh K), C2 =

1

4
(tanh 3K − tanh K) (3.1.15)

and so on, where K = βJ for nearest-neighbor interaction J . For instance, the

identity (3.1.9) for the honeycomb lattice with coordination number q = 3 can

be, upon using the exact relation (3.1.15), rewritten as

〈µi〉 = C1 (〈µi+1〉+ 〈µi+2〉+ 〈µi+3〉) + C2〈µi+1µi+2µi+3〉 (3.1.16)

where i + δ (δ = 1, 2, 3) denote the nearest-neighbors of the site i. However,

when Ei in (3.1.9) includes a number of Ising spins, it is not so easy to write the

corresponding exact relation. Furthermore, for higher spin (S > 1/2) systems as

well as random spin-1/2 systems, it is a difficult task to find such exact relations.

As is understood from (3.1.16) or (3.1.15), the use of the kinematic relations

for the spin operators is a crucial step in the theory based on the identity (3.1.9)

or (3.1.12) as an average over a finite polynomial spin operators belonging to the

neighboring sites. This can be systematically and easily achieved by the use of a

differential operator technique introduced by Honmura and Kaneyoshi (Honmura

& Kaneyoshi, 1979):

tanh(βEi) = exp(Ei∇) tanh x|x=0 (3.1.17)

for (3.1.9) or

Bs(βEi) = exp(Ei∇)Bs(x)|x=0 (3.1.18)

for (3.1.12), where ∇ = ∂/∂x is a differential operator. Here, we used the

mathematical relation

exp(a∇)ϕ(x) = ϕ(x + a) (3.1.19)

This can be seen by expanding the exponential term in Taylor series

ea∇ϕ(x) = [1 + a∇+
a2

2!
∇2 + ...]ϕ(x) = ϕ(x) + a∇ϕ(x) +

a2

2!
∇2ϕ(x) + ...

In the following parts, let us examine at first the simplest case of µi = ±1 (S =



16

1/2). We will also examine the case of an arbitrary spin (S > 1/2) in the following

sections.

Noticing that

eaµi = cosh a + µi sinh a (3.1.20)

Equation (3.1.17) can be written as, for h = 0

tanh

(
βJ

∑

δ

µi+δ

)
=

q∏

δ=1

[cosh(J∇) + µi+δ sinh(J∇)] tanh x|x=0 (3.1.21)

Here, when q = 1, 2, or 3, the same exact relations as those of (3.1.15) can be

easily derived. For example, when q = 2

tanh[K(µi+1 + µi+2)] = [cosh(J∇) + µi+1 sinh(J∇)]

×[cosh(J∇) + µi+2 sinh(J∇)] tanh x|x=0

= (µi+1 + µi+2) sinh(J∇) cosh(J∇) tanh x|x=0

=
1

4
(µi+1 + µi+2)(e

2J∇ − e−2J∇) tanh x|x=0

= B(µi+1 + µi+2) (3.1.22)

Here, going from the second line to the third line in (3.1.22), we used the fact

that even functions of ∇ must be zero when operating to the odd function (or

tanh x). In this way, the exact relation (3.1.10) can be generally rewritten as

〈{fi}µi〉 = 〈{fi}eEi∇〉 tanh(βx)|x=0

= 〈{fi}
∏

j

[cosh(Jij∇) + µj sinh(Jij∇)]〉 tanh[β(x + h)]|x=0 (3.1.23)

This is also exact and is valid for any lattice structure of a spin-1/2 Ising model.

Equation (3.1.23) can generate many kinds of identities for spin correlation

functions, upon substituting appropriate Ising variable functions for {fi}.

For the latter discussion, let us via equation (3.1.23) examine the spin
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correlation function of the spin-1/2 linear chain with nearest-neighbor interaction

J . Putting {fi} = µk(k 6= i) and h = 0 into (3.1.23), it gives

〈µkµi〉 =
1

2
tanh(2βJ)(〈µkµi−1〉+ 〈µkµi+1〉) (3.1.24)

At this place, due to translational invariance, the correlation function 〈µkµi〉
depends only on the distance between i and k:

〈µkµi〉 = 〈µ0µi−k〉 = 〈µ0µr〉 = g(r) (3.1.25)

where r = i − k is a measure of the distance between spins, in units of a lattice

constant. Using (3.1.25), equation (3.1.24) can be written as

2 coth(2βJ) =
g(r + 1)

g(r)
+

[
g(r)

g(r − 1)

]−1

(3.1.26)

which implies that the right-hand side must be independent of r. Assuming that

g(r + 1)

g(r)
=

g(r)

g(r − 1)
= γ (3.1.27)

and taking the physically acceptable solution, the solution of (3.1.26) is given by

γ = tanh(βJ) (3.1.28)

Thus, one obtains

g(r) = gi−k = [tanh(βJ)]r (3.1.29)

This is a well-known exact result for the Ising chain.

3.2 Effective-Field Theories

It is well known in statistical mechanics that the one dimensional nearest-

neighbor Ising model can be solved exactly. The exact solutions of the

thermodynamic properties in the spin-1/2 Ising linear chain can be also derived
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by the use of the differential operator technique based on the exact identities.

As guides to real (two-or three-dimensional) systems, however, such a model has

a serious disadvantage, since it does not have a phase transition at a non-zero

temperature.

On the other hand, the first step in the interpretation of the magnetic

properties of a solid is usually the application of an effective-field theory. When

used correctly, the theory can be relied on for an approximate description of

the major aspects of the phenomena being studied. It acts as a guidepost, as

it was, indicating the direction of more elaborate theoretical contractions and

of more detailed experiments. In this section, we discuss how the approximate

formulations (or effective-field theories) superior to the mean-field approximation

can be derived systematically from the present formulation based on the Ising

spin identities.

3.2.1 Decoupling (or Zernike) approximation

As is understood from (3.1.16), the right-hand side of (3.1.23) contains thermal

averages of multiple correlation functions. To proceed further, one has to make

some approximations, in order to treat the identities approximately. The simplest

approximation, and the most frequently adopted, is to decouple these according

to

〈µjµk...µl〉 ≈ 〈µj〉〈µk〉...〈µl〉 (3.2.1)

for j 6= k 6= ... 6= l

Introducing the approximation (3.2.1), the averaged value of µi (3.1.23 with

{fi} = 1) can be written in a compact form

〈µi〉 =
∏

j

[cosh(Jij∇) + 〈µj〉 sinh(Jij∇)] tanh[β(x + h)]|x=0 (3.2.2)

To simplify the notation, let us consider the case of zero-field and nearest-neighbor
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interactions. For a ferromagnet with a coordination number q, equation (3.2.2)

then reduces to

m = 〈µi〉 = [cosh(J∇) + m sinh(J∇)]q tanh(βx)|x=0 (3.2.3)

The transition temperature Tc can be obtained by linearizing (3.2.3); by

expanding the right-hand side of (3.2.3) and taking only the linear term of m,

one obtains

q sinh(J∇) coshq−1(J∇) tanh(βcx)|x=0 = 1 (3.2.4)

where βc = 1/kBTc. In particular, when q = 6 (or a simple cubic lattice), equation

(3.2.4) reduces to

tanh(6Jβc) + 4 tanh(4Jβc) + 5 tanh(2Jβc) =
16

3
(3.2.5)

which is noting but the result obtained by Zernike by means of another approach

(Zernike, 1940). The transition temperature Tc is then given by

kBTc

J
= 5.073 for q = 6 (3.2.6)

which is superior to the MFA result

kBTc

J
= q (3.2.7)

We are now in a position to clarify the background why the simple decoupling

approximation (Kaneyoshi et al, 1992b) improves the standard MFA (Berlin &

Kac, 1952). For h = 0, equation (3.2.2) can be also rewritten as follows:

〈µi〉 =
∏

j

[
1

2
(1 + 〈µj〉)eJij∇ +

1

2
(1− 〈µj〉)e−Jij∇

]
tanh(βx)|x=0 (3.2.8)

Here, the factors (1/2)(1 + 〈µj〉) and (1/2)(1− 〈µj〉) mean the probabilities of a

neighboring spin µj being up or down. Then, exponential operators exp(Jij∇)

and exp(−Jij∇) express in a sense exp(Jij∇) for µi = +1 and exp(−Jij∇) for

µi = −1, respectively. On the other hand, the standard MFA consist of assuming
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that the field at the site i is 〈Ei〉 =
∑

j Jij〈µj〉 independent of the orientation of

µi. This is clearly an approximation, for if µi is up, its neighbors µj will have

more than average production for being up, a fluctuation effect that is neglected

in the MFA. Thus, the partial correlation is included automatically in the simple

framework through the usage of (3.1.20).

When one takes long-range interactions and the number of nearest-neighbors

goes to infinite, it is known that the MFA becomes to be exact. Within the

present framework, let us here show this fact. For this aim, we take the exchange

interaction Jij in (3.2.2) as

Jij =
j

N
(j = a finite constant) (3.2.9)

where N is the total number of lattice points. Then, equation (3.2.2) reduces to

m = 〈µi〉 =

[
cosh

(
j

N
∇

)
+ m sinh

(
j

N
∇

)]N−1

tanh[β(x + h)]|x=0 (3.2.10)

For a large values of N , cosh(j∇/N) and sinh(j∇/N) can be approximated as

cosh

(
j

N
∇

)
≈ 1 and sinh

(
j

N
∇

)
≈ j

N
∇

so that equation (3.2.10) reduces to

m =

[
1 + m

j

N
∇

]N−1

tanh[β(x + h)]|x=0 (3.2.11)

For N →∞, equation (3.2.11) is given by

m = eN [m(j/N)∇] tanh[β(x + h)]|x=0 = tanh[β(mj + h)] (3.2.12)

Thus, the MFA result can be derived from the present framework, when N →∞.

Finally, it will be fair to note some historical developments related to the

framework of this part in the spin-1/2 Ising model. In order to treat the multi-

spin correlation functions which appear for reducing the transcendental function
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to a polynomial form (or 3.1.15), the decoupling approximation (3.2.1) was also

introduced by Matsudaira (Matsudaira, 1973). He called it the first-order

approximation. As noted above, the same decoupling approximation has been

introduced into the present framework. It has been called the effective-field theory

with correlations (EFT). The differential operator technique can be also rewritten

in terms of the functional integration method (Kaneyoshi, 1980). Within the same

framework as that of the EFT (or (3.2.1)), the method has been used by Lodz

group (Mielnicki et al, 1986). Later, the same method as that of Matsudaira

was proposed by Boccara (Boccara, 1983), who was apparently unaware of these

earlier works, and it has subsequently been used extensively by him and group of

researchers in Morocco as the finite cluster approximation (Boccara & Benyoussef,

1983). Clearly, as far as the physics concerned, it is immaterial whether one

uses Matsudaira’s first-order approximation, the EFT, the functional integration

methods or the finite cluster approximation. All of them correspond to the Zernike

approximation. However, in these methods, the differential operator technique

has generally been more favored, because of the relative easiness of the formulation

of other thermodynamic properties and the extension to higher spin problems as

well as disordered spin systems.

3.2.2 Correlated effective-field (or Bethe-Peierls) approximation

In previous section, we have introduced a simple decoupling method (3.2.1)

for treating the multi-spin correlation functions. In this part, we shall discuss

how the formulation of previous section can be improved to a better one (or from

Zernike to Bethe-Peierls approximation).

Let us now assume that the nearest-neighbor Ising variable µi+δ can be related

to the central spin µi via

µi+δ = 〈µi+δ〉+ λ(µi − 〈µi〉) (3.2.13)

where λ is a temperature dependent parameter. It is basically a measure of the
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short-range order, or pair correlation parameter.

When equation (3.2.13) is substituted into the Hamiltonian (3.1.1) with h = 0,

it is given by, for a system with nearest-neighbor interaction J

H = −
∑

i

Heff
i µi + constant term (3.2.14)

with

Heff
i = J

∑
j

〈µj〉 − λJq〈µi〉 = Hmol
i −R〈µi〉 (3.2.15)

where R = λJq is the parameter which has to be determined at the end

of calculation in some way. This transformation to the one-body Hamiltonian

(3.2.15) has been introduced by Lines (Lines, 1974) and then the effective-field

Heff
i is modified by a term R〈µi〉 from the standard mean-field Hmol

i .

This revision of the effective field is closely related to the fundamental concept

introduced by Onsager for dielectrics (Onsager, 1936). He has discussed that the

orienting part of the local field on a given dipole (or the cavity field) should not

include the contribution arising from the part of the polarization of dipoles in

its vicinity which comes from its instantaneous orientation (or the reaction field).

Namely, the cavity field is then obtained from the total mean field by subtracting

the mean reaction field

Ecavity
i = 〈Ei〉 −R〈µi〉 (3.2.16)

Thus, the effective field (3.2.15) is nothing but the cavity field (3.2.16) and the

term R〈µi〉 corresponds to the reaction field. In the Lines method, the parameter

λ (or R) has been determined at the end of the calculation by imposing consistency

of the theory with the sum rule for the susceptibility. However, the method gives

an accuracy essentially equivalent to that of the spherical model (Berlin & Kac,

1952), and unfortunately the sum rule is valid often only in the parametric phase

and in the absence of strong fields. Moreover, when the method is applied to the

two-dimensional ferromagnetic Ising lattice, it generally predicts Tc = 0.

In the differential operator technique, on the other hand, the concept (3.2.15)
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has been used for evaluating the multi-spin correlation functions (Kaneyoshi et al,

1981; Kaneyoshi & Tamura, 1982; Honmura, 1984). This is sharply in contrast to

the above approach. Then, the parameter λ has been determined self-consistently

using the correlation function (3.1.23).

Substituting (3.2.13) into (3.1.23) with {fi} = 1 and taking the nearest-

neighbor interactions, one obtains, on assuming that m = 〈µi〉 = 〈µi+δ〉 and

h = 0

m = 〈{P (m; J∇) + λ[cosh(J∇) + µi sinh(J∇)]}q〉 tanh(βx)|x=0

= 〈[P (m; J∇) + λeµiJ∇]q〉 tanh(βx)|x=0

=

q∑
ν=0

q!

ν!(q − ν)!
λν [P (m; J∇)]q−ν〈eµiνJ∇〉 tanh(βx)|x=0 (3.2.17)

=

q∑
ν=0

q!

ν!(q − ν)!
λν [P (m; J∇)]q−ν [cosh(νJ∇) + m sinh(νJ∇)] tanh(βx)|x=0

with

P (m; J∇) = (1− λ)[cosh(J∇) + m sinh(J∇)] (3.2.18)

Here, when λ = 0, equation (3.2.17) reduces to (3.2.3).

For the evaluation of λ, on the other hand, let us use the two spin correlation

function which is given by, on putting {fi} = µi+δ into (3.1.23).

〈µi+δµi〉 = 〈[sinh(J∇) + µi+δ cosh(J∇)]

×
∏

δ′ (6=δ)

[cosh(J∇) + µi+δ′ sinh(J∇)]〉 tanh(βx)|x=0 (3.2.19)

Substituting (3.2.13) into (3.2.19), one obtains

〈µi+δµi〉 = m2 + λ(1−m2) = 〈[P (m; J∇) + λµie
µiJ∇]

×[P (m; J∇) + λeµiJ∇]q−1〉 tanh(βx)|x=0
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=

q−1∑
ν=0

(q − 1)!

ν!(q − 1− ν)!
λνP (m; J∇)[P (m; J∇)]q−1−ν (3.2.20)

×[cosh(νJ∇) + m sinh(νJ∇)] tanh(βx)|x=0 +

q−1∑
ν=0

(q − 1)!

ν!(q − 1− ν)!
λν+1

×[P (m; J∇)]q−1−ν [m cosh((ν + 1)J∇) + sinh((ν + 1)J∇)] tanh(βx)|x=0

with

P (m; J∇) = (1− λ)[m cosh(J∇) + sinh(J∇)] (3.2.21)

Thus, the magnetization m and correlated parameter λ of the Ising

ferromagnet with a coordination number q can be evaluated from the coupled

equations (3.2.17) and (3.2.20).

For example, when q = 4 (or square lattice), they reduce to

m = 4(K1 + 3K2λ
2 − 2K2λ

3)m + 4K2(1− 3λ2 + 2λ3)m3 (3.2.22)

and

m2 + λ(1−m2) = K1(1 + 3λ2) + K2λ
2(3 + λ2)

+m2[3K1(1− λ2) + K2(3 + 3λ2 − 8λ3 + 2λ4)]

+m4[1− 6λ2 + 8λ3 − 3λ4] (3.2.23)

where the coefficients K1 and K2 are given by

K1 +
1

8
[tanh(4βJ) + 2 tanh(2βJ)]

K2 +
1

8
[tanh(4βJ)− 2 tanh(2βJ)] (3.2.24)

Thus, the transition temperature Tc can be determined from the coupled

equations

1 = 4(K1 + 3K2λ
2 − 2K2λ

3)

λ = K1 + 3λ2(K1 + K2) + K2λ
4 (3.2.25)
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which can be solved analytically and gives

kBT

J
=

2

ln 2
and λ(T = Tc) =

1

3
(3.2.26)

The temperature dependence of λ for the ferromagnetic square lattice with nearest-

neighbor interaction J is depicted in Fig. 3.1 by solving the coupled equations

(3.2.21) and (3.2.22) numerically. In general, the transition temperature Tc and

Figure 3.1 Temperature dependence of λ for the
ferromagnetic square lattice, (Kaneyoshi, 1992).

the correlated parameter λ at T = Tc are given by, within the present formulation

(or 3.2.17 and (3.2.18)),
kBTc

J
=

2

ln[q/(q − 2)]
(3.2.27)

and

λ(T = Tc) =
1

q − 1
(3.2.28)

The result of Tc is equivalent to that of Bethe-Peierls approximation, although

the philosophy on which these two theories are based is different to each other.

For comparison, the values of Tc obtained from sections (3.2.1) and (3.2.2) as well

as the MFA are collected in Table 3.1 and the exact or high-temperature series

expansion results (Onsager, 1944) are also listed.
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Table 3.1 Values of kBTc/J .

z MFA EFT (Zernike) Bethe-Peierls Exact

2 2.0 0.0 0.0 0.0

3 3.0 2.104 1.821 1.519

4 4.0 3.090 2.885 2.269

6 6.0 5.073 4.933 4.511

8 8.0 7.061 6.952 6.353

12 12.0 11.045 10.970 9.795

3.2.3 Effective-field renormalization group method

In previous sections we have discussed how the spin correlations can be

decoupled for transforming the transcendental function into a polynomial form.

Then, the results applicable to general lattice coordination numbers are

obtained. However, the fault of these approaches is that the results depend on the

coordination number, but not on the dimensionality. A value of q = 4, for

example, may equally be a square lattice or a diamond lattice. In order to take

into account of the lattice dimensionality as well as the coordination number,

one has to treat the multi-spin correlation functions in forms depending on these

qualities. Such a formulation can be made by going to Matsudaira’s higher order

decoupling approximation (Matsudaira, 1973) better than the simple decoupling

approximation (Kaneyoshi et al, 1992b). Then, the formulation cannot be de-

scribed in a general form but it must be made separately in a way of depending

on the lattice structure. Another way of incorporating these properties is to

express the thermal average of the transcendental function as an average over a

finite polynomial of a spin operator in an n − site cluster (n > 1) (Honmura &

Kaneyoshi, 1979).

In this part, let us discuss how traditional (effective-field) procedures of

obtaining equations of state can be converted into a modern tool for constructing

a regular renormalization-group mapping according to Wilson ideas. Due to its
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connection with standard mean-field procedure, the denomination of mean-field

renormalization group has been used in the literature. It has been successfully

used to provide qualitative and quantitative insights into the critical behavior

of spin systems. On the other hand, the effective-field renormalization-group

scheme can be, via the differential operator technique, formulated by treating the

effects of the surrounding spins of each of the clusters in a way of constructing

the effective-field equations of states on the basis of the Ising spin identities.

The principal of the phenomenological renormalization group is based on the

comparison of two clusters of different sizes N , N
′ (N ′

< N), each of them

simulating the infinite system. For the two clusters, one calculates an approximate

equation of state for the magnetization per site, namely mN and mN ′ . In the

mean-field renormalization group, this is done within the traditional mean-field

scheme, in which the effects of the surrounding spins in each cluster is replaced

by very small symmetric breaking fields b and b
′ , acting on the boundary sites of

each of the clusters with N and N
′ interacting spins, respectively. By imposing

that both magnetizations of the clusters and respective symmetric braking fields

are scaled in the same way, one gets

∂mN(K, b)

∂b
|b=0 =

∂mN
′ (K

′
, b
′
)

∂b′
|b′=0 (3.2.29)

which is independent of the scaling factor. This relation gives a recursion relation

between the coupling constants K and K
′ in the systems. From the relation

K
′
= K

′
(K), the critical coupling Kc can be extracted by solving the fixed point

equation K∗ = K
′
(K∗) invariant under a change of scale. Furthermore, the

critical exponent ν of the correlation length ξ defined by

ξ ∝ |T − Tc|−ν (3.2.30)

can also be obtained by linearizing the recursion relation in the neighborhood of

the fixed point K∗: (
∂K

′

∂K

)

K=K
′
= l1/ν (3.2.31)

where l = (N/N
′
)1/d is the scaling factor and d is the dimensionality of the system.
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Let us illustrate now the general arguments of the phenomenological

renormalization group by taking the simplest choice, namely, clusters of one (N
′
=

1) and two (N = 2) spins. In the one-spin cluster the spin µ1 interacts with q1

nearest-neighbor sites via the coupling constants K
′
ij. In the two spin cluster,

on the other hand, the spins µ1 and µ2 interact directly via the coupling K12

and both µ1 and µ2 spins interact with their neighbor sites also via the coupling

constants K1i and K
′
2j. Using the same procedures as those of previous sections,

the averaged magnetizations mN ′ and mN associated to the N
′
= 1 and N = 2

clusters are given by

mN
′ = 〈µ1〉 =

〈
tanh

(∑
j

K
′
1jµ

′
j

)〉
(3.2.32)

and

mN =

〈
1

2
(µ1 + µ2)

〉
=

〈
sinh(u + v)

cosh(u + v) + exp(−2K12) cosh(u− v)

〉
(3.2.33)

where u =
∑

j K1jµj and v =
∑

j′ K2j′µj′ .

Using the differential operator technique and noticing that the sites 1 and 2

of the two-spin cluster may include a set of common-neighbor sites, the set of

equations (3.2.32) and (3.2.33) can be written in the following forms:

mN ′ =

〈∏
j

exp(K
′
1jµ

′
j∇x)

〉
f(x)|x=0 (3.2.34)

and

mN =

〈 ′∏
j

exp(K1jµj∇)
′∏

j′
exp(K2j′µj′∇y)

′∏

k

exp[µk(K1k∇x + K2k∇y)]

〉

×f(x, y)|x=0,y=0

(3.2.35)

where ∇µ = ∂/∂µ (µ = x or y) are the differential operators and the
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functions f(x) and f(x, y) are defined by

f(x) = tanh x (3.2.36)

and

f(x, y) =
sinh(x + y)

cosh(x + y) + exp(−2K12) cosh(x− y)
(3.2.37)

Here, the products
∏′ over j and j

′ in equation (3.2.35) are respectively the

isolated nearest-neighbor spins of sites 1 and 2, while the product
∏′ over k is

restricted to the sites which are simultaneously nearest neighbors of both µ1 and

µ2 spins. Furthermore, the exponential operators in (3.2.34) and (3.2.35) can be

rewritten into the product forms of µj by the use of equation (3.1.20).

As discussed in Sec.(3.2.1), we introduce here the decoupling approximation

(3.2.1) into the exact relations (3.2.34) and (3.2.35). Basing on the approximation

(3.2.1) and replacing each boundary average 〈µj′ 〉 (or 〈µj〉) in their right-hand

sides with the symmetry braking mean-field parameters b
′
j (or bj), the critical

behavior of the system can be obtained by expanding the right-hand side of them

and takin only first-order terms in these parameters

mN ′ (K
′
, b
′
) = A

(q)

N
′ (K

′
)b
′
+ O(b

′3) (3.2.38)

and

mN(K, b) = A
(q)
N (K)b + O(b3) (3.2.39)

where the coefficients A
(q)

N ′ (K
′
) and A

(q)
N (K) for the N

′
= 1 and N = 2 clusters

are given, on assuming only the nearest-neighbor interactions (K ′ and K), by

A
(q)

N
′ (K

′
) = q1 coshq−1(K∇x)f(x)|x=0 (3.2.40)

and

A
(q)
N (K) = {2q′ sinh(K∇x) coshq

′−1(K∇x) coshq
′
(K∇y) coshq

′′
[K(∇x +∇y)]

+q
′′
sinh[K(∇x +∇y)] coshq

′
(K∇x) coshq

′
(K∇y)
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× coshq
′′−1[K(∇x +∇y)]}f(x, y)|x=0,y=0 (3.2.41)

Here, q
′ denotes the number of sites which are nearest-neighbors of µ1 (or µ2)

but not neighboring to µ2 (or µ1), and q
′′ represents the number of sites that

are simultaneously nearest neighbors of both µ1 and µ2. Thus, q2 = 2q
′
+ q

′′ is

the total number of nearest-neighbor sites of the two-spin cluster. Hence, the

coefficient A
(q)
N (K) incorporates the detail of the geometry of the lattice beyond

its coordination number q1, through q
′ and q

′′ .

Combining (3.2.40) and (3.2.41) with the scaling assumption, one gets from

(3.2.29)

A
(q)

N
′ (K

′
) = A

(q)
N (K) (3.2.42)

which is the recursion relation between the coupling constants K and K
′ for the

two rescaled systems N
′
= 1 and N = 2. The reduced critical interaction Kc is

the non-trivial fixed point K
′
= K = K? = Kc solution of (3.2.42) and the critical

exponent ν for the correlation length can be obtained from (3.2.31), noting that

(
∂K

′

∂K

)

K=K

=

(
∂A

(q)
N (K)

∂K

)

K=K(
∂A

(q)

N
′ (K

′ )

∂K′

)

K=K

(3.2.43)

These approaches can be also extended to higher-order approximate recursion

relations by considering clusters larger than N = 2.



CHAPTER FOUR
THE INTRODUCED EFFECTIVE FIELD APPROXIMATION

4.1 Solutions for the Spin-1 BC Model in a Longitudinal Magnetic Field with
Crystal Field

At first, we discuss how the theory can be formulated within the framework

of the effective field theory with correlations. To do this, we consider a two

dimensional lattice which has N identical spins arranged. On the lattice, we select

a system which consists a central spin, labeled 0, and q perimeter spins being the

nearest-neighbors of the central spin. The system consists of (q + 1) spins being

independent from the value of S. The nearest-neighbor spins are in an effective

field produced by the outer spins, which can be determined by the condition that

the thermal average of the central spin is equal to that of its nearest-neighbor

spins. The Hamiltonian of the spin-1 system in a longitudinal magnetic field is

given by

H = −J
∑
<i,j>

Sz
i S

z
j −D

∑
i

(Sz
i )

2 − h
∑

i

Sz
i (4.1.1)

where, the first summation is over the nearest-neighbor pair of spins and the

operator Sz
i takes the values of Sz

i = ±1, 0. J , D and h represent the exchange

interaction, the single ion anisotropy (i.e. crystal field) and longitudinal magnetic

field, respectively. By the use of the exact Van der Waerden identity (Balcerzak,

2002; Callen, 1963; Suzuki, 1965) for the spin-1 Ising ferromagnetic system with

the coordination number q, the thermal average of the spin variables at the site

i is given by

〈{fi}Sz
i 〉 =

〈
{fi} exp

(
J

q∑

δ

Sz
δ

)
∇

〉
F (x) |x=0 (4.1.2)

where, β = 1/kBT with absolute temperature T and Boltzmann constant kB.

∇ = ∂/∂x is a differential operator, δ expresses the nearest-neighbor sites of the

central spin and {fi} can be any function of the Ising variables as long as it is not

31
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a function of the site. From equation (4.1.2) with {fi} = 1, the thermal average

of a central spin can be represented in the form for square (q = 4) lattice

m0 = 〈Sz
0〉 =

〈
4∏

δ=1

[1 + Sz
δ sinh(J∇) + (Sz

δ )
2{cosh(J∇)− 1}]

〉
F (x) |x=0 (4.1.3)

= l0 + 4k1〈S1〉+ 4(l2 − l0)〈S2
1〉+ 6l1〈S1S2〉+ 12(k2 − k1)〈S1S

2
2〉

+6(l0 − 2l2 + l3)〈S2
1S

2
2〉+ 4k3〈S1S2S3〉+ 12(l4 − l1)〈S1S2S

2
3〉

+12(k4 − 2k2 + k1)〈S1S
2
2S

2
3〉+ 4(l5 − 3l3 + 3l2 − l0)〈S2

1S
2
2S

2
3〉

+l8〈S1S2S3S4〉+ 4(k5 − k3)〈S1S2S3S
2
4〉+ 6(l1 − 2l4 + l6)〈S1S2S

2
3S

2
4〉

+4(k6 − 3k4 + 3k2 − k1)〈S1S
2
2S

2
3S

2
4〉

+(l0 − 4l2 + 6l3 − 4l5 + l7)〈S2
1S

2
2S

2
3S

2
4〉

(4.1.4)

with the coefficients

k1 = sinh(J∇)F (x) |x=0

k2 = sinh(J∇) cosh(J∇)F (x) |x=0

k3 = sinh3(J∇)F (x) |x=0

k4 = cosh2(J∇) sinh(J∇)F (x) |x=0

k5 = sinh3(J∇) cosh(J∇)F (x) |x=0

k6 = cosh3(J∇) sinh(J∇)F (x) |x=0

l0 = F (0)

l1 = sinh2(J∇)F (x) |x=0

l2 = cosh(J∇)F (x) |x=0

l3 = cosh2(J∇)F (x) |x=0
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l4 = sinh2(J∇) cosh(J∇)F (x) |x=0

l5 = cosh3(J∇)F (x) |x=0

l6 = sinh2(J∇) cosh2(J∇)F (x) |x=0

l7 = cosh4(J∇)F (x) |x=0

l8 = sinh4(J∇)F (x) |x=0

These coefficients can be derived from a mathematical identity exp(α∇)F (x) =

F (x + α). The function F (x) for spin-1 Ising system is given by

F (x) =
2 sinh[β(x + h)]

2 cosh[β(x + h)] + exp(−βD)
(4.1.5)

Next, the average value of a perimeter-spin in the system can be written as follow

and it is found as

m1 = 〈Sz
δ 〉

= 〈exp(JSz
0 + (q − 1)A)∇〉F (x) |x=0 (4.1.6)

= 〈[1 + Sz
0 sinh(J∇) + (Sz

0)
2{cosh(J∇)− 1}]〉F (x + γ) |x=0

m1 = 〈S1〉 = a1(1− 〈S2
0〉) + a2〈S0〉+ a3〈S2

0〉 (4.1.7)

with

a1 = F (γ)

a2 = sinh(J∇)F (x + γ) |x=0

a3 = cosh(J∇)F (x + γ) |x=0

where γ = (q− 1)A is the effective field produced by the (q− 1) spins outside the

system and A is an unknown parameter to be determined self-consistently.
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In the effective-field approximation, the number of independent spin

variables describes the considered system. This number is given by the relation

ν = 〈(Sz
i )

2S〉. As an example, for spin-1 system 2S = 2, which means that we

have to introduce the additional parameters, 〈(Sz
δ )

2〉 and 〈(Sz
0)

2〉 resulting from

the usage of the Van der Waerden identity for the spin-1 Ising system.

〈(Sz
0)

2〉 =

〈
4∏

δ=1

[1 + Sz
δ sinh(J∇) + (Sz

δ )
2{cosh(J∇)− 1}]

〉
G(x) |x=0 (4.1.8)

〈S2
0〉 = p0 + 4n1〈S1〉+ 4(p2 − p0)〈S2

1〉+ 6p1〈S1S2〉+ 12(n2 − n1)〈S1S
2
2〉

+6(p0 − 2p2 + p3)〈S2
1S

2
2〉+ 4n3〈S1S2S3〉+ 12(p4 − p1)〈S1S2S

2
3〉

+12(n1 − 2n2 + n4)〈S1S
2
2S

2
3〉+ 4(p5 − 3p3 + 3p2 − p0)〈S2

1S
2
2S

2
3〉

+p8〈S1S2S3S4〉+ 4(n5 − n3)〈S1S2S3S
2
4〉

+6(p1 − 2p4 + p6)〈S1S2S
2
3S

2
4〉

+4(n6 − 3n4 + 3n2 − n1)〈S1S
2
2S

2
3S

2
4〉

+(p0 − 4p2 + 6p3 − 4p5 + p7)〈S2
1S

2
2S

2
3S

2
4〉

(4.1.9)

with the coefficients

n1 = sinh(J∇)G(x) |x=0

n2 = sinh(J∇) cosh(J∇)G(x) |x=0

n3 = sinh3(J∇)G(x) |x=0

n4 = cosh2(J∇) sinh(J∇)G(x) |x=0

n5 = sinh3(J∇) cosh(J∇)G(x) |x=0

n6 = cosh3(J∇) sinh(J∇)G(x) |x=0



35

p0 = G(0)

p1 = sinh2(J∇)G(x) |x=0

p2 = cosh(J∇)G(x) |x=0

p3 = cosh2(J∇)G(x) |x=0

p4 = sinh2(J∇) cosh(J∇)G(x) |x=0

p5 = cosh3(J∇)G(x) |x=0

p6 = sinh2(J∇) cosh2(J∇)G(x) |x=0

p7 = cosh4(J∇)G(x) |x=0

p8 = sinh4(J∇)G(x) |x=0

where the function G(x) is defined by

G(x) =
2 cosh[β(x + h)]

2 cosh[β(x + h)] + exp(−βD)
(4.1.10)

Corresponding to (4.1.6),

〈(Sz
δ )

2〉 = 〈[1 + Sz
0 sinh(J∇) + (Sz

0)
2{cosh(J∇)− 1}]〉G(x + γ) |x=0 (4.1.11)

〈S2
1〉 = b1 + b2〈S0〉+ (b3 − b1)〈S2

0〉 (4.1.12)

with

b1 = G(γ)

b2 = sinh(J∇)G(x + γ) |x=0

b3 = cosh(J∇)G(x + γ) |x=0

A detailed derivation of the functions F (x) and G(x) in (4.1.5) and (4.1.10) are

given in Appendix.
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When the right hand sides of the equations (4.1.3), (4.1.6), (4.1.8) and (4.1.11)

are expanded, the multispin correlation functions may be obtained. The simplest

approximation, and one of the most frequently adopted is to decouple these

equations (Tamura & Kaneyoshi, 1981) according to

〈
Sz

i (S
z
j )

2...Sz
l

〉 ∼= 〈Sz
i 〉

〈
(Sz

j )
2
〉
... 〈Sz

l 〉 (4.1.13)

for i 6= j 6= ... 6= l. The main difference of the method used in this study, from

other approximations in the literature can be emerged in comparison with any

DA when expanding the right-hand sides of equations (4.1.3), (4.1.6), (4.1.8) and

(4.1.11).

For the spin-1 Ising system with q = 4, taking as a basis the equations (4.1.4),

(4.1.7), (4.1.9) and (4.1.12), we have derived the set of linear equations of the spin

correlation functions which interact in the system. It has been considered that

(i) the correlations are depended only on the distance between the spins, (ii) the

average values of a central spin and its nearest-neighbor spin (it is labeled as the

perimeter spin) are equal to each other, and (iii) in the matrix representations

of spin operator Ŝ, the spin-1 system has the properties (Sz
δ )

3 = Sz
δ and (Sz

δ )
4 =

(Sz
δ )

2. Thus, the number of the set of linear equations obtained for the spin-1

Ising system with q = 4 reduces to thirty four linear equations:

〈Sz
0〉 = l0 + 4k1〈S1〉+ 4(l2 − l0)〈S2

1〉+ 6l1〈S1S2〉

+12(k2 − k1)〈S1S
2
2〉+ 6(l0 − 2l2 + l3)〈S2

1S
2
2〉+ 4k3〈S1S2S3〉

+12(l4 − l1)〈S1S2S
2
3〉+ 12(k1 − 2k2 + k4)〈S1S

2
2S

2
3〉

+4(l5 − 3l3 + 3l2 − l0)〈S2
1S

2
2S

2
3〉+ l8〈S1S2S3S4〉

+4(k5 − k3)〈S1S2S3S
2
4〉+ 6(l1 − 2l4 + l6)〈S1S2S

2
3S

2
4〉

+4(k6 − 3k4 + 3k2 − k1)〈S1S
2
2S

2
3S

2
4〉

+(l0 − 4l2 + 6l3 − 4l5 + l7)〈S2
1S

2
2S

2
3S

2
4〉
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〈S1S0〉 = (4l2 − 3l0)〈S1〉+ 4k1〈S2
1〉+ 6(l0 + l1 − 2l2 + l3)〈S1S

2
2〉

+12(k2 − k1)〈S2
1S

2
2〉+ 4k3〈S1S2S

2
3〉

+4(l5 + 3l4 − 3l3 + 3l2 − 3l1 − l0)〈S1S
2
2S

2
3〉

+12(k1 − 2k2 + k4)〈S2
1S

2
2S

2
3〉+ l8〈S1S2S3S

2
4〉

+4(k5 − k3)〈S1S2S
2
3S

2
4〉

+(l0 + 6l1 − 4l2 + 6l3 − 12l4 − 4l5 + 6l6 + l7)〈S1S
2
2S

2
3S

2
4〉

+4(k6 − 3k4 + 3k2 − k1)〈S2
1S

2
2S

2
3S

2
4〉

〈S1S2S0〉 = (3l0 + 6l1 − 8l2 + 6l3)〈S1S2〉+ 4(3k2 − 2k1)〈S1S
2
2〉

+4(3k1 − 6k2 + k3 + 3k4)〈S1S
2
2S

2
3〉

+4(l5 + 3l4 − 3l3 + 3l2 − 3l1 − l0)〈S1S2S
2
3〉

+(l0 + 6l1 − 4l2 + 6l3 − 12l4 − 4l5 + 6l6 + l7 + l8)〈S1S2S
2
3S

2
4〉

+4(k6 + k5 − 3k4 − k3 + 3k2 − k1)〈S1S
2
2S

2
3S

2
4〉

〈S1S2S3S0〉 = (4l5 + 12l4 − 6l3 + 4l2 − 6l1 − l0)〈S1S2S3〉

+4(k1 − 3k2 + k3 + 3k4)〈S1S2S
2
3〉

+(l0 + 6l1 − 4l2 + 6l3 − 12l4 − 4l5 + 6l6 + l7 + l8)〈S1S2S3S
2
4〉

+4(k6 + k5 − 3k4 − k3 + 3k2 − k1)〈S1S2S
2
3S

2
4〉

〈S1〉 = a1 + a2〈S0〉+ (a3 − a1)〈S2
0〉

〈S1S2〉 = a1〈S1〉+ a2〈S1S0〉+ (a3 − a1)〈S1S
2
0〉

〈S1S2S3〉 = a1〈S1S2〉+ a2〈S1S2S0〉+ (a3 − a1)〈S1S2S
2
0〉

〈S1S2S3S4〉 = a1〈S1S2S3〉+ a2〈S1S2S3S0〉+ (a3 − a1)〈S1S2S3S
2
0〉

〈S2
1〉 = b1 + b2〈S0〉+ (b3 − b1)〈S2

0〉

〈S1S
2
2〉 = b1〈S1〉+ b2〈S1S0〉+ (b3 − b1)〈S1S

2
0〉

〈S2
1S

2
2〉 = b1〈S2

1〉+ b2〈S2
1S0〉+ (b3 − b1)〈S2

1S
2
0〉
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〈S1S2S
2
3〉 = b1〈S1S2〉+ b2〈S1S2S0〉+ (b3 − b1)〈S1S2S

2
0〉

〈S1S
2
2S

2
3〉 = b1〈S1S

2
2〉+ b2〈S1S

2
2S0〉+ (b3 − b1)〈S1S

2
2S

2
0〉

〈S2
1S

2
2S

2
3〉 = b1〈S2

1S
2
2〉+ b2〈S2

1S
2
2S0〉+ (b3 − b1)〈S2

1S
2
2S

2
0〉

〈S1S2S3S
2
4〉 = a1〈S1S2S3S4〉+a2〈S0S1S2S

2
3〉+(a3−a1)〈S1S2S

2
3S

2
0〉

〈S1S2S
2
3S

2
4〉 = a1〈S1S2S3S

2
4〉+a2〈S0S1S2S3〉+(a3−a1)〈S1S2S3S

2
0〉

〈S1S
2
2S

2
3S

2
4〉 = a1〈S1S2S

2
3S

2
4〉+a2〈S0S1S2S

2
3〉+(a3−a1)〈S1S2S

2
3S

2
0〉

〈S2
1S

2
2S

2
3S

2
4〉 = a1〈S1S

2
2S

2
3S

2
4〉+a2〈S0S1S

2
2S

2
3〉+(a3−a1)〈S1S

2
2S

2
3S

2
0〉

〈S0S
2
1〉 = b3〈S0〉+ b2〈S2

0〉

〈S0S1S
2
2〉 = b3〈S0S1〉+ b2〈S1S

2
0〉〉

〈S0S
2
1S

2
2〉 = b3〈S0S

2
1〉+ b2〈S2

1S
2
0〉

〈S0S1S2S
2
3〉 = b3〈S0S1S2〉+b2〈S1S2S

2
0〉

〈S0S1S
2
2S

2
3〉 = b3〈S0S1S

2
2〉+b2〈S1S

2
2S

2
0〉

〈S0S
2
1S

2
2S

2
3〉 = b3〈S0S

2
1S

2
2〉+b2〈S2

1S
2
2S

2
0〉

〈S2
0〉 = p0 + 4n1〈S1〉+ 4(p2 − p0)〈S2

1〉+ 6p1〈S1S2〉+ 12(n2 − n1)〈S1S
2
2〉

+6(p0 − 2p2 + p3)〈S2
1S

2
2〉+ 4n3〈S1S2S3〉+ 12(p4 − p1)〈S1S2S

2
3〉

+12(n1 − 2n2 + n4)〈S1S
2
2S

2
3〉+ 4(p5 − 3p3 + 3p2 − p0)〈S2

1S
2
2S

2
3〉

+p8〈S1S2S3S4〉+ 4(n5 − n3)〈S1S2S3S
2
4〉

+6(p1 − 2p4 + p6)〈S1S2S
2
3S

2
4〉

+4(n6 − 3n4 + 3n2 − n1)〈S1S
2
2S

2
3S

2
4〉

+(p0 − 4p2 + 6p3 − 4p5 + p7)〈S2
1S

2
2S

2
3S

2
4〉

〈S1S
2
0〉 = (4p2 − 3p0)〈S1〉+ 4n1〈S2

1〉+ 6(p0 + p1 − 2p2 + p3)〈S1S
2
2〉

+12(n2 − n1)〈S2
1S

2
2〉+ 4n3〈S1S2S

2
3〉

+4(p5 + 3p4 − 3p3 + 3p2 − 3p1 − p0)〈S1S
2
2S

2
3〉
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+12(n1 − 2n2 + n4)〈S2
1S

2
2S

2
3〉

+p8〈S1S2S3S
2
4〉+ 4(n5 − n3)〈S1S2S

2
3S

2
4〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7)〈S1S
2
2S

2
3S

2
4〉

+4(n6 − 3n4 + 3n2 − n1)〈S2
1S

2
2S

2
3S

2
4〉

〈S2
1S

2
0〉 = 4n1〈S1〉+ (4p2 − 3p0)〈S2

1〉+ 12(n2 − n1)〈S1S
2
2〉

+6(p0 + p1 − 2p2 + p3)〈S2
1S

2
2〉+ 4(3n1 − 6n2 + n3 + 3n4)〈S1S

2
2S

2
3〉

+4(p5 + 3p4 − 3p3 + 3p2 − 3p1 − p0)〈S2
1S

2
2S

2
3〉+ p8〈S1S2S

2
3S

2
4〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S
2
2S

2
3S

2
4〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7)〈S2
1S

2
2S

2
3S

2
4〉

〈S1S2S
2
0〉 = (3p0 + 6p1 − 8p2 + 6p3)〈S1S2〉+ 4(3n2 − 2n1)〈S1S

2
2〉

+4(p5 + 3p4 − 3p3 + 3p2 − 3p1 − p0)〈S1S2S
2
3〉

+4(3n1 − 6n2 + n3 + 3n4)〈S1S
2
2S

2
3〉

+(p8 + p7 + 6p6 − 4p5 − 12p4 + 6p3 − 4p2 + 6p1 + p0)〈S1S2S
2
3S

2
4〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S
2
2S

2
3S

2
4〉

〈S1S
2
2S

2
0〉 = 4(3n2 − 2n1)〈S1S2〉+ (3p0 + 6p1 − 8p2 + 6p3)〈S1S

2
2〉

+4(3n1 − 6n2 + n3 + 3n4)〈S1S2S
2
3〉

+4(p5 + 3p4 − 3p3 + 3p2 − 3p1 − p0)〈S1S
2
2S

2
3〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S2S
2
3S

2
4〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7 + p8)〈S1S
2
2S

2
3S

2
4〉

〈S2
1S

2
2S

2
0〉 = 4(3n2 − 2n1)〈S1S

2
2〉+ (3p0 + 6p1 − 8p2 + 6p3)〈S2

1S
2
2〉

+4(3n1 − 6n2 + n3 + 3n4)〈S1S
2
2S

2
3〉

+4(p5 + 3p4 − 3p3 + 3p2 − 3p1 − p0)〈S2
1S

2
2S

2
3〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S
2
2S

2
3S

2
4〉
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+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7 + p8)〈S2
1S

2
2S

2
3S

2
4〉

〈S1S2S3S
2
0〉 = (4p5+12p4−6p3+4p2−6p1−p0)〈S1S2S3〉

+4(n1 − 3n2 + n3 + 3n4)〈S1S2S
2
3〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7 + p8)〈S1S2S3S
2
4〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S2S
2
3S

2
4〉

〈S1S2S
2
3S

2
0〉 = 4(n1−3n2 +n3 +3n4)〈S1S2S3〉

+(4p5 + 12p4 − 6p3 + 4p2 − 6p1 − p0)〈S1S2S
2
3〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S2S3S
2
4〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7 + p8)〈S1S2S
2
3S

2
4〉

〈S1S
2
2S

2
3S

2
0〉 = 4(n1−3n2 +n3 +3n4)〈S1S2S

2
3〉

+(4p5 + 12p4 − 6p3 + 4p2 − 6p1 − p0)〈S1S
2
2S

2
3〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S2S
2
3S

2
4〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7 + p8)〈S1S
2
2S

2
3S

2
4〉

〈S2
1S

2
2S

2
3S

2
0〉 = 4(n1− 3n2 +n3 +3n4)〈S1S

2
2S

2
3〉

+(4p5 + 12p4 − 6p3 + 4p2 − 6p1 − p0)〈S2
1S

2
2S

2
3〉

+4(n6 + n5 − 3n4 − n3 + 3n2 − n1)〈S1S
2
2S

2
3S

2
4〉

+(p0 + 6p1 − 4p2 + 6p3 − 12p4 − 4p5 + 6p6 + p7 + p8)〈S2
1S

2
2S

2
3S

2
4〉

(4.1.14)

If equation (4.1.14) is written in the form of a 34 × 34 matrix and solved in

terms of the variables xi[(i = 1, 2, ..., 34)(e.g., x1 = 〈S0〉, x2 = 〈S1S0〉, ..., x34 =

〈S2
1S

2
2S

2
3S

2
0〉)] of the linear equations, all of the spin correlation functions can be

determined easily as a function of the temperature, effective field, crystal field

and the longitudinal magnetic field which other studies in the literature do not

include. Since the thermal average of the central spin is equal to that of its
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nearest-neighbor spins within the present method, the unknown parameter A can

be determined numerically by the relation

〈S0〉 = 〈S1〉 or x1 = x5 (4.1.15)

By solving equation (4.1.15) numerically, at fixed values of D/J and h/J , we

have obtained the parameter A. Then, we used the numerical values of A to

obtain the spin correlation functions 〈S0〉, 〈S1S0〉, 〈S1S2S0〉, 〈S2
0〉 (quadrupole

moment) and 〈S2
1S

2
0〉 (biquadrupole moment) and so on, which can be found from

equation (4.1.14). Note that A = 0 is always the root of the equation (4.1.15),

corresponding to the disordered state of the system. The nonzero root of A in

equation (4.1.15) corresponds to the long-range order state of the system.

4.2 Effective-Field Theory Analysis for the Blume-Capel Model

In this section, we present numerical results for the longitudinal

magnetization, hysteresis loops, susceptibility, internal energy and specific heat

of the spin-1 system with crystal-field in a longitudinal magnetic field, on the

square lattice within the framework of the effective field with correlations. All of

the spin correlation functions obtained from equation (4.1.14) are a function of

temperature, exchange interaction, crystal-field and longitudinal magnetic field

and depend on the value of temperature, longitudinal magnetic field and spin,

respectively. If we insert the numerical values of A obtained from equation (4.1.15)

at selected values of h/J for a fixed value of D/J into the spin correlation function

〈S0〉 obtained from equation (4.1.14), we can find the temperature dependence

of 〈S0〉 (it is labeled as the longitudinal magnetization m, (m0 = m1 = m)) for

the spin-1 system on the square lattice. By solving the self-consistent relation

corresponding to equation (4.1.15) numerically for a fixed value of D/J at the

selected values of h/J for the spin-1 system, we have obtained the numerical

values of the parameter A. Then, by inserting the numerical values of A obtained

from equation (4.1.15) at selected values of h/J for a fixed value of D/J into the

spin correlation function 〈S0〉 obtained from equation (4.1.14), we have obtained
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Figure 4.1 Magnetization versus temperature for
spin-1 system with crystal field on a square
lattice. The numbers accompanying each line are
the values of the longitudinal magnetic field.

the temperature dependence of magnetization (m = 〈S0〉) on the square lattice.

The numerical results are plotted in Fig. 4.1. The numbers on the curves are the

values of longitudinal magnetic field. As shown in Fig. 4.1, in the case of h/J = 0,

the longitudinal magnetization m falls rapidly from its saturation magnetization

value (m = 1.0) to zero as temperature increases and, decreases continuously in

the vicinity of transition temperature and vanishes at T = Tc; this is the second

order phase transition. We clearly find that the transition temperature of the

spin-1 system for fixed values of D/J = 0 and h/J = 0 is

kBTc/J = 1.964 (4.2.1)

The critical temperature value in equation (4.2.1) is much closer to those

obtained by the (EBPA) (Du et al, 2003) and the (BA) (Tanaka & Uryu, 1981)

than those obtained by the (EFT) (Siqueira & Fittipaldi, 1986), (CEFT)

(Kaneyoshi & Tamura, 1982; Honmura, 1984), a new type theory of cluster

(Kaneyoshi, 1999a,b) and (DA) (Kaneyoshi, 2000), respectively. For

comparison, the transition temperature kBTc/J at D/J = 0 and h/J = 0

obtained by several methods and present work for spin-1 Ising system are given
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in Table 4.1.

Table 4.1 Transition temperature kBTc/J at D/J = 0 and h/J = 0 obtained by
several methods and present work.

MFA SE BA EBPA EFT DA Present Work

2.667 1.688 2.065 1.915 2.188 2.117 1.964

When we apply the longitudinal magnetic field (h > 0 or h < 0) to the

system, the absolute value of magnetization decreases slowly from its saturation

magnetization value as the temperature increases. This type of magnetization

curves in the presence of an external magnetic field is not described in the Neel

theory. The remaining magnetizations are getting bigger as the longitudinal

magnetic field increases. From our calculation, we can see that the longitudinal

magnetization curves are symmetric for both positive and negative longitudinal

magnetic field. These results are in good agreement with those of previous works

(Canpolat et al, 2007; Ekiz & Keskin, 2003; Ekiz, 2005; Jiang et al, 2005; Jiang

& Bai, 2005, 2006; Mancini & Naddeo, 2006; Wei et al, 2004), but they are quite

different from those of in references (Jiang & Wei, 2000; Jiang et al, 2000a, 2000b,

20001; Htoutou et al, 2004; Polat et al, 2003; Kaneyoshi, 1987, 1988; Kaneyoshi

et al, 1992a; Bobak & Jurcisin, 1997) without applying longitudinal magnetic

field.

We have also investigated the influence of longitudinal magnetic field h on the

longitudinal magnetization process at the fixed values of temperature and crystal

field for the spin-1 system with crystal field ( Blume-Capel (BC)) model on

the square lattice (Balcerzak, 2003). In order to present these hysteresis loops,

we selected four typical temperatures and four crystal field parameter values in

Fig. 4.2(a) and in Fig. 4.2(b), respectively. As we can see from Fig. 4.2(a) and

Fig. 4.2(b), the details of the hysteresis loops depend on the temperature and the

value of the crystal field. At fixed value of D/J = −0.5, the hysteresis loops

of the square lattice for spin-1 system is shown in Fig. 4.2(a). From Fig. 4.2(a),

we can see that the hysteresis loops do not occur at temperatures above the



44

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

1.81.7
1.5

k
B
T/J=1

D/J=-0.5

m

h/J

 

 

(a)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.9-1.8
-1.5

D/J=-0.5

k
B
T/J=1

m

h/J

 

 

(b)

Figure 4.2 (a) The hysteresis loops for the spin-1
system when the crystal field is selected as D/J =
−0.5 with four values of temperature kBT/J . (b)
The hysteresis loops for the spin-1 system when
the temperature is selected as kBT/J = 1 with
four values of crystal field D/J .
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critical temperature kBTc/J = 1.8314, called the Curie temperature, and the

type of hysteresis loop becomes narrower with increasing temperature below

the transition temperature. Then the hysteresis loop disappears when the

temperature is higher than the transition temperature as in (Jiang et al, 2005;

Jiang & Bai, 2005; Jiang & Bai, 2006). When the temperature is fixed as kBT/J =

1, the hysteresis loops for the square lattice are plotted in Fig. 4.2(b). As seen

from Fig. 4.2(b), the type of hysteresis loops becomes narrower with increasing

the absolute value of the crystal field. Then the hysteresis loop disappears when

the absolute value of the crystal field is large enough. Namely, these results are

show that the hysteresis loops at low temperature are considered to originate

from the competing effects of the interaction between the exchange interaction

term of the nearest-neighbor pair of spins and the crystal field anisotropy and the

Zeeman energy term in equation (4.1.1) of spin-1 system.

Now, we state how to calculate the thermodynamic parameters like

susceptibility, internal energy and specific heat of spin-1 Blume-Capel model on

the square lattice. The longitudinal susceptibility for the system which describes

the characteristics of the change of magnetization with magnetic field and which

can show the phase transition’s properties, particularly its critical temperature

can be determined from the relation

χ =
∂〈S0〉
∂h

(4.2.2)

The internal energy U per site of the system can be obtained easily from the

thermal average of the Hamiltonian in equation (4.1.1). Thus, the internal energy

is given by

− U

NJ
= q〈S0S1〉+

D

J
〈S2

0〉+
h

J
〈S0〉 (4.2.3)

where the correlation functions 〈S0〉, 〈S2
0〉 and 〈S1S0〉 are obtained easily from

equation (4.1.14) for spin-1 system. With the use of equation (4.2.3), the specific

heat of the system can be determined from the relation

Ch =

(
∂U

∂T

)

h

(4.2.4)
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In order to illustrate the theoretical results numerically, we have performed

analysis for the spin-1 system on the square lattice. Thermodynamic quantities

are plotted in Figs. 4.3-4.6 as a function of dimensionless temperature kBT/J .

In Fig. 4.3(a), we have given numerical results of the susceptibility for spin-1

system on the square lattice in the (χ, kBT/J) plane for the selected values of

h/J = 0, 0.1, 0.5 when the crystal field is selected as D/J = 0,−0.5. Our results

are in good agreement with those of previous works (Wei et al, 2004; Jiang et

al, 2005; Jiang & Bai, 2005; Jiang & Bai, 2006; Du et al, 2004; Mancini &

Naddeo, 2006; Balcerzak, 2003; Canpolat et al, 2007). From Fig. 4.3(a), we can

clearly see a peak at the critical temperature that corresponds to the divergence

of the longitudinal susceptibility for h/J = 0. Furthermore, as seen from the

figures, in the absence of the longitudinal magnetic field (h/J = 0), the curve

of susceptibility rapidly increases and expresses a peak at the phase transition

temperature and then rapidly decreases as the temperature increases. In the

presence of a longitudinal magnetic field, the phase transition is not observed,

and the stronger the longitudinal magnetic field, the smaller is the susceptibility,

reflecting the fact that the longitudinal magnetization is weaker. In Fig. 4.3(b),

the longitudinal susceptibility is plotted in the absence of longitudinal magnetic

field (h = 0) with selected values of D/J = 0,−0.5,−1,−1.5. We can clearly

see from Fig. 4.3(b) that the critical temperature value kBTc/J decreases as the

absolute value of crystal field increases, and critical temperature has a double

valued form for D < −1, (see Fig.7.1).

In Figs. 4.4-4.6, the temperature dependencies of the internal energy U and

specific heat C are plotted for spin-1 system. Using the numerical derivative of the

internal energy with respect to temperature, we obtain the behavior of the specific

heat with temperature and the anisotropy parameter. These quantities for spin-1

system with crystal field on honeycomb lattice (q = 3) are studied in (Canpolat

et al, 2007). We can see that from Fig. 4.4(a), for the selected four values of h/J ,

if the longitudinal magnetic field increases, then the absolute value of internal

energy increases. In the case of h/J = 0, the specific heat curve of spin-1 system

in Fig. 4.4(b) exhibits a second order phase transition at the Curie temperature
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(b)

Figure 4.3 (a) The susceptibility for the spin-1
system when the crystal field is selected as D/J =
0,−0.5. The numbers on the each curve are the
values of longitudinal magnetic field h/J . (b) The
susceptibility for the spin-1 Ising system when the
longitudinal magnetic field is selected as h/J = 0.
The numbers on the each curve are the values of
the crystal field D/J .
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kBT/J = 1.9 and rapidly decreases with increasing temperature. In the case

of h/J 6= 0, the phase transition has also been removed and, we see that the

derivatives of internal energy are flattened with increasing external field. Next, in

the cases of h/J = 0 and h/J 6= 0, we have plotted the temperature dependencies

of the internal energy U and specific heat C for spin-1 system on the square

lattice at selected values of D/J . In the case of h/J = 0 the behavior of internal

energy with temperature and crystal field parameter is shown in figure Fig. 4.5(a)

at fixed values of D/J = −1.901,−1,−0.5, 0. The internal energy decreases

suddenly at the transition temperature as the crystal field parameter D/J gets

just Dt/J = −1.901 in the negative direction, which is similar to that in (Siqueira

& Fittipaldi, 1986). The tricritical point is such a point that, at which the

system shows from the second-order to the first-order phase transition in the Ising

system. We can interpret it as the fact that the spin-1 Ising system (or BC model)

exhibits a first-order transition at a negative tricritical value Dt/J such that

Dt/J = −1.901 for q = 4. For four selected values of the crystal field D/J , the

specific heat C curves of the spin-1 system exhibit second-order phase transition

at the Curie temperature. As expected, the transition temperatures of C/NkB

increase as the crystal field strength increases, (Fig. 4.5(b)). However, when D/J

becomes smaller than D/J = −1, the discontinuity character of specific heat

begins to increase in height. When the crystal field gets just to the value of the

tricritical point, a jumping appears in the specific heat curve at the transition

point and the transition point increases in height (as inset in the Fig. 4.5(b)). This

behavior can be interpreted as a competition between the exchange interaction

which tries to align the spins in the same direction, and the effect of the crystal

field anisotropy which has the tendency to destroy this alignment in the considered

system.

In the case of h/J 6= 0, our results do not have a discontinuity behavior or phase

transition point at all values of D/J . Fig. 4.6(a) curves have a continuous form

and the absolute value of internal energy increases with increasing values of D/J .

It is seen from Fig. 4.6(b) that the specific heat curves have a relatively maximum-

like Schottky peak at a certain value of the temperature and the height of the

specific heat peak increases with increasing values of D/J and moves towards
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Figure 4.4 The temperature dependence of (a)
the internal energy U and (b) the specific heat C
for the spin-1 Ising model on a square lattice when
the crystal field is selected as D/J=0 at selected
values of h/J= 0, 0.1, 0.5 and 1.
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Figure 4.5 The temperature dependence of (a)
the internal energy U and (b) the specific heat
C for the spin-1 Ising model on a square lattice
when the longitudinal magnetic field is selected as
h/J=0 at selected values of D/J = -1.901, -1, -0.5
and 0.



51

increasing temperature when the crystal field D/J increases. We note that the

Schottky-like round hump in the specific heat probably reflects the fact that

the energy of the system depends on the longitudinal magnetic field h/J and

the crystal field D/J . However, they do not indicate that a second-order phase

transition occurs in the 2D system. In the case of h/J 6= 0, all of them may be

thought of as Schottky-like peaks resulting from the ferromagnetic short-range

order.

The shapes of the internal energy and specific heat curves qualitatively agree

with those obtained by the various methods (Mancini & Naddeo, 2006; Balcerzak,

2003; Siqueira & Fittipaldi, 1986; Kaneyoshi & Jascur, 1992; Micnas, 1979; Ng

& Barry, 1978; Du et al, 2003). As a result, by comparing the curves for nonzero

values of h/J , we see that the phase transition has been removed in the system.

According to us, it is originated from the presence of external magnetic field in

the system. All calculated properties show the proper thermodynamical behavior

over the whole range of temperatures, including the ground state behavior (χ → 0

and C → 0 for T → 0) and the thermal stability condition (Ch ≥ 0).
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Figure 4.6 The temperature dependence of (a)
the internal energy U and (b) the specific heat
C for the spin-1 Ising model on a square lattice
when the longitudinal magnetic field is selected as
h/J=1 at selected four negative values of D/J=-
1.901, -1, -0.5 and 0.



CHAPTER FIVE
CANONICAL ENSEMBLE AND MONTE CARLO SIMULATION

5.1 Canonical ensemble

Most physical systems are not isolated, but exchange energy with their

environment. Because such systems are usually small in comparison to their

environment, we assume that any change in the energy of the smaller system

does not have a significant effect on the temperature of the environment. We

say that the environment acts as a heat reservoir or heat bath at a fixed absolute

temperature T . If a small but macroscopic system is placed in thermal contact

with a heat bath, the system reaches thermal equilibrium by exchanging energy

with the heat bath until the system attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and

number of particles N in equilibrium at temperature T . Ps, the probability that

the system is in microstate s with energy Es, is given by

Ps =
1

Z
e−βEs (canonical distribution) (5.1.1)

where β = 1/kBT , and Z is a normalization constant. The ensemble defined by

(5.1.1) is known as the canonical ensemble. Because
∑

Ps = 1, and Z is given by

Z =
M∑

s=1

e−Es/kBT (5.1.2)

The summation in (5.1.2) is over all M accessible microstates of the system. The

quantity Z is known as the partition function of the system. We can use (5.1.1) to

obtain the ensemble average of the physical quantities of interest. For example,

the mean energy is given by

〈E〉 =
M∑

s=1

EsPs =
1

Z

M∑
s=1

Ese
−βEs (5.1.3)
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Note that energy fluctuates in the canonical ensemble, (Gould & Tobochnik,

1996).

5.2 Fluctuations in the Canonical Ensemble

We first obtain the relation of the constant volume heat capacity CV to the

energy fluctuations in the canonical ensemble. We adopt the notation U = 〈E〉
and write CV as

CV =
∂U

∂T
= − 1

kBT 2

∂U

∂β
(5.2.1)

From (5.1.3) we have

U = − ∂

∂β
ln Z (5.2.2)

and
∂U

∂β
= − 1

Z2

∂Z

∂β

∑
s

Ese
−βEs − 1

Z

∑
s

E2
se
−βEs

= 〈E〉2 − 〈E2〉 (5.2.3)

using the relations (5.2.1) and (5.2.3) one obtains the relation

CV =
1

kBT 2

(〈E2〉 − 〈E〉2) (5.2.4)

Note that the heat capacity is at constant volume because the partial derivatives

were performed with the energy levels Es kept constant. The corresponding

quantity for a magnetic system is the heat capacity at constant external magnetic

field.

The relation of the magnetic susceptibility χ to the fluctuations of the

magnetization m can be obtained in a similar way. We assume that the energy



55

can be written as

Es = E0,s − hms (5.2.5)

where E0,s is the energy in the absence of a magnetic field, h is the external applied

field, and ms is the magnetization in the s state. The mean magnetization is given

by

〈m〉 =
1

Z

∑
mse

−βEs (5.2.6)

Because ∂Es/∂h = −ms, we have

∂Z

∂h
=

∑
s

βmse
−βEs (5.2.7)

Hence we obtain

〈m〉 =
1

β

∂

∂h
ln Z (5.2.8)

If we use (5.2.6) and (5.2.8), we find

∂〈m〉
∂h

= − 1

Z2

∂Z

∂h

∑
s

mse
−βEs +

1

Z

∑
s

βm2
se
−βEs

= −β〈m〉2 + β〈m2〉 (5.2.9)

Definition of the magnetic susceptibility which is thermodynamic derivative of

mean magnetization is

χ = lim
h→0

∂〈m〉
∂h

(5.2.10)

By using the relations (5.2.10) and (5.2.9) the zero field susceptibility can be

obtained as

χ =
1

kBT

(〈m2〉 − 〈m〉2) (5.2.11)
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5.3 What is a Monte Carlo Simulation?

In a Monte Carlo simulation we attempt to follow the "time dependence"

of a model for which change, or growth, does not proceed in some rigorously

predefined fashion (e.g. according to Newton’s equations of motion) but rather

in a stochastic manner which depends on a sequence of random numbers which

is generated during the simulation. With a second, different sequence of random

numbers the simulation will not give identical results but will yield values which

agree with those obtained from the first sequence to within some "statistical

error". A very large number of different problems fall into this category: in

percolation an empty lattice is gradually filled with particles by placing a particle

on the lattice randomly with each "tick of the clock". Lots of questions may then

be asked about the resulting "clusters" which are formed of neighboring occupied

sites. Particular attention has been paid to the determination of the "percolation

threshold", i.e. the critical concentration of occupied sites for which an "infinite

percolating cluster" first appears. A percolating cluster is one which reaches from

one boundary of a (macroscopic) system to the opposite one. The properties of

such objects are of interest in the context of diverse physical problems such as

conductivity of random mixtures, flow through porous rocks, behavior of dilute

magnets, etc. Another example is diffusion limited aggregation (DLA) where a

particle executes a random walk in space, taking one step at each time interval,

until it encounters a "seed" mass and sticks to it. The growth of this mass

may then be studied as many random walkers are turned loose. The "fractal"

properties of the resulting object are of real interest, and while there is no accepted

analytical theory of DLA to date, computer simulation is the method of choice.

In fact, the phenomenon of DLA was first discovered by Monte Carlo simulation.

Considering problems of statistical mechanics, we may be attempting to sample

a region of phase space in order to estimate certain properties of the model,

although we may not be moving in phase space along the same path which an

exact solution to the time dependence of the model would yield. Remember that

the task of equilibrium statistical mechanics is to calculate thermal averages of
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(interacting) many-particle systems: Monte Carlo simulations can do that, taking

proper account of statistical fluctuations and their effects in such systems. Since

the accuracy of a Monte Carlo estimate depends upon the thoroughness with

which phase space is probed, improvement may be obtained by simply running

the calculation a little longer to increase the number of samples. Unlike in the

application of many analytic techniques (e.g. perturbation theory for which the

extension to higher order may be prohibitively difficult), the improvement of

the accuracy of Monte Carlo results is possible not just in principle but also in

practice, (Landau & Binder, 2000).

5.4 Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a

fixed temperature T? Because we can generate only a finite number m of the

total number of M microstates, we might hope to obtain an estimate for the

mean value of the physical quantity A by writing

〈A〉 ≈ Am =

∑m
s=1 Ase

−βEs

∑m
s=1 e−βEs

(5.4.1)

As is the volume of the physical quantity A in the microstate s. A crude Monte

Carlo procedure is to generate a microstate s at random, calculate Es, As, and

e−βEs , and evaluate the corresponding contribution of the microstate to the sums

in (5.4.1). However, a microstate generated in this way would likely be very

improbable and hence contribute little to the sums. Instead, we use an importance

sampling method and generate microstates according to a probability distribution

function πs.

We rewrite (5.4.1) by multiplying and dividing by πs.

Am =

∑m
s=1(As/πs)e

−βEsπs∑m
s=1(1/πs)e−βEsπs

no importance sampling (5.4.2)
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If we generate microstates with probability πs, then (5.4.2) becomes

Am =

∑m
s=1(As/πs)e

−βEs

∑m
s=1(1/πs)e−βEs

importance sampling (5.4.3)

That is, if we average over a biased sample, we need to weight each microstate by

1/πs to eliminate the bias. Although any form of 1/πs could be used, the form

of (5.4.3) suggests that a reasonable choice of 1/πs is the Boltzmann probability

itself, i.e.,

πs =
e−βEs

∑m
s=1 e−βEs

(5.4.4)

This choice of πs implies that the estimate Am of the mean value of A can be

written as

Am =
1

m

m∑
s=1

As (5.4.5)

The choice (5.4.4) for πs is due to Metropolis et al.

The Metropolis algorithm can be summarized in the context of the simulation

of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin

at random and flip it. Or choose a particle at random and displace it a

random distance.

3. Compute 4E ≡ Etrial − Eold, the change in the energy of the system due

to the trial change.

4. If 4E is less than or equal to zero, accept the new microstate and go to

step 8.

5. If 4E is positive, compute the quantity w = e−β4E.

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous

microstate.
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8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps (2) through (7) give the conditional probability that the system is in

microstate {Sj} given that it was in microstate {Si}. These steps are equivalent

to the transition probability

W (i → j) = min(1, e−β4E), (Metropolis algorithm) (5.4.6)

where 4E = Ej − Ei. W (i → j) is the probability per unit time for the system

to make a transition from microstate i to microstate j. Because it is necessary

to evaluate only the ratio Pj/Pi = e−β4E, it is not necessary to normalize the

probability. Note that because the microstates are generated with a probability

proportional to the desired probability, all averages become arithmetic averages

as in (5.4.5). However, because the constant proportionality is not known, it is

not possible to estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs

are possible and are useful in some contexts. In addition, the choice (5.4.6) of the

transition probability is not the only one that leads to the Boltzmann distribution.

It can be shown that if W satisfies the detailed balance condition

W (i → j)e−βEi = W (j → i)e−βEj (detailed balance) (5.4.7)

then the corresponding Monte Carlo algorithm generates a sequence of states

distributed according to the Boltzmann distribution. The derivation that the

Metropolis algorithm generates states with a probability proportional to the

Boltzmann probability distribution after a sufficient number of steps does not

add much to our physical understanding of the algorithm.

We have implicitly assumed in the above discussion that the system is ergodic.
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Ergodicity refers to the sampling of the important microstates of a system. In a

Monte Carlo simulation, the existence of ergodicity depends on the way the trial

moves are made, and on the nature of the energy barriers between microstates.

For example, consider a one-dimensional lattice of Ising spins with all spins up. If

the spins are updated sequentially from right to left, then if one spin is flipped, all

remaining flips will be accepted regardless of the temperature because the change

in energy is zero. Clearly, the system is not ergodic for this implementation of the

algorithm, and we would not obtain the correct thermodynamic behavior, (Gould

& Tobochnik, 1996).

5.5 Exact Enumeration of the 2x2 Ising Model

In general, a Monte Carlo simulation yields exact answers only after an

infinite number of configurations have been sampled. For sufficiently small

lattices, thermal averages may be obtained exactly and easily by direct

enumeration. Because the number of possible states or configurations of the Ising

model increases as 2N , we can enumerate the possible configurations only for small

N . As an example, we calculate the various quantities of interest for a 2×2 Ising

model on the square lattice with periodic boundary conditions. In Table 5.1, we

group the sixteen states according to their total energy and magnetization.

Table 5.1 The energy and magnetization of the 24 states of the zero field
spin-1/2 Ising model on the 2× 2 square lattice. The degeneracy is the
number of microstates with the same energy.
Number spins up Degeneracy Energy Magnetization

4 1 -8 4
3 4 0 2
2 4 0 0
2 2 8 0
1 4 0 -2
0 1 -8 -4

We can compute all the quantities of interest using Table 5.1. The partition
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function is given by

Z = 2e8βJ + 12 + 2e−8βJ (5.5.1)

If we use (5.2.2) and (5.5.1), we find

U = − ∂

∂β
ln Z = − 1

Z
[16e8βJ − 16e−8βJ ] (5.5.2)

And the mean absolute magnetization is given by

〈|M |〉 =
1

Z
[8e8βJ + 16] (5.5.3)

In order to test our program we compared our MC data for spin-1/2 system

with the exact relations (5.5.2) and (5.5.3). The results are given in the table

below. From the table we can see that our results are statistically meaningful.

Table 5.2 The comparison of energy and magnetization of simulation with the exact
results.
Energy Energy Magnetization Magnetization Temperature
(exact) (simulation) (exact) (simulation)
-2.0 -2.0 1.0 1.0 0.25
-1.99972 -1.9998 0.99991 0.9999 0.75
-1.94361 -1.9440 0.98121 0.9811 1.5
-1.80083 -1.8014 0.93371 0.9334 2.0
-1.60217 -1.6055 0.86783 0.8676 2.5
-1.39995 -1.4009 0.80111 0.8003 3.0



CHAPTER SIX
MONTE CARLO SIMULATION RESULTS

6.1 Monte Carlo Simulation Results for Blume-Emery-Grif�ths Model

In this section, we present numerical results for the longitudinal magnetization,

hysteresis loops, susceptibility, internal energy and specific heat of the spin-1

system with crystal-field in a longitudinal magnetic field, on the square lattice

within the framework of the Monte Carlo Simulation technique and we compare

our results with those of effective-field theory with correlations given in Section

4.2 for a special case of K = 0.

In addition to the bilinear exchange interaction J and single-ion anisotropy

D of the standard Ising model, the spin-1 Ising model possesses a biquadratic

exchange interaction K (Rachadi & Benyoussef, 2004). It is also known as the

Blume-Emery-Griffiths (BEG) model (Blume & Emery & Griffiths, 1971) and the

model with vanishing biquadratic interaction (K = 0) is known as the Blume-

Capel (BC) model (Blume, 1966; Capel, 1966). The BEG model is described by

the following Hamiltonian:

H = −J
∑
<i,j>

Sz
i S

z
j −D

∑
i

(Sz
i )

2 −K
∑
<i,j>

(Sz
i )

2 (
Sz

j

)2 − h
∑

i

Sz
i (6.1.1)

where Si = 0, +1 or−1 is the spin at site i and
∑

<ij> stands for a summation over

all nearest-neighbor pairs. A ferromagnetic interaction J > 0 is assumed between

the nearest-neighbor spins and we set J = 1. We employed standard importance

sampling methods to simulate the system described by the Hamiltonian in

equation (6.1.1) on a L×L square lattice with periodic boundary conditions and

data were obtained with L = 16. Configurations were generated by selecting

the sites in sequence through the lattice and making single-spin-flip attempts,

which were accepted or rejected according to the Metropolis algorithm. Data

were generated with 25000 Monte Carlo steps per site after discarding the first
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2500 steps. 10 independent MC runs of 25000 MC steps per spin have been

performed at each temperature.

Now we can clarify how to calculate the thermodynamic parameters like

longitudinal magnetization, susceptibility, internal energy and specific heat of

spin-1 Blume-Emery-Griffiths model with q = 4. The longitudinal magnetization

per spin is a sum over each spin on the lattice and it can be determined from the

relation

m =
1

N

N∑
i=1

Sz
i (6.1.2)

and the relation of the magnetic susceptibility to the fluctuations of the

magnetization can be written with the help of equation (6.1.2) as

χ =
〈m2〉 − 〈m〉2

kBT
(6.1.3)

The internal energy U per site of the system can be obtained easily by computing

the average energy of each spin on the lattice. Thus, the internal energy of the

BEG model is the average of the Hamiltonian in equation (6.1.1).

U =
1

L2
〈H〉 (6.1.4)

and lastly the specific heat of the system can be determined from the relation

Ch =

(
∂U

∂T

)

h

(6.1.5)

where T and N denotes the temperature and the number of spins on the lattice,

respectively.

Monte Carlo simulation results for spin-1 Ising model with biquadratic nearest-

neighbor pair interaction (or BEG model) which is described by Hamiltonian

(6.1.1) are as follow: Firstly, the temperature dependence of longitudinal mag-

netization m for the values of K/J = 0 and D/J = 0 can be seen in Fig. 6.1(a).

The numbers on the curves are the values of longitudinal magnetic field. As

shown in Fig. 6.1(a), in the case of h/J = 0, the longitudinal magnetization m
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falls rapidly from its saturation magnetization (m = 1.0) to zero with increasing

temperature and decreases continuously in the vicinity of transition temperature

and vanishes at T = Tc; this is the second order phase transition. In order to

locate the transition temperature of the system we computed the fourth order

cumulant of magnetization VL(L, T ) with various lattice sizes L = 8, 16, 32, 64.

The fourth order cumulant of the magnetization, i.e. the Binder cumulant, for a

spin cluster is defined by (Binder, 1981),

VL(L, T ) = 1− 〈M4〉
3〈M2〉2 (6.1.6)

where 〈M2〉 and 〈M4〉 denote the second and fourth moments of the

magnetization in that cluster, taking thermal averages. The cumulant approaches

in the thermodynamic limit the value 2/3 at temperatures T < Tc, while it tends

to zero, reflecting a Gaussian distribution of the magnetization histogram, at

T > Tc (Binder, 1981). At Tc, VL(L, T ) = V ∗
L acquires a nontrivial value, the

critical Binder cumulant. The crossing point of the curves with L = 8, 16,

32, 64 gives us the transition temperature kBTc/J which is shown by a white

circle in Fig. 6.1(b). We clearly find by using equation (6.1.6) that the transition

temperature of the spin-1 BC model for fixed values of D/J = 0, K/J = 0 and

h/J = 0 is

kBTc/J = 1.69 (6.1.7)

This result is much closer to those obtained by series expansion (SE) analysis

(Fox & Guttman, 1973; Adler & Enting, 1984; Blote & Nightingale, 1985) but it

is clearly different from that we obtained within the framework of the effective-

field theory with correlations. For comparison, the transition temperature kBTc/J

at D/J = 0, K/J = 0, and h/J = 0 obtained by several methods and our MC

simulations for spin-1 Ising system are given in Table 6.1.

Table 6.1 Transition temperature kBTc/J at D/J = 0 and h/J = 0 obtained
by several methods and present work (MC).

MFA SE BA EBPA EFT DA MC

2.667 1.688 2.065 1.915 2.188 2.117 1.69
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Figure 6.1 (a) Temperature dependence of
magnetization for spin-1 system with crystal field
on a square lattice. The numbers accompanying
each line are the values of the longitudinal
magnetic field. (b) Temperature dependence of
fourth order magnetization cumulant VL for L =
8, L = 16, L = 32, L = 64. White circle on the
crossing point of the curves denotes the transition
temperature.
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Figure 6.2 (a) The hysteresis loops for a square
lattice of spin-1 system when the crystal field is
selected as D/J = −1 with three values of
temperature kBT/J . (b) The hysteresis loops for
the square lattice of spin-1 system when the
temperature is selected as kBT/J = 0.5 with three
values of crystal field D/J .

In Fig. 6.2, we show that the influence of longitudinal magnetic field h on the

longitudinal magnetization process at the fixed values of temperature and crystal

field for the spin-1 Blume-Emery-Griffiths model on a square lattice. We selected
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three typical temperatures and three crystal field parameter values in Fig. 6.2(a)

and in Fig. 6.2(b), respectively. As we can see from Fig. 6.2(a) and Fig. 6.2(b),

the details of the hysteresis loops depend on the temperature and the value of

the crystal field. At fixed value of D/J = −1, the hysteresis loops of the spin-1

system on the square lattice is shown in Fig. 6.2(a). From Fig. 6.2(a), we can

see that the hysteresis loops do not occur at temperatures above the critical

temperature kBTc/J = 1.26, and the type of hysteresis loop becomes narrower as

the temperature increases below the transition temperature. Then the hysteresis

loop disappears when the temperature is higher than the transition temperature

as in Fig. 4.2(a). When the temperature is fixed as kBT/J = 0.5, the hysteresis

loops for the square lattice are plotted in Fig. 6.2(b). As it is seen from Fig. 6.2(b),

the type of hysteresis loops becomes narrower with increasing the absolute value

of the crystal field. Then the hysteresis loop disappears when the absolute value

of the crystal field is large enough. This behavior of hysteresis loops also agrees

with those plotted in Fig. 4.2(b). In our simulations we found that in contrast

to the temperature kBT/J and single-ion anisotropy D/J , biquadratic exchange

interaction K/J does not play a role on the type of hysteresis loop.

In Fig. 6.3(a), we have given numerical results of the susceptibility for spin-1

BEG model on a square lattice in the (χ, kBT/J) plane for the selected values of

h/J = 0, 0.1, 0.5, and 1 when the crystal field is selected as D/J = −1. Our

results are in good agreement with those plotted in Fig. 4.3(a). From Fig. 6.3(a),

we can clearly see a peak at the critical temperature which corresponds to the

divergence of the longitudinal susceptibility for h/J = 0. Furthermore, as it is

seen from the figures, in the absence of a longitudinal magnetic field (h/J =

0), the curve of susceptibility rapidly increases and gives a peak at the phase

transition temperature and then rapidly decreases as the temperature increases.

In the presence of a longitudinal magnetic field, the phase transition is not

observed, and the stronger the longitudinal magnetic field, the smaller is the

susceptibility, reflecting the fact that the longitudinal magnetization is weaker. In

Fig. 6.3(b), the longitudinal susceptibility is plotted in the absence of a

longitudinal magnetic field with selected values of D/J = 0,−0.5,−1,−1.5,−1.8.

We can clearly see from Fig. 6.3(b) that the critical temperature value kBTc/J
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decreases as the absolute value of crystal field increases. From this point of view,

this result is consistent with the results of Fig. 4.3(b). But the main difference

between our effective-field theory analysis and Monte Carlo simulations appears

at this point. While the critical temperature has been found to have a double

valued form for D/J < −1 in our EFT study, there is no double-valued critical

point appears for any value of crystal field D/J according to our MC simulations.

This difference can be seen in detail from the phase diagrams of spin-1 system

which are plotted by using both the EFT method and the MC simulation.

In Fig. 6.4, we show the influence of the longitudinal magnetic field on the

internal energy and specific heat of the spin-1 BEG model. We can see that from

Fig. 6.4(a), for the selected five values of h/J , if the longitudinal magnetic field

increases, then the value of internal energy decreases. In the case of h/J = 0,

the specific heat curve of spin-1 system in Fig. 6.4(b) exhibits a second order

phase transition at the Curie temperature kBT/J = 1.41 and rapidly decreases

as the temperature increases. In the case of h/J 6= 0, there is no phase transition

and, we see that the derivatives of internal energy are flattened with increasing

external field. So, one can see that our EFT study and MC simulations are in

good agreement at this point.

In the case of h/J = 0, we have plotted the temperature evolution of the

internal energy U and specific heat C for spin-1 system on a square lattice

at the selected values of D/J . The behavior of internal energy in terms of

temperature and crystal field parameter is shown in figure Fig. 6.5(a) at fixed

values of D/J = −1.995,−1.5,−1,−0.5, 0. The internal energy increases

suddenly at the transition temperature as the crystal field parameter D/J gets

just Dt/J = −1.995, which is similar to that in Fig. 4.5(a). But, note that in

our EFT analysis we found the critical value of single-ion anisotropy as Dt/J =

−1.901. For five selected values of the crystal field D/J , the specific heat C

curves of the spin-1 system exhibit a second-order phase transition at the Curie

temperature. As expected, the transition temperatures of C/NkB increase with

the increasing crystal field strength (Fig. 6.5(b)). However, when D/J becomes

D/J ≈ −1.9, the discontinuity character of specific heat begins to increase in
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Figure 6.3 (a) The susceptibility for the spin-1
BEG model when the crystal field and biquadratic
exchange interaction is selected as D/J = −1
and K/J = 0, respectively. The numbers on the
each curve are the values of longitudinal magnetic
field h/J . (b) The susceptibility for the spin-1
BEG model when the longitudinal magnetic field
and biquadratic exchange interaction is selected as
h/J = 0 and K/J = 0, respectively. The numbers
on the each curve are the values of the crystal field
D/J .
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Figure 6.4 The temperature dependence of (a)
the internal energy U and (b) the specific heat
C for the spin-1 BEG model on a square lattice
when the crystal field and biquadratic exchange
interaction is selected as D/J=-1, K/J = 0,
respectively at selected values of h/J= 0, 0.1, 0.5,
1 and 2.
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Figure 6.5 The temperature dependence of (a)
the internal energy U and (b) the specific heat C
for the spin-1 BEG model on a square lattice when
the longitudinal magnetic field and biquadratic
exchange interaction is selected as h/J=0, K/J =
0, respectively at selected values of D/J = -1.995,
-1.5, -1, -0.5 and 0.
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height. When the crystal field gets just to the value of its critical value Dt/J =

−1.995, a jumping appears in the specific heat curve at the transition point and

increases in height (as inset in the Fig. 6.5(b)). This behavior could be interpreted

as a competition between the exchange interaction which tries to align the

spins in the same direction, and the effect of the crystal field anisotropy which

has the tendency to destroy this alignment in the considered system as discussed

in previous section.

In order to investigate the influence of biquadratic exchange interaction K/J

on the transition temperature kBTc/J , the longitudinal susceptibility is plotted in

the absence of a crystal field (D/J = 0) and a longitudinal magnetic field (h = 0)

with selected values of K/J = 0, 0.5 and 1. One can clearly see from Fig. 6.6

that the critical temperature value kBTc/J increases as the value of biquadratic

exchange interaction increases and maximum point of each curve decreases as the

value of biquadratic exchange interaction increases.
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Figure 6.6 The susceptibility for the spin-1 BEG
model when the crystal field and longitudinal
magnetic field is selected as D/J = 0 and h/J =
0, respectively. The numbers on the each curve
are the values of biquadratic exchange interaction
K/J .
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Next, in Fig. 6.7, in the case of h/J 6= 0, we have plotted the temperature

dependencies of the longitudinal magnetization m and the susceptibility χ for

the spin-1 BEG model on a square lattice at the selected values of K/J . We

selected four typical biquadratic exchange interactions. As we can see from

Fig. 6.7(a), when an external field is applied to the system, the absolute value of

magnetization decreases slowly from its saturation magnetization value to the

remaining magnetization value as the temperature increases and the remaining

magnetizations are the same for all selected values of K/J at sufficiently large

temperatures. Note that for h/J 6= 0, our results do not have a discontinu-

ity behavior or phase transition point for any value of K/J and Fig. 6.7(a) and

Fig. 6.7(b) curves have a continuous form and the absolute value of magnetization

decreases more slowly as K/J increases.

Finally, in the case of h/J 6= 0, we show the influence of biquadratic exchange

interaction K/J on the internal energy and the specific heat of the spin-1 BEG

model on a square lattice for the selected values of K/J . As we can see from

Fig. 6.8(a) and Fig. 6.8(b) our results do not have a discontinuity behavior or phase

transition point for any value of K/J as in Fig. 6.7(a) and Fig. 6.7(b). Fig. 6.8(a)

curves have a continuous form and the absolute value of internal energy increases

as the selected values of K/J increases. It is seen from Fig. 6.8(b) that the specific

heat curves have a relatively maximum-like Schottky peak at a certain value of

the temperature and the height of the specific heat peak increases as the

values of biquadratic exchange interaction increase up to K/J = 1, then starts

to decreasing for the values of K/J > 1, and moves towards the increasing

temperature when the biquadratic exchange interaction K/J increases. This

behavior can be interpreted as a competition between the biquadratic exchange

interaction K/J and the longitudinal external field h/J on the system. We also

note that the Schottky-like round hump in the specific heat probably reflects

the fact that the energy of the system depends not only on the longitudinal

magnetic field h/J and the crystal field D/J , but also depends on the biquadratic

exchange interaction K/J . Furthermore, as we discussed in previous section, they

do not indicate that a second-order phase transition occurs in the 2D system

and the shapes of the internal energy and specific heat curves obtained by
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Figure 6.7 The temperature dependence of (a)
the longitudinal magnetization m and (b)
the susceptibility χ for the spin-1 BEG model on
a square lattice when the crystal field and
longitudinal magnetic field is selected as D/J=-1,
h/J = 1, respectively, at selected values of K/J
= 0, 0.5, 1, and 1.5. The numbers accompanying
each line are the values of the biquadratic exchange
interaction.

applied MC simulations qualitatively agree with those obtained by our EFT study.

All calculated properties obtained by MC simulations also show the proper
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thermodynamical behavior over the whole range of temperatures, including the

ground state behavior (χ → 0 and C → 0 for T → 0) and the thermal stability

condition (Ch ≥ 0) as in our EFT results.
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Figure 6.8 The temperature dependence of (a)
the internal energy U and (b) the specific heat C
for the spin-1 BEG model on a square lattice when
the crystal field and longitudinal magnetic field is
selected as D/J=-1, h/J = 1, respectively, at
selected values of K/J = 0, 0.5, 1, and 1.5. The
numbers accompanying each line are the values of
the biquadratic exchange interaction.



CHAPTER SEVEN
PHASE DIAGRAM OF SPIN-1 ISING FERROMAGNETIC SYSTEM

7.1 Phase Diagrams for Spin-1 Blume-Capel Model

In this section, using EFT method and MC simulations, we have evaluated

the phase diagrams of spin-1 Blume-Capel model and we have compared our MC

simulation results and EFT analysis with other methods.

Firstly, the phase diagram of the spin-1 Ising system with single-ion anisotropy

D/J and q = 4 is plotted in the
(

kBTc

J
, D

J

)
plane within the framework of effective

field theory with correlations. In order to plot this curve, we assumed 〈S0〉 = 〈S1〉,
and the effective field γ is very small in the vicinity of kBTc/J and solved the

set of linear equations in equation (4.1.14) numerically using the self-consistent

relation corresponding to equation (4.1.15).

Solid line in Fig. 7.1, shows the variation of the critical temperature kBTc/J

with crystal field D/J in the spin-1 Ising system with q = 4 and dashed line

shows our MC simulation results. As mentioned in equation (4.2.1), for our EFT

study, the critical temperature value at D/J = 0 is given as kBTc/J = 1.964.

On the other hand, according to our MC simulations critical temperature value

is given as kBTc/J = 1.69. Furthermore, the solid line on the plot shows that

for D/J < −1, kBTc/J becomes double valued. It implies that the spin-1 Ising

system with q = 4 may exhibit a first order transition (or the tricritical behavior)

below D/J = −1 at a negative tricritical value Dt/J . The value of critical Dt/J

which is shown by white circle in Fig. 7.1 for q = 4 is equal to −1.901. The lower

solution of the double-valued region between Dt/J = −1.901 and D/J = −1 just

corresponds to the unstable solution and below the point Dt/J = −1.901, the

kBTc/J curve for spin-1 system does not have a physical meaning. But our MC

simulations show that there is no double valued form of kBTc/J for any value of

D/J (dashed line in Fig. 7.1). At this point, one should notice that the solid lines
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in Fig. 7.1 are clearly different from that (Du et al, 2003). Because the EBPA

is a Bethe-Peierls-like approximation (Chakraborty, 1984) and the double-valued

region does not appear in the kBTc/J curve of the spin-1 Ising system as in our

MC simulations. In Table 7.1, we compare the values of Dt/J and kBTt/J at the

tricritical point with those obtained by the other approximation methods. From

Table 7.1, we see that the critical values of Dt/J and kBTt/J at the tricritical

point obtained on a square lattice within the framework of our EFT method are

much closer to the values obtained by EBPA (Du et al, 2003) than those obtained

by the other approximation methods including our Monte Carlo simulations (MC)

given in the same table.
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Figure 7.1 Phase diagram (kBTc/J versus D/J
plot) of spin-1 Ising ferromagnetic system on
square lattice (q = 4). The solid and dashed
curves represent our results of EFT and Monte
Carlo (MC) simulations, respectively. The white
circles on each curve denote the tricritical points.

The critical single-ion anisotropy for the BC model is universally found to be

Dt/qJ = −0.47 (Siqueira & Fittipaldi, 1986; Kaneyoshi et al, 1992b; Kaneyoshi,

1986). The phenomenon comes from the fact that the spin state at T = 0K

may change from the Sz
i = ±1 state to the Sz

i = 0 state at the critical value of

D/J = −q/2. Our result of −0.475 with EFT on square lattice shows just a little
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Table 7.1 Tricritical point Dt/J and the corresponding temperature kBTt/J
obtained by several methods and the present work.

MC RG EBPA EFT I-EFT

Dt/J -1.995 -2.004 -1.906 -1.880 -1.901

kBTt/J 0.51 0.928 0.846 1.0 0.753

deflection from this value while −0.499 for MC is a little bit different from this

value.



CHAPTER EIGHT
CONCLUSIONS

In this study we investigated the effects of crystal field, the longitudinal

magnetic field, and the biquadratic exchange interaction on the magnetic

properties of the spin-1 BC model and the spin-1 BEG model by using MC

simulations and the introduced EFT approximation and also compared the phase

diagrams obtained by using MC simulation and the introduced EFT method for

the BC model. Using the introduced EFT method, we can easily obtain

multi-spin correlation functions without any kind of decoupling approximation,

so it was found that the critical temperature for BC model is much closer to

those obtained by the expanded Bethe-Peierls and Bethe approximation than

those obtained by MFA, SE, EFT and DA approximations. On the other hand,

according to our MC simulations, the critical temperature value of the BC model

with q = 4 is in a good agreement with those of series expansion method.

Furthermore, we have discussed in detail the influence of longitudinal magnetic

field, crystal field and biquadratic exchange interaction on the magnetizations,

susceptibilities, internal energies and the specific heats of the BC model and the

BEG model, respectively. Using MC simulation method, we found that the type

of the hysteresis loops does not depend on the biquadratic exchange interaction.

In the previous sections, we have shown and discussed some typical results for

spin-1 system on the square lattice. On the basis of our analysis, we can conclude

that the introduced EFT method which considered partially the spin-spin

correlations has been successfully applied to a kind of Ising spin problem, which

is superior to conventional mean field theory and the EFT theory in the literature.

The phase diagrams of the BC model has been studied by different techniques

in the literature: Using the mean field approximation, effecetive-field theory,

Bethe approximation, series expansion methods, renormalization group theory,

finite cluster approximation, constant-coupling approximation and the cluster-
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variational method. Most of these approximate schemes predict in the BC model

the existence of a tricritical point at which the phase transition changes from

second-order to first-order when the value of D becomes sufficiently negative.

Our results show that the tricritical point value obtained by MC simulations is

much closer to those of Renormalization group method, on the other hand, the

value of Dt/J obtained by introduced EFT approximation is much closer to the

result of expanded Bethe-Peierls method.

In contrast to the results of MC simulations (dashed line in Fig. 7.1), within the

framework of our introduced EFT method (solid line in Fig. 7.1), we found that

for D/J < −1, kBTc/J becomes double valued. It implies that the spin-1 Ising

system with q = 4 may exhibit a first order transition (or the tricritical behavior)

below D/J = −1 at a negative tricritical value Dt/J . The lower solution of the

double-valued region between Dt/J = −1.901 and D/J = −1 just corresponds

to the unstable solution and below the point Dt/J = −1.901, the kBTc/J curve

for spin-1 system does not have a physical meaning. Furthermore, the critical

single-ion anisotropy for the BC model is universally found to be Dt/qJ = −0.47.

Our result of −0.475 with introduced EFT on square lattice shows just a little

deflection from this value while −0.499 for MC is a little bit different from this

value.

We hope that our results will be potentially very useful for studying and

understanding more complicated Ising ferromagnetic systems in the presence of

the biquadratic exchange interaction, the crystal field, and longitudinal magnetic

field.
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APPENDIX

Within the framework of the effective-field theory, the Hamiltonian

corresponding to the BC model can be separated into two parts: one (denoted by

Hi) includes all parts of H associated with the site i, and the other (denoted by,

H
′) does not depend on the site i. Then, H = Hi + H

′ , where −Hi is given by

−Hi = EiS
z
i + D (Sz

i )
2 + hSz

i

with

Ei = J
∑

j

Sz
j

In order to derive the formulation of the function F (x), we need the matrix

representation of the spin operator Sz
i and it is given by,

Sz
i =




1 0 0

0 0 0

0 0 1




and in Sz
i representation, −Hi can be rewritten in the form of a 3× 3 matrix as

−Hi =




Ei + D + h 0 0

0 0 0

0 0 −Ei + D − h




The general form of the function F (x) is defined by, (Jiang et al, 2005)

F (x) =
1∑3

n=1 exp(βλn)

{
3∑

n=1

〈ϕn|Sz
i |ϕn〉 exp(βλn)

}
(A.1)
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here, λn (n = 1, 2, 3) is eigenvalue and |ϕn〉 represents eigenvector with the

eigenvalue λn of −Hi. Eigenvalues and corresponding eigenvectors of −Hi can be

easily found as

λ1 = 0 ϕ1 =




0

1

0




λ2 = −Ei + D − h ϕ2 =




0

0

1




λ3 = Ei + D + h ϕ3 =




1

0

0




If we insert this relations into (A.1), we obtain the desired relation

F (x) =
2 sinh[β(Ei + h)]

2 cosh[β(Ei + h)] + exp(−βD)
(A.2)

Note that, when D → ∞, the function F (x) reduces to tanh(βx) and hence

(A.2) becomes equivalent to (3.1.10). In other words, when D takes a large

positive value, the BC model behaves like the standard spin-1/2 Ising model and

in this case the Sz
i = 0 state is not allowed energetically.

In order to derive the definition of the function G(x), one has to introduce the

relation (Jiang et al, 2005)

G(x) =
1∑3

n=1 exp(βλn)

{
3∑

n=1

〈ϕn|(Sz
i )

2|ϕn〉 exp(βλn)

}
(A.3)

Following the same procedure as in derivation of the function F (x), we can easily

obtain the relation corresponding to G(x) by substituting the eigenvalues and the
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corresponding eigenvectors of −Hi into definition (A.3)

G(x) =
2 cosh[β(Ei + h)]

2 cosh[β(Ei + h)] + exp(−βD)
(A.4)


