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YILDIZ under supervision of PROF. DR. İSMAİL SÖKMEN and we
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University for sharing invaluable knowledge about Density Functional Theory and

its implementation via software package.

The days would have passed far more slowly without the support of my friends

who shared their humor and encouraged me on this journey.

Finally, I wish to thank my parents for their unconditional love and support

throughout my life.

Aylin YILDIZ

iii



aa

aa

aa

aa

aa

aa

This thesis is dedicated to my mother and father.

iv



QUANTUM MONTE CARLO INVESTIGATIONS OF QUANTUM

DOTS

ABSTRACT

In this thesis, we have applied both the Variational Monte Carlo (VMC) and

Monte Carlo Diagonalization (MCD) techniques for calculation the ground-state

energies of correlated electron-hole pair (exciton) and interacting two electrons

confined in a two dimensional (2D) disc-like and three dimensional (3D) spherical

parabolic quantum dots. The effects of dimensionality and quantum confinement

on the ground state as well as binding energies of a correlated electron-hole pair

in parabolic quantum dots have been investigated. Moreover, under parabolic

confinement potential and within effective mass approximation size and shape

effects of quantum dots on the ground state energy of two electrons have been

studied.

We have used four variational trial wave functions constructed as the harmonic-

oscillator basis multiplied by different correlation functions. The relative

performance of trial wave functions has been tested. It has been found that

the variational wave functions which correlation part is constructed as a linear

expansion in terms of Hylleraas-like coordinates significantly improve the desired

results. Our results show that the proposed ansatz is able to capture nearly

exactly the ground-state energies of excitons, and it properly account for the

results of correlated two electrons in parabolic quantum dots.

Very few terms are needed to reach an accuracy comparable to more common

wave function forms with large basis sets. The MCD technique puts no constrains

on the potential as well as trial wave function and can be systematically improved

by adding more terms using the procedure described.

Finally, this study indicates that Monte Carlo Diagonalization technique

combined with the proposed trial wave function are a powerful tool for studying

interacting particles in parabolic quantum dots.

Keywords: quantum dot, exciton, Variational Monte Carlo (VMC) method,

Monte Carlo Diagonalization (MCD) method.
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KUANTUM NOKTALARIN KUANTUM MONTE CARLO

İNCELEMELERİ

ÖZ

Bu tezde, iki boyutlu (2D) disk benzeri ve üç boyutlu (3D) küresel

parabolik kuantum noktalarda kuşatılan etkileşen iki elektron ve elektron-deşik

çiftinin (ekziton) taban durum enerjilerini hesaplamak amacıyla Varyasyonel Monte

Carlo (VMC) ve Monte Carlo Diagonalizasyon (MCD) yöntemleri uygulandı.

Boyut ve kuantum kuşatmanın, parabolik kuantum noktalarda etkileşimli elektron-

deşik çiftinin taban durumu ve bağlanma enerjileri üzerindeki etkileri incelendi.

Ayrıca, parabolik kuşatma potansiyeli ve ektin kütle yaklaşımı dahilinde kuantum

noktaların büyüklük ve şeklinin iki elektron üzerindeki etkileri araştırıldı.

Harmonik-osilatör bazı ile farklı korelasyon fonksiyonlarının çarpımı şeklinde

oluşturan dört varyasyonel deneme dalga fonksiyonu kullanıldı. Deneme dalga

fonksiyonlarının birbirine göre performansları test edildi. Korelasyon kısmı,

Hylleraas-benzeri koordinatlar cinsinden oluşturulan varyasyonel dalga

fonksiyonlarının incelenen sonuçları önemli ölçüde iyileştirdiği bulundu. Sonuçlar,

önerilen dalga fonksiyonun parabolik kuantum noktalardaki ekzitonların taban

durumu enerjilerini tam olarak oluşturduğunu ve benzer olarak etkileşen iki

elektron için doğru veriler ürettiğini göstermektedir.

Az sayıda terim, daha popüler büyük baz setleri kullanılarak hesaplanan

doğrulukta verilerin elde edilmesi için yeterlidir. MCD tekniği, potansiyel üzerine

olduğu kadar deneme dalga fonksiyonu üzerinede herhangi bir kısıtlama oluşturmaz

ve terim sayısı arttırılarak sistematik olarak iyileştirilebilir.

Sonuç olarak bu çalışma, Monte Carlo Diagonalizasyon metodu ile önerilen

deneme dalga fonksiyonunun, parabolik kuantum noktalarda etkileşen parçacıkların

incelenmesinde güçlü bir çözüm tekniği oluşturduğunu ortaya koymaktadır.

Anahtar sözcükler: kuantum nokta, ekziton, Varyasyonel Monte Carlo (VMC)

metodu, Monte Carlo Diagonalizasyon (MCD) metodu.
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CHAPTER ONE

INTRODUCTION

During the last 20 years a new research area in condensed-matter physics has

been explored. More advanced experimental techniques allow for the possibility

of artificial creation of low-dimensional quantum confined systems containing just

a few electrons. Such small man-made artificial systems that confine electrons,

holes, or electron-hole pairs or so called excitons to a small region on the order

of the electrons’ de Broglie wavelength are usually called quantum dots. The

typical dimensions of quantum dots range nanometers to a few microns, and

their size, shape and interactions can be precisely controlled through the use of

advanced nanofabrication technology. The size tunability and unique optical and

electrical properties of these “artificial atoms”, that are different in character to

those of the corresponding bulk material, enable never before seen applications

to science and technology. The basic technological motivation is that smaller

components should be faster and may also dissipate less heat. The most

immediately apparent of the quantum dots properties is the emission of

photons under excitation, which are visible to the human eye as light.

Moreover, the wavelength of these photon emissions depends on quantum dot’s

size. On one hand, these systems are thought to have vast potential for future

technological applications, such as possible applications in memory chips (C. Lee,

2007), quantum computation (Loss, & DiVincenzo, 1998), quantum cryptography

(Molotkov, & Nazin, 1996), in room-temperature quantum-dot lasers (Huffaker

et. al., 1998), and so on. More about quantum dots is mentioned in chapter 2.

The field of nanostructure physics has been growing rapidly in recent years,

and much theoretical insight has been gained hand in hand with progress in

experimental techniques and more device-oriented applications. Experiments on

quantum dots have been mainly focused on electron transport properties and

optical properties (Räsänen, Ph.D. Thesis, 2004). A full understanding of the

1
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many recent optical and transport measurements on quantum dots requires

detailed knowledge of the energies of the N-electron dot. One of the

popular and effective methods to deal with particles in semiconductor QDs is the

numerical exact diagonalization (Harju et. al, 1998; Que, 1992). This method

has an intrinsic limitation with respect to the number of particles because of the

rapidly growing dimension of matrices under diagonalization and is practically

applicable to a QD with around ten electrons (P. A. Maksym, 2005). Apart

from the computationally intensive approach of direct numerical diagonalization,

the N-electron quantum dot system has been studied extensively by the Hartree

approximation (Johnson, & Reina, 1992) as well as QMC methods (Bolton 1996;

Harju, Svedlov, & Nieminen, 1998; Helle, 2006).

In electronic structure calculations the treatment of electron-electron

interactions is the main source of difficulty. These interactions cannot easily

be separated out or treated without approximation. Since Quantum Monte Carlo

(QMC) methods treat electron-electron interactions almost without

approximation, have become increasingly important tools to study correlated

many-body systems (Foulkes et. al., 2001). The accuracy of QMC methods

enables a great deal of confidence to be placed in the results obtained in

various studies (Førre et.al., 2006; Harju, Sverdlov, & Nieminen, 1998;

Pederiva, Umrigar, & Lipparini, 2000; Tsuchiya, 2004).

The VMC method forms the basics of the QMC machinery that provides a

powerful tool for incorporating correlation effects into the many-body wave

function, and by means of Monte Carlo integration the expectation values of

different physical observables can be obtained. In the VMC approach any trial

wave function may be optimized with respect to either the energy or the

variance minimization. This method therefore allows flexibility beyond the orbital

representation. In practice, however, the VMC method requires a trial wave

function, that accurately represents the basic features of the eigenfunction, as
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input. The accuracy of VMC is limited only by this function. Furthermore,

accurate results are obtained for several systems (Harju, 2005; Saarikoski et. al.,

2002).

A completely different and particularly interesting approach to the many-

body problems is realized by combining MC integration with the effective Exact

Diagonalization (ED) method. Commonly known as Monte Carlo Diagonalization

(MCD) method, provides a highly efficient tool for solving quantum mechanical

problems with many particles (Siljamäki et. al., 2005).

In this study the ground state energies of interacting two electron and electron-

hole pair (exciton) in two dimensional disc-like as well as three dimensional

spherical parabolic quantum dots are described by applying both the Variational

Monte Carlo (VMC) and Monte Carlo Diagonalization (MCD) approaches and

in some cases the results will be compared to the other studies. In addition, the

effects of both dimensionality and confinement strength on exciton binding

energies are also analyzed. The aim of this thesis is to describe and test new

variational wave functions which permit easier and accurate evaluation of the

ground-state energies of the interacting two particle in quantum dot systems.

The general form of the trial variational wave functions is the harmonic-oscillator

basis multiplied by different correlation forms. The main difference of this work,

comparing to the previous similar studies, is correlation function constructed

as common Jastrow factor multiplied by serial expansion in terms of Hylleraas-

like coordinates. Although the integrals including Jastrow factor can not be

evaluated analytically, Monte Carlo approaches lead to efficient and accurate

results. Very few terms are needed to reach an accuracy comparable to more

common wave function forms with large basis sets. The calculations are

performed in the real-space, which gives the advantage to shape the external

potential arbitrarily. This feature is essential when modelling the systems of the

present work.
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The results show that the Monte Carlo technique via the proposed ansatz is

successfully implemented by computational code developed in this thesis. The

technique used here with no constraints on the potential can be systematically

improved by adding more terms using the procedure we described. The

numerical code can be also optimized and parallelized for future applications

on many particle systems.

The organization of this thesis is as follows. Before formulating the VMC

and MCD algorithms several fundamental concepts with respect to Monte Carlo

methods should be understood. We described these properties which form the

basis of the work in chapter 3. QMC calculations crucially depend on the quality

of the trial-function, and so it is essential to have an optimized wave-function as

close as possible to the ground state. The problem of the function optimization

is a very important topic in numerical simulation. We present some required

features of trial wave functions and summarize the most common and efficient

forms for different systems reported in literature in chapter 4. Four variational

trial wave functions, established as the harmonic-oscillator basis multiplied by

different correlation forms, are implemented in the calculations. Step by step

improvement of trial wave functions are also outlined.

Two numerical approaches implemented in this thesis, VMC and MCD, are

studied in chapter 5. A detail description of the program codes developed through

the thesis has been omitted. Instead we focus on the theoretical principles

regarding the numerical implementation.

In chapter 6 the interacting two particle problems are formulated, and then

approximated to the forms suited for numerical calculations. The analytical

solution to the one-electron quantum dot in a magnetic field is also presented.

The presentation and discussion of the results are drawn and compared to other

calculations in chapter 6.
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Finally, the insights gained through the development of this thesis are presented

in chapter 7, together with suggestions of further development of the numerical

approaches.



CHAPTER TWO

QUANTUM DOTS

Quantum effects arise in systems which confine electrons to regions

comparable to their de Broglie wavelength. When such confinement occurs in one

dimension only, with free motion in the other directions, the so-called two

dimensional (2D) systems which include thin films, layer structures, and

quantum wells and superlattices are created. Confinement in two directions,

with free motion in only one dimension gives the one-dimensional (1D) systems

such as those solids in which linear chain-like structures can be identified, and

semiconductor wires. The confinement on all three dimensions creates zero-

dimensional (0D) systems such as clusters, quantum dots and colloids.

In recent years physicists and chemists have devoted increasing attentions

to these materials systems, and the interest is expected to rise further in the

near future, for reasons that low dimensional systems exhibits novel electronic

and optical properties. Many differences between the electronic behaviors of

bulk and quantum confined low-dimensional semiconductors are due to their

different density of states. Figure 2.1 illustrates the different systems in a

general way, and Figure 2.2 shows how the expected density of states varies with

dimensionality. Passing from three dimensions to two dimensions the density

N(E) of states changes from a continuous dependence N(E) ∝ E1/2 to a step-

like dependence. Being zero dimensional, quantum dots have a sharper density

of states than higher-dimensional structures. As a result, they have superior

transport and optical properties, and are being researched for many technological

applications listed briefly in subsection 2.4.

6
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Figure 2.1 (a) bulk semiconductors, 3D; (b) thin films, layer structures,
quantum wires, 2D; (c) linear chain structures, quantum wires, 1D; (d)
clusters, colloids, microcrystallites, quantum dots, 0D.

Figure 2.2 Densities of states N(E) for (a) 3D, (b) 2D, (c) 1D and (d) 0D
systems (corresponding to ideal cases).

2.1 Historical Development

Engineering of less than three-dimensional semiconductors began in earnest

during the early 1970s, when groups at AT&T Bell Laboratories and IBM made

the first two-dimensional quantum wells. These structures, made by thin-film

epitaxial techniques that build up a semiconductor one atomic layer at a time,

are thin regions of semiconducting material (usually gallium arsenide and related

compounds) that attract electrons. Quantum wells have now become

commonplace. They are the basis of the laser diodes found in compact-disc
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players and the sensitive microwave receivers that pull in signals from a

satellite dish (M. A. Reed, 1993). In the meantime, researchers have learned

how to confine electrons not simply in a plane but in a point.

The first hints that zero-dimensional quantum confinement was possible came

in the early 1980s, when A. I. Ekimov and his colleagues at the Ioffe Physical-

Technical Institute in St. Petersburg noticed unusual optical spectra from

samples of glass containing the semiconductors cadmium sulfide or cadmium

selenide (See Figure 2.5). The samples had been subjected to high

temperature; Ekimov suggested tentatively that the heating had caused

nanocrystallites of the semiconductor to precipitate in the glass and that quantum

confinement of electrons in these crystallites caused the unusual optical behavior.

Ekimov’s hypothesis turned out to be true, but it took years of work by groups

at Corning Glass, IBM, City College of New York and elsewhere to sort out

the correct glass preparation techniques and convincingly demonstrate quantum

confinement. Meanwhile Louis E. Brus and his co-workers at Bell Labs

managed to synthesize colloidal nanocrystallites (Reed, 1993). All

subsequent improved treatments in many laboratories world-wide follow on from

their efforts. The developments in nanostructure experimental techniques and

the unusual electronic and nonlinear optical properties of quantum dots led to

sharp increase of number of publications on these systems per year. Figure 2.3

shows that since the first studies in the late eighties, the physics of quantum dots

has been a very active and fruitful research topic.

2.2 Quantum Dots as artificial atoms

The term ”Quantum Dot” was coined by Mark Reed and suggests an

exceedingly small region of space. However, a semiconductor quantum dot is

made out of roughly a million atoms with an equivalent number of electrons.
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Figure 2.3 Increase of publications on
quantum dots. Taken from Borovitskaya, &
Shur (2002).

Virtually all electrons are tightly bound to the nuclei of the material, however,

and the number of free electrons in the dot can be very small; between one and a

few hundred. The de Broglie wavelength of these electrons is comparable to the

size of the dot, and the electrons occupy discrete quantum levels (akin to atomic

orbitals in atoms) and have a discrete excitation spectrum. This can be

contrasted to quantum wires, which are confined to a line and quantum wells,

which are confined to a planar region. Because of the analogies to real atoms,

quantum dots are sometimes referred to as “artificial atoms”. And rather than

having to study different elements or isotopes, these effects can be investigated in a

quantum dot by simply changing its size or shape. Their typical

dimensions range from nanometers to a few microns, and their size, shape and

interactions can be precisely controlled through the use of advanced

nanofabrication technology. At 10 nanometers in diameter, nearly 3 million

quantum dots could be lined up end to end and fit within the width of your

thumb.

However unlike their naturally occurring brethren, artificial atoms can be
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Figure 2.4 SEM micrographs of quantum dots
with circular, asymmetric circular, square and
triangular geometry. Taken from Morelle,
Bekaert, & Moshchalkov, (2004).

manufactured in such a way to exhibit a precise control over this confinement,

which has opened up a wide range of possibilities and areas for examination

(Kouwenhoven et. al., 2001). There are several ways to confine excitons in

semiconductors, resulting in different methods to produce quantum dots. For

example, they are not limited to being spherically or circularly symmetric that we

can have elliptic dots, rectangular dots, triangular dots, and even dots without any

symmetry (Figure 2.4). The variety of different quantum-dot shapes is, however,

continuously extending due to the rapid development of fabrication methods. The

modeling of new nanoelectronic devices sets great demands on the computational

tools, since the deviation from a circular geometry generally makes the many-

electron problem particularly complicated to solve, especially in the presence of

a magnetic field.

The confinement potential determines the electrostatic environment of the

quantum dot and in general contains the information about the corresponding

system. In a sense, the confinement potential provides a sensitive knob, which
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can be tuned to control the electronic properties of the system. Because of this

sensitivity, it is crucial to model the confinement potential as closely as possible

to the experimental situation (A. Bychkov, 2003). The “hard wall” confining

potential defined as:

Vext(x, y) =







0, in the dot,

∞, elsewhere.
(2.2.1)

and usually lead to formation of circular quantum dots has been widely studied

(Brunner et. al., 2004; Geerinckx et. al., 1990). Furthermore W. Xie (2003)

reported calculations for two electron in a Gaussian confining potential quantum

dot uder influence of a perpendicular homogeneous magnetic field.

Electrons in quantum dots are usually confined in an interface of a

semiconductor heterostructure, e.g. GaAs/AlGaAs, so that the transverse

dimensions, controlled by a lateral confinement, are considerably larger than the

thickness of the dot. In modeling quantum dots, the most common approximation

for the flat disk-like shape is a two-dimensional well with a parabolic confinement

potential. In most cases this model describes the movement of the electrons with

a reasonable accuracy. In this thesis we assumed parabolic confinement, usually

known as “soft potential”, for 2D as well as 3D GaAs quantum dot systems.

Experiments on quantum dots have been mainly focused on electron transport

properties and optical properties (Räsänen, Ph.D. Thesis, 2004). The artificial

atoms have universal spectral and transport properties that are independent of

material, shape, or disorder. Electron transport is not studied in this thesis.

The optical properties of quantum dots are mainly related to the absorption

or emission of light in the far-infrared (FIR) range, corresponding to the typical

excitation energies in semiconductor quantum dots. Excitonic effects qualitatively

alter the optical properties of reduced dimensional systems. The excited-state

properties are of critical importance in device miniaturization and the design of
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potential devices in many fields such as optoelectronics, photovoltaic cells and so

on.

Excitons in QDs

In quantum dots, binding energies of excitons and excitonic complexes, such

as trions and biexcitons, are much larger than those in the bulk materials, and

these excitonic complexes strongly influence optical properties of quantum dots.

In addition to interest of basic physics, these studies are driven by the need for

a deep understanding of such confined states for the successful application of

quantum structures to quantum information technologies. Large binding energy

of the biexciton state is particularly important in light of the recent demonstration

of the ability to operate a two-qubit gate using exciton and biexciton states.

Experimental evidence for quantum size effects of excitons confined in all three

dimensions was obtained by Ekimov & Onuschenko (1981) for microcrystallites of

CuCl dispersed in a silicate glass. They found a blue shift of the main excitonic

absorption feature, and this is evident in Figure 2.5, taken from Yoffe (1993). This

work lead directly to a theoretical treatment of this topic by Efros & Efros (1982),

and it is the case that all subsequent improved treatments follow on from their

efforts. Efros & Efros (1982) assumed spherical microcrystallites with infinite

potential barriers at the crystallite boundary. They also applied the effective-

mass approximation (EMA) and assumed parabolic energy bands. Denoting the

average dot radius R and effective Bohr radius a∗B =
4π~

2ε

µe2
, (µ = m∗

em
∗
h/(m

∗
e +

m∗
h) is reduced mass of electron-hole pair and ε is background dielectric constant of

the semiconductor material) according to Kayanuma’s report (Kayanuma, 1988)

the motional state of the exciton is classified into three regimes:

1. R/a∗B & 4: This is the regime of weak confinement and the dominant energy

is the Coulomb term, and there occurs a size quantization of the motion of
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Figure 2.5 Shift in position of exciton peaks for CuCl

microcrystallites as the radius R changes from 310Å

(curve 1) to 29Å (curve 2) to 20Å (curve 3)(Taken
from Yoffe, 1993).

exciton. Experimentally, semiconductors such as CuCl with aB ≈ 7Å, are

suitable for study in this case.

2. The second case to consider is R/a∗B . 2 and this is the regime of strong

confinement. The Coulomb term now turns out to be small and can be

ignored or treated as perturbation. The electrons and holes can be thought

of as confined independent particles, so excitons are not formed, and

separate size quantization of the electron and hole is the dominant

factor. The electrons and holes are treated as independent particles, and for

excited states we refer to electron-hole pairs rather than excitons. Suitable

materials for investigations in this regime are the II-VI semiconductors, and

also GaAs and Ge, for which aB is relatively large.

3. The third case is for the condition 2 . R/a∗B . 4, and this is the

intermediate regime. It is the electron motion which is now quantized and

the hole interacts with it through the Coulomb potential.

For the experimentalist the important factor to consider first of all is the
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magnitude of the bulk exciton binding energy and Bohr radius. For solids such

as CuCl, a∗B ≈ 7.5Å while, for CdSe, a∗B ≈ 54Å. It is therefore not surprising to

find that experiments involved CuCl have been for the case when R > a∗B, while

CdSe is suitable when R < a∗B.

Exciton binding energies Eb are larger than for bulk semiconductors. This

means that, with the larger binding energy, 2D excitons in quantum wells such as

GaAs and the wider-bandgap II-VI semiconductors are more stable than in the

bulk crystals, and optical properties can be dominated by exciton effects even at

room temperature, as found for example by Greene & Bajaj (1983) in their work

on GaAs, by Pozina et.al. (1992) in their study of CdTe, and by Doran et. al.

(1992) who investigated Cd0.33Zn0.67Te.

Figure 2.6 Exciton energies for cubic CdS in
the form of a slab, wire and quantum dot of
side Lz. Taken from Ref. Yoffe (1993).

To give reader some idea of how exciton binding energy vary with sample

size for a slab (two dimensions), wire (one dimension) and quantum dot (zero

dimension), Figure 2.6 gives energies for CdS in the cubic modification, as

calculated by D’Andrea et. al. (1990). The ground-state exciton binding
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energy Eb for the bulk crystal was taken as 28 meV, M = 0.94m0, ε = 8.1.

For the slab, Lz is the thickness; for the wire, Lx = Ly = L; for the quantum dot,

Lx = Ly = Lz = L with L > 3aB.

2.3 Fabrication of QDs

Semiconductor quantum dots are fabricated with several different methods.

The common objective between the techniques is to produce a lateral confinement

of the two-dimensional electron gas (2DEG) at the interface between two semi-

conducting materials. One of the earliest methods was to create metal electrodes

on the heterostructure surface with lithographic techniques. A voltage applied to

the electrodes confines the 2DEG existing at the interface between the layers of

different materials, e.g., GaAs and AlGaAs, into a small area. The density of the

2DEG can be controlled by the gate voltage applied to the conductive substrate.

The benefit of the method is the absence of edge defects, characteristic of etched

quantum dots. A serial structure of lateral quantum dots may also be suitable

for quantum computation, since all the tunnel barriers can be freely controlled.

This would require the isolation of a single electron (Räsänen, Ph.D. Thesis,

2004). Individual quantum dots can be created by a technique called electron

beam lithography, in which a pattern is etched onto a semiconductor chip, and

conducting metal is then deposited onto the pattern.

Reed and co-workers performed the pioneering experiments in creating vertical

quantum-dot systems by etching techniques (Reed, 1993). By inserting electric

contacts on the both ends of the heterostructure pillars and measuring electronic

transport through the device, they could observe a discrete spectrum of quantum

states. Later, Tarucha et al. (1996) managed to measure Coulomb oscillations

in vertical quantum dots containing a controlled number of electrons, and a clear

shell structure was revealed. The dot is formed between nonconducting barrier
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layers, separating it from the source and drain contacts, and the lateral potential

is tuned by a negative voltage applied to a metal gate around the pillar. In

comparison with lateral quantum dots, the number of electrons is generally easier

to control in the vertical transport. Etching techniques also enable the shaping

of the quantum-dot geometry.

Quantum dots can also be fabricated using a growth mechanism of a

semiconducting compound on the surface of a material with a wider band gap than

the growing material. The growth can be selective or self-assembled,

depending on the material parameters. In the latter case, a sufficient difference

in the lattice constants between the compounds, e.g. GaAs and InAs, is required

to induce the growth of quantum-dot structures. Self-assembled quantum dots are

considerably smaller and more strongly confined than their lithographically

fabricated counterparts (Poole, & Owens, 2003). Hence, their energy-quantization

regime is suitable for developing optical devices, e.g., quantum-dot lasers. Highly

ordered arrays of quantum dots may also be self assembled by electrochemical

techniques. A template is created by causing an ionic reaction at an electrolyte-

metal interface which results in the spontaneous assembly of nanostructures,

including quantum dots, on the metal which is then used as a mask for mesa-

etching these nanostructures on a chosen substrate. Yet another method is

pyrolytic synthesis, which produces large numbers of quantum dots that self-

assemble into preferential crystal sizes.

In semiconductors, quantum dots are small regions of one material buried in

another with a larger band gap. Quantum dots sometimes occur

spontaneously in quantum well structures due to monolayer fluctuations in the

well’s thickness. Self-assembled quantum dots nucleate spontaneously under

certain conditions during molecular beam epitaxy (MBE) and metallorganic

vapor phase epitaxy (MOVPE), when a material is grown on a substrate to

which it is not lattice matched. The resulting strain produces coherently strained
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islands on top of a two-dimensional ”wetting-layer”. This growth mode is known

as Stranski-Krastanov growth. The islands can be subsequently buried to form

the quantum dot (Knuuttila, Ph.D. Thesis, 2006). This fabrication method has

the most potential for applications in quantum cryptography (i.e. single photon

sources) and quantum computation. The main limitations of this method are the

cost of fabrication and the lack of control over positioning of individual dots.

In large numbers, quantum dots may also be synthesized by means of a

colloidal synthesis. Epitaxy, lithography, and colloidal synthesis all have different

positive and negative aspects. By far the cheapest, colloidal synthesis also has

the advantage of being able to occur at benchtop conditions and is acknowledged

to be the least toxic of all the different forms of synthesis.

Quantum dots can be made from a range of materials, currently the most

commonly used materials include zinc sulphide, lead sulphide, cadmium selenide

and indium phosphide. Many of the promising applications for quantum dots will

see them used within the human body. In order to avoid toxic materials leaching

from the quantum dots, they are also coating in a protective polymer (Stream

Chemicals, Inc., 2006).

Figure 2.7 (a) Litographic quantum dots, (b) AFM image of MOVPE-grown
In0.35Ga0.65As QD grown on (411)B substrate at 650oC (Taken from Ref. Masumoto
& Takagahara, 2002), (c)AFM image of InAs epitaxical island quantum dots grown on
GaAs substrate (Taken from Nanostructure Materials & Devices Laboratory web page,
University of Southern California), (d) colloidal quantum dots.



18

2.4 Applications

Nearly 20 years after their discovery, semiconductor quantum dots are

emerging as a bona fide industry with a few start-up companies poised to

introduce products this year. Initially targeted at biotechnology applications,

such as biological reagents and cellular imaging, quantum dots are being eyed by

producers for eventual use in light-emitting diodes (LEDs), lasers, and

telecommunication devices such as optical amplifiers and waveguides. The strong

commercial interest has renewed fundamental research and directed it to

achieving better control of quantumdot self-assembly in hopes of one day

using these unique materials for quantum computing (Ouellette, 2003). By

applying small voltages to the leads, one can control the flow of electrons through

the quantum dot and thereby make precise measurements of the spin and other

properties therein. With several entangled quantum dots, or qubits, plus a way

of performing operations, quantum calculations might be possible.

Quantum dots have quickly found their way into homes in many electronics.

The new PlayStation 3 and DVD players to come out all use a blue laser for data

reading. The blue laser up until only a few years ago was beginning to be seen

as something of an impossibility, until the synthesis of a blue quantum dot laser

(Nanofm Ltd., n.d.).

In modern biological analysis, various kinds of organic dyes are used.

However, with each passing year, more flexibility is being required of these dyes,

and the traditional dyes are simply unable to meet the necessary standards at

times. To this end, quantum dots have quickly filled in the role, being found

to be superior to traditional organic dyes on several counts, one of the most

immediately obvious being brightness (owing to the high quantum yield) as well as

their stability. Currently under research as well is tuning of the

toxicity. (Deak Lam Ltd., n.d.)
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In the case of colloids, the microcrystallites are normally present as

suspensions in liquids, or disturbed in a glass or rocksalt matrix which have large

optical energy gaps. For example colloidal particles of semiconductors such as

CdS or CdSe dispersed in glass are well known and widely used as optical cut-off

color filters for the visible part of the optical spectrum, and also in stained-glass

windows (Yoffe, 1993).



CHAPTER THREE

FUNDAMENTALS OF MONTE CARLO METHODS

3.1 Introduction to Monte Carlo Methods

The numerical methods that are known as Monte Carlo methods can be loosely

described as statistical simulation methods, where statistical simulation is

defined in quite general terms to be any method that utilizes sequences of

random numbers to perform the simulation. Monte Carlo methods have been

used for centuries, but only in the past several decades has the technique gained

the status of a full-fledged numerical method capable of addressing the most

complex applications. The name “Monte Carlo” was coined by Metropolis

(inspired by Ulam’s interest in poker) during the Manhattan Project of World

War II, because of the similarity of statistical simulation to games of chance, and

because the capital of Monaco was a center for gambling and similar

pursuits. Monte Carlo is now used routinely in many diverse fields, from the

simulation of complex physical phenomena such as radiation transport in the

earth’s atmosphere and the simulation of the esoteric subnuclear processes in high

energy physics experiments, to the mundane, such as the simulation of a Bingo

game. The analogy of Monte Carlo methods to games of chance is a good one,

but the “game” is a physical system, and the outcome of the game is not a

pot of money or stack of chips (unless simulated) but rather a solution to some

problem. The “winner” is the scientist, who judges the value of his results on their

intrinsic worth, rather than the extrinsic worth of his holdings (Drakos, 1995).

Monte Carlo Methods are a class of techniques that can be used to simulate

the behavior of a physical or mathematical system. They are distinguished from

other simulation methods such as molecular dynamics, by being stochastic, that

is, non-deterministic in some manner. This stochastic behavior in Monte Carlo

20
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Methods generally results from the use of random number sequences. Although

it might not be surprising that such an analysis can be used to model random

processes, Monte Carlo methods are capable of much more. A classic use is for

the evaluation of definite integrals, particularly multidimensional integrals with

complicated boundary conditions. The use to which we will apply Monte Carlo

is the solution of the well-known partial differential equation, the Schrödinger

equation.

Monte Carlo methods are frequently applied in the study of systems with a

large number of strongly coupled degrees of freedom. Examples includes

liquids, disordered materials, and strongly coupled solids. Unlike ideal gases

or perfectly ordered crystals, these systems do not simplify readily. The many

degrees of freedom present are not separable, making a simulation method, such

molecular dynamics or Monte Carlo, a wise choice. Furthermore, use of Monte

Carlo is advantageous for evaluating high dimensional integrals, where grid

methods become inefficient due to the rapid increase of the number of grid points

with dimensionality. Monte Carlo also can be used to simulate many classes of

equations that are difficult to solve by standart analytical and numerical methods.

Statistical simulation methods may be contrasted to conventional

numerical discretization methods, which typically are applied to ordinary or

partial differential equations that describe some underlying physical or

mathematical system. In many applications of Monte Carlo, the physical process

is simulated directly, and there is no need to even write down the differential

equations that describe the behavior of the system. The only requirement is

that the physical (or mathematical) system be described by probability density

functions (pdf’s), which will be discussed in more detail later in this chapter.

For now, we will assume that the behavior of a system can be described by

pdf’s. Once the pdf’s are known, the Monte Carlo simulation can proceed

by random sampling from the pdf’s. Many simulations are then performed
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(multiple “trials” or “histories”) and the desired result is taken as an average

over the number of observations (which may be a single observation or perhaps

millions of observations). In many practical applications, one can predict the

statistical error (the “variance”) in this average result, and hence an estimate of

the number of Monte Carlo trials that are needed to achieve a given error.

Given our definition of Monte Carlo, let us now describe briefly the

major components of a Monte Carlo method. These components comprise the

foundation of most Monte Carlo applications, and the following sections will

explore them in more detail. An understanding of these major components will

provide a sound foundation for the reader to construct his or her own Monte

Carlo method, although of course the physics and mathematics of the specific

application are well beyond the scope of this chapter. The primary components

of a Monte Carlo simulation method include the following:

• Probability distribution functions (pdf’s) - the physical (or mathematical)

system must be described by a set of pdf’s.

• Random number generator - a source of random numbers uniformly

distributed on the unit interval must be available.

• Sampling rule - a prescription for sampling from the specified pdf’s,

assuming the availability of random numbers on the unit interval, must

be given.

• Scoring (or tallying) - the outcomes must be accumulated into overall tallies

or scores for the quantities of interest.

• Error estimation - an estimate of the statistical error (variance) as a function

of the number of trials and other quantities must be determined.

• Variance reduction techniques - methods for reducing the variance in the
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estimated solution to reduce the computational time for Monte Carlo

simulation.

• Parallelization and vectorization - algorithms to allow Monte Carlo methods

to be implemented efficiently on advanced computer architectures.

The remainder of this chapter will describe only those concepts needed later in this

thesis. Further details may be found in standart statistics texts (see Hammond,

Lester, & Reynolds, 1994).

3.2 Scaling of Computer Time

To see the advantage of Monte Carlo methods over fixed grid methods for high

dimensional integrals we need to compare the error of each method for different

numbers of dimensions.

Imagine that the total number of function evaluations for a program run is

n and the number of dimensions is d. We perform the integration over a fixed

region of high dimensional space Ω.

If the estimate of the integral is obtained using Simpson’s rule, the integrand

is evaluated in n hypercubes of volume hd, where h is the width of a “strip” in

the fixed grid scheme. Hence, we have that

Ω = nhd and h =

(
Ω

n

) 1
d

∼ n− 1
d (3.2.1)

The proportional error in the integral per unit cell is approximately h4 which

becomes
(

Ω

n

) 4
d

∼ n− 4
d (3.2.2)
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Hence the proportional error decreases like n− 4
d as the number of function

evaluations, n, increases.

The error in the Monte Carlo method is independent of the number of

dimensions and is simply proportional to 1/
√
n. Comparing these errors for

different d values in Figure 3.1, we see that for d > 8 the errors in the Monte

Carlo estimate decrease more quickly as n increases. We see that for a higher

number of dimensions, MC methods give greater accuracy (James, Ph.D. Thesis,

1995).
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Figure 3.1 Comparing the accuracy of MC and Simpson’s
rule for differing dimensions in the integral.

3.3 Random Numbers Analysis

God not only play dice. He also sometimes throws the dice where they

can not be seen.

Stephen Hawking
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Monte Carlo simulation has become one of the most important tools in all

fields of science. Monte-Carlo simulation consists of repeating the same basic

calculation a large number of times with different input data and then

performing some statistical analysis on the set of results. Input data for the

different “trials” are selected using values in prescribed distributions, using a

pseudo-random number generator. The basic computation typically involves a

significant amount of calculation, so that the pseudo-random number

generation itself represents a small fraction of the total computational effort. The

success of any Monte Carlo application depends crucially on the quality of the

pseudo-random number generators used. To achieve the theoretical

convergence rates associated with the method, the pseudo-random number

generators must have certain properties. Both the quality of the generators

and the statistical independence of the results calculated on each MC step are

important (Wikramaratna, 2000). A loose definition of random number is a

numerical value resulting from a process or experiment whose value cannot be

predetermined by the initial conditions. It is important to note that the term

“random number” is somewhat misleading; a number is not random, rather it

is the relationship between numbers in a set which is random. The result of an

inherently random physical process, such as the decay of radioactive nuclei or

the decay of subatomic particles to the trajectories of dust particles across the

surface of a liquid, yields truly random results. Computers, on the other hand, are

precise and deterministic; therefore, “random” numbers generated by

computers are often called pseudo-random numbers. This happens to be

significantly more difficult on a computer than one might initially expect.

Unfortunately, there is no consensus on the best way of obtaining such

random numbers. Moreover, there is not a consistent set of requirements or

terminology between different solutions (Viega, 2003). Pseudo-random

numbers are generated by deterministic computational processes, but the numbers

satisfy one or more statistical tests for randomness. The more statistical tests

for randomness a sequence of pseudo-random numbers passes, the higher the
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quality of the pseudo-random numbers. Details of these tests will not be covered

here but can be found in elsewhere (see Hammond, Lester, & Reynolds, 1994).

Methods for producing pseudorandom numbers and transforming those numbers

to simulate samples from various distributions are among the most important

topics in statistical computing. For many problems, high-quality pseudo-random

numbers are overkill, but, for other problems, high-quality pseudo-random

numbers are critical to obtaining the correct results for a calculation.

Many types of numerical simulations, including Quantum Monte Carlo, require

the generation of random numbers with respect to a given probability density

function. Virtually all schemes to generate random numbers with respect to

a given probability density function rely on uniform random numbers. Uniform

random numbers are random numbers that fall between 0 and 1, with all numbers

having an equal probability of being generated.

This thesis covers basic principles of random numbers in Monte Carlo

simulation. Current techniques or search for newer methods for random

number generation is out of scope of the thesis.

A linear congruential generator (LCG) represents one of the oldest and best-

known pseudorandom number generator algorithms. The theory behind them is

easy to understand, and they are easily implemented and fast. A sequence {Ii}
of nonnegative integers is generated by means of the fundamental congruence

relationship

Ii+1 = aIi + c (mod m) (3.3.1)

where the multiplier a, the increment c, and the modulus m are nonnegative

integers. From Equation 3.3.1, it is easy to show that Ii < m for all i. Because

of this, the sequence {Ii} contains at most m distinct numbers. Using this result,



27

a set of uniform pseudo-random numbers, {Ui}, can be obtained by letting

Ui =
Ii
m

(3.3.2)

Because Equation 3.3.1 is deterministic and because Ii is bounded, the sequence

{Ii} is composed of repeating subsequences. The period of the sequence {Ii}, p, is

equal to the length of the repeating subsequence. As an example,

consider the case where a = c = I0 = 3 and m = 5. Here the generator, Ii+1 =

3Ii + 3 (mod 5), produces the sequence {3, 2, 4, 0, 3, 2, 4, . . .}. This sequence is

composed of repetitions of the subsequence {3, 2, 4, 0} and has a period of p = 4.

Obviously when generating pseudo-random numbers, a and c should be chosen

so that the sequence {Ii} has a maximum period (p = m). This ensures that

the uniform pseudo-random number generator produces the maximum number of

distinct pseudorandom numbers. This full period occurs if and only if:

1. c is relatively prime to m (or equivalently gcd (c,m) = 1).

2. a ≡ 1 (mod g) for every prime factor g of m.

3. a ≡ 1 (mod 4) if m is a multiple of 4.

Because current computers use binary numbers, the most efficient LCGs have an

m equal to a power of 2, most often m = 232 or m = 264, because this allows the

modulus operation to be computed by merely truncating all but the rightmost

32 or 64 bits. Poor choices had led to ineffective implementations of LCGs. The

following table lists the parameters of LCGs in common use:

The quality of sequences generated using linear congruential generators is

determined by the period length and the results of standard statistical tests for

pseudorandom numbers.



28

Table 3.1 The parameters of linear congruential generators used by common libraries.

Source m a c

Numerical Recipies 232 1664525 1013904223

glibc (Used by GCC) 232 1103515245 12345

Microsoft Visual/Quick C/ C++ 232 214013 2531011

In this thesis we use the linear congruential generator of Intel Fortran compiler

10.0 for Linux, seeded with a character generated from system clock (see the

algorithm below). It is extremely simple to code and can be implemented in

virtually any high-level programming language. It can be coded as a subroutine

or function, or, for maximum computational efficiency, we coded in-line.

Algorithm 1. Random number generator with seed from system clock.

INTEGER(I4B)::Count

INTEGER(I4B), DIMENSION(2) :: Seed

CALL SYSTEM−CLOCK(Count)

Seed = Count

CALL RANDOM−SEED(PUT=Seed)

Modifications can be made to linear congruential generators to improve the

algorithm’s results in standard statistical tests. One such modification simply

shuffles the sequence generated by a linear congruential generator.

In addition to linear congruential generators, uniform random numbers can be

created using multiplicative congruential generators. These generators are the

same as the linear version except c = 0. In this case, it is not possible to choose a
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so that the sequence {Ii} has a full period; however, to optimize the method, it is

possible to choose a and I0 so that the sequence has a maximum period. Because

fewer operations are performed, multiplicative congruential generators are faster

than linear congruential generators.

Monte-Carlo simulations are common and inherently well suited to parallel

processing, thus requiring random numbers that are also generated in parallel.

Generating parallel random numbers as well as parallelization of the current code

are planed future works.

3.4 Probability Density and Distribution Functions

We need to start by defining the concepts and notation used to discuss random

numbers and events. An experiment is the process of observing one or a set of

physical properties in a system of interest. The result of an experiment is limited

to certain values of ranges of values of the physical properties. A state is an

allowed value of the set of physical properties of the system. The set of all

possible states is the sample space. A discrete sample space contains either a

finite or infinite number of distinct values. A continuous sample space contains

an infinite numbers of continuous values (such as the positions of particles). A

sample point is a single point in sample space. A random variable is a variable

whose value lies within the sample space with a certain probability distribution.

To avoid confusion, we will use upper case (X,Y, Z) to denote sample points and

lower case (x, y, z) to denote variables. This distinction will become clear with

usage. A sequence is a series, in order of occurrence, of sample points resulting

from an experiment. We often will use the set notation {Xi} to denote all the

members of a sequence.

The most familiar uses of random numbers occur in games of chance. This
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connection gives the Monte Carlo method its name. Consider a standart six-

sided die. If one tosses an ideal,unbiased die, and records the outcome for a

sufficiently large number of tosses (in principle, an infinite number), each of the

six outcomes will occur exactly one sixth of the time. Even though the outcome

of a single toss is random, and thus unknown beforehand, the probability of each

outcome is 1/6. The probability density function is the function that describes

the probabilities of all possible events. The sum or integral of the probabilities

must be unity to insure the proper normalization of the density function. For a

discrete distribution the normalized probability function p must satisfy,

N∑

i=1

p(xi) = 1, (3.4.1)

where the sum is over all states, xi. In the case of die, the normalized probability

density function is p(xi) = 1/6, for each xi = 1, 2, 3, 4, 5, 6.

A continuous density function describes the probability of an event

associated with a continuous variable. The probability density function

represents the probability that the value of a given sample point is less than

or equal to x, i.e.

P (x) =

∫

−∞

x

p(y)dy (3.4.2)

(We will use lower case to denote density functions and upper case to denote the

associated distribution functions.) The distribution function always increases

monotonically from zero to one. If P (x) is defined as a probability density

function, it must be positive for all random x variables:

P (x) > 0, −∞ < x <∞ (3.4.3)

The probability of a random variable to occur on any point of the real axis is
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unity:
∫ ∞

−∞
p(x′)dx′ = 1 (3.4.4)

The probability of a random variable to be in the range of (x, x + dx) is defined

as:

P (x ≤ x′ ≤ x+ dx) = f(x)dx (3.4.5)

Similarly the probability of the random variable to be in the finite range of [a,b]

is given as:

P (a ≤ x ≤ b) =

∫ b

a

f(x′)dx′. (3.4.6)

Let us illustrate these concepts by examining two cases that will be of

importance in MC simulations: the uniform and Gaussian distributions (see

Figures 3.2 and 3.3). The density function of the uniform distribution is

illustrated in Figure 3.2. For the uniform distribution, denoted by u(x), all

outcomes in a given range [α, β] have equal probability, and all other values of x

have zero probability. The normalization of u requires that

u(x) =







(β − α)−1 α ≤ x ≤ β,

0 otherwise.
(3.4.7)

If u(x) is uniform probability distribution function, the probability of a random

number to be between x and x+ dx is determined as:

u(x)dx =







dx 0 < x < 1,

0 otherwise.
(3.4.8)

Therefore the probability that x is between a and b if α ≤ a < b ≤ β is given

by
∫ b

a

u(x)dx = U(b) − U(a) = (b− a)/(β − α) (3.4.9)

where U is the distribution function associated with u.
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Figure 3.2 Uniform probability
distribution function.

The Gaussian probability distribution function, g(x), shown in Figure 3.3, owes

much of its importance to the central limit theorem. In one dimension its density

function is

g(x) =
e−(x−µ)2/2σ2

√

(2πσ2)
, (3.4.10)

where the parameter µ specifies the center of the density function and σ

determines its width.
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3.5 Monte Carlo Integration

Monte Carlo methods are a way of using random numbers to perform

numerical integrations. By way of example consider the integral

I =

∫ x2

x1

f(x)dx (3.5.1)

There are many quadrature methods, with varying degrees of accuracy, which

can be used to evaluate this integral. The trapezium and Simpson algorithms are

both quadrature methods which involve evaluating f(x) at evenly spaced points,

xi, on a grid. A weighted average of these values f(xi) gives an estimate of the

integral

Iestimate = (x2 − x1)

∑

i

ωif(xi)

∑

i

ωi
, (3.5.2)

where the ωi are the weights. The weights and the sampling points are different

for different methods of quadrature but all the methods sample the function f(x)

using pre-determined weights and sampling points.

Monte Carlo methods do not use specific sampling points but instead we choose

points at random. The Monte Carlo estimate of the integral is then,

Iestimate = (x2 − x1)
1

N

∑

i=1

f(xi) (3.5.3)

= (x2 − x1)f, (3.5.4)

where the xi are randomly sampled points and f is the arithmetic mean of the

values of the function f(x) at the sampling points. The standart deviation of the

mean is given by

σm =
σ√
N
, (3.5.5)
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where

σ2 =

∑

i(f(xi) − f)2

N − 1
(3.5.6)

gives an estimate of the statistical error in the Monte Carlo estimate of the

integral. Note that the error goes as 1√
N

, independent of the dimensionality

of the integral.

3.5.1 Metropolis Sampling

The term “Monte Carlo” was first coined by Metropolis in 1947 in a paper on

the diffusion of neutrons in fission-able material (Metropolis & Ulam, 1949). This

was also the first paper to use the Metropolis algorithm, though many have used it

since. The Metropolis algorithm is the most widely used algorithm for generating

a sequence of phase space points that sample a given probability distribution.

In quantum MC, each phase space point is a vector, R = {r1, r2, ..., rN−1, rN},
in the 3N dimensional space of the position coordinates of all the N electrons,

and the sequence phase space points provides a statistical representation of the

ground state of the system.

If we are to build up a statistical picture of the overall system of electrons and

nuclei, it is necessary to move the electrons around to cover all possible positions

and hence all possible states of the system. As we move the electrons around,

we can keep track of physical quantities such as the total energy, polarization,

etc., associated with the instantaneous state of the electron configuration. The

sequence of individual samples of these quantities can be combined to arrive at

average values which describe the quantum mechanical state of the system. This

is the fundamental idea behind the Monte Carlo method, and the Metropolis

algorithm is used to generate the sequence of different states to sample physical

quantities such as the total energy efficiently. Many pseudo-random numbers are

used to generate the sequence of states, which are collectively called a random
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walk.

The method described so far is rather simplistic. We have not decided on the

probability distribution from which we shall draw the points, R, to discussed

how to sample the distribution once it has been chosen. We will return to the

first question later, but let us ignore it for the time being and suppose only that

we wish to sample some known distribution ρ(R). Metropolis showed that the

sampling is most easily accomplished if the points R form a Markov chain. There

are two properties which must be satisfied if the random walk is the Markovian.

These are:

1. Each point on the walk belongs to a finite set {R0,R1, ...Rn, ...} called a

phase space.

2. The position of each point in the chain depends only on the position of the

preceding point and lies close to it in the phase space.

Because of these properties, a Markov process may be completely specified by

choosing values of the transition probabilities P (Rn,Rm). Given that the walk

has reached the point Rn, P (Rn,Rm) is the probability that the next point on

the walk will be the point Rm. The Metropolis algorithm works by choosing the

transition probabilities in such a way that the points on the random walk sample

the required probability distribution.

To understand the Metropolis algorithm, it is necessary to work out

the statistical properties of the points on the Markov chain specified by the

transition probabilities P (Rn,Rm). This may be done by considering a very large

ensemble of Markov chains, all evolving simultaneously according to the same

transition probabilities. Making a physical analogy, we can imagine

generating each Markov chain in the ensemble by moving a fictitious particle,
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called a walker, around the phase space. The walkers all move step by step in

accordance with the given transition probabilities, P (Rn,Rm), and hence each

walker generates one of the chains in the ensemble. At any given time, t, the

number of walkers at point Rn is N(Rn, t). As the Markov chains evolve in time

(the walkers move around), N(Rn, t), develops according to the Master equation,

d

dN
N(Rn, t) = −

∑

Rm

P (Rn,Rm)N(Rn, t) +
∑

Rm

P (Rm,Rn)N(Rm, t) (3.5.7)

on the RHS is the total rate of transitions out of state Rn and the second is the

total rate of transitions into the state Rn. The change of walker density is zero

in the long time limit, so that N(Rn, t) → N(Rn) as t → ∞. The LHS of the

Master equation becomes zero and N(Rn) satisfies

∑

Rm

P (Rn,Rm)N(Rn) =
∑

Rm

P (Rm,Rn)N(Rm) (3.5.8)

Metropolis realized that the distribution of walkers will settle down to the required

distribution, ρ(R), as long as the transition probabilities obey the detailed balance

equation,

P (Rn,Rm)ρ(Rn) = P (Rm,Rn)ρ(Rm) (3.5.9)

Imposing the condition of detailed balance on the transition probabilities gives

the following equation,

∑

Rm

P (Rn,Rm)

(

N(Rn) −
ρ(Rn)

ρ(Rm)
N(Rm)

)

= 0 (3.5.10)

The solution to this steady state Master equation is

ρ(Rn)

ρ(Rm)
=
N(Rn)

N(Rm)
for all pairs Rn and Rm (3.5.11)

showing thatN(Rn), the number of walkers in the state Rn, becomes proportional

to the steady state distribution, ρ(Rn), that we wish to sample.
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We still have some freedom in choosing the transition probabilities, which

are not uniquely defined by the detailed balance condition. In the Metropolis

approach (Metropolis et. al., 1953) the walk is generated by starting from a

point Rn and making a trial move to a new point Rm somewhere nearby in phase

space. The rule for making trial moves is not crucial, expect that it is important

to ensure that

Ptrial(Rn,Rm) = Ptrial(Rm,Rn) (3.5.12)

Once the trial move has been made, it is accepted or rejected according to the

rule

Paccept(Rn,Rm) = min

(

1,
ρ(Rm)

ρ(Rn)

)

(3.5.13)

which is implemented as follows,

Paccept(Rn,Rm) =







1 i.e. always accept if ρ(Rm)
ρ(Rn)

≥ 1
ρ(Rm)
ρ(Rn)

i.e. accept with finite probability if ρ(Rm)
ρ(Rn)

< 1

(3.5.14)

Because this definition involves the ratios of probabilities there is no need to

worry about normalization of the distribution ρ(Rn). Combining the trial and

acceptance probabilities, we find that,

P (Rn,Rm)

P (Rm,Rn)
=
Ptrial(Rn,Rm)Paccept(Rn,Rm)

Ptrial(Rm,Rn)Paccept(Rm,Rn)
=
ρ(Rm)

ρ(Rn)
(3.5.15)

and hence the detailed balance condition is satisfied as required.

Several points need to be emphasized regarding this algorithm. First, the

walk must be allowed to come to equilibrium before the desired averages may

be computed. Methods for judging equilibrium will vary with application, but

typically one monitor the running average of a function, observing convergence to

a steady state value (within statistical fluctuations). A second point is that if the

move Y is rejected, one must again include the point X(k) in the distribution, and

not attempt a second move. A final point is that the distribution is normalized
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to the total number of sample points M during the walk, not to unity. This

normalization leads to division by M when obtaining averages of histograms.

Although the Metropolis algorithm was developed to describe the

stochastic behavior of neutrons in fission-able material, it was Metropolis himself

who first applied it to the quantum many-body problem, prompted by the arrival

of increased computing power at Los Alamos in 1952. This work provided the

base from which the modern variational and diffusion Monte Carlo methods have

developed.

3.5.2 Importance Sampling

Monte Carlo calculations can be carried out using sets of random points

picked from any arbitrary probability distribution. The choice of distribution

obviously makes a difference to the efficiency of the method. In most cases,

Monte Carlo calculations carried out using uniform probability distributions give

very poor estimates of high dimension integrals and are not a useful method of

approximation. In 1953, however, Metropolis et. al. (1953) introduced a new

algorithm for sampling points from a given probability function. This algorithm

enables the incorporation of “importance sampling” into Monte Carlo integration.

Instead of choosing points from a uniform distribution, they are now choosen from

a distribution which concentrates the points where the function being integrated

is large. Eq.(3.5.1) can then be rewritten as

I =

∫ b

a

f(x)

g(x)
g(x)dx, (3.5.16)

where the function g(x) is chosen to be a reasonable approximation to f(x). The

integral can be calculated by choosing the random points from the probability

distribution g(x) and evaluating f(xi)/g(xi) at these points. To enable g(x) to

be act as a distribution function it must be of one sign everywhere, and the



39

best possible choice1 is g(x) = |f(x)|. The average of these evaluations gives an

estimate of I. Another way of looking at this new integral is to define dy = g(x)dx,

in which case

I =

∫ B

A

f(x(y))

g(x(y))
dy (3.5.17)

where the limits of integration are changed to correspond to the change of variable.

In this case, random points are chosen from a uniform distribution in the domain

A < y < B. The new integrand, f/g, is close to unity and so the variance for

this function is much smaller than that obtained when evaluating the function by

sampling from a uniform distribution. Sampling from a non-uniform distribution

for this function should therefore be more efficient than doing a crude Monte

Carlo calculation without importance sampling.

3.5.3 Correlated Sampling

Wave-function optimization is one of the most critical, time consuming and

important stages of a VMC calculation. In VMC calculations, the accuracy of the

trial wave-function limits the statistical efficiency of the calculation and the final

accuracy of the result obtained. Therefore, several variational parameters are put

into the trial wave-function. As more and more parameters are put into the wave-

function the accuracy needed to obtain

statistically significant improvements becomes more demanding and

time-consuming. We wish of course to limit the number of parameters by

choosing the trial functions as wisely as possible, but as the systems grow larger

the number of parameters needed is increasing.

The straightforward approach to optimize the parameters numerically, is to use

well established statistical tools to fit a surface to a set of data-points

chosen by the user. The minimum of the surface can then be obtained. This

1The choice of g(x) = |f(x)| minimizes the variance of the estimate of the integral.
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procedure, however, is not very efficient. First, the data points are statistical

and we therefore need several (or a few very accurate) data points to be able to

significantly pinpoint a parameter minimum. Further, we must choose the shape

of the surface. Close to the minimum, a parabolic surface would be a good

approximation, but as we do not know where the minimum is we must use

intuition and insight to choose the shape of the surface. We want a procedure

that is fast and able to localize the minimum without much effort. Therefore,

we have incorporated an optimizing procedure commonly used in the literature

known as correlated sampling. Introduction of guiding functions, Ψα′ , allows the

same random walk to produce several local estimates of the integral,

〈E〉α′ =

∫
|Ψα′(X)|2Eα′

L (X)dτ
∫
|Ψα′(X)|2dτ . (3.5.18)

Each of these local estimates of energy 〈E〉α′ must be in the neighborhood of

the central parameter set α in parameter space. By the central parameter set

we mean the set that produces the random walk by means of the Metropolis

algorithm. Multiplication of

1 =
|Ψα(X)|2
|Ψα(X)|2 (3.5.19)

inside the integrals of both the numerator and the denominator yields

〈E〉α′ =

∫
ωα,α′(X)Eα′

L (X)|Ψα(X)|2dτ
∫
ωα,α′(X)|Ψα′(X)|2dτ , (3.5.20)

with

ωα,α′(X) =
|Ψα′(X)|2
|Ψα(X)|2 (3.5.21)

By dividing with the norm,

Nα =

∫

|Ψα(X)|2 (3.5.22)
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in both the numerator and the denominator we have

〈E〉α′ =

∫
ωα,α′(X)Eα′

L (X)ρα(X)dτ
∫
ωα,α′(X)ρα(X)dτ

, (3.5.23)

with

ρα(X) =
|Ψα(X)|2

∫
|Ψα(X)|2dτ (3.5.24)

Here ρα(X) is the probability distribution of the central parameter set. The

random walk of the cental parameter set may therefore be used to generate

estimates of several local variations in parameter space. We arrive at

〈E〉α′ ≈

M∑

i=1

ωα,α′(Xi)E
α′

L (Xi)

M∑

i=1

ωα,α′(Xi)

(3.5.25)

where the sample points are taken from the distribution ρα(X) given by Equation

(3.5.24).

This approach, in theory, looks very promising, but in fact it poses a few

problems. The weights ωα,α′ may vary by several orders of magnitude, especially

close to the nodes. The sample points generated by the Metropolis algorithm

depends only on the cental wave-function. If the value of the central wave-function

is small compared to the local wave-function, it implies that the value of the

weight becomes large. This manifests itself near the nodes due to lack of more

complicated many-body correlations. This could lead to a few sample points

dominating the estimate of the integral. These few dominant points, may give

really poor estimates of for example the energy, as the trial wave-functions fail to

cancel divergent terms. Also, if the nodes of the local variation do not coincide

with the nodes of the central wave-function we may actually allow sampling at

the nodes.
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Nevertheless, the introduction of guiding functions allows a fast and

effective routine for optimizing the wave-function. A thorough investigation of the

numerical instabilities induced by the introduction of guiding functions is given

by Kent (Kent, Ph.D. Thesis, 1999).

3.6 Evaluation of Statistical Error in MC Simulations

The importance of probability density function is the fact that one can de-

fine the expectation value of a random variable (x) or a function (g(x)) which

argument is random number as:

Ep(x) ≡ x =

∫ ∞

−∞
p(x′)x′dx′ (3.6.1)

Ep[g(x)] ≡ g =

∫ ∞

−∞
p(x′)g(x′)dx′ (3.6.2)

x and g expressions are real mean values that we are interested in and investigate

good approximate results by MC simulation.

The average the powers of the deviations of any random variable’s possible

values from its expected value (mean) is defined as “central moment”:

nthcentral moment = (x− x)n (3.6.3)

The first central moment is zero. The second central moment is an important

one which is known as variance:

var(x) = σ2(x) = (x− x)2 =

∫

p(x′)(x′ − x)2dx′ (3.6.4)
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The positive square root of the variance gives the standart deviation:

σ(x) = [var(x)]1/2 (3.6.5)

The expectation value of any f(x) function between x1 and x2 in terms of p(x)

probability density function is found as:

I = Ep[f(x)] =

∫ x2

x1

dxp(x)f(x) (3.6.6)

In the general case the probability density function is determined in the finite

range of [a,b]:
∫ b

a

p(x) = 1, p(x) > 0, a < x < b (3.6.7)

Then Equation 3.6.6 can be rewritten as:

∫ x2

x1

dxp(x)f(x) =

∫ b

a

dxp(x)f ′(x)

=

∫ x1

a

dxp(x)f ′(x) +

∫ x2

x1

dxp(x)f ′(x) +

∫ b

x2

dxp(x)f ′(x)

(3.6.8)

where f ′(x) function is defined as:

f ′(x) =







0, a ≤ x ≤ x1

f(x), x1 ≤ x ≤ x2

0, x2 ≤ b

(3.6.9)

or

f ′(x) = θ(x− x1)θ(x2 − x)f(x).

Then the expression 3.6.8 can be re-arranged as:

I =

∫ b

a

dxp(x)θ(x− x1)θ(x2 − x)f(x) (3.6.10)
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Here, if g(x) = θ(x− x1)θ(x2 − x)f(x) then:

I =

∫ b

a

dxp(x)g(x) (3.6.11)

According to definition 3.6.6, Equation 3.6.11 gives the expectation value of the

function g(x). Let us define a p∗(x) probability density distribution function

which is different from p(x):

∫ b

a

p∗(x)dx = 1 (3.6.12)

I = Ep[g(x)] =

∫ b

a

dxp(x)g(x) =

∫ b

a

dxp∗(x)

[
p(x)

p∗(x)

]

g(x) (3.6.13)

I =

∫ b

a

dxp∗(x)ω(x)g(x), ω(x) =
p(x)

p∗(x)
(3.6.14)

I = Ep∗ [g(x)ω(x)] =

∫ b

a

dxp∗(x)g(x)ω(x) (3.6.15)

As consequence:

I = Ep[g(x)] = Ep∗ [g(x)ω(x)] (3.6.16)

Equation 3.6.16 is the exact determinist result.

Let’s write Equation 3.6.6 np times and sum these expressions:

npI =

np∑

1

∫ b

a

dxip(xi)g(xi)

=

∫ b

a

dx1p(x1)g(x1) +

∫ b

a

dx2p(x2)g(x2) + ...+

∫ b

a

dxnpp(xnp)g(xnp)

(3.6.17)

Since p(x) is probability density function:

np∏

i=1

[∫ b

a

dxip(xi)

]

= 1 (3.6.18)
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npI =

np∏

i=1

[∫ b

a

dxip(xi)

] [
np∑

i=1

g(xi)

]

(3.6.19)

I =

∫ b

a

dx1p(x1)

∫ b

a

dx2p(x2)...

∫ b

a

dxnpp(xnp)

{

1

np

np∑

i=1

g(xi)

}

(3.6.20)

As a result;

Ep[g(x)] =

∫ b

a

dxp(x)g(x) (3.6.21)

Enp,p[g(x)] =
1

np

np∑

i=1

g(xi) (3.6.22)

Expression 3.6.21 is an exact determinist expression for I, while 3.6.22 is an

approximate result obtained over random positions generated according to p(x)

distribution.

Ep[Enp,p[g(x)]] =

∫ b

a

dx1p(x1)

∫ b

a

dx2p(x2)...

∫ b

a

dxnpp(xnp)Enp,p[g(x)] (3.6.23)

V ar(Enp,p[g(x)]) = Ep
[
(Enp,p[g(x)] − Ep[Enp,p[g(x)]])

2
]

(3.6.24)

V ar

[

1

np

np∑

i=1

g(xi)

]

=

np∑

i=1

V ar

(
g(xi)

np

)

=
1

np
V ar(g(x)) (3.6.25)

V ar[Enp,p(g(x))] =
1

np
V ar[g(x)] (3.6.26)

Similarly, the variance of expectation value over np∗ positions generated randomly

from p∗(x) distribution is written as:

Enp∗,p∗ [g(x)ω(x)] = Inp∗,p∗ ≈ I (3.6.27)

V arp∗ [Inp∗,p∗ ] =
1

np∗
V arp∗ [g(x)ω(x)] (3.6.28)

Finally, standart deviation of the expected value I = I ± σI is found as:

σI =
1

√
np
σp,g, σI =

1
√
np∗

σp∗,gw (3.6.29)



CHAPTER FOUR

QUANTUM MONTE CARLO METHODS

4.1 Variational Quantum Monte Carlo

The variational quantum Monte Carlo (VMC) method is the simpler of the

two quantum Monte Carlo methods used in this thesis. It is based on combination

of the ideas described in the previous sections, namely the variational principle

and Monte Carlo evaluation of integrals using importance sampling based on the

Metropolis algorithm.

4.1.1 The Variational Principle

The Variational Principle provides the starting point for almost all methods

which aim to find an approximate solution to Schrödinger’s equation. It may be

stated as follows:

The expectation value of a Hamiltonian, Ĥ, calculated using a trial

wave function, ΨT , is never lower in value than the true ground state

energy, ε0, which is the expectation value of Ĥ calculated using the

true ground state wavefunction, Ψ0.

Obviously this is extremely valuable because it means that it is always

possible to find an upper bound for the ground state energy. It is also

possible to use variational methods to study excited states, but the real strength

of this principle lies in finding ground state energies. Variational calculations

rely on making a physically plausible guess at the form of the ground state

wavefunction, ΨT , of the Hamiltonian, Ĥ. This guess will be referred to as the

46
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trial wavefunction throughout this thesis. The “trial” part of the name refers to

the use of the wavefunction as a guess of the true groundstate wavefunction to

be used as the input wavefunction in a Variational quantum Monte Carlo (VMC)

calculation. The trial wavefunction depends on a number of variable parameters

which can be adjusted to minimise the energy expectation value. If the guessed

values of these parameters are good and the chosen functional form builds in

enough variational freedom to adequately describe the physics of the system being

studied, the very accurate estimates of the ground state energy can be obtained.

Variational Monte Carlo (VMC) calculations are direct applications of the above

variational principle.

The expectation value of the exact groundstate wavefunction, Ψ0, with this

Hamiltonian, is the exact groundstate energy.

E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=

∫
Ψ∗

0(R)ĤΨ0(R)dR

Ψ∗
0(R)Ψ0(R)dR

(4.1.1)

where R denotes the 3N-dimensional vector of electronic positions. The VMC

method relies on one being able to construct a trial wavefunction, ΨT , that is a

reasonably good approximation to the true groundstate wavefunction, Ψ0. More

information about selection of trial wavefunctions is given in chapter 5. The

energy associated with the trial wavefunction is given by,

ET =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

=

∫
Ψ∗
T (R)ĤΨT (R)dR

Ψ∗
T (R)ΨT (R)dR

(4.1.2)

The variational principle, described above, ensures that the energy, ET , is a

rigorous upper bound to the true ground-state energy, E0.
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The VMC method is a Monte Carlo method for evaluating the multi-dimensional

integral in Eq.4.1.2. This is achieved by rewriting Eq.4.1.2 in the following form,

ET =

∫ |ΨT (R)|2 ĤΨT (R)
ΨT (R)

dR
∫

ΨT (R)dR
(4.1.3)

The Metropolis algorithm is used to sample a series of points, R, in configuration

space. At each of these points the “Local Energy”, EL = ĤΨT (R)
ΨT (R)

, is evaluated.

After a sufficient number of evaluations of the local energy have been made, the

average is taken in the same way as in Eq.3.5.2.

EVMC =
1

N

N∑

i=1

ĤΨT (Ri)

ΨT (Ri)
(4.1.4)

where the Metropolis algorithm ensures that in the limit of large N , the Ri are

sampled from |ΨT (R)|2.

Figure 5.1 is a schematic flow chart illustrating how a typical VMC algorithm

works. There are two distinct parts to the algorithm; an initial equilibration

stage and an energy evaluation stage. During the initial equilibration stage, the

walker is moved according to the Metropolis algorithm, but the local energy

is not accumulated along the walk. This stage is required because the initial

starting point of the walker is chosen randomly and therefore a set of Metropolis

moves are required before the average along its walk is correctly sampling the

distribution, |ΨT |2. The required number of equilibration steps can be established

by calculating the energy at each step from the beginning of the random walk

and looking for the point at which there is no longer a drift in the average value

of the local energy. During the energy evaluation stage, the energy of the walker

is accumulated after each move.

The advantage of Metropolis algorithm is that it only requires evaluating Ψ for

the proposed move; the unknown normalization
∫

Ψ2dx is not required. Initially,
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Figure 4.1 Flow chart illustrating the VMC
algorithm.

one must wait for equilibrium (i.e. for convergence to the distribution Ψ2) before

computing any expectation values. Equilibration can be judged by looking for a

systematic trend in 〈EL〉 over the course of the walk. Other quantities of interest

also can be sampled at the same time. In choosing the step size, one wishes to

maximize the actual accepted step size. Attempting too large a step will result in

a small acceptance to rejection ratio, and so actual movement will be small. Note

attempting large enough moves clearly also will restrict the actual movement.

This step size should therefore be optimized empirically based on the observed
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behavior of the sampling algorithm.

In the above algorithm we have moved and accepted or rejected one electron at

a time. One also could have moved all the electrons at once, and then accepted or

rejected the move as a whole. Moving one electron at a time is often more efficient,

especially with the wave function forms typically used in which the one-electron

contribution to Ψ and EL can be evaluated efficiently.

4.2 Monte Carlo Diagonalization Method

The basic principle in the MCD method is the same as in the exact

diagonalization (ED) method. The only difference between ED and MCD is

in the evaluation of matrix elements. In the ED method, the evaluation is done

analytically, requiring simple functional form for the basis functions. In the MCD

method, the matrices are evaluated statistically, and there are no restrictions on

the basis functions at all. On the other hand, the number of basis functions

required to achieve convergence for the Schrödinger equation is often orders of

magnitude larger in the ED method than in the MCD method (Siljamäki, 2005).

It should pointed out that the enhancement of particles in ED method lead to an

exponential increase in the size of basis set, then the number of efficiently treated

particles is quite restrictive. In principle the approach seems ideal for solving

interacting few-body systems, but in practice only very small number of particles

can be calculated with good accuracy (N . 10) (Maksym, 2005). On the other

hand, the matrix elements for corresponding system are calculated analytically.

Thus, in the case of any changes in Hamiltonian or basis functions matrix ele-

ments have to be regenerated. Usually it is not easy to obtain analytical result

for integrals of matrix elements. Compared to ED method, it should be simple

enough to make any changes in the corresponding system and to implement cal-

culations for larger number of particles feasible in the MCD method. Moreover,
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this numerical method can be applied to yield the eigenfunctions and eigenvalues

for both the ground and excited states of the exciton.

The technique is simple and straightforward to apply. Any trial

wavefunction for the solution of Schrödinger equation of the corresponding system

can be written as expansion of basis functions (ψp):

ΨT =

Np∑

p=0

Cpψp (4.2.1)

Symbolically the Schrödinger equation is:

HΨT = εΨT (4.2.2)

Np∑

p=0

CpHψp = ε

Np∑

p=0

Cpψp (4.2.3)

Multiplying the equation 4.2.3 by Ψ∗
T =

∑

p′

C∗
p′ψ

∗
p on the left and then integrating

over the space we get:

∑

p

∑

p′

C∗
p′Cp

∫

ψ∗
p′Hψpdτ = ε

∑

p

∑

p′

C∗
p′Cp

∫

ψ∗
p′ψpdτ (4.2.4)

According to minimization principle:

∂ε

∂C∗
k

=
∑

p′,p

δp′,kCp(〈ψp′|H|ψp〉 − ε〈ψp′|ψp〉) = 0 (4.2.5)

Np∑

p=0

Cp(〈ψk|H|ψp〉 − ε〈ψk|ψp〉) = 0 (4.2.6)

As a result the Schrödinger equation of the system can be written in matrix form

as:

KC = εMC (4.2.7)
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where K and M matrices are often called as stiffness and mass matrices, re-

spectively. C is column matrix consisting from expansion coefficients (Cp). This

generalized eigenvalue equation (4.2.7) is usually solved numerically.

Figure 4.2 Flow chart illustrating the MCD
algorithm.

4.2.1 Error Estimation in Monte Carlo Diagonalization Method

Stiffness and mass matrix elements (Kij, Mij) have been calculated accord-

ing to correlated sampling technique described in section 3.6.3. The evaluation of
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matrix elements are given in detail in section 6.2.3. Standart deviation

corresponding to each multidimensional integral have been also estimated during

Monte Carlo random walk by using Equation 3.6.29. Accordingly, the generalized

eigenvalue equation (4.2.7) is implicitly in the following form:

(K0 ± σK)C0 = (ε0 ± ∆ε)(M0 ± σM)C0 (4.2.8)

where K0 and M0 are matrices obtained from correlated sampling MC results.

The standart deviations calculated for corresponding multidimensional integrals

form σK and σM MC error matrices. The energy solution of generalized

eigenvalue problem is ε0 ant it has ∆ε standart deviation due to random number

process. Although we do not evaluate the expansion coefficients, Cp, these also

have uncertainty σC , which we have neglected. Since the matrices of size 8 are

treated in calculations in this thesis and statistical errors in σK and especially

in σM matrices are reasonably small. Hence, neglecting σC is a good approx-

imation and enable to guess the MC statistical error to a good extent. Good

agreement between our results and previous studies explain in chapter 6 justifies

our prediction.

After some arrangements in Equation (4.2.8) we find the following expression:

K0C0 ± σKC0 = ε0M0C0 ± ε0σMC0 ± ∆εM0C0 ± ∆εσMC0 (4.2.9)

±(σK − ε0σM)C0 = ±∆ε(M0 ± σM)C0 (4.2.10)

Then, possible ±σi (i = K,M) configurations lead to four energy solutions. The

differences between maximum and minimum values and ε0 give ∆εmax and ∆εmin

errors in evaluation of ε0 by Monte Carlo Diagonalization method.

ε0 − ∆εmin < εMCD < ε0 + ∆εmax (4.2.11)



CHAPTER FIVE

VARIATIONAL TRIAL WAVE FUNCTIONS

Important to both VMC and MCD is the choice of the trial function. In VMC,

all averages are evaluated with respect to the trial function, and so it determines

the ultimate accuracy.

Most variational methods rely on a double basis-set expansion in 1-electron

primitive functions and in N -electron Slater determinants (Hammond, Lester, &

Reynolds, 1994). A unique characteristic of Monte Carlo methods is their ability

to use arbitrary wave function forms - including ones with explicit interelectronic

distance dependencies - enabling treatments beyond forms constructed solely

with one-electron functions (Ferguson, Siepmann, & Truhlar, 1998). Given this

flexibility, it is important to recall properties a trial function ideally should

possess. Thus, in this section we first review the known properties of exact

solutions of the Schrödinger equation. The various forms of approximate,

currently used trial functions are discussed.

5.1 Properties of Exact Wave Function

What do we know about the exact wave function, Φ0? By definition, it satisfied

HΦ0 = E0Φ0. For bound electronic states, we know that in the absence of external

fields Φ0 can be made real and is square integrable. An important corollary of

the eigenvalue equation is that the local energy is a constant for an eigenstate.

For non-eigenstates, the variance of the local energy is an important measure of

wave function quality. It is used to help optimize the trial wave function. All the

above are global properties of Φ0 (Hammond, Lester, & Reynolds, 1994).

We also know several local properties of Φ0, in addition to the above global

54
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properties. For example, because the local energy is a constant everywhere

in space, each singularity of the Coulomb potential must be cancelled by a

corresponding term in the local kinetic energy. This condition results in a cusp,

i.e., a discontinuity in the first derivative of Φ0 where two charged particles meet.

With a sufficiently flexible trial wave function one can include appropriate degrees

of freedom which are then determined by the cusp condition.

5.2 General Trial Function Forms

The exact wave function can be approximated in a number of ways through

series expansions in the electronic coordinates. The convergence of these series

depends upon the type of terms included. Hylleraas and Pekeris has great success

for He with trial functions of the form

ΨHylleraas = (
N∑

k=1

dkr
aksbktek)e−

1
2 , (5.2.1)

where r is the electron-electron separation (which we have previously designated

as rij), s = r1 + r2, and t = r1 − r2. Here r1 and r2 are the scalar distances of

the electrons from the nucleus. The electron-nucleus cusp condition is satisfied

by the exponential term, and the electron-electron cusp is satisfied by choosing

the proper values for the coefficients. Because all the interparticle distances are

represented, very accurate descriptions of the He wave function may be

obtained with relatively few terms. Although Equation 5.2.1 is written explicitly

for two electrons, it is readily generalized to larger systems (Ruiz, 2004). More

complicated forms of Ψ have been examined, motivated primarily by the goal of

satisfying the various n-body coalescences. These forms are summarized in Table

5.1.

Helium has long served as a testing ground for atomic trial functions because
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Table 5.1 Selected forms of many-electron wave functions with explicit interelectron
distance dependence. (Hammond, Lester, & Reynolds, 1994 and references therein.)

Form Ψ

Hylleraas e−ǫs
∑

µ

cµr
lµsmµtnµ

Conroy
∑

µ

rµ
12

n!(n+1)!
eb
P

i<j(r
2
1+r22+r212)(r

2
1+r22+2s)−1/2∑

mn

Cmnϕm(1)ϕn(2)

Ho eǫ(r1+r2+r3)
∑

µ

cµr
lµ
1 r

mµ

2 r
nµ

3 r
pµ

12 r
qµ
13r

sµ

23

Frankowski & eǫs
∑

µ

cµr
lµsmµtnµ [(r2

1 + r2
2) ln(r2

1 + r2
2)]

Pekeris

Baker & eǫs
∑

µ

cµr
lµsmµtnµ(ln s)iµ sinhjµ(bµt) coshkµ(bµt)

Morgan

of its simplicity. One measure the quality of a trial function form is the rate of

convergence of the variational energy with the number of terms in the series. For

example, a nine-term Hylleraas function yields an energy of −2.9035 hartrees,

while a 1078 term function yields −2.903724375 hartrees. Clearly, convergence is

not fast. On the other hand, by adding terms with powers of ln s and negative

powers of s, one can obtain −2.903724377033 hartrees with only 246 terms. The

functional form clearly is very important. It was argued that comparable accu-

racy in a CI calculation would require 2 × 105 one-electron basis functions and

approximately 7 × 1012 configurations (Hammond, Lester, & Reynolds, 1994).

Even though such accuracy is not typically sought, electron-correlation terms

may provide clues for constructing Ψ’s for many-electron systems. The difficulty

with these general expansions for larger atoms and molecules is in constructing
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the correct spatial and exchange symmetries. Moreover, even with Monte Carlo

integration, the task of determining hundreds or thousands of parameters remains

an obstacle.

5.2.1 Hartree Fock and Beyond

Unlike the forms just discussed, the most widely used methods in ab initio

electronic structure theory are based on molecular orbital (MO) expansions and

the Hartree-Fock approximation. MO theory has been the foundation for most

chemical concepts during the past 50 years. As a first approximation, the N -

electron wave function Φ(x1, ...,xN ) is represented by a Slater determinant of

spin orbitals. It often is abbreviated by writing only the diagonal elements of the

Slater matrix, namely,

ΨD = det

∣
∣
∣
∣
∣
∣
∣
∣

ϕ̃1(x1) · · · ϕ̃1(xn)
...

. . .
...

ϕ̃n(x1) · · · ϕ̃n(xn)

∣
∣
∣
∣
∣
∣
∣
∣

≡ det |ϕ̃1(x1) · · · ϕ̃n(xn)| (5.2.2)

Each spin orbital, ϕ̃i, consists of a spatial function, ϕi, multiplied by an

electron spin function (α or β). The orbital approach is motivated by a simple

generalization of the one-electron description of the H atom, building in the

antisymmetry required by the Pauli principle. The determinantal part of the

probability distribution, Ψ2
D, depends on the product ϕ2

1ϕ
2
2 · · ·ϕ2

n of one-electron

probabilities. Since no terms involve conditional probabilities of two or more

electrons, each particle acts independently of the others in this type of wave

function, and the total probability is a simple product of one article probabilities.

This independent-particle approximation differs fundamentally from Hylleraas-

type functions which include rij terms explicitly.
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5.2.2 Correlated Molecular Orbital Functions

In the above discussion we have learned the importance of rij terms. On the

other hand Hartree-Fock and post Hartree-Fock wave functions, which do not

explicitly contain these terms, lead to molecular integrals that are substantially

more convenient for integration. At present, the vast majority of work is done

with the latter independent-particle-type functions. Correlated molecular orbital

(CMO) methods incorporate the best of both (Hammond, Lester, & Reynolds,

2004).

Although there are many ways one might construct such CMO functions,

typically they are constructed as a determinant of orbitals where each orbital is

multiplied by a function of the interelectronic coordinates f(rij) ≡ fij.

Explicitly,

ΨCMO = Aϕ1(x1)ϕ2(x2) · · ·ϕn(xn)f12f13 · · · fn−1,n, (5.2.3)

where A is the antisymmetrizer operator. Most often the form of fij is

independent of orbitals, making ΨCMO a simple product function

ΨCMO = ΨDΨC , (5.2.4)

where ΨD is the determinantal part and ΨC is a product of correlated functions.

We can distinguish between two classes of functions ΨC . In the first class, ΨC

contains polynomials in rij, similar to the Hylleraas functions. The second class

is an exponential or Jastrow form

ΨCe
U (5.2.5)

where U contains all the rij dependence. Representatve functional forms are

shown in Table 5.2. Note that each form contains one or more parameters which
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can be used to represent the two-electron cusp.

As an example, consider the most commonly used form in QMC, the Padé-

Jastrow function,

U =
N∑

i=1

N∑

j<i

a1rij + a2r
2
ij + · · ·

1 + b1rij + b2r2
ij + · · · (5.2.6)

The general behavior of eU is shown in Figure 5.1, beginning at unity for rij = 0

Table 5.2 Comparison of different forms of the Jastrow U function (Hammond, Lester,
& Reynolds, 1994 and references therein).

Form U

Padé-Jastrow
∑

i,j,A

P (riA,rA,rij)

1+Q(riA,rA,rij)

Boys-Handy
∑

ij

∑

µ

cµ

(
a1µriA

1+b1µriA

)uµ
(

a2µriA
1+b2µriA

)υµ
(

a3µrij
1+b3µrij

)ωµ

Double exponential −∑

ij

be−arij

Gaussian geminal
∑

ij

∑

µ

aµr
2
ij

and asymptotically approaching a constant value for large rij. In the simplest

case, where only a1 and b1 are non-zero, this asymptotic value is exp(a1/b1). One

can verify that the electron-electron cusp condition requires a1 to be 1/2 for unlike

spins and 1/4 for like spins.

The linear Padé-Jastrow form has only one free parameter, namely b1, with

which to optimize the wave function. Such Jastrow-type functions have the

desirable property that they do not change the nodes created by the

determinantal factor, because the correlation functions are positive everywhere.
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However, their use does not have an undesired side effect. Using an SCF

determinant and multiplying by ΨC causes a global expansion of the electron

density. If we assume that the SCF density is relatively accurate, then one needs

to rescale the trial function to re-adjust the density. This can be accomplished

simply by multiplying by an electron-nucleus Jastrow function. If U for this

Jastrow function is given by

U = −
N∑

i=1

Nnuc∑

A=i

λ1riA + λ2r
2
iA + · · ·

1 + ν1riA + ν2r2
iA + · · · , (5.2.7)

then, as for electron-electron function, λ1 is determined by the cusp condition.

 1

 1.2
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 1.6
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 2
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Ψ
C

 (a
1,
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1,

 r ij)

rij

b1=0.5

b1=1.0

b1=2.0

b1=5.0

Figure 5.1 Dependence of linear Padé-Jastrow
function on rij . The coefficient a1 is set to 0.5
to satisfy the electron-electron cusp condition.

For CMO wave functions one can optimize the Jastrow parameters, the

molecular orbital coefficients, and the atomic orbital exponents. Clearly,

practical limitations will be reached for very large systems, but such optimization

has been done for several systems. A 21 parameter function, that included all

combinations of ri, rj, and rij to fourth order, including electron-electron-nucleus

terms, obtained essentially all the correlation energy for two-electron systems,

99% of the correlation energy for Be, and 86% of the correlation energy for Ne.
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These results are impressive, and show that VMC can be an attractive quantum

chemistry technique in its own right.

5.3 Trial variational functions of this study

The trial variational wave functions proposed to study ground state properties

of two interacting particle confined by parabolic potential in 2D as well as 3D

QDs have the general form of:

ΨT = ΦF (5.3.1)

Here Φ is constructed from exact eigenfunctions of noninteracting single particle

Hamiltonian, which are well known harmonic oscillator eigenvectors.

Φ(γ, ri, rj) = φ(ri)φ(rj), φ(ri) = exp(−γ
2
Wr2

i ) (5.3.2)

where γ is variational parameter and W is the frequency of parabolic confinement

potential. ri is the position vector of i.th particle.

F part in equation 5.3.1 is correlation function, which should describe the

correlations between the particles correctly. Four different types of correlation

functions have been used in the calculations: two of these are in exponential form

and the the others are constructed as serial expansion in terms of Hylleraas-like

coordinates multiplied by corresponding exponential forms.

• Simple exponential form:

F1(λ, rij) = exp(−λrij) (5.3.3)
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• Jastrow factor:

F2(a, b, c, rij) = J(a, b, c, rij) = exp

(
arij − br2

ij

1 + crij

)

(5.3.4)

• Simple exponential × Serial expansion term:

F3(λ, ri, rj, rij) = exp(−λrij)
∑

[n]

C[n]r
ni
i r

nj

j r
nij

ij (5.3.5)

• Jasrow factor × Serial expansion term:

F4(a, b, c, ri, rj, rij) = exp

(
arij − br2

ij

1 + crij

)
∑

[n]

C[n]r
ni
i r

nj

j r
nij

ij (5.3.6)

Here λ, γ, a, b, and c are positive variational parameters to be optimized. n

denotes the set of numbers (ni, nj, nij). Note that C[n] linear expansion coefficients

have been optimized via the variational principle.

5.4 Energy and Variance Optimization

Optimization of trial wave functions is critical tool for VMC as well as

MCD calculations. The most used two approaches for optimizing the trial wave-

functions are presented here. When optimizing we seek the parameter

configuration of the trial wave-function ΨT that best approximates the

behavior of the true eigenfunction. For the true ground state Ψ0, a natural choice

is to optimize with respect to energy minimization. Optimization with respect

to variance is another natural choice in that for every eigenfunction, not just

the ground state, the variance of the local energy vanishes. This means that a

variance optimization scheme could be applied in finding any eigenstate, because

we know in advance that the value of the variance should be zero.
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The energy optimization scheme is based on the variational principle

(introduced in section 4.1.1),

〈EL〉 =

∫
Ψ∗p
T ĤΨp

Tdτ∫
|Ψp

T |2dτ
≥ E0. (5.4.1)

Here the fact that the variational energy provides an upper bound to the ground

state energy is exploited. The parameters p = {p1, p2, ...} which correspond to

a global energy minimum, are chosen as the best fit to the true ground state

wavefunction.

In the literature there is not any consensus that any optimization scheme

provides the most stable approach, and superiority. The straightforward estimate

of the uncorrelated variance is

σ =
1

M − 1

M∑

i=1

(EL,i − 〈EL〉)2 (5.4.2)

where 〈EL〉 is the average of the individual samples EL,i. Many have chosen

instead to optimize,

σ =
1

M − 1

M∑

i=1

(EL,i − Eref)
2 (5.4.3)

where Eref is taken to be as close to the expected average of the local energy as

possible (Reine, Ph.D. Thesis, 2004).

The trial wave functions in this thesis have been optimized according to energy

minimization scheme.



CHAPTER SIX

IMPLEMENTATION AND NUMERICAL RESULTS

6.1 Single electron quantum dot system

Hamiltonian H of N identical particles in the first quantization form:

H = H0 +HI (6.1.1)

where H0 is the sum of ith single particle Hamiltonian H0i and HI describes the

interaction between them. Single particle Hamiltonian is:

H0i =
1

2m∗

[

~pi +
e

c
~Ai

]2

+ V (~ri) − gµB ~B(~ri)~σi (6.1.2)

where m∗, e and g are the effective mass, charge and the g-factor of the particle,

and ri, pi and σi are the position, momentum and spin of ith particle, respectively.

c and µB are speed of light and Bohr magneton. We assume a magnetic field

B = rot ~A and choose vector potential ~A in an appropriate gauge. V (r) is the

static scaler potential. Interaction Hamiltonian is:

HI =
∑

i<j

U(~ri − ~rj) (6.1.3)

with two particle interaction potential which depends only on the relative

distance. We look forward to find a way to calculate energy levels and their

wave functions of N particle system. There are only two exact solutions known

up to now. One of which is trivial case, N = 1, and the other is the case of

N = 2 where the Hamiltonian can be decoupled into that for the center-of-mass

coordinate and for the relative-motion coordinate, each of which is a single

particle Hamiltonian. We will soon discuss the detail of the exact solution of

singe electron QD Hamiltonian The static confining potential V (r) in equation

64



65

Figure 6.1 The schematics of vertically quantum dot
(Taken from Ref. Tokura, 2000).

is made up of in-plane potential Vxy(ρ) and vertical potential Vz(z) (ρ = (x, y)).

Moreover, we almost always consider the situation where the magnetic field is

uniform and normal to (x − y) plane, ~B = (0, 0, B). Therefore, the variables x,

y and z are decoupled, H0 = H0ρ +H0z and the eigenfunction is the product of

two;

Ψl(~r) = φn,m(ρ)ξj(z) (6.1.4)

and the eigenenergy is the sum El = En,m +Ej. The Zeeman energy term can be

considered separately since we neglected the spin-orbit interaction.

We only consider that the in-plane potential Vxy(ρ) has cylindrical symmetry.

Then the symmetric gauge is convenient;

~A =
B

2
ρêϕ =

B

2
(−y, x, 0) (6.1.5)

where ρ =
√

x2 + y2 and êϕ is unit vector to azimuthal direction. We took the

coordinate origin to the cylindrical symmetry axis. First we consider the in-plane
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component. The Hamiltonian is:

H0ρ =
1

2m∗

[(
~

i
~∇ · +e

c
~A

) (
~

i
~∇ +

e

c
~A

)]

+ Vxy(ρ)

=
1

2m∗

[

−~
2∇2 − i

~e

c
~∇ · ~A− i

~e

c
~A~∇ +

e2

c2
A2

]

+ Vxy(ρ)

According to cylindrical coordinates;

~∇ −→ ∂

∂ρ
êρ +

1

ρ

∂

∂ϕ
êϕ

~∇· −→ 1

ρ

∂

∂ρ
(ρêρ) +

1

ρ

∂

∂ϕ
êϕ

∇2 −→ 1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2

(6.1.6)

where êρ is unit vector to radial direction.

H0ρ = − ~
2

2m∗

{
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂ϕ2

}

− i
~e

m∗c

B

2
+

1

2m∗
e2

c2
B2ρ2

4
+ Vxy(ρ) (6.1.7)

We defined cyclotron frequency as ωc = eB
m∗c

. Then;

H0ρ = − ~
2

2m∗

{
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂ϕ2

}

− i
~ωc
2

∂

∂ϕ
+

1

8
m∗ω2

cρ
2 + Vxy(ρ) (6.1.8)

Now it is clear that we can separate two variables, ρ and ϕ:

φ(ρ, ϕ) = Rnm(ρ)Φm(ϕ) = Rnm(ρ)eimϕ (6.1.9)

and m should be an integer because the wave function should be unique by a

rotation 2π, φnm|ϕ = φnm|ϕ+2π.

Rnm(ρ) should satisfy following eigenvalue equation:

− ~
2

2m∗

{
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
)Rnm(ρ) − m2

ρ2
Rnm(ρ)

}

+

[
m~ωc

2
+

1

8
m∗ω2

cρ
2 + Vxy(ρ)

]

Rnm(ρ) =
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= EnmRnm(ρ) (6.1.10)

For a special form of in-plane confining potential, a harmonic potential Vxy(ρ) ∝
ρ2 , we have well known analytic solutions of Rnm. There are several reasons

that this potential is actually realized in vertical quantum dots when the electron

number in the dot is very small. So we will only consider the case of harmonic

potential. Dimensionally correct form of the potential is:

Vxy(ρ) =
1

2
m∗ω2

pρ
2 (6.1.11)

where we introduced a frequency ωp characterizing the steepness of the confining

potential. Typical size of the dot at zero magnetic field is
√

~/(m∗ωp). Therefore

the strength of confinement potential effects or determines the size of quantum

dot.

First we define another frequency Ω =
√

ω2
p + (ωc/2)2. Then we define a

dimensionless variable ζ = ρ2m∗Ω/~. Since

∂

∂ρ
=
∂ζ

∂ρ

∂

∂ζ
=

2ρm∗Ω

~

∂

∂ζ
(6.1.12)

Using this expression in equation (6.1.10) we can write:

[

− ~
2

2m∗

{
1

ρ

2ρm∗Ω

~

∂

∂ζ

(
2ρm∗Ω

~

)

− m2

ρ2

}

+
1

8
m∗ω2

cρ
2 +

1

2
m∗ω2

pρ
2

]

R(ζ) =

=

(

E − m~ωc
2

)

R(ζ) (6.1.13)

− ~
2

2m∗

[
2m∗Ω

~

∂

∂ζ
(2ζ

∂R

∂ζ
) − m2

ρ2
R

]

+

(
1

2
m∗Ω2ρ2 − E +

m~ωc
2

)

R = 0 (6.1.14)

−2~Ω
∂R

∂ζ
− 2~Ωζ

∂2R

∂ζ2
+

~
2m2

2mρ2
R +

(
1

2
m∗Ω2ρ2 − E +

m~ωc
2

)

R = 0 (6.1.15)
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You should divide both sides of the above equation by −2~Ω:

ζ
∂2R

∂ζ2
+
∂R

∂ζ
+ (− ~m2

4mΩρ2

︸ ︷︷ ︸

m2/4ζ

− mΩρ2

4~
︸ ︷︷ ︸

ζ/4

+
E

2~Ω
− mωc

4Ω
︸ ︷︷ ︸

β

)R = 0 (6.1.16)

where

β =
E

2~Ω
− mωc

4Ω
(6.1.17)

ζ
∂2R

∂ζ2
+
∂R

∂ζ
+

(

−ζ
4
− m2

4ζ
+ β

)

R = 0 (6.1.18)

In order to solve the equation above in standart form we purpose the solution in

terms of a new X(ζ) function:

R(ζ) = e−ζ/2ζ |m|/2X(ζ) (6.1.19)

Then,

∂R

∂ζ
= X(ζ)

[

−1

2
e−ζ/2ζ |m|/2 +

|m|
2
e−ζ/2ζ |m|/2−1

]

+ e−ζ/2ζ |m|/2∂X(ζ)

∂ζ
(6.1.20)

∂R

∂ζ
=

(

−1

2
+

|m|
2ζ

)

R(ζ) + e−ζ/2ζ |m|/2∂X(ζ)

∂ζ
(6.1.21)

After some arrangements the following expression is found:

ζ
∂2X

∂ζ2
+ (|m| − ζ + 1)

∂X

∂ζ
+

(

β − |m|
2

− 1

2

)

X = 0 (6.1.22)

This second order differential equation has special solution: Kummer confluent-

hypergeometric function

X(ζ) = F [−(β − |m|
2

− 1

2
), |m| + 1; ζ] (6.1.23)
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where F (α, γ, ; z) hypergeometric function is defined as:

F (α, γ, ; z) =
∞∑

n=0

α(α + 1) . . . (α+ n− 1)zn

γ(γ + 1) . . . (γ + n− 1)n!
(6.1.24)

β − |m|
2

− 1

2
= n (6.1.25)

In the case of negative n values F [−n, |m| + 1; ζ] hypergeometric function has

infinity large values. Therefore, F (−n, |m|+1; ζ) function is reduced to Laguerre

polynomial where n is a non-negative integer number.

L(α)
n (ζ) =

Γ(α+ n+ 1)

Γ(α+ 1)n!
F (−n, α + 1; ζ) (6.1.26)

Let’s insert (6.1.22) and (6.1.17) results into (6.1.25) expression in order to obtain

the ground state wave function of an electron confined by parabolic confinement

potential in xy plane of a 2D quantum dot as:

R(ζ) = e−ζ/2ζ |m|/2L|m|
n (ζ)

Γ(α+ 1)n!

Γ(α+ n+ 1)
= Ce−ζ/2ζ |m|/2L|m|

n (ζ) (6.1.27)

where C is the normalization constant. The solution of Equations (6.1.16) and

(6.1.24) gives:

n+
|m|
2

+
1

2
=

E

2~Ω
− mωc

4Ω
(6.1.28)

Finally, the energy expression for singe electron in xy plane of a 2D quantum dot

is obtained as:

En,m = 2~Ω

(

n+
|m|
2

+
1

2
+
mωc
4Ω

)

(6.1.29)

En,m = (2n+ |m| + 1)~Ω +m
~ωc
2

(6.1.30)

These energies are known specially as Fock-Darwin energy spectrum. The

variation of energies versus magnetic field for various n and m values are shown

in Figure 6.2.
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Figure 6.2 Fock Darwin energy spectrum.

Similarly the energy variation in z direction can be defined easily. The

confinement potential in the corresponding direction is:

V (z) =







0, 0 < z < W

∞, otherwise
(6.1.31)

Normalized wave function is:

ξj(z) =

√

2

W
sin kjz (6.1.32)

where kj = jπ/W and j = 1, 2, .... The eigenenergy of the particle in z direction

is well known as:

Ej =
~

2

2m∗

(
jπ

W

)2

(6.1.33)
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6.2 Excitons in Parabolic Quantum Dots

6.2.1 Introduction and Motivation

Since the early developments of quantum mechanics, it was immediately

recognized that the accurate description of particles correlation is an extremely

difficult problem. Since quantum dot (QD) is a gigantic atom with a large but

finite number of electrons, it is an interesting model object to study fundamental

many-body properties of interacting particles (Bryant, 1988; Garm, 1996; Ikezawa

et. al., 2006; Que, 1991; S. Şakiroğlu et. al, 2009; Xie, 2005). An exciton is an

electron-hole pair bound by the attractive −1/r Coulomb potential. In quantum

dots, binding energies of excitons and excitonic complexes, such as trions and

biexcitons, are much larger than those in the bulk materials, and these excitonic

complexes strongly influence optical properties of quantum dots (Czajkowski, &

Bassani, 1998). In addition to interest of basic physics, these studies are driven

by the need for a deep understanding of such confined states for the successful

application of quantum structures to quantum information technologies. Large

binding energy of the biexciton state is particularly important in light of the

recent demonstration of the ability to operate a two-qubit gate using exciton and

biexciton states (Ikezawa et. al., 2006; Loss, & DiVincenzo, 1998).

One of the popular and effective methods to deal with particles in

semiconductor QDs is the numerical exact diagonalization (Harju, Sverdlov, &

Nieminen, 1998; Que, 1991). This method has an intrinsic limitation with

respect to the number of particles because of the rapidly growing dimension of

matrices under diagonalization and is practically applicable to a QD with around

ten electrons (Harju, Sverdlov, & Nieminen, 1998; Maksym, 2005).

An alternative and efficient description can be obtained by using variational
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many-body wave function. This old and well-known method to build very

accurate solutions of the Schrödinger equation has numerous applications in

many fields of physics, such as He-like atoms (Şakiroğlu, Akgüngör, & Sökmen,

2009), the fractional quantum Hall effect (Laughlin, 1983). G. W. Bryant (1988)

reported a variational study for ground-state energies and optical properties of

excitons in quantum boxes. He used a variational wave function expanded in

terms of electron-hole configurations made from electron and hole single-particle

box states. Z. Heng & S. Jun-Jie (2004) presented a calculation of the ground state

of excitons confined in spherical onion-like quantum-dot quantum-well (QDQW)

nanoparticles by using the stochastic variational method with correlated Gaussian

bases. G. Bastard et.al. (1982) presented a detailed variational calculations

for exciton ground state in GaAs-GaAlAs as well as InAs-GaSb quantum well

systems. They obtained results for both trial wave functions separable and not

separable in spatial coordinates for different well thickness.

The most common way to include correlation into a wave function is to start

from the Hartree-Fock picture, and to approximate the exact wave function using

Multi-Configuration Self-Consistent Field (MC-SCF) or Configuration Interaction

(CI) expansions (Bertini et. al., 1999). Unfortunately, these methods converge

very slowly to the exact results.

An alternative approach to study interacting particles in a QD is the explicit

inclusion of the interelectronic coordinates into an approximate wave function.

James & Coolidge (1933) obtained very good results for two-electron systems by

including the interelectronic distance r12 into the wave function. Nair, Sinha, &

Rustagi (1987) used the variational principle with a three-parameter Hylleraas-

type wave function to analyze the quantum size effects on the exciton ground state

energies in semiconductor microcrystals. These methods, however, are difficult to

generalize for systems with more than two particles since the resulting integrals

are extremely difficult or impossible to evaluate analytically.
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Quantum Monte Carlo (QMC) methods have become increasingly important

tools to study correlated many-body systems. QMC has been successfully applied

to find the ground state properties of different systems of interacting particles

(Cancio & Chang, 1995; Foulkes et. al., 2001; Harju et. al., 1998; Siljamäki et.

al., 2005; Tan, Drummond, & Needs, 2005; Tsuchiya, 2001). Harju et. al. (1999)

have used Variational Monte Carlo (VMC) method to calculate the ground state

energy of up to six electrons in a two dimensional harmonically confined dot and

Cancio et. al. (1995 to predict confined exciton energy levels in semiconductors.

Diffusion QMC within the effective mass approximation (EMA) has been applied

by Tsuchiya (2001) to model excitonic complexes in GaAs/AlGaAs quantum

wires. Monte Carlo Diagonalization (MCD) method has been used by S. Siljamäki

et.al. (2005) to study many-electron quantum dot systems, which are either

symmetric or perturbed by a point-like charged impurity.

In contrast to numerous studies based on variational approach related to the

exciton states in a spherical QD, the variational results reported for excitons in

a parabolic QD are still rare. There is certainly a need for methods that are still

simple and more accurate.

6.2.2 Theoretical Framework

The total Hamiltonian for the exciton in a parabolic QD can be expressed as:

Ĥ =
∑

i=e,h

(

− ~
2

2m∗
i

∇2
i +

1

2
m∗
iω

2
0r

2
i

)

− e2

εreh
, (6.2.1)

where m∗
e (m∗

h), and ~re (~rh) denote the effective mass, and the position vector

of the electron (hole), respectively, reh = |~re − ~rh| is the distance between the

electron and hole, ω0 indicates the strength of the confinement, and ε is the

dielectric constant of the medium in which the electron and hole are moving. We
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consider the GaAs QD with the parabolic confinement potential with the same

parabola frequency, w0, for the electrons and holes. Our calculation is based on

effective-mass approximation and ignores the valence band-structure effects. It is

convenient to introduce dimensionless variables by following transformations:

re → αr̃e rh → αr̃h (6.2.2)

Here α is parameter in the units of length, and other quantities are dimensionless

distances.

Ĥ = − ~
2

2m∗
e

1

α2
∇2
r̃e −

~
2

2m∗
h

1

α2
∇2
r̃h

+
1

2
m∗

eω
2
0α

2r̃e
2 +

1

2
m∗

hω
2
0α

2r̃h
2 − e2

4πε0εr

1

αr̃eh
(6.2.3)

Let’s define the following dimensionless parameters:

σe =
m∗

e

µ
, σh =

m∗
h

µ
(6.2.4)

where µ =
m∗

em
∗
h

m∗
e +m∗

h

is the reduced mass of the electron-hole pair. After some

arrangements the dimensionless Hamiltonian is obtained as:

H̃ =
Ĥ
~2

α2µ

= − 1

2σe
∇2
r̃e +

1

2σh
r̃e

2− 1

2σh
∇2
r̃h

+
1

2
W 2σer̃e

2 +
1

2
W 2σhr̃h

2− κ

r̃eh
(6.2.5)

Here W is dimensionless variable defined below and r̃j (j = e, h, eh) represent

dimensionless distances. For simplicity, in what follows we shall use “tildeless”

representation of coordinates unless otherwise is stated. The Hamiltonian (6.2.5)

contains two length scales: average size of the quantum dot, defined by:

R =
√

~/µω (6.2.6)

and effective Bohr radius,

a∗B =
4πε~2

e2µ
. (6.2.7)
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Then W in Equation (6.2.5) can be written as:

W =

(
a∗B
R

)2

(6.2.8)

There are also two energy scales. One is the energy quanta due to confinement

~ω0, defined by:

~ω0 =
~

2

µR2
(6.2.9)

The other energy scale is effective Hartree:

E∗
H =

e4µ

(4πε)2~2
=

e2

4πεa∗B
(6.2.10)

The case of R ≪ a∗B describes strong confinement regime and the opposite limit

R ≫ a∗B corresponds to weak confinement regime. In the limit case of strong

confinement, the effect of Coulomb potential can be neglected and the system

acts as harmonic oscillator. Similarly, in the limit of weak confinement, the

harmonic potential can be omitted and system have hydrogenic character.

We choose length scale of effective Bohr a∗B units by setting κ = 1 and measure

energies in effective Hartree E∗
H units. Accordingly the Hamiltonian of the system

has the following form:

Ĥ = − 1

2σe
∇2
re −

1

2σh
∇2
rh

+
1

2
W 2σer

2
e +

1

2
W 2σhr

2
h −

1

reh
(6.2.11)

To approximate the ground-state wave function for these systems we propose

to use a variational trial function of the general form:

ΨT = ΦF. (6.2.12)

We take the model function Φ, as usual, to be construct from eigenvectors of
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single particle Hamiltonian:

Φ(γ, re, rh) = exp
[

−γ
2
W (σer

2
e + σhr

2
h)

]

, (6.2.13)

where γ is a variational parameter. We build the first variational wave

function by approximating the correlation function F by a simple exponential

with a variational parameter λ

F1(λ, reh) = exp(−λreh). (6.2.14)

We have used the Variational Monte Carlo (VMC) technique for the calculations

with Ψ1 = Φ(γ, re, rh)F1(λ, reh) trial wave function. The most important gain of

using VMC is that it is not restricted to any particular variational form of the

wave function. So as function F in Equation (6.2.12), we are free to choose a more

suitable functional form than a simple exponential, to get faster convergence.

In this work we also explore the possibility of using different functions of F , in

particular the so popular Jastrow term:

F2(a, b, c, reh) = J(a, b, c, reh) = exp

(
areh − br2

eh

1 + creh

)

. (6.2.15)

It is not possible to compute analytically the integrals needed to optimize the

Jastrow factor, so the optimization of Ψ2 = Φ(γ, re, rh)F2(a, b, c, reh) wave

function was done using the VMC method, as explained in the subsection 4.1.

Although the inclusion of the Jastrow factor has been shown to significantly

improve the exciton ground-state energies (Cancio, & Chang, 1995; Tan, Drum-

mond, & Needs, 2005) the calculations in this thesis show that it does not always

lead to large improvements in the quality of the exciton wave function. In this

study we analyze the possibility of inclusion an expansion as a linear combination



77

of Hylleraas-like coordinates to the exponential correlation functions.

F3(λ, re, rh, reh) = exp(−λreh)
N∑

[n]

C[n]r
ne
e r

nh
h rneh

eh , (6.2.16)

F4(a, b, c, re, rh, reh) = exp

(
areh − br2

eh

1 + creh

) N∑

[n]

C[n]r
ne
e r

nh
h rneh

eh , (6.2.17)

where [n] denotes the set of numbers, [n] = (ne, nh, neh). The aim is toward

the development of a good correlated basis set. This should keep the number of

terms needed to obtain the desired accuracy small, alleviating the problem of the

optimization of the nonlinear parameters.

Let set out Ne, Nh, Neh the maximum values for ne, nh, neh variables, respec-

tively, so that N = (Ne + 1) × (Nh + 1) × (Neh + 1) gives the size of basis set. The

linear expansion parameters, C[n] in Equations (6.2.16) and (6.2.17) have been

determined by variational method. Thus the exciton problem reduces to

calculating eigenvalues and eigenvectors of the Hamiltonian matrix:

KC = εMC (6.2.18)

C stands for the column matrix of C[n] coefficients. K and M are stiffness and

mass matrices defined as:

K[m],[n] = 〈ψ[m]|Ĥ|ψ[n]〉 =

∫

ψ∗
[m]

{
∑

i=e,h

(

− 1

2σi
∇2
i +

1

2
W 2σir

2
i

)

− 1

reh

}

ψ[n]dτedτh,

(6.2.19)

M[m],[n] = 〈ψ[m]|ψ[n]〉 =

∫

ψ∗
[m]ψ[n]dτedτh, (6.2.20)

where dτi is the volume element either for the electron (e) or the hole (h) and

ψ[n] functions are given by:

ψ[n] = ΦFir
ne
e r

nh
h rneh

eh i = 3, 4. (6.2.21)
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We obtain the eigenvalues of the random generalized eigenvalue problem [Eq.(6.2.18)]

by Monte Carlo Diagonalization method. The matrix elements are calculated by

using the Monte Carlo method, as discussed in the following subsection.

6.2.3 Evaluation of matrix elements

Many dimensional integrals of matrix elements are evaluated by

implementation of Correlated sampling Monte Carlo (CMC) algorithm. The key

to the method is the choice of probability distribution function and a simple and

efficient algorithm for generating a random series of points {R}. The particle

coordinates are sampled from the following probability distribution according to

the Metropolis algorithm (Metropolis et. al., 1953).

P (γ,Λ, re, rh, reh) = N |ψ[0]|2 = N
∣
∣
∣exp

[

−γ
2
W (σer

2
e + σhr

2
h)

]

exp(−Λreh)
∣
∣
∣

2

(6.2.22)

where N is the normalization constant obtained analytically. The variational

parameters (Λ, γ) are taken as Λ = λ for the case of Ψ3 = Φ(γ, re, rh)F3(λ, reh),

while γ = 1 and Λ = b/c for the Ψ4 = Φ(γ, re, rh)F4(a, b, c, reh).

K (stiffness) and M (mass) matrix elements are defined as:

K[m],[n] =

∫

ψ∗
[m]([p], re, rh)Ĥψ[n]([p], re, rh)dτedτh (6.2.23)

Mm,n =

∫

ψ∗
[m]([p], re, rh)ψ[n]([p], re, rh)dτedτh (6.2.24)

where [p] is the set of variational parameters.

Then, 6.2.23 and 6.2.24 expressions are rewritten as:

K[m],[n] =

∫

ω[m],[n]([p], re, rh)E
[n]
L ([p], re, rh)|ψ[0]([p], re, rh)|2dτ (6.2.25)
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M[m],[n] =

∫

ω[m],[n]([p], re, rh)|ψ[0]([p], re, rh)|2dτ (6.2.26)

where

ω[m],[n]([p], re, rh) =
ψ∗

[m]([p], re, rh)ψ[n]([p], re, rh)

ψ∗
[0]([p], re, rh)ψ[0]([p], re, rh)

(6.2.27)

is weight function and

E
[n]
L =

Hψ[n]([p], re, rh)

ψ[n]([p], re, rh)
(6.2.28)

is well known local energy. Correlated sampling Monte Carlo indicate that,

K[m],[n]’s are mean values 〈ω[m],[n]E
{n}
L 〉 taken over [rei, rhi] positions generated

randomly with respect to |ψ[0]|2 probability distribution according to any

algorithm.

K[m],[n] = lim
M→∞

∑M
i=1 ω[m],[n]([p], rei, rhi)E

[n]
L ([p], rei, rhi)

M ∗N (6.2.29)

Similarly M[m],[n] matrix elements are evaluated over the same distribution func-

tion:

M[m],[n] = lim
M→∞

∑M
i=1 ωm,n([p], rei, rhi)

M ∗N (6.2.30)

M is Monte Carlo steps and N = 1/

∫

|ψ0([p], re, rh)|2dτ is normalization

constant obtained analytically (Şakiroğlu, Ph.D. Thesis, 2009).

Finally, given a set of independent points sampled from this distribution, the

matrix elements can then be calculated statistically as:

K[m],[n] = 〈ω[m][n]EL,[n]〉|ψ[0]|2 (6.2.31)

M[m],[n] = 〈ω[m][n]〉|ψ[0]|2 , (6.2.32)
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6.3 Numerical Results and Discussion

A two-particle QD is the simplest nontrivial case of many particle systems.

This problem provides a perfect test for QMC since the results of the FEM

(Doğan, Ph.D. Thesis, 2009) are available.

Since the extent of the wave function in one direction is much less in the other

two, which is the case usually realized in QDs, we assume that electrons move

in the plane r = (x, y) under the additional parabolic confinement potential. We

present comparative study of variational wave functions for excitons in both 2D

disc-like and 3D spherical GaAs QDs and analyze the effect of confinement on

exciton ground-state energies.

As noted by Que, (Que, 1992) it can be readly inferred that there are two

limiting situations according to the ratio of characteristic length R indicating

the size of the QD to the effective Bohr radius a∗B of the exciton in the bulk

material. In the limit R/a∗B ≫ 1 the electrons and holes can be thought of

as confined independent particles. In this regime, called the strong confinement

regime, the Coulomb term turns out to be small with relatively little electron-hole

spatial correlation. In the opposite limit, R/a∗B ≪ 1 the dominant energy is the

Coulomb term. This is the weak confinement situation where the character of

the exciton as a quasiparticle is preserved. The limit of the strong confinement is

relatively easy to handle. On the other hand, the analysis of the weak confinement

limit is rather a difficult task because the uncertainty for the wave function which

satisfies the boundary condition (Kayanuma, 1988). According to Kayanuma’s

report (Kayanuma, 1988) the motional state of the exciton is classified into three

regimes: the regime of exciton confinement (weak confinement) for R/a∗B & 4,

the regime of individual particle confinement (strong confinement) for R/a∗B . 2,

and the intermediate regime for 2 . R/a∗B . 4. To demonstrate the efficiency of

the presented forms of the trial wave functions, we consider several strengths of
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the confinement potential in order to describe the weak, intermediate and strong

confinement regimes.

VMC energies obtained using the optimized Ψ1 and Ψ2 trial wave functions

are listed in rows VMC1 and VMC2 of the Tables 6.1 and 6.2, respectively.

The results show small differences between the FEM energies and the variational

VMC1 values obtained for the weak confinement regime. The difference between

the energies increases with R and it is found to be approximately 6 − 7 × 10−3

E∗
H in the strong confinement regime. In order to reduce the difference, one

must improve the correlation part of the trial wave function. It is clear that the

Jastrow factor describes the electron-hole part of the wave function better than

the simple exponential. The difference between FEM and variational VMC2

energies is reduced to 2×10−3 E∗
H for the strong confinement regime. This result

is not unexpected: The Jastrow factor is a generalization of the exponential form,

and setting b = c = 0, we recover the previous functional form. However, the

optimization of the Jastrow term is proved to be much more difficult than the

simple exponential.

In order to improve our results we have introduced a serial expansion factor in

terms of Hylleraas-like coordinates to the F1 and F2 correlation functions. The

results obtained from the optimized trial wave functions Ψ3 and Ψ4 are shown in

the rows MCD1 and MCD2 of the Tables 1 and 2, respectively. We used a basis

set of size N = 8 for excitons in both 2D disc-like and 3D spherical parabolic QD’s.

The superiority of the expanded correlation functions in describing the exciton

ground-state energies is obvious from Table 6.1. A relatively small number of

terms is sufficient to reach the same level of accuracy in the energy with the

similar MCD studies with larger basis set (Siljamäki et. al., 2005). The MCD1

energies are in good agreement with the previous variational calculations reported

for the same system, carried analytically using Ψ3 trial wave function, (Şakiroğlu

et.al., 2009) provided that a careful optimization is performed. On the other
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Table 6.1 FEM and QMC results for ground state energies of an exciton in 3D spherical
parabolic QD as a function of the QD radius R, normalized by the bulk exciton Bohr
radius a∗B. Energies are in E∗

H units. The statistical error in the last digit is in the
parentheses.

R/a∗B VMC1 MCD1 VMC2 MCD2 FEM

5.774 -0.45296(2) -0.4532(3) -0.45263(1) -0.4537(3) -0.453642

5.000 -0.43721(2) -0.4372(2) -0.43724(2) -0.4374(2) -0.437619

4.082 -0.40390(3) -0.4043(2) -0.40425(2) -0.4041(2) -0.404697

3.015 -0.316085(8) -0.3168(2) -0.31684(3) -0.3170(2) -0.317815

2.085 -0.08481(2) -0.0862(3) -0.08641(1) -0.0873(2) -0.088213

1.374 0.56639(2) 0.5640(4) 0.56364(3) 0.5622(4) 0.561299

0.985 1.75946(4) 1.7568(2) 1.75560(2) 1.7543(3) 1.753454

0.808 3.01556(3) 3.0128(3) 3.01172(3) 3.0105(3) 3.009859

0.702 4.30770(3) 4.3052(4) 4.30366(2) 4.3029(4) 4.301980

0.629 5.62342(4) 5.6207(5) 5.61915(3) 5.6177(5) 5.617631

0.532 8.30183(4) 8.2989(6) 8.29725(3) 8.2957(6) 8.295962

0.498 9.65797(4) 9.6548(6) 9.65327(3) 9.6520(8) 9.652032

0.470 11.02264(4) 11.0199(7) 11.01774(3) 11.0167(8) 11.016641

0.446 12.39440(4) 12.3914(8) 12.38950(3) 12.3886(9) 12.388431

0.425 13.77221(5) 13.7690(9) 13.76735(3) 13.766(1) 13.766369
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hand, a single optimized Jastrow correlation factor, has recovered more of the

FEM energies with respect to F3 correlation function. The MCD1 energies could

be improved by including more terms, at the expense, of course, of a larger basis

set. We do not see any deviations of MCD2 energies from the FEM results for

the weak as well as the strong confinement regimes within the statistical error,

while there is approximately 1 × 10−3E∗
H difference for the intermediate regime,

and this demonstrates the good quality of our ansatz. Thus we conclude that

the improved variational function Ψ4 is able to capture nearly exactly the exciton

ground state energy in 3D spherical GaAs QDs.

The ground state energies for the 2D exciton obtained using Ψ1−Ψ4 trial wave

functions, described above, are shown as a function of normalized QD radius in

Table 6.2.

The results suggest that all the proposed trial wave functions give almost the

same ground state energies in weak confinement regime. It is similar for 2D disc-

like QDs, that the optimized Ψ2 trial wave functions improve VMC1 energies

especially in strong confinement regime. The difference between the energies is

approximately 0.01 − 0.02E∗
H . The MCD method has been tested for exciton

ground-state energies in GaAs quantum disc with variational calculations carried

analytically using Ψ3 trial wave function with the same basis set (Şakiroğlu et.al.,

2009) to show excellent performance. On the other hand, our MCD2 results do

not show any deviations from the VMC2 energies within the statistical error.

Furthermore, as R increases, the exciton ground-state energy approaches the

energy of the unconfined two-dimensional exciton (−2.0E∗
H).

One can see that the variances in the MCD energies are greater than VMC,

which is an expected result, because the statistical errors of all matrix elements

are correlated.
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Table 6.2 QMC ground state energies in E∗
H units for an exciton in quantum disc

obtained from the trial functions Ψ1−Ψ4 as a function of the QD radius R, normalized
by the bulk exciton Bohr radius a∗B. The statistical error in the last digit is in the
parentheses.

R/a∗B VMC1 MCD1 VMC2 MCD2

5.774 -1.969764(7) -1.9691(10) -1.969805(8) -1.9697(9)

5.000 -1.95960(1) -1.959(1) -1.9596995(9) -1.960(1)

4.082 -1.93912(1) -1.9389(10) -1.9393254(3) -1.939(2)

3.015 -1.88706(1) -1.887(1) -1.8877368(7) -1.887(2)

2.085 -1.75798(4) -1.758(1) -1.760182(3) -1.760(2)

1.374 -1.41234(9) -1.4144(8) -1.41889(1) -1.419(1)

0.985 -0.76877(5) -0.7857(9) -0.79573(2) -0.796(1)

0.702 0.6079(2) 0.5983(10) 0.58513(2) 0.585(1)

0.629 1.3438(2) 1.332(1) 1.31969(2) 1.319(1)

0.532 2.8715(2) 2.861(1) 2.84628(2) 2.846(1)

0.498 3.6581(2) 3.647(1) 3.63140(2) 3.631(1)

0.470 4.4557(2) 4.443(1) 4.42801(2) 4.427(1)

0.446 5.2630(2) 5.249(1) 5.23444(2) 5.233(1)

0.425 6.0784(2) 6.064(1) 6.04941(2) 6.049(1)

Note that, in small QD’s exciton energy is sensitive to QD radius. For small

R, the dominant effect of parabolic confinement gives rise to increase of exciton

energy. In larger QD’s exciton confinement strength decays and exciton behavior
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begins to resemble that of bulk. The similar variation has been reported by Garm

(Garm, 1996) for spherical parabolic GaAs quantum dots. The exciton ground

energy states in 2D disc like QD’s are significantly lower than the corresponding

states in 3D spherical parabolic QD.

6.3.1 Exciton Binding Energies

The difference between the exciton energy and the sum of the single-particle

energies is commonly called the binding energy:

Eb = Ee + Eh − EX (6.3.1)

EX is the ground state energy of the exciton, Ee and Eh are the energies of an

uncorrelated electron and hole in the QD, respectively. The binding energy as

a function of QD radius R, normalized by the bulk exciton Bohr radius a∗B is

plotted for 2D disc like and 3D spherical parabolic QD’s in Figure 6.3. MCD2

energy values have been used as EX in binding energy calculations for both cases.

As expected, the binding energy is found to increase with enhancing the spatial

confinement; this is in agreement with the results obtained previously in quantum

dots (Que, 1992; Xie, 2005). This is due to decreasing dot radius and consequently

increase in the spatial overlap between an electron and hole. The high binding

energies obtained in 2D QD’s show that the excitons are more stable in these

systems.
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6.4 Ground State Energies of Two-Electrons in Parabolic Quantum

Dots

6.4.1 Introduction and Motivation

The experimental realization of quantum dots has stimulated great

theoretical efforts towards interpretation of their various physical properties

arising from the reduced dimensionality. The relative strength of electron-electron

and electron-confinement interaction can be experimentally tuned over a wide

range resulting in a peculiar electronic system with tunable physical properties.

For this reason, quantum dots are sometimes referred to as “artificial atoms”.

In a typical quantum dot, all electrons are tightly bound, except for a few free

electrons. Such artificial atoms are of immense technological value because they

form the building units of larger structures. Quantum dots can contain anything
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from a single electron to a collection of thousands of electrons and much of the

parameters that describe a quantum dot can be precisely controlled by

conventional nanofabrication methods. The two-electron system is sometimes

called quantum dot helium (Pfannkuche, & Gerhardts, 1993) and is the

simplest example of electron correlation in quantum dots. It has been studied

extensively by exact-diagonalization (Merkt, Huser & Wagner, 1991; Ciftja, &

Kumar, 2004), Hartree-Fock (Johnson, & Reina, 1992), analytic approximation

methods (González, Quiroga, & Rodriguez, 1996; El-Said, 1996; Taut, 1994)

as well as QMC methods (Bolton, 1996; Harju, Siljamäki, & Nieminen, 2002;

Pederiva, Umrigar, & Lipparini, 2000).

In this work, we study the ground-state properties of 2D and 3D quantum-

dot helium in zero external magnetic field by using Variational Monte Carlo and

Monte Carlo Diagonalization methods. The two approaches will serve as a testing

ground to build high-quality trial wave functions for quantum dot systems with

arbitrary number N of electrons. Given that a good variational wave function

itself can be an excellent approximation to the true exact ground state, there

is always a need to find better, yet simple enough ways to accurately describe

such complicated systems as the quantum dots. The main motivation of the

present work is to identify and demonstrate that a variational wave function

with a Hylleraas-like expansion different from those previously considered in the

literature constitutes the best choice to describe the ground state of this system.

6.4.2 Theoretical Framework

The system of two interacting electrons of m∗ effective mass confined in a

quantum dot by parabolic potential is described by the Hamiltonian:

Ĥ =
2∑

i=1

(

− ~
2

2m∗∇
2
i +

1

2
m∗
iω

2
0r

2
i

)

+
e2

4πεr12
(6.4.1)
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Here ω0 is the confining frequency and ε0 is the dielectric constant of the medium

in which the electrons are moving. The position vector of each electron is denoted

by ri (i = 1, 2), and r12 is the interelectronic distance. There are two length

scales related to the problem: the effective Bohr radius a∗B, and the characteristic

quantum dot size R:

a∗B =
4πε~2

m∗e2
R =

√

~

m∗ω0

(6.4.2)

We use length scale of a∗B and measure energies in units of effective Hartree

E∗
H = m∗e4/~2(4πε)2. The resulting dimensionless Hamiltonian is:

Ĥ =
2∑

i=1

(

−1

2
∇2
i +

1

2
W 2r2

i

)

+
1

r12
(6.4.3)

where dimensionless variable W = (a∗B/R)2 describes the strength of the confine-

ment energy relative to the Coulomb energy.

Among different quantities describing a quantum dot, the study of the ground-

state properties is of fundamental importance, therefore we focus our main interest

on the ground-state wave function and the ground-state energy. Even in the case

of 2D quantum-dot helium in zero magnetic field, an exact analytic solution of

the problem is not available, therefore most of the methods used so far, rely on

approximations or numerical calculations that some time differ considerably with

each other.

We perform the variational quantum Monte Carlo techniques to study two

electrons in a parabolic quantum dot by using the trial wave function of the

general form:

ΨT = ΦF (6.4.4)

as in the case of excitons in the corresponding systems. Similarly, Φ function is

given by:

Φ(γ, r1, r2) = exp
[

−γ
2
W (r2

1 + r2
2)

]

(6.4.5)
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and correspond to the product of the exact ground state wave functions of

uncorrelated electrons in parabolic confinement with strength W . Here γ is the

variational parameter. F is the important correlation part of the trial wave

function, which should describe the correlations between electrons correctly as

possible.

We start by consider Jastrow factor as correlation function given by:

F1(a, b, c, r12) = exp

(
ar12 − br12
1 + cr12

)

(6.4.6)

where a, b and c are positive variational parameters to be optimized. Using the

VMC algorithm the expectation value of the energy for the trial wavefunction

Ψ1([p], r1, r2, r12) = Φ(γ, r1, r2)F1(a, b, c, r12) can be estimated by averaging the

local energy EL = ĤΨ1/Ψ1 over an ensemble of configurations distributed as

|Ψ1|2, sampled during a random walk in the configuration space using Metropolis

algorithm:

E[Ψ1] =

∫
Ψ2

1([p], r1, r2, r12)EL([p], r1, r2, r12)dΩ1dΩ2
∫

Ψ2
1([p], r1, r2, r12)dΩ1dΩ2

= 〈EL〉|Ψ1|2 (6.4.7)

Here [p] denotes the variational parameters group consist of a, b, c and we consider

γ = 1. The possible fluctuations of the local energy due to Coulomb singularities,

which strongly influence the convergence numerical results, were suppressed by

electron-electron cusp conditions. The cusp condition is adressed by a = 2 for

2D disc-like QD and a = 1 in the case of 3D spherical parabolic QD. These

parameters were optimized according to energy minimization criteria.

We construct the second, Ψ2 = Φ(γ, r1, r2)F2(λ, r12), and third trial wave

functions, Ψ3 = Φ(γ, r1, r2)F3(a, b, c, r12), such that the correlation parts involve
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expansion in terms of Hylleraas-like coordinates written in the following forms:

F2(λ, r1, r2, r12) = exp(−λr12)
N∑

[n]

C[n]r
n1
1 r

n2
2 r

n12
12 (6.4.8)

F3(a, b, c, r1, r2, r12) = exp

(
ar12 − br2

12

1 + cr12

) N∑

[n]

C[n]r
n1
1 r

n2
2 r

n12
12 (6.4.9)

where [n] denotes the set of numbers [n] = (n1, n2, n12). N1, N2, and N12 are

the maximum values of n1, n2, and n12 variables, respectively, so that N =

(N1 + 1) × (N2 + 1) × (N12 + 1) defines the size of basis set. The optimization

of Cn linear expansion parameters according to variational principle reduces the

problem to generalized eigenvalue equation as shown in chapter 4.2.

KC = εMC (6.4.10)

C is the column matrix of C[n] coefficients. K and M are stiffness and mass

matrices defined as:

K[m],[n] = 〈ψ[m]|Ĥ|ψ[n]〉 =

∫

ψ∗
[m]

{
∑

i=1,2

(

−1

2
∇2
i +

1

2
W 2r2

i

)

+
1

r12

}

ψ[n]dΩ1dΩ2,

(6.4.11)

M[m],[n] = 〈ψ[m]|ψ[n]〉 =

∫

ψ∗
[m]ψ[n]dΩ1dΩ2, (6.4.12)

where dΩi, (i = 1, 2) are the volume elements for each electron and ψ[n] functions

are given by:

ψ[n] = ΦFir
n1
1 r

n2
2 r

n12
12 i = 2, 3. (6.4.13)

These matrix elements are evaluated in the same way as described in subsection

6.3.1. We used a basis set of size N = 8 for electrons in both 2D disc-like and 3D

spherical parabolic QD’s.
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6.4.3 Numerical Results and Discussion

The dimensionless ground state energies, E/E∗
H, for 3D and 2D quantum dot

helium systems for values of W from 0.05 to 10 are listed in Tables 6.3 and 6.4,

respectively. The optimal value of parameter γ of Ψ2 variational wave function

was found to varies in the range of 0.86−1.0, and the parameter λ to changes in the

interval 0.01−0.25 for all W ’s under consideration in the case of 3D quantum dot.

In a similar way, the optimal parameter γ is found be in the range of 0.76 − 1.0,

and the optimal λ to vary as 0.01− 0.3 in the 2D quantum dot. Furthermore the

optimal parameter c is found to be in the range of 0.6 − 2.3 of both Ψ1 and Ψ3

variational wave functions for 3D and 0.2− 2.8 for 2D quantum dot systems. On

the other hand, the results show that the parameter b, (0.001 < b < 0.01), do not

have a decisive effect on ground sate energies of 2D as well as 3D quantum dot

helium systems.

The results clearly show that second optimized wave function, Ψ2, is the best

choice to study 2D as well as 3D quantum dot helium systems. MCD1 energies are

quantitatively identical with data in Ref. Şakiroğlu et. al., (2009) obtained from

similar basis set by introducing integral transforms for the terms as rk12 exp(−λr12)
which enable to calculate the relevant matrix elements analytically.

The inclusion of the serial expansion in terms of Hylleraas-like coordinates

improves the ground state energies of 2D as well as 3D quantum dot

helium systems, which is an expected result. However, the expansion term

combined with the simple exponential form, exp(−λr12), describes the relevant

system better than the same expansion multiplied by the Jastrow factor.

Ineffectiveness of parameter b contributes to this result. On the other hand,

the previous calculations for the excitons confined in parabolic QDs, show that

the correlation function, F4 = J(a, b, c, reh)
∑

[n]

C[n]r
ne
e r

nh
h rneh

eh , is the best choice.
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Table 6.3 QMC ground state energies in E∗
H units for interacting two electrons in

3D quantum dot obtained from the trial functions Ψ1 − Ψ3 as a function of W . The
statistical error in the last digit is in the parentheses.

W VMC MCD1 MCD2

0.05 0.28505(1) 0.28295(4) 0.28338(7)

1.0 3.7338(1) 3.7301(3) 3.7317(3)

3.7301a

2.0 7.0614(2) 7.0579(6) 7.0602(5)

7.05785a

4.0 13.5270(3) 13.522(1) 13.5256(8)

13.5232a

6.0 19.8848(3) 19.878(1) 19.882(1)

8.0 26.1867(3) 26.181(2) 26.184(1)

10.0 32.4530(3) 32.448(2) 32.450(1)

32.44865a

aRef. Şakiroğlu et. al. (2009)

Another important conclusion seen from Tables 6.3 and 6.4 is that the energies

enhance as the dimensionality of the quantum dot increases.

To demonstrate the efficiency of our method with respect to the QD

dimensionality and to investigate the details of size effect, it is interesting to study

the electron-electron interaction energies, Ee−e = 〈1/r12〉. The electron-electron
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Table 6.4 QMC ground state energies in E∗
H units for interacting two electrons in

quantum disc obtained from the trial functions Ψ1 − Ψ3 as a function of W . The
statistical error in the last digit is in the parentheses.

W VMC MCD1 MCD2

0.05 0.257432(8) 0.25861(6) 0.2552(2)

1.0 3.0134(3) 3.0001(4) 3.0070(4)

3.0000a

2.0 5.5136(4) 5.4964(6) 5.5058(6)

5.4965a

4.0 10.233(1) 10.212(1) 10.2233(9)

10.2126a

6.0 14.789(1) 14.766(2) 14.778(1)

8.0 19.260(1) 19.236(2) 19.249(1)

10.0 23.676(1) 23.650(2) 23.664(2)

23.65165a

aRef. Şakiroğlu et. al. (2009)

interaction energies, calculated at particular confinement frequency W, may be

obtained simply by substituting out the energies of noninteracting electrons in

parabolic potential from the total energy of the system.

In Figures 6.4 and 6.5 we plot the ground state energies together with one-

electron and Coulomb energy contributions as a function of W correlation

parameter for 3D and 2D QD helium, respectively. It is clear that the sum
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of single electron energies are the dominant component of the total ground state

energy in both cases. These graphs are also in good agreement with the energies

predicted by the calculations done in Ref. (El-Said, 2002).

In addition to this, as the confinement strength strongly increases, i.e. W −→
∞, the energy values approach to the exact results of the harmonic oscillator

energies: E/W = 2.0 and 3.0, in 2D and 3D, respectively. Thus we can say that

our method and variational wavefunction is applicable to the entire range of W.



CHAPTER SEVEN

CONCLUSION

In this thesis the ground-state energies of the interacting two-electrons and

electron-hole pair in two dimensional disc-like and three dimensional spherical

parabolic quantum dots are calculated via QMC methods, using a sequence

of four variational wave functions. The variational wave functions are the

product of a noninteracting harmonic-oscillator wave function for the single

particles and a pair correlation function of the separation between the particles.

For variational wave functions with simple exponential, exp(−λrij), or Jastrow

form, which include the two lowest powers of particles separation, rij, the ground

state energies were evaluated using the Variational Monte Carlo method, whereas

for variational wave functions with higher powers of rij appearing in Hylleraas-

like form in correlation functions, the ground-state energies were calculated using

the Monte Carlo Diagonalization method.

Good agreement was found between the results obtained for variational wave

functions with Jastrow factor multiplied by Hylleraas-like expansion and exciton

ground-state energies obtained using finite element method. This consistency

indicates that this optimal wave function is a good choice to study excitons

confined in 2D and 3D quantum dots of different sizes. The binding energies

calculated from these results show that excitons are more stable in two-dimensional

quantum dots.

To assess the capabilities of the proposed ansatzs we also tested these

variational wave functions for two interacting electrons confined in parabolic

quantum dots. The results show that the correlation function constructed as

product of simple exponential form and Hylleraas expansion describes electron-

electron correlations more properly comparing to the other suggested wave

functions for both 2D and 3D quantum dots.

96
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The optimization of variational parameters is crucial in VMC as well as MCD

methods. Comparison with previous analytical and numerical studies indicate

that a careful optimization is performed. Very few terms are needed to reach

an accuracy comparable to more common wave function forms with large basis

sets. The numerical technique puts no constraints on the potential and can be

systematically improved by adding more terms using the procedure described.

In conclusion it has been seen that the MCD method via proposed variational

function in terms of Hylleraas-like expansion provides an easy and efficient tool to

study the ground-state energies of two interacting particles confined in parabolic

quantum dots and enables to treat the particle-particle correlations correctly.

It should also be suggested that these WF’s could be tested for quantum dots

with varying number of confined electrons. Usually it is not easy to obtain

analytical result for integrals of matrix elements. In the MCD method, the

matrices are evaluated statistically, and there are no restrictions on the basis

functions at all. In the case of any changes in Hamiltonian or basis functions

matrix elements do not need to be regenerated, unlike the Exact Diagonalization

method. It should be simple enough to make any changes in the corresponding

system and to implement calculations for larger number of particles feasible.

Another easy and natural extension to the current program is to parallelize

the code. The above extensions would result in a very efficient tool for many-

body quantum mechanics, that can be applied to a wide variety of problems. An

interesting applications could be to apply the MCD method to Density Functional

Theory (DFT) determinants for large systems.
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