

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SIMULATION OF WAVE PROPAGATION IN

ANISOTROPIC MEDIA

by

Mustafa KASAP

October, 2008

İZMİR

SIMULATION OF WAVE PROPAGATION IN

ANISOTROPIC MEDIA

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering

by

Mustafa KASAP

October, 2008

İZMİR

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “SIMULATION OF WAVE PROPAGATION

IN ANISOTROPIC MEDIA” completed by MUSTAFA KASAP under

supervision of PROF. DR. TATYANA YAKHNO and we certify that in our

opinion it is fully adequate, in scope and in quality, as a thesis for the degree of

Doctor of Philosophy.

 Prof. Dr. Tatyana Yakhno

 Supervisor

 Prof. Dr. Valery Yakhno Prof. Dr. Alp Kut

 Thesis Committee Member Thesis Committee Member

 Examining Committee Member Examining Committee Member

 Prof. Dr. Cahit HELVACI

 Director

 Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENTS

First of all, my sincere thanks go to the jury members for their valuable reviews

and comments.

In addition, I would like to thank my wife Zerrin, for her love and support

throughout the ups and downs of this research period.

Most of all, I would like to thank my family for their support during this long

journey. I am indebted for your endless love and support.

 Mustafa KASAP

iv

SIMULATION OF WAVE PROPAGATION IN ANISOTROPIC MEDIA

ABSTRACT

Analyzing complex structures such as electromagnetic waves requires interactive

visualization techniques for better interpretation. Based on deep mathematical

knowledge, model of the structure and the medium is defined with computationally

expensive explicit formulas. Without using computer resources, it is difficult to make

robust analyses over the model. In such cases using computers are necessary for

rapid and reliable data computation and visualization. Moreover, computers are

necessary for disseminating the resulting information to other researchers. To fulfill

these requirements, interdisciplinary research between mathematics and computer

science is needed.

Considering the above requirements, in this thesis we studied the simulation of

wave propagation in anisotropic media. Firstly the explicit formulas are constructed

as a solution of the problem. Secondly appropriate parallel computation and

visualization technique is implemented. For this purpose we used graphic card

processing unit that is capable of executing hundreds of instructions in milliseconds.

Using this approach makes it possible to access the computation result directly in the

graphic card. By this way we eliminate the data transmission between main memory

and the graphic card memory. Immediately after computation, resulting data in the

graphic card’s memory is directly visualized. Finally we developed a web based

prototype platform that makes it possible to share the experiment results with other

scientists.

Keywords: Electromagnetic wave, complex structures, simulation, parallel

computation, visualization.

v

EŞYÖNSÜZ ORTAMDA DALGA YAYILIMININ SİMÜLASYONU

ÖZ

Elektromanyetik dalgalar gibi karmaşık yapıların analizi daha iyi yorumlanmak

için etkileşimli görüntüleme teknikleri gerektirir. Derin matematik bilgisi temel

alınarak, yapı modeli ve ortamı hesaplanması pahalı açık formüller ile tanımalanır.

Bilgisayar kaynakları kullanılmadan model üzerinde güvenilir analizler yapmak

zordur. Benzeri durumlarda güvenilir ve hızlı veri hesaplaması ve görüntülenmesi

için bilgisayar kullanımı gereklidir. Dahası, bilgisayarlar sonuçlanan bilginin diğer

araştırmacılara yayımı içinde gereklidir. Bu gereksinimleri karşılamak için

matematik ve bilgisayar bilimleri arasında disiplinler arası araştırma gerekir.

Yukarıdaki gereksinimler düşünülerek, bu tezde eşyönsüz ortamda dalga

yayılımının simülasyonunu çalıştık. İlk olarak problemin çözümünü sağlayan açık

formüller oluşturuldu. İkinci olarak uygun paralel hesaplama ve görüntüleme

teknikleri geçekleştirildi. Bu amaçla milisaniyeler içinde yüzlerce işlem yapabilen

grafik kartı işlemci birimi kullanıldı. Bu yaklaşımla hesaplama sonucuna grafik kartı

üzerinden direkt erişim mümkün oldu. Bu yolla ana hafıza ile grafik kartı hafızası

arasında veri taşınmasını ortadan kaldırdık. Hesaplamanın hemen ardından grafik

kartı hafızasında yer alan sonuç veri direkt olarak görüntülendi. Son olarak deney

sonuçlarının diğer bilimadamları ile paylaşımına olanak kılan web tabanlı prototip

platform geliştirdik.

Anahtar Kelimeler: Elektromanyetik dalga, karmaşık yapılar, simülasyon,

paralel hesaplama, görüntüleme.

vi

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Overview of Parallel Computation Architecture.. 2

1.3 The Goal of the Thesis ... 4

1.4 Methods and Tools... 5

1.5 The Structure of This Thesis .. 7

CHAPTER TWO - ELECTROMAGNETIC WAVE PROPAGATION.............. 8

2.1 Introduction .. 8

2.2 Maxwell’s System for Electromagnetic Waves ... 9

2.2.1 Finding the Solution.. 10

2.3 Exact Solution of the Electric Wave Propagation Equation 11

CHAPTER THREE - VOLUME VISUALIZATION .. 14

3.1 Introduction .. 14

3.2 Volume Data Structure for Visualization... 14

3.3 Raw Volume Data Structure After Calculation ... 16

3.4 3D Visualization Basics ... 22

3.4.1 Slice Plane Technique ... 22

3.4.2 Iso-surface Technique ... 24

3.4.3 Data Stream Line, Cone Plot and Arrow Plot Techniques 24

3.5 Texture Based Visualization .. 24

vii

3.6 Image Filtering for Visualization ... 27

3.7 Volume Rendering Theory... 29

3.7.1 Visualization af a Particle, a Pixel in a Volume.. 30

3.7.2 Ray-Casting... 31

3.7.3 Blending the Color .. 32

3.7.4 Shear-Warp Problem... 33

3.8 Graphics Hardware for Visualization... 34

3.8.1 Graphic Pipeline.. 34

3.8.2 Geometry Processing .. 35

3.8.3 Rasterization.. 35

3.8.4 Fragment Processing ... 36

3.8.5 Programmable Graphic Processing Units ... 36

CHAPTER FOUR - REAL-TIME WAVE PROPAGATION SIMULATION.. 39

4.1 Introduction and Related Work.. 39

4.2 Memory Allocation .. 40

4.3 Electromagnetic Wave Propagation Basics ... 44

4.3.1 Simulation of Wave Propagation .. 45

4.4 Fast Fourier Transformations... 48

4.5 GPU Based Computation ... 50

4.5.1 CUDA Computing Architecture ... 51

4.5.2 FFT, BLAS and Built-in Function Libraries... 53

4.6 Volume Visualization... 53

4.6.1 Pixel Buffer Object (PBO).. 54

4.6.2 CUDA PBO Interaction .. 55

4.7 Accelerated Simulation of Electromagnetic Wave .. 56

4.8 CUDA Limitations and Possible Solutions.. 58

4.9 Implementation .. 58

viii

CHAPTER FIVE - WEB BASED EXPERIMENT LIBRARY 60

5.1 Introduction .. 60

5.2 Resource Sharing ... 60

5.3 Shared Content ... 63

5.4 System Functionality.. 65

5.5 Mathematical Symbol Representation ... 70

5.6 File Compression and Extraction ... 71

5.7 Image Thumbnails.. 71

5.8 System Security.. 71

5.9 Video Streaming .. 72

5.10 ActiveX Control for Interactive Visualization... 73

CHAPTER SIX - CONCLUSION .. 75

6.1 Summary and Contributions .. 75

6.2 Future Works.. 76

APPENDIX A - MATLAB CODE TO SOLVE SYMBOLIC EQUATIONS..... 82

A.1 Positive Definite Function... 82

A.2 Test Function for Inverse Square Root of Epsilon.. 82

A.3 MATLAB Code to Find Explicit Equation for E .. 83

APPENDIX B - 3D VISUALIZATION OF PROPAGATION 87

APPENDIX C - SAMPLE CUDA COMPUTATION... 92

C.1 Matrix Multiplication by Sub-blocks .. 92

C.2 CUDA Based Fast Matrix Multiplication.. 94

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Analyzing the structure of electromagnetic waves during it is propagating inside

the anisotropic crystals is active research field. Outputs of this research field are

subject to many application areas from engineering to medicine (Cohen, Heikkola,

Joly, & Neittaanmaki, 2003). Main idea about analyzing the propagation of the

electromagnetic wave is to understand the internal structure of the materials where

the wave is emitted. Another reason is to simulate new materials that reflect the

desired behavior under several predefined conditions. Also it is known that the

electromagnetic waves coming from different sources propagate in the same

environment and their influence on materials especially the living ones are

unpredictable. Because of its importance, electromagnetic wave theory is developed

to simulate any desired system for further analyzes.

Mathematical model of wave propagation consists of several constants that

specify material and environment properties. Since the complexity of the model is

extremely increasing for most of the material types, it is impossible to solve their

equations expressed in the mathematical model. But the solutions of the model for

simple materials are represented with explicit formulas to apply numerical

computation. Desire for computer aided simulation to visualize the wave propagation

also requires explicit equations. It is almost impossible to find an explicit equation

with the traditional mathematical approaches. Symbolic computation method is

limited in some cases because of its complexity and mostly it is impossible to apply

“by hand” computation which produces potential errors. On the other hand numeric

computation method is simple but requires huge amount of computation steps that is

impossible to compute by hand.

Main solution for simulating the wave propagation according to a mathematical

model is to use computer programs which are fast and reliable but limited to its

2

hardware and software capacity. Popularity of computers in scientific computation

and limited computation power of desktop computers let several new approaches

developed for better performance. Mainly parallel execution algorithms and parallel

computation frameworks are developed for resource sharing. To be able to use those

algorithms, it is necessary have more then a computer interconnected by an

appropriate network infrastructure. Such approaches provide hundreds and thousands

time better performance but accessibility is limited because of the hardware cost.

Recently developments in computer industry make it possible to use parallel

computation feature with an ordinary desktop computer. By this way, previously

impossible or expensive computation methods become applicable and new research

fields are opened.

1.2 Overview of Parallel Computation Architecture

Efficient processing capabilities of desktop computers are not good enough for

scientific computation. Executions of generic applications are aimed during the

architectural design of the desktop computer’s processing unit. Modern desktop

computers have multi-core processors ranging from 2 to 4 with the capability of

processing multiple data at a time. Those processors are general purpose and the

amount of the processed data is limited with the number of processors. Processing

massive data even with 4 processors doesn’t have an acceptable performance. So

generally either distributed computation techniques or powerful computers with

specific architectures are used. Main disadvantages of such systems are the cost and

the accessibility.

Exponentially growing game industry brings several new technologies that open

new eras in scientific computation fields. Desire for visual realism in computer

games has increasing the performance of graphic hardware. To succeed visual

realism, fast computation technology is developed to process every pixel of each

frame in an animation. Aim is to apply complex lighting equations over the model

surface to produce real-like representation. The idea to process thousands of pixels at

a time is similar to processing massive data at a time. This also requires an

improvement in the processor number and directly accessible fast memory modules.

Since the price of generic processing unit and general purpose memory modules are

3

quite expensive for a desktop computer, graphics industry produced a new

technology to overcome those problems. Many processor but cheaper, so they are not

generic and can execute limited number of instructions. Limited size memory

modules but have very fast response time for direct accessibility by many processors

at a time. This specifications result in the birth of graphical processing units with

special graphic card architecture. New generation graphic cards have dedicated fast

memory modules and number of simple processing units that are many times faster

than generic CPUs (Central Processing Unit).

Figure 1.1 CUDA processing architecture.

Figure 1.1 represents the general computation architecture of the CUDA (Cuda,

2008), a scalable parallel programming model. In this schema, computer’s mainboard

is named as host, and the graphic card is named as device. Kernels are the CUDA

programs to be executed. Massive data is divided into blocks and each block is

divided into threads. Maximum number of blocks and threads are dependent on the

graphic cards’ model and so the capability. Each instruction within the kernel

(CUDA program or C++ like code) is executed at the same time over blocks of

threads. During the execution, each thread has different type of accessibility on

specific regions of the graphic card memory. In the appendix of the thesis there is a

matrix multiplication example demonstrated by using the CUDA features. Also in

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Thread
(0, 0)

Registers

Local
Memory

Thread
(1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread
(0, 0)

Registers

Local
Memory

Thread
(1, 0)

Registers

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Host

Kernel
1

Kernel
2

G
ra

ph
ic

 C
ar

d

M
em

or
y

4

chapter 4, details of the CUDA architecture that are used in wave propagation

simulation is also explained.

Figure 1.2 CPU and GPU comparision (Nvidia, 2008).

In Figure 1.2, two main performance issues are illustrated for comparison reasons.

Figure on the left shows the GFlops (Giga floating point operations per second)

comparision between an Intel CPU and Nvidia GPU (Graphics processing unit) over

time. Figure on the right shows the memory bandwidth comparision which is

important for efficient data transfer. Acronyms such as NV, G and GT are

representing the generation of the GPU. Names Harpertown etc. are the names of

CPU models. Alone this figure is enough to show the performance improvements of

an ordinary desktop graphic card.

1.3 The Goal of the Thesis

Currently there is no single application on the market that is capable of solving

complex mathematical equation and performs real-time visualization of massive data

at the same time. One of the well known applications Matlab (Matlab, 2008) has

such capability but the computation performance is not satisfactory for real-time

simulation. In our previous work (Kasap, 2003; Yakhno, 2003), we succeed

simulating the wave propagation in an isotropic homogeneous medium by using

Matlab application. We solve the Cauchy problem and found the explicit formulas

for the solutions of electromagnetic wave propagation. One of the shortcomings of

the previously developed system was the computation time for single material

simulation. It took hours or days to compute a numerical solution of wave

propagation at a specific time slice. Another shortcoming is the performance of the

5

visualization stage. It is almost impossible to visualize 3D representation of the

propagation with a user interaction like rotating the model during the animation. First

picture in Figure 1.3 (left) is a sample output of Matlab based simulation which is not

possible to animate or transform for further analyses. Second picture (right) is a

snapshot of 3D real-time animation by using the recent method.

Figure 1.3 Simulating the propagation of an electric field component at time t.

The goal of the thesis is to overcome such problems and simulate the propagation

of electromagnetic wave within different material types. Solution of the equation for

a specific environment, numerical computation and animated visualization are

performed in real-time which make it novel according to our knowledge.

1.4 Methods and Tools

In this thesis we have used mainly three types of programming libraries. First set

of libraries are provided by Matlab for extendibility. Matlab provides a development

environment where the user can write mathematical equations that will be solved by

the computation engine. This independent environment has an input and output

window where the result of the computation is streamed or the user defined functions

are entered. With this functionality it is not possible to integrate Matlab into another

environment where you can programmatically input equations and get results as an

input to another program. To overcome this problem, we used Matlab compiler

where you can write Matlab functions and compile them as C++ libraries that can be

linked to another C++ application. Matlab compiler generates a wrapper file and

corresponding header file which makes it possible to call the user defined functions

6

written in Matlab specific language. For parallel computation and fast graphical

drawing purposes, we used CUDA graphic processing unit programming libraries.

And finally for the visualization purposes, we prefer OpenGL graphic library which

provides user input handlers for model transformations and high level graphic

programming library interface. General overview of this framework is represented in

Figure 1.4.

Figure 1.4 Main components of the simulation framework.

Main difference between this and our previous work is the CUDA library that we

used for real-time simulation. Recent developments in computer graphics hardware

now makes it possible to process thousands of data at the same time. Mainly this

feature is aimed to be used for rendering graphic primitives pixel by pixel. Since

graphic applications like games have animated scenes with around 25 frames per

second, applications must process every pixel in every frame of the animation.

Though recently developed graphic cards have the programmability property for fast

visualization performance. There exists a support of native low and high level

mathematical functions in CUDA enabled new graphic cards. Mostly the low level

trigonometric functions and high level Fourier transformation functions of these

features are used in our case. Another benefit of those graphic cards is in-place

computation support. Since the computations are handled on the graphic card, results

are directly written on the graphics card memory. With this feature there is no need

to make data transfer between main board and the graphic card. Also native support

for Fourier computations makes the best use of memory locations. On the other hand

OpenGL library provides the necessary high level graphical programming interface

for the visualization stage. CUDA has the interoperability capability with the

C++ application

Matlab libraries CUDA libraries OpenGL libraries

7

OpenGL libraries. It is possible to apply transformation operators on the CUDA

generated data values by means of OpenGL library commands.

1.5 The Structure of This Thesis

Thesis consists of six main chapters. First chapter is dedicated for the general

description of the problem that is solved. In the second chapter brief description of

Maxwell theories are given and explicit formulas for electromagnetic wave

propagation introduced. In the third chapter visualization techniques are presented.

Recent techniques that are used for volume data visualization is mentioned. In the

forth chapter, the real-time system that we developed to simulate the wave

propagation is described. The fifth chapter is dedicated for web based simulation

library that we developed for publishing the experiment results. In the last chapter

analyses of the developed system and future works mentioned. Appendix contains

several code snippets used in the developed simulation system. Also from the

developed application, several screenshots of the wave propagation simulation is

illustrated.

8

CHAPTER TWO

ELECTROMAGNETIC WAVE PROPAGATION

2.1 Introduction

In this chapter, base of electromagnetic wave propagation in anisotropic

dielectrics are studied. Direction of the wave propagation shows different behaviors

in anisotropic dielectrics. On the other hand the behavior is linear in isotropic

dielectrics. Generally the explicit formulas for fundamental solutions of the Cauchy

problem for electromagnetodynamic system are represented. Specifically the theory

developed by Maxwell and Hertz is used to solve the problem and represent the

electromagnetic waves by means of two vector fields E and H, the electric and

magnetic fields. Formulation of the explicit formula differs according to the type of

crystalline material. It is known from crystallography that in crystalline materials the

constituent atoms are arranged in a regular repeating configuration. By analyzing the

smallest unit of material it is possible to create the three dimensional replication.

Again according to crystallography science the smallest unit of a material have one

of seven basic shapes, such as cubic, hexagonal, tetragonal, trigonal, orthorhombic,

monoclinic, triclinic. These symmetry properties tell how the cell can be reflected,

rotated and inverted to produce the same special arrangements of atoms. For linear

homogeneous non-dispersive anisotropic dielectrics the electric flux density D and

the electric field E have the following connection ED ε= . The relation of the

crystallographic structures of anisotropic dielectrics with the structure of their

dielectric permittivity tensor E is presented by Table 1 (Dienlesaint, 1980).

Details of the research results that we mentioned in this section are also published

in a journal (V.G. Yakhno, T.M. Yakhno, Kasap, 2006).

9

Table 2.1 Crystal systems and dielectric permittivity tensor structures. (diag = diagonal matrix)

Crystallographic
structure of dielectrics

Dielectric tensor ε structures

Cubic 0),,,(11111111 >= εεεεε diag

Hexagonal, tetragonal

and trigonal

0,0),,,(3311331111 >>= εεεεεε diag

Orthorhombic 0,0,0),,,(332211332211 >>>= εεεεεεε diag

Monoclinic

0,0,0,
00

0
0

2
1222112211

33

2221

1211

>−>>
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= εεεεε

ε
εε
εε

ε

Triclinic

,

333231

232221

131211

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

εεε
εεε
εεε

ε ε is symmetric positive definite.

2.2 Maxwell’s System for Electromagnetic Waves

Propagation of electromagnetic wave within an anisotropic homogeneous medium

is described by Maxwell’s system. Two vector fields, namely the electric (E) and

magnetic (H) fields are used to build the system. The properties of the anisotropic

homogeneous medium within this system are given by symmetrical matrices ε and

μ , where ε and μ are positive definite and they are used to define magnetic

permeability and dielectric permittivity. Maxwell’s system is defined by the

following equations:

,j
t
EHcurlx +
∂
∂

= ε
(2.1)

,
t

HEcurlx ∂
∂

−= μ (2.2)

10

,0)(=Hdivx μ (2.3)

,)(ρε =Edivx (2.4)

Where t is time variable from ℜ , ρ is the density of electric charges,

),,(321 EEEE = ,),,(321 HHHH = are electric and magnetic fields,),(txEE kk = ,

),(txHH kk = ,),,(;3,2,1 321 jjjjk == is the density of the electric current,

3,2,1),,(== ktxjj kk . The operator xcurl and xdiv are defined by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

=
2

1

1

2

1

3

3

1

3

2

2

3 ,,
x
E

x
E

x
E

x
E

x
E

x
E

Ecurlx ,

3

3

2

2

1

1

x
E

x
E

x
EEdivx ∂

∂
+

∂
∂

+
∂
∂

= .

The conservation law of charges is given by (Ramo, 1994)

0
t

=+
∂
∂ jdivx
ρ (2.5)

2.2.1 Finding the Solution

To find a solution for the above equations we assume that 1=μ and 33)(×= ijεε is

a symmetric positive definite matrix with constant elements. Moreover the following

initial conditions are assumed to be true:

0=E , 0=H , 0=ρ , 0=j for 0≤t (2.6)

this condition means that there is no electric charges and currents at the time

0≤t ; so the electric and the magnetic fields vanish until this time.

Since ε and j are given, the main problem is to find E and H that satisfy the

equation 2.1, 2.2 and the condition 2.6. We note that ρ can be defined as a solution

of the initial value problem for the ordinary differential equation 2.5 with respect to

t , subject to 00=≤tρ . Here jdivx is given.

11

Differentiating equation 2.1 with respect to t and using 2.2 and 2.6 we find

,,, 3
2

2

ℜ∈ℜ∈
∂
∂

+
∂
∂

=− tx
t
j

t
EEcurlcurl xx ε (2.7)

00=≤tE (2.8)

Therefore for the solution of the main problem first of all we have to find),(txE

satisfying 2.7 and 2.8 and after that we can find),(txH satisfying 2.2 and the

condition 00=≤tH is),(txE is given.

2.3 Exact Solution of the Electric Wave Propagation Equation

Let),(~ tvE ,),(~ tvj be the Fourier transform images of the electric field),(txE

and current),(txj with respect to 3
321),,(ℜ∈= xxxx , i.e.

[] []),,(),(~),,(),(~ tvjFtvjtvEFtvE xx ==

where

[]

.1,),,,(

,),(),(

2
332211321

321

−=++==

= ∫ ∫ ∫
+∞

∞−

+∞

∞−

+∞

∞−

ivxvxvxxvvvvv

dxdxdxetxEtvEF ivx
x

The problem 2.7 and 2.8 can be written in terms of the Fourier image),(~ tvE as

follows:

,,
~~)(

~
3

2

2

ℜ∈
∂
∂

−=+
∂
∂ t

t
jEvS

t
Eε (2.9)

,,0E~ 3
0t ℜ∈=≤ v (2.10)

where

12

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−
−+−
−−+

=
2
2

2
13231

32
2
3

2
121

3121
2
3

2
2

)(
vvvvvv
vvvvvv
vvvvvv

vS (2.11)

The method of the exact solution consists of several steps. In the first step, using

the transfer matrix formalism for the given)(vS and symmetric positive definite

matrix ε we construct a non-singular matrix F and a diagonal matrix)(vD with

non-negative elements such that

,)()(IvTvT T =ε (2.12)

),()()()(VDvTvSvT T = (2.13)

where I is the identity matrix,)(vT T is the transposed matrix to)(vT .

In the second step we are looking for the solution of 2.7 and 2.8 in the form

),,()(),(~ tvYvTtvE = (2.14)

where the matrix)(vT is constructed in the first step and a vector function),(tvY

is unknown. Substituting 2.14 into 2.9 and 2.10 we find

,,,
~

)(3
2

2

ℜ∈ℜ∈
∂
∂

−=+ vt
t
jYTvS

dt
YdTε (2.15)

.,0),(3
0 ℜ∈=≤ vtvY t (2.16)

Multiplying 2.15 by)(vT T and using 2.12 and 2.13 we have

.,,
~

)()(3
2

2

ℜ∈ℜ∈
∂
∂

−=+ vt
t
jvTYvD

dt
Yd T (2.17)

In the third step of the method, using the ordinary differential equations technique,

a solution of the initial value problem 2.16 and 2.17 is given by

13

),(
),(
),(

),(

3

2

1

tvY
tvY
tvY

tvY = , (2.18)

where for 0<t the function),(tvYn vanishes and for 0≥t is defined by

[] ,),(~)())()(cos(),(
0
∫ −−=
t

n
T

nn dvjvTtvdtvY τττ if ,0)(>vdn (2.19)

[] ,),(~)(),(
0
∫−=
t

n
T

n dvjvTtvY ττ if ;0)(=vdn ,3,2,1=n (2.20)

where 3,2,1),(=nvdn are elements of the matrix []nT vjvTvD),(~)();(τ is the n th

component of the vector),(~)(τvjvT T .

Using formula 2.14, 2.18-2.20 and given matrices)(),(),(vDvTvT T found in the first

step we find the Fourier image of the electric field),(~ tvE . In the last step the electric field

),(txE is determined by the inverse Fourier transform 1−
vF of),(~ tvE , i.e.

[] ∫ ∫ ∫
+∞

∞−

+∞

∞−

+∞

∞−

− == .),(~
)2(

1),(~),(3213
1 dvdvdvetvEtxEFtxE ivx

v π

The procedure for finding the magnetic field is the same with the above formulations so it

is not repeated in the text. Appendix A contains MATLAB code for finding the Electric field

vector. In all steps of the code we execute extra instructions to prove the correctness of the

intermediate results (i.e. singularity of resulting matrix).

14

CHAPTER THREE

VOLUME VISUALIZATION

3.1 Introduction

In this chapter we will discuss about the general volume rendering methods and

then focus on the specialized techniques that are used in the thesis. Also these

specialized techniques are explored under two different categories. First we will

explain the third party tools used for visualization and then we will explain our own

tools for optimized visualization techniques.

Traditionally volume data represented with polygonal meshes. Visualization of

such surfaces handled with special lightening algorithms. Earlier in computer

graphics Phong shading algorithms are used to illuminate a model (Phong, 1973).

Currently there exist much more complex BRDF (Bidirectional reflectance

distribution function) lightening algorithms for realistic visualization of the models.

All those lighting algorithms interact with the surface of the model to generate

corresponding illumination effects. In volume rendering, without doubt we need to

visualize the interior part of the models with special illumination algorithms.

Generally volume rendering is used for scientific visualization (Levoy, 1988) of

multidimensional data with variety of techniques such as magnetic resonance

imaging, computed tomography, wave propagation. In recent decades, there are

specialized research groups working on the volume rendering subject by both

improving the algorithmic techniques and hardware implementations. One example

is Semcad (Semcad, 2008) company which is developing special hardware and

software for processing and visualizing real-time medical data. They use special

hardware devices which can process millions of model vertices per second.

3.2 Volume Data Structure for Visualization

Volume data for visualization is mainly represented with a three dimensional

array. Data type of this array depends on the resolution of the volume data. In

15

computer graphics, each element of the volume is called voxel (Kaufman, 1994).

Some example data sizes for a voxel are 4 bit, 1 byte, 3 byte, 4 byte etc.

Figure 3.1 Voxel representation.

In Figure 3.1, two different representation type of the voxel are illustrated. In the

first example (first row) each voxel defines the RGB components of its color. There

exist different color space representations like CMYK, HSV etc. In comparison to

others, RGB is the most popular representation type used in graphic cards at

hardware level color representation. To define a color in RGB color space, one need

to have three data components that corresponds to Red, Green and Blue values. Size

of a voxel depends on the sum of sizes of those components. As an example

assuming the size of each component is 8 bit (1 byte) in RGB space, and then we can

represent 28*28*28 different color within this space. By using just a single component,

it is possible to represent 28 different gray colors. In the second example (second

row) of the Figure 3.1, each voxel is an integral value referencing to the index of the

Volume Data
or

3D data array

Voxel

Detailed voxel representation:
Each voxel defines RGB
(RedGreenBlue) color

Detailed voxel
representation: Each voxel
defines an index value to
precomputed color array

16

color of that voxel. In such cases, along with the volume data, indexed color map

must be provided. If only 16 different colors are used in data volume then each voxel

size would be 4 bit length. With 4 bit data, 24 = 16 different color index can be

defined. Number of bits used to represent the color is called color depth. To compare

data storage size of these two different approach lets assume that we have the size

10x10x10 of volume data. So this volume data consists of 1000 voxels. In this

volume data assume that just 16 different colors are used. For the first approach,

assuming that each voxel is used to define 24bit (3 byte) color information then final

data storage size will be 3000 byte (~3 Kilobyte). For the second approach, we

generate an indexed color map for 16 different colors. Size of this map will be 16 *

24 bit = 48 byte. Apart from the color map size, volume data size will be 1000 * 4 bit

= 500 byte. Here 4 bit represents the index of one of the 16 color in the map so total

data size will be 500 byte + 48 byte = 548 byte (1/2 Kilobyte). Depending on the

number of distinct colors in the volume, one of these approaches can be preferred.

There exist lots of other optimized methods like using data compression for volume

data storage but the above two method represented just to depict the general idea. In

case of the data compression techniques, high level computer graphic card properties

are used. Two well known high level graphic programming interfaces are OpenGL

(OpenGL, 2008) and DirectX (Directx, 2008). While using these interfaces,

compressed data is send to a graphic card for visualization. In this way, limited size

graphic card memory can be efficiently used by sacrificing the performance.

3.3 Raw Volume Data Structure After Calculation

In our system, calculation with specific electromagnetic wave propagation

parameters results in 3D data array. Each component of this array represents the

intensity, pick level of the propagation in the corresponding point of the 3D

environment. We used 8 byte double precision floating point data type (Goldberg,

1991) for declaration of each array element. Transformation between intensity values

to a color value is handled with special algorithms. This process demonstrated with

the following sample MATLAB example. 3D volume data cube consists of 2D

frames so to make it simplified, here only 2D frame used to demonstrate the

17

transformation. First we generate a random 2D double array as represented in Figure

3.2.

>> Frame2D = magic(4)

Frame2D =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Figure 3.2 Random numbers generated by inline Matlab function.

Resulting value is a 2D array where data type of each array component is double.

This array is stored in variable called Frame2D. Values of the components of the

array vary from 1 to 16. According to this range we generate an indexed color map

with 16 different RGB color values.

>> map = jet(16)
map =
 0 0 0.7500
 0 0 1.0000
 0 0.2500 1.0000
 0 0.5000 1.0000
 0 0.7500 1.0000
 0 1.0000 1.0000
 0.2500 1.0000 0.7500
 0.5000 1.0000 0.5000
 0.7500 1.0000 0.2500
 1.0000 1.0000 0
 1.0000 0.7500 0
 1.0000 0.5000 0
 1.0000 0.2500 0
 1.0000 0 0
 0.7500 0 0
 0.5000 0 0

Figure 3.3 Color map values.

Resulting value stored in a variable called map which is a 16*3, 2 dimensional

array. This variable holds 16 different color values with three RGB color components.

Visualizing 2D array data stored in the Frame2D variable with a specific color map

stored in the variable map is shown in Figure 3.4.

18

>> image(Frame2D)
>> colormap(map)

Figure 3.4 2D data visualization.

Value of the second element of the color map is {0, 0, 1.0} where first and second

components are 0, and this means red and green contributions are zero but the third

component, 1, means full blue contribution. Final color representation of this second

element is pure blue. Changing this array element to {0, 0, 0} means that it is black.

>> map(2,:) = [0; 0; 0]
map =
 0 0 0.7500
 0 0 0
 0 0.2500 1.0000
 0 0.5000 1.0000

 . . .
 1.0000 0.7500 0
 1.0000 0.5000 0
 1.0000 0.2500 0
 1.0000 0 0
 0.7500 0 0
 0.5000 0 0

Figure 3.5 Modified value of color map.

Resulting visualization of Frame2D data with the modified color map is

illustrated in Figure 3.6.

19

>> image(Frame2D)
>> colormap(map)

Figure 3.6 Data visualization with modified color map

First row, second column of the Frame2D data array is equal to 2. This means

that the color value on that position will be black as it is represented in the resulting

Figure 3.6.

The above example data array is visualized with the following steps:

- Create a color map. Size of the color map may vary according to the number of

distinct data value in the data.

- Find minimum and maximum values in data array.

- Linearly map the minimum value to the first indices of the color map and

maximum value to the last indices. Other values between minimum and maximum

values are linearly mapped to the closest indices.

Scaling the indices map is also possible. i.e. instead of linear mapping it is

possible to use non-linear mapping to emphasize greater values with more color

intensity. This technique is used in our case to emphasize the wave front.

20

>> eps = 0.1;
>> x = -3:0.005:3;
>> y = sin(x / eps) ./ (pi * x);
>> plot(x, y);

Figure 3.7 Filtering wave front with color map.

In Figure 3.7, sample wave front represented with some fluctuation. To remove

the noisy data ranging between -0.5 to 0.5 we can define a color map where the

values between this ranges represented with white color. Other values, here the pick

or wave front, will be represented with some other color.

Main wave front

21

eps = 0.1;
x = -3:0.005:3;
y = sin(x / eps) ./ (pi * x);
y2D = repmat(y, [256 1]);
imshow(y2D);

map = jet(32);
colormap(map);

Figure 3.8 None filtered data visualization.

Figure 3.8 is the visualization result of the sample wave that is represented in

Figure 3.7. Since there is no filtering operator applied, the fluctuations are

represented with the color blue and its variations. On the other hand same data is

filtered to remove the data between the interval [-0.5, 0.5].

eps = 0.1;
x = -3:0.005:3;
y = sin(x / eps) ./ (pi * x);
y2D = repmat(y, [256 1]);
imshow(y2D);

map = jet(32);
map(1:20,:) = ones(20,3);
colormap(map);

Figure 3.9 Data filtering through color map.

22

3.4 3D Visualization Basics

There exist many third party tools (Matlab, 2008; Mathematica, 2008) which

support generalized visualization techniques for volume data. We will focus on

Matlab application that is used in our examples. We can categorize volume data

under two main heading:

- Scalar volume data, where each cell of the volume data contains single value.

- Vector volume data, where each cell of the volume data contains more than one

value.

In section 3.2, volume data structure is presented with scalar volume data where

each cell holds the amplitude of the wave on the corresponding position. In our case,

we have both electric and magnetic waves propagating in space where each wave has

three components in a specific point of the space. This in mind, finally we will be

dealing with vector volume data visualization.

For simplicity, we will describe application of some common visualization

methods by starting from Scalar to Vector data. For scalar data we will demonstrate

iso-surfaces and slice planes, for vector data the stream lines, cone plots and arrow

plots.

3.4.1 Slice Plane Technique

Slice plane is based on defining three orthogonal planes. Data values on a plane

and volume intersection area are projected on the corresponding planes.

23

Figure 3.10 Slice plane representation of volume data.

Figure 3.10 represents the visualization of the three dimensional data cube where

each cell of the cube holds a floating point value. Each floating point value

corresponds to the intensity of the wave propagating from the center of the cube at a

specific time value. Taking three orthogonal planes from this cube means extracting

specific indices ranges from each dimension of the cube. Corresponding array values

are visualized as mentioned in section 1. So the result is a kind of image where the

specific orthogonal planes of the volume are projected.

24

3.4.2 Iso-surface Technique

Iso-surface generation from a data cube requires some preprocessing stages like

filtering the data. According to a user specified iso-value, data is filtered and closer

values around iso-value are kept. Only the resulting contour values rendered as a

shell. Below figure represents sample wave propagation at a specific time value.

Figure 3.11 Iso-surface representation of volume data.

3.4.3 Data Stream Line, Cone Plot and Arrow Plot Techniques

Data stream lines require special volume data. In contrast with the previous

examples, stream line data has vector data with three or more components. Each

vector on the corresponding volume position visualized as a continuous ribbon. In

cone or arrow plot technique, each vector value is represented with directional cone

or arrow in the corresponding volume position.

3.5 Texture Based Visualization

Rendering large amount of data requires special techniques even a special

hardware. One of the recent approaches for visualization is to use cluster of

computers for parallelized volume rendering (Humphreys et al., 2000). In this

approach, it is necessary to combine networked computers and use special parallel

programming algorithms for both calculation and visualization. Such kind of

implementation requires more than one powerful computer with cost effective

constraints. An alternative approach is to use the capability of graphic cards’

25

computation resources. By this way, load balancing between the computers central

processing unit (CPU) and the graphic processing unit (GPU) is achieved. Graphic

card based computation and visualization techniques will be explained in the

following chapter. In this section we will demonstrate texture based volume

rendering methods by using CPU power.

Texture volume rendering is based on a chunk of image files. With optimal delta

value, image slices are extracted from a volume data. These images are then

combined together by adjusting a translucency value to visualize them as a whole

volume cube. One of the main researches based on this method is visualization of

human body project called Visible Human (Visible Human, 2003). Within this

project, acquisition of transverse CT, MR and cryosection images of representative

male and female cadavers are generated. Female cadaver sectioned at one third of a

millimeter intervals. Each section is a 2D image file where special visualization tools

are used to combine these images and visualize them as a single volume. One of the

main features of these tools is to let the end-user to explore a specific part of the

volume details.

As in Visible Human project, we make calculations to compute the final volume

data. Before starting the visualization step, we generated a set of 2D images from the

resulting volume data. Those images are combined together with a special

application for visualization. In Figure 3.12, some sections from the volume data are

represented. Before using these images, preliminary filtering process takes place to

have clear visual results in the final volume image. Details of filtering process are

described in the next section. In this example, the simple filtering method mentioned

in section 3.3 is used.

26

Figure 3.12 Row and filtered images of sections from volume data.

Above images are combined together and mapped on proxy geometry which is

simply a box. Final geometry rendered as a 3D object (cube) with volume texture

mapping methods. Schematic representation of this process is shown in Figure 3.13.

Figure 3.13 Volume rendering pipeline.

Sampling rate and delta value between each image is directly affecting the quality

of the visualization. If this value is not small enough, then smooth interpolation

between each image is not possible. Also this will lead to an incorrect emission and

absorption on the final result.

Data Proxy Geometry Volume

27

3.6 Image Filtering for Visualization

Numerical simulation of the magnetic wave data contains fluctuations in the raw

texture files. Apart from these fluctuations, nature of the inverse fast Fourier

transformation that is used in the calculations also produces some noise. Main wave

front overrides these side-effects by its strong intensity and visually it is easy to

recognize the wave front. We tried two different filtering types for eliminating this

noisy data from the image. First we found the main intensity component according to

the image histogram. Except from this intensity value, we assigned zero as a

transparency value to the rest of the image pixels. Figure 3.14 represents the

elimination of different intensity values.

Another filtering method is canny edge detection algorithm (Canny, 1986). In this

method, image is smoothed with Gaussian convolution then first derivative operator

is applied to highlight the image. By this way, edges became much more bumped in

the recent gradient magnitude image. These bumped pixels are tracked to generate a

line on the final output. Second row of the Figure 3.12 represents the filtered

versions of images with canny edge detection algorithm.

28

50 100 150

20

40

60

80

100

120

140

160

50 100 150

20

40

60

80

100

120

140

160

50 100 150

20

40

60

80

100

120

140

160

50 100 150

20

40

60

80

100

120

140

160

50 100 150

20

40

60

80

100

120

140

160

Figure 3.14 Image filtering by histogram.

29

3.7 Volume Rendering Theory

There are many application areas such as medicine, geology, archeology, material

science, biology, computational science, computer science that are using volume

rendering. Most of these application areas deal with Computed Tomography (CT)

scan data. CT data supposed to be a set of 2D images. Depending on the resolution of

the scanned data, 2D image size and color depth are varying. Also number of images

in a set is directly related with the number of samples taken from the subject. There

exist different sample CT datasets on Internet for research purposes like Visible

Human Dataset. In Figure 3.15 set of the 2D images gathered by CT scan and

combining these images to generate the 3D leg volume generated by the combination

of the images are presented.

Figure 3.15 Volume representation of human leg from a set of 2D CT images.

One of the volume visualization methods is to simulate data with an optical

method approach. Each value in the volume assumed to be particles behaving like

optical material that can absorb, reflect, emit, and scatter the light. In his paper, Max

(1995) summarizes all these methods for volume rendering.

Absorption only method: Volume is consisting of optical particles which absorb

the coming light.

Emission only method: Volume is consisting of optical particles which emit the

light but not absorb.

30

Absorb and Emission method: No scattering and shadowing. It is a combination of

the previous two methods.

Apart from the above methods, there exist many other complex methods for

volume rendering like self shadowing, scattering, etc.

3.7.1 Visualization af a Particle, a Pixel in a Volume

Volume rendering by means of particle visualization is the basic approach in this

field. There exist different approaches for visualizing the optical particle. Common

approach is ray-casting method which is supposed to be the basics of numerical

method. Main idea is to cast a ray from the eye to the center of the particle in the

volume and than integrate the optical properties along the cast to the particle. The

result of this integration will be the particle’s cumulative intensity. During the

integration, some assumptions considered because of the numerical approach to the

continuous data. Riemann sum is used as an integration method for such numerical

approximation. It is called radiant energy and the model is represented in Figure 3.16.

colors emissive :
tcoefficien Absorption :

ray thealongposition scalar :)(
 volume theintocast ray :

distance :

c(s)
κ(s)

(t)xs
(t)x

t

r

r

Figure 3.16 Radiant energy emittion model.

Energy emitted at dt = is absorbed during it comes to the eye where 0=t . If the

absorption is constant during the distance t , then only the energy, c′ , emitted from

the source will reach the eye.

absorption

emission

t = d t = 0 eye

31

decc κ−=′ *

If the absorption coefficient is not constant during the distance from eye to the

particle then the formula will be:

dtt
ecc

d

∫−
=′ 0

)(
*

κ
, dttd

d

t
∫
=

=
0

)(),0(κτ

Here the integral is called the absorption depth τ . Total amount of the energy

coming to the eye is not only the energy emitted from the particle but also the other

particles apart from the subject. So we will take the integral from 0 to infinity.

∫
∞

−∫=
0

)(
0*)(

dtt
t

etcC
κ

3.7.2 Ray-Casting

Ray-casting (Levoy, 1988) is a method of image generation of 3D volume from a

specific perspective. For each pixel of the image, one ray is casted into the scene to

find the corresponding cumulative energy that is emitted through the ray. Along the

equal spaced intervals, generally tri-linear filter used to resample the data where in

3D neighboring 8 pixels is used to sample the center pixel. So the optical depth τ is

approximated by Riemann integral:

⎣ ⎦

∑
Δ

=

ΔΔ=≈
tt

i
ttitt

/

0
)*(),0(~),0(κττ

Here tΔ is the distance between to sampled pixel. By substitution we can rewrite

the above formula in multiplication form

⎣ ⎦

∏
Δ

=

ΔΔ−− =
tt

i

ttit ee
/

0

)*(),0(~ κτ
 (3.1)

32

If we denote opacity with A by means of alpha blending

tti
i eA ΔΔ−−=)*(1 κ

Finally the equation becomes

⎣ ⎦

∏
=

− −=
dt

j
j

t Ae
/

0

),0(~
)1(τ

Similarly emitted energy of the i th ray segment will be

tticCi ΔΔ=)*(

Now we both approximated the emission and the absorption of a single ray that

pass through the particle. So the final integral will be

∑ ∏
=

−

=

−=
n

i

i

j
ii ACC

0

1

0

)1(~

where n is the number of samples. This final equation can be evaluated from back

to front or vice versa. Generally in computer graphics, because of computational

complexity, back to front evaluation is preferred.

3.7.3 Blending the Color

Because of its computational simplicity here we will demonstrate back to front

evaluation of the color blending approach so index variable i changes from 1−n to

0.

'
1

')1(+−+= iiii CACC

If we suppose that the starting condition 0' =nC , iteratively we can calculate the

desired value by back to front evaluation.

33

Figure 3.17 Application of ray-casting method for volume rendering.

3.7.4 Shear-Warp Problem

Ray-casting method for volume rendering requires so much computation. In real-

time rendering case, for huge data, it is almost impossible to use ray casting with

ordinary graphic hardware. One alternative approach which mimics ray-casting

method is called Shear-Warp algorithm.

Figure 3.18 Application of shear-warp algorithm with orthogonal projection.

Image Plane

Casted Ray
Image Slices

Equal space sampling with bi-linear filtering

Shear

W
arp

Image Plane

Casted Ray
Image Slices

Equal space sampling with tri-linear filtering to find
closest texture pixel

34

Figure 3.18 illustrates the application of shear-warp algorithm. Sampling distance

along the rate is equal to the distance between each image slice. Looking to the

volume from different angles, not perpendicularly, requires shearing the volume.

After shearing integrated color value is warped and projected on the image plane.

These approaches are much faster than ray-casting method. Also the shear-warp

method is improved with run-length compression algorithms which are suitable for

back to front approximation for color blending.

3.8 Graphics Hardware for Visualization

There have been significant improvements in graphics hardware during the recent

years. Initially the trend is focused on fixed graphical pipeline for rendering until

1998s. Then programmable pipelines take stage and finally fully programmable

floating point graphic processing units became popular. Recent developments show

that there is challenge in achieving higher programmability and parallelism in

graphic hardware. Success of such improvements based on producing graphics cards

with billions of transistors on a single chip. Because recent graphic cards have such a

powerful performance, they became popular for implementing general purpose

computation and parallel processing algorithms.

3.8.1 Graphic Pipeline

We can numerate the standard graphic pipeline under three subgroups:

Geometry processing: Transformation operations such as translation, rotation,

scaling are applied on the vertices of the primitives. New transformed vertex values

are then combined together to form the final point, line, polygons. This stage is

known as the geometry processing stage of the standard graphics pipeline.

Rasterization: Fragment values of the primitives are determined in the

rasterization stage. Each fragment value corresponds to a pixel value on the final

display device. If there is an association with the primitive and a texture, then

rasterization operation takes place.

35

Fragment operations: Various fragment operations are performed such as

lightening, culling, depth test, etc. Final color value of the corresponding pixel is

determined in this stage.

Figure 3.19 Standard graphic pipeline.

3.8.2 Geometry Processing

Per-vertex operations are performed in this stage. Transformations and the per-

vertex lighting operations are performed. More precisely, model transformations that

are positioning each primitive in the virtual world takes place. Transformations are

performed by 4x4 matrices in homogeneous space. One another transformation

called viewing transformation also takes place in this stage again with 4x4 matrices.

Viewing transformation is used to position the camera that projects the virtual world

or scene. Combination of the model and view matrix generates single matrix which

makes it efficient in numerical calculations. After the recent calculations Phong

(Phong, 1973) shading algorithm is used to make the illumination calculations on the

model. Next step in this stage is the clipping operation where the invisible parts of

the model and parts out of the camera scope are clipped. Finally perspective or

orthogonal projection matrices are performed on the recent vertex values to project

them on the scene with their real positions.

3.8.3 Rasterization

Rasterization is the process of converting geometric data into its corresponding

fragment value or pixel value on the output device. Polygons are rasterized by

calculating the inner pixels and linearly interpolating the properties of the polygon

such as color, within the interior pixels. If there is a texture associated with the

polygons, then corresponding texture value is interpolated on the polygon.

36

3.8.4 Fragment Processing

In this final stage of the standard pipeline, different test operations are performed

on the resulting pixel values. First of this test operation is the alpha test that is used

to discard the pixel values according to their alpha component. Then stencil test is

applied to discard pixel values according to predefined conditions. Next one is the

depth test, applied for discarding models or their sub-regions which are hidden by the

frontier models. And finally alpha blending operations are performed to generate

transparency effects on the models.

3.8.5 Programmable Graphic Processing Units

Main innovation of the recent graphics cards is that they allow the developers to

define their own graphics pipeline stages. User can define his/her custom vertex

(geometry) and fragment (rasterization) stages by low level programming. This

hardware specific low level language consists of similar assembler commands that

are used to program the CPU. Recent developments also introduce new high level

languages for programmability where some of the major ones are GLSL, HLSL, CG,

etc.

37

Figure 3.20 Pixel processing unit architecture (Real-Time Volume Graphics, 2004).

We can summarize the processing schema of the graphic hardware under two

discrete unit; pixel and fragment units. Each unit can be programmed by its own

program called pixel and fragment programs. Architecture of the pixel processing

unit is represented in Figure 3.20. Also Figure 3.21 represents the architecture of the

fragment processing unit.

38

Figure 3.21 Fragment processing unit architecture (Real-Time Volume Graphics, 2004).

39

CHAPTER FOUR

REAL-TIME WAVE PROPAGATION SIMULATION

4.1 Introduction and Related Work

Using high performance computation (HPC) methods in scientific research fields

is the most popular approach for simulation of real events. Since many years,

because of hardware constraints, scientists could not make enough simulations of

experiments with different parameters on massive data. Even there exists HPC

devices; they are available only in few specific research laboratories because of their

cost. Nowadays, second phase of the new high performance scientific computation

trend is getting popular in many fields. This trend is basically using existing graphic

card hardware for parallel execution of single instruction on massive data. Because

of huge demand on graphically realistic computer games, new type of graphic cards

becomes a standard hardware in recent desktop computers. Main feature of this

hardware is that it is capable of performing many complex illumination algorithms

on every screen pixel at a time. Since this feature is noticed by the people in parallel

computation field, it is under the subject of the field with its limitations. Hardware

manufacturers are now producing much more capable graphic cards that can be used

for general purpose computation. Second phase of this trend is using these

commodity graphic cards for complex scientific computations.

Scientists from many different fields need to behave in multidisciplinary way to

benefit from these developments. Since scientific computation with commodity

graphic hardware is getting popular in many fields, in this section we will explain the

details of the topic with its limitations. As a case study, we will demonstrate the

results of real-time electromagnetic wave propagation simulation with commodity

graphic cards, their performance comparisons with the ordinary computation

methods. Since scientific computations are generally performed over massive data,

we also mention about memory allocation constraints and real-time visualization

techniques for such size of data.

40

4.2 Memory Allocation

Most of the scientific researchers use third party computational tools for modeling,

simulation and analyzing their hypothesis. Main demand on using third party tools

like Matlab, Mathematica, and Mapple (Mapple, 2008) is their simplicity and high

level interfaces and languages. These features make it possible to easily start

developing your own application with very complex functionality. Using these tools,

one doesn’t need to know mainly the low level programming languages, code

optimization, and visualization techniques. Moreover to get the benefits of such tools

one must sacrifice the optimal usability of the hardware and software resources. It is

not fair to expect every scientist from different discipline than computer science to

understand and optimally use the hardware resource. In this case the only way is to

use third party tools with their high level interfaces. Aside from the simplicity of

these tools, most of the researchers prefer to use specific type of operating systems

(OS) since they are easy to manage and use. But one must know that by having

simplicity you sacrifice the flexibility and capability of resources. In this section we

will mention about the memory constraints and how it is managed by one of the

popular operating system Microsoft Windows (Microsoft, 2008).

Most of the computers’ processing units are designed for 32 bit computation, so

we will focus on 32 bit operating systems running on these computers. Since you can

represent 4,294,967,296 = 4GB different numbers with 32bit numeric data type, main

disadvantage of these types of computers are that their address space is also limited

to 4GB. We know that with specific type of computer mainboards, you can install

more than 4 GB physical memory on the computer. Since we are using 32 bit

operating system, it means that we cannot benefit from memory space larger than 4

GB.

Reasons for having larger memory then 4GB is out of the scope of these section

so we will just focus on this 4GB memory space and how we are efficiently using it.

As it is same in our case suppose that we want to make computation on 512 * 512 *

512 size data cube (Figure 4.1). Also assume that we need to use high precision

numbers in our computation. Today’s computers have built-in support for IEEE 754-

1985 double precision numbers, but one can use third party tools for representing the

41

numbers with much more precision. In that case, the computation speed decreases

radically so it is not the preferred way. Since double precision number requires 8

byte memory space, in our example, for using double precision numbers you need 1

GB of memory space for single data cube. Moreover the requested space must be a

single memory block. This means that the slots of memory block must be

consecutive and there should not be any gap between cells. This single block

allocation is mandatory for several optimized computations like matrix multiplication,

Fast Fourier transformations, etc.

Figure 4.1 Data cube representation, a single memory block.

With 32 bit operating system, having 4 GB physical memory doesn’t mean that

you can benefit from this space as you want. Since the operating system itself runs

different applications like firewall, internet connection management software, virus

checkers, etc. some part of this space is already consumed. Since these memory

allocations are spread through the memory with several gaps between them it

becomes impossible to benefit from a large memory slot. Because it is physical

memory and rapidly changes its size and lifetime, it is not possible to de-fragment

these spread blocks.

42

Figure 4.2 Sample memory allocation within 4GB space (4GB in

hexadecimal equals to 0xFFFFFFFF).

In Figure 4.2, sample memory allocations of the applications are represented.

Because the user or program itself, lunches and terminates lots of applications or

threads during its runtime, this sample memory allocation schema dynamically and

rapidly changes and as in the example in Figure 4.2, there exists gaps because of the

terminated applications. In this example we just show the allocation of the physical

memory. In reality each application has its own memory space and this space is

restricted to 2GB by default, with some low level operating system settings you can

benefit maximum 3GB memory space per application. Question is how it is possible

for more than one application to have their own 3GB memory space with 4GB of

physical memory? In this point virtual memory concept gets into account.

Because of limited and expensive physical memory resources, operating system

uses virtual memory concept where larger physical memory is simulated on a portion

of hard disk. If memory space is required for an application and if there is not enough

space on the physical memory space, then virtual memory is used for allocation. If an

43

application wants to access (read/write) data on a corresponding area of its memory

space then specific memory part is loaded into the physical memory space and

operations are handled. This scenario is slower because of accessing mechanical

device, hard-disk, for reading and writing data.

By means of virtual memory and 32 bit OS, each application has maximum 3GB

memory space dedicated for itself. Even we can address 4GB space with 32 bit, the

reason for having maximum 3GB is related with OS itself. Because OS wants to

communicate with each application to manage its executions, requests, etc., one of

the 4GB memory space for each application is reserved by OS. That is why we can

allocate maximum 3 GB space per application.

Figure 4.3 Sample application memory space allocation.

In Figure 4.3 sample application memory space allocation is illustrated. Last

memory block is reserved by OS for communication with application. 2-3 GB

memory block is enabled by specific OS settings. By default, application is using the

0-2 GB memory block. Normally if an application is using an extra library module

(i.e. DLL file), it is loaded into the same memory space of the application. In case of

simple application, by default it loads system specific DLL files like C Runtime

libraries. Generally these system specific libraries are loaded into the memory space

44

range 1-2 GB. So it is clear that first one gigabyte memory block is fragmented by

application’s executable, second one gigabyte block is fragmented by system dlls and

normally we don’t have single 1 GB memory block left. In case of 512 * 512 * 512

dimensioned double precision memory block is required, it is not possible to allocate

this space. This is why third party computation tools give “out of memory” warnings

when we try to work on big data sizes.

To overcome this problem there exist many solutions which sacrifice the

computation efficiency. One solution is to divide the cube into small memory blocks

and make computation on each piece separately. This is not impossible but very

inefficient in case of specific computations like Fast Fourier Transformation (FFT)

since the computation of a block is dependent on the cumulating of the other blocks.

Other solution is to create memory mapped files where you can create any size

virtual memory on harddisk and use it by loading the corresponding part of the file

for computation. In this case there will be many load/store operations between the

physical memory and the harddisk which is very inefficient for large size data

computation.

In our case we prefer to use 512*512*512 single precision data cube which

requires only 512MB free single memory block and which is almost always available

if 3GB memory support is enabled by the operating system. For larger data size that

can fit into the physical memory, one can prefer 64 bit operating system to overcome

all those problems that are addressed.

4.3 Electromagnetic Wave Propagation Basics

As it is detailed in section 1, propagation of an electromagnetic field requires

special computation techniques. In our experiments we consider electromagnetic

wave propagation and elastic wave propagation in different anisotropic media

generated by different types of sources.

To understand how electromagnetic waves propagate in anisotropic media is a

very important question when we study the properties of new materials, such as

crystals with cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic and

triclinic structures (Cohen, Heikkola, Joly, Maki, 2003; Graff, 1975).

45

Mathematical model of electromagnetic wave propagation in an anisotropic 3-D

domain is described by Maxwell's system with arbitrary positive definite symmetric

matrices of dielectric and the magnetic permeability. The electromagnetic waves are

excited by a pulse, external current concentrated at a fixed point (Humphries, 1997).

The explicit formulas for generalized solutions of initial value problems for this

Maxwell system with different types of anisotropy are obtained by Yakhno et al.

(2003). These formulas have the form of a linear combination of the Dirac delta

functions with the support on the fronts of three waves and its derivatives, Heaviside

step function, with the support inside the wave fronts. Explicit formulas were

described in details in (Yakhno et al., 2003) and chapter 2.

From one hand these formulas look rather cumbersome and complicated but on

the other hand they have quite regular structure and symmetry. This allows us to

make a decomposition of the formulas and calculate in parallel the values of points

for different fragments of the images. This parallelization essentially reduces the

runtime of the simulation program.

A dynamic mathematical model of elastic wave propagations in anisotropic elastic

media is described by the system of partial differential equations. This system can be

reduced to Symmetric hyperbolic system of the first order (Fedorov, 1968;

Dienlesaint, 1980).

The initial value problem for the system of anisotropic elasticity is considered

from two points of view which allow us to find a solution of the initial value problem

with polynomial data and create a procedure of the polynomial coefficients recovery

(Yakhno et al., 1998; Yakhno et al., 2000).

4.3.1 Simulation of Wave Propagation

In our framework, all types of dielectrics are considered for wave propagation

simulation. Developing a generic formulation for all types is not possible with

existing hardware and software. So depending on the structure of the dielectric,

generic formulation for specific dielectric type is generated. In all cases, symbolic

46

calculations are handled until the inverse Fast Fourier Transformation (IFFT) stage.

Figure 4.4 summarizes the overall wave propagation simulation process.

Calculation starts with the determination of the specified epsilon value. If it is

diagonal case, then we use pre-calculated symbolic equation of the specified crystal

type. If it is one of the complex cases (orthorhombic, monoclinic or triclinic) then all

calculations until the IFFT stage are performed from scratch. First reason for this

distinction is that the pure symbolic calculation is not possible for complex cases

with the computation platform that we use. This limitation does not have direct

relation with the physical resources but the computational capability of the Mapple

kernel integrated in Matlab. Second reason is that the precision of the standard

numeric data type is not enough for the computation of complex symbolic epsilon

value and even for some of numeric epsilon values.

These symbolic and in some cases numeric calculations are performed in a

different computation space. After finding the solution, intermediate result is then

transformed into the original space by means of IFFT operation. To do so, first

substitution operation is applied. Because of the complexity of the symbolic

intermediate equation, it is not possible to apply symbolic IFFT operator. So in this

stage we turn back to numerical computation approach which is performed on

massive data.

For simple cases intermediate result also contains symbolic variables for

321 ,, μμμ on the other hand in all cases intermediate result contains symbolic time

variable. Main benefits of having the resulting equation in symbolic notation are;

first there is no loss of accuracy or round-off errors until that computation stage,

second it is very efficient to make substitution for dynamic parameters like time

parameter in our case.

Final stage of the simulation is to substitute the intermediate equation with

specific time and numeric epsilon values. Resulting equation is used to compute the

value of each cell of the data cube that is mentioned in subsection 4.2. Finally, data

cube is visualized as an intensity valued cube. To achieve dynamic propagation

47

simulation, in each data cube rendering stage, we substitute the intermediate solution

with different time value, and this is one another reason to use symbolic notation.

 Symbolic formulations intended to be generated for the following

crystallographic structure of dielectrics are:

For the first three crystal types there is no problem to generate symbolic equation

for computation. Because of graphic cards’ memory limitations (which is different

from physical computer memory) fourth crystal is partially computed. For three

distinct electromagnetic field components, generated symbolic equations have very

long intermediate computation steps and even the simplest component equation

requires many variables in graphic cards memory. But the numbers of registers for

variables are limited with the graphic cards features. For the last crystal, it is

currently not possible to generate symbolic equations for simulation.

48

Figure 4.4 Overview of wave simulation framework.

As it is represented in Figure 4.4, it is not possible to perform pure symbolic

calculations with monoclinic and triclinic cases even with enough computation

resources. For some epsilon values, also it is not possible to perform numeric

computation because of the computational capability of Mapple kernel used by

Matlab. In our framework we use the MEX programming interface provided by

Matlab to integrate the symbolic calculation feature into our C++ code.

4.4 Fast Fourier Transformations

One of the numerical computation steps in modeling approach is IFFT. Reader

may find introductory knowledge about FFT and its application from Bracewell

49

(1999). Since),(~ tE ν and),(tE ν have real values, we use the following formulation

for raw computation of the IFFT.

[]()
()

() ()∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

− = 3213
1 ,cos,~

2
1,~ ννννν
πν dddxtEtxEF

Visual representation of this formulation means that during the transformation of

one space to another, all elements of the first space are involved in calculation of

each element of the second space. Implementation of this formula in programming

environment requires six nested loops, where the inner loop makes trigonometric

calculations. For a data cube with each dimension equals to 256, number of

computations will be 2566 = 281,474,976,710,656. Raw computation of such

formulation with an ordinary desktop will take months to complete. So for CPU

based computation where the instructions are executed one by one, performance of

the loop computation is extremely inefficient. For these reason there exists optimized

Fourier Transformation algorithms that are much more efficient than the loop based

approach.

There exists many efficient well know FFT libraries mostly used in scientific

computation field. One of these libraries is called FFTW (FFTW, 2008), which is a C

subroutine library for computing the discrete Fourier transform in one or more

dimensions of arbitrary input size, and of both real and complex data (Frigo &

Johnson , 1998). Others are part of computational libraries called Netlib (2008) and

Numerical Recipes (2008).

Some of these libraries require extra memory space as same size as the input

arguments for FFT calculation. It is called “out of place” calculation in case of extra

memory space required and “in place” otherwise. For 512 MB size data, it will try to

allocate one other copy of the data for computation. As it is explained in section 4.2,

allocating big size memory blocks is generally impossible in 32 bit operating systems.

So such algorithms generally fail to run on large size data. One other alternative that

we used in our implementation is to prefer the graphical processors built-in

computation functionality. Details of this functionality are explained in section 4.5.2.

50

4.5 GPU Based Computation

Multimillion dollar computer game industry has a very important impact on the

development of the graphic cards- hardware. Desire for a better graphics and realism

in the games encourage the hardware manufacturers to develop specialized graphic

cards that can be programmable. Also recent technological developments make it

possible to use large number of transistors in the processors which results massive

parallel computation. Parallelism makes it possible to process thousands of pixels

and vertices at a time, which is one of the bottlenecks in the graphics hardware.

Currently almost all commodity graphic cards have its own Graphics processing unit

(GPU) for parallel processing of the pixels and vertices. Aside from the

computational power, memory bandwidth of the new graphics hardware is multiple

times faster than the main system. Not surprisingly, these developments for graphical

realism are also become a de-facto as general purpose computation with graphics

hardware.

Because of its complexity it was not possible to efficiently use features of a new

generation graphics card with low level programming languages. Recently major

GPU manufacturers developed high level programming languages along with their

new hardware. Early in 2007, Nvidia announced “Compute Unified Device

Architecture” (CUDA) where massive general purpose computations could be done

with high level language interface.

In the thesis, we refer to graphics cards with GPU and dedicated high speed

memory as “device”, hosting platform with CPU and system memory as “host”. The

architecture of this system is represented in Figure 4.5. Instead of using CPU for

computation and transferring thousands of resulting data between the device and the

host memory, it is now possible to directly process huge amounts of data in a clock

cycle over the device memory. These features enable the user to process a huge

amount of data within a millisecond since the GPU architecture is designed to

execute a single instruction on multiple data.

51

Figure 4.5 Single core computer system architecture.

4.5.1 CUDA Computing Architecture

CUDA is designed to let data and computation intensive problems to be solved in

GPU with revolutionary programming interface. CUDA simplifies the development

of applications with standard C programming language. CUDA software stack is an

interface between the GPU and the CPU and lets it possible to access GPU

functionality with CUDA libraries and runtime. These libraries are set of optimized

functions for FFT, BLAS (Basic Linear Algebra Subprograms), trigonometric and

logarithmic calculations. Over these libraries, runtime layer provides high

performance computation functionality with specific device driver interaction.

52

Figure 4.6 CUDA computing architecture summary.

Figure 4.6 represents the simplified architectural overview of CUDA execution

concept. Depending on the graphic cards model, number of multi processor stack is

available. Each stack has multiple processors that are used to execute the same

instruction on a set of data, at a time. For parallelism, data is divided into thread

blocks that are encapsulated by a grid. Depending on the parallel computation

capability of a device, grid of block can be executed at a time or sequentially. User

defines C coded kernel function that is executed on each thread.

Even the programmer is flexible to use general programming approach, to get full

performance of the CUDA architecture, one need to pay attention about the hardware

architecture. Depending on the hardware capability, number of declared local

variables and the way of access to local and global variables in the kernel program

would make big impact on the performance. If the number of local variables doesn’t

fit into the multiprocessors’ registers, then it will require more clock cycles to

execute a single instruction. Since the architecture of the system is executing many

blocks at the same time, if more than one block tries to access the same memory

location, then parallel execution is blocked to prevent memory conflicts.

Taking into account such performance issues, performance of CUDA programs

are strictly specific to the CUDA compatible hardware architecture and the way of

using the resources.

53

4.5.2 FFT, BLAS and Built-in Function Libraries

CUDA has a set of built in libraries that are specially designed to benefit from the

parallel processing capability of the GPU. Aside from the efficiency, main

disadvantage of this architecture is that it is based on a single precision computation.

One of these libraries consists of several FFT algorithms each of which has different

performance and accuracy depending on the input data size. These algorithms

operate on real and complex data with in-place and out of place computation manner.

Second main library package is called BLAS which consists of basic linear algebra

subprograms that is based on Netlib. This second library is designed to perform fast

matrix algebraic operations and to solve linear algebra equations. Aside from these

libraries, there exist built-in function calls that are subset of standard C library. This

built in functions are computationally much more efficient than their C equivalents

but they just work in single precision mode.

4.6 Volume Visualization

Most of the 3D data capture devices such as MRI, human body scanners, etc. can

generate large amount of data. Analyzing such data through its visual representation

is one of the main targets of volume visualization field. As it is represented in Figure

4.5, processing massive data in the host according to real-time user interaction and

then translating it to the device for visualization has a performance bottleneck.

Volume visualization field generally focuses on the optimization techniques to

overcome these problems.

Volume rendering techniques are classified under two broad categories; direct and

indirect (surface fitting) rendering. Indirect methods use an abstraction like iso-

surfaces to visualize the data. On the other hand, direct methods blends each data

value along the eye space and projects the final data on a plane. Direct method is

generally preferred because of its efficiency but requires post-processing stage for

better visual result. Furthermore, direct methods are categorized under forward,

backward and hybrid rendering headings (Elvins, 1992).

54

Figure 4.7 Direct volume rendering summary.

Using OpenGL (OpenGL, 2008) build in texture blending functions, calculated

cube data is visualized with direct rendering method. From the viewer’s eye position,

rays are casted into each particle of the cube. Taking into account all other particles

that lay along the cast, intensity value of each particle is accumulated. Particles that

are close to eye position have high degree of contribution in the accumulation and

the ones far away from the eye position have less contribution. Resulting

accumulated values are projected on to a plane for visualization.

According to the user interactions like rotation and scaling, data accumulation for

visualization is recalculated. Without special hardware and computation techniques,

calculations are performed on the host and the resulting value translated in to the

device. Considering the data bus bottleneck between the host and device, real-time

performance achievement is impossible with massive data. In our case simulation of

wave propagation, where data values are re-calculated in each frame, is much more

difficult. It will not be wrong to say that our aim is not to show a novel visualization

approach but to show a novel computation approach that is efficiently integrated with

standard visualization technique.

4.6.1 Pixel Buffer Object (PBO)

To apply direct volume visualization technique with one of the standard 3D

graphic rendering library like OpenGL, two main inputs need to be provided. First

input is a set of images that construct the 3D Volume, second one is a proxy

geometry that will be used to map this textures on it. In our case the size and shape of

data volume is not changing during the simulation time. Only the intensity values of

the particles in the cube are changing with respect to the value of time variable. In

55

the case of visualizing large amount of data that is changing with respect to time

variable, achieving real-time efficiency is almost impossible without optimization.

As it is represented in Figure 4.5, capabilities of hardware architecture are also

limited. One of the main limitations is the data transfer bandwidth between the main

system memory and the graphic card. Processing large amount of data with CPU

then transferring the result back into the main memory and finally transferring the

result again from main memory to the graphic card memory is very inefficient. To

overcome this problem OpenGL library extended to allow direct access to the

graphic cards memory. New concept called Pixel Buffer Object (PBO) is introduced

to access the graphics card memory directly and modify the content. By this way,

user has the capability of in-place modification of the texture values of the

geometries and there is no need for data transmission. Because all computations are

handled in the device and the result is directly written on the graphic card for

visualization, big performance gain is achieved.

4.6.2 CUDA PBO Interaction

PBO allows CPU to access graphic cards memory directly and modify the content.

As it is represented in Figure 4.5, with recent technological developments there is

still a memory bandwidth problem between the CPU and the graphic card. Even PBO

is a big improvement to accelerate the data transmission, large set of data

visualization with real-time efficiency is still impossible.

CUDA architecture allows interacting with OpenGL primitives like textures and

PBOs. Since we make numeric wave propagation calculations on GPU by means of

CUDA, we use the in-place calculation method to directly work on the graphic cards

memory. Recent graphic cards have at least 10 times faster memory bandwidth

between the GPU and graphic card memory. Since we make parallel computation

over GPU, we directly store the resulting value in PBO as a 3D intensity texture

which is used for final visualization. Aside from powerful computation capability of

GPU, in-place modification over graphic cards’ memory provides one another

improvement in volume rendering field.

56

4.7 Accelerated Simulation of Electromagnetic Wave

Electromagnetic wave propagation simulation involves complex computational

steps which is error prone because of computer resource limitations. Even using

double precision data type, under and overflow conditions occurs while performing

hundreds of arithmetic operations. For this reason in our calculations we benefit from

symbolic and numeric computation methodologies to overcome the loss of data

precision while computing the cumbersome formulas.

Our electromagnetic wave simulation formulation is based on symbolic

calculations. Since the calculation of this formulation is not possible “by hand”, we

use Matlab software package to find robust result for our problem. Even using

computer systems to have robust solution, at some point we are out of system

resources to have the final computation result. In this point, we switch to numerical

computation method.

Numerical computation of massive data with traditional computer systems is time

consuming operation. In most cases, computation time is unacceptable. As it is

discussed in section 4.4, without any system failure and loss of data precision, it

would take months to finish a simple numerical calculation. For this reason there

exist different computation phenomena like grid, parallel, super, distributed

computing. All these solutions are very expensive and not easy to implement with

standard hardware and software packages. In our method we show that numerical

computation on massive data is possible with commodity graphic cards. Our sample

implementation consists of several computation steps that are handled in different

software/hardware environments but managed from a single application. During

these computations, we just use commodity desktop computer system for a complex

scientific data computation and visualization.

Figure 4.8 represents the system overview of our wave propagation simulation

environment. First step of our framework allocates required memory space both for

texture and geometry data and initializes the memory bindings between CUDA and

OpenGL.

57

Figure 4.8 Simulation application flow chart.

Because of hardware constraints, we used two different approaches during the

Matlab symbolic calculations. In case of user input with diagonal epsilon matrix, pre-

calculated symbolic formulation is used; otherwise numeric calculation is performed

with symbolic time variable. Using the wave propagation formula generated in the

previous step, CUDA kernel code is generated. Here we use again the Matlab feature

which generates C code from a mathematical formula. In the next stage where real-

time visualization is performed, completely CUDA features are used. Kernel

program represented on the right column in Figure 4.8, first makes the substitution of

the time variable and if necessary epsilon values. Next, IFFT operation is performed

and the result is shifted because of zero frequency. Finally the user input for min-

max filter values are used to remove the noisy data. In this stage we implement

CUDA based 256 bin data histogram over the resulting data and filtering is based on

this histogram. After completing all calculations, resulting data has to be visualized.

In this final stage we use the CUDA PBO interaction feature to realize real-time

58

visualization. Because all computations are handled in the GPU, in-place memory

operations are performed to eliminate data transmission.

4.8 CUDA Limitations and Possible Solutions

Intermediate symbolic and semi-symbolic equations mentioned in section 4.3 are

substituted to pass full numeric calculation space. Before and after this operation,

there exist potential numerical precision problems especially in Monoclinic and

Triclinic cases. In symbolic case, factors of the symbolic variables can only be

represented by double precision data types. So in numeric case we need higher

precision data types than double precision.

As it is mentioned in section 4.5.2, NVidia’s Cuda compatible GeForce 8 series

cards support just single precision data types. For this reason it is not possible to

benefit from this high performance computation hardware to compute equations that

require double precision data type. Aside from this commodity graphic card

hardware, NVidia announced a new graphic card series called Tesla (Tesla, 2008).

Main difference of this series is that they can perform double precision computations

and they have bigger graphic card memory sizes. These features allow us to

overcome the computation constraints like memory size and higher precision data

types that we mentioned earlier.

4.9 Implementation

In our framework computation platform is based on Intel DualCore E6600 CPU

with 4 GB physical memory and Nvidia Geforce 8800 GTS graphic card. Software

packages installed on this system are Windows XP 64 Bit, CUDA1.1 and MATLab

2007.b.

Hardware resources used for CPU based computation stage represented in Figure

4.4 is capable enough to make all calculations. This stage of the calculation is not

affecting the overall simulation performance of the framework since all numerical

calculation and visualization stage is performed on the GPU. Using power of two

size data cubes to get full performance of the built in FFT functions, maximum cube

size is limited to 256 because of graphic card’s memory limit.

59

Figure 4.9 FFT Benchmark between CUDA, CPP, Matlab, NR.

To make clear the analysis of the calculation performance, same computations

performed on different environments and computation times represented in Figure

4.9. In our framework, wave propagation simulation stage, where dynamic

calculations are performed, consists of inverse fast fourier transform (ifft) and

substitution (sub) stages. Doesn’t matter how complex the equations are but

substitution takes very small amount of time compared to ifft stage, so we omit

numerical statistics of this stage. On the other hand we perform GPU and CPU based

different ifft implementations with several data cube sizes. Computation timings

show that the CUDA based ifft operations are radically faster than the computation

of common ifft packages. Because the graphic card that we used for tests has 320

MB memory we couldn’t perform ifft operations on 512 size data cubes. With 256

size data cube we achieve 3 frames per second with real time computation. Some

screenshots of the experiments from the developed application with different

parameters are represented in Appendix B. Also as an example, a parallel matrix

multiplication with CUDA architecture is represented in Appendix C.

60

CHAPTER FIVE

WEB BASED EXPERIMENT LIBRARY

5.1 Introduction

Main problem related with the scientific computation is the requirements to

achieve desired results that could be used for further analyzes. Mainly these

requirements are coming from the hardware capacity that is necessary for high

performance computation. Since the evolution of the computers, many approaches

are proposed to overcome these limitations. One of the recent and most attractive

approaches is the GRID (Grid, 2008) service for sharing computer power and data

storage capacity over Internet for scientific computation. Operation of this service is

subscription based and once the scientist becomes subscribed, he/she can submit a

function to be computed over data that is provided. Benefit of the service is to

compute complex equations or massive data that is not possible to be handled in an

ordinary computer. Operation of the service does not include the computation but it

is just an interface for the internet resources (computer nodes) to share the

computation power of each node. Namely receiving a job from a node and then

distributing it to other nodes for computation. From the similar approach but with a

different perspective we implemented a web based experiment library that is a single

access point where all the computations are done but multiple clients benefit from the

result. System caches and stores the computation results in a hierarchical way so that

it can be used as a library. Scientist can explore this library to analyze previous test

results visually and also compare them. Either the system user can upload his/her

own experiment result or send a computation request to the system. To prevent

unintended access to the system, security issues are also considered.

5.2 Resource Sharing

Since Internet connectivity becomes a way of standard communication on all over

the world, knowledge sharing becomes easier than before. In most cases the resource

sharing is considered only under the knowledge category. On the other hand physical

sharing of the resources like computer hardware was not possible because of the

61

distance between two nodes. Internet also solves such problems by providing

connectivity feature between any numbers of nodes without a distance constraint.

Any researcher on the other side of the world can easily access any resource by

means of this connectivity. In early years of the Internet it is just aimed for

knowledge sharing and for a long time it was used as it was. Later, people start to use

Internet for high level message transmission that is similar to the one on a single

computer’s motherboard architecture. By this way it becomes possible to initiate

parallel execution of an algorithm over a huge data. This approach initiates a new

research field in algorithms since the benefit of parallel computation is only

succeeded by using special algorithms for the same problem.

Resource sharing in computer society can be considered with two general

headings: sharing information and sharing hardware resources. In the simplest case

information sharing is achieved by web technologies over Internet. Using a standard

communication protocol anyone can access public information resources that are

available on Internet. Two types of nodes called client and server are the main actors

of this scenario where the client requests and server delivers the requested

information. If they are standard information sharing nodes, then the software

running on the server is called web server and the one running on client side is called

web browser. Web browsers are mainly standard software shipped together with the

operating systems so we are not considering it as a main requirement for our

system’s usability.

62

Figure 5.1 Information sharing over Internet.

For information sharing over Internet we tried the server structure represented in

Figure 5.1 where all the servers have the ability to connect each other. This figure

represents just the main infrastructure that can be extended according to the

load/balance rates all over the system. Summary of each server’s functionality is

listed below with the corresponding server number depicted on the figure.

1. Proxy/Firewall server: To prevent intrusion attack, firewall server is used.

By this way data (i.e. formulas, computation results) security is achieved.

Firewall server has a different role than the authentication server and the

main function is to prevent intrusion. Secondary function of this server is

to adjust the load/balance ratio by redirecting the client requests to other

servers if available. This is a performance acceleration option in case the

numbers of servers are increased to create a web farm structure. This

server also includes the SMTP server to handle outgoing messages that

will be delivered to a specific domain.

2. Web server: Main component of the system that produces a valid response

to the requests already validated by the firewall server. Since all servers

are interconnected, web server triggers any database or streaming

63

operation through other servers and could send the result to the client. All

user interface and the applications reside on this server.

3. Stream server: Stream server is used for the optimized data streaming of

the requested video file. Depending on the clients connection speed

different quality of streaming is provided from a single video file. This

optimization process is achieved by switching between different resolution

video sizes. In case of communication problem, it is possible for the client

to continue from the last play position.

4. Session server: Inter-connected servers that provide different kinds of

content directly or indirectly to the client requires same authentication

level. For the client there is a single access point visible, that is server 1 as

in the Figure 5.1. At the backstage, server 1 is managing the other servers

to optimally provide the requested content i.e. user receives a web page

with links to video files from server 2 and when the user clicks one of this

video files, then stream server 3 directly provides the content to the client

by eliminating server 2. In such cases both server 2 and 3 must know

whom the user is, and if (s)he is an authenticated user. To achieve this

authentication mechanism we use session server which keeps a list of the

connected users and their session information. All other servers are

referring to session server to authenticate requesting connection.

5. Database server: File indexes (corresponding URL addresses), user

provided functions, and function parameters etc. are stored in a database

separately stored in a server. Main benefit of the database server is the

search facility over the stored data. i.e. it is possible to query a set of

experiment and corresponding results for specific parameters.

5.3 Shared Content

In our case, we share the uploaded experiment results or experiments computed

directly on the server side. Three types of information is stored on the server side.

First one is the experiment type, parameters, time range and code (if available).

Second one is the experiment results as a set of images where each image

64

corresponds to a specific time slot. And the final one is the video file of the

experiment that demonstrates the propagation of the wave or the combination of

images in an animated form. Subscribed user has the ability to access all this

information through a specific web site designed to provide mentioned features.

We based experiment library used for management of the experiments that will be

handled both by users and scientist. Because there exists, huge amount of

experiments that belongs to different kind of crystal materials, it becomes a

complicated issue to store and categorize these experiments. Objectives of this web

based library have two different access types; administrative and standard.

Administrative access has the capability of adding, deleting and updating

experiments within the library system. Standard access only has the capability of

browsing the library. So there is an authentication system for determining the access

type. Experiments are categorized under a tree hierarchy to achieve a user friendly

interface. Administrative users will have the following capabilities within the system:

1. Navigate through the library by this hierarchy tree component.

2. Modify the structure of the tree by adding, removing new nodes or

changing the node order by replacing the node parents.

3. Each leaf node of the tree has specific types such as frames, animations,

experiments etc.

4. Resulting frame node shows the results of the experiment visualized as

distinct images. Initially thumbnails of each frame are represented. If user

selects one of the thumbnails, high resolution frame is presented.

According to the browsed frames, user can generate his/her own favorite

frame set for further analyzes. Favorite frame set is associated and stored

in the system with the authenticated user credentials.

5. Animation node shows the results of the experiments as a set of animation

files within specific time frames. As described in the previous list item,

animation results also browsed as frame results.

65

6. Experiment node has the functionality to show the mathematical

definitions of the experiment. User can modify this mathematical symbolic

representation.

5.4 System Functionality

All user requests are handled by the web server where the server side applications

are executed. Server side applications are similar to normal computer programs but

they are executed by the web server with the user specified parameters. These

applications either generate some results or handle some operations. If there exists

some output generated by the application then the web server redirects this output to

the client through web protocol. There exist different type of web servers on the

market. In our system we prefer the most popular and academically free web server

provided by Microsoft. This server is running ASP.NET 2.0 application framework

with many features like extendibility, rich set of user interface components, easy

coding etc. Mainly we benefit from rapid development feature of this framework to

construct our system. Mainly most of the applications with user interface consist of

tree hierarchy or menu controls which are critical for user interaction. For tree view

representations structure and menu controls, Microsoft ASP.NET 2.0 introduces two

new controls, the TreeView and Menu controls, which can be used to represent

hierarchical data. Both controls are feature rich and were designed to work in a wide-

variety of scenarios. Both controls can be used to display static data, site-map data,

and even database data. In addition, both controls support a rich client-side

experience. The TreeView and Menu controls render JavaScript for uplevel browsers,

but they are also compatible with down-level browsers.

Below there exist screenshots from the developed system:

66

Figure 5.2 Welcome screen of the system

First screenshot represented in Figure 5.2 is the welcome page of the system. This

window contains a menu control with a set of menu items where the user can access

specific features of the system. Some of the menu items are accessible by

authenticated users only. Initially as it is represented in Figure 5.2, account menu is

used to login to the system or to change the currently authenticated users profile

settings.

67

Figure 5.3 Account management menu.

Account management menu consist of following items: New User Registration,

Change Password and Password Recovery. Each of this menu items connected with

SMTP mail server to send the new user information, forgotten password etc. SMTP

server is a simple server running on the firewall side which is a front page of the rest

of other servers. Any server can send mail message through this server to the

specified destination. It is working as a queue manager to handle the messages that

will be sent.

On the administration menu item, there exist two sub menu items: Tree

management, File management.

In the file management menu, you can upload experiment files to the system and

extract them. Important feature of this file upload operation which differs from the

existing ones is it is possible to upload multiple experiment files under a single name

with compression. User may prefer to compress experiment files (500 files tested) as

a single package. Then upload this package to the system. After upload operation,

user may extract this archive to generate the base database of the experiment library

session. Other important feature of the upload system is, it has the capability to

68

generate the thumbnails of the uploaded image files. As it is known, web based

environments are constrained with the bandwidth of the internet connection. By this

way instead of representing ~1MB image file with high resolution, user can preview

more simple and reduced quality images before going in depth.

Figure 5.4 Tree administration window

Tree administration window allows user to manage the structure of the

organization of the experiment files. User can create animation nodes, CPP code file

nodes, MATLAB code file nodes, etc.

69

Figure 5.5 Tree node and file association window.

User can associate multiple files to the selected node of the tree. If there exists

more than one file related with the experiment result which is uploaded to the system,

user can associate these files with the related node. System has the flexibility to

generate series of file names automatically.

70

Figure 5.6 Library window while exploring an experiment

5.5 Mathematical Symbol Representation

There exists a syntax highlighting feature together with the mathematical symbol

representation. User input may contain mathematical symbols where the syntax must

be in Latex (Knuth, 1984) format. There exists latex to web converter plug-in which

converts the mathematical equations and symbols to an image file that may be easily

published in web content.

For program codes either in Matlab or C, again we are using a third party tool to

convert the text based user input into syntax highlighted HTML version. This feature

lets it possible to easily interpret the user provided specific text through web browser.

71

5.6 File Compression and Extraction

Our system also has the functionality of representing the user provided

experiment results. For this reason it has the file upload feature where the users can

upload the resulting images from their own experiments. Since this image set

generally consists of more than hundred files, it is a bit time consuming operation to

upload such amount of files to the system. To overcome such problems we let the

user to compress (Salomon, Motta, Bryant, 2007) the files in to a single file package

and upload just only this file to the system. At the back hand of the system, we

automatically extract these compressed files and move them under the user specified

experiment. Later on as it is represented in Figure 5.6, these files are demonstrated.

File extraction operation is a thread safe operation, so when the file uploads

operation has initiated, another application thread is triggered to extract the files

without suspending the user interaction.

5.7 Image Thumbnails

Mainly the desire for image thumbnails is to overcome the bandwidth problem of

the Internet connection. Thumbnails are the small size, reduced resolution file of the

original image. Depending on the compression level, a single original image can be

represented by more than ten times smaller image. On the other hand, by reducing

the file size we lost the image quality. Since viewing a single large (good quality)

image file takes several seconds, it is better to represent more than one image file as

a thumbnail and then letting the user to click on any of them for detailed

representation. To achieve this functionality again we use the windows operating

system features as we did for the compressed file extraction. There exists an API for

generating image thumbnail with user specified compression parameter. By adjusting

this parameter one can generate very small size images with low resolution.

5.8 System Security

System security is achieved by using the default ASP.NET 2.0 web site security

functionality. Normally such functionality is achieved by manual programming and

to do so the session ID of the client is used. In our case, ASP.NET framework

provides ready to use components to enable this functionality. ASP security tools

72

allow automatically creation of authentication database by connecting to a specified

server. Using a set of another authorization tools provided by the framework, it is

possible to rapidly generate ready to use secured web sites. Components for login

feature are connecting to the database previously created by the framework. After

successful login operation, session state is stored by the same components to control

the future access. One another advantage of these set of components is feature based

user privilige assignment. It is possible to give different access levels and user rights

even on the page level.

5.9 Video Streaming

One of the most important features of the system is that it allows to access video

files resulting from the images generated by a specific experiments. Since the user

uploads a set image files resulting from the experiment, these image files can be

animated. As it is represented in Figure 5.5, user must upload image files with

specific file names. These file names are encoded in a special format which is self

descriptive and also contains information about the time of the propagation.

According to the time values succeeding image files are combined as a single frame

to generate a video file associated with a specific experiment. This makes it easy to

interpret the experiment result by visualizing it in an animated form. It is possible to

adjust the frame rate and resolution of the video file for varying internet speeds.

Currently these settings are adjusted in system level to generate best quality video

files. We handle the streaming quality according to the internet connection

bandwidth of the client in an upper layer of the system. Streaming quality is handled

in the Windows Media Server layer which is a server application provided by

Microsoft. Media server takes a good quality video source and streams it to the

clients by adjusting the frame rate, resolution etc. according to the user’s connection

speed. Also streamed video file is played by Windows media player on the client side.

These server and client tools are optimized for better communication protocol. Our

client side web pages are playing those video files by embedding a media player

plug-in as an ActiveX control. ActiveX controls are recent Microsoft technology that

allows running applications inside a web browser in a secure way.

73

5.10 ActiveX Control for Interactive Visualization

Image and video based visualization of the experiment results are fine for many

clients which doesn’t have enough resources for heavy computations. Also most

clients don’t have well enough graphic processing capabilities to visualize volume

data. There may be two types of clients which may have some constraints about

using the system. These are the clients that have limited Internet connection speed

and the clients with limited graphical processing resources. For such limitations,

image based experiment library and the video streaming server is ideal. Even a user

can easily visualize the images from a mobile phone. In case of clients which may

have both well internet connection and graphical processing resources, we provide an

activeX control that is used to visualize the volume data with user interactivity.

ActiveX controls are Microsoft technologies that make it possible to run computer

applications inside a browser. An alternative method for this approach is Java

technologies that run on many platforms. In our case we prefer the ActiveX control

that is running just on the Microsoft windows system. When we consider the benefit

of the whole system’s rapid development feature we stick to the Microsoft

technologies. Also volume visualization performance of Java 3D framework, its

SDK for graphical card programming doesn’t have well enough support in developer

level.

ActiveX control programming is very similar to normal C++ application

development. But there exist some several extra steps to add some security

certificates to the control for secure downloads through Internet. Apart from

development issues this feature enables end user to easily execute an application

without any maintenance issue and just over Internet. Behind the plug-in we used

OpenSceneGraph (OpenSceneGraph, 2008) graphic library for visualization purpose.

This open source graphic programming package contains ready to use file streaming

property and rapid development utilities for fast visualization. With this library you

can easily create proxy geometry and map several images over this geometry for

volume visualization. One another feature of this graphic library is that it enables

automatic system capability detection. Depending on the system configuration and

the graphic card’s capabilities it can select the best visualization method behind the

74

scene. i.e. if the user has a programmable graphic card then it activates the shader

programming otherwise using the normal graphic pipeline. Also this library provides

mouse manipulator methods to enable the user interaction. Depending on the mouse

movement initiated by end user, you can easily rotate the proxy volume geometry to

make visualization from different perspectives. To achieve all these features, you just

create an activeX control, which is a simple compressed application package with

statically linked dependency files. When the client, end-user, browses a specific web

page, then this application package automatically downloaded and executed inside

the web browser. Necessary image set that are required for proxy geometry is

separately downloaded from a URL based Internet address as it is done for static

image based experiment visualization. Once all the images related to a specific

experiment are downloaded then they are mapped on the proxy geometry for volume

visualization.

75

CHAPTER SIX

CONCLUSION

6.1 Summary and Contributions

Technological developments within the recent decades show that it is mandatory

to make interdisciplinary research and collaboration to have a global perspective over

problem analyses. Developments in each research fields make it difficult for a

scientist from a specific domain to be dominant in his/her own field without using

new tools and research results. Also it requires huge amount of man/month work to

analyze and adapt the benefits of one domain to other. This thesis is an example of

such collaboration where the latest developments and research results are effectively

integrated to solve problems that are impossible to be solved before.

For many years the theory of electromagnetic wave propagation is known and it

was not possible to solve the equations of this theory by hand. Mainly it takes pages

of formulation and requires high precision computations which usually have the risk

of numerical errors because of “by hand” computation. Developments in the

computer science field make it possible to solve complex equations with error free

computation. On the other hand the tools, mainly the computers that are used in

computer science field also have some limitations. These limitations are generally

affecting the computation power, memory size and computation precision.

In this thesis we demonstrate a new set of equations that are used to solve

electromagnetic wave propagation theory. Main difference of those equations from

the existing ones is their form that is suitable for existing computer technology.

These equations are explicit, so it is possible to apply effective numerical

computations. On the other hand to overcome numerical precision limitations, some

parts of those equations are in the form that makes it possible to apply symbolic

computation.

In the second chapter, we demonstrate how those equations are generated. Details

of the formulation are cited to a paper that we published during the development of

76

this thesis. Numerical solution, moreover the numerical result is not enough to

analyze the output. Mainly because of massive data which is impossible to be

interpreted. For this reason we explore existing visualization techniques and in the

third chapter we deepen into another problem called volume visualization. With the

existing desktop computers it was not possible to efficiently compute and visualize

the result. For this reason we adapt the recent developments in computer graphics

fields which are mainly used for real-time visualization purposes by computer

games. Moreover existing scientific computation tools are integrated with computer

graphic hardware for parallel computation of the time varying data and visualizing it

at the same time. Forth chapter is dedicated for the recent parallel computation and

visualization techniques, their constraints and the solutions. During our computations

we used single precision floating point numbers because of the existing capability of

the graphic cards that we have. With this constraint we already get satisfactory visual

results for simple cases of the wave propagation theory. Also symbolic computation

engine had some memory limitations that prevent us to simulate more complex cases.

In the fifth chapter we demonstrate a framework that makes it possible to share the

computation results with other scientists. Since those computations require specific

hardware, with this collaboration platform it becomes possible to share the results.

6.2 Future Works

Efficient processing capabilities of desktop computers are not good enough for

scientific computations. On the other hand more specific computers that are designed

for scientific computation requires special programming skills and the cost of those

computers are very high for academic world. With the recent developments in

computer entertainment sector, it becomes possible to use commodity computer

graphics cards for scientific computation. Such graphic cards getting more popular

and so the price decreases. Now every new computers even laptop become a

scientific computation platform because of such graphic cards.

The computation and visualization method that we demonstrated within this thesis

is applicable on the other fields that require massive data processing. Also it becomes

essential to parallelize the parallel processing units since every computer becomes a

single parallel processing machine. Like the grid technology that is used to benefit

77

from the CPU power of idle computers, it is possible to use GPU power by

developing a special framework. Moreover specific high level scientific computation

languages like Matlab’s can be developed for GPU based computation.

78

REFERENCES

Bracewell, R. (1999). The Fourier Transform and Its Applications (3rd ed.). New

York: McGraw-Hill.

Canny J. (1986). A Computational Approach to Edge Detection, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8 (6), 679-698.

Cohen, G.C., Heikkola, E., Joly, P., & Neittaanmaki, P. (2003). Mathematical and

Numerical Aspects of Wave Propagation. Berlin: Springer.

CUDA Zone—Learn about CUDA, (n.d.). Retrieved August 16, 2008, from

http://www.nvidia.com/object/cuda_what_is.html

Dienlesaint, E., & Royer, D. (1980). Elastic Waves in Solids. Chichester: John Wiley

and Sons.

DirectX, (n.d.). Retrieved April 05, 2008, from http://www.microsoft.com/directx/

Elvins, T.T. (1992). A Survey of Algorithms for Volume Visualization. Computer

Graphics, Volume 26, Number 3, pages 194–201.

Fedorov F.I. (1968). Theory of Elastic Waves in Crystals. Journal of Applied

Crystallography 1 (5), 328-335.

FFTW, Library for computing the discrete Fourier transform, (n.d.). Retrieved

March 30, 2008, from http://www.fftw.org

Frigo, M. & S. G. Johnson. (1998). FFTW: An Adaptive Software Architecture for

the FFT. Proceedings of the International Conference on Acoustics, Speech and

Signal Processing, Vol. 3, pp. 1381-1384.

Goldberg, D. (1991). What Every Computer Scientist Should Know About Floating-

Point Arithmetic. New York: ACM Computing Surveys.

79

Graff K.F. (1975). Wave Motion in Solids. Oxford: Oxford University Press.

Grid, GridCafe, (n.d.). Retrieved May 05, 2008, from

http://gridcafe.web.cern.ch/gridcafe/whatisgrid/whatis.html

Humphreys G., Buck I., Eldridge M., & Hanrahan P. (2000). Distributed rendering

for scalable displays. Proceedings of the 2000 ACM/IEEE conference on

Supercomputing.

Humphries S. (1997). Field Solutions on Computers. USA: CRC Press.

Kasap, M. (2003). Three Dimensional Simulations of Complex Structures. Dokuz

Eylül Üniversitesi, Fen Bilimleri Enstitüsü.

Kaufman A. (1994). Voxels as a Computational Representation of Geometry. In The

Computational Representation of Geometry. SIGGRAPH '94 Course Notes.

Knuth D. (1984), The Texbook, Massachusetts: Addison-Wesley.

Levoy M. (1988). Display of surfaces from volume data. IEEE Computer Graphics

and Applications, 8 (3), 29-37.

Mapple, Computational tool, (n.d.). Retrieved March 30, 2008, from

http://www.maplesoft.com/products/Maple11/professionals/main.aspx

Mathematica, Mathematical computing environment, (n.d.). Retrieved March 30,

2008, from http://www.wolfram.com/products/mathematica/features/

Matlab, High-level technical computing language and interactive environment, (n.d.).

Retrieved March 30, 2008, from

http://www.mathworks.com/products/matlab/description1.html

Max N. (1995). Optical models for direct volume rendering. IEEE Transactions on

Visualization and Computer Graphics, 1 (2), 99-108.

80

Microsoft Windows, (n.d.). Retrieved March 30, 2008, from

http://www.microsoft.com/windows/default.aspx

Netlib, Mathematical software collection, (n.d.). Retrieved March 30, 2008, from

http://www.netlib.org/na-net/

Numerical Recipes, (n.d.). Retrieved March 30, 2008, from http://www.nr.com/

NVIDIA - World Leader in Visual Computing Technologies, (n.d.). Retrieved August

16, 2008, from http://www.nvidia.com/page/home.html

OpenGL, (n.d.). Retrieved April 05, 2008, from http://www.opengl.org/

OpenSceneGraph, (n.d.). Retrieved February 10, 2008, from

http://www.openscenegraph.org

Phong, B.T. (1973). Illumination of Computer-Generated Images, Department of

Computer Science, University of Utah, UTEC-CSs-73-129.

Ramo, S., Whinnery, J.R. & Duzer, T. (1994). Fields and Waves in Communication

Electronics. New York: John Wiley and Sons.

Real-Time Volume Graphics, Siggraph 2004 Course notes, (2004). Retrieved 20

August, 2007, from http://www.vrvis.at/via/resources/course-volgraphics-2004/

Salomon D., G. Motta & D. Bryant. (2007). Data Compression: The Complete

Reference. London: Springer-Verlag.

Semcad, (n.d.). Retrieved April 05, 2008, from http://www.semcad.com/simulation/

Tesla, High performance computing, (n.d.). Retrieved March 30, 2008, from

http://www.nvidia.com/object/tesla_computing_solutions.html/

81

The Visible Human Project, Library of Medicine, United States National Institutes of

Health 2003, (2003). Retrieved April 05, 2008, from

http://www.nlm.nih.gov/research/visible/visible_human.html/

Yakhno, V.G., Yakhno, T.M., & Kasap M. (2003). Simulation of Electromagnetic

Wave Propagation in Anisotropic Media. Selcuk Journal of Applied Mathematics,

Vol. 4, N. 2, 113-122.

Yakhno, V.G., Yakhno, T.M., & Kasap M. (2006). A novel approach for modelling

and simulation of electromagnetic waves in anisotropic dielectrics. International

Journal Solids Structures 43, 6261–6276.

82

APPENDIX A

MATLAB CODE TO SOLVE SYMBOLIC EQUATIONS

Following MATLAB code is used for testing the symbolic calculations performed

in the experiments. Our symbolic calculation module that we used in the final

application is part of the following code. Below two functions are also provided

which we used to test if the user input matrices are satisfying all the conditions.

A.1 Positive Definite Function

% Function to test if a Matrix is positive definite or not
% If positive definite then returns zero
% Input matrix must be 3x3 matrix
function result = mkIsPositiveDefinite(Matrix)
result1 = det(Matrix(1,1));
disp(sprintf('Positive definiteness: 1th subsquare det
result: %f', result1));
result2 = det(Matrix(1:2,1:2));
disp(sprintf('Positive definiteness: 2th subsquare det
result: %f', result2));
result3 = det(Matrix(1:3,1:3));
disp(sprintf('Positive definiteness: 3th subsquare det
result: %f', result3));

if (result1 <=0) | (result2 <=0) | (result3 <=0)
 result = 1;
else
 result = 0;
end

A.2 Test Function for Inverse Square Root of Epsilon

% Function to test the properties of Inverse Square root of
% Epsilon and Square root of epsilon.
% Function returns 0 if all properties satisfied else it returns
% a error value greater then 0. Error value indicates which
% property doesn’t satisfy.
% Input parameter is epsilon.
 function result = TestInvSqrtEpProperties(Ep)
InvSqrtEp = inv(sqrtm(Ep));
SqrtEp = sqrtm(Ep);
result = 1;

83

% Check Property 1: Ep^(1/2) and Ep^-(1/2) positive symmetric
result = mkIsPositiveDefinite(InvSqrtEp);
result = result + mkIsPositiveDefinite(SqrtEp);
if result > 0
 result = 1;
 disp('ERROR : Ep^(1/2) and Ep^-(1/2) positive symmetric')
 return
end
if (tril(SqrtEp) ~= triu(SqrtEp)) | (tril(InvSqrtEp) ~=
triu(InvSqrtEp))
 result = 1;
 disp('ERROR : Ep^(1/2) and Ep^-(1/2) positive symmetric')
 return
end
disp('OK : Ep^(1/2) and Ep^-(1/2) positive symmetric')

% Check Property 2: Ep^(1/2) = (Ep^-(1/2))^-1
if (single(inv(InvSqrtEp)) ~= single(SqrtEp))
 result = 2;
 disp('ERROR : Ep^(1/2) = (Ep^-(1/2))^-1')
 return
end
disp('OK : Ep^(1/2) = (Ep^-(1/2))^-1')

% Check Property 3: Ep^-(1/2)*Ep = Ep^(1/2)
if (single(InvSqrtEp * Ep) ~= single(SqrtEp))
 result = 3;
 disp('ERROR : Ep^-(1/2)*Ep = Ep^(1/2)')
 return
end
disp('OK : Ep^-(1/2)*Ep = Ep^(1/2)')

% Check Property 4: (Ep^-(1/2))' = Ep^-(1/2)
if (InvSqrtEp' ~= InvSqrtEp)
 result = 4;
 disp('ERROR : (Ep^-(1/2))'' = Ep^-(1/2)')
 return
end
disp('OK : (Ep^-(1/2))'' = Ep^-(1/2)')

A.3 MATLAB Code to Find Explicit Equation for E

clc
clear all;

e = [0 0 1]';
Eps = zeros(3,3);

%Experiment 01
Eps(1, 1) = 1;
Eps(1, 2) = 0;
Eps(1, 3) = 0;
Eps(2, 1) = 0;
Eps(2, 2) = 1;

84

Eps(2, 3) = 0;
Eps(3, 1) = 0;
Eps(3, 2) = 0;
Eps(3, 3) = 1;

V1 = sym('V1', 'real'); % -Create symbolic variables
V2 = sym('V2', 'real'); % that will be used to create
the S(V)
V3 = sym('V3', 'real'); %
tm = sym('tm', 'real'); % matrix

% Calculate the Square root and Inverse Square root of Epsilon
% User selects epsilon or inv.sqrtEps. matrix...
 disp('Calculating inverse square root');

 [Egvc, Egvl] = eig(Eps);
 P = Egvc;
 Pi = inv(Egvc);
 M = Egvl;
 Mh = sqrt(M);
 Eh = P * Mh * Pi;
 Ehi = inv(Eh);

 if strcmp(class(Ehi), 'sym')
 InvSqrEps = simple(Ehi);
 else
 InvSqrEps = Ehi;
 end

% Create the matrix S(V)
% S(V) is symbolic and 3x3 matrix.
disp('Calculating S');
S = [V2^2 + V3^2, -V1 * V2, -V1 * V3;
 -V1 * V2, V1^2 + V3^2, -V2 * V3;
 -V1 * V3, -V2 * V3, V1^2 + V2^2];

% To find Q and D, first calculate the multiplication of
% InverseSquareRootofEpsion, S(Y) and again
InverseSquareRootofEpsion.
% Use simplify method to make symbolic simplification over the
result. "Simplify" method takes an symbolic input then produces
the simplified version of the input parameter as an output.
% store this temporal result (simplified version of the
multiplication result) in the variable A.
disp('Calculating A');
A = simple(InvSqrEps * S * InvSqrEps);

% Find the eigen vectors end eigen values of the multiplication
result, which is stored in temporal variable A
% Here "eig" method used. Eig methods takes one input and
produces two output. First output is EigenVector, second
parameter is the Eigenvalue of the input parameter.
disp('Calculating Eigen Value and Vector of A');
[EigVecA, EigValA] = eig(A);

% Find D and Q. There is no need to make any calculation.
Because D is equal to the EigenValue of the multiplication

85

result A (temporal result). Q is the EigenVector of the
multiplication result A (temporal result). But before assigning
[EigVecA, EigValA] values to Q and D. We make a simplification.
Again we use "simplify" method for these operation.
Simplification is optional operation, which reduces the
complexity of the symbolic result. And make the calculations
faster.
% Here Q and D are symbolic, 3x3 matrices.
% Each !!!column!!! of the Q and D matrices are vectors. (i.e.
first column Q matrix is the first eigen vector.)
disp('Calculating D');
D = simple(EigValA);

disp('Calculating Q');
Q = simple(EigVecA);

% We normalize the vectors in Q matrix.
% To do the normalization operation we find the length of each
vector in the matrix. Then divide each component of the vector
to its length.
% I.e: Q(:, 1) gives the first column of the 3x3 matrix Q.
Which means the first vector of the 3x3 matrix Q. sqrt(sum(Q(:,
1).^2)) command find the length of first vector

Q(:, 1) = Q(:, 1) ./ sqrt(sum(Q(:, 1).^2));
Q(:, 2) = Q(:, 2) ./ sqrt(sum(Q(:, 2).^2));
Q(:, 3) = Q(:, 3) ./ sqrt(sum(Q(:, 3).^2));

disp('Calculating Transpose of Q');
transQ = Q.';

% After normalization of Q we multiply the
InverseSquareRootofEpsilon with Q to fint the Variable T.
disp('Calculating T');
T = InvSqrEps * Q;

transT = T.';

% For future calculations we need the eigen values as a single
vector. In matlab eigen values are the diagonal values of the
resulting matrix of "eig" command. So we extract the diagonal of
D which contains the EigenValues in 3x3 matrix. Extraction
operation is done with "diag" command. "Diag" command takes
square matrix and returns the diagonal elements as a vector. We
store the result of this operation in the variable named diagD
for furthure usage.
diagD = diag(D);

% Find the Transpose of T and multiply the result with p_e
variable. p_e variable holds the direction vector e. Final
result of this calculation stored in the variable named TransTe.
transTe = T.' * e;

% Calculate the vector Y. Y is a 3x1 matrix or a vector.
Components of Y is calculated according to the values of
components of p_diagD. We know that one of the components of D
must be zero. For the zero value of component of D requires

86

special calculations for corresponding component of Y.
for i = 1:3
 if diagD(i) == 0
 Y(i) = transTe(i);
 else
 Y(i) = transTe(i) * (cos(sqrt(diagD(i))* tm));
 end
end

% After the calculations above Y is a row vector. But all our
vectors are column vectors so we take the transpose of Y. Then
we take the negative of Y
Y = -1 * Y.';

% Fourier image of the Electromagnetic field is constructed.
% We use two time simplification to reduce the complexity of
resulting value. Sometimes it is useless to make more then one
simplification.

% Image of the fourier transform
FFT_E = simple(simple(T * Y));
FFT_E = simplify(FFT_E);

87

APPENDIX B

3D VISUALIZATION OF PROPAGATION

Using the mentioned techniques in this thesis for real-time visualization of the

electromagnetic wave propagation requires special hardware. The time that we

perform our experiments it was difficult to obtain such devices easily. In this section

we demonstrate some screenshots captured from the real-time visualization

application. All experiments represent the propagation of electric field with specific

component namely ., 321 EandEE Two distinct column of the page are used to

demonstrate the result with different histogram based filtering parameters. With

higher histogram values, only the high frequency waves are visualized with less

detail. With low histogram values, low frequency waves visualized as well as the

data noise resulting from Fourier transformation.

88

Experiment: 01
Epsilon = [1 0 0]
 [0 1 0]
 [0 0 1]
Component = E3
--

89

Experiment: 01
Epsilon = [1 0 0]
 [0 1 0]
 [0 0 1]
Component = E1
--

90

Experiment: 02
Epsilon = [1 0 0]
 [0 1 0]
 [0 0 3]
Component = E1
--

91

Experiment: 02
Epsilon = [1 0 0]
 [0 1 0]
 [0 0 3]
Component = E3
--

92

APPENDIX C

SAMPLE CUDA COMPUTATION

C.1 Matrix Multiplication by Sub-blocks

Consider A, B and C are N by N matrices with b by b subblocks. Aim is to find

C = A * B

This operation is performed by multiplying sub blocks as it is schematically

represented in the figure below.

// Pseudo code for sub block based fast matrix multiplication,
//n is number of blocks
for i = 1 to n
 for j = 1 to n
 {read block C(i,j) into L1 memory}
 for k = 1 to n
 {read block A(i,k) into L1 memory}
 {read block B(k,j) into L1 memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) { multiply matrix blocks}
 {write block C(i,j) back to global memory}

93

94

C.2 CUDA Based Fast Matrix Multiplication

// Some part of this code is taken from Nvidia CUDA1.0 toolkit samples, 2008.
// Setup the execution configuration
dim3 dimBlock(WIDTH, WIDTH);
dim3 dimGrid(1, 1);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(A, B, C);
// Matrix multiplication kernel – thread specification
__global__ void MatrixMulKernel(Matrix A, Matrix B, Matrix C)
{
 // 2D Thread ID
 int tx = threadIdx.x;
 int ty = threadIdx.y;

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;
 for (int k = 0; k < M.width; ++k)
 {
 float Melement = M.elements[ty * M.pitch + k];

95

 float Nelement = Nd.elements[k * N.pitch + tx];
 Pvalue += Melement * Nelement;
 }
 // Write the matrix to device memory; each thread writes one element
 P.elements[ty * P.pitch + tx] = Pvalue;
}

