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TABU SEARCH BASED SOLUTION APPROACHES FOR LOT 

STREAMING PROBLEMS IN FLOW SHOPS 

 

ABSTRACT 

 

Lot streaming (LS) splits the production lot into sublots, and schedules these 

sublots in an overlapping way on the machines in order to accelerate the process of 

orders and improve the overall system performance. In this thesis, a comprehensive 

review on LS is presented and a number of LS problems all of which aim to 

minimize makespan in multi machine flow shops are investigated. The first problem 

considers a single product case in stochastic flow shops. For this problem, a solution 

approach that integrates tabu search (TS) and simulation is proposed. The sublot size 

configurations are searched via TS and the stochastic behavior of the system is 

handled by simulation. The remaining three problems deal with multi product cases 

in deterministic flow shops. These problems differ from each other by sublot types 

and divisibility of sublot sizes. In the solution approaches, the entire problem is 

partitioned into sequencing and sublot allocation sub-problems. For the sequencing 

sub-problem, a number of simple and efficient sequencing heuristics developed for 

general flow shops are modified according to LS requirements. For the sublot 

allocation sub-problem, mixed integer programming (MIP) based solution 

approaches are proposed. For the entire problem, a hybrid solution approach which 

uses the best sequencing heuristic (i.e., NEH(D,TPLS)) in sequencing sub-problem 

and applies MIP based approaches for the sublot allocation sub-problem, is proposed. 

The proposed approach not only gives efficient results for small/medium sized 

problems in short computation times but also solves large sized problems in 

reasonable times. Finally, to improve the solution quality in small and medium sized 

problems, the same approach is also integrated to a solution procedure where the 

initial sequence is taken as NEH(D, TPLS) and the alternative sequences are 

evaluated via TS. This heuristic performs better than the MIP model of entire 

problem under a given run time limit.    

 

Keywords : Lot streaming, Flow shops, Tabu search, Sequencing Rules 



 

 

 

v

AKIŞ TİPİ SİSTEMLERDE, KAFİLE BÖLME VE KAYDIRMA 

PROBLEMLERİ İÇİN TABU ARAMA TABANLI ÇÖZÜM YAKLAŞIMLARI  

 

ÖZ 

 

Kafile bölme ve kaydırma (KBK), üretimi hızlandırmak ve sistem performansını 

iyileştirmek için, üretim kafilesini daha küçük alt kafilelere bölme ve bu alt kafileleri 

makineler boyunca çizelgeleme yöntemidir. Bu tezde, KBK çalışmalarının kapsamlı 

bir yazın taraması yapılmış ve çok makineli akış tipi sistemlerde toplam üretim 

süresini en küçüklemeyi amaçlayan bir dizi KBK problemi çalışılmıştır. İlk 

problemde, tek ürünlü stokastik bir akış tipi sistem incelenmiştir. Bu problem için 

tabu arama ve benzetim yöntemlerini bütünleştiren bir çözüm yaklaşımı önerilmiştir. 

Bu yaklaşımda, alt kafile büyüklük seçeneklerini değerlendirmek için tabu arama 

yöntemi ve sistemin stokastik yapısını yansıtabilmek üzere benzetim yöntemi 

kullanılmıştır. Çalışılan diğer üç problemde, çok ürünlü deterministik akış tipi 

sistemler ele alınmıştır. Bu problemler, birbirlerinden alt kafile tipi ve alt kafilenin 

bölünebilirliği karakteristikleri açısından farklılaşmaktadır. Önerilen çözüm 

yöntemlerinde, çok ürünlü KBK problemi; sıralama ve alt kafile bölme/kaydırma alt 

problemlerine ayrıştırılmıştır. Sıralama alt problemi için, genel akış tipi sistemlerde 

geliştirilmiş olan basit ve etkin sıralama algoritmaları, KBK probleminin 

gereksinimleri doğrultusunda revize edilmiştir. Alt kafile bölme/kaydırma problemi 

için ise, karışık tam sayılı programlama tabanlı çözüm yaklaşımları geliştirilmiştir. 

Çok ürünlü KBK problemini çözmek için; sıralama alt problemini, revize edilmiş 

sezgisel yöntemlerden en iyi sonucu veren (NEH,TPLS) yöntem ile ele alan ve alt 

kafile bölme/kaydırma problemini önerilen karışık tam sayılı programlama yaklaşımı 

ile çözen melez bir çözüm prosedürü geliştirilmiştir. Önerilen melez yöntem, sadece 

küçük ve orta ölçekli problemlere kısa zamanda etkin sonuçlar vermekle kalmayıp 

aynı zamanda büyük ölçekli problemler için de çözüm sunabilmektedir. Son olarak, 

küçük ve orta  ölçekli problemlerde çözüm etkinliğini arttırmak için, yukarıda 

tanımlanan melez yaklaşımı içeren ve alternatif ürün sıralarını tabu arama yöntemi 

ile değerlendirerek geliştiren bir diğer çözüm yöntemi önerilmiştir. Bu çözüm 

yönteminin sonuçları, bütün problemin çözümü için geliştirilen karışık tam sayılı 
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programlama modelininden elde edilen sonuçlarla karşılaştırılmış ve aynı çözüm 

süresi verildiğinde önerilen çözüm yönteminin daha iyi bir performans sergilediği 

gösterilmiştir. 

 

Anahtar sözcükler: Kafile Bölme ve Kaydırma Problemleri, Akış Tipi Sistemler, 

Tabu Arama, Sıralama Kuralları
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CHAPTER ONE  

INTRODUCTION 

 
1.1 Background and Motivation 

 

Material Requirements Planning (MRP) was introduced in 1970s to build time 

based plans for the delivery of raw materials, the processing stages on the basis of 

bill of materials and the lead time of end products. However, MRP has some 

drawbacks. First, it assumes that production parameters such as lot sizes and lead 

times are priori known and kept fixed. This causes high work-in-process (WIP) 

inventory and long lead times. Secondly, it may generate infeasible schedules due to 

infinite capacity constraints. Finally, in an MRP system, a production lot is treated as 

a single entity which means the items in a lot has to finish their operations in the 

current machine before transferring to the next one. The MRP II method then 

introduced to overcome the second drawback by considering the limited capacity of 

relevant resources. (Sarin & Jaiprakash, 2007, p.20) 

 

In 1980s, the concept of minimizing waste is handled by the just-in-time (JIT) 

manufacturing technology. The waste is defined as anything that does not add value 

to the manufacturing process (Ohno, 1988, p.58). To eliminate the wasted inventory, 

JIT limits the WIP inventory between machines by kanbans. Kanban is a sign card 

attached to components. The aim in kanban systems is to set the number of kanbans 

to control the flow of items overall and keep stock in minimum, and to provide visual 

control to perform these functions accurately (Shingo, 1989, p.188). Similarly, JIT 

tries to minimize the wasted times and lead times by allowing overlapping operations 

where one item (i.e., unit size) is transferred at a time between machines. However, 

this type of transfers (unit sized) between machines might result in reverse direction 

of the purpose where significant amounts of transfer times and setup times are 

incurred. At the same time, another technique named optimized production 

technology (OPT) is appeared. It also aims to eliminate the waste in manufacturing 

but taking the critical resources such as bottlenecks into account. OPT, first, 

determines the bottleneck and non-bottleneck machines, and then, builds production 

plans such that the bottleneck is fully utilized. Using large process batches reduces
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number of setups and consequently setup costs, and small transfer batches decrease 

inventory carrying costs. This provides a significant reduction in overall cost and 

lead times. However, OPT lies on a number of assumptions. First, it assumes that the 

sublot sizes and sequence of lots are priori known. Second, there exists a single 

bottleneck in the system. Third, the transfer batches are used only in bottleneck 

machines. (Sarin & Jaiprakash, 2007, p.21) 

 

In traditional production systems, lots are transferred to the next machine if and 

only if all items in the lot finish their operations on the current machine. This causes 

the produced items to spend most of their time waiting for other items that are not 

produced yet. Inessential waiting times result in long completion times and high WIP 

inventory.  In order to reduce the non-value-added waiting times, the whole lot can 

be divided into sublots that contain a portion of the lot. Then, the operations of these 

sublots on successive machines can be performed simultaneously. By this 

arrangement on the sublots, they can move along the machines immediately and the 

completion time of the whole lot decreases. This technique is originally introduced 

by Reiter in 1966 and called “lot streaming”. Formally, lot streaming (LS) is a 

technique in which a production lot is split into several sublots and overlapping 

operations in different manufacturing workstations (i.e., stages) are performed. In 

this way, production can be accelerated.  

 

By the introduction of JIT and OPT concepts in 1980s, LS has been inherently 

used to overcome the restrictions of these two concepts. Since then, LS has been 

extensively studied in academic as well as industrial fields and has been shown to be 

an effective technique for compressing manufacturing lead time.  

 

The advantages of LS are not only limited by reduction in waiting times and 

manufacturing lead times.  Truscott (1986) lists the advantages of LS as (see Chapter 

2 for details): 

 

- reduction in completion times which generates better lead times,  

- reduction in average WIP inventory level which decreases inventory costs,  
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- reduction in space and storage requirements within the production area,   

- reduction in material handling system capacity requirements. 

 

The LS technique is widely applied to flow shop scheduling problems in the 

literature. These studies can inherently be categorized into two cases: single and 

multi product problems.  

 

The aim in single product LS problems is to determine the number of sublots that 

the production lot is going to be divided into and their sizes (i.e., the number of 

items). Although a restricted number of single product LS problems can be solved by 

polynomial time algorithms due to their simple LS properties, most of them are NP-

hard in that sense (see Trietsch & Baker, 1993).  

 

On the other hand, multi product LS problems require sequencing the products 

through the machines as well as sublot allocations of products. The first sub-

problem, sequencing the products, is NP-complete for more than three machines 

(Garey, Johnson & Sethi, 1976). Therefore, multi product LS problems are strongly 

NP-hard especially for multi machine (m>3) cases.  

 

In this thesis, single and multi product LS problems, which have not received 

much attention in literature, are studied. All investigated research problems aim to 

minimize makespan in permutation flow shops. Figure 1.1 indicates the position of 

these research problems in terms of LS problem characteristics (see Section 2.1 

Classification and Section 2.2 Terminology for details). For these research problems, 

tabu search based solution approaches are proposed.  

 

1.2 Research Objective and Methodology 

 

The main purpose of this thesis is to develop efficient solution algorithms for a 

class of LS problems in both stochastic and deterministic production environments. 

In order to fulfill this purpose, this study covers the following issues in details: 
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Figure 1.1 Characteristics of the research problems 

 

1.  Investigate a range of LS problems with various problem characteristics and 

properties, which have not received much attention in LS literature. 

2. Explore the exact and approximate solution algorithms that have previously 

been applied to the investigated LS problems. 

3.  Develop efficient solution approaches to the investigated LS problems. 

LOT STREAMING PROBLEMS 

Flow Shops Job Shops Open Shops Other Environments

Cost-based Objectives Time-based Objectives 

Flow Time Makespan Earliness/Tardiness Other Objectives 

Two/Three Machines Multi Machine 

Single Product Multi Product 

Stochastic Deterministic Stochastic Deterministic 

Equal Consistent Variable 

Chapter 4 

Equal Consistent Variable

Production Environments 

Performance Measures 

Number of Machines 

Number of Products 

Variability Variability  

Sublot Types Sublot Types 

Chapter 5 & Chapter 6 
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4.  Evaluate the efficiency of the proposed solution approaches against the 

existing ones.  

5.  Apply the proposed solution approaches to a wide range of medium and large 

sized test instances to describe the applicable problem size. 

6.  Clarify the research fields in LS literature that are still open for further 

researches.  

 

1.3 Contributions 

 

The research proposed in this thesis provides several contributions. These 

contributions may be presented in two aspects:  

 - contributions related with the problem characteristics  

 - contributions related with the solution approaches  

 

In this thesis, several research problems are handled. The first research problem 

deals with a single product LS problem in stochastic environments. The other three 

studies focus on multi-product multi-machine LS problems with non-intermingling 

schedules in deterministic permutation flow shops. These problems have not been 

studied widely in the literature due to their complex structures.  

  

The contributions in terms of problem characteristics are given in the following.   

 

o Only a limited number of studies address the stochastic nature of LS problems, 

although it is widely encountered in real life applications. One of our research 

problems explores a single product LS problem in stochastic flow shops.  

 

o The multi product LS problem with variable sublots is one of the hardest cases 

in the LS literature. To the best of author’s knowledge, there exists only one 

study (i.e., Liu, Chen & Liu, 2006) for this class of problems. A research 

problem of this thesis deals with multi product LS problems with variable 

sublot types. 
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o The related studies in the literature generally deal with small to medium size 

LS problems especially in multi product cases. However, most of real life 

applications require quite large problems to be solved. In this thesis, medium to 

large sized test instances of investigated problems are tried to be solved. 

 

The solution approaches developed for LS problems in the literature are directly 

affected by the problem characteristics. Exact approaches are available for simpler 

LS problems whereas heuristic and meta-heuristic approaches are widely used for 

problems that are more complex. The contributions in terms of solution approaches 

are given in the following.   

 

o The aim of single product LS studies is to find the number of sublots and their 

sizes with respect to some performance criterion. This aim may not be easily 

achieved in stochastic systems, since the existing approaches (e.g. LP, 

dominance relations) developed for deterministic systems may not be 

appropriate to solve LS problems in stochastic environments. Therefore, the 

stochastic LS studies in the literature only analyze the performance of pre-

determined experimental sublot sizes instead of optimizing them. As far as we 

know, no study, so far, has proposed a heuristic search algorithm that finds 

discrete sublot sizes in stochastic flow shops. In this thesis, a tabu search based 

heuristic approach is proposed to search sublot size configurations of a single 

product LS problem in a stochastic environment. Due to the stochastic structure 

of the problem, the proposed solution approach is a hybrid one that integrates 

tabu-search and simulation.  

 

o Multi product LS problems require sequencing the products through the 

machines as well as sublot allocations of products. The sequencing part of the 

problem has received much attention in the literature. However, these studies 

generally focus on small or medium sized multi product LS problems. To solve 

large sized problems in reasonable times and to get efficient results for small 

and medium sized problems in small computation times, a number of simple 

and efficient sequencing heuristics developed for pure flow shops are modified 
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according to the requirements of LS. The best one of these sequencing 

heuristics is suggested to be used in multi product LS problems.  

 

o If the sequence is given, there only remains the sublot allocation sub-problem. 

However, even with the given sequence, it may still be difficult to find optimal 

number of sublots with optimal sizes in multi product LS problems. Therefore, 

the studies in the literature generally assume unit or equal sized sublots to 

eliminate the sublot allocation sub-problem. On the contrary, this thesis also 

incorporates solution approaches that handle this sub-problem as well as 

sequencing sub-problem. Particularly, the solution approach proposed for 

solving sublot allocation sub-problem of continuous sized variable sublots is 

novel in the LS literature.  

 

o Most of the studies in the multi product LS literature develop heuristic or meta-

heuristic approaches. The studies that present mixed integer programming 

(MIP) models of more complex LS problems are rather new (Biskup and 

Feldmann, 2006; Feldmann & Biskup, 2008). Hybrid methods that utilize the 

complementary strengths of heuristic/meta-heuristic algorithms and MIP 

models may produce more efficient results. Therefore, our solution approaches 

utilize the benefit of heuristic/meta-heuristic approaches in sequencing and of 

MIP models in sublot sizing. In addition, for variable sublot types, an 

alternative MIP model formulation is proposed based on the MIP models of 

Biskup & Feldmann (2006) and Feldmann & Biskup (2008).  

 

1.4 Organization of the Thesis 

 

The remainder of the thesis is organized as follows.  

 

Chapter 2 describes the relevant terminology of the LS with a classification 

scheme. Then, brief information on the components of the LS problems is given. 

Lastly, the dominance relations of the LS components are discussed. 

 



 

 

8
 

Chapter 3 presents a comprehensive and categorized literature review with respect 

to past research work on LS problems related with time based objectives. The LS 

literature in flow shops is divided into four categories based on the number of 

products and machines. The problem characteristics and solution approaches of the 

studies falling into these four categories are investigated in detail. 

 

In Chapter 4, a single product multi machine LS problem with discrete sized 

consistent sublots is investigated in stochastic flow hops. A tabu search based 

solution approach integrated with simulation is proposed for this problem and its 

results are compared for both deterministic and stochastic flow shops. 

 

Multi product, multi machine LS problems are studied in Chapter 5 and 6. With 

respect to sublot type and sublot size characteristics, three different versions of this 

problem type are investigated: continuous sized consistent sublots, discrete sized 

consistent sublots and continuous sized variable sublots.  

 

In Chapter 5, a number of simple and efficient sequencing heuristics developed 

for pure flow shops are modified according to the requirements of LS. To analyze the 

relative performances of these sequencing heuristics, computational experiments are 

carried out and the best sequencing heuristic is proposed to be used in multi product 

LS problems. In addition,  for each investigated problem, solution approaches are 

proposed to find the sublot sizes under a given sequence. 

 

Chapter 6 proposes tabu search based solution approaches for three investigated 

multi product multi machine LS problems by utilizing the best sequencing heuristics 

presented in Chapter 5. The results of the proposed algorithms are compared with the 

ones of MIP models. 

 

Finally, Chapter 7 summarizes the proposed research of this thesis, gives the main 

contributions and presents future research directions. 
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CHAPTER TWO 

LOT STREAMING PROBLEM 

 

Consider a scenario where lots consisting of several identical items are to be 

processed on several machines. Instead of transferring the entire lot after all of its 

items have been processed on a machine (like in traditional production systems), 

transferring the items of the lot can be made by small batches which are called 

sublots (Sarin & Jaiprakash, 2007, p.1). Then, the operations of these sublots on 

successive machines can be performed simultaneously. By this arrangement on the 

sublots, they can move along the machines immediately and the completion time of 

the whole lot decreases. This technique of splitting a lot into sublots and processing 

their movement over the machines is called “lot streaming” in the literature. In a 

more compact form, it can be defined as the process of splitting a production lot into 

sublots, and then scheduling the sublots in an overlapping fashion on the machines, 

in order to accelerate the progress of orders in production, and to improve the overall 

performance of the production system (Kalir & Sarin, 2000). 

 

To clarify the benefits of LS, consider that a product with 64 items is going to be 

produced in a four machine flow shop system, where each machine processes an item 

in 2, 7, 6 and 3 minutes, respectively. The Gantt chart of the schedule without LS is 

given in Figure 2.1. The corresponding total completion time is 1152 minutes.  

 
Figure 2.1 Gantt chart of the example without lot streaming

64 items M1

M2

M3

576

960

128

64 items 

64 items 

64 items 

1152

M4
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If we apply the LS technique and divide the whole production lot into four sublots 

each having the same number of items (i.e., 16 items), the total completion time 

decreases to 624 minutes providing a 45.8% improvement in comparison to the case 

without LS. It can be seen in Figure 2.2.  

 

 
Figure 2.2 Equal sublots 

 

LS has a number of advantages. Its main advantage appears in the reduction of 

total completion time. This reduction provides better due date performance by 

reducing the production lead times. Since the sublots exit from the system earlier in 

comparison to the case without LS, it also decreases the average WIP inventory and 

accordingly the associated WIP inventory costs. Finally, LS reduces the material 

handling capacity, interim storage and space requirements, since it handles smaller 

sized sublots instead of entire lot.  

 

An LS problem can be described by a series of characteristics. In Section 2.1, a 

problem classification scheme incorporating these characteristics is introduced. In 

Section 2.2, a terminology is described to clarify the components of LS 

characteristics in detail. The dominance relations of LS problems based on the 

components given in Section 2.2 are summarized in Section 2.3. Finally, the 

common assumptions of LS problems are given in Section 2.4.  
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2.1 Classification 

 

Table 2.1 gives comprehensive information on the characteristics of the LS 

problems. This table is adapted from Chang & Chiu (2005).  

 
Table 2.1 Classification of LS problems in terms of main characteristics 

Characteristic  Notation Component 
F Flow shop 
J Job shop  Production Type  
O Open shop 
2 Two machines 
3 Three machines Number of Machines 

α1 

M Multi machines 
1 Single product  Product Type  

 α2 N Multi products 
fix Fixed Number of Sublots β1 max Maximum 
E Equal 
C Consistent Sublot Type β2 
V Variable 
D Discrete   Divisibility of the Sublot Size β3 R Continuous 
IS Intermingling Sequence of the Sublots 

 β4 NI Non-Intermingling 
II Idling Operation Continuity 

 β5 Ino No Idling 
W Wait schedules Transfer Timing β6 Wno No wait schedules 
Sno No setup 
SA Attached setup Setups β7 
SD Detached setup 
AS Sublot availability Availability  β8 AI Item availability 

maxC  Makespan 

F  Mean flow time 

∑F  Total flow time 

T  Mean tardiness 

Tn  Number of tardy jobs 

∑ − dC  Total deviation from the due date

TC  Total cost 

Performance Measures γ 

)( maxCTC  Total cost with makespan 
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The following scheme is constructed by adapting the configurations presented by 

Potts & VanWassenhove (1992) and Chang & Chiu (2005) in order to classify and 

define the LS problem types. They presented a α|β|γ representation for the LS 

problems, where α represents the production environment, β defines the product 

characteristics and γ gives the performance measure. The levels of α, β and γ are 

given in Table 2.1. The first field is divided into two groups as },{ 21 ααα =  where α1 

shows the production type with number of machines and α2 shows the number of 

products. The second field β indicates the product characteristics with eight different 

components, },,,,,,,{ 87654321 βββββββββ = . The last field, γ, only presents the 

performance measures.  The symbol “” denotes that this characteristic is not taken 

into account in the problem or not mentioned in the study. 

 

For instance, the {Fm, Ln | fix, E, D, IS, Ino, Wno, SA, AS | Cmax} representation 

implies a problem with multiple products in a multi machine flow shop environment, 

with fixed number of discrete sized equal sublots, also considering non-intermingling 

case, no idling, no wait schedule and attached setups which aims to minimize the 

makespan.  

 

Another example can be given for an existing study made by Biskup & Feldmann 

(2006) which can be represented as {Fm, L1 | max, C/V, R/D, -, II, W, Sno/SA/SB, AS | 

Cmax}. Their study deals with a single product in multi machine flow shop 

environments where maximum number of sublots is given, the sublot type is 

consistent or variable, and the sublot sizes can be either continuous or discrete. Since 

there is only one product, the intermingling or non-intermingling are not the case. 

The idling case, wait schedules and sublot availability is taken into consideration 

with no setup, attached setup and detached setup cases to minimize the makespan 

objective.    

 

This representation scheme presented in this chapter will be used throughout the 

thesis.  
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2.2 Terminology 
 

In this sub-section, the characteristics given in Table 2.1 are explained in detail 

with their components. At first, the characteristics familiar with the classical 

scheduling problems are described. Then the ones related to LS problems are 

introduced.  

 

In terms of production type, several production systems may be considered; 

however here we only introduce the main production environments: flow shops, job 

shops and open shops. If the routes of all products are identical, that is, all products 

visit the same machines in the same order; the environment is referred to as a flow 

shop. A special case of flow shops, named permutation flow shops, on the other 

hand, assumes that the sequence of the products is the same on all machines.  

 

If the products have different routes, this environment is referred to as a job shop, 

which is a generalization of a flow shop. (A flow shop is a job shop in which each 

and every single job has the same route.) The job shop models assume that a product 

may be processed on a particular machine at most once or several times on its route 

through the system.  

 

Finally, the open shop scheduling model is a generalized version of flow shop and  

consists of m machines and n products. Each product has m operations. These 

operations are not necessarily performed in the same order for every product. 

Therefore, the routing for a product is the order of machines that the product visits 

(Sen & Benli, 1999). Open shops are similar with flow shops since it also requires m 

operations on m machines. However, all products in flow shops have to perform 

these operations in the same route, whereas the routes of products in open shops may 

differ. In this manner, open shop resembles the job shops where there may exist 

different routes for each product. However, note that, in job shops, each product does 

not need to have exactly m operations.  
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The number of machines is categorized into two components where two/three 

machine cases can be considered as smaller number of machines and the cases with 

more than three machines are classified as multi machine case. The studies 

concerning smaller number of machines occupy a wide area in the LS literature in 

comparison to the multi machine studies. This is probably caused by the growing 

complexity of problems by the increasing number of machines.  

 

Product type component is categorized into single and multi product cases. 

Similar to other scheduling problems, the LS problem gets harder to solve with the 

increasing number of products. Therefore, in the literature, single product problems 

are studied more than multi product problems due to its simpler structure.  

 

The performance criteria in LS problems can be either cost based or time based. 

The cost based LS studies generally aim to minimize total cost by determining the 

optimal sublot allocations. On the other hand, time based LS studies deal with 

makespan, mean flow time, mean tardiness, number of tardy jobs or total deviation 

from the due date, all of which are a function of time. Remember that one of the 

main benefits of LS is reduction in completion time of all products. Therefore, 

studies with the aim of minimizing makespan occupy a wide area in the literature. 

All research problems in this thesis also consider minimizing the makespan.  

 

From the perspective of setup activity, in case of cost based performance 

measures, the only issue is the availability of a setup. However, for time based 

performance measures, the type of setups (i.e., attached or detached) also goes into 

the scheme additionally. The attached setup refers to the case when the setup of a 

product can be started only after the first sublot of that product has arrived at that 

machine. However, in detached setup case, the setup for a product on a machine can 

be performed even when the first sublot of that product is being processed on a 

previous machine. In detached setups, the setup on a machine is performed as soon 

as that machine finishes processing the previous product assigned to it. Figure 2.3 

and Figure 2.4 illustrate the attached and detached setups, respectively. SUjm 
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represents the setup operation of product j on machine m and Sjsm represents the 

processing of sublot s of product j on machine m. 

 

 
Figure 2.3 Attached setup case 

 

 
Figure 2.4 Detached setup case 

 

The operation continuity characteristic is defined for the sublots of a product 

processed on the same machine; allowing the idle time between sublots or no-idle 

time between sublots. The no-idling case refers to a situation that the sublots of the 

same product are processed one after the other without any idle time on the same 

machine. For example, the production technology may dictate no idling if parts must 

be processed quickly to avoid cooling or chemical deterioration of machines (Baker 

& Jia, 1993). In case of idling (sometimes denoted as intermittent idling), there is no 

restriction and an idle time may exist between the sublots of the same product. The 

no-idling case requires an adjustment in modeling of the problem whereas this is not 

the case for idling. Idling case provides better makespan values than no-idling case. 

Figure 2.5 and Figure 2.6 illustrate the no-idling and idling cases, respectively.  

 

 
Figure 2.5 No-idling case 
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Figure 2.6 Idling case 

 

The transfer timing is another characteristic that deals with no-idle time case in 

which idle time is not allowed through the consecutive machines of the same sublot. 

In no-wait schedules, the sublot of a product has to start its operation on the 

subsequent machine immediately after it finishes its operation on the current 

machine. This means each sublot has to be continuously processed on all machines. 

The studies including no-wait schedules have to specify this situation clearly, while 

the studies with wait schedules do not have to. Scheduling problems in no-wait flow 

shops arise in chemicals processing and petro-chemical production environments. 

Another example of the no-wait situation arises in hot metal rolling industries where 

the metals have to be processed continuously at high temperature (Sriskandarajah & 

Wagneur, 1999). The no-wait schedule is presented in Figure 2.7.  

 

 
Figure 2.7 No-wait schedule 

 

The other components, which are more related with LS (i.e., sublot types, sublot 

sizes, sequence of sublots, number of sublots and availability), are explained in detail 

in the following sub-sections.  
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2.2.1 Number of Sublots  

 

The aim in LS problems is to determine the number of sublots and the sizes of 

each sublot according to some performance criteria. If a maximum level on the 

number of sublots is given as a parameter and then the optimal number of sublots is 

tried to be found within this restricted interval; this case is called “maximum number 

of sublots”. The number of sublots as well as sublot sizes has to be optimized in this 

case. However, some researchers assume that the number of sublots is fixed and 

known. In this case, there is no need to optimize the number of sublots, since the   

exact number of sublots is priori known and the entire lot has to be divided into this 

exact number. Therefore, the only remaining issue is the optimization of sublot sizes. 

This case is called “fixed number of sublots”. The main reasons of considering fixed 

number of sublots are twofold. The former one is that it quite simplifies the problem 

since the number of sublots is known and there is no need for extra computational 

effort to find the optimal number of sublots. The latter one is that the system on hand 

requires these restrictions (e.g., restriction on the capacity of the material handling 

equipment, fixed number of pallets, container associated with the moving of the 

sublots). In fixed number of sublots, the size of each sublot has to be at least one unit 

for the case of discrete sublots.  For instance, the sublot sizes for the fixed number of 

sublots may be valued as 2-8-4-6-3. However, the sublot sizes for the “maximum 

number of sublots” case may contain one or more sublots with zero size such as 11-

0-5-7-0. Note that, in this case, the maximum number of sublots is given as five, but 

the resulting number of sublots is three.   

 

2.2.2 Sublot Types 

 

The sublot types can be categorized into three groups; equal, consistent and 

variable.   

 

All these sublot types have to satisfy Eq.(2.1). Let imSS  is the size of sublot i on 

machine m, L is the production lot size and S is the number of sublots. The sum of 

sublot sizes on the same machine has to be equal to the production lot size.  
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LSS
S

i
im =∑

=1
  Mm ,...,1=       (2.1) 

Let us reconsider the example given at the beginning of this chapter. A single 

product is going to be processed on four machines with 2, 7, 6 and 3 minutes, 

respectively. The production lot size with 64 items is to be divided into four sublots. 

The data will be used in the following figures to illustrate different properties of 

sublot types. 

 

Equal Sublots 

The basic sublot type can be referred to as equal sublots, which denotes the case 

where all sublots of a product are of the same size. In addition, the sublot sizes are 

constant on all machines. Eq.(2.2) gives this relation in case of a fixed number of 

sublots. This relation may not be valid if the maximum number of sublots is 

predetermined. 

MmSiSLSSim ,...,1,...,1/ ===       (2.2) 

A Gantt chart characterizing equal sublots is given in Figure 2.2. A lot with 64 

items is divided into four equal sublots each having 16 items. These sublots are 

scheduled among the machines and the completion time is resulted in 624 minutes. 

Remember that, the completion time without LS was 1152 minutes. 

 

Consistent Sublots 

In consistent sublot types, the size of sublots may vary within the same machine, 

however sublots have to stick their sizes through the consecutive machines. This 

situation is given in Eq.(2.3).  

MmSiSSSS iim ,...,1,...,1 ===            (2.3) 

 
In addition, 1+≠ ii SSSS  inequality relation has to be in order for at least a pair of 

sublots to produce a different sublot size configurations than equal sublots. 
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  Figure 2.8 Consistent sublots 

 

Figure 2.8 illustrates the case of consistent sublot types for four fixed sublots. The 

sublots include 20, 17, 15 and 12 items, respectively. In this case, the total 

completion time is decreased to 602 minutes, which is smaller than the total 

completion time of the case with equal sublots.  

 

Variable Sublots 

For the variable sublots, there is no restriction on the sublot size either within the 

same machine or on consecutive machines. In case of variable sublots, Eq.(2.4) 

should be in order for at least one pair of consecutive machines.  

1,...,1,...,1)1( −==≠ + MmSiSSSS miim         (2.4) 

A schedule representing this sublot type is illustrated in Figure 2.9. The sublot 

sizes may vary within the sublots on the same machine and also within consecutive 

machines. Different from consistent sublots, size of the second sublot on the first 

machine is one and on the second machine is 19. The schedule ends at 589 minutes, 

which is smaller than the completion times of both cases with equal and consistent 

sublot types. Also it should be noted that, the reduction by the variable sublots is 

48.8% when compared without LS case. 
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  Figure 2.9 Variable sublots 

 

2.2.3 Sublot Sizes 

 

Another important component is the divisibility of the sublot sizes, i.e., discrete or 

continuous. In discrete version, the sublot size is to be integer (e.g., 12), while this is 

not the case for the continuous version (e.g., 12.33). The production systems that 

produce fluid based products such as gas, drinks or dye are the instances for 

continuous sublot sizes. On the other hand, the systems producing countable products 

such as machine or computer parts, and textiles (especially ready-to-wear clothing) 

are classical examples of discrete sublot sizes. Eq.(2.5) and Eq.(2.6) illustrate 

discrete and continuous sublot cases, respectively.  

MmSiSSim ,...,1,...,1 ==Ζ∈ +    (2.5) 

MmSiSSim ,...,1,...,1 ==ℜ∈ +    (2.6) 

 

2.2.4 Intermingling/Non-intermingling Schedules 

 

These schedules are the case for only multi product LS problems because these 

schedules deal with the sequence of sublots of the products. Non-intermingling 

schedules do not allow any interruption in the sequence of sublots of a product by the 

sublots of any other product(s). This means if a sublot of a product starts its 

operation on a machine, then the other sublots of that product have to follow this 

sublot on the sequence. In intermingling schedule cases, the sequence of sublots of 
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any product can be interrupted by the sublots of other products. In this case, the 

sublots have to be handled as independent products. (Feldmann & Biskup, 2008)  

 

These cases are illustrated in Figure 2.10 and Figure 2.11. An LS problem with 

three products and three sublots is presented for the product sequence 1-3-2. 

Remember that, the representation Sjsm corresponds to the sublot s of product j on 

machine m.  

 

 
Figure 2.10 Non-intermingling schedule 

 

 
Figure 2.11 Intermingling schedule 

 

2.2.5 Availability  

 

Availability characteristic describes the situations when a new sublot can be 

configured for processing on a machine, after the items constituting that sublot have 

been processed on the preceding machine. (Sarin & Jaiprakash, 2007, p.47) 

 

There are two cases for the availability component; the sublot availability and the 

item availability. The sublot availability does not allow a portion of a sublot to be 

transferred to the next operation to constitute a new sublot until all items in that 

S111 S121 

S112 S122 S132 

S113 S123 

S311 S321 S331 

S312 S322 S332 

S313 S333 

S221 S231 

S212 S222 S232 

S213 S223 S233

S211 S131 

S133 S323 

M1

M2

M3

S111 S121 S131 

S112 S122 S132 

S113 S123 S133 

S311 S321 S331 

S312 S322 S332 

S313 S323 S333 

S211 S221 S231 

S212 S222 S232 

S213 S223 S233

M1

M2

M3



 

 

22
 

sublot finish their operation on the current machine. In item availability, the items of 

a sublot, which finish their operations in the current machine, can be transferred to 

the next operation independently from the other items of this sublot. Item availability 

is meaningful for only variable sublots, since the sublot sizes in consistent or equal 

sublot types do not vary on the machines. Therefore, naturally, for equal and 

consistent sublots, sublot availability exists by default. Figure 2.9 and Figure 2.12 

represents schedule instances for the sublot availability and item availability, 

respectively (For more information see Sarin and Jaiprakash, 2007, pg. 47). 

 

 
  Figure 2.12 Item availability 

 

2.3 Dominance Relations of Lot Streaming Problems    

 

As mentioned earlier, LS problems have a number of characteristics. Some 

components of these characteristics dominate some other components in case of 

makespan objective. The dominance relations among some of the characteristics of 

LS problems can be summarized as follows. (Trietsch & Baker, 1993) 

 

Related to the sublot sizes, variable sublot type (V) is dominant over consistent 

sublot type (C) which is dominant over equal sublot type (E). This means that a 

model with variable sublots should have shorter or equal makespan than the 

makespan of the same model with consistent or equal sublots. Any solution of equal 

sublot type will be an upper bound for consistent and variable sublot types for the 
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minimization problems. Similarly, any solution of consistent sublot type will be an 

upper bound for variable sublot types.  

 

max max max( ) ( ) ( )C E C C C V≥ ≥  
 

It is clear that idling (II) dominates no idling (NI) case. The related dominance 

relations can be seen in Figure 2.13. The least restrictive case is V/II which means 

the minimal makespan will be achieved with variable sublots and idling case. There 

is no clear dominance between the models shown in the same level i.e. variable 

sublots with no idling (V/NI) and consistent sublots with idling (C/II). (Trietsch and 

Baker, 1993)  

 

 

Figure 2.13 Dominance relationship of sublot types (E / C / V) and idling 

(II) / no-idling (Ino) cases 
 

When divisibility of sublot sizes are taken into consideration, continuous (CV) 

sublot case dominates over discrete (DV) case. According to these dominance 

relationships, the least restrictive model is V/II/CV.  

 

Another dominance relation exists between the intermingling and non-

intermingling cases for multi product LS problems. Figure 2.13 can be adapted to 

Figure 2.14, to show this relation. Any non-intermingling schedule is dominated by 

intermingling schedules because non-intermingling schedules only consider the 

sequence of products while intermingling schedules consider sublots as well as 

products.  
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In case of maximum number of sublots, sublot sizes as well as the number of 

sublots have to be optimized. In fixed number of sublots case, on the other hand, 

there is no need to optimize the number of sublots, since the exact number of sublots 

is priori known and the entire lot has to be divided into this exact number. The only 

issue remains as the optimization of sublot sizes. Therefore, the fixed number of 

sublots case is a special version of maximum number of sublots and it eliminates the 

determination of number of sublots in LS problem.   

 

 

Figure 2.14 Dominance relationship of sublot types (E/C/V) and     

intermingling (IS) / non-intermingling (NI) schedules 

 

In the literature, the complexities of single product LS problems are determined 

by Trietsch & Baker (1993). The single product LS problems with smaller number of 

machines are categorized as polynomial (P). The LS problems with m (m>3) number 

of machines get harder to solve and some of these problems especially with discrete 

sized sublots are categorized as non-deterministic polynomial (NP). The solution 

algorithms for continuous sublots are given as linear programming (LP) formulations 

and for discrete sublots as integer linear programming (ILP). Although the 

complexity of single product, multi-machine LS problem with variable sublot size, 

idling case, continuous sublot size is not described here, Biskup & Feldmann (2006) 

claim that this LS problem type is most probably NP hard, but no proof for this 

conjecture exists in the literature, that is, the complexity status of this problem is still 

open. However, the discrete sublot size version of this problem is exactly NP hard.  

 

We can use the complexity of single product LS problems to define the 

complexity of multi product LS problems. The multi product LS problems in flow 
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shops require scheduling the products through the machines as well as sublot 

allocation of the products. The first problem, scheduling products, is NP-complete 

for more than three machines (Garey, Johnson & Sethi, 1976). Surely, referring to 

the Table 2.2, discrete versions of multi product LS problems are NP. On the other 

hand, we cannot claim that all the continuous versions of multi product LS problems 

are NP. Nevertheless, the multi product LS problems are much harder to solve than 

the single product LS problems.  

 
Table 2.2 Summary of solution status of LS Problems (Trietsch & Baker, 1993) 

Number of 
Machines 

Consistent/ 
Variable 

Idling/No-
idling 

Continuous/
Discrete Complexity Solution 

2 C II R P O(n) 
2 V II R P O(n) 
2 C Ino R P O(n) 
2 V Ino R P O(n) 
2 C II D P O(Un2) 
2 V II D P O(Un2) 
2 C Ino D P O(Un2) 
2 V Ino D P O(Un2) 
3 C II R P O(n) 
3 V II R P O(n) 
3 V II D P O(Un2) 
m C Ino R P LP 
m C Ino D NP ILP 
m C II R P LP 
m C II D NP ILP 
m V Ino R P O(mn) 
m V Ino D P O(mUn2) 
m V II R ? - 
m V II D NP ILP 

 

Considering the above dominance relations, the least complex LS problem can be 

described as {F2, L1 | fix, E, C, -, II, -, -, AS | Cmax} for the single product case and 

{F2, Ln | fix, E, C, NI, II, -, -, AS | Cmax}for the multi product case. 

 

2.4 Assumptions  

 

The general assumptions used throughout the thesis are stated in the following. 

These assumptions are common for all investigated research problems. The 
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additional assumptions of the research problems are going to be given in their 

respective chapters. 

 

1. All product lots are available at time zero.  

2. The production environment is limited to permutation flow shops. Recall that, 

permutation flow shop is a special case of flow shops where the sequence of 

the products is the same on all machines. 

3. The flow shop is a multi machine one with number of machines being greater 

than three.(m>3) 

4. The machine at each stage is continuously available. This means there is no 

uncontrolled idling such as machine breakdowns, unscheduled maintenance, 

etc. 

5. Only one product lot can be processed on a machine at any time. Conversely, 

one machine cannot process more than one lot at a time.  

6. Pre-emption of sublots is not allowed.  

7. Once a machine starts a lot, it has to process the lot continuously until it is 

finished. This assumption indicates non-intermingling schedules in multi 

product cases.  

8. The performance measure is to minimize the makespan. 

9. Sublot transfer times are assumed negligible.   

10. Neither attached nor detached setups are considered i.e., no setups.  

11. The sublot availability case is taken into account for the variable sublot cases.
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CHAPTER THREE 

LITERATURE REVIEW 

 

Lot streaming (LS) term was first introduced by Reiter in 1966. This concept has 

not received much attention until late 1980s and early 1990s; however, it has been a 

well-known research area since then with the introduction of optimized production 

technology concept (Sarin & Jaiprakash, 2007, p.20). Although several papers have 

studied LS problems since 1980’s, the first comprehensive review is made by Chang 

and Chiu in 2005.  

 

Since our research problems deal with flow shop environments and makespan 

objective, a comprehensive literature review is presented with respect to the most 

relevant work based on time models (especially minimizing makespan) in flow 

shops. 

 

 
Figure 3.1 The organization of literature review 

 

As mentioned before, a typical LS problem can be encountered in different 

production settings. The number of products and number of machines generally
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defines the production settings. Therefore, in this section, the studies are presented in 

four classes varying by the number of products and machines. The organization of 

this chapter with the problem characteristics are shown in Figure 3.1. The 

characteristics of LS problems are investigated under these sub-sections in detail. In 

the last section of this chapter, a summary of previous research is presented with 

respect to LS problem characteristics and the relations between the proposed research 

in this thesis and current literature are discussed.  

 

3.1 Single Product Lot Streaming Problems 

 

The aim in single product LS problems is to find the optimal number of sublots 

and the sizes of these sublots. Therefore, single product LS problems are naturally 

simpler than multi product LS problems. However, it still may be NP-hard due to the 

presence of some challenging LS characteristics. In terms of various LS 

characteristics, the complexities of single product LS problems have already been 

given in Table 2.2 in Section 2.3. 

 

In a general study, Kalir & Sarin (2000) evaluate the potential benefits of LS in 

flow shops in terms of makespan, average flow time and average WIP level. They 

give the worst case performances of these objective functions with and without LS 

for the single product case.  

 

3.1.1 Two/Three Machines 

 

The problems with single product and smaller number of machines are the 

simplest ones and require less computational effort. Table 3.1 illustrates the 

characteristics of single product LS studies in two/three machine flow shops as well 

as applied solution approaches and their optimality.  

 

A summary of the LS work on two and three machines from 1988 to 1993 can be 

found in Trietsch & Baker (1993). 
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Table 3.1 Single product LS studies in two/three machine flow shops 

Author(s) Year Number of 
Products

Number of 
Machines

Number of 
Sublots Sublot Type Sublot Size Sequence Idling/ 

No 
Wait/       
No Wait Availability Setups Objective 

Function
Solution 
Approach Optimality

Single Two Fix Consistent Continuous - No idling - - No Makespan Exact Optimal
Single Two Fix Equal Continuous - No idling - - No Makespan Worst case perform. -
Single Two Fix Consistent Continuous - No idling - - No Makespan Dominance Relations Optimal
Single Two Fix Consistent Discrete - No idling - - No Makespan Dominance Relations Optimal

Single Three Fix Consistent Continuous - No idling - - No Makespan LP, Dominance 
Relations

Optimal,         
Near-Optimal

Single Three Fix Consistent Discrete - No idling - - No Makespan LP, Dominance 
Relations

Optimal,       
Near-Optimal

Single Three Fix Variable Continuous - No idling - Sublot No Makespan Dominance Relations Optimal
Single Three Fix Variable Continuous - Idling No-wait Sublot No Makespan Dominance Relations Near-Optimal
Single Three Fix Variable Discrete - Idling No-wait Sublot No Makespan Dominance Relations Near-Optimal
Single Three Fix Equal Continuous - No idling - - No Makespan Worst case perform. -
Single Three Fix Equal Continuous - Idling - - No Makespan Worst case perform. -
Single Three Fix Consistent Continuous - No idling - - No Makespan Worst case perform. -
Single Three Fix Consistent Continuous - Idling - - No Makespan Worst case perform. -
Single Three Fix Variable Continuous - Idling - Sublot No Makespan - Optimal
Single Three Fix Variable Continuous - No idling - Sublot No Makespan - Optimal

Glass et al 1994 Single Three Fix Consistent Continuous - Idling - - No Makespan Exact, Dominance 
Relations Optimal

Chen and Steiner 1998 Single Three Fix Consistent Continuous - Idling - - Attached Makespan Exact, Dominance 
Relations

Optimal/      
Near-Optimal

Chen and Steiner 1996 Single Three Fix Consistent Continuous - Idling - - Detached Makespan Exact, Dominance 
Relations

Optimal/       
Near-Optimal

Single Two Fix Equal Continuous - - - Job No Makespan Dominance Relations Optimal
Single Two Fix Consistent Continuous - - - Job No Makespan Dominance Relations Optimal
Single Two Fix Variable Continuous - - - Job No Makespan Dominance Relations Optimal
Single Two Fix Equal Continuous - - - Sublot No Mean Flow Time Dominance Relations Optimal
Single Two Fix Consistent Continuous - - - Sublot No Mean Flow Time Dominance Relations Optimal
Single Two Fix Variable Continuous - - - Sublot No Mean Flow Time Dominance Relations Optimal
Single Two Fix Equal Continuous - - - Item No Mean Flow Time Dominance Relations Optimal
Single Two Fix Consistent Continuous - - - Item No Mean Flow Time Dominance Relations Optimal
Single Two Fix Variable Continuous - - - Item No Mean Flow Time Dominance Relations Optimal
Single Two Fix Consistent Continuous - - No-wait - Detached Makespan LP, Exact Optimal
Single Two Fix Consistent Discrete - - No-wait - Detached Makespan Heuristic Near-Optimal

Bukchin et al. 2002 Single Two Max Consistent Continuous - Idling - Sublot Attached Mean Flow Time Dominance Relations Optimal,       
Near-Optimal

Single Two stage    
m-1 hybrid Max Consistent Continuous - - - - Sublot 

attached Makespan Exact, LP, 
Enumaration Optimal

Single Two stage    
m-1 hybrid Fix Consistent Continuous - - - - Sublot 

attached Makespan Exact, LP Optimal

Single Two stage    
m-1 hybrid Max Equal Continuous - - - - Sublot 

attached Makespan Exact Optimal

Sriskandarajah and 
Wagneur 1999

Liu 2008

Baker and Jia 1993

Sen et al. 1998

Trietsch and Baker 1993

Potts and Baker 1989
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In a flow shop environment, under the objective of minimizing makespan, the 

processing times of machines influence the sublot sizes. Therefore, two cases (i.e., 

p1>p2 and p1<p2, where p1 and p2 are the processing times of the first and the second 

machine, respectively) have to be analyzed in detail. Figure 3.2 and 3.3 illustrates 

these cases.  

 

 
Figure 3.2 Lot streaming on two machines where p1>p2 

 

 
   Figure 3.3 Lot streaming on two machines where p1<p2 
 

If p1>p2, sublots can be processed on the first machine and accordingly on the 

second machine. In this case, the sublots are decreasing in size. If p1<p2, the reverse 

problem can be handled in the same way (see Figure 3.2 and 3.3). It is proved by 

Potts & Baker (1989) that a LS problem and its inverse are equivalent. The 

reversibility property ensures that idling case is not necessary for two machines and 

optimal sublot sizes that minimize makespan on two machine flow shops can be 

found without idle time.  

 

It is proved again by Potts & Baker (1989) that, for a given number of sublots, 

there exists an optimal schedule for the makespan criteria in which 21 ii SSSS =  and 

iMiM SSSS =−1 , where imSS is the size of sublot i on machine m (m=1,…,M). Since 

there is only one transfer step between the first machine and second one in two 
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machine flow shops, there is no need to consider variable sublots. Potts & Baker 

(1989) prove that, in two machine cases, all sublots are critical in an optimal solution 

and the optimal set of sublot sizes are geometric. Therefore, optimal sublot sizes can 

be obtained by consistent sublots (Trietsch & Baker, 1993). For two sublot cases, the 

optimal sublot sizes can be obtained by the ratio q = p2 / p1. For S sublots, the size of 

sublot i can be calculated as )...1/( 11 −− +++= Si
i qqLqSS where L is the production 

lot size. This geometric sublot sizes are only valid for continuous sublots and do not 

hold for discrete sized ones. Some of the studies related with discrete sized sublots 

present rounding algorithms that first obtain continuous sizes and then convert these 

values to discrete ones (e.g., Chen & Steiner, 1997; Sriskandarajah & Wagneur, 

1999; Trietsch & Baker, 1993). Trietsch & Baker (1993) develop an iterative 

algorithm which crosschecks the situation that the converted discrete sized sublots 

satisfy the given lower bound or not. The initial lower bound is equal to the 

makespan value of the continuous sized ones and it should be updated if it is not 

satisfied by the discrete sublot sizes. If the given lower bound is achieved by the 

discrete sizes then the algorithm stops, otherwise it continues on trials. 

Sriskandarajah & Wagneur (1999) propose a rounding and a generating algorithm to 

obtain near-optimal solutions for the no-wait schedules. The former converts 

continuous sized sublots to discrete ones; while the latter uses the property of equal 

sublots that first sizes all the sublots equally and then allocates the remaining items 

starting from the initial sublots. They obtain better results by rounding algorithm in 

comparison to the ones of generating algorithm. 

 

For three machine cases, the relations of processing times of machines become 

more complex. Therefore, the following cases have to be analyzed for continuous 

sized sublots. For two consistent sublots, the resulting sublot sizes of each case are 

described by Baker (1988) as in the following.  

 

Case 1. If 31
2

2 ppp >  and 31 pp ≥ , then 

       )/( 2111 pppLSS +×= and )/( 2122 pppLSS +×= , with no idling 

Case 2. If 31
2

2 ppp >  and 31 pp < , then 
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       )/( 3221 pppLSS +×= and )/( 3232 pppLSS +×= , with no idling 

Case 3. If 31
2

2 ppp ≤ , then 

       )2/()( 321211 pppppLSS +++×=  and  

       )2/()( 321322 pppppLSS +++×= , with idling 

 

Baker & Jia (1993) make computational analyses on three machine LS problems 

by comparing the results of equal and consistent sublots with the ones of variable 

sublots. They confirm the situations, also stated by Trietsch & Baker (1993), for 

more than two sublot cases. 

- If 31
2

2 ppp > ,  

o Optimal sublot sizes can only be achieved by variable sublots. 

)()( maxmax CCVC ≤   

o No-idling case and idling case generate the optimal makespan 

independent of the sublot type. )()( maxmax noICIIC =  

-  If 31
2

2 ppp ≤ ,  

o Optimal sublot sizes can be achieved by consistent sublots as well as 

variable sublots. )()( maxmax CCVC =   

o Optimal makespan can only be achieved by idling case. 

)()( maxmax noICIIC ≤  

 

When sublot sizes are variable and the no-idling constraint is enforced, the 

problem can be decomposed into two sub-problems consisting of first pair of 

machines (i.e., M1 and M2) and the second pair of machines (i.e., M2 and M3). For 

each pair of machines, the solution methodology for the two machine problem with 

no idling case can be used to obtain the continuous optimal sublot sizes. However, 

when variable sublots with idling case is considered, the dominance relations have to 

be analyzed. If 31
2

2 ppp > , the problem can be solved optimally by decomposing it  

two-machine pairs and by solving each of these problems by using the two machine 

procedures with idling case. Otherwise, the consistent sublot sizes are optimal and 
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geometric in the ratio 2 3 1 2( ) /( )p p p p+ + . A comprehensive analysis of three 

machine LS problem with continuous sized consistent sublots can be found in Glass, 

Gupta & Potts (1994).  

 

In two/three machine LS studies, generally no setup case is considered whereas 

only a few studies deal with attached or detached setups. Chen & Steiner (1996, 

1998) study the problem of Glass, Gupta & Potts (1994) and extend it to include 

setups. Chen & Steiner (1996) consider detached setups, while Chen & Steiner 

(1998) use attached setup type. In both studies, they investigate several cases to 

analyze the structural properties of three machine LS problems. 

 

In two and three machine cases, equal sublot type is generally used to calculate 

the worst case performance by comparing its results with the makespan values of the 

optimal sublot types (Baker & Jia, 1993; Liu, 2008; Potts & Baker, 1989).  

 

Different from makespan objective, Sen, Topaloglu & Benli (1998) and Bukchin, 

Tzur & Jaffe (2002) consider minimizing mean flow time in two machine flow 

shops. Sen, Topaloglu & Benli (1998) study the {F2, L1 | fix, E/C/V, R, -, -, -, AS /AI, 

Sno | F } problem to analyze the effect of processing times and sublot types under job 

availability, sublot availability and item availability cases. Since job availability case 

corresponds to makespan minimization problem, they only derive the results from 

the literature. For sublot availability case, they show that equal sublots generate the 

same results with the variable sublots when 21 pp ≥ . They also derived some results 

from the literature for the item availability. As an overall result, they state that even 

when variable sublots are allowed, consistent sublots are optimal in all cases, except 

in sublot availability with 21 pp < . Their findings can be seen in Table 3.2. Referring 

to the last column of this table, they also suggest equal sublots to be used in practice 

due to its efficient worst case performance. Bukchin, Tzur & Jaffe (2002) evaluate 

the performance of average flow time and makespan for consistent sublots and sublot 

attached setups.  
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No-wait schedules are considered by Sriskandarajah & Wagneur (1999) and 

Trietsch & Baker (1993), for two and three machine LS problems, respectively. No-

wait schedule case in two machines is quite simple, since there is only one step to 

consider this situation for each sublot. Sriskandarajah & Wagneur (1999) study this 

version of the problem for detached setups with consistent sublot type. Consistent 

sublots are optimal for two machines independent of the no-wait schedules. For three 

machine flow shops, Trietsch & Baker (1993) state that, in the presence of idling and 

variable sublots, the optimal schedule must be a no-wait schedule and also an 

optimal solution with consistent sublots can be obtained when 31
2

2 ppp ≤ . 

Otherwise, decomposition of the problem into two sub-problems is suggested where 

each sub-problem comprises two machines and solved by the two-machine 

procedures.  

 
Table 3.2 Derived results of Sen, Topaloglu & Benli (1998) 

 Consistent Variable Equal/Optimal 
21 pp ≥  Geometric Geometric 1.09 Job availability 

21 pp <  Geometric Geometric 1.09 

21 pp ≥  Equal Equal* 1.00* Sublot 
availability 

21 pp <  Algorithm 1 M1: Geometric* 
M2: Equal* 

1.14* 

21 pp ≥  Equal Equal 1.00 Item 
availability 

21 pp <  Geometric Geometric 1.18 
* Conjectured 

 

Liu (2008) considers an LS problem in a different production environment, i.e., a 

two stage hybrid flow shops with m machine at the first stage working parallel and 

only one machine at the second stage. The worst case performances of equal sublot 

case and the consistent sublot case (for fixed number of sublots) are evaluated by 

comparing their results with the optimal consistent ones.  

 

In terms of solution approaches for the LS problems in this section, the dominance 

relations of processing times of machines play a significant role. Since the cases 

appearing in two and three machine are limited, each case is analyzed by the 

researchers individually. The conditions of the cases are determined where the 
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optimal solutions can be obtained or not. The sublot sizes of optimal solutions are 

derived from theoretical formulations.  

 

3.1.2 Multi Machines 

 

The problem characteristics and solution approaches of the single product LS 

studies in multi machine flow shops are presented in Table 3.3. 

 

3.1.2.1 Problem Characteristics 

 

For single product multi machine flow shop LS problems, an early study is by 

Szendrovits (1975) with the objective of minimizing manufacturing cycle time as 

well as minimizing total cost under equal sublot types, continuous sublot sizes and 

no-idling case by using dominance relations of processing times of machines. Later, 

Ornek & Collier (1988) extend this problem to determine equal sublot sizes where 

the number of sublots may differ between machines. 

 

As known from three machine case, in terms of processing times of machines, the 

number of cases to be analyzed increase with the increasing number of machines. For 

these types of LS problems, the number of alternatives quite increases and their 

relations get difficult to analyze.  

 

Since multi machine LS problems are much harder to solve, most of the studies 

generally assume fixed number of sublots due to its simplicity. There are a number of 

studies for maximum number of sublots; however, most of these studies assume 

continuous sized equal sublots in which case the only remaining problem is to 

optimize the number of sublots (e.g. Bukchin & Masin, 2004; Kalir & Sarin, 2001a, 

2003; Sarin, Kalir & Chen, 2008).  

 

Due to the presence of single product, the intermingling and non-intermingling 

schedules are not the case.  
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Table 3.3 Single product LS studies in multi machine flow shops 

Author(s) Year Number of 
Products

Number of 
Machines

Number 
of Sublots

Sublot 
Type

Sublot 
Size Sequence Idling/ 

No 
Wait/      
No Wait Availability Setups Objective 

Function
Solution 
Approach Optimality

Potts and Baker 1989 Single Multi Fix Consistent Continuous - No idling - - No Makespan LP, Exact Optimal
Szendrovits 1975 Single Multi Fix Equal Continuous - No idling - - - Makespan Dominance Relations -
Ornek and Collier 1988 Single Multi Fix Equal Continuous - No idling - - - Makespan Dominance Relations -

Truscott 1986 Single Multi Fix Equal         
(Unit sized) Discrete - No idling - - Attached or 

Detached Multi Objective MIP,  Exact Optimal

Ramasesh et al 2000 Single Multi Fix Equal Continuous - No idling - - Attached Makespan Dominance Relations -

Kalir and Sarin 2001a Single Multi Max Equal Continuous - - - - Sublot 
attached Makespan Dominance Relations, 

Polynomial Time Alg. Optimal

Sarin et al 2008 Single Multi Max Equal Continuous - - - - Sublot 
Attached Multi Objective Polynomial Time 

Algorithm Near-Optimal

Baker and Pyke 1990 Single Multi Fix Consistent Continuous - Idling - - No Makespan Heuristic Near-Optimal

Williams et al 1997 Single Multi Fix Consistent Continuous - Idling - - No Makespan Dominance Relations Optimal/        
Near Optimal

Glass and Potts 1998 Single Multi Fix Consistent Continuous - - - - No Makespan Exact, Dominance 
Relations Optimal

Single Multi Fix Consistent Continuous - Idling - - No Makespan LP Optimal

Single Multi Fix Consistent Continuous - Idling - - No Mean Flow 
Time

Quadratic 
Programming Optimal

Single Multi Fix Consistent Continuous - Idling - - Attached Mean Flow 
Time

 Heuristic Near-Optimal

Bukchin and Masin 2004 Single Multi Max Consistent Discrete - - - - Sublot 
attached Multi Objective Heuristic Near-Optimal

Single Multi Fix Consistent Continuous - - No-wait - Detached Makespan LP Optimal
Single Multi Fix Consistent Discrete - - No-wait - Detached Makespan Heuristic Near-Optimal

Chen and Steiner 1997 Single Multi Fix Consistent Discrete - Idling - - No Makespan Heuristic Near-Optimal
Single Multi Fix Consistent Discrete - Idling No-wait - No Makespan LP Optimal
Single Multi Fix Consistent Discrete - Idling - - No Makespan Heuristic Near-Optimal
Single Multi Fix Variable Continuous - - - Item No Makespan Heuristic Near-Optimal
Single Multi Fix Variable Discrete - - - Item No Makespan Heuristic Near-Optimal

Chiu et al 2004 Single Multi Max Variable Discrete - No idling - Sublot Attached or 
Detached

Multi Objective LP, Heuristic Optimal,         
Near-Optimal

Single Multi Max Variable Continuous - Idling - Sublot Attached Makespan MIP Optimal
Single Multi Max Variable Continuous - Idling - Sublot Detached Makespan MIP Optimal
Single Multi Max Variable Discrete - Idling - Sublot Attached Makespan MIP Optimal
Single Multi Max Variable Discrete - Idling - Sublot Detached Makespan MIP Optimal

Huq et al 2004 Single Multi Fix Consistent Discrete - - - - Sublot 
attached Makespan MIP Near-Optimal

Kalir and Sarin 2003 Single Multi Max Equal Continuous - - - - Sublot 
Attached

Makespan Dominance Relations Optimal

Kropp and Smunt 1990

Kumar et al 2000

Chen and Steiner 2003

Liu 2003

Biskup and Feldmann 2006
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The LS studies on multi machines generally consider continuous sublot sizes. A 

few studies deal with discrete sized sublots. Most of these studies, except Biskup & 

Feldmann (2006), consider consistent sublot types. Biskup & Feldmann (2006) 

consider variable sublots with sublot availability case. This problem type is the 

hardest one in single product LS problems.  

 

Recall that, in LS studies with two/three machines, a number of special cases arise 

with respect to idling or no-idling cases. For multi machine cases, on the other hand, 

there exist no such cases described for either idling or no-idling cases.  

 

No-wait schedules are also considered by some studies (Chen & Steiner, 2003; 

Kumar, Bagchi & Sriskandarajah, 2000). These studies build LP models for the 

variants of no-wait cases and Kumar, Bagchi & Sriskandarajah (2000) proposed a 

heuristic approach that finds discrete sized consistent sublots.   

 

As the number of machines increase, transportation activities between each 

machine pair become important. Ramasesh et al. (2000) use the relations of 

transportation, setup, waiting and processing times to develop manufacturing cycle 

time formulations. Truscott (1986) aims to minimize a multi objective function 

composed of makespan and number of transportations considering unit sized sublots. 

The transportation time, returning time, and capacity of transporter at each stage are 

given as parameters. Chiu, Chang & Lee (2004) consider transportation activities 

with limited number of capacitated transporters at each stage to minimize the total 

cost composed of makespan and number of transportations. They try to find the 

number and sizes of sublots at each machine as well as schedule of the transporters at 

each stage. For more information on transportation activities in LS problems, readers 

are referred to Edis, Ornek & Eliiyi (2007). 

 

The setup operations are rarely considered in multi machine LS problems. 

Attached or detached setups are generally considered in the product basis; therefore, 

they occur only one time in the schedule. The sublot attached setups are required for 

each sublot, therefore the number of sublots becomes significant in this case since 
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the number of setups increases with the increasing number of sublots. The “attached 

or detached” term in “Setups” column in Table 3.3 refers to a situation where both 

attached and detached setups are allowed. 

 

For multi machine LS problems, minimizing the makespan, again, is the most 

popular time based objective. Only Kropp & Smunt (1990) consider a different 

performance measure, average flow time. A number of studies build multi objective 

functions in which more than one objective is aimed to be minimized simultaneously 

with makespan. Bukchin & Masin (2004) deal with a multi objective function 

containing two important objectives together, mean flow time and makespan. Due to 

significance of transportation activities mentioned earlier, Truscott (1986) and Chiu, 

Chang & Lee (2004) aim to minimize number of transportations and makespan 

together. With respect to a suggestion given by Kalir & Sarin (2001a), Sarin, Kalir & 

Chen (2008) use a unified objective function formed by giving weights to makespan, 

mean flow time, work in process inventory, sublot attached setup times and transfer 

times.  

 

3.1.2.2 Solution Approaches 

 

Most of multi machine versions of single product LS problems are quite complex 

to be analyzed by dominance relations. Therefore, researchers generally focus on 

analytical models and heuristics approaches. Even though structural properties have 

been identified for some versions of this problem, yet it is not uncommon to find 

heuristic approaches that have been proposed for its solution. 

 

Since sublot sizes are known in case of continuous sized equal sublots, the only 

remaining decision variable is the optimal number of sublots. A number of studies 

consider these type of problems and proposed polynomial time algorithms (Kalir and 

Sarin, 2001a, 2003; Sarin, Kalir & Chen, 2008).  

 

A rather difficult problem arises with continuous sized consistent sublots. A 

number of studies built mathematical programming models for this type of problems 
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(Kropp & Smunt, 1990; Kumar, Bagchi & Sriskandarajah, 2000; Potts & Baker, 

1989). The limited number of sublots (e.g., two and three) is generally solved by 

considering dominance relations. For two sublot case, Chen & Steiner (2003) 

propose a polynomial time exact algorithm in no-wait schedules. For three sublot 

case, Williams, Tufekci & Akansel (1997) provide an exact algorithm using the 

network representation of the problem.  

 

Solution approaches proposed for two sublot cases give upper bounds for multi 

sublot cases (e.g., Baker & Pyke, 1990; Williams, Tufekci & Akansel, 1997). 

Similarly, solution approaches proposed for equal sublots may give upper bounds for 

the consistent sublot cases (e.g., Baker & Pyke, 1990; Kropp & Smunt, 1990). 

 

The most difficult problems in this section are the ones with variable sublots. 

Biskup & Feldmann (2006) give a MIP model formulation that easily obtains optimal 

solutions in continuous case but may fail to find optimal solutions in discrete case. 

Another MIP formulation for variable sublots is built by Chiu, Chang & Lee (2004) 

for discrete sized sublots but they could not obtain efficient results. Therefore, they 

propose two heuristic approaches in each of which decompose the entire problem to 

a series of two machine sub-problems. The first heuristic uses the MIP model and 

iteratively solves two machine problems in a cumulative manner, while the second 

one uses the processing times relations to apply forward or backward sub-algorithms 

of Trietsch & Baker (1993). Baker & Pyke (1990) propose a “two machine heuristic” 

that uses the structure of two machine cases which is similar to Campbell-Dudek-

Smith (CDS) (1970) method in the solution of multi machines.   

 

LS problem with discrete sized variable sublots is NP-hard (Liu, 2003). 

Computational complexity increases when the number of machines or sublots 

increases. It is unlikely to find optimal solutions based on the exhaustive search. 

Hence, researchers focus on the heuristic methods to obtain efficient solutions in a 

reasonable time. Liu (2003) propose a heuristic approach that first finds continuous 

sizes by considering the bottleneck machine and then rounds these values to discrete 

ones. A number of studies also use different rounding algorithms for various LS 
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problem types (e.g., Chen & Steiner, 1997, 2003; Kumar, Bagchi & Sriskandarajah, 

2003). However, these papers do not analyze the optimality gap between the case of 

optimal discrete sublot sizes and the case of discrete sized sublots obtained by 

rounding algorithms. Biskup & Feldmann (2006) also points out that this gap may be 

worthwhile to work on.  

 

Another MIP model is built by Huq, Cutright & Martin (2004) considering given 

number of employees on each machine to minimize makespan. Employees, in this 

manner, are considered as multi processors. In this study, the sizes of the first and the 

last sublots are restricted to be equal, and the remaining intermediate sublots are to 

be equally sized within each other.  

 

3.2 Multi Product Lot Streaming Problems 

 

The multi product LS problems in flow shops require sequencing the products 

through the machines as well as sublot allocation of the products. Since the presence 

of sequencing decisions introduces a new dimension, which makes the problem 

much harder to solve, the studies in multi product cases mainly consider the simpler 

levels of LS characteristics. For instance, most of the papers study the non-

intermingling case instead of intermingling case, which is much harder to handle. 

Similarly, in order to make the problem solvable, most of the researchers partition 

the whole problem into two sub-problems; the product sequencing problem and 

sublot allocation problem (see Figure 3.4). Note that, sublot allocation problem 

includes finding  optimal number of sublots as well as sublot sizes.  The following 

two sub sections review the multi product LS studies in two/three machine and multi 

machine cases, respectively.  

 

 
Figure 3.4 Sub-problems of a multi product LS problem 

Multi Product LS Problem 

Sublot Allocation  
Sub-problem 

Sequencing  
Sub-problem 
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3.2.1 Two/Three Machines 

 

Table 3.4 shows the problem characteristics and solution approaches of the multi 

product LS studies in two/three machine flow shops.   

 

3.2.1.1 Problem Characteristics 

 

Since the problem structure becomes more complex due to multi products, rather 

simple levels of sublot types and sublot sizes have commonly received attention. The 

simplest version of this type is the problem with unit-sized sublots and no setup. By 

assuming unit sized sublots, the sublot allocation sub-problem is eliminated and the 

underlying issue remains as the determination of the sequence of products or sublots.  

 

The unit sized sublots are optimal for the multi product two machine flow shop 

LS problems for the makespan criteria in case no setup and transfer times occur and 

no restrictions on the transferring of the sublots or a limit on queue size on any 

machine exist. (Sarin & Jaiprakash, 2007, p.104) 

 

The case of unit sized sublots with no setups is considered by Vickson & 

Alfredsson (1992) for two and three machine cases. Two machine case of this study 

is extended to detached setups by Cetinkaya & Kayaligil (1992) and to attached 

setups by Baker (1995), Ganapathy, Marimuthu & Ponnambalam (2004) and 

Marimuthu & Ponnambalam (2005).  

 

If the assumption of unit sized sublots is relaxed in two machine LS problems, 

then the sublot allocation sub-problem appears in addition to the sequencing 

problem. For a given number of sublots, the sublot sizing problem and the product 

sequencing problem (i.e., non-intermingling schedule) are independent of each other. 

This means the sublot size of a product can be determined optimally independent of 

position of the product in the sequence. The sublot sizing and product sequencing 

problems keep their independence property in case of attached and detached setups 

(Sarin & Jaiprakash, 2007, p.153). These types of setups occur when the product type 
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changes. The attached and detached setups in multi product cases may resemble the 

sublot related setups in single product cases. However, sublot related setup times are 

the same for all sublots in single product cases whereas the setup times for each 

product are different from each other in multi product case. The case of sublot 

attached setups in multi product LS problems does not satisfy the independence 

property of sublot sizing and product sequencing problems, since the sequence of 

sublots exists rather than sequence of products. Therefore, optimal schedules can 

only be obtained by intermingling cases.   

 

 Remember that, the non-intermingling or intermingling schedules appear only in 

multi product cases. All studies in this field consider non-intermingling case to 

utilize the independence property of sub-problems in two/three machine LS 

problems. Another reason for considering non-intermingling schedules may be the 

simplicity of this case in comparison to intermingling one. Since the intermingling 

schedule takes the sublots other than products into consideration on sequencing, it 

requires (J*S)! sequence alternatives to be evaluated where this amount decreases to 

J! in the non-intermingling case.  

 

Recall that, optimal sublot sizes can be obtained by consistent sublots in no-idling 

case of single product two machine LS problems. Potts & Baker (1989) try to utilize 

this relation in multi product cases. They show that, for intermingling case, an 

optimal schedule cannot be found by a hierarchical procedure which firstly schedules 

the products without LS and then streams each product independently into optimal 

sublots. Their solution procedure produces optimal results in case of non-

intermingling schedules due to independence property whereas it may not give 

optimal solutions for the intermingling schedule.  

 

The only study that deals with no-wait schedules is made by Sriskandarajah & 

Wagneur (1999). The independence property still holds for the no-wait schedules in 

case of product detached setups.   
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  Table 3.4 Multi product LS studies in two/three machine flow shops 

Author(s) Year Number of 
Products

Number of 
Machines

Number 
of Sublots

Sublot 
Type

Sublot 
Size Sequence Idling/ 

No idling
Wait/       
No Wait Availability Setups Objective 

Function
Solution 
Approach Optimality

Potts and Baker 1989 Multi Two Fix Consistent Continuous Non-intermingling No idling - - No Makespan Heuristic Near-Optimal

Multi Two Fix Consistent Continuous Non-intermingling - No-wait - Detached Makespan Exact, Heuristic Optimal/          
Near-Optimal

Multi Two Fix Consistent Discrete Non-intermingling - No-wait - Detached Makespan Heuristic Near-Optimal
Multi Two Max Consistent Discrete Non-intermingling - No-wait - Detached Makespan TS Near-Optimal

Multi Two Fix Equal    
(Unit sized) Discrete Non-intermingling - - - No Makespan Dominance Relations- 

Johnson's Algorithm Optimal

Multi Three Fix Equal    
(Unit sized) Discrete Non-intermingling - - - No Makespan Dominance Relations- 

Johnson's Algorithm Optimal

Cetinkaya and 
Kayaligil 1992 Multi Two Fix Equal    

(Unit sized) Discrete Non-intermingling Idling - - Detached Makespan Dominance Relations- 
Heuristic Optimal

Multi Two Fix Equal    
(Unit sized) Discrete Non-intermingling - - - Attached Makespan Dominance Relations- 

Johnson's Algorithm Near-Optimal

Multi Two Fix Equal    
(Unit sized) Discrete Non-intermingling - - - Detached Makespan Dominance Relations- 

Johnson's Algorithm Optimal

Marimuthu and 
Ponnambalam 2005 Multi Two Fix Equal    

(Unit sized) Discrete Non-intermingling - - - Attached Makespan SA, GA Near-Optimal

Multi Two Fix Equal    
(Unit sized) Discrete Non-intermingling Idling - - Attached Makespan TS, SA Near-Optimal

Multi Two Fix Equal    
(Unit sized) Discrete Non-intermingling Idling - - Attached Total Flow 

Time TS, SA Near-Optimal

Kalir and Sarin 2003 Multi Two Max Equal Discrete Non-intermingling - - - Sublot 
Attached Makespan Johnson's Algorithm, 

Heuristic
Optimal,       
Near-Optimal

Multi Two Fix Equal Continuous Non-intermingling - - - Attached Makespan Exact Optimal
Multi Two Fix Consistent Continuous Non-intermingling - - - Attached Makespan Exact Optimal
Multi Two Fix Consistent Discrete Non-intermingling - - - Attached Makespan Exact Optimal
Multi Two Max Consistent Continuous Non-intermingling Idling - - Attached Makespan Exact Optimal
Multi Two Max Consistent Discrete Non-intermingling Idling - - Detached Makespan Exact Optimal
Multi Two Max Consistent Continuous Non-intermingling Idling - - Attached Makespan Johnson's Algorithm Near-Optimal
Multi Two Max Consistent Discrete Non-intermingling Idling - - Detached Makespan Johnson's Algorithm Near-Optimal

Zhang et al. 2005 Multi Two stage    
m-1 hybrid Max Consistent Continuous Non-intermingling - - - Sublot 

Attached Makespan Heuristic Near-Optimal

Cetinkaya 1994

Vickson 1995

Baker 1995

Ganapaty et al 2004

Sriskandarajah 
and Wagneur 1999

Vickson and 
Alfredsson 1992
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Multi product two machine discrete sized LS problems are easy to solve when the 

sublot sizes of all products are the same. The optimal solution can be obtained by 

enumerating all possible sublot sizes and finding the optimal sequence by using 

Johnson’s algorithm. In the case of different sublot sizes for different product types, 

the possible combinations of sublot sizes of different products grow exponentially, 

even though for each combination, the optimal sequence of the products can be 

determined by using Johnson’s algorithm. Therefore, there is no study dealing with 

variable sublots.  

 

In case of discrete sublots, some of LS studies (e.g., Cetinkaya, 1994; Kalir & 

Sarin, 2003) build generating algorithms, whereas some others (e.g., Sriskandarajah 

& Wagneur, 1999; Vickson, 1995) propose algorithms which first obtain optimal 

continuous sublot sizes and then rounds them to discrete ones.  . 

 

The multi product version of the LS problem of Liu (2008) in a hybrid flow shop 

environment is presented by Zhang et al. (2005) to minimize the mean completion 

times of products for non-intermingling case. 

 

Finally, in terms of performance criteria, almost all studies try to minimize 

makespan, since some sequencing heuristics, which can be adapted to LS problems, 

exist that minimizes makespan on classical flow shops.  Only Ganapaty, Marimuthu 

& Ponnambalam (2004) consider minimizing total flow time as well as makespan in 

their study.  

 

3.2.1.2 Solution Approaches 

 

For two/three machine classical flow shop problems, there exist a number of exact 

(e.g. Johnson’s algorithm) and heuristic algorithms. These algorithms have been 

adapted to the LS problems with some modifications.  

 

As mentioned earlier, in two machine LS problems, the sublot allocation sub-

problem can be eliminated by assuming unit sized sublots. The remaining sequencing 
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problem can be solved optimally by applying the Johnson’s algorithm, which is 

originally developed for classical two machine flow shops. In LS problems, each unit 

sized sublot can be considered as an individual product. Since all unit sized sublots 

of a product have the same processing times on the machines, all sublots of a product 

can be sequenced continuously. If processing times of products on machines are 

different from each other, the resulting sequence is a non-intermingling schedule. If 

any tie exists while sequencing the products because of having same processing time 

on the same machine, then only the sublots of these products can intermingle. 

Johnson’s algorithm is the most popular solution approach in two machine LS 

problems, since it gives optimal schedules and/or can be modified for extra cases 

such as setups, equal sublots, transportation etc. 

 

   A number of LS studies apply Johnson’s algorithm to unit sized sublot cases. 

Vickson & Alfredsson (1992) apply Johnson’s algorithm without considering setups 

for two and three machine cases. Cetinkaya & Kayaligil (1992) consider detached 

setups and Baker (1995) consider both attached and detached setups. 

 

Some LS studies consider unit sized sublots but apply meta-heuristic approaches 

instead of Johnson’s algorithm. Ganapathy, Marimuthu & Ponnambalam (2004) 

consider attached setups and propose TS and SA based solution approaches. The 

same problem is studied by Marimuthu & Ponnambalam (2005) using a GA based 

approach. 

 

Extensions of Johnson’s algorithm are also utilized in some other cases. For 

example, a problem with fixed number of continuous sized equal sublots and 

attached setups is considered by Cetinkaya (1994) in two machine flow shops. This 

problem is no more difficult than the one with unit sized sublots, since the sublot 

sizes are known, the only difference occur at the sizes of sublots. Therefore, the 

processing time of a sublot should be calculated by multiplying the sublot size by the 

unit processing time of machine. The discrete sized version of this problem is studied 

by Kalir & Sarin (2003) for two cases of sublot sizes. The first one assumes the same 

sublot sizes for all products while the second one allows different sublot sizes. For 
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the first case, they give equal sizes to the sublots of all products and construct an 

extra sublot for each product if any items remain, similar to flag heuristic of Kropp & 

Smunt (1990). Since the setup is sublot attached, the processing time of each sublot 

is obtained by adding the setup time to processing times of all items. The sublots are 

then considered as individual products which can be sequenced optimally by 

Johnson’s algorithm on two machine flow shops. For the second case, at the first 

phase, they evaluate the performances of all sublot size alternatives of each product 

individually and select the best alternative with minimum makespan for each 

product. After finding sublot sizes for each product, the sequence of products 

through the machines are obtained via Johnson’s algorithm. At the second phase, 

they try to improve the existing schedule to get minimum makespan by reducing the 

number of sublots for each product. Cetinkaya (1994), at first, proposes an optimal 

solution algorithm for consistent sublots which initially finds continuous sizes of 

consistent sublots and then sequences the products in two machine flow shops by 

Johnson’s algorithm. Then, the author introduces a method to find discrete sized 

sublots and suggests the same solution approach again for the discrete sublot size 

version of the problem. Vickson (1995) builds closed form optimal solutions for 

continuous sized consistent sublots and proposes a fast polynomial algorithm for 

discrete sized sublots, under various setup types and transfer times.  

  

Similar to the other types of LS problems, the discrete sized consistent sublots are 

generally handled by rounding algorithms which converts continuous sized sublots to 

discrete ones (Cetinkaya, 1994; Sriskandarajah & Wagneur, 1999; Vickson 1995).   

 

The multi product version of the LS problem of Liu (2008) in a hybrid flow shop 

environment is presented by Zhang et al. (2005) to minimize the mean completion 

times of products for non-intermingling case. They try to find product sequence as 

well as the number and continuous sizes of consistent sublots for each product. 

Firstly, they build a MIP model of the problem, and then propose two heuristic 

algorithms named “whole job sequencing heuristic” and “aggregated-machine 

sequencing heuristic”. The former one, at first, sequences the products without 

considering LS. Then, for the given sequence, it finds the number and size of sublots 
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belonging to each product individually by an LP model. The non-optimality of this 

type of solution approach is proved by Potts & Baker (1989).  The latter one works in 

a reverse manner. It first finds the number and size of each sublot belonging to each 

product individually by an LP model and obtains the total processing times of each 

product on the machines. The product sequence is obtained by using the given 

processing times, and the LS problem of each product is again solved by LP in order 

to improve the mean completion times of products. They present lower bounds and 

compare the results of heuristics with the best lower bound. The aggregated-machine 

sequencing heuristic performs better than the whole job sequencing heuristic.  

 

3.2.2 Multi Machines 

 

The problem characteristics and solution approaches of multi product LS studies 

on multi machine flow shops are given in Table 3.5. 

 

3.2.2.1 Problem Characteristics 

 

Due to the higher complexity of problems in this field, the related studies 

generally focus on simpler levels of LS characteristics. 

 

The simplest versions of this type of LS problems are the ones with unit sized 

sublots or continuous sized equal sublots with fixed number of sublots. Both of these 

characteristics eliminate the sublot allocation sub-problem. Therefore, only 

sequencing sub-problem remains to be solved. 
 
Marimuthu, Ponnambalam & Jawahar (2007, 2008) deal with unit sized sublots 

with attached setups. A number of studies (Kalir & Sarin, 2001b; Tseng & Liao,  

2008; Yoon & Ventura 2002a, 2002b) consider continuous sized equal sublots with 

no setups. The extended version of this problem with attached setups is studied by 

Marimuthu, Ponnambalam & Jawahar (2009) whereas the case of sequence 

dependent setups is studied by Huang & Yang (2009). Kalir & Sarin (2003) study the 

same problem of Kalir & Sarin (2001b) for discrete sized equal sublots. 
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Table 3.5 Multi product LS studies in multi machine flow shops 

Author(s) Year Number of 
Products

Number of 
Machines

Number of 
Sublots

Sublot 
Type

Sublot 
Size Sequence Idling/ 

No idling
Wait/      
No Wait Availability Setups Objective 

Function
Solution 
Approach Optimality

Multi Multi Fix Consistent Continuous Non-intermingling - No-wait - Detached Makespan Heuristic Near-Optimal
Multi Multi Fix Consistent Discrete Non-intermingling - No-wait - Detached Makespan Heuristic Near-Optimal
Multi Multi Max Consistent Discrete Non-intermingling - No-wait - Detached Makespan GA Near-Optimal

Kalir and Sarin 2003 Multi Multi Max Equal Discrete Intermingling - - - Sublot 
Attached Makespan Heuristic Near-Optimal

Multi Multi Max Consistent Continuous Non-intermingling - - - No Makespan MIP Optimal
Multi Multi Max Consistent Continuous Intermingling - - - No Makespan MIP Optimal

Kalir and Sarin 2001b Multi Multi Fix Equal Continuous Non-intermingling Idling - - No Makespan Heuristic Near-Optimal

Marimuthu et al 2007 Multi Multi Fix Equal      
(Unit sized) Discrete Non-intermingling Idling - - Attached  Total Flow time TS, SA Near-Optimal

Multi Multi Fix Equal      
(Unit sized)

Discrete Non-intermingling - - - Attached Makespan GA, HEA Near-Optimal

Multi Multi Fix Equal      
(Unit sized) Discrete Non-intermingling - - - Attached Total flow time GA, HEA Near-Optimal

Multi Multi Fix Equal Continuous Non-intermingling - - - Attached Makespan TA, ACO Near-Optimal
Multi Multi Fix Equal Continuous Non-intermingling - - - Attached Total Flow time TA, ACO Near-Optimal

Hall et al 2003 Multi Multi Max Consistent Discrete Non-intermingling - No-wait - Attached Makespan Heuristic Near-Optimal
Kim and Jeong 2009 Multi Multi Fix Consistent Discrete Non-intermingling - No-wait - Detached Makespan GA Near-Optimal

Multi Multi Fix Consistent Continuous Intermingling - - - Job&sublot 
attached

Makespan GA Near-Optimal

Multi Multi Fix Consistent Discrete Intermingling - - - Job&sublot 
attached Makespan GA Near-Optimal

Multi Multi Max Consistent Discrete Intermingling - - - Job&sublot 
attached Makespan GA Near-Optimal

Liu et al 2006 Multi Multi Max Variable Continuous Non-intermingling - - Item No Makespan Hybrid (TS+SA) Near-Optimal

Multi Multi Fix Equal Continuous Non-intermingling - - - No
Mean weighted 
absolute deviation 
from due dates

Heuristic Near-Optimal

Multi Multi Fix Equal Continuous Non-intermingling - No-wait - No
Mean weighted 
absolute deviation 
from due dates

Heuristic Near-Optimal

Multi Multi Fix Consistent Continuous Non-intermingling - - - No
Mean weighted 
absolute deviation 
from due dates

Heuristic Near-Optimal

Yoon and ventura 2002b Multi Multi Fix Equal Continuous Non-intermingling - - - No
Mean weighted 
absolute deviation 
from due dates

HGA Near-Optimal

Tseng and Liao 2008 Multi Multi Fix Equal Continuous Non-intermingling - - - No
Total weighted 
earliness and 
tardiness

Heuristic Near-Optimal

Huang and Yang 2009 Multi Multi Fix Equal Continuous Non-intermingling - - - Sequence 
dependent Multi Objective ACO Near-Optimal

Smunt et al 1996 Multi Multi Fix Equal/ 
Consistent Discrete Non-intermingling - - - Attached

Mean Flow Time, 
Standart deviation 
of flow time

Heuristic Near-Optimal

Martin 2009

Yoon and ventura 2002a

Marimuthu et al 2008

2009Marimuthu et al

Kumar et al 2000

Feldmann and Biskup 2008
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Some of the studies (e.g., Kumar, Bagchi & Sriskandarajah, 2000; Martin, 2009) 

consider fixed number of sublots, at earlier stages of their studies and then extend 

their work to optimize the number of sublots.  

 

A comprehensive study is made by Martin (2009) which investigates the problem 

of {Fm, Ln | fix/max, C, R/D, IS, -, -, -, SA | Cmax}. This study analyzes some important 

issues such as consistency of makespan and mean flow time objectives, the gain 

obtained by allowing intermingling, the performance of rounding algorithms and the 

difference between good and bad sequences when the sublot sizes are optimized by 

continuous sizes. The conclusions of these analyses can be listed as follows.   

- makespan and mean flow time are not likely to be compatible objectives unless 

there is a high consistency in processing times of products in-between machines,  

- intermingling can provide potentially useful advantages even with major setups, 

- although it is important to determine good discrete sublot sizes, using a rounded 

LP solution provides excellent results, 

- even with optimal sublot sizes, the sequence used is very important.  

 

The multi product multi machine LS problems with variable sublots are the most 

challenging problems in the LS literature. Only Liu, Chen & Liu (2006) study this 

problem type to minimize makespan. They consider item availability case, which is 

also difficult to handle, but simplify the problem by considering non-intermingling 

schedules.   

 

Although most of the studies focus on makespan objective, there exist a number 

of papers which deals with other time based objectives such as total flow time 

(Marimuthu, Ponnambalam & Jawahar, 2007, 2008, 2009), mean weighted absolute 

deviation from the due dates (Yoon & Ventura, 2002a, 2002b), total weighted 

earliness and tardiness (Tseng & Liao, 2008). A significant point is that, only Huang 

& Yang (2009) consider a multi objective function which includes machine idle time, 

product wait time and tardiness for continuous sized equal sublots.  
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The only study dealing with stochastic systems is by Smunt, Buss & Kropp (1996) 

with the objective of minimizing mean flow time and the standard deviation of flow 

time. They consider various levels of attached setup times, operation time variance, 

job size and shop load for a flow shop environment with five machines and 10 

products. They use equal sublot types and flag concept of Kropp & Smunt (1990), 

and model their system via simulation. Finally, they show that the performance of LS 

techniques may differ with the stochastic nature of the system.  

 

3.2.2.2 Solution Approaches 

 

The only study that uses pure MIP formulation is made by Feldmann & Biskup 

(2008). They develop a MIP model for LS problems in permutation flow shops with 

continuous sized consistent sublots for both intermingling and non-intermingling 

schedules. They show that MIP model is efficient for two/three product, five/six 

sublot cases. However, they address heuristics/meta-heuristics approaches for 

discrete sublots and larger sized problems. 

 

Due to the complexity of multi product multi machine LS problems, researchers 

generally focus on heuristic and meta-heuristic approaches. This type of LS problems 

is generally divided into a series of more tractable sub-problems: finding the number 

of sublots, obtaining the sublot sizes and sequencing the products or sublots. Some of 

LS studies eliminate one or two of these sub-problems by assumption. For instance, 

if the number of sublots is assumed to be fixed, then the first sub-problem is 

eliminated, similarly, if the unit sublot sizes are assumed, then the second sub-

problem is removed.  

 

Kalir & Sarin (2001b) eliminate the sublot sizing sub-problem by considering 

continuous sized equal sublots with fixed number of sublots. They propose a 

heuristic method, namely “bottleneck minimal idleness (BMI)”, which aims to 

sequence the products on the bottleneck machine by not allowing idle time. They 

compare the results of BMI heuristic with the optimal results and the ones of Nawaz, 

Encore and Ham (NEH) (1983) heuristic which is known to be the best heuristic to 
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sequence the products in classical flow shops. Their computational analysis states 

that BMI heuristic gives near-optimal (1.1%) makespan results and generates better 

values than the ones of NEH heuristic. Kalir & Sarin (2003) consider discrete sized 

version of this problem and apply the same heuristic to evaluate the possible sublot 

size alternatives. 

 

Another heuristic approach, namely “global flow” which is based on a generalized 

TSP, is due to Hall et al. (2003) for discrete sized consistent sublots and no-wait 

schedule. 

 

The most popular meta-heuristic approaches in this type of LS problems are the 

ones of evolutionary algorithms (EA) (e.g., GA, hybrid GA or hybrid EA) probably 

due to their popularity in scheduling problems. These EAs have been used in all sub-

problems of multi product multi machine LS problems. Kumar, Bagchi & 

Sriskandarajah (2000) evaluate the performances of GA based approaches in all 

types of sub-problems. They consider fixed number of sublots in almost all 

problems. In only one problem, they tried to optimize the number of sublots by GA 

but their proposed method is able to solve up to five machine five product LS 

problem in a reasonable time. Although the solution quality of GA is good, its 

computational requirement is reported to be high. In addition, Martin (2009) uses GA 

in optimizing number of sublots. They used LP to obtain sublot sizes and again GA 

to sequence the sublots.  

 

Most of the studies consider fixed number of sublots and simpler sublot types and 

tried to optimize the sequencing problem by meta-heuristics. The studies that use 

evolutionary based algorithms in sequencing problems are Kim & Jeong (2009), 

Kumar, Bagchi & Sriskandarajah (2000), Marimuthu, Ponnambalam & Jawahar 

(2008), Martin (2009), Yoon & Ventura (2002b).  

 

Other than GA, TS and SA approaches are used for the sequencing sub-problem. 

Marimuthu, Ponnambalam & Jawahar (2007) applied TS and SA approaches 

individually and compared their performances under the unit sized sublots 
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assumption to minimize total flow time. This problem is also studied by Marimuthu, 

Ponnambalam & Jawahar (2008) using GA and hybrid EA approaches. TS and SA 

are also used by Liu, Chen & Liu (2006) in a hybrid manner. They applied this 

solution procedure to optimize each sub-problem independently.  

 

Ant Colony Optimization (ACO) is another meta-heuristic approach which is 

particularly preferred for sequencing sub-problem. Huang & Yang (2009) and 

Marimuthu, Ponnambalam & Jawahar (2009) consider continuous sized equal 

sublots with fixed number of sublots and applied ACO only to optimize the sequence 

of products for different objective functions.  

 

A few LS studies make experimental analysis by evaluating several scenarios. 

Yoon & Ventura (2002a) use four initial job sequence rules (i.e., earliest due date, 

smallest slack time on the last machine, smallest overall slack time(OSL), smallest 

overall weighted slack time) and four job sequence generation rules (i.e., adjacent 

pairwise interchange, non-adjacent pairwise interchange(NAPI), extraction and 

forward shifted reinsertion, extraction and backward shifted reinsertion) to minimize 

mean weighted absolute deviation from due dates. They evaluate the performances of 

these rule pairs for the equal sublots with infinite buffer sizes, equal sublots with no-

wait schedules and consistent sublots with infinite buffers. They state that OSL initial 

sequence rule with NAPI sequence generation rule gives better performance than the 

others. Smunt, Buss & Kropp (1996) consider various levels of setup times, 

operation time variance, job size and shop load for a stochastic flow shop 

environment with five machines and 10 products. They use equal sublot types and 

flag concept of Kropp & Smunt (1990), and model their system via simulation. They 

compare their results with the optimal results of Kropp & Smunt (1990) and show 

that the performance of LS techniques may differ with the stochastic nature of the 

system.  

 

Finally, in an interesting study currently published, Glass & Herer (2009) prove 

that the LS problem and the small batch assembly line balancing problem have the 
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same mathematical structure and suggest that the solution approaches for both 

problems can be used for each other.   

 

3.3 Summary of Previous Research and Discussion 

 

In this section, a summary of the LS literature and the limitations of the papers 

reviewed are presented with respect to different LS characteristics. The 

distinguishing features of the proposed research are then represented. 

 

For smaller number of machines, dominance relations of processing times as well 

as the exact or heuristic algorithms of classical flow shop literature (e.g. Johnson’s 

algorithm) are generally used to find optimal or near-optimal solutions. On the other 

hand, extensions of classical flow shop algorithms as well as heuristic and meta-

heuristic approaches are mainly considered for multi machine problems. 

 

Although the aim in single product LS problems is to determine optimal number 

of sublots and the corresponding optimal sizes of these sublots, in addition, another 

problem, optimal sequence of products, arises in the optimization of multi product 

LS problems. In order to make the multi product LS problems solvable, most of the 

solution approaches partition the whole problem into two sub-problems; the product 

sequencing problem and sublot allocation problem.  

 

Most of the researchers assume that the number of sublots is fixed and known 

probably due to some restrictions caused by the system (e.g., fixed number of 

pallets). This assumption is also considered in some papers to reduce the complex 

structure of maximum number of sublots, since, in maximum number of sublots, the 

number of sublots should be incorporated into the problem as an additional decision 

variable.   

 

Some of the studies consider continuous sized equal sublots with fixed number of 

sublots or unit sized sublots. In these cases, since number of sublots and their sizes 

are known, LS problems get simpler. These situations reduce the multi product LS 
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problem to a product sequencing problem. On the other hand, especially multi 

product LS studies except Liu, Chen & Liu (2006) consider only equal and/or 

consistent sublot types instead of variable sublots, since the multi product LS 

problems are hard enough to solve even with consistent sublots.  

 

A significant decision in LS problem is whether to use continuous or discrete 

values for the sublot sizes. The real life problems may require discrete values. 

However, the IP formulations developed for LS problems are generally capable of 

producing optimal results in a reasonable time for only continuous sized sublots.  To 

obtain discrete sublot sizes, most of LS studies generally use rounding or simple 

generating algorithms which are generally lack of producing optimal results.  

 

Almost all problems in multi product LS literature prefer non-intermingling 

schedules to intermingling ones, since intermingling schedules enlarge the solution 

space significantly in terms of sequencing alternatives. 

 

Since, LS techniques provide a natural advantage in reducing makespan in flow 

shops; the papers dealing with makespan objective occupy a wide area in the time 

based LS literature. Nevertheless, a few papers also consider other time based 

objectives as well as multi objective ones.  

 

In the view of solution approaches, for single product two/three machine cases 

especially the dominance relations of processing times are analyzed to get optimal 

solutions. Single product multi machine cases generally apply LP formulations and 

heuristic techniques. For multi product, two/three machine LS problems; the adapted 

heuristics from classical flow shop literature are generally used. Finally, for multi 

product multi machine cases, meta-heuristic techniques, especially GA, are widely 

used particularly to sequence the products. 

 

A final remark is that, although the real life LS problems may have a stochastic 

structure, most of the studies consider only deterministic cases. 
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In the light of above inferences on LS literature, the proposed research in this 

thesis differs from the other studies with the collection of the following respects: 

 

• One of the main goals of this thesis is to develop solution methods to the LS 

problems which may appear in real life environments. Therefore, the multi 

product multi machine LS problems are studied.  

• Another issue widely encountered in real life LS problems is the stochastic 

behavior which is rarely studied in LS literature. The stochastic version of the 

single product multi machine LS problem in flow shops is also considered 

and analyzed in one of the research problems of this thesis.  

•    Rather than analyzing the performance of only pre-determined experimental 

sublot sizes in stochastic LS studies, a hybrid approach that integrates tabu-

search and simulation is considered in optimizing the sublot sizes.  

•    Solution approaches proposed for large sized multi product multi machine 

problems are rather a few in the literature. Therefore, to solve large sized 

problems, a number of simple and efficient sequencing heuristics developed 

for pure flow shops are modified according to the requirements of LS for the 

sequencing sub-problem.  

•    Most of the studies in the multi product LS literature develop heuristic or 

meta-heuristic approaches. The studies that present MIP models of more 

complex LS problems are rather new. Hybrid methods that utilize the 

complementary strengths of heuristic/meta-heuristic algorithms and MIP 

models may produce more efficient results. Therefore, our solution 

approaches utilize the benefit of heuristic/meta-heuristic approaches in 

sequencing and of MIP models in sublot sizing.  

 
The following three chapters introduce the investigated research problems and the 

relevant solution approaches.  
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CHAPTER FOUR 

A TABU SEARCH-BASED HEURISTIC FOR SINGLE PRODUCT LOT 

STREAMING PROBLEMS IN FLOW SHOPS 

 

4.1 Introduction  

 

The single product LS problem considered in this chapter aims to minimize 

makespan in multi machine stochastic flow shops with discrete sized consistent 

sublots. This problem can be denoted as {Fm, L1 | fix, C, D, -, II, -, -, - | Cmax}.  

Remember that, in consistent sublots, the size of sublots may vary within the same 

machine; however, the sublots have to keep their sizes through the consecutive 

machines. Since the sizes of sublots are assumed to be integer and the number of 

sublots is fixed and known, the aim here is to find only optimal or near-optimal 

integer sublot sizes which minimize the makespan objective. The stochastic structure 

of the problem is due to the stochastic processing times of machines. Since the 

stochastic behavior makes the problem much harder to solve, this class of problems 

are rarely studied in the LS literature in comparison to the deterministic cases.  

 

For the investigated class of deterministic LS problems, two/three machine cases 

are generally tried to be optimized by exact algorithms. On the other hand, for multi 

machine cases, the LP models as wells as heuristic approaches are widely studied. 

Especially for continuous sized sublots, the optimum sublot sizes are obtained by LP. 

For the discrete case, these continuous sublot sizes are rounded to integer ones by 

several heuristics (see, Chen and Steiner 1997, 2003; Kumar, Bagchi & 

Sriskandarajah, 2000; Liu, 2003; Sriskandarajah & Wagneur 1999). Other than 

rounding algorithms, Kropp & Smunt (1990) propose a “flag” heuristic to minimize 

makespan and generate integer sized sublots directly. They compare the performance 

of this heuristic with the equal sized sublots and state that it gives better results as the 

ratio of setup time to processing time grows.  

 

Liu (2003) and Biskup & Feldmann (2006) study variable sublot cases. Liu (2003) 

propose a heuristic approach which first finds continuous sizes by taking the
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bottleneck machine into account and then rounds these values to discrete ones. 

Biskup & Feldmann (2006) build a MIP formulation considering modifications for 

all types of sublots (i.e., equal, consistent, variable), attached and detached setup 

cases. As expected, in terms of computational time, the performance of the proposed 

MIP model in optimizing discrete sublot sizes is not as efficient as in continuous 

sized sublots.  

 

Compared with the deterministic cases, the number of papers is quite a few on 

stochastic systems. Jacobs & Bragg (1988) consider a multi product stochastic job 

shop problem with repetitive lots. The concept of repetitive lot is a kind of LS 

strategy. They use equal sublot types with discrete sublot sizes to minimize the mean 

flow time. They analyze the effects of various LS strategies using simulation. Smunt, 

Buss & Kropp (1996) focus on both stochastic job shop and flow shop LS problems 

with the objective of minimizing mean flow time and the standard deviation of flow 

time. They consider various levels of setup times, operation time variance, job size 

and shop load. They use equal sublot types and flag concept of Kropp & Smunt 

(1990) and model their system via simulation. They compare the results of their 

stochastic system by the optimal results of Kropp & Smunt (1990) and show that the 

LS techniques differ with the stochastic nature of the system.  

 

Consequently, a vast number of studies are available on LS problems. However, 

only a few of them are concerned with stochastic shop environments. Furthermore, in 

these studies, only the performances of existing sublot size alternatives are evaluated 

instead of finding the optimal sizes of discrete sublots.  

 

On the other hand, the techniques (e.g. LP, MIP) used for deterministic systems 

may not perform well for stochastic structures due to the variability of the system 

characteristics. In this study, a tabu search-based approach is proposed for the single 

product LS problems to be used in stochastic flow shops. This chapter is based on a 

paper by Edis & Ornek (2009a). 
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In Section 4.2, firstly, the concept of TS is briefly introduced and then the 

proposed tabu search based heuristic procedure is presented. The proposed heuristic 

is applied to the test problems and the computational results are presented and 

discussed in Section 4.3. Finally, conclusions and further directions are provided.  

 

4.2 Proposed Tabu Search Procedure 

 

The stochastic nature of the LS problem requires the evaluation of the system by 

the techniques designed for stochastic systems. Simulation is one of the efficient 

tools to be used in modeling and analyzing the stochastic systems. Therefore, we use 

simulation to handle the stochastic behavior of the system.  

 

The sublots are assumed to be consistent with discrete sizes. The deterministic 

studies generally handle these problems by firstly finding the continuous sized 

sublots and then converting them to discrete ones. In some studies, these types of 

solution procedures give rather efficient results (Martin, 2009). However, as already 

stated, the stochastic nature of the problem does not allow the use of existing solution 

approaches proposed for deterministic problems.  Moreover, the forms such as the 

flag heuristic (Kropp & Smunt, 1990), which performed well in a deterministic flow 

shop, seem to have little or no advantage when there is even a moderate amount of 

variability or congestion (Smunt, Buss & Kropp, 1996).  

 

The meta-heuristic techniques do not receive so much attention in single product 

deterministic LS problems, because finding the continuous sized sublots and then 

rounding them to discrete ones is a good approximation method (Martin, 2009). 

However, meta-heuristic approaches, which are not preferred in deterministic cases, 

may be candidate solution techniques for stochastic systems. Since the sublot sizes 

have to be integer, searching the sublot size alternatives in the feasible solution 

region can be an appropriate solution alternative. To evaluate only feasible set of 

sublot sizes, one must ensure that the sum of sublot sizes has to be equal to the 

production lot size.  
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Figure 4.1 Tabu Search Procedure (Glover, 1986) 
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No 

No 
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Evaluate Each Candidate Move
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any other move found admissible so far 
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Stopping Criterion 

Yes 

Update Admissibility Conditions
Update Tabu Restriction (Tabu List Length) 
and Aspiration Criteria 

Make the Chosen Best Admissible Move 
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Tabu search is a meta-heuristic technique that is widely used in scheduling 

problems. The general TS procedure is given in Figure 4.1.  

 

The efficiency of tabu search algorithms is mainly based on following factors: 

 

• The initial (starting) point or population 

A tabu search has to start from an initial point. This point can be generated in two 

ways: randomly or by an algorithm which takes the advantage of problem 

specific structure. If it is randomly generated, then it may produce different 

objective values at each run. In this case, the search procedure should be 

replicated several times to get an average value. In the latter, starting from a 

given initial point generates a single objective value. Starting from a good point 

(e.g., a point close to the optimal solution) increases the probability of getting 

good (optimal) results. 

 

• Alternative generation mechanism 

From a reference point, a number of alternatives can be generated to evaluate 

their performances and then the best one is selected as the new reference point in 

the next step. Neighborhood generation mechanism can be considered as the 

alternative generation mechanisms. These can be;  

 

o Adjacent pairwise interchange: Each product can only be interchanged 

with the adjacent ones. For instance, if the sequence is 1-2-3, then 

alternative sequences obtained by adjacent pairwise interchange are 2-1-3, 

1-3-2. 

o Insertion: Generate alternatives by taking one product and inserting it into 

a different position. For instance, if the sequence is 1-2-3, then alternative 

sequences obtained by insertion are 2-1-3, 2-3-1, 1-3-2 and 3-1-2 

o All pairwise interchange: Generate all possible alternatives by changing 

all product pairs within each other.  For instance, if the sequence is 1-2-3, 

then alternative sequences obtained by all pairwise interchange are 2-1-3, 

3-2-1, and 1-3-2.  
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o Random: Generate a number of random neighbors. A random neighbor 

can be generated by two random numbers where the first one presents 

which product will be re-positioned and the second one denotes its new 

position. For instance, if the sequence is 1-3-2, and the generated numbers 

are three and one, the product at the third position (i.e., 2) is re-positioned 

at the first position. Then randomly generated alternative sequence is 2-1-

3. 

 

• Termination criteria 

Termination criteria determine the length of the search.  A search procedure has 

to be completed at some point. This point can be determined as  

o maximum number of iterations,  

o the number of non-improved iterations, or 

o the gap between the current result and the current best one.   

 

• Tabu list length  

The restricted moves are put into the tabu list. They have to wait in the tabu list 

for a number of iterations (i.e., tabu list length). This is again an important factor, 

since the tabu list directs the search. The length of tabu list can be either fixed or 

variable. The fixed one is usually preferred in the literature.  

 

 TS basically uses neighborhood search mechanisms to generate alternative 

solutions. This structure may be utilized to generate alternative integer sublot sizes in 

LS problems. While generating neighborhood alternatives, the equivalence relation 

between sublot sizes and production lot size can be automatically satisfied. One way 

is to increase the size of a sublot by a few units and accordingly decrease the size of 

another sublot by the same amount while the remaining sublots keep their sizes. 

Notice that such a generation mechanism does not alter the sum of sublot sizes. The 

sublot size alternatives can be generated in this manner and embedded into a tabu 

search scheme. For the stochastic case of this study, the evaluation of these 

alternatives can be performed via simulation. The general framework of the proposed 
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tabu search based heuristic is illustrated in Figure 4.2. The additional notation and 

the steps of the proposed tabu search based heuristic are detailed as follows.  

 

 
Figure 4.2 The framework of the proposed tabu search based heuristic  

 

Notation: 

S : number of sublots 

s  : sublot index, s = 1,2,..,S 

L  : production lot size 

i  : index of alternative sublot size configurations, i = 1,2,..,I 

sSS  : size of sublot s, +Ζ∈sSS  

SSC  : sublot size configuration,  },...,,{ 21 SSSSSSSSSC =  

ASSCi : sublot size configuration of alternative i. 

Ri : response value of alternative i. 

minR   : minimum response value among responses of alternative sublot  

configurations of current SSC. 

Initialization 
Start with the equal SSC 

Search 
Generate alternative SSCs by all pairwise 

interchange method.

Running 
Run the simulation model of the system for all alternative 

SSCs and obtain corresponding makespan values.

Selection 
Apply Tabu Search based criteria to select the next SSC 
by taking the VSCL and makespan values into account.  

Termination 
If maximum number of steps is reached, 

then STOP
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bestR   : best response value 

setR  : set of alternative sublot configurations responses, },...,,{ 21 Iset RRRR =  

minSSC : corresponding sublot size configuration of minR   

bestSSC  : corresponding sublot size configuration of bestR  

VSCL  : paired set of currently visited sublot size configurations and their 

corresponding responses, VSCLRSSC ∈),(  

 sc : step counter , +Ζ∈sc  

maxsc : maximum number of steps, +Ζ∈maxsc  

 

Steps of the Proposed Tabu Search Approach 

 

Step 1: Initialization:  

Specify an integer value for maxsc. Set sc = 0 and SLSSs /=  for all s=1,2,..,S. 

},...,,{ 21 SSSSSSSSSC = . Run the simulation model of the system for SSC and get its 

response, R.  

Set SSCSSCbest = , RRbest = . Add this ),( bestbest RSSC  to VSCL. 

 

Step 2:  Termination 

If sc > maxsc then STOP, otherwise go to Step 3.  

 

Step 3: Search 

Generate alternative sublot sizes of current SSC by all pairwise interchange 

method. 

},,...,,1,1{ 13211 SS SSSSSSSSSSASSC −+−=  

},,...,,1,1{ 13212 SS SSSSSSSSSSASSC −−+=  

},,...,1,,1{ 13213 SS SSSSSSSSSSASSC −+−=  

},,...,1,,1{ 13214 SS SSSSSSSSSSASSC −−+=  

 

}1,1,...,,,{ 13211 +−= −− SSI SSSSSSSSSSASSC  

}1,1,...,,,{ 1321 −+= − SSI SSSSSSSSSSASSC  
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Run the simulation model of the system for all alternatives 

),...,,( 21 IASSCASSCASSC  and set },...,,{ 21 Iset RRRR = , setRR minmin = , 

},|ASSC{ minmin iRRSSC ii ∀== . 

(If there is more than one sublot size configuration with the same minR value, 

choose one of them arbitrarily.) 

 

Step 4: Selection  

If  bestRR ≤min  and VSCL),( minmin ∉RSSC  , then minRRbest = , minSSCSSCbest = , add  

),( bestbest RSSC  to VSCL,  

If sc > 0, then sc = sc + 1, go to Step 2.  

Else, go to Step 2. 

Else, search next minimum response, },min|),{(),( iRRRASSCRSSC setiii ∀′== ,  

where },),(|{ iVSCLRASSCRR iiiset ∀∉=′   

 If ∅=′setR , then STOP 

 Else, add this (SSC, R) to VSCL,  sc= sc +1, go to Step 2. 

 

As an initial seed, we consider equal size sublot configurations by dividing the 

production lot size by the number of sublots. If the result is an integer number, then it 

gives the sublot sizes, otherwise the remainder is shared to sublots starting from the 

first sublot. For example, if the production lot size is 70 units and the number of 

sublots is eight, then the sublots would have sizes of 9, 9, 9, 9, 9, 9, 8, and 8.  

 

In the tabu search based procedure defined above; first, a neighborhood based 

search procedure (all pairwise interchange method) is applied and the sublot size 

configurations are obtained. The alternative sublot size configurations are generated 

from an initial sublot size configuration in the following manner. For the first 

(second) alternative, the sublot size of the first sublot is decreased (increased) by one 

unit and accordingly the second one is increased (decreased) by the one unit so that 

the sum of sublot sizes remains fixed. The third and fourth alternative sublot size 

configurations are generated by applying this procedure to first and third sublots. 

This procedure goes on in this manner until all pairs of sublots are evaluated. For 
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each sublot size configuration alternative, the corresponding makespan values are 

obtained. The best response value and its sublot size configuration are recorded in 

the visited sublot configurations list (VSCL). Normally, neighborhood based search 

procedure is terminated when there is no improvement in the response of two 

consecutive iterations. However, tabu search allows continuing on with another 

solution even if it is relatively worse. Similarly, in our tabu search-based procedure, 

the second best response is allowed to be visited in order to generate better results. 

By applying all pairwise interchange method, alternative sublot configurations of the 

current point are generated. Then the algorithm confirms that whether the best 

response among these alternatives is in VSCL or not.  If it has already been in VSCL, 

then the next best response, which is not in VSCL, is selected to be used as the 

starting sublot configuration of the next step. If it is not in VSCL, we add this 

configuration and its response value to the VSCL. Then, the procedure iterates by 

generating and evaluating alternative sublot configurations of this new point. Adding 

the visited sublot configurations to VSCL helps to avoid looping. The procedure 

iterates until it reaches a pre-determined number of iterations.  

 

Note that, in classical TS procedures, the forbidden moves remain in the tabu list 

by a pre-determined list length. However, in the proposed TS procedure, once a 

sublot size configuration is placed in the tabu list, then it remains in the list forever. 

This is due to the structure of sublot size configurations since a sublot size 

configuration is constituted by the exact values. Returning to same sublot size 

configuration would produce same alternatives and cause looping.  

 

4.3 Computational Results and Comparisons 

 

The data for the experimental design of LS problem are given in Table 4.1. We 

consider three different levels for production lot size, number of machines and 

number of sublots. This results in 27 different problem sets.  

 

Since the considered LS problem has a stochastic behavior and there is no 

solution approach that gives the optimum makespan values, the proposed tabu search 
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based approach is first evaluated on deterministic systems and then applied to the 

stochastic version of the problem. The impact of stochastic behavior on the system 

performance is also analyzed. 

 
Table 4.1 Data for the single product LS problems 

Production lot size, L # of sublots, S # of machines, M 
50 5 5 
100 8 7 
150 10 10 

 

4.3.1 Deterministic Case 

 

Biskup & Feldmann (2006) study the deterministic version of this problem and 

build a MIP model which gives optimal sublot allocations. Therefore, the efficiency 

of the proposed heuristic for the deterministic version of the problem can be 

evaluated by comparing its results with the results of this MIP model. The MIP 

model is given below. 

 

Parameters 

S : number of sublots 

M : number of machines 

L  : production lot size 

tm  : processing time of one item on machine m 

 

Indices 

s  : sublot index, s = 1,2,..,S 

m  : machine index, m = 1,2,..,M  

 

Decision Variables 

SSs  : size of sublot s 

Csm  : completion time of sublot s on machine m 
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Minimize SMC  

subject to 

11 SStC mm ≥ ,    Mm ,...,1=    (4.1) 

mssmsm CSStC ,1−≥− ,   Ss ,...,2= , Mm ,...,1=  (4.2) 

1, −≥− mssmsm CSStC ,   Ss ,...,1= , Mm ,...,2=  (4.3) 

1

S

s
s

SS L
=

=∑          (4.4) 

1sSS ≥      Ss ,...,1=    (4.5) 

sSS Z +∈      Ss ,...,1=    (4.6) 

0≥smC      Ss ,...,1= , Mm ,...,2=  (4.7) 

 

The first constraints define the smallest possible completion time of the first 

sublot on each machine. By Constraints (4.2), the sublot s on machine m is allowed 

to start only after sublot s-1 on machine m has been finished. Similarly, Constraints 

(4.3) ensure that the sublot s on machine m is allowed to start only after sublot s on 

machine m-1 has been finished. The sum of sublot sizes has to be equal to the 

production lot size is given in Equations (4.4). Since the LS problem on hand 

assumes fixed number of sublots, Constraints (4.5) are added to the model in order to 

enforce all sublot sizes to get non-zero values due to fixed number of sublots. Since 

the investigated LS problem allows only discrete sized sublots, the domain of sSS  

variables are restricted in Constraints (4.6) to have only integer values. Finally, 

Constraints (4.7) are non-negativity constraints. 

 

By varying the processing times of machines, five problem instances are 

generated for each combination of parameters given in Table 4.1.  In total, it makes 

135 test problems. The MIP model of the problem is built in OPL Studio 3.7 

optimization package and solved on a Centrino 1.73 GHz processor with 1.5 GB 

RAM.
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Table 4.2 Comparison of tabu search-based procedures in terms of production lot size in deterministic LS problems 

Number of Optimums Average Deviation (min) Average Proportional Deviation (%) Average Computation Time (sec) 
  50 100 150 Overall 50 100 150 Overall 50 100 150 Overall 50 100 150 Overall 

TS_10 36 25 18 79 3.80 11.62 29.60 15.01 0.36 0.54 0.88 0.59 3.73 3.78 3.85 3.79 
TS_20 39 32 24 95 2.80 8.73 22.51 11.35 0.27 0.41 0.69 0.46 3.83 3.87 3.91 3.87 
TS_50 40 35 30 105 2.44 7.49 18.47 9.47 0.24 0.36 0.57 0.39 3.86 3.89 3.94 3.9 

 

 
Table 4.3 Comparison of tabu search-based procedures in terms of number of sublots in deterministic LS problems 

Number of Optimums Average Deviation (min) Average Proportional Deviation (%) Average Computation Time (sec) 
  5 8 10 Overall 5 8 10 Overall 5 8 10 Overall 5 8 10 Overall 

TS_10 34 29 16 79 5.11 12.09 27.82 15.01 0.15 0.51 1.11 0.59 2.49 4 4.87 3.79 
TS_20 38 34 23 95 2.78 8.40 22.87 11.35 0.10 0.36 0.91 0.46 2.51 4.04 5.07 3.87 
TS_50 38 37 30 105 2.78 6.69 18.93 9.47 0.10 0.31 0.76 0.39 2.53 4.09 5.09 3.9 

 

 
Table 4.4 Comparison of tabu search-based procedures in terms of number of machines in deterministic LS problems 

Number of Optimums Average Deviation (min) Average Proportional Deviation (%) Average Computation Time (sec) 
  5 7 10 Overall 5 7 10 Overall 5 7 10 Overall 5 7 10 Overall 

TS_10 18 31 30 79 29.42 9.84 5.76 15.01 1.28 0.34 0.16 0.59 3.69 3.82 3.85 3.79 
TS_20 25 35 35 95 23.51 6.47 4.07 11.35 1.03 0.23 0.12 0.46 3.78 3.91 3.93 3.87 
TS_50 27 40 38 105 19.84 5.53 3.02 9.47 0.90 0.18 0.09 0.39 3.81 3.93 3.97 3.9 
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For the deterministic test problems, comparison of the proposed heuristic and the 

optimum results are given in Tables 4.2, 4.3, and 4.4. The detailed computational 

results of tabu search-based heuristic are presented in Appendix A1, A2 and A3 with 

respect to production lot sizes.  

 

The average deviation is the average of the difference between the proposed 

heuristic solutions and the optimal ones. Similarly, the average proportional 

deviation is the proportion of the deviation from the optimum results. The results of 

tabu search-based heuristic are recorded when the step size reaches to 10, 20, and 50. 

 

As shown in Tables 4.2, 4.3, and 4.4, tabu search with 10 steps (TS_10) gives 79 

optimum results out of 135 test problems. Tabu search with 20 steps (TS_20) and 50 

steps (TS_50) give 95 and 105 optimum results, respectively. Indeed, this is an 

expected result, since an increase in number of steps accordingly may increase the 

number of optimum results. The detailed results are given in three categories: 

production lot size (Table 4.2), number of sublots (Table 4.3), and number of 

machines (Table 4.4).  

 

As the production lot size increases, the number of optimal solutions decreases in 

all solution alternatives. This is due to the increase in the number of feasible sublot 

configurations. As expected, as the number of steps of tabu search increases, the 

number of optimum values also increases, while the average deviation and average 

proportional deviation decrease. Similar results are observed in terms of number of 

sublots and number of machines. The increase in number of sublots also increases 

the number of alternative sublot configurations which makes it harder to get optimal 

solutions. This is also indicated in Table 4.3.  

 

As the number of sublots and production lot sizes increase, number of optimums 

decreases; the average deviation and average proportional deviation also increase. 

However, the average proportional deviation is less than 1% in most cases. We 

observe diminishing improvements in makespan reduction for the increasing number 

of sublots. This result complies with that of Baker & Jia (1993), see Table 4.5.  
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Table 4.5 Diminishing improvements for makespan, L = 50 

Number of 
Sublots (S) 

Number of 
Machines (M) Makespan % decrease 

5 5 1032  
8 5 912 13.20 
10 5 884   3.16 
5 7 1655  
8 7 1377 20.30 
10 7 1284   7.20 
5 10 1508  
8 10 1233 22.30 
10 10 1146   7.60 

 

Moreover, when the number of machines (stages) increases, makespan reduction 

becomes larger. The average deviation from optimum and average proportional 

deviation decline as the number of machines increase.  

 

Note that, the computation times in deterministic cases are so small and do not 

vary in terms of production lot size and number of machines whereas they slightly 

increase with the increasing number of sublots.   

 

As expected, the results indicate that TS_50 has generated the best results over 

other step sizes. However, running 50 steps requires so much time for the stochastic 

version of the problem, especially in 10-machine and 10-sublot case. Preliminary 

computational results show that we are able to obtain almost similar results with a 

step size of 30; hence, we assume 30 as the maximum number of steps in stochastic 

cases. The trade-off between number of steps and makespan values also support this 

choice. For instance, when the step size increases from 10 to 20, the number of 

optimum solutions increases from 79 to 95; whereas increasing the step size from 20 

to 50 provides only 10 extra optimum solutions.   

                

4.3.2 Stochastic Case 

 

Since the results obtained by applying the proposed tabu search heuristic to 

deterministic LS problems are very promising and encouraging, i.e., the average 
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proportional deviation is less than 0.4% compared to the optimum values, it is 

extended to the LS problems in stochastic flow shops. The same data is used for the 

stochastic cases by replacing deterministic processing times with stochastic ones. 

The processing times are assumed to be normally distributed with a standard 

deviation of 0.25 times of the means. The stochastic processing times make the LS 

problem much more difficult to solve. Since simulation is an efficient tool to model 

stochastic environments, makespan values of the consistent sublot configurations are 

obtained by simulation. The simulation model is built in ARENA 10.0 simulation 

software package (Rockwell Software, 2005) and the tabu search algorithm is coded 

in Visual Basic Applications (VBA) for Arena 10.0. The verification and validation 

of the simulation model is made and the runs are replicated 10 times for each sublot 

configuration. All the simulation runs are performed on Centrino 1.73 GHz processor 

with 1.5 GB RAM. 

 

Since there is no available study in literature to compare the results of the 

proposed heuristic for the stochastic LS problem, the results are compared with the 

OptQuest (Rockwell Software, 2004) results of the ARENA software package. 

OptQuest is an optimization tool to be used in simulation models in ARENA. We use 

the same initial sublot configurations (equal sublots) for the OptQuest and select the 

“auto stop” criterion i.e., the procedure ends if there is no improvement within the 

last 100 sublot configurations. The results of the OptQuest are recorded at two 

different moments in time. The first one is the moment when the proposed heuristic 

obtained its best results. The other one is the moment when OptQuest finds its best 

results. The results of the proposed heuristic and of OptQuest are given in Appendix 

A4. Note that, the asterisk symbol refers to the situation where OptQuest finds its 

best result before the solution time of the proposed heuristic. The heuristic obtains 

the “minimum” results by iterating from only the best results obtained at each  

iteration, i.e., the best result before visiting the first worse result than the best one, 

sc=0.  

 

Table 4.6 summarizes Appendix A4 and compares the results of proposed 

heuristic and OptQuest from two aspects. The first one is the comparison of results 
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obtained at the same computational time. It can be said that the proposed heuristic 

gives better or at least the same makespan values in all problems. The second one is 

the comparison of the number of best results and average computational times. 

OptQuest obtains the same results in only two out of 27 problems at the time of 

minimum. Similarly, TS_10 gives three same and 24 better results while TS_20 

obtains five same and 22 better results than OptQuest. In addition, TS_30 finds six 

same and 21 better results. The OptQuest obtains nine same results among 27 

problems at the end of its computational time. For the second perspective, although 

the average computational time of minimum is smaller than the OptQuest’s, it gives 

22 best results. The average computational times of TS_10 and OptQuest are very 

close to each other; however, OptQuest can only find nine same results, while TS_10 

finds 24 best results among 27 test problems. 

 
Table 4.6 Comparison of the results of proposed TS heuristic and OptQuest for the stochastic LS 

problems 

No. of better results at the 
same computational time At time of  

Average 
computational

time (min) Heuristic  OptQuest  Same 

No. of
best 

results
Minimum 10.97 25 - 2 22 
TS_10 21.60 24 - 3 24 
TS_20 33.22 22 - 5 25 
TS_30 43.92 21 - 6 27 
OptQuest 19.65 - - 9 9 

 

We conclude that the results of TS based approach combined with simulation are 

more efficient than those of the OptQuest’s. Adding more step sizes not only reduces 

the average makespan but also increases the number of best results. It should also be 

noted that the average computational time of the heuristic for the selected step sizes 

is not too much to get better results. For example, the average time for obtaining the 

results of minimum is smaller than the others and it gives 22 better results among 27 

test problems. This can be a choice for the decision maker. If we wait 11 additional 

minutes on the average, we obtain extra two better results. If we wait additional 22 

min on the average, we can obtain three better results. That is, extra five better 

results can be obtained by waiting 33 min on the average.  
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The behavior of the stochastic LS problem may be evaluated by inputting the 

optimum sublot sizes obtained by deterministic case. If these sublot sizes are given to 

the simulation model of the stochastic LS problem, the corresponding makespan 

values can be obtained for the stochastic case. These results can be compared with 

the ones of proposed tabu search based procedure. This comparison is given in 

Appendix A5. In all test problems, the proposed tabu search procedure outperforms 

the optimal deterministic results in stochastic case. Furthermore, use of optimal 

sublots obtained by MIP model gives approximately 1% deviation in average from 

the proposed tabu search procedure. One should notice that using deterministic 

system results in stochastic systems generates 1% worse results than optimized 

sublot sizes in stochastic systems. It can be also seen in Appendix A2 that this 

deviation grows with the problem size. In addition, this deviation may vary with the 

increasing variance of the processing times which may be suggested to be analyzed 

in further studies. 

 

4.4 Conclusions 

 

Since even deterministic LS problems are NP-hard, it is rather difficult to 

mathematically model and solve stochastic systems. In this respect, the objective of 

this chapter is to develop a heuristic procedure for LS problems in stochastic flow 

shops. Hence, we propose a rather simple yet quite efficient heuristic algorithm to 

obtain good solutions for single product, multi machine LS problems with discrete-

sized consistent sublots.  

 

The proposed algorithm is first tested on deterministic problems to see how well it 

performs and is, therefore, compared against the optimum values obtained by a MIP 

model developed by Biskup & Feldmann (2006). Since the results are very 

promising, i.e., the heuristic obtains results close to optimal values less than 1%, it is 

then applied to stochastic flow shops. The proposed heuristic algorithm is a 

combination of simulation and TS. The TS tries to explore the neighborhood for 

better solutions, whereas the simulation handles the stochastic behavior of the system 

and calculates the necessary values. The results thus obtained are further compared 
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with those of OptQuest’s and we observe that the proposed heuristic outperforms 

OptQuest with respect to number of best results. Therefore, it is concluded that the 

proposed heuristic could be easily used to solve stochastic as well as deterministic 

LS problems in flow shop settings.  

 

The TS based solution procedure described in this paper could be extended in 

many directions. It can be extended to a multi product case in a job shop 

environment. In this case, the sequence of products through the stages becomes very 

important. In addition, setups and transportation activities play an important role to 

determine lot sizes and sequences. Another extension may be improving the tabu 

search itself and hybridizing it with other meta-heuristics. Hybrid systems, especially 

GA with TS produce rather efficient results for production systems (see Tasan & 

Tunali, 2006). 
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CHAPTER FIVE 

SEQUENCING AND LOT STREAMING IN MULTI PRODUCT 

PERMUTATION FLOW SHOPS 

 

5.1 Introduction 

 

Multi product LS problems in flow shops require not only sequencing the 

products through the machines but at the same time allocating sublots of these 

products. The first problem, namely sequencing the products, is NP-complete for 

more than three machines (Garey, Johnson & Sethi, 1976). The complexities of 

single product LS problems, which handle only sublot allocation, were already given 

in Table 2.2. Therefore, with regard to the complexities of both problems, almost all 

multi product multi machine (m>3) LS problems are strongly NP-hard.   

 

In order to make the problem solvable, most of the researchers partition the whole 

problem into two sub-problems; the product sequencing problem and sublot 

allocation problem. Note that, sublot allocation problem also has two further sub-

problems: finding  optimal number of sublots and optimizing sublot sizes (see Figure 

5.1).  

 

 
Figure 5.1 Sub-problems of a multi product LS problem 

 

As in the other types of scheduling problems, the multi product, multi machine 

cases are the hardest ones in LS problems. To simplify this class of problems, most 

of studies assume that number of sublots is fixed, therefore the number of sublot

Multi Product LS Problem 

Sublot Allocation  
Sub-problem 

Sequencing  
Sub-problem 

Determination of 
Number of Sublots 

Determination of 
Sublot Sizes
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determination is eliminated. Moreover, most of the researchers widely studied equal 

sublot types under fixed number of sublots (see Huang & Yang, 2009; Kalir & Sarin 

2001b, 2003; Marimuthu, Ponnambalam & Jawahar, 2007, 2008, 2009; Tseng & 

Liao, 2008; Yoon & Ventura, 2002a, 2002b) which means sublot sizes are priori 

known and sublot allocation problem is eliminated. Hence, the only remaining issue 

is to determine the sequence of products. For instance, Kalir & Sarin (2001b) 

propose a heuristic named “Bottleneck Minimal Idleness (BMI)” to construct the 

sequence of products.   

 

Most of the studies, except Feldmann & Biskup (2008) and Martin (2009), assume 

that the number of sublots are fixed and known. This assumption eliminates the 

determination of number of sublots and simplifies the problem. On the other hand, in 

the case of maximum number of sublots, the number of sublots is restricted by an 

upper bound i.e., maximum number of sublots, and one should also find the optimal 

number of sublots which may take value up to this upper bound. In maximum 

number of sublots, the domain of sublot size variables  may increase (i.e., these 

variables may also take zero values). For instance, assume that the lot size is 12 and 

the number of discrete sublots is five. Then, an alternative sublot size vector for the 

fixed number of sublots may be SSi = (3,2,4,2,1) where i = 1,…,5. If the maximum 

number of sublots is the case, then it can either be SSi = (3,2,4,2,1) with five sublots 

or SSi = (5,0,5,2,0) with three sublots.  

 

Certainly, as the sublot types in LS problems vary from equal to consistent and 

consistent to variable, the problems become harder to solve. The studies that consider 

the consistent and variable sublot cases in this class of LS problems generally use 

meta-heuristic approaches especially the GA (Kim & Jeong, 2009; Kumar, Bagchi & 

Sriskandarajah, 2000; Marimuthu, Ponnambalam & Jawahar, 2008, 2009; Martin, 

2009; Yoon & Ventura, 2002b). The only study that uses the pure mixed integer 

programming (MIP) formulation for continuous sized consistent sublots is made by 

Feldmann & Biskup (2008). They show that MIP model is efficient for small 

problem sizes such as two/three product, five/six sublot cases. However, they address 

heuristics/meta-heuristics approaches for discrete sublots and larger sized problems.  
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The only study concerning the variable sublot type is by Liu, Chen & Liu (2006). 

They decompose the problem into three sub-problems: product sequence 

determination, lot streaming reallocation machine determination, and lot streaming 

range determination. They develop a heuristic procedure that uses TS and SA 

approaches.  

 

In this chapter, we consider three different multi product multi machine LS 

problems with the objective of minimizing makespan. In addition to the assumptions 

given in Section 2.4, other common characteristics and assumptions of these three 

problems are listed below. 

 

• Maximum number of sublots is considered. 

• The production environment is a permutation flow shop.  

• Non-intermingling schedule is assumed among the sublots of the products.  

 

These three investigated problems differ from each other by means of sublot types 

and the divisibility of sublot sizes. The first problem type considers consistent sublot 

type with continuous sized sublots whereas the second problem type deals with 

discrete sized sublots. The last investigated problem considers  variable sublot type 

with continuous sized sublots. Throughout the thesis, these three problems will be 

identified in the following titles. 

 

- Continuous sized consistent sublots, {Fm, Ln | max, C, R, NI, II, -, -, - | Cmax} 

- Discrete sized consistent sublots, {Fm, Ln | max, C, D, NI, II, -, -, - | Cmax}  

- Continuous sized variable sublots {Fm, Ln | max, V, R, NI, II, -, -, AS | Cmax} 

 

Since all three investigated problems deal with multi product LS problems, the 

sequencing sub-problem has to be solved. Furthermore, since the investigated 

problems in this chapter assume maximum number of sublots with consistent and 

variable sublot types, the sublot allocation problem with its two sub-problems 

remains to be solved. Therefore, all sub-problems illustrated in Figure 5.1 have to be 

considered in all three investigated problems. Hence the proposed solution 
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approaches handles the whole LS problem in two sub-problems: sequencing sub-

problem and sublot allocation sub-problem. 

  

The sequencing sub-problem in LS is indeed equivalent to the product sequencing 

problem in classical flow shops. In classical scheduling problems, the computational 

effort required to solve a problem grows remarkably fast as the number of products 

increases. Thus, if the number of products is large, it might not be practical to solve 

the problem exactly. In such cases, it is reasonable to consider heuristic sequencing 

procedures (e.g., Johnson’s rule for two machine cases) which can provide an 

optimal/near optimal solution in a reasonable time. Therefore, the sequencing sub-

problem of the LS problems can also be solved by applying efficient sequencing 

heuristics. The performance of the sequencing heuristics becomes important at this 

point. The sequencing heuristics used for multi machine permutation flow shops to 

minimize makespan may be considered as the sequencing heuristic alternatives to be 

used for the investigated LS problems.  

 

Surely, by efficient sequencing heuristics, the sequencing part of the whole 

problem can be solved. However, the sublot allocation sub-problem still remains to 

be solved. This sub-problem may be handled by corresponding MIP models and MIP 

based solution approaches, since MIP models are able to handle two-sub problems of 

sublot allocation problem together. MIP models may easily solve small sized 

problems but probably fail to solve for medium and large sized problems. However, 

by utilizing the relaxed versions of MIP models, efficient solution procedures may be 

proposed to solve the sublot allocation sub-problem.  

 

The framework of the proposed solution approach is illustrated in Figure 5.2. The 

entire multi product LS problem partitioned into two sub-problems as mentioned 

earlier. The sequencing is at first handled by the proposed sequencing heuristics, and 

then the sublot allocation problem is solved by the MIP based proposed solution 

approaches. The proposed solution approach incorporates the sequencing heuristics 

and MIP based solution approaches in that order. 
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Figure 5.2 The framework of the proposed solution approach for multi product 

LS problems 

 

Surely, handling the sub-problems in the reverse order may be considered as an 

alternative solution procedure. Such a solution approach has been applied to the 

research problems however, it has not performed as efficient as the proposed solution 

approach given in the thesis in terms of both solution quality and computation time.  

  

In the light of above discussion, the aim of this section is threefold.  

- The first one is to propose simple and efficient sequencing heuristics to be 

used in solving sequencing part of this class of LS problems.  

- Second one is to propose to MIP based solution schemes to be used in solving 

the sublot allocation sub-problem for a given sequence.  

- The third one is to propose a hybrid solution method (by combining above two 

solution procedures) to be used in solving medium and large sized LS 

problems. 

 

The remainder of this chapter is organized as follows. In Section 5.2 the details of 

sequencing heuristics modified for the LS problems are given. Next, in Section 5.3, 

implementation issues to obtain the makespan values for three different multi product 

multi machine LS problem types are discussed. In Section 5.4, experiments are 

presented to demonstrate the efficiency of the sequencing heuristics on the makespan 

for each problem type. Finally, the work is summarized in Section 5.5 along with the 

directions for future research.  

Proposed Solution 
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Multi Product 
LS Problem 
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5.2 Sequencing Rules 

 

The sequencing sub-problem in LS is indeed equivalent to the product sequencing 

problem in classical flow shops. There exist a number of efficient sequencing 

heuristics to minimize makespan in classical flow shops. These sequencing heuristics 

may be utilized to solve the sequencing part of the LS problem.  

 

Ruiz & Maroto (2005) present a comprehensive review on permutation flow shop 

sequencing heuristics and evaluate their performances on the makespan objective 

without considering LS. They categorize the heuristics in two groups; constructive 

and improvement heuristics.  

 

Another review is by Hejazi & Saghafian (2005) for general flow shop scheduling 

problems with the makespan criterion. They classify the heuristics by exact methods, 

constructive methods and meta-heuristics.  

 

Referring to the above articles, we have selected simple yet efficient constructive 

sequencing heuristics, which can be directly or adaptively used for the LS problems 

in flow shops. Since meta-heuristics and exact algorithms may require enormous 

amount of time especially for medium and large sized problems, these approaches 

are out of the scope of this chapter. The selected sequencing heuristics are  

 

• Shortest processing time (SPT) 

• Longest processing time (LPT) 

• Palmer’s Algorithm (Palmer, 1965) 

• Gupta’s Algorithm (Gupta, 1971) 

• Campbell, Dudek, and Smith (CDS) Algorithm (Campbell, Dudek & Smith, 

1970) 

• Nawaz, Encore and Ham (NEH) Algorithm (Nawaz, Encore & Ham, 1983) 

• Bottleneck Minimal Idleness (BMI) (Kalir & Sarin, 2001b) 
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Some of these heuristics are used in their original form. These heuristics, except 

BMI, were originally developed for pure flow shop problems and do not consider 

any LS based criteria on sequencing.  To add the LS effect, some of these heuristics 

are modified considering the production lot size (L) or total processing time weighted 

with production lot size (TPLS). The related additional notation is given below.  

 

jt     : processing time of one unit of product j, j=1,.., J 

jL     : production lot size of product j 

jS     : slope index of product j ,  

jmt      : processing time of one unit of product j on machine m, m=1,..,M 

jTPT  : total processing time of one unit of product j on all machines, 

∑
=

=
M

m
jmj tTPT

1

 

jTPLS : total processing time of one unit of product j multiplied by production lot 

size of product j, ∑
=

=
M

m
jmjj tLTPLS

1

 

 

5.2.1 Modified SPT Rule 

 

Shortest processing time (SPT) rule is a well known heuristic for sequencing 

products in flow shops.  The SPT rule is modified according to the requirements of 

LS problem and two alternative SPT rules are obtained. TPT and TPLS are used to 

sort the products instead of jt  in the original SPT rule. If TPT is used for sorting, 

then the SPT rule is named as SPT(TPT), and if TPLS is used then it is named 

SPT(TPLS). 

 

Steps of SPT(TPT) / SPT(TPLS) rules 

Sort the products in increasing order of  

  jTPT ’s; 

  jTPLS ’s;  

(Break ties by giving priority to the product with smaller product number.) 
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5.2.2 Modified LPT Rule 

 

Longest processing time (LPT) rule is another well known heuristic for the 

sequencing and scheduling problems.  As in SPT, again the LPT rule is modified 

according to requirements of LS problem. Similarly, two criteria (TPT, TPLS) are 

used to sort the products instead of jt  in the original LPT rule. LPT sorting with TPT 

is named LPT(TPT), and LPT sorting with TPLS is named LPT(TPLS). 

 

Steps of Modified LPT rule 

Sort the products in decreasing order of  

 jTPT ’s; 

 jTPLS ’s;  

(Break ties by giving priority to the product with smaller product number) 

 

5.2.3 Modified Palmer Algorithm 

 

Palmer (1965) proposes a heuristic to schedule products for more than two 

machine flow shops. This heuristic gives priority to the products which have smaller 

processing times in earlier stages and it increases with the number of stages. He 

calculates the slope indexes for each product and then constructs the sequence by 

scheduling the products in descending order of slope indexes. The original Palmer 

Algorithm is denoted as Palmer(ORJ) and the modified Palmer algorithm including 

the effect of production lot sizes of products is called as Palmer(PLS). The steps of 

the two alternative Palmer Algorithms are given below. 

 

Steps of Modified Palmer Algorithms 

Step1. Calculate the slope indices of all the products by the formula given below. 

 (ORJ)    ]))12([(
1
∑
=

−−−=
M

m
jmj tmMS  

 (PLS)    )]))(12([(
1

j

M

m
jmj LtmMS ∑

=

−−−=  
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Step 2. Sort the products in descending order of jS ’s. 

     (Break ties by giving priority to the product with smaller product number.) 

 

5.2.4 Modified Gupta Algorithm 

 

Gupta (1971) proposes an algorithm, which uses a slope index for flow shops with 

more than two machines, similar to the Palmer,’s heuristic. The original Gupta 

algorithm is denoted as Gupta(ORJ) and the modified Gupta’s algorithm including 

the effect of production lot sizes of products is called as Gupta(PLS). The steps of 

the two alternative Gupta Algorithms are given as follows. 

 

Steps of Modified Gupta Algorithms 

Step1. Calculate the product indexes of all the products by the formula given 

below. 

 (ORJ) { })1(11
min +−≤≤

+
=

mjjmMm

j
j tt

e
SI  

 (PLS) { }jmjjjmMm

j
j LtLt

e
SI

)1(11
min +−≤≤

+
=   

  where 
⎩
⎨
⎧

≥−
<

=
jmj

jmj
j ttif

ttif
e

1

1

    1
   1

 

Step 2. Sort the products in descending order of jSI ’s.  (Break ties by giving 

priority to the product with smaller product number.) 

 

5.2.5 Modified Campbell, Dudek, and Smith (CDS) Algorithm 

 

Campbell, Dudek & Smith (1970) develop a constructive heuristic method for 

flow shop problems with makespan criterion. This procedure uses Johnson’s rule 

(Johnson, 1954) in a heuristic way and creates several alternative schedules the best 

of which should be chosen. Johnson (1954) proposes a heuristic approach for two 

machine flow shop problems that gives optimal solutions. In this manner, CDS 

algorithm decomposes the multi machine flow shop problem into (M-1) number of 
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alternative two machine problems, and then applies Johnson’s rule to each alternative 

and selects the best one among them as the resulting sequence of the procedure. The 

original CDS Algorithm is named CDS(ORJ). Alternatively, the modified CDS 

algorithm including the effect of production lot sizes of products is denoted as 

CDS(PLS). Another modification is performed on the evaluation of the alternative 

sequences by assuming that the sublot sizes are equal and continuous. This 

assumption is due to several reasons. First, this assumption removes the sublot 

allocation sub-problem since number of sublots is assumed to be fixed and the sublot 

sizes are priori known. Second, it becomes easy to handle several alternatives 

quickly in comparison to the case of consistent/variable sublot types. Third, 

assuming equal sublots provides better upper bounds than the case without 

considering LS, since it adds the effect of LS to the solution procedure. This 

assumption is only used at the evaluation procedure of alternative sequences. Once, 

the best sequence is obtained, then the optimal number of sublots and their sizes are 

going to be find for this given sequence. These procedures are going to be given in 

the following section for each investigated problem type.  

   

The steps of the two alternative CDS Algorithms are given below. 

 

  Steps of Modified CDS Algorithms 

Step 1. Set alternative counter z = 1.  

Step 2. Calculate the following formulas for each product that will be used while 

applying Johnson’s rule. 

 (ORJ)    ∑
=

=′ z

m
jmj tzt

1
1 )( , and    ∑

+−=

=′ M

zMm
jmj tzt
1

2 )(  

 (PLS)  ∑
=

=′ z

m
jmjj tLzt

1
1 )( , and    ∑

+−=

=′ M

zMm
jmjj tLzt
1

2 )(  

Step 3. To obtain the sequence of products, apply Johnson’s rule for the two 

machine flow shop problem where )(1 zt j
′ represents the processing time of product j 
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on the first machine in alternative sequence z, and )(2 zt j
′ represents the processing 

time of product j on the second machine in alternative sequence z.  

Johnson’s rule 

Step 3.1. Form the set U of products whose processing times are shorter on the 

first machine than on the second. 

Step 3.2. Form the set V of products whose processing times are longer on the 

first machine than on the second. 

Step 3.3. Arrange products in U in non-decreasing order by their processing times 

on the first machine. (Break ties by giving priority to the product which has smaller 

product number.) 

Step 3.4. Arrange products in V in non-increasing order by their processing time 

on the second machine. Break ties giving priority to the product which has a smaller 

product number.) 

Step 3.5. Concatenate U and V and that is the processing order for both machines. 

Step 4. Assume that the sublot sizes of products are equal and continuous. 

Schedule the products on the machines in the sorted order and get the objective 

function value of the alternative sequence z, OFV(z). 

Step 5.  Set z = z + 1.  If z < M , then go to Step 2,  

                                 else, go to Step 6.  

Step 6. Select the best objective function value among the M-1 alternatives, 

)(min
11

zOFVOFV
Mz −≤≤

= .  

 

5.2.6 Modified Nawaz, Encore and Ham (NEH) Algorithm 

 

Weng (2000) concludes that the NEH algorithm of Nawaz, Encore & Ham (1983) 

appears to be the best heuristic for flow shops in minimizing the makespan referring 

to Taillard (1993) and the mean flow time referring to Ho & Chang (1995). Ruiz & 

Maroto (2005) evaluate a number of sequencing heuristics and address the NEH 

algorithm as the best heuristic giving better makespan values among the others for 

the permutation flow shops.  
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NEH algorithm builds the final sequence in a constructive way, adding one 

product at a time. In this study, the NEH algorithm is modified with respect to the 

requirements of the LS problems. In the original NEH algorithm, the products are 

sorted in decreasing order of total processing times on the machines for each product. 

This type of NEH is denoted as NEH(D,TPT). If the products are sorted in increasing 

order of total processing times on the machines, then it is denoted as NEH(I,TPT). 

The decreasing and increasing versions of the NEH algorithm which use TPLS 

values of the products are represented as NEH(D,TPLS) and NEH(I,TPLS), 

respectively. Another modification is made on the evaluation of the partial solutions 

by assuming the sublot sizes are equal and continuous and the number of sublot sizes 

is fixed. 

 

Steps of Modified NEH Algorithms  

Step 1. Arrange the products in  

 (D) decreasing  order of   

 (TPT)  jTPT ’s; 

 (TPLS) jTPLS ’s;  

 (I)   increasing order of 

 (TPT)  jTPT ’s; 

 (TPLS) jTPLS ’s;  

Step 2. Set counter c = 2. Pick the first two products from the arranged product 

list and schedule them in order to minimize the makespan as if there are only these 

two products. (Assume that the sublot sizes of products are equal and continuous.) 

Set the better one as the current partial solution. 

Step 3. c = c + 1. Generate c candidate sequences by inserting the first product in 

the remaining product list into each slot of the current partial solution. (Assume that 

the sublot sizes of products are equal and continuous and the number of sublots is 

fixed.)  Among these candidates, select the best one with the least makespan. Update 

the selected partial solution as the new current solution. 

Step 4. If c = J (number of products), a schedule (the current solution) has been 

found and stop. Otherwise, go to Step 3. 
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5.2.7 Bottleneck Minimal Idleness (BMI) Heuristic 

 

The BMI heuristic is proposed by Kalir & Sarin (2001b) to minimize makespan 

by minimizing the idle time on the bottleneck machine for multi product, multi 

machine LS problems. However, it assumes equal sublot types with continuous size. 

BMI heuristic constructs the product sequence by determining the bottleneck 

machine and minimizing the idle time on that machine. Since, sizes of sublots are 

known and given for each product due to the equal sublot property, the only aim is to 

optimize the product sequence.  

 

The bottleneck dominance theorem plays a key role in the BMI heuristic. It states 

that for a product j, if the 0max
1, ≥−

<≤ jmBNmBNj tt  inequality is satisfied, then under lot 

streaming, there would be no idle time created between the sublots of product j on 

the bottleneck machine (BN) where { }∑ =≤≤≡
J

j jmjMm tLBN
11maxarg . Kalir & Sarin 

(2001b) define a product as “bottleneck dominant” if it meets the bottleneck 

dominance property and as “bottleneck dominated” otherwise. Next, they try to 

sequence the products by minimizing the bottleneck idleness in-between the products 

and maximize the time buffer between machines BN and BN-1. They proposed a 

lexicographic type of rule, which sequences the products in decreasing order of 

closeness of their secondary bottleneck machine to the primary bottleneck machine. 

Secondary bottleneck machine means the upstream machine with the next largest 

unit processing time after the bottleneck machine. By utilizing this approach, some 

of the idle time that might have been created on the machines closer to the bottleneck 

machine is, in fact, absorbed because it overlaps with the processing of previous 

products. The bottleneck dominant products in the sequence built by lexicographic 

rule are immediately scheduled and the bottleneck dominated products, which does 

not create bottleneck idleness, are also sequenced in their order. However, some 

bottleneck dominated products may not satisfy this in many cases. In this situation, 

bottleneck dominated product is pushed forward in the sequence. (Kalir & Sarin, 

2001b)     
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They compare BMI results with the results of NEH algorithm and state that their 

results are better than the NEH results. For more information, refer to Kalir and Sarin 

(2001b).   

 

To obtain an alternative sequence, BMI heuristic is used in its original form and 

its results are compared with the proposed heuristics in Section 5.4. 

 

5.3 Proposed Solution Approaches 

 

The modified sequencing heuristics are described in the previous section. 

Although giving the sequence of products solves the sequencing part of the whole 

problem, sublot allocation sub-problem still remains to be solved. This sub-problem 

may also be NP-hard due to some problem characteristics. Therefore, some extra 

work may be required to obtain makespan values of the sequencing heuristics in 

reasonable computation times. The following sub-sections propose solution schemes 

for each investigated LS problem. 

  

5.3.1 Continuous Sized Consistent Sublot  

 

Only three studies (Feldmann & Biskup, 2008; Kumar, Bagchi & Sriskandarajah, 

2000; Martin, 2009) consider this problem type. Feldmann & Biskup (2008) propose 

a MIP model for the problem which considers intermingling and non-intermingling 

schedules together. Their MIP model is able to solve LS problems up to only three 

products and seven sublots. Kumar, Bagchi & Sriskandarajah (2000) also study a 

similar LS problem but with no-wait schedules. They propose an algorithm which 

first determines the continuous sublot sizes for each individual product using LP, 

then sequence the products utilizing TSP. They especially focus on fixed number of 

sublots. However, they do not give any computational results. Martin (2009) 

considers continuous sized consistent sublots and intermingling case to minimize the 

makespan. The author uses GA to determine the number of sublots and the sequence 

of the products, and a MIP model to determine the size of the sublots. The results are 

given for 20 products and 10 machines LS problems.  
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In this section, the resulting sequences obtained by the proposed sequencing 

heuristics given in Section 5.2 are inputted to the MIP model of the Feldmann & 

Biskup (2008), and the corresponding makespan values are obtained. Notice that 

these resulting makespan values are optimal for the given sequence. Note that, the 

MIP model of Feldmann & Biskup (2008) includes the constraints for both 

intermingling and non-intermingling cases. In the MIP model, only the constraints 

related to non-intermingling case are presented. The notation and MIP model 

arranged for our investigated problem is given below.  

 

Parameters: 

Sj  number of sublots of product j 

M  number of machines 

J number of products 

tjm  processing time for one item of product j on machine m 

Lj number of identical items of product j to be produced (production lot size of 

product j) 

R sufficiently large number 

 

Indices: 

s,t indices for the sublots, s, t = 1, …, Sj 

m  index for the machines, m = 1, …, M 

j,k indices for the products, j, k = 1, ..., J 

 

Decision Variables: 

SSjs    number of units produced in sublot s of product j  

pjsm   processing time of sublot s of product j on machine m 

bjsm    starting time of the sublot s of product j on machine m 

yjk   binary variable, which takes 1 if product j is sequenced prior to product k, 

0 otherwise. 
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Minimize maxC  

subject to 

∑
=

=
jS

s
jjs LSS

1
  Jj ,...,1=      (5.1) 

jmjsjsm tSSp =   Jj ,...,1= , jSs ,...,1= , Mm ,...,1=   (5.2) 

msjmsjjsm pbb ,1,,1, −− +≥  Jj ,...,1= , jSs ,...,2= , Mm ,...,1=   (5.3) 

1,1,, −− +≥ mjsmsjjsm pbb  Jj ,...,1= , jSs ,...,1= ,  Mm ,...,2=   (5.4) 

Rybpb jkmkmjSmjS jj
)1(1 −+≤+   kjJkj ≠= ,,...,1, , Mm ,...,1=  (5.5) 

Rybpb jkmjmkSmkS jj
+≤+ 1   kjJkj ≠= ,,...,1, , Mm ,...,1=  (5.6) 

MjSMjS jj
PbC +≥max  Jj ,...,1=      (5.7) 

{ }1 ,0∈jky    kjJkj ≠= ,,...,1,     (5.8) 

0≥jsmb    Jj ,...,1= , jSs ,...,1= , Mm ,...,1=   (5.9) 

0≥jsSS    Jj ,...,1= , jSs ,...,1=    (5.10) 

 

Restrictions (5.1) ensure that the sum of sublot sizes of product j has to be equal 

to production lot size of that product. With (5.2) the processing times of the sublots 

are calculated. The Constraints (5.3) and (5.4) ensure that the sublots of the same 

product do not overlap. Constraints (5.3) prevent two sublots, s and s-1, being 

processed simultaneously on one machine. With Constraints (5.4), sublot s on 

machine m is not allowed to start before sublot s on machine m-1 has been finished. 

Constraints (5.5) and (5.6) determine the sequence of sublots. Since it is a 

permutation flow shop, no machine index is needed for y. Constraints (5.5) are 

binding if (and only if) jky  takes the value 1. In this case, product j is scheduled 

prior to product k on machine m and the processing of first sublot of product k is 

forced to start after last sublot of product j has been finished. If, on the other hand, 

jky takes the value zero, (5.5) are not binding, as R is added on the right-hand side. 

The disjunctive counterpart is reflected by Constraints (5.6). These constraints are 

only binding if jky takes the value zero. In (5.7), the completion time of the last 

sublot Sj on the last machine M are used to define the makespan maxC . Constraints 
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(5.8) define the binary variables. Finally, Constraints (5.9) and (5.10) are non-

negativity constraints. 

 

The steps of proposed solution approach for this problem type are given below.  

 

The Steps of Solution Approach for Continuous sized Consistent Sublots 

Step 0. Sequencing 

Find the sequence using one of the investigated sequencing heuristics.  

Step 1. Initialization. 

Give the resulting sequence to the MIP model considering continuous sized 

consistent sublots. 

Step 2. Running 

Run the MIP model and obtain the continuous sizes of consistent sublots and 

optimal makespan value for the given sequence. 

 

5.3.2 Discrete Sized Consistent Sublots  

 

This section considers the discrete version of the problem described in the 

previous section.   

 

The studies concerning discrete sized sublots generally obtain continuous sized 

sublots at first, then use rounding algorithms to convert them to discrete ones (e.g., 

Chen & Steiner, 2003; Hall et al., 2003; Kumar, Bagchi & Sriskandarajah, 2000; 

Sriskandarajah & Wagneur, 1999; Vickson, 1995).     

 

Hall et al. (2003), Kim & Jeong (2009), Kumar, Bagchi & Sriskandarajah (2000) 

and Martin (2009) consider this problem type. All studies, except Hall et al. (2003), 

use GA approach either to sequence the products or to get discrete sublot sizes. 

Meta-heuristic approaches such as GA may generate better results than simple 

sequencing heuristics; however, they require much computation time. For instance, 

Kumar, Bagchi & Sriskandarajah (2000) propose a heuristic, named MHEU, and a 
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GA based approach. GA based approach obtains better results than MHEU, but 

requires up to one order of magnitude computation time. Moreover, their GA based 

approach is able to solve only five machine five product LS problem with maximum 

number of sublots in a reasonable time. MHEU is also used by Hall et al. (2003) to 

compare the results of their algorithm named “global flow” which is based on a 

generalized TSP. Again, the computation time of MHEU is negligible when 

compared with the global flow algorithm. Martin (2009) deals with intermingling 

schedules and his/her findings are worthwhile to mention. The author confirms that 

use of rounding procedures (to obtain integer sized sublots from continuous sized 

sublots) provides acceptable and excellent results. The analysis on the product 

sequence show that even if optimal sublot sizes are used, there is a significant 

difference between the best and the worst sequences which indicate that sequencing 

is much more important than sublot sizing.  

 

The proposed solution approach for discrete sized consistent sublots first applies 

all the steps of the solution procedure given in the previous section. Then, the 

continuous sized sublots are converted to the discrete ones by a rounding algorithm. 

Note that, due to the rounded values, the resulting makespan may not be optimal for 

the given sequence. However, this does not constitute a problem in comparing the 

performances of the sequencing heuristics, since makespan results of all sequencing 

heuristics are determined with the same approach.  

 

The steps of the solution approach for the discrete sized consistent sublots are 

given below. 

 

The Steps of Solution Approach for Discrete sized Consistent Sublots 

Step 0. Sequencing 

Find the sequence using one of the investigated sequencing heuristics.  

Step 1. Initialization. 

Give the resulting sequence to the MIP model considering continuous sized 

consistent sublots. 
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Step 2. Running 

Run the MIP model and obtain the continuous sizes of consistent sublots and 

optimal makespan value for the given sequence.  

Step 3. Rounding 

For each product, apply a rounding algorithm to get discrete sublot sizes. 

Step 4. Termination 

Calculate the corresponding makespan value with respect to resulting sequence 

and discrete sublot sizes. 

 

In Step 3, two different rounding algorithms are evaluated to get discrete sublot 

sizes: 

• The forward rounding algorithm of Chen & Steiner (1997) and  

• Rounding algorithm of Sriskandarajah & Wagneur (1999).  

 

The notation and the steps of both rounding algorithms are given below.   

s: sublot index,  (s = 1,…,Sj) 

:c
sx continuous sized sublot s ,  

:d
sx discrete sized sublot s 

⎣ ⎦c
sx : the largest integer less than or equal to c

sx  

⎡ c
sx ⎤: the smallest integer greater than or equal to c

sx  

L : production lot size 

 

The forward rounding algorithm, at first, rounds down the continuous values. 

Notice that, there would be a remainder value to be portioned. This amount is shared 

between sublots starting from the first one. The detailed steps are given below. 

 

 Steps of Forward Rounding Algorithm of Chen & Steiner (1997) 

Step 1. Define ⎣ ⎦∑
=

−=
jS

s

c
sxLu

1
.  
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Step 2.  If c
sx  is integer, then set c

s
d
s xx = .  

  For the first u sublots which are not integer, set d
sx = ⎡ c

sx ⎤, 

 For the rest of the sublots, set d
sx = ⎣ ⎦c

sx . 

 

On the other hand, the rounding algorithm of Sriskandarajah & Wagneur (1999), 

at first, rounds up the continuous values. Notice that, there would be an extra amount 

to be removed. This amount is iteratively removed by subtracting one unit from the 

size of a sublot which has maximum deviation between its discrete and continuous 

value. The detailed steps are given below. 

 

Steps of Rounding Algorithm of Sriskandarajah & Wagneur (1999)  

Step 1. Set W0 = 0, W1=L and Γ=∅ 

Step 2. For s =1 to S do 

{ d
sx = ⎣ ⎦c

sx +1 

   W0 = W0 + d
sx } 

Step 3. W0 = W0 - W1  

       find the product set Γ for which d
sx > 1 

Step 4. While W0 > 0 do 

{find ds = d
sx  - c

sx , s ∈  Γ 

  find r such that { }ssr dd
Γ∈

= max  

  d
rx  = d

rx -1  

  if d
rx =1, then Γ= Γ-{r} 

  W0 = W0 -1 } 

 

An example is given in Appendix B1 to demonstrate the steps of both rounding 

algorithms. The evaluation of both rounding algorithms results in favor of 

Sriskandarajah & Wagneur (1999). The results of two rounding algorithms are given 

in Appendix B2 and B3. Rounding algorithm of Sriskandarajah & Wagneur (1999) 
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gives better results in 37 out of 40 test problems (see Section 5.4 for details of the 

test problems), while Chen & Steiner’s forward rounding algorithm performs better 

results in only three test problems. Moreover, the rounding algorithm of 

Sriskandarajah & Wagneur (1999) provides 0.66 % (in average) better makespan 

values than those of Chen & Steiner’s. Therefore, at Step 3 of the proposed solution 

approach, the rounding algorithm of Sriskandarajah & Wagneur (1999) is going to be 

used for further comparisons presented in Section 5.4.   

 

5.3.3 Continuous Sized Variable Sublots 

 

Due to the complexity of this problem type, there is almost no study in this field. 

Only Liu, Chen & Liu (2006) deals with investigated problem with fixed number of 

sublots. Our problem differs from this problem by the presence of maximum number 

of sublots. They divide the whole problem into three sequential sub-problems 

(product sequence determination, lot streaming reallocation machine determination, 

and lot streaming range determination) each of which applies TS and SA approaches. 

They give computational results up to 15 products, 10 machines and 4 sublots.  

In addition to the common characteristics given in Section 5.2, the sublot 

availability case is considered for this problem due to the presence of variable 

sublots.   

 

At first, the following MIP model for variable sublot types in permutation flow 

shops is developed based on the MIP models of Biskup & Feldmann (2006) and 

Feldmann & Biskup (2008). This MIP model is going to be used in the proposed 

solution approach. 

 

Additional Decision Variables: 

jsmSS   number of units produced in sublot s of product j on machine m 

xjsmt     binary variable, which takes 1 if the sth sublot of product j on machine m is 

 not started before the tth sublot of product j on machine m-1 has been   

finished, 0 otherwise. 
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minimize Cmax 

∑
=

=
jS

s
jjsm LSS

1
   j = 1, ..., J, m=1,…,M                   (5.11) 

jmjsmjsm tSSp =    j = 1, ..., J,  s = 1,…,Sj, m =1,…,M          (5.12) 

1,1, −− +≥ mjsmjsjsm pbb   j = 1, ..., J,  s = 1,…,Sj, m=2,…,M          (5.13) 

, 1, , 1,jsm j s m j s mb b p− −≥ +   j = 1, ..., J,  s = 2,…,Sj, m =1,…,M          (5.14) 

Rybpb jkmkmjSmjS jj
)1(1 −+≤+  j,k = 1,...,J,  j≠k,  m =1,…,M            (5.15) 

Rybpb jkmjmkSmkS jj
+≤+ 1   j,k = 1,...,J,  j≠k,  m =1,…,M            (5.16) 

mjSmjS jj
pbC +≥max   j = 1, ..., J                     (5.17) 

, 1 , 1 (1 )jsm jt m jt m jsmtb b p x R− −≥ + + −   

j = 1,...,J,  s,t = 1,…,Sj,  m =2,…,M          (5.18)   

∑ ∑
=

−

=
+− +−+−≤

t

z

s

z
tjsmjsmtjzmmjzjsm RxxSSSSSS

1

1

1
1,1, )1(  

j = 1,...,J, s = 1,…,Sj, t = 1,…,Sj-1, m = 2,…,M     (5.19) 

∑
=

− +−+≤
t

z
tmjmtjmjzmj RxxSSSS

1
1,111,1 )1(  

j = 1,...,J, t = 1,…,Sj-1, m = 2,…,M           (5.20) 

1 1jsmx =    j = 1,...,J, s = 1,…,Sj, m = 2,…,M           (5.21)  

1=mtjS j
x    j = 1,...,J, t = 1,…,Sj,   m = 2,…,M             (5.22) 

1jsmtx =    j = 1,...,J, s, t  = 1,…,Sj,  s = t, m = 2,…,M             (5.23) 

, 1jsmt jsm tx x +≥   j = 1,...,J,  s = 2,…,Sj,   t = 1,…,Sj-1,  m = 2,…,M (5.24) 

mtsjjsmt xx ,1, +≤   j = 1,...,J,  s = 2,…,Sj-1,  t = 1,…,Sj,  m = 2,…,M  (5.25) 

0≥jsmSS , 0≥jsmb  j = 1,…,J, s = 1,…,Sj, m = 1,…,M                      (5.26) 

{ } { }0,1 , 0,1jk jsmty x∈ ∈  j,k = 1,...,J, ,  j ≠ k, s,t = 1,…,Sj, m = 2,…,M         (5.27) 

 

Constraints (5.11) - (5.17) are similar constraints to consistent sublot case. The 

only difference is that the sublot size variable has three indices instead of two. The 
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set of Constraints (5.18) is only binding if xjsmt takes the value zero. If (and only if) 

xjsmt takes the value one, sublot s of product j on machine m is not allowed to start 

before sublot t of the same product on the preceding machine (m-1) has been 

finished. In general, the size of a sublot, SSjsm, cannot exceed the sum of all sublot 

sizes on machine m-1 that have been completed before SSjsm starts, minus the sum of 

all sublots on machine m processed prior to SSjsm. Constraints (5.19) and (5.20) 

ensure this statement and restrict the size of the variable sublots which are only 

binding for xjsmt = 1 and xjsm,t+1= 0. Equations (5.21) ensure that the start of the 

processing of a sublot s of product j on machine m must wait until at least the first 

sublot of that product on machine m-1 has been finished. Equations (5.22) restrict the 

start of processing the last sublot of product j on machine m until the processing of 

all sublots of that product on machine m-1 has been finished. Equations (5.23) ensure 

that a sublot of product j on machine m has to start after the processing of the same 

sublot of that product on machine m-1. Constraints (5.24) relate sublot s to sublots t 

and t+1 whereas Constraints (5.25) relate sublot t to sublots s and s+1. Equations 

(5.26) and (5.27) are non-negativity and binary constraints.   

 

This MIP model includes two groups of binary decision variables. The first one is 

the same as in consistent sublot types, i.e., the decision variable yjk that gives the 

sequence of products. The other set of decision variables xjsmt is required to satisfy 

the relation between the sizes of the sublots processed at the previous machine and 

the sizes of the sublots going to be processed at the current machine (see Figure 5.3). 

 

 
Figure 5.3 The relation of sublot sizes in variable sublot types with sublot availability 

 

As given in Constraints (5.19) and (5.20), the size of sublot s on machine m, SSjsm, 

should be less than or equal to the difference between the sum of all sublot sizes on 

SSj,t-1,m-1 SSj,t,m-1 

SSj,s-1,m SSj,s,m 

SSj,t+1,m-1 

SSj,s+1,m 

....

...................

.....

....

Machine 
m-1 

Machine 
m 
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machine m-1 that have been completed before SSjsm starts, and the sum of all sublots 

on machine m processed prior to SSjsm. This situation only occurs in case of variable 

sublots; remember that in both cases of equal and consistent sublots, the sublot sizes 

remain their sizes along the machines. These formulations are valid only for sublot 

availability case. In case of item availability, these formulations have to be modified.  

 

The model presented above is rather difficult to solve due to huge number of 

binary variables yjk and xjsmt. Even if a pre-determined sequence of products which 

eliminates yjk decision variables, it may still be impossible to obtain makespan in a 

reasonable amount of time due to enormous number of xjsmt binary decision variables. 

One way to overcome this problem is to utilize the continuous relaxation of these 

xjsmt variables. Under a given sequence, by relaxing xjsmt decision variables, we 

observe that values of most of xjsmt variables are so close to either zero or one. Using 

this observation, we may round xjsmt values which are smaller than a pre-specified 

tolerance value ε to zero and greater than (1- ε) to one. For the given sequence and 

fixed zero-one xjsmt values, the makespan can be determined by solving the MIP 

model iteratively until all xjsmt get binary values. Of course, an infeasible solution 

might appear in some iterations of such a rounding method; however, these 

infeasibilities may be eliminated by embedding a feasibility checking procedure into 

the scheme. Finally, it should be noted that, the proposed solution procedure give 

near-optimal results. For further analysis, the performances of these results are 

compared with the original MIP model results.  

 

The additional notation and the proposed algorithm are presented below. 

 

{ }C | 0 1,jsmt jsmt jsmtx x x += < < ∈ℜ  

{ }{ }D | 0,1jsmt jsmtx x= ∈  

T : a temporary set of jsmtx  which are candidates to be moved from set C to D. 

ε : a predetermined small value, i.e., 5.00 ≤< ε  and ε +∈ℜ  

nox : a control variable, if ∅=A , it takes zero; otherwise,  it takes one; where      

{ }εε −≥≤∈= 1 and | jsmtjsmtjsmt xxCxA . 
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The Steps of Solution Approach for Continuous sized Variable Sublots 

Step 0. Sequencing 

Determine the sequence of products by using one of the investigated sequencing 

heuristics.  

Step 1. Initialization 

Give the resulting sequence to the MIP model in which all jsmtx  values are relaxed           

(i.e., 10 ≤≤ jsmtx ) 

Set nox = 0, minvalue = 1, value = 1, 1.0=ε  

Step 2. Partitioning 

Run the relaxed MIP model and obtain optimal jsmtx  values, say *
jsmtx . 

Partition the set of *
jsmtx  into two disjoint sets where  

{ }10| * <<= jsmtjsmt xxC  

{ }{ }1,0| * ∈= jsmtjsmt xxD  

Step3. Termination 

If all Dx jsmt ∈ , then STOP,  

Else, nox = 0, minvalue = 1, ∅=T . 

Step 4. Variable Fixing 

For each Cx jsmt ∈  apply the following steps. 

If ε≤*
jsmtx , then set 0=jsmtx ,  

Else if ε−≥ 1*
jsmtx , then set 1=jsmtx , 

nox = 1, move jsmtx  from set C to set T. 

Else if nox = 0, then set { }** 1,min jsmtjsmt xxvalue −=      

If minvalue ≥ value, then set minvalue = value, store corresponding *
jsmtx  value to 

be used in Step 5.           

Step 5. Controlling 

If nox = 1, then go to Step 6. 

Else if nox = 0, then use the previously stored *
jsmtx  in Step 4.  
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       If 5.0* ≤jsmtx , then set 0=jsmtx ,  

       Else set 1=jsmtx ,  

 Move jsmtx  from set C to set T. 

Step 6. Running 

Set TDD ∪= . Add all Dx jsmt ∈ with their corresponding 0 or 1 values to the 

MIP model as fixed equations and run the model again.   

Step 7. Feasibility Checking 

If the solution is infeasible then set TDD −= . For all Tx jsmt ∈ (which get 

binary values in Step 4 and 5), reassign their previous real values (i.e., *
jsmtx ) and 

apply the following steps. 

      Step 7.1 Take the element in set T which has closest value to 0 or 1; 

          If 5.0* ≤jsmtx , then set 0=jsmtx ,  

          Else 1=jsmtx . 

     Step 7.2 Run the MIP model by adding only this jsmtx  as a fixed equation. 

If the solution is feasible, then fix the value of 0=jsmtx (or 1=jsmtx ),  

     move jsmtx  from set T to set D, go to Step 7.1.  

Else if the solution is infeasible, then fix the value of 1=jsmtx (or 0=jsmtx ),  

     and run the MIP model by adding only this jsmtx  as a fixed equation,  

     move jsmtx  from set T to set D and go to Step 3. 

Else, if the solution is feasible, go to Step 3.   

 

5.4 Computational Results 

 

To evaluate the performances of sequencing heuristics, we use the problem 

instances generated by LSGen (Feldmann, 2005)  
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Table 5.1 Experimental problem types 

Number of 
 Products, (J) 

Number of  
Sublots, (S) 

Number of  
Machines, (M) 

5 5 5 
5 5 10 
5 10 5 
5 10 10 
10 5 5 
10 5 10 
10 10 5 
10 10 10 

  

Eight problem types (see Table 5.1) each consisting of five problem instances are 

generated. These 40 problem instances are used to compare the performances of 

sequencing heuristics described in Section 5.2 by utilizing the solution schemes 

presented in Section 5.3. The MIP model part of the solution approaches built in 

OPL Studio 3.7 optimization package and solved on a Centrino 1.73 GHz processor 

with 1.5 GB RAM. Detailed computational results for three investigated problems 

are given in Appendix B4, B3 and B5. To evaluate the performances of proposed 

sequencing heuristics, the best makespan value found for each problem instance is 

used as a benchmark value. Notice that, the makespan values of sequencing 

heuristics which gives the best makespan are presented in bold. Table 5.2 

summarizes the results for each problem type.  

 

As seen from Table 5.2, for continuous sized consistent sublots, the best heuristic 

is NEH(D,TPLS). It gives 22 best results out of 40 problem instances and its average 

proportional deviation is 0.84%. It can be stated that, NEH(D,TPLS) returns either 

best results or very close results to the best ones. In addition, NEH(D,TPT) gives 

promising results with 19 best results; however, its average proportional deviation is 

2.04%. Consequently, NEH based heuristics, except NEH(I,TPLS), produce better 

results than the other sequencing heuristics. Note that, the number of best results may 

not add up to 40 because different sequencing heuristics may obtain the same 

makespan value. The best solutions of sequencing heuristic are given in detail in 

terms of sequence and sublot sizes in Appendix B6. In Appendix B7, the detailed 

results of optimal solutions obtained from MIP model are given.  
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Table 5.2 Comparison of sequencing heuristics performances for each problem type 
Continuous Sized 
Consistent Sublots 

Discrete Sized 
Consistent Sublots 

Continuous Sized 
Variable Sublots 

  
# of Best 
Results 

Avg. Prop. 
Dev. (%) 

# of Best 
Results 

Avg. Prop. 
Dev. (%) 

# of Best 
Results 

Avg. Prop. 
Dev. (%) 

LPT (TPT) 0 13.45 0 13.46 0 13.46 
SPT (TPT) 1 10.20 1 10.56 1 10.54 

LPT (TPLS) 1 12.65 1 12.62 1 12.65 
SPT  (TPLS) 0 12.31 1 12.37 0 12.32 

NEH    (D,TPT) 19 2.04 19 2.02 19 2.04 
NEH  (I,TPT) 16 1.63 14 1.73 16 1.63 

NEH  (D,TPLS) 22 0.84 20 0.91 22 0.85 
NEH  (I,TPLS) 7 2.55 7 2.54 7 2.54 

CDS  (ORJ) 5 2.74 4 2.69 5 2.76 
CDS  (PLS) 10 2.50 10 2.44 10 2.49 

PALMER  (ORJ) 6 5.07 6 5.09 6 5.06 
PALMER  (PLS) 7 5.02 7 5.01 7 5.01 
GUPTA  (ORJ) 0 9.27 0 9.30 0 9.28 
GUPTA  (PLS) 2 7.83 1 7.88 2 7.83 

BMI (ORJ) 2 9.78 0 9.76 2 11.23 

* ⎟
⎠
⎞

⎜
⎝
⎛ −

=
Benchmark

Benchmark)(Makespan100(%) Dev. Prop. X    40%)Prop.Dev.( (%) Dev. Prop. Avg.
40

1i
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

 

 

For discrete sized consistent sublots, we observe that the best results are obtained 

again by NEH(D,TPLS). In fact, it is an expected outcome, because this solution 

procedure uses the same sequence and steps with only one additional stage which 

converts the continuous values obtained by MIP model to discrete ones. This 

sequencing heuristic gives best results in half of the instances with an average 

proportional deviation of 0.91 %. 

 

Similar conclusions can be drawn for the continuous sized variable sublot case. 

Once more, the best sequencing heuristic is NEH(D,TPLS) with 22 best makespan 

and 0.85 % average proportional deviation.  

 

Remember that NEH is stated as the best sequencing heuristic for the general flow 

shop scheduling problems (Ruiz & Maroto, 2005; Weng, 2000). Similarly, one of the 

modified version of NEH heuristic which also considers LS requirements, named 

NEH(D,TPLS), gives quite better results compared to other sequencing heuristics.  
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Table 5.3 Data and sublot sizes of problem instance 5-5-5-2 

 Processing Times 
(min/item/machine) 

Sublot Sizes 
(item/sublot) 

Products M1 M2 M3 M4 M5 SS1 SS2 SS3 SS4 SS5 

Lot 
Size 

1 11 3 6 5 11 0 0 10 6 4 20 
2 10 8 2 9 12 0 1 5 6 8 20 
3 2 6 4 6 4 0 4 0 7 0 11 
4 3 4 6 7 2 5 8 9 10 5 37 
5 4 9 11 7 8 3 3 4 4 3 17 

 

Finally, the data for the second instance of the LS problem with five products, five 

sublots and five machines (5-5-5-2) is reported in Table 5.3 along with the results 

including the discrete sized consistent sublots. The first five columns after 

“products” column give the processing times of products per machine. The number 

of items in each sublot of products are given in subsequent columns and in the last 

column, the lot sizes of each product is presented. As can be seen from the sublot 

sizes, the first product is divided into three sublots, the second product into four 

sublots, the third product into two sublots and both of the products four and five into 

five sublots. The maximum number of sublots is selected as five sublots but some 

sublot sizes valued zero which means no extra sublot is required. The sequence of 

products for this problem instance is obtained as 5-2-3-1-4 from NEH(D,TPLS). 

Figure 5.4 gives the corresponding schedule. The representation j-i denotes sublot i 

of product j, for instance 5-1 means that the first sublot of product 5.   

 

The performance of best sequencing heuristic, NEH(D,TPLS), can also be 

evaluated with the results of original MIP model. For this purpose, LS problems with 

15 products are added to the problem instances. Total number of test problems is 

now 60.  

 

The original MIP models are solved on a Centrino 1.73 GHz processor with 1.5 

GB RAM and terminated by a 1000 seconds run time limit. The small sized problems 

are able to reach optimal solutions. 
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  Figure 5.4 Gantt chart of the problem instance 5-5-5-2 for discrete sized consistent sublot 
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Since most of the large size problems time out due to 1000 second time limit, only 

lower and upper bounds are recorded. The NEH(D,TPLS) results are compared with 

the upper bounds of MIP models. Note that, the computational time for the 

NEH(D,TPLS) varies between 2 and 10 seconds with respect to the problem size. 

The results belonging to three investigated problem types are given in Appendix B8, 

B9 and B10 in detail. Table 5.4 summarizes these results.  

 

For continuous sized consistent sublots, the NEH(D,TPLS) results are very close 

(0.69%) to the MIP results. The number of best results obtained from MIP and 

NEH(D,TPLS) are 32 and 12, respectively. Deeper analysis may be performed with 

respect to different levels of experimental points i.e., number of products, number of 

sublots and number of machines. The performance of NEH(D,TPLS) on finding 

number of better results improves at higher levels of experimental points.  

 

 Again, for discrete sized consistent sublots, the NEH(D,TPLS) results are very 

close (0.69%) to the MIP results. However, the MIP model gives 51 best results 

while the NEH(D,TPLS)  gives only 9 best results. This is due to the fact that the 

proposed solution procedure suffers from optimum solution in two aspects. The first 

one is the given sequence may not be the optimal sequence. Even if the given 

sequence is optimal, the rounding procedure may not give optimal but a bit worse 

than optimal results. Similar to the previous case, as the problem scales up, the 

performance of proposed procedure improves. In higher level of all experimental 

points, the proposed method performs better than MIP in terms of average deviation.  

 

The most obvious advantage of NEH(D,TPLS) and proposed solution procedure 

appears in case of variable sublots. In 39 out of 60 problem instances, the 

NEH(D,TPLS) outperforms the MIP model. The average proportional deviation 

favors NEH(D,TPLS) giving 1.59% better results than the MIP model. For this 

problem type, the MIP model fails to find better results than the NEH(D,TPLS) 

heuristic due to its huge number of 0-1 decision variables. 
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Table 5.4 Comparison of NEH(D,TPLS) heuristic results with the MIP results (within 1000 sec) 

  Continuous Sized Consistent Sublots Discrete Sized Consistent Sublots Continuous Sized Variable Sublots 
  # of Better Results # of Better Results # of Better Results 

  MIP NEH 
(D,TPLS) 

# of 
Same 

Results 

Avg. 
Prop. 

Dev (%) MIP NEH 
(D,TPLS) 

# of 
Same 

Results 

Avg. 
Prop. 

Dev (%) MIP NEH 
(D,TPLS) 

# of 
Same 

Results 

Avg. 
Prop. 

Dev (%) 

5 10 0 10 0.36 20 0 0 0.91 8 11 1 -0.57 

10 15 1 4 2.39 20 0 0 2.31 6 12 2 -1.55 

# 
of

 p
ro

du
ct

s 

15 7 11 2 -0.83 11 9 0 -1.27 3 16 1 -3.58 

5 18 5 7 0.49 26 4 0 0.87 13 14 3 -1.75 

# 
of

 su
bl

ot
s 

10 14 7 9 0.49 25 5 0 -0.18 4 25 1 -2.94 

5 13 4 13 0.83 28 2 0 0.95 12 14 4 0.30 

# 
of

 m
ac

hi
ne

s 

10 19 8 3 0.21 23 7 0 -0.13 5 25 0 -4.41 

Overall  32 12 16 0.69 51 9 0 0.69 17 39 4 -1.59 

Prop. Dev. (%) = 100[NEH(D,TPLS) –MIP]/MIP 
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A significant relative improvement occurs again in the higher levels of 

experimental points. For instance, in 10-machine test problems, NEH(D,TPLS) 

performs better than MIP model with 4.41% deviation in average.  

 

It should also be noted that another advantage of proposed algorithms arises in 

terms of computation time. For all problem instances, NEH(D,TPLS) obtains the 

results up to only 10 seconds while MIP requires 1000 seconds especially in large 

sized problem instances. 

 

In view of analysis given above, a common outcome of computational results 

belonging to three investigated problems is that proposed solution approach performs 

relatively better than MIP model in higher levels of all experimental points. At this 

moment, a question may arise: Up to which higher levels of experimental points the 

proposed procedures may provide solutions. To clarify this question, 18 problem 

types (see Table 5.5) each having five instances are generated. The NEH(D,TPLS) 

results of three investigated problem types are given in Appendix B11 and B12 for 

30 and 50 products, respectively.  

 
Table 5.5 Experimental problem types for large sized problems 

Problem type # of products # of sublots # of machines 
1 30 5 5 
2 30 5 10 
3 30 5 15 
4 30 10 5 
5 30 10 10 
6 30 10 15 
7 50 5 5 
8 50 5 10 
9 50 5 15 

10 50 5 20 
11 50 10 5 
12 50 10 10 
13 50 10 15 
14 50 10 20 
15 50 20 5 
16 50 20 10 
17 50 20 15 
18 50 20 20 
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As can be seen from the results, the computation time of each investigated 

problem increases as the problem scales up. The proposed solution procedures of 

consistent sublots are able to generate results in all problem instances. However, the 

proposed solution procedure of variable sublots cannot generate results in some of 

the instances due to memory requirements of the MIP model. These instances are the 

ones with higher levels of experimental points. By this analysis on variable sublots, 

the limits on the levels of experimental points are determined as 50-product, 20-

sublot problems. It should be noted that, there is no study in the literature that gives 

results for these levels of problem. 

 

5.5 Chapter Summary 

 

Multi product LS problems in flow shops require sequencing the products through 

the machines as well as sublot allocation of the products. 

 

In this study, three multi product, multi machine LS problems with non-

intermingling case are investigated to minimize the makespan in permutation flow 

shops. These problems differ by the following characteristics: 

• Continuous sized consistent sublots,  

• Discrete sized consistent sublots and  

• Continuous sized variable sublots.  

 

The aims of this chapter may be listed as: 

• To propose simple and efficient sequencing heuristics to be used for the 

sequencing subproblem of the entire LS problem. 

•  To analyze the performances of these sequencing heuristics and to determine 

the best ones with the aim of minimizing makespan.  

• To propose solution scheme for each investigated problem to determine the 

sublot allocations for the given sequence.  

 

In the solution approaches, the entire problem is partitioned into sequencing and 

sublot allocation sub-problems. For the sequencing sub-problem, a number of simple 
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and efficient sequencing heuristics developed for general flow shops are modified 

according to LS requirements. For the sublot allocation sub-problem, mixed integer 

programming (MIP) based solution approaches are proposed. For the entire problem, 

a hybrid solution approach which uses sequencing heuristic in sequencing sub-

problem and applies MIP based approaches for the sublot allocation sub-problem, is 

proposed. For all investigated problem types, NEH(D,TPLS) sequencing heuristic 

returns not only more number of best results, but also gives rather close results to the 

best ones. The performance of this heuristic is evaluated against the MIP model 

results. NEH(D,TPLS) generates rather close results for the consistent sublot cases 

and outperforms the MIP model for continuous sized variable sublot case.  

 

This study can be further carried to the multi product LS problems with 

intermingling cases as well as non-intermingling case for discrete sized variable 

sublots by modifying the solution procedures.  

 

The NEH(D,TPLS) can be used as the starting point of a search based solution 

approach or can be included into the initial population in evolutionary based 

algorithms to get better results in smaller times. 

 

 The work in this study presents an efficient and easily applicable sequencing 

heuristic, NEH(D,TPLS), embedded into the proposed solution approaches. The 

further studies may take the proposed solution schemes as a benchmark method.
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CHAPTER SIX 

A TABU SEARCH BASED HEURISTIC FOR MULTI PRODUCT LOT 

STREAMING PROBLEMS 

 

6.1 Introduction 

 

In previous section, the multi product, multi machine LS problems have been 

studied to obtain simple and efficient results in a reasonable time. Simple sequencing 

heuristics have been modified with respect to LS requirements and solution 

approaches for three different multi product, multi machine LS problems have been 

proposed. The performances of these sequencing heuristic are evaluated and the best 

one is suggested to be used in these types of LS problems. However, each of these 

sequencing heuristics generates only one sequence and evaluates its performance. 

However, there may yet remain a number of sequence alternatives to be able to 

generate better makespan values. To obtain optimal or near-optimal results, the other 

sequence alternatives in the solution space can be searched. For small number of 

products, the number of sequence alternatives is rather limited and full enumeration 

can be used to obtain optimal sequence. For instance, for two products, the number 

of alternatives is two: 2-1 and 1-2. The number of alternatives increases to six and 24 

for three and four products, respectively. These numbers of alternatives are small 

enough to obtain optimal sequence by full enumeration. However, the number of 

sequence alternatives increase in exponential manner with respect to number of 

products (see Table 6.1). Evaluating only one sequence alternative may be a good 

approximation method for large sized LS problems; however, it may not be an 

efficient approximation method for small to medium sized LS problems.  

 
Table 6.1 The number of products and corresponding number of sequencing alternatives 

Number of  
products (J) 2 3 4 5 6 7 8 9 10 
Sequencing  
alternatives (J!) 2 6 24 120 720 5040 40320 362880 3628800 
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From this point of view, optimal or near optimal results may be obtained by 

introducing an efficient search procedure for the sequencing part of the multi product 

LS problems.   

 

Remember that, in the previous chapter, the proposed solution approaches utilize 

MIP models to determine the sublot sizes of the products under a given sequence. 

However, MIP solver requires a considerable computation time. Thus, the number of 

sequence alternatives to be evaluated should be restricted. The main purpose, in this 

manner, is to find the most efficient results in rather less number of iterations. For 

that reason, neighborhood-search algorithms are more appropriate than evolutionary 

algorithms (e.g., genetic algorithms) which require the evaluation of all alternatives 

within a population. Moreover, we have an efficient sequence heuristic, i.e., 

NEH(D,TPLS), at hand, to  be used to obtain a good initial point.  

 

In this section, a TS based solution approach is proposed for three investigated 

multi product LS problems introduced in the previous section. The framework of this 

solution approach is given in Figure 6.1. Different from the solution approach 

presented in previous chapter, this solution approach searches the alternative product 

sequences via TS in order to obtain better makespan values. 

 

 
Figure 6.1 The framework of the proposed TS based solution approach 

for multi product LS problems 

Proposed TS based 
Solution Approach 

 
 

Multi Product 
LS Problem 

 

Sublot Allocation  
Sub-problem 

Sequencing  
Sub-problem 

Proposed Tabu Search 
Algorithm 

MIP based Proposed 
Solution Approach 

NEH(D,TPLS) 
Sequencing Heuristic 
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The main reasons of preferring TS are;  

- a good sequencing heuristic (i.e., NEH(D,TPLS)) has already proposed in the 

previous chapter and it can be used as an initial sequence of a search algorithm. 

-  TS avoids from local optimum traps. 

- TS requires less number of iterations (accordingly less computation time) to 

obtain efficient results when compared with some other types of meta-

heuristics such as GA.  

- TS utilizes the short term memory process. 

 

6.2 The Proposed Tabu Search Algorithm 

 

For the investigated LS problems, a TS based heuristic algorithm is developed to 

sequence the products. Additional notation used in the proposed algorithms is as 

follows: 

 

TL   set of current pair of products in the tabu list  

LM  last best makespan  

BM  best makespan  

BS  best sequence 

NS  new sequence 

R  very big number 

NA number of alternative sequences generated from a NS 

Aj jth alternative sequence (j = 1,…, NA) 

Mj  corresponding makespan of sequence Aj 

movej move (a pair of products) that generates the alternative sequence Aj 

Sp number of iterations that move p wait in TL (p ∈ TL) 

maxlength maximum number of iterations that a move should wait in TL 

IC   iteration counter that counts the consecutive number of non-improved 

solutions 

NIS a limit on the consecutive number of non-improved solutions 

(termination criterion) 



 

 

113

 

The Steps of Proposed Tabu Search based Heuristic Algorithm 

Step 0. Initialization. Set TL = ∅, IC = 0, BM = R, LM = R, BS = ∅, NS=∅.                   

Step 1. Initial Sequence. Apply an algorithm to get the initial sequence of products. 

 Step 2. Running. Give this initial sequence to the MIP model as an input and obtain 

the corresponding makespan value. Set BS and NS to the initial sequence, BM 

to the makespan value of the initial sequence. 

Step 3. Alternative Sequence Generation and Evaluation  

Step 3.1 Generation. Generate alternative sequences from NS by using an alternative 

generation method.  

Step 3.2 Running. For j=1 to NA 

Succeed the neighborhood move, movej and obtain the corresponding 

sequence Aj. Give Aj to the MIP model as an input to obtain corresponding 

makespan value Mj  

Step 3.3 Sorting. Sort Aj in non-decreasing order of Mj, ],...,,[ ][]2[]1[ ANAAASL =

    (note that [i] corresponds to the alternative at the position i in the sorted list)  

Step 4. Selection of the new sequence by tabu search. 

Set i = 1, NS = ∅ 

While NS = ∅  

Do{  

If M[i] < BM then, 

     If  move[i] ∉ TL then, 

{set NS = A[i], BS = A[i], BM = M[i], Sp = Sp-1 TLp∈∀ ,   

  add move[i] to the TL, =
][ imoveS maxlength} 

     Else {set NS = A[i], BS = A[i], BM = M[i], Sp = Sp-1 TLp∈∀ ,   

  =
][ imoveS maxlength} 

Else If M[i] = BM then, 

     If  move[i] ∉ TL then, 

{set NS = A[i], BS = A[i], BM = M[i], Sp = Sp-1 TLp∈∀ ,   

  add move[i] to the TL, =
][ imoveS maxlength} 
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 Else If M[i] >BM 

      If  move[i] ∉ TL then,  

{set NS = A[i], Sp = Sp-1 TLp∈∀ ,  

  add move[i] to the TL, =
][ imoveS maxlength} 

i = i+1 } 

For all p TL∈ , if Sp = 0 remove movep from TL. 

If LM ≤ BM then, set IC = IC+1,  

Else {set LM = BM, IC = 0} 

Step 5. Termination. If  IC ≤ NIS then go to Step 3, Else STOP.  

 

This TS based heuristic is applied to three investigated LS problems defined in the 

previous section. The general structure of the algorithm is the same for all 

investigated problems. However, it differs in terms of some parameter levels and the 

running steps of the algorithm (i.e., way of obtaining the makespan values of a given 

sequence). These differences are given in detail in following sections for each 

investigated problem. Remember that, the important factors that affect the efficiency 

of TS is described in Section 4.2. The common issues of the algorithm based on these 

factors are listed below. 

 

• Initial point  

 The analysis and results of Chapter 5 clarify that NEH(D,TPLS) gives most 

efficient results in very small computation time requirements. Since NEH(D,TPLS) 

is the best one for all investigated problems, it can be used as an initial sequence in 

common.  

 

• Tabu list length  

The alternative tabu list lengths are selected to be three, five, seven and nine. 

After a number of preliminary trials, the length of tabu list is selected to be seven, 

maxlength = 7, which is generally advised in most of the studies (Glover, 1986). 

Detailed results are given in Table 6.2.  
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6.2.1 Continuous Sized Consistent Sublots 

 

The different components for the first problem type (the continuous sized 

consistent sublots) are given below.   

 

• Alternative Sequence Generation  

If the computation time for each alternative is not so much, all pairwise 

interchange method is generally preferred, since it searches all possible alternatives 

within the neighborhood which increases the efficiency of the search procedure.   

Since MIP sub-problems with continuous sized consistent sublots can be solved in a 

few seconds, all-pairwise interchange method can be used for this problem type. 

Notice that, the number of alternatives generated from each new seed is 

( 1)
2A

J JN −
= .  

 

• Termination Criteria 

As mentioned before, an increase in the number of products causes an increase in 

the total number of alternative sequences (see Table 6.1). Thus, the termination 

criteria may be related with the number of products. It is considered as the 

termination criteria that if the number of consecutive non-improved solutions reaches 

to half of the number of products, i.e.,
2
JNIS ⎡ ⎤= ⎢ ⎥⎢ ⎥

. By this choice, results can be 

obtained in a reasonable time.  

 

• Running Steps  

In Step 2 and Step 3.2 of the proposed algorithm, apply the steps of procedure, 

except Step 0, developed for continuous sized consistent sublots and given in Section 

5.3.1. 
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Table 6.2 The effect of tabu list length on makespan values for discrete sized consistent sublots 

Instance Tabu List 
Length=3

Tabu List 
Length=5

Tabu List 
Length=7

Tabu List 
Length=9

5-5-5-1 889 889 889 889
5-5-5-2 866 866 866 866
5-5-5-3 1419 1419 1419 1419
5-5-5-4 753 753 753 753
5-5-5-5 1364 1364 1364 1364
5-5-10-1 1670 1670 1670 1670
5-5-10-2 1692 1692 1691 1691
5-5-10-3 1272 1272 1272 1272
5-5-10-4 1354 1354 1354 1354
5-5-10-5 1312 1312 1312 1312
5-10-5-1 839 839 839 839
5-10-5-2 819 819 819 819
5-10-5-3 1332 1332 1332 1332
5-10-5-4 741 741 741 741
5-10-5-5 1328 1328 1328 1328
5-10-10-1 1494 1494 1494 1494
5-10-10-2 1485 1485 1485 1485
5-10-10-3 1163 1163 1163 1163
5-10-10-4 1237 1237 1237 1237
5-10-10-5 1147 1147 1147 1147
10-5-5-1 1951 1951 1951 1951
10-5-5-2 2070 2070 2070 2070
10-5-5-3 2120 2120 2120 2120
10-5-5-4 1913 1913 1913 1913
10-5-5-5 1941 1941 1941 1941
10-5-10-1 3038 3038 3038 3038
10-5-10-2 2483 2483 2482 2482
10-5-10-3 2807 2807 2819 2807
10-5-10-4 2448 2448 2448 2448
10-5-10-5 2190 2190 2190 2173
10-10-5-1 1950 1950 1950 1950
10-10-5-2 2052 2052 2052 2052
10-10-5-3 2048 2048 2048 2048
10-10-5-4 1899 1899 1899 1899
10-10-5-5 1926 1926 1926 1926
10-10-10-1 2940 2940 2940 2940
10-10-10-2 2354 2338 2322 2354
10-10-10-3 2671 2671 2671 2671
10-10-10-4 2267 2267 2267 2267
10-10-10-5 2065 2065 2065 2065
Average 1732.73 1732.33 1732.18 1732.25  

 

 6.2.2 Discrete Sized Consistent Sublots 

 

The different components for the second problem type (the discrete sized 

consistent sublots) are given below.   
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• Alternative Sequence Generation 

In this problem type, the evaluation procedure of alternative sequences requires an 

extra rounding algorithm which necessitates an additional computation time. 

Therefore, adjacent pairwise interchange method instead of all-pairwise is considered 

for this problem type. By this choice, the number of alternatives generated from a 

new seed decreases to 1AN J= − .  

 

• Termination Criteria 

The disadvantage of adjacent pairwise interchange method can be eliminated to a 

degree by termination criteria.  If the number of consecutive non-improved solutions 

reaches to the number of products, NIS J= , the search terminates.  

 

• Running Steps  

In Step 2 and Step 3.2 of the proposed algorithm, apply the steps of procedure, 

except Step 0, developed for discrete sized consistent sublots and given in Section 

5.3.2 (Apply the rounding algorithm of Sriskandarajah & Wagneur (1999)) 

 

6.2.3 Continuous Sized Variable Sublots 

 

The different components for the third problem type (the continuous sized 

variable sublots) are given below.   

   

• Alternative Sequence Generation 

In this problem type, the evaluation procedure of alternative sequences requires an 

extra computational effort to determine jsmtx  values of MIP model given in Section 

5.3.3. Therefore, adjacent pairwise interchange method instead of all-pairwise is 

considered for this problem type. By this choice, the number of alternatives 

generated from a new seed decreases to 1AN J= − .  
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• Termination Criteria 

If the number of consecutive non-improved solutions reaches to half of the 

number of products,
2
JNIS ⎡ ⎤= ⎢ ⎥⎢ ⎥

, the search is terminated. By this choice, results can 

be obtained in a reasonable time.  

 

• Running Steps  

In Step 2 and Step 3.2 of the proposed algorithm, apply the steps of procedure, 

except Step 0, developed for continuous sized variable sublots and given in Section 

5.3.3.  

 

6.3 Computational Results 

 

The set of test problems given in Chapter 5 is also considered in the evaluation of 

the proposed TS based heuristic so that a common comparison scheme is obtained. 

The MIP model part of the solution approaches built in OPL Studio 3.7 optimization 

package and solved on a Centrino 1.73 GHz processor with 1.5 GB RAM. 

 

The TS based heuristic for the investigated LS problems are evaluated and the 

computational results are given in Appendix C. In order to provide a fair comparison 

between MIP and TS based heuristic, MIP solver is run at least the computational 

time of TS based heuristic. More clearly, a 1000 second run time limit is set to all 

instances where TS based heuristic terminates under 1000 seconds; whereas, if TS 

based heuristic is able to give results in more than 1000 seconds, an adjusted time 

limit greater than the computation time of TS based heuristic is set to MIP.  

 

The computational results belonging to continuous sized consistent sublots are 

given in Appendix C1. This table also includes the results of MIP and initial 

sequence, NEH(D,TPLS). MIP model could reach to optimal results in only five 

product cases. When all test problems are considered, TS based heuristic performs 

better than MIP model.   
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The computational results for the discrete sized consistent sublots are given in 

Appendix C2. TS based heuristic results are better than the ones of MIP under 

solution time limit and NEH(D,TPLS). MIP model gives optimal results in 17 out of 

60 test problems all of which belongs to five product cases.  

  

The computational results for the continuous sized variable sublots are given in 

Appendix C3. MIP model could obtain optimal solution in only two instances (5-5-5-

3 and 5-5-5-5) out of 60 instances. The other instances could only reach feasible 

results in computation time limits. 

 

The minimum makespan value of three solution approaches is considered as the 

benchmark value. The percentage deviation of MIP, NEH(D,TPLS) and TS based 

heuristic from the benchmark value are obtained for each investigated problem type. 
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Figure 6.2 Percentage deviations of solution approaches from the minimum results for continuous 

sized consistent sublots. 

 

As seen from Figure 6.2, the smaller problem instances can be optimally solved 

by the MIP model. TS based heuristic produces very close solutions to the optimal 

ones, whereas NEH(D,TPLS) results in small deviations in a number of test 

problems. For 10 and 15 product test instances, the percent deviations increase for 

both MIP and NEH(D,TPLS). For 10 product problems, the deviation of 
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NEH(D,TPLS) is greater than MIP, while for 15 product instances, the percent 

deviations are similar. For 10 and 15 product instances, TS based heuristic produces 

better results than the other ones.     

 

 As can be seen in Figure 6.3, for discrete sublot sizes, MIP gives better results 

than both NEH(D,TPLS) and TS based heuristic for five product cases as well as for 

some instances of 10 product cases. For larger problems, the deviations significantly 

changes in favor of TS based heuristic. Furthermore, the solutions of NEH(D,TPLS) 

which are worse than MIP and TS based heuristic in five and 10 product instances 

become competitive with MIP results in 15-product test instances confirming the 

inferences related to NEH(D,TPLS) given in Chapter 5.    

Figure 6.3 Percentage deviations of solution approaches from the minimum results for discrete sized 

consistent sublots.  

 

For continuous sized variable sublot problems, the superiority of TS based 

heuristic results can be seen in Figure 6.4. The MIP could not perform better even 

than NEH(D,TPLS) in most instances. Especially for 15 product cases, the percent 

deviations of MIP are significantly higher than NEH(D,TPLS) and TS based 

heuristic.  
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Figure 6.4 Percentage deviations of solution approaches from the minimum results for continuous 

sized variable sublots. 

 

 Figure 6.5 presents a comparison of three solution approaches in terms of overall 

results for all investigated problem types.  

 

The minimum makespan value of three solution approaches is considered as the 

benchmark value. The average percent deviations of each solution approach from 

these benchmark values are given in Figure 6.5 for each investigated problem type. 

In all three problem types, TS based heuristic obviously gives better results than the 

other two approaches.   
 

For consistent sublots, MIP model generates better results than initial sequence, 

NEH(D,TPLS). However, for variable sublots, NEH(D,TPLS) gets significantly 

better than MIP. This is most probably due to the fact that the MIP model of 

consistent sublot case is simpler than the variable sublot case. This case can also be 

seen in the comparison of MIP and TS based heuristic. TS based heuristic generates 

0.14% deviation while MIP generates 2.37 % deviation from benchmark values in 

average.    
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 Figure 6.5 Comparison of solution approaches for the investigated problems 

 

Since the TS based heuristic starts with the initial sequence NEH(D,TPLS), 

surely, it provides better results than NEH(D,TPLS). Figure 6.5 also shows that the 

performance of NEH(D,TPLS) for variable sublots is relatively better than the 

performance of it for consistent sublots.  

 

It is also important, particularly for practical cases, to compare the computation 

time of solution approaches. The computation time of NEH(D,TPLS) is negligible 

when compared with the computation time of other solution approaches. On the other 

hand, MIP and TS based heuristic spend comparable times to obtain the results. The 

TS based heuristic generally spends less computation time than MIP, in average. The 

TS based heuristic reaches its results in 90.82 %, 81.18 % and 131.96 % less time 

than MIP for the three investigated problems, respectively.  Therefore, it can be said 

that TS based heuristic not only generates better results but also gives these results in 

less computation times than MIP model.  

 

One may expect that, starting from NEH(D,TPLS) and applying TS based 

heuristic procedure should significantly improve the makespan rather than relatively 

small improvements (1%-1.5%). This is probably caused by two reasons: 

- The results of NEH(D,TPLS) are so good that TS based heuristic requires small 

improvements to get better results. 

- TS based heuristic is quite inefficient in finding better results.  
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To evaluate these two cases, the LPT(TPT) sequencing heuristic, which gives the 

worst performance on the makespan, is selected as the initial sequence and TS based 

heuristic is then applied to obtain the makespan results. If TS based heuristic with 

LPT(TPT) initial sequence does not improve the makespan so much from the 

makespan values of LPT(TPT) sequence, then it can be said that TS based heuristic 

is quite inefficient in finding better results. Otherwise, we shall infer that 

NEH(D,TPLS) generates relatively better results and these results can be improved 

in only small proportions by TS based heuristic.  

 

In the light of above discussion, TS based heuristic is applied starting from these 

two initial sequences for continuous sized consistent sublots. The detailed 

computational results are given in Appendix C4. Table 6.3 summarizes these results.  

 

TS based heuristic improves NEH(D,TPLS) results by 1.74%, whereas improves 

LPT(TPT) sequence by 15.41%. Therefore, TS based heuristic works efficiently in 

finding better results. This also confirms that the tabu search parameters are selected 

appropriately. In addition, it can be said that the results of NEH(D,TPLS) are so good 

that TS based heuristic requires small improvements to get better results. 

 
Table 6.3 Comparison of performance of TS based heuristic starting from NEH(D,TPLS) and 

LPT(TPT)   

Initial Sequence TS based Heuristic 
  

Avg. Makespan Avg. Makespan % improvement Avg. Comp. Time

NEH (TPLS) 2196.23 2158.11 1.74 594.42 

LPT(TPT) 2553.93 2160.34 15.41 776.11 
 

Another discussion can be made on the results of TS based heuristic of two initial 

sequences. As seen from Table 6.3, TS based heuristic starting from both initial 

sequences generates almost the same makespan values in average. At this point, the 

computation times become significant. Since resulting average makespan value of 

NEH(D,TPLS), i.e., 2196.23, is better than the one of  LPT(TPT), i.e., 2553.93; TS 

based heuristic with NEH(D,TPLS) requires less computation effort than with 

LPT(TPT). More specifically, applying TS based heuristic starting from 
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NEH(D,TPLS) sequence requires 30.57 % less computation time than starting from 

LPT(TPT).  

 

6.4 Chapter Summary 

 

This chapter has extended the work of Chapter 5 by introducing a TS based 

solution approach. The solution of NEH(D,TPLS) has been taken as initial sequence 

of TS based heuristic, since it generates better results for all types of investigated 

problems. However, TS based heuristic differs in terms of some parameter levels and 

the running steps of the algorithm (i.e., way of obtaining the makespan values of a 

given sequence) for each investigated problem.  

 

To evaluate the proposed TS based heuristics, the results of NEH(D,TPLS) and 

MIP model have also been recorded. The following outcomes have been obtained. 

 

For consistent sublots, the smaller problem instances can be optimally solved by 

MIP model under time limit whereas it fails to give optimal results as the problem 

size scales up. For large sized problems (i.e., 15 products), NEH(D,TPLS) gives 

comparable results with MIP model. When compared with the MIP model under time 

limit, the performance of TS based heuristic improves as the problem scales up. 

Furthermore, it gives these results in less computation times than MIP model.  

 

For variable sublots, the efficiency of TS based heuristic becomes obvious in 

almost all problem instances. Moreover, the results of NEH(D,TPLS) becomes 

comparable with the ones of MIP model (under time limit) in not only for large sized 

but also small and medium sized test problems.  

 

A final analysis has been performed to evaluate the efficiency of TS based 

heuristic. From this analysis, it has been concluded that; 

- The results of NEH(D,TPLS) are so good that TS based heuristic requires small 

improvements to get better results. 

- TS based heuristic is quite efficient in finding better results.  
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CHAPTER SEVEN 

CONCLUSION 

 

7.1 Summary of the Thesis 

 

In this thesis, a class of LS problems in flow shops, which has not received much 

attention in literature, has been investigated. The main purpose of this thesis is to 

develop efficient solution algorithms for the investigated problems. 

  

An LS problem has a number of characteristics varying in the production 

environment, i.e., sublot types, schedule structures etc. Comprehensive information 

on these characteristics has been given in the early stages of the thesis. Then, a 

comprehensive literature review on flow shop LS problems with time based 

objectives has been given. The research gaps and the LS problems, which have not 

received much attention in literature, are explored. In the light of this review, a single 

product multi machine LS problem in stochastic flow shops and three multi product 

multi machine LS problems in deterministic flow shops have been investigated. The 

common properties of these problems are the production environment (i.e., 

permutation flow shops) and objective function (i.e., minimizing makespan). 

 

The single product multi machine LS problem is composed of discrete sized 

consistent sublots. Since even deterministic LS problems are NP-hard, it is rather 

difficult to model and solve stochastic systems. In this respect, a heuristic procedure, 

which tries to optimize the sublot sizes in stochastic flow shops, has been developed. 

The proposed algorithm is first evaluated on deterministic problems to see how well 

it performs and is, therefore, compared against the optimum values obtained by a 

MIP model developed by Biskup & Feldmann (2006). Since the results are very 

promising, i.e., the results of the heuristic are very close to optimal values, the 

proposed approach which is a combination of simulation and tabu search has then 

been applied to stochastic flow shops. The tabu search tries to explore the 

neighborhood for better solutions, whereas the simulation handles the stochastic 

behavior of the system and computes the necessary values. The results thus obtained
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have further been compared with those of OptQuest’s which is a built-in 

optimization tool in ARENA simulation software. The proposed heuristic 

outperforms OptQuest. Therefore, it could easily be used to solve stochastic as well 

as deterministic LS problems in flow shop settings.  

 

Three research problems in multi product, multi machine LS problems with non-

intermingling case are then investigated. These problems differ from each other by 

the following characteristics: 

- Continuous sized consistent sublots,  

- Discrete sized consistent sublots and  

- Continuous sized variable sublots.  

 

The investigated LS problems are decomposed into a sequencing problem and a 

sublot allocation problem. For the sequencing problem, seven different sequencing 

heuristics widely used in the general flow shop scheduling have been selected. These 

sequencing heuristics have been modified according to LS properties and totally 15 

different sequencing rules have been constructed and evaluated.  If the sequence is 

given, only sublot allocation sub-problem remains. However, even with the given 

sequence, it is still difficult to find optimal sublot sizes in multi product LS 

problems. Therefore, solution approaches to get makespan values under a given 

sequence have been proposed. Particularly, the proposed solution approach for 

continuous sized variable sublots is novel in the LS literature.  

 

For all investigated problem types, NEH(D,TPLS) heuristic gives not only more 

number of best results, but also produces rather close results to the best ones. The 

performance of this heuristic has been evaluated against the MIP model results. 

NEH(D,TPLS) generates rather close results for the consistent sublot cases and 

outperforms the MIP model for continuous sized variable sublot case. Further studies 

may consider NEH(D,TPLS) as a benchmark method to evaluate the performances of 

their approaches.   
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Evaluating only one sequence alternative may not be a good approximation 

method for small to medium sized LS problems. However, the benefit of the best 

sequencing heuristic can be carried out to a search procedure. Therefore, a TS based 

solution approach starting from the sequence of NEH(D,TPLS) has been proposed 

for three investigated multi product LS problems. The computational results show 

that TS based approach gives rather efficient results when compared with the ones of 

MIP models for all problem types.  

 

7.2 Contributions 

 

The research proposed in this thesis provides several contributions. This section 

presents the contributions with respect to problem types. 

 

The contributions of single product LS problem are given in the following. 

 

o A research problem of this thesis handles a single product LS problem in 

stochastic flow shops which is rarely studied in the LS literature although 

widely encountered in real life applications.  

 

o The stochastic LS studies in the literature only analyze the performance of pre-

determined experimental sublot sizes instead of optimizing the sublot sizes. As 

far as we know, no study so far, has proposed a heuristic search algorithm that 

finds discrete sublot sizes in stochastic flow shops. In this thesis, a hybrid 

heuristic approach that integrates TS and simulation is proposed. The stochastic 

behavior of the system is handled by simulation and the sublot size 

configurations are searched by tabu search meta-heuristic.  

 

The contributions of multi product LS problem are given in the following. 

 

o A research problem of this thesis deals with multi product LS problems with 

variable sublot types, which is one of the hardest cases in the LS literature. To 
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the best of our knowledge, there exists only one study (i.e., Liu, Chen & Liu, 

2006) for this class of problems.  

 

o In this thesis, medium to large sized test instances of investigated problems are 

aimed to be solved. Most of real life applications require quite large problems 

to be solved. However, LS studies in the literature generally able to solve small 

to medium size problems.  

 

o In this thesis, a number of simple but efficient sequencing heuristics developed 

for pure flow shops are modified according to the requirements of LS to handle 

the sequencing part of the multi product LS problem. The best one of these 

sequencing heuristics is proposed to be used in multi product LS problems. 

This proposed sequencing heuristic not only solves large sized LS problems in 

reasonable times but also get efficient results for small and medium sized LS 

problems in small computation times.  

 

o Even with the given sequence, it is still difficult to find optimal sublot sizes in 

multi product LS problems due to sublot allocation sub-problem. The studies in 

the literature generally assume unit or equal sized sublots to eliminate the 

sublot allocation part of the multi product LS problem. In this thesis, solution 

approaches are proposed for each investigated research problem to obtain 

makespan values under a given sequence. Particularly, the proposed solution 

approach for continuous sized variable sublots is novel in the LS literature.  

 

o Hybrid methods that utilize the complementary strengths of heuristic/meta-

heuristic algorithms and MIP models may produce more efficient results. 

Therefore, proposed solution approaches in this thesis utilize the benefit of 

heuristic/meta-heuristic approaches in sequencing and of MIP models in sublot 

allocation. In addition, for variable sublot types, an alternative MIP model 

formulation is proposed based on the MIP models of Biskup & Feldmann 

(2006) and Feldmann & Biskup (2008).   
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7.3 Directions for Further Studies 

 

Since, the LS problems have a number of characteristics; any change in these 

characteristics describes a different LS problem. Therefore, LS problems with 

complex characteristics are worth to study on.   

 

Some of the future directions can be stated as follows.  

  

• Other versions of research problems with either attached or detached setups can 

be studied.   

 

• The proposed TS based solution approach for the single product LS problem in 

stochastic flow shops considers consistent sublots. The solution procedure may 

be extended to variable sublot types with some modifications. 

 

• The proposed solution approaches proposed for the multi product LS problems 

deals with non-intermingling schedules. These approaches may be extended to 

intermingling schedules. 

 

• The solution approach proposed for continuous sized variable sublots can be 

extended to solve the discrete sized variable sublots.  

 

• The research problems can be extended to include transportation activities. At 

this point, the sequence of sublots in the transporter queue (i.e., the decision that 

which sublot is going to be transported) may become important in addition to the 

product sequencing decisions. Various transporter queue disciplines (e.g., first in 

first out, sublot with small size is first) can be generated to analyze their 

performances (see Edis & Ornek, 2009b).  
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APPENDIX A1. Comparison of tabu search based heuristic and optimum results, L = 50 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
50 5 5 1 2 4 16 14 8 1032 5 14 12 11 8 1032 0.00 5 15 13 11 6 1032 0.00 5 15 13 11 6 1032 0.00
50 5 5 2 14 8 2 15 19 1262 8 9 10 11 12 1262 0.00 8 9 10 11 12 1262 0.00 8 9 10 11 12 1262 0.00
50 5 5 3 12 20 13 9 11 1342 9 14 11 9 7 1342 0.00 9 14 11 9 7 1342 0.00 9 14 11 9 7 1342 0.00
50 5 5 4 15 2 11 13 16 1210 10 12 10 10 8 1210 0.00 10 12 10 10 8 1210 0.00 10 12 10 10 8 1210 0.00
50 5 5 5 10 5 1 18 8 1052 6 9 13 15 7 1052 0.00 5 8 12 17 8 1052 0.00 5 8 12 17 8 1052 0.00
50 5 8 1 2 4 16 14 8 912 3 10 8 8 7 6 5 3 912 0.00 3 10 8 8 7 6 5 3 912 0.00 3 10 8 8 7 6 5 3 912 0.00
50 5 8 2 14 8 2 15 19 1125 5 5 6 7 6 7 9 5 1145 1.78 5 5 6 7 7 7 3 10 1145 1.78 5 5 6 7 7 3 7 10 1145 1.78
50 5 8 3 12 20 13 9 11 1173 7 11 9 6 5 5 4 3 1189 1.36 5 9 10 8 6 5 4 3 1173 0.00 5 9 10 8 6 5 4 3 1173 0.00
50 5 8 4 15 2 11 13 16 1051 6 6 6 6 6 6 7 7 1051 0.00 6 6 6 6 6 6 7 7 1051 0.00 6 6 6 6 6 6 7 7 1051 0.00
50 5 8 5 10 5 1 18 8 964 5 7 10 6 13 5 3 1 994 3.11 5 7 10 14 7 4 2 1 988 2.49 5 7 11 11 9 4 2 1 988 2.49
50 5 10 1 2 4 16 14 8 884 3 8 8 7 6 5 4 4 3 2 884 0.00 3 8 8 7 6 5 4 4 3 2 884 0.00 1 3 9 8 7 6 5 5 4 2 884 0.00
50 5 10 2 14 8 2 15 19 1076 4 4 5 5 6 7 6 8 4 1 1106 2.79 4 4 5 5 6 7 7 6 5 1 1106 2.79 4 4 5 5 6 7 7 2 5 5 1106 2.79
50 5 10 3 12 20 13 9 11 1117 4 6 5 9 7 6 4 4 3 2 1135 1.61 4 6 10 8 6 5 4 3 2 2 1117 0.00 4 6 10 8 6 5 4 3 2 2 1117 0.00
50 5 10 4 15 2 11 13 16 1002 4 5 5 5 5 5 5 5 5 6 1002 0.00 4 5 5 5 5 5 5 5 5 6 1002 0.00 4 5 5 5 5 5 5 5 5 6 1002 0.00
50 5 10 5 10 5 1 18 8 940 4 6 8 5 5 9 7 3 2 1 972 3.40 4 6 8 5 6 12 5 2 1 1 972 3.40 4 6 8 5 9 10 3 2 2 1 972 3.40
50 7 5 1 8 16 3 18 19 13 16 1655 9 10 10 11 10 1655 0.00 9 10 10 11 10 1655 0.00 9 10 10 11 10 1655 0.00
50 7 5 2 16 4 17 2 11 18 14 1526 10 10 10 11 9 1526 0.00 10 10 10 11 9 1526 0.00 10 10 10 11 9 1526 0.00
50 7 5 3 1 11 18 13 10 11 12 1410 8 12 11 10 9 1410 0.00 8 12 11 10 9 1410 0.00 8 12 11 10 9 1410 0.00
50 7 5 4 17 3 11 15 14 2 3 1284 11 11 10 9 9 1284 0.00 11 11 10 9 9 1284 0.00 11 11 10 9 9 1284 0.00
50 7 5 5 11 14 3 15 14 14 18 1547 9 9 10 11 11 1547 0.00 9 9 10 11 11 1547 0.00 9 9 10 11 11 1547 0.00
50 7 8 1 8 16 3 18 19 13 16 1377 5 6 6 7 7 7 6 6 1377 0.00 5 6 6 7 7 7 6 6 1377 0.00 5 6 6 7 7 7 6 6 1377 0.00
50 7 8 2 16 4 17 2 11 18 14 1284 6 6 6 6 6 7 7 6 1284 0.00 6 6 6 6 6 7 7 6 1284 0.00 6 6 6 6 6 7 7 6 1284 0.00
50 7 8 3 1 11 18 13 10 11 12 1178 4 6 9 8 7 6 5 5 1178 0.00 4 6 9 8 7 6 5 5 1178 0.00 4 6 9 8 7 6 5 5 1178 0.00
50 7 8 4 17 3 11 15 14 2 3 1103 8 7 7 6 6 6 5 5 1103 0.00 8 7 7 6 6 6 5 5 1103 0.00 8 7 7 6 6 6 5 5 1103 0.00
50 7 8 5 11 14 3 15 14 14 18 1275 5 5 6 6 6 7 7 8 1275 0.00 5 5 6 6 6 7 7 8 1275 0.00 5 5 6 6 6 7 7 8 1275 0.00
50 7 10 1 8 16 3 18 19 13 16 1284 4 5 5 6 6 6 5 5 4 4 1284 0.00 4 5 5 6 6 6 5 5 4 4 1284 0.00 4 5 5 6 6 6 5 5 4 4 1284 0.00
50 7 10 2 16 4 17 2 11 18 14 1203 4 5 5 5 5 5 6 6 5 4 1203 0.00 4 5 5 5 5 5 6 6 5 4 1203 0.00 4 5 5 5 5 5 6 6 5 4 1203 0.00
50 7 10 3 1 11 18 13 10 11 12 1103 5 8 7 6 5 5 4 4 3 3 1108 0.45 3 5 8 7 6 5 5 4 4 3 1103 0.00 3 5 8 7 6 5 5 4 4 3 1103 0.00
50 7 10 4 17 3 11 15 14 2 3 1043 7 6 6 5 5 5 4 4 4 4 1043 0.00 7 6 6 5 5 5 4 4 4 4 1043 0.00 7 6 6 5 5 5 4 4 4 4 1043 0.00
50 7 10 5 11 14 3 15 14 14 18 1191 3 4 5 5 5 6 6 5 4 7 1207 1.34 3 4 5 5 5 6 5 4 6 7 1207 1.34 3 4 4 5 5 5 5 6 6 7 1191 0.00
50 10 5 1 3 15 16 3 8 10 11 1 9 13 1508 10 11 10 10 9 1508 0.00 10 11 10 10 9 1508 0.00 10 11 10 10 9 1508 0.00
50 10 5 2 8 19 6 3 20 4 13 15 8 7 1778 10 11 11 10 8 1778 0.00 10 11 11 10 8 1778 0.00 10 11 11 10 8 1778 0.00
50 10 5 3 4 1 16 10 7 12 2 1 6 20 1531 9 9 10 11 11 1531 0.00 9 9 10 11 11 1531 0.00 9 9 10 11 11 1531 0.00
50 10 5 4 6 7 2 20 12 11 8 15 1 11 1643 8 12 11 10 9 1643 0.00 8 12 11 10 9 1643 0.00 8 12 11 10 9 1643 0.00
50 10 5 5 9 14 2 15 20 17 9 1 11 9 1758 9 11 12 10 8 1758 0.00 9 11 12 10 8 1758 0.00 9 11 12 10 8 1758 0.00
50 10 8 1 3 15 16 3 8 10 11 1 9 13 1233 6 7 7 7 6 6 6 5 1233 0.00 6 7 7 7 6 6 6 5 1233 0.00 6 7 7 7 6 6 6 5 1233 0.00
50 10 8 2 8 19 6 3 20 4 13 15 8 7 1461 4 8 8 8 7 6 5 4 1461 0.00 4 8 8 8 7 6 5 4 1461 0.00 4 8 8 8 7 6 5 4 1461 0.00
50 10 8 3 4 1 16 10 7 12 2 1 6 20 1309 5 5 6 6 6 7 7 8 1309 0.00 5 5 6 6 6 7 7 8 1309 0.00 5 5 6 6 6 7 7 8 1309 0.00
50 10 8 4 6 7 2 20 12 11 8 15 1 11 1357 5 9 8 7 6 6 5 4 1357 0.00 5 9 8 7 6 6 5 4 1357 0.00 5 9 8 7 6 6 5 4 1357 0.00
50 10 8 5 9 14 2 15 20 17 9 1 11 9 1427 5 6 7 9 8 6 5 4 1427 0.00 5 6 7 9 8 6 5 4 1427 0.00 5 6 7 9 8 6 5 4 1427 0.00
50 10 10 1 3 15 16 3 8 10 11 1 9 13 1146 5 5 6 6 5 5 5 5 4 4 1146 0.00 5 5 6 6 5 5 5 5 4 4 1146 0.00 5 5 6 6 5 5 5 5 4 4 1146 0.00
50 10 10 2 8 19 6 3 20 4 13 15 8 7 1354 4 6 6 6 6 6 5 4 4 3 1354 0.00 4 6 6 6 6 6 5 4 4 3 1354 0.00 4 6 6 6 6 6 5 4 4 3 1354 0.00
50 10 10 3 4 1 16 10 7 12 2 1 6 20 1236 4 4 4 4 5 5 5 6 6 7 1236 0.00 4 4 4 4 5 5 5 6 6 7 1236 0.00 4 4 4 4 5 5 5 6 6 7 1236 0.00
50 10 10 4 6 7 2 20 12 11 8 15 1 11 1267 3 6 7 7 6 5 5 4 4 3 1271 0.32 3 6 7 7 6 5 5 4 4 3 1271 0.32 3 6 7 7 6 5 5 4 4 3 1271 0.32
50 10 10 5 9 14 2 15 20 17 9 1 11 9 1303 3 4 5 6 7 7 6 5 4 3 1303 0.00 3 4 5 6 7 7 6 5 4 3 1303 0.00 3 4 5 6 7 7 6 5 4 3 1303 0.00
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APPENDIX A2. Comparison of tabu search based heuristic and optimum results, L = 100  

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
100 5 5 1 2 4 16 14 8 2056 23 25 22 19 11 2074 0.88 23 25 22 19 11 2074 0.88 23 25 22 19 11 2074 0.88
100 5 5 2 14 8 2 15 19 2524 16 17 20 22 25 2524 0.00 16 17 20 22 25 2524 0.00 16 17 20 22 25 2524 0.00
100 5 5 3 12 20 13 9 11 2675 17 28 23 18 14 2675 0.00 17 28 23 18 14 2675 0.00 17 28 23 18 14 2675 0.00
100 5 5 4 15 2 11 13 16 2401 19 20 20 20 21 2401 0.00 19 20 20 20 21 2401 0.00 19 20 20 20 21 2401 0.00
100 5 5 5 10 5 1 18 8 2098 15 22 33 21 9 2118 0.95 15 22 33 21 9 2118 0.95 15 22 33 21 9 2118 0.95
100 5 8 1 2 4 16 14 8 1822 6 19 17 16 14 12 10 6 1824 0.11 6 20 18 16 14 12 9 5 1822 0.00 6 20 18 16 14 12 9 5 1822 0.00
100 5 8 2 14 8 2 15 19 2230 8 9 10 12 13 14 16 18 2233 0.13 8 9 10 11 13 15 16 18 2230 0.00 8 9 10 11 13 15 16 18 2230 0.00
100 5 8 3 12 20 13 9 11 2327 11 18 17 17 13 10 8 6 2360 1.42 10 16 21 16 13 10 8 6 2336 0.39 10 16 21 16 13 10 8 6 2336 0.39
100 5 8 4 15 2 11 13 16 2088 11 12 12 12 13 13 13 14 2088 0.00 11 12 12 12 13 13 13 14 2088 0.00 11 12 12 12 13 13 13 14 2088 0.00
100 5 8 5 10 5 1 18 8 1912 10 14 22 13 17 14 7 3 1986 3.87 10 14 22 14 22 11 5 2 1980 3.56 10 14 22 28 14 6 4 2 1976 3.35
100 5 10 1 2 4 16 14 8 1756 5 16 15 14 12 10 9 8 7 4 1758 0.11 5 17 15 13 12 10 9 8 7 4 1756 0.00 5 17 15 13 12 10 9 8 7 4 1756 0.00
100 5 10 2 14 8 2 15 19 2134 8 9 10 11 12 11 10 11 16 2 2212 3.66 8 9 10 11 12 11 10 16 11 2 2212 3.66 8 9 10 11 12 14 16 13 5 2 2212 3.66
100 5 10 3 12 20 13 9 11 2220 8 13 10 10 11 14 12 9 7 6 2294 3.33 8 13 10 15 15 12 9 7 6 5 2261 1.85 7 12 20 15 13 10 8 6 5 4 2220 0.00
100 5 10 4 15 2 11 13 16 1984 9 9 9 10 10 10 10 11 11 11 1984 0.00 9 9 9 10 10 10 10 11 11 11 1984 0.00 9 9 9 10 10 10 10 11 11 11 1984 0.00
100 5 10 5 10 5 1 18 8 1868 7 10 15 10 10 10 13 15 7 3 1938 3.75 7 10 15 10 10 10 21 10 5 2 1932 3.43 7 10 15 10 10 23 14 7 3 1 1928 3.21
100 7 5 1 8 16 3 18 19 13 16 3298 18 20 22 21 19 3298 0.00 19 21 22 20 18 3298 0.00 19 21 22 20 18 3298 0.00
100 7 5 2 16 4 17 2 11 18 14 3033 19 20 21 22 18 3033 0.00 19 20 21 22 18 3033 0.00 19 20 21 22 18 3033 0.00
100 7 5 3 1 11 18 13 10 11 12 2806 17 25 22 19 17 2806 0.00 17 25 22 19 17 2806 0.00 17 25 22 19 17 2806 0.00
100 7 5 4 17 3 11 15 14 2 3 2551 23 21 20 19 17 2551 0.00 23 21 20 19 17 2551 0.00 23 21 20 19 17 2551 0.00
100 7 5 5 11 14 3 15 14 14 18 3059 17 19 20 21 23 3059 0.00 17 19 20 21 23 3059 0.00 17 19 20 21 23 3059 0.00
100 7 8 1 8 16 3 18 19 13 16 2732 11 12 13 14 14 13 12 11 2732 0.00 11 12 13 14 14 13 12 11 2732 0.00 11 12 13 14 14 13 12 11 2732 0.00
100 7 8 2 16 4 17 2 11 18 14 2542 12 12 13 13 13 14 13 10 2548 0.24 12 12 13 13 13 14 13 10 2548 0.24 11 12 12 13 13 14 14 11 2542 0.00
100 7 8 3 1 11 18 13 10 11 12 2344 11 18 16 14 12 11 10 8 2344 0.00 11 18 16 14 12 11 10 8 2344 0.00 11 18 16 14 12 11 10 8 2344 0.00
100 7 8 4 17 3 11 15 14 2 3 2183 16 15 14 13 12 11 10 9 2183 0.00 16 15 14 13 12 11 10 9 2183 0.00 16 15 14 13 12 11 10 9 2183 0.00
100 7 8 5 11 14 3 15 14 14 18 2523 9 10 11 12 13 14 15 16 2523 0.00 9 10 11 12 13 14 15 16 2523 0.00 9 10 11 12 13 14 15 16 2523 0.00
100 7 10 1 8 16 3 18 19 13 16 2537 5 9 10 11 11 12 12 11 10 9 2539 0.08 5 9 10 11 11 12 12 11 10 9 2539 0.08 5 9 10 11 11 12 12 11 10 9 2539 0.08
100 7 10 2 16 4 17 2 11 18 14 2384 9 9 10 10 10 11 11 12 10 8 2384 0.00 9 9 10 10 10 11 11 12 10 8 2384 0.00 9 9 10 10 10 11 11 12 10 8 2384 0.00
100 7 10 3 1 11 18 13 10 11 12 2197 8 13 10 13 12 11 10 8 8 7 2222 1.14 9 14 14 12 11 10 9 8 7 6 2198 0.05 5 9 14 14 13 11 10 9 8 7 2197 0.00
100 7 10 4 17 3 11 15 14 2 3 2068 13 13 12 11 10 10 9 8 8 6 2068 0.00 13 13 12 11 10 10 9 8 8 6 2068 0.00 13 13 12 11 10 10 9 8 8 6 2068 0.00
100 7 10 5 11 14 3 15 14 14 18 2349 7 9 10 10 11 12 12 13 11 5 2414 2.77 7 9 10 10 11 12 12 12 3 14 2414 2.77 7 9 10 10 11 12 12 9 13 7 2414 2.77
100 10 5 1 3 15 16 3 8 10 11 1 9 13 2987 22 21 20 19 18 2987 0.00 22 21 20 19 18 2987 0.00 22 21 20 19 18 2987 0.00
100 10 5 2 8 19 6 3 20 4 13 15 8 7 3532 21 22 22 19 16 3532 0.00 21 22 22 19 16 3532 0.00 21 22 22 19 16 3532 0.00
100 10 5 3 4 1 16 10 7 12 2 1 6 20 3043 17 19 20 21 23 3043 0.00 17 19 20 21 23 3043 0.00 17 19 20 21 23 3043 0.00
100 10 5 4 6 7 2 20 12 11 8 15 1 11 3286 20 23 21 19 17 3293 0.21 20 23 21 19 17 3293 0.21 20 23 21 19 17 3293 0.21
100 10 5 5 9 14 2 15 20 17 9 1 11 9 3516 18 22 24 20 16 3516 0.00 18 22 24 20 16 3516 0.00 18 22 24 20 16 3516 0.00
100 10 8 1 3 15 16 3 8 10 11 1 9 13 2441 13 14 14 13 12 12 11 11 2441 0.00 13 14 14 13 12 12 11 11 2441 0.00 13 14 14 13 12 12 11 11 2441 0.00
100 10 8 2 8 19 6 3 20 4 13 15 8 7 2901 13 14 14 15 14 12 10 8 2901 0.00 13 14 14 15 14 12 10 8 2901 0.00 13 14 14 15 14 12 10 8 2901 0.00
100 10 8 3 4 1 16 10 7 12 2 1 6 20 2581 9 10 11 12 13 14 15 16 2581 0.00 9 10 11 12 13 14 15 16 2581 0.00 9 10 11 12 13 14 15 16 2581 0.00
100 10 8 4 6 7 2 20 12 11 8 15 1 11 2700 8 15 16 15 13 12 11 10 2700 0.00 8 15 16 15 13 12 11 10 2700 0.00 8 15 16 15 13 12 11 10 2700 0.00
100 10 8 5 9 14 2 15 20 17 9 1 11 9 2827 12 14 17 16 14 11 9 7 2851 0.85 10 12 14 17 16 13 10 8 2827 0.00 10 12 14 17 16 13 10 8 2827 0.00
100 10 10 1 3 15 16 3 8 10 11 1 9 13 2257 10 11 11 11 11 10 10 9 9 8 2257 0.00 10 11 11 11 11 10 10 9 9 8 2257 0.00 10 11 11 11 11 10 10 9 9 8 2257 0.00
100 10 10 2 8 19 6 3 20 4 13 15 8 7 2692 6 12 12 12 13 12 10 9 8 6 2694 0.07 5 12 12 13 13 12 10 9 8 6 2692 0.00 5 12 12 13 13 12 10 9 8 6 2692 0.00
100 10 10 3 4 1 16 10 7 12 2 1 6 20 2441 6 8 8 9 9 10 11 12 13 14 2442 0.04 7 8 8 9 9 10 11 12 13 13 2441 0.00 7 8 8 9 9 10 11 12 13 13 2441 0.00
100 10 10 4 6 7 2 20 12 11 8 15 1 11 2504 6 10 15 13 12 11 10 9 8 6 2507 0.12 5 10 15 13 12 11 10 9 8 7 2504 0.00 5 10 15 13 12 11 10 9 8 7 2504 0.00
100 10 10 5 9 14 2 15 20 17 9 1 11 9 2606 8 10 12 14 15 12 10 8 6 5 2620 0.54 8 10 12 14 15 12 10 8 6 5 2620 0.54 8 10 12 14 15 12 10 8 6 5 2620 0.54
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APPENDIX A3. Comparison of tabu search based heuristic and optimum results, L = 150 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
150 5 5 1 2 4 16 14 8 3080 38 36 32 28 16 3116 1.17 32 36 32 28 22 3116 1.17 32 36 32 28 22 3116 1.17
150 5 5 2 14 8 2 15 19 3775 24 27 30 32 37 3786 0.29 23 26 30 33 38 3775 0.00 23 26 30 33 38 3775 0.00
150 5 5 3 12 20 13 9 11 4011 23 38 37 29 23 4035 0.60 26 43 34 26 21 4011 0.00 26 43 34 26 21 4011 0.00
150 5 5 4 15 2 11 13 16 3589 29 29 30 31 31 3589 0.00 29 29 30 31 31 3589 0.00 29 29 30 31 31 3589 0.00
150 5 5 5 10 5 1 18 8 3140 23 34 51 29 13 3172 1.02 23 34 51 29 13 3172 1.02 23 34 51 29 13 3172 1.02
150 5 8 1 2 4 16 14 8 2730 9 30 26 23 20 18 15 9 2730 0.00 9 30 26 23 20 18 15 9 2730 0.00 9 30 26 23 20 18 15 9 2730 0.00
150 5 8 2 14 8 2 15 19 3332 14 16 18 20 20 19 22 21 3404 2.16 14 16 18 20 20 23 28 11 3404 2.16 14 16 18 20 22 24 10 26 3404 2.16
150 5 8 3 12 20 13 9 11 3483 17 28 19 23 22 16 14 11 3567 2.41 17 28 24 25 19 15 12 10 3534 1.46 17 29 29 23 18 14 11 9 3509 0.75
150 5 8 4 15 2 11 13 16 3126 17 18 18 19 19 19 20 20 3126 0.00 17 18 18 19 19 19 20 20 3126 0.00 17 18 18 19 19 19 20 20 3126 0.00
150 5 8 5 10 5 1 18 8 2868 14 21 30 19 20 28 12 6 2972 3.63 14 21 30 19 28 22 11 5 2964 3.35 14 21 30 26 34 15 7 3 2950 2.86
150 5 10 1 2 4 16 14 8 2632 8 26 23 20 17 15 13 12 10 6 2632 0.00 8 26 23 20 17 15 13 12 10 6 2632 0.00 7 22 24 21 18 16 14 12 10 6 2632 0.00
150 5 10 2 14 8 2 15 19 3194 12 13 15 17 16 15 15 15 24 8 3318 3.88 12 13 15 17 16 15 15 20 25 2 3318 3.88 12 13 15 17 16 16 23 26 10 2 3318 3.88
150 5 10 3 12 20 13 9 11 3322 10 16 15 15 15 15 20 18 15 11 3516 5.84 10 16 15 15 15 21 20 16 12 10 3450 3.85 10 16 15 20 25 20 15 11 10 8 3384 1.87
150 5 10 4 15 2 11 13 16 2971 14 14 14 15 15 14 16 16 16 16 2974 0.10 14 14 14 14 15 14 16 16 16 17 2974 0.10 13 14 14 14 15 15 16 16 16 17 2971 0.00
150 5 10 5 10 5 1 18 8 2796 11 16 23 15 15 15 17 23 10 5 2916 4.29 11 16 23 15 15 15 24 19 8 4 2908 4.01 11 16 23 15 15 24 26 11 6 3 2900 3.72
150 7 5 1 8 16 3 18 19 13 16 4942 27 30 32 32 29 4942 0.00 27 30 32 32 29 4942 0.00 27 30 32 32 29 4942 0.00
150 7 5 2 16 4 17 2 11 18 14 4543 29 30 31 32 28 4543 0.00 29 30 31 32 28 4543 0.00 29 30 31 32 28 4543 0.00
150 7 5 3 1 11 18 13 10 11 12 4196 29 36 32 28 25 4202 0.14 29 36 32 28 25 4202 0.14 29 36 32 28 25 4202 0.14
150 7 5 4 17 3 11 15 14 2 3 3808 34 32 30 28 26 3808 0.00 34 32 30 28 26 3808 0.00 34 32 30 28 26 3808 0.00
150 7 5 5 11 14 3 15 14 14 18 4570 23 29 30 33 35 4605 0.77 26 28 30 32 34 4570 0.00 26 28 30 32 34 4570 0.00
150 7 8 1 8 16 3 18 19 13 16 4089 15 18 20 21 22 20 18 16 4089 0.00 15 18 20 21 22 20 18 16 4089 0.00 15 18 20 21 22 20 18 16 4089 0.00
150 7 8 2 16 4 17 2 11 18 14 3806 18 19 19 20 21 21 18 14 3812 0.16 17 18 19 19 20 21 20 16 3806 0.00 17 18 19 19 20 21 20 16 3806 0.00
150 7 8 3 1 11 18 13 10 11 12 3504 13 21 23 24 21 18 16 14 3546 1.20 13 20 26 23 20 18 16 14 3508 0.11 13 20 26 23 20 18 16 14 3508 0.11
150 7 8 4 17 3 11 15 14 2 3 3270 24 22 21 19 18 17 16 13 3270 0.00 24 22 21 19 18 17 16 13 3270 0.00 24 22 21 19 18 17 16 13 3270 0.00
150 7 8 5 11 14 3 15 14 14 18 3765 15 16 17 18 19 20 22 23 3765 0.00 15 16 17 18 19 20 22 23 3765 0.00 15 16 17 18 19 20 22 23 3765 0.00
150 7 10 1 8 16 3 18 19 13 16 3807 12 14 15 16 17 18 17 15 14 12 3808 0.03 12 14 15 16 17 18 17 15 14 12 3808 0.03 11 13 14 15 16 17 18 17 15 14 3807 0.00
150 7 10 2 16 4 17 2 11 18 14 3562 13 14 15 15 16 16 17 17 15 12 3564 0.06 13 14 14 15 15 16 16 17 17 13 3562 0.00 13 14 14 15 15 16 16 17 17 13 3562 0.00
150 7 10 3 1 11 18 13 10 11 12 3280 15 24 15 16 17 16 14 12 11 10 3340 1.83 13 22 21 19 17 15 13 11 10 9 3298 0.55 10 16 23 20 18 16 14 12 11 10 3280 0.00
150 7 10 4 17 3 11 15 14 2 3 3090 20 19 18 17 16 15 14 13 12 6 3090 0.00 20 19 18 17 16 15 14 13 12 6 3090 0.00 20 19 18 17 16 15 14 13 12 6 3090 0.00
150 7 10 5 11 14 3 15 14 14 18 3509 11 14 16 17 16 15 15 18 22 6 3681 4.90 11 14 16 17 16 15 19 21 19 2 3681 4.90 11 14 16 17 18 19 20 21 4 10 3681 4.90
150 10 5 1 3 15 16 3 8 10 11 1 9 13 4480 30 32 31 29 28 4480 0.00 30 32 31 29 28 4480 0.00 30 32 31 29 28 4480 0.00
150 10 5 2 8 19 6 3 20 4 13 15 8 7 5294 31 32 33 29 25 5294 0.00 31 32 33 29 25 5294 0.00 31 32 33 29 25 5294 0.00
150 10 5 3 4 1 16 10 7 12 2 1 6 20 4538 26 28 30 32 34 4538 0.00 26 28 30 32 34 4538 0.00 26 28 30 32 34 4538 0.00
150 10 5 4 6 7 2 20 12 11 8 15 1 11 4915 23 37 33 30 27 4921 0.12 23 37 33 30 27 4921 0.12 23 37 33 30 27 4921 0.12
150 10 5 5 9 14 2 15 20 17 9 1 11 9 5251 29 35 34 29 23 5286 0.67 26 31 37 31 25 5251 0.00 26 31 37 31 25 5251 0.00
150 10 8 1 3 15 16 3 8 10 11 1 9 13 3634 17 18 20 21 20 19 18 17 3656 0.61 17 18 20 21 20 19 18 17 3656 0.61 19 20 21 20 19 18 17 16 3634 0.00
150 10 8 2 8 19 6 3 20 4 13 15 8 7 4341 19 20 21 22 22 19 16 11 4347 0.14 19 20 21 22 22 19 16 11 4347 0.14 20 21 22 23 20 17 15 12 4341 0.00
150 10 8 3 4 1 16 10 7 12 2 1 6 20 3872 14 15 17 18 19 21 22 24 3872 0.00 14 15 17 18 19 21 22 24 3872 0.00 14 15 17 18 19 21 22 24 3872 0.00
150 10 8 4 6 7 2 20 12 11 8 15 1 11 4029 13 25 24 22 20 18 16 12 4029 0.00 13 25 24 22 20 18 16 12 4029 0.00 13 25 24 22 20 18 16 12 4029 0.00
150 10 8 5 9 14 2 15 20 17 9 1 11 9 4232 15 18 22 26 23 19 15 12 4232 0.00 15 18 22 26 23 19 15 12 4232 0.00 15 18 22 26 23 19 15 12 4232 0.00
150 10 10 1 3 15 16 3 8 10 11 1 9 13 3374 16 17 17 17 16 15 14 13 13 12 3374 0.00 16 17 17 17 16 15 14 13 13 12 3374 0.00 16 17 17 17 16 15 14 13 13 12 3374 0.00
150 10 10 2 8 19 6 3 20 4 13 15 8 7 4023 8 16 17 18 18 19 17 15 13 9 4033 0.25 8 16 17 18 18 19 17 15 13 9 4033 0.25 11 17 17 18 19 18 16 14 12 8 4025 0.05
150 10 10 3 4 1 16 10 7 12 2 1 6 20 3659 5 14 15 16 17 18 19 20 22 4 3761 2.79 5 14 15 16 17 18 19 21 13 12 3761 2.79 5 14 15 16 17 18 19 20 21 5 3761 2.79
150 10 10 4 6 7 2 20 12 11 8 15 1 11 3752 11 21 21 19 17 15 14 12 11 9 3757 0.13 11 21 21 19 17 15 14 12 11 9 3757 0.13 9 17 22 20 18 16 14 13 12 9 3753 0.03
150 10 10 5 9 14 2 15 20 17 9 1 11 9 3897 11 15 18 21 21 18 15 13 10 8 3915 0.46 11 14 17 20 22 19 16 13 10 8 3904 0.18 11 13 15 18 22 20 17 14 11 9 3897 0.00
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APPENDIX A4. Comparison of the TS based results and OptQuest results in stochastic LS problems  

Comp. Time
1 2 3 4 5 6 7 8 9 10 Tabu OptQuest Tabu OptQuest Tabu OptQuest Tabu OptQuest OptQuest

50 5 5 12 20 13 9 11 1380.63 1423.40 1.68 1380.63 1416.73 4.93 1380.63 1385.25 8.17 1380.63 1385.25 11.41 1385.25 13.67
100 5 5 12 20 13 9 11 2759.64 2829.28 2.62 2759.64 2787.19 5.87 2759.64 2761.12 9.11 2759.19 2759.64 12.35 2759.19 17.08
150 5 5 12 20 13 9 11 4136.73 4172.42 3.79 4136.73 4164.27 6.98 4136.73 4155.75 10.17 4136.73 4142.48 13.37 4136.73 26.14
50 8 5 12 20 13 9 11 1234.51 1284.34 8.29 1233.21 1257.53 17.27 1233.21 1244.15 26.37 1233.21 1233.21 35.41 1233.21 45.03

100 8 5 12 20 13 9 11 2456.32 2487.14 19.38 2456.32 2476.83 28.53 2456.32 2467.32 37.64 2456.32 2462.28 46.76 2462.28 51.38
150 8 5 12 20 13 9 11 3680.94 * 30.36 3680.94 * 39.33 3680.94 * 48.34 3680.94 * 57.34 3700.73 13.78
50 10 5 12 20 13 9 11 1185.82 * 20.49 1185.82 * 35.18 1185.82 * 49.87 1185.82 * 65.04 1195.54 19.98

100 10 5 12 20 13 9 11 2389.55 2392.81 21.32 2368.70 2381.84 36.56 2361.51 2373.69 51.76 2361.51 * 66.97 2373.69 55.76
150 10 5 12 20 13 9 11 3568.32 3580.22 36.14 3555.56 3569.90 50.66 3545.48 3568.31 65.20 3542.08 * 79.72 3568.31 66.00
50 5 7 8 16 3 18 19 13 16 1745.52 1745.52 0.81 1745.52 * 4.24 1745.52 * 7.77 1745.52 * 11.41 1745.52 3.50

100 5 7 8 16 3 18 19 13 16 3486.22 3491.04 0.79 3486.22 3487.76 4.49 3486.22 3486.22 8.22 3486.22 * 11.97 3486.22 8.82
150 5 7 8 16 3 18 19 13 16 5224.62 5236.55 1.17 5224.62 * 4.93 5224.62 * 8.69 5224.62 * 12.44 5236.55 3.34
50 8 7 8 16 3 18 19 13 16 1423.37 1427.05 4.24 1423.37 * 14.78 1423.37 * 51.34 1423.37 * 61.63 1427.05 7.20

100 8 7 8 16 3 18 19 13 16 2840.83 2864.51 6.32 2840.83 * 16.81 2840.83 * 27.34 2840.83 * 37.89 2864.51 9.45
150 8 7 8 16 3 18 19 13 16 4259.55 * 7.43 4259.55 * 18.02 4259.55 * 28.61 4259.55 * 39.22 4297.33 3.23
50 10 7 8 16 3 18 19 13 16 1330.49 * 5.21 1330.49 * 22.38 1330.49 * 39.53 1330.49 * 56.68 1343.09 3.23

100 10 7 8 16 3 18 19 13 16 2650.38 2662.21 8.63 2650.38 * 25.79 2650.38 * 42.95 2650.38 * 60.11 2650.38 18.64
150 10 7 8 16 3 18 19 13 16 3975.72 3983.16 13.75 3975.72 * 30.88 3975.72 * 48.02 3975.72 * 65.15 3979.74 18.66
50 5 10 3 15 16 3 8 10 11 1 9 13 1415.08 1436.92 1.55 1415.08 * 5.83 1415.08 * 10.18 1415.08 * 14.53 1436.92 3.24

100 5 10 3 15 16 3 8 10 11 1 9 13 2825.55 2873.84 2.66 2825.55 2827.55 7.04 2825.55 2825.55 11.46 2825.55 * 16.05 2825.55 12.81
150 5 10 3 15 16 3 8 10 11 1 9 13 4239.62 4308.65 3.14 4236.48 4265.05 7.59 4236.48 4238.40 12.03 4236.48 4238.40 16.54 4236.48 19.18
50 8 10 3 15 16 3 8 10 11 1 9 13 1159.99 1188.90 5.06 1159.99 * 17.61 1159.99 * 30.23 1159.99 * 42.90 1188.90 9.58

100 8 10 3 15 16 3 8 10 11 1 9 13 2310.59 2319.63 10.19 2310.59 * 22.85 2310.59 * 35.53 2310.59 * 48.23 2319.63 10.58
150 8 10 3 15 16 3 8 10 11 1 9 13 3461.37 3481.90 13.96 3461.37 * 26.64 3461.37 * 39.30 3461.37 * 52.01 3461.91 23.73
50 10 10 3 15 16 3 8 10 11 1 9 13 1082.53 1095.21 12.31 1082.53 * 32.77 1082.53 * 53.20 1082.53 * 73.67 1095.21 12.43

100 10 10 3 15 16 3 8 10 11 1 9 13 2148.17 2163.48 22.48 2148.17 * 42.85 2148.17 * 63.20 2148.17 * 83.54 2163.48 23.75
150 10 10 3 15 16 3 8 10 11 1 9 13 3223.37 * 32.29 3223.37 * 52.38 3223.37 * 72.83 3223.37 * 93.47 3223.37 30.30

10.97 21.60 33.22 43.92 19.65

Completion Times Completion Times Completion Times
At time of OptQuestAt time of Tabu-30 StepsAt time of Tabu-20 StepsAt time of Tabu-10 StepsAt time of Minimum

L S M Processing Times Time 
(min)

Time 
(min)

Time 
(min)

Time 
(min)

Time 
(min)

Completion Times
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APPENDIX A5 Comparison of the performances of TS_30 and optimum deterministic solutions applied in stochastic case 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
50 5 5 12 20 13 9 11 9 14 11 9 7 1342 1342 0.00 1386.00 1380.63 0.39
50 5 7 8 16 3 18 19 13 16 9 10 10 11 10 1655 1655 0.00 1746.92 1745.52 0.08
50 5 10 3 15 16 3 8 10 11 1 9 13 10 11 10 10 9 1508 1508 0.00 1423.47 1415.08 0.59
50 8 5 12 20 13 9 11 5 9 10 8 6 5 4 3 1173 1173 0.00 1236.36 1233.21 0.26
50 8 7 8 16 3 18 19 13 16 5 6 6 7 7 7 6 6 1377 1377 0.00 1425.82 1423.37 0.17
50 8 10 3 15 16 3 8 10 11 1 9 13 6 7 7 7 6 6 6 5 1233 1233 0.00 1172.76 1159.99 1.10
50 10 5 12 20 13 9 11 4 6 10 8 6 5 4 3 2 2 1117 1117 0.00 1193.24 1185.82 0.63
50 10 7 8 16 3 18 19 13 16 4 5 5 6 6 6 5 5 4 4 1284 1284 0.00 1333.25 1330.49 0.21
50 10 10 3 15 16 3 8 10 11 1 9 13 5 5 6 6 5 5 5 5 4 4 1146 1146 0.00 1100.83 1082.53 1.69

100 5 5 12 20 13 9 11 17 28 23 18 14 2675 2675 0.00 2777.10 2759.19 0.65
100 5 7 8 16 3 18 19 13 16 19 21 22 20 18 3298 3298 0.00 3528.93 3486.22 1.23
100 5 10 3 15 16 3 8 10 11 1 9 13 22 21 20 19 18 2987 2987 0.00 2845.79 2825.55 0.72
100 8 5 12 20 13 9 11 8 13 22 17 14 11 8 7 2327 2336 0.39 2490.82 2456.32 1.40
100 8 7 8 16 3 18 19 13 16 11 12 13 14 14 13 12 11 2732 2732 0.00 2849.98 2840.83 0.32
100 8 10 3 15 16 3 8 10 11 1 9 13 13 14 14 13 12 12 11 11 2441 2441 0.00 2359.75 2310.59 2.13
100 10 5 12 20 13 9 11 7 12 20 15 13 10 8 6 5 4 2220 2220 0.00 2380.59 2361.51 0.81
100 10 7 8 16 3 18 19 13 16 8 9 10 11 12 12 11 10 9 8 2537 2539 0.08 2658.89 2650.38 0.32
100 10 10 3 15 16 3 8 10 11 1 9 13 10 11 11 11 11 10 10 9 9 8 2257 2257 0.00 2195.03 2148.17 2.18
150 5 5 12 20 13 9 11 26 43 34 26 21 4011 4011 0.00 4178.79 4136.73 1.02
150 5 7 8 16 3 18 19 13 16 27 30 32 32 29 4942 4942 0.00 5264.70 5224.62 0.77
150 5 10 3 15 16 3 8 10 11 1 9 13 30 32 31 29 28 4480 4480 0.00 4280.27 4236.48 1.03
150 8 5 12 20 13 9 11 12 20 33 26 20 16 13 10 3483 3509 0.75 3734.87 3680.94 1.47
150 8 7 8 16 3 18 19 13 16 15 18 20 21 22 20 18 16 4089 4089 0.00 4288.17 4259.55 0.67
150 8 10 3 15 16 3 8 10 11 1 9 13 19 20 21 20 19 18 17 16 3634 3634 0.00 3523.17 3461.37 1.79
150 10 5 12 20 13 9 11 7 12 20 29 23 18 14 11 9 7 3322 3384 1.87 3592.48 3542.08 1.42
150 10 7 8 16 3 18 19 13 16 11 13 14 15 16 17 18 17 15 14 3807 3807 0.00 4018.20 3975.72 1.07
150 10 10 3 15 16 3 8 10 11 1 9 13 16 17 17 17 16 15 14 13 13 12 3374 3374 0.00 3291.10 3223.37 2.10

2609.30 2612.96 0.11 2676.94 2649.49 0.97

Stochastic Case
Optimum 

Deterministic TS_30 Prop.Dev 
(%)

Deterministic Case

Optimum TS_50 Prop.Dev 
(%)

Processing TimesL S M Optimum Sublot Sizes

Average  
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APPENDIX B1 An Example for the Rounding Algorithms 

 

Suppose that, production lot size L = 16, number of sublots S = 4 and the resulting 

continuous sizes of  sublots are { }6.4 ,4.5 ,2.3 ,8.2=cx .  

 

Steps of Forward Rounding Algorithm of Chen and Steiner (1997) 

Step 1. ⎣ ⎦∑
=

−=
S

s

c
sxLu

1
, 2)4532(16 =+++−=u . 

Step 2.  For the first u sublots which are not integer, set d
sx = ⎡ c

sx ⎤, then for the first 

two sublots, dx1 = ⎡2.8⎤ = 3 and dx2 = ⎡3.2⎤ = 4.  

For the rest of the sublots, set d
sx = ⎣ ⎦c

sx , then for the remaining two sublots, dx3 = 

⎣ ⎦4.5  = 5 and dx4 = ⎣ ⎦6.4  = 4.  

The resulting discrete sized sublots are { }4 ,5 ,4 ,3=dx . 

 

Steps of Rounding Algorithm of Sriskandarajah and Wagneur (1999)  

Step 1. Set W0 = 0, W1=L and Γ=∅, then W1=16. 

Step 2. For s =1 to S do 

{ d
sx = ⎣ ⎦c

sx +1 

   W0 = W0 + d
sx } 

For s =1, dx1 = ⎣ ⎦8.2 +1 = 3,   W0 = 0 + 3 = 3 

 For s = 2, dx2 = ⎣ ⎦2.3 +1 = 4,   W0 = 3 + 4 = 7 

 For s = 3, dx3 = ⎣ ⎦4.5 +1 = 6,   W0 = 7 + 6 = 13 

 For s = 4, dx4 = ⎣ ⎦6.4 +1 = 5,   W0 = 13 +5 = 18 

Step 3. W0 = W0 - W1  

find the product set Γ for which d
sx > 1 

Then, W0 = 18 - 16 = 2 and Γ = {1,2,3,4} 

Step 4. While W0 > 0 do 

{find ds = d
sx  - c

sx , s ∈  Γ 



 

 

146

 

  find r such that { }ssr dd
Γ∈

= max  

  d
rx  = d

rx -1  

      if d
rx =1, then Γ= Γ-{r} 

      W0 = W0 -1} 

Since W0 =2 > 0,  

d1 = 3 - 2.8 = 0.2 ;  d2 = 4 – 3.2 = 0.8 ; d3 = 6 – 5.4 = 0.6 ; d4 = 5 – 4.6 = 0.4 

{ }4.0 ,6.0 ,8.0 ,2.0max=rd = 0.8 = d2 , then r = 2, dx2  = 4 -1=3, W0 = 2-1 = 1. 

Since W0 =1 > 0 now,  

d1 = 3 - 2.8 = 0.2 ;  d2 = 3 – 3.2 = -0.2 ; d3 = 6 – 5.4 = 0.6 ; d4 = 5 – 4.6 = 0.4 

{ }4.0 ,6.0 ,2.0- ,2.0max=rd = 0.6 = d3 , then r = 3, dx3  = 6 -1=5, W0 = 1-1 = 0. 

Since W0 = 0 > 0 does not hold, STOP.  

The resulting discrete sized sublots are { }5 ,5 ,3 ,3=dx . 
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APPENDIX B2 Computational results of sequencing heuristics for discrete sized consistent sublots with the rounding algorithm of Chen and Steiner (1997)  
# of 

products
Maximum # 

of sublots
# of 

machines
Instance 

No
LPT 

(TPT)
SPT 

(TPT)
LPT 

(TPLS)
SPT  

(TPLS)
NEH    

(D,TPT)
NEH  

(I,TPT)
NEH  

(D,TPLS)
NEH  

(I,TPLS)
CDS  

(ORJ)
CDS  

(PLS)
PALMER 

(ORJ)
PALMER 

(PLS)
GUPTA 
(ORJ)

GUPTA 
(PLS)

BMI 
(ORJ)

Best 
Makespan

5 5 5 1 1023 888 1105 1202 983 943 901 915 937 988 1205 1116 1137 1032 1087 888
5 5 5 2 925 997 969 964 933 864 864 875 877 877 996 996 992 995 999 864
5 5 5 3 1592 1503 1573 1547 1430 1482 1430 1482 1473 1473 1546 1480 1592 1570 1430 1430
5 5 5 4 967 852 880 853 763 763 763 847 803 803 1012 1012 919 887 808 763
5 5 5 5 1725 1498 1694 1570 1400 1388 1365 1388 1454 1457 1826 1826 1744 1739 1454 1365
5 5 10 1 1812 1775 1694 1841 1718 1694 1718 1694 1703 1687 1868 1868 1750 1728 1721 1687
5 5 10 2 1924 1699 1924 1698 1703 1703 1703 1703 1719 1703 1858 1858 1936 1892 1747 1698
5 5 10 3 1438 1436 1433 1451 1286 1286 1286 1310 1286 1351 1545 1448 1518 1518 1376 1286
5 5 10 4 1575 1584 1590 1569 1368 1395 1368 1387 1389 1368 1704 1640 1547 1625 1511 1368
5 5 10 5 1476 1540 1527 1492 1319 1326 1361 1383 1319 1319 1549 1496 1449 1480 1527 1319
5 10 5 1 1000 860 1064 1171 957 850 850 863 904 958 1173 1085 1102 993 1028 850
5 10 5 2 882 956 916 913 890 829 828 840 828 828 937 937 937 957 948 828
5 10 5 3 1492 1416 1474 1457 1351 1351 1351 1351 1386 1386 1465 1422 1492 1471 1351 1351
5 10 5 4 936 841 856 808 749 749 749 808 777 777 985 985 870 854 802 749
5 10 5 5 1683 1433 1652 1506 1361 1432 1325 1356 1421 1412 1741 1741 1694 1705 1421 1325
5 10 10 1 1679 1618 1518 1676 1522 1529 1522 1512 1509 1529 1704 1704 1584 1564 1512 1509
5 10 10 2 1688 1544 1694 1536 1508 1508 1508 1508 1562 1508 1659 1659 1704 1667 1587 1508
5 10 10 3 1279 1322 1312 1308 1189 1189 1189 1203 1189 1248 1377 1321 1348 1348 1251 1189
5 10 10 4 1426 1451 1450 1471 1241 1326 1241 1241 1241 1245 1535 1492 1409 1455 1392 1241
5 10 10 5 1308 1350 1307 1314 1178 1176 1176 1199 1178 1178 1351 1305 1213 1297 1307 1176

10 5 5 1 2203 2322 2210 2226 1970 2002 1996 2002 1977 1977 2434 2453 2430 2377 2103 1970
10 5 5 2 2850 2371 2682 2703 2229 2139 2159 2168 2212 2198 2810 2788 2620 2641 2723 2139
10 5 5 3 2590 2325 2380 2296 2135 2185 2138 2235 2158 2182 2637 2602 2559 2554 2461 2135
10 5 5 4 2177 2148 2223 2181 1919 1962 1916 1957 1939 1916 2549 2556 2565 2567 2134 1916
10 5 5 5 2328 2397 2253 2582 2083 2037 2163 2106 2140 2012 2819 2678 2671 2770 2315 2012
10 5 10 1 3490 3465 3811 3613 3142 3212 3131 3247 3314 3252 3698 3715 3499 3569 3587 3131
10 5 10 2 3073 3064 2861 3130 2540 2619 2546 2619 2587 2505 3113 3098 3035 3037 2690 2505
10 5 10 3 3293 3395 3263 3222 2932 2841 2924 2965 2969 2955 3405 3460 3420 3373 3253 2841
10 5 10 4 2842 2996 2982 2815 2443 2616 2458 2458 2568 2566 2980 2922 2922 2988 2861 2443
10 5 10 5 2660 2521 2585 2541 2284 2302 2274 2336 2306 2282 2605 2611 2753 2656 2551 2274
10 10 5 1 2157 2283 2145 2179 1959 1969 1963 1977 1976 1976 2350 2391 2382 2315 2091 1959
10 10 5 2 2808 2334 2627 2650 2250 2125 2100 2058 2189 2124 2723 2713 2597 2596 2630 2058
10 10 5 3 2553 2256 2345 2256 2060 2132 2061 2134 2118 2118 2551 2535 2468 2469 2391 2060
10 10 5 4 2162 2068 2172 2095 1915 1934 1919 1916 1915 1919 2501 2515 2512 2512 2058 1915
10 10 5 5 2287 2354 2214 2533 2087 2048 2151 2195 2076 1995 2763 2653 2648 2739 2251 1995
10 10 10 1 3367 3321 3543 3489 3012 3056 3011 3152 3164 3108 3496 3512 3318 3354 3418 3011
10 10 10 2 2876 2786 2685 2852 2488 2436 2429 2520 2436 2386 2913 2919 2841 2803 2646 2386
10 10 10 3 3153 3187 3131 3033 2826 2770 2779 2770 2867 2846 3229 3270 3203 3182 3139 2770
10 10 10 4 2678 2816 2745 2636 2400 2381 2291 2291 2384 2396 2772 2684 2698 2732 2663 2291
10 10 10 5 2515 2365 2465 2404 2134 2109 2161 2197 2205 2127 2498 2457 2578 2495 2455 2109  
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APPENDIX B3 Computational results of sequencing heuristics for discrete sized consistent sublots (with rounding algorithm of Sriskandarajah and Wagneur, 1999) 

# of 
products

Maximum # 
of sublots

# of 
machines

Instance 
No

LPT 
(TPT)

SPT 
(TPT)

LPT 
(TPLS)

SPT  
(TPLS)

NEH    
(D,TPT)

NEH  
(I,TPT)

NEH  
(D,TPLS)

NEH  
(I,TPLS)

CDS  
(ORJ)

CDS  
(PLS)

PALMER 
(ORJ)

PALMER 
(PLS)

GUPTA 
(ORJ)

GUPTA 
(PLS)

BMI 
(ORJ)

Best 
Makespan

5 5 5 1 1000 889 1097 1186 973 932 891 905 929 971 1040 1048 1040 929 1076 889
5 5 5 2 917 995 961 954 932 867 867 871 870 870 867 867 881 984 988 867
5 5 5 3 1580 1491 1567 1527 1419 1483 1419 1483 1461 1461 1544 1492 1491 1494 1419 1419
5 5 5 4 952 844 873 849 753 753 753 838 795 795 753 753 915 870 803 753
5 5 5 5 1718 1498 1690 1563 1401 1385 1364 1385 1452 1453 1364 1364 1553 1554 1452 1364
5 5 10 1 1797 1762 1670 1830 1714 1670 1714 1670 1673 1690 1734 1734 1770 1775 1698 1670
5 5 10 2 1910 1699 1910 1695 1695 1695 1695 1695 1713 1695 1739 1739 1713 1699 1746 1695
5 5 10 3 1419 1411 1402 1427 1272 1272 1272 1302 1272 1337 1347 1381 1337 1337 1356 1272
5 5 10 4 1571 1584 1596 1552 1354 1390 1354 1371 1372 1354 1466 1492 1625 1575 1501 1354
5 5 10 5 1459 1525 1513 1486 1312 1320 1346 1377 1312 1312 1356 1384 1418 1449 1513 1312
5 10 5 1 975 859 1052 1153 940 839 839 850 895 944 1027 1026 1027 895 1015 839
5 10 5 2 866 951 907 906 889 822 819 836 828 828 819 819 823 926 937 819
5 10 5 3 1472 1412 1455 1443 1332 1332 1332 1332 1380 1382 1447 1395 1412 1415 1332 1332
5 10 5 4 923 828 842 798 741 741 741 798 772 772 741 741 897 852 793 741
5 10 5 5 1679 1423 1640 1495 1365 1423 1328 1356 1408 1410 1328 1328 1494 1495 1408 1328
5 10 10 1 1640 1593 1500 1658 1498 1511 1498 1499 1499 1511 1561 1561 1620 1613 1499 1498
5 10 10 2 1667 1534 1666 1529 1495 1495 1495 1495 1531 1495 1573 1573 1516 1513 1574 1495
5 10 10 3 1263 1302 1281 1285 1167 1163 1167 1188 1163 1219 1246 1247 1225 1225 1237 1163
5 10 10 4 1406 1444 1427 1442 1237 1304 1237 1237 1237 1240 1308 1347 1496 1416 1377 1237
5 10 10 5 1287 1329 1275 1296 1171 1167 1167 1191 1171 1171 1221 1221 1248 1267 1275 1167

10 5 5 1 2196 2299 2207 2207 1957 1997 1992 1993 1970 1970 1982 2027 2027 1970 2100 1957
10 5 5 2 2829 2363 2673 2685 2227 2129 2154 2166 2189 2192 2329 2329 2332 2242 2711 2129
10 5 5 3 2581 2312 2375 2285 2127 2175 2126 2220 2148 2171 2158 2120 2184 2213 2448 2120
10 5 5 4 2176 2132 2223 2171 1915 1955 1915 1950 1934 1915 1989 1989 1934 1915 2113 1915
10 5 5 5 2313 2380 2244 2562 2077 2027 2158 2098 2123 2007 2082 2039 2203 2123 2304 2007
10 5 10 1 3479 3453 3795 3595 3112 3214 3128 3233 3297 3233 3397 3400 3575 3529 3576 3112
10 5 10 2 3047 3053 2845 3119 2516 2609 2522 2604 2569 2488 2645 2636 3019 2838 2682 2488
10 5 10 3 3288 3367 3256 3207 2919 2836 2912 2958 2946 2936 3000 2990 3352 3230 3233 2836
10 5 10 4 2830 2982 2965 2797 2430 2593 2451 2433 2555 2556 2629 2629 2824 2744 2840 2430
10 5 10 5 2639 2517 2546 2528 2262 2298 2272 2307 2311 2276 2406 2425 2589 2514 2534 2262
10 10 5 1 2155 2255 2141 2165 1950 1969 1950 1965 1966 1966 1967 2014 2014 1966 2086 1950
10 10 5 2 2791 2310 2619 2621 2239 2107 2088 2049 2166 2113 2314 2314 2262 2191 2617 2049
10 10 5 3 2541 2246 2327 2246 2052 2127 2050 2127 2100 2112 2101 2076 2130 2162 2377 2050
10 10 5 4 2154 2066 2170 2078 1899 1921 1902 1905 1903 1899 1925 1925 1903 1904 2040 1899
10 10 5 5 2268 2335 2192 2510 2070 2038 2138 2195 2052 1983 2065 2032 2202 2091 2240 1983
10 10 10 1 3324 3322 3550 3461 2982 3042 2994 3140 3138 3085 3203 3207 3359 3334 3373 2982
10 10 10 2 2843 2783 2654 2849 2452 2404 2399 2504 2420 2365 2496 2462 2817 2739 2616 2365
10 10 10 3 3127 3150 3115 3016 2812 2760 2749 2759 2846 2822 2858 2801 3185 3106 3115 2749
10 10 10 4 2657 2803 2719 2633 2394 2360 2284 2264 2375 2364 2481 2491 2651 2611 2641 2264
10 10 10 5 2492 2339 2443 2370 2128 2089 2151 2185 2197 2117 2307 2279 2458 2373 2418 2089  
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APPENDIX B4 Computational results of sequencing heuristics for continuous sized consistent sublots     
# of 

products
Maximum # 

of sublots
# of 

machines
Instance 

No
LPT 

(TPT)
SPT 

(TPT)
LPT 

(TPLS)
SPT  

(TPLS)
NEH    

(D,TPT)
NEH  

(I,TPT)
NEH  

(D,TPLS)
NEH  

(I,TPLS)
CDS  

(ORJ)
CDS  
(PLS)

PALMER 
(ORJ)

PALMER 
(PLS)

GUPTA 
(ORJ)

GUPTA 
(PLS)

BMI 
(ORJ)

Best 
Makespan

5 5 5 1 991.91 878.39 1087.42 1172.18 961.24 921.46 879.46 893.46 917.56 963.91 1024.20 1035.17 1024.20 917.56 1064.88 878.39
5 5 5 2 906.37 992.14 950.33 943.10 922.89 856.17 856.17 861.04 856.68 856.68 856.17 856.17 873.07 973.07 977.412 856.17
5 5 5 3 1569.36 1484.07 1552.00 1515.63 1403.69 1460.16 1403.69 1460.16 1454.07 1454.07 1534.28 1482.28 1484.07 1484.07 1403.69 1403.69
5 5 5 4 937.17 829.20 860.92 842.12 746.98 746.98 746.98 831.48 791.63 791.63 746.98 746.98 901.05 860.94 795.926 746.98
5 5 5 5 1705.24 1484.61 1673.67 1550.14 1391.35 1375.71 1355.67 1375.71 1440.86 1443.49 1355.67 1355.67 1542.10 1542.10 1440.86 1355.67
5 5 10 1 1780.21 1741.05 1653.07 1800.16 1676.41 1653.07 1676.41 1653.07 1653.07 1659.26 1712.65 1712.65 1750.13 1756.17 1678 1653.07
5 5 10 2 1885.50 1679.98 1885.41 1676.68 1675.07 1675.07 1675.07 1675.07 1693.68 1675.07 1724.64 1724.64 1695.43 1677.17 1732.16 1675.07
5 5 10 3 1396.30 1391.86 1384.83 1405.32 1254.63 1254.63 1254.63 1287.00 1254.63 1310.12 1327.50 1362.08 1310.12 1310.12 1340.18 1254.63
5 5 10 4 1550.57 1559.25 1572.30 1537.85 1341.58 1368.81 1341.58 1358.30 1353.39 1341.58 1448.13 1475.20 1605.20 1552.05 1483.42 1341.58
5 5 10 5 1448.93 1413.35 1505.87 1456.14 1291.99 1293.60 1325.46 1355.69 1291.99 1291.99 1330.41 1346.82 1391.34 1412.96 1505.87 1291.99
5 10 5 1 961.47 846.16 1039.90 1137.54 928.99 825.13 825.13 837.51 880.58 933.47 1011.65 1015.46 1011.65 880.58 1001.36 825.13
5 10 5 2 852.56 943.28 891.80 892.77 876.74 809.73 809.73 823.24 813.42 813.42 809.73 809.73 813.51 914.04 922.329 809.73
5 10 5 3 1457.06 1400.67 1439.55 1425.64 1317.62 1317.62 1317.62 1317.62 1366.69 1370.67 1431.11 1379.11 1400.67 1400.67 1317.62 1317.62
5 10 5 4 906.14 811.47 828.79 790.08 730.17 730.17 730.17 790.08 761.72 761.72 730.17 730.17 882.12 836.97 780.928 730.17
5 10 5 5 1660.43 1414.28 1624.45 1477.74 1348.80 1408.55 1311.21 1342.95 1393.12 1396.91 1311.21 1311.21 1478.49 1478.49 1393.12 1311.21
5 10 10 1 1621.25 1564.61 1477.11 1619.51 1473.27 1482.97 1473.27 1476.08 1481.45 1482.97 1526.98 1526.98 1589.24 1583.23 1476.08 1473.27
5 10 10 2 1642.93 1510.10 1640.24 1503.41 1472.85 1472.85 1472.85 1472.85 1521.44 1472.85 1539.35 1539.35 1493.08 1486.41 1540 1472.85
5 10 10 3 1234.07 1272.53 1252.27 1253.21 1145.36 1141.40 1145.36 1173.29 1141.40 1199.10 1218.50 1225.31 1199.86 1199.86 1211.41 1141.40
5 10 10 4 1381.66 1414.81 1402.40 1413.78 1213.56 1281.27 1213.56 1213.56 1213.56 1219.16 1283.33 1325.82 1466.91 1391.59 1353.95 1213.56
5 10 10 5 1250.65 1188.70 1260.78 1263.94 1146.66 1118.63 1118.63 1167.43 1146.66 1146.66 1187.33 1188.18 1216.48 1240.32 1260.78 1118.63

10 5 5 1 2182.50 2285.70 2199.25 2198.73 1942.18 1985.09 1978.46 1978.76 1960.66 1960.66 1969.60 2019.94 2019.94 1960.66 2088.73 1942.18
10 5 5 2 2816.93 2353.72 2657.52 2674.06 2214.74 2113.04 2142.97 2156.50 2176.94 2180.97 2321.42 2321.42 2316.74 2232.87 2695.99 2113.04
10 5 5 3 2563.31 2298.48 2356.31 2271.15 2115.01 2163.25 2115.01 2204.12 2135.54 2159.14 2149.14 2115.01 2175.75 2203.78 2433.54 2115.01
10 5 5 4 2164.40 2100.94 2216.46 2158.37 1906.97 1947.21 1906.97 1943.28 1927.60 1906.97 1980.62 1980.62 1927.60 1906.97 2100.94 1906.97
10 5 5 5 2305.03 2369.41 2227.40 2553.48 2071.30 2019.90 2151.83 2087.97 2117.66 1996.83 2073.72 2029.18 2192.53 2111.08 2293.96 1996.83
10 5 10 1 3457.67 3430.73 3768.00 3564.68 3097.67 3182.02 3100.85 3207.75 3281.17 3210.71 3381.64 3381.64 3553.35 3502.69 3544.96 3097.67
10 5 10 2 3017.74 3027.05 2813.59 3093.05 2496.24 2590.18 2496.76 2576.50 2540.28 2466.55 2615.51 2615.52 2995.23 2809.73 2660.55 2466.55
10 5 10 3 3256.86 3367.30 3225.94 3188.19 2899.25 2817.50 2895.98 2936.06 2931.07 2916.72 2982.22 2972.82 3327.93 3207.30 3210.07 2817.50
10 5 10 4 2797.79 2950.58 2950.06 2759.49 2412.75 2566.54 2426.89 2413.42 2531.24 2533.69 2606.28 2602.07 2795.41 2720.76 2814.31 2412.75
10 5 10 5 2613.88 2496.60 2522.63 2503.27 2252.48 2278.79 2245.58 2287.91 2288.51 2250.81 2384.28 2403.94 2560.23 2485.32 2503.51 2245.58
10 10 5 1 2135.97 2239.09 2124.06 2151.98 1938.07 1951.81 1938.07 1950.63 1955.59 1955.59 1957.70 2004.51 2004.51 1955.59 2069.03 1938.07
10 10 5 2 2777.24 2295.47 2599.43 2605.72 2227.08 2093.28 2076.08 2040.19 2149.88 2101.70 2302.04 2302.04 2249.85 2181.02 2602.53 2040.19
10 10 5 3 2516.85 2230.30 2309.99 2226.75 2035.52 2107.56 2035.52 2107.56 2084.59 2100.47 2086.34 2065.93 2115.50 2149.27 2355.31 2035.52
10 10 5 4 2142.45 2023.86 2156.44 2064.53 1895.85 1912.49 1895.85 1897.89 1895.87 1895.85 1916.16 1916.16 1895.87 1895.85 2023.86 1895.85
10 10 5 5 2258.59 2316.71 2181.35 2498.56 2061.37 2022.13 2129.57 2183.85 2036.96 1970.63 2052.60 2018.22 2181.30 2077.51 2225.77 1970.63
10 10 10 1 3293.30 3282.31 3502.93 3426.11 2953.94 3010.79 2953.83 3099.36 3099.97 3058.69 3178.08 3178.08 3325.37 3295.38 3347.06 2953.83
10 10 10 2 2815.49 2750.55 2632.06 2816.55 2427.20 2378.54 2367.28 2474.49 2394.51 2341.74 2469.82 2434.56 2786.42 2697.98 2577.79 2341.74
10 10 10 3 3092.93 3145.61 3072.14 2984.07 2780.63 2729.10 2731.79 2729.20 2813.87 2790.27 2825.24 2770.27 3152.97 3075.09 3083.84 2729.10
10 10 10 4 2626.51 2762.49 2696.56 2586.26 2353.66 2326.04 2249.50 2231.76 2342.79 2338.60 2454.79 2460.57 2616.63 2573.42 2616.16 2231.76
10 10 10 5 2459.77 2319.26 2408.42 2342.93 2094.86 2065.25 2130.75 2153.41 2175.46 2096.43 2281.61 2253.16 2424.72 2348.79 2378.79 2065.25  
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APPENDIX B5 Computational results of sequencing heuristics for continuous sized variable sublots (ε=0.1) 
# of 

products
Maximum # 

of sublots
# of 

machines
Instance 

No
LPT 

(TPT)
SPT 

(TPT)
LPT 

(TPLS)
SPT  

(TPLS)
NEH    

(D,TPT)
NEH  

(I,TPT)
NEH  

(D,TPLS)
NEH  

(I,TPLS)
CDS  

(ORJ)
CDS  

(PLS)
PALMER 

(ORJ)
PALMER 

(PLS)
GUPTA 
(ORJ)

GUPTA 
(PLS)

BMI 
(ORJ)

Best 
Makespan

5 5 5 1 991.91 877.51 1087.42 1172.18 961.24 921.46 879.46 893.46 916.68 963.91 1024.20 1035.17 1024.20 916.68 1064.88 877.51
5 5 5 2 906.37 988.96 950.28 943.10 922.89 856.17 856.17 861.03 856.68 856.68 856.17 856.17 873.07 973.07 977.14 856.17
5 5 5 3 1569.36 1484.07 1552.00 1515.63 1403.69 1460.16 1403.69 1460.16 1454.07 1454.07 1534.28 1482.28 1484.07 1484.07 1403.69 1403.69
5 5 5 4 937.17 829.20 860.92 842.12 746.98 746.98 746.98 831.48 791.63 791.63 746.98 746.98 901.05 860.94 795.93 746.98
5 5 5 5 1704.97 1484.01 1673.63 1550.14 1391.35 1375.71 1355.67 1375.71 1440.86 1443.49 1355.67 1355.67 1542.10 1542.10 1440.86 1355.67
5 5 10 1 1780.21 1741.02 1653.07 1800.16 1676.41 1653.07 1676.41 1653.07 1653.07 1655.97 1702.90 1702.90 1749.72 1754.85 1677.58 1653.07
5 5 10 2 1882.91 1679.98 1882.91 1676.68 1675.01 1675.01 1675.01 1675.01 1693.24 1675.01 1724.64 1724.64 1695.41 1675.22 1728.43 1675.01
5 5 10 3 1396.30 1391.86 1384.05 1405.32 1254.34 1254.34 1254.34 1284.70 1254.34 1309.55 1326.27 1361.37 1309.55 1309.55 1339.10 1254.34
5 5 10 4 1550.57 1559.12 1572.30 1535.28 1341.51 1368.75 1341.51 1356.33 1352.43 1341.51 1448.12 1473.22 1602.62 1552.05 1483.12 1341.51
5 5 10 5 1448.93 1500.52 1505.87 1456.14 1291.99 1293.60 1325.46 1355.69 1291.99 1291.99 1330.41 1346.82 1391.34 1412.96 1505.87 1291.99
5 10 5 1 961.47 845.89 1039.90 1137.54 928.99 824.94 824.94 837.47 880.38 933.47 1011.65 1015.46 1011.65 880.38 1001.36 824.94
5 10 5 2 852.56 940.66 891.77 892.77 876.69 809.73 809.73 823.24 813.42 813.42 809.73 809.73 813.39 914.04 922.26 809.73
5 10 5 3 1457.06 1400.67 1439.55 1425.64 1317.62 1317.62 1317.62 1317.62 1366.69 1370.67 1431.11 1379.11 1400.67 1400.67 1317.62 1317.62
5 10 5 4 906.14 811.47 828.79 790.08 730.17 730.17 730.17 790.08 761.72 761.72 730.17 730.17 882.12 836.97 780.93 730.17
5 10 5 5 1660.38 1413.77 1624.41 1477.74 1348.80 1408.55 1311.21 1342.95 1393.12 1396.91 1311.21 1311.21 1478.49 1478.49 1393.12 1311.21
5 10 10 1 1621.25 1564.20 1475.44 1619.51 1473.27 1481.21 1473.27 1475.12 1480.22 1481.21 1520.86 1520.86 1588.77 1583.23 1475.12 1473.27
5 10 10 2 1640.91 1510.10 1638.73 1503.41 1472.81 1472.81 1472.81 1472.81 1521.15 1472.81 1539.28 1539.28 1493.07 1484.87 1539.00 1472.81
5 10 10 3 1233.76 1272.52 1252.27 1253.21 1143.92 1141.36 1143.92 1173.20 1141.36 1199.07 1217.85 1224.68 1199.86 1199.86 1211.19 1141.36
5 10 10 4 1381.66 1413.69 1402.39 1413.78 1213.53 1281.04 1213.53 1213.53 1213.53 1219.03 1281.40 1325.72 1465.91 1391.59 1353.86 1213.53
5 10 10 5 1250.65 1299.45 1260.78 1263.94 1146.66 1118.35 1118.35 1163.45 1146.66 1146.66 1187.33 1188.18 1216.48 1240.32 1260.78 1118.35

10 5 5 1 2182.50 2285.70 2199.25 2198.73 1942.18 1985.09 1978.46 1978.76 1960.66 1960.66 1969.60 2019.94 2019.94 1960.66 2088.73 1942.18
10 5 5 2 2816.93 2353.72 2657.52 2674.06 2214.74 2113.04 2142.97 2156.50 2176.94 2180.97 2321.42 2321.42 2316.74 2232.87 2695.99 2113.04
10 5 5 3 2563.31 2298.48 2356.31 2270.23 2115.01 2163.10 2115.01 2204.12 2135.54 2159.14 2149.14 2115.01 2175.75 2203.78 2431.97 2115.01
10 5 5 4 2164.40 2121.87 2216.46 2158.37 1906.97 1947.21 1906.97 1943.28 1927.60 1906.97 1980.62 1980.62 1927.60 1906.97 2100.94 1906.97
10 5 5 5 2305.03 2369.41 2227.40 2553.48 2071.30 2019.90 2151.83 2085.66 2117.66 1996.83 2073.72 2029.18 2192.53 2111.08 2293.96 1996.83
10 5 10 1 3455.87 3430.73 3763.87 3561.44 3094.85 3182.02 3093.18 3204.81 3280.88 3207.77 3381.64 3381.64 3553.35 3502.69 3544.96 3093.18
10 5 10 2 3017.74 3027.05 2813.49 3093.05 2494.68 2590.18 2496.39 2575.76 2540.24 2463.45 2612.78 2611.96 2995.23 2807.77 2660.46 2463.45
10 5 10 3 3254.68 3339.30 3225.74 3188.19 2899.14 2816.47 2895.98 2936.06 2931.07 2916.72 2982.22 2972.82 3327.92 3207.22 3209.87 2816.47
10 5 10 4 2797.79 2947.72 2950.06 2759.19 2408.05 2564.61 2426.89 2413.42 2531.24 2533.69 2605.90 2601.61 2795.41 2720.76 2814.31 2408.05
10 5 10 5 2613.88 2496.60 2521.98 2503.27 2247.57 2278.10 2245.31 2286.84 2288.51 2249.79 2384.28 2403.94 2560.23 2485.32 2503.40 2245.31
10 10 5 1 2135.97 2239.09 2124.06 2151.98 1938.07 1951.81 1938.07 1950.63 1955.59 1955.59 1957.70 2004.51 2004.51 1955.59 2069.03 1938.07
10 10 5 2 2777.24 2295.47 2599.43 2605.72 2227.08 2093.28 2076.08 2040.19 2149.88 2101.70 2302.04 2302.04 2249.85 2181.02 2602.53 2040.19
10 10 5 3 2516.85 2230.30 2309.99 2226.59 2035.52 2107.56 2035.52 2107.56 2084.59 2100.47 2086.34 2065.93 2115.50 2149.27 2355.19 2035.52
10 10 5 4 2142.45 2050.44 2156.44 2064.53 1895.85 1912.49 1895.85 1897.89 1895.87 1895.85 1916.16 1916.16 1895.87 1895.85 2023.86 1895.85
10 10 5 5 2258.59 2316.64 2181.35 2498.56 2061.37 2022.13 2129.57 2183.85 2036.96 1970.63 2052.60 2018.22 2181.30 2077.51 2225.77 1970.63
10 10 10 1 3292.95 3282.31 3501.36 3425.26 2952.88 3009.25 2953.83 3098.61 3099.95 3052.79 3178.08 3178.08 3325.37 3295.38 3346.75 2952.88
10 10 10 2 2815.49 2749.57 2632.06 2815.57 2427.20 2377.54 2366.52 2474.43 2394.51 2339.64 2469.75 2434.29 2786.42 2697.76 2577.79 2339.64
10 10 10 3 3092.93 3117.61 3071.97 2984.07 2780.37 2729.02 2731.79 2729.05 2813.87 2790.27 2825.08 2770.11 3152.97 3074.92 3083.84 2729.02
10 10 10 4 2626.51 2762.24 2696.56 2586.26 2353.55 2326.04 2248.97 2230.84 2342.71 2337.18 2454.66 2460.57 2616.63 2573.42 2615.92 2230.84
10 10 10 5 2459.75 2319.26 2408.35 2342.93 2093.60 2065.02 2126.66 2148.18 2175.46 2096.43 2281.61 2253.08 2424.72 2348.64 2378.61 2065.02  
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APPENDIX B6 Detailed benchmark results of five product instances for continuous sized consistent 

sublots  

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
14 6.13 5.11 4.26 3.55 2.96 0 0 0 0 0 1.92 2.36 2.75 3.21 3.75
22 2.62 4.66 8.29 7.67 5.75 4.37 3.64 3.04 2.53 2.11 1.76 1.46 1.22 1.02 0.85
29 1.05 2.1 4.19 8.38 10.3 0.42 0.74 1.32 2.35 4.18 7.43 7.16 3.25 1.48 0.67
26 2.69 3.58 4.77 6.37 1.59 1.68 3.64 3.36 3.1 2.87 2.65 2.44 2.25 2.08 1.92
19 2.87 1.03 3.52 4.11 0 0.39 0.56 0.74 0.99 1.32 1.76 2.35 3.04 3.76 4.08
20 0 0 9.51 6.39 4.11 0 0 0 0 0.78 3.3 6.6 4.54 2.92 1.87
20 0 1.3 4.56 6.08 8.05 0 0 0.01 0.03 0.15 0.69 3.1 4.35 5.78 5.88
11 0 3.87 0 7.13 0 0 0 0 0 0 0 0 0 4.54 6.46
37 5.28 7.55 8.81 10.3 5.08 2.41 3.44 4.92 5.74 6.69 7.81 4.3 1.23 0.35 0.1
17 2.68 3.28 4 4.3 2.74 0.51 1.14 1.4 1.71 2.09 2.55 3.12 2.19 1.39 0.89
26 0.21 0.64 1.93 5.8 17.4 0.01 0.02 0.06 0.18 0.54 1.62 3.64 4.85 6.46 8.62
26 0 2.2 7.25 7.91 8.63 0 0 0 1.4 3.26 3.56 3.88 4.23 4.62 5.04
10 2.57 2.25 1.96 1.72 1.5 1.72 1.5 1.32 1.15 1.01 0.88 0.77 0.65 0.55 0.45
32 8.1 7.43 6.81 6.24 3.42 4.59 4.21 3.86 3.53 3.24 2.97 2.72 2.5 2.29 2.1
37 8.63 8.24 7.87 6.69 5.57 5.04 4.81 4.59 4.38 4.18 3.9 3.25 2.71 2.26 1.88
17 1.29 1.93 2.9 4.35 6.53 0.15 0.23 0.34 0.51 0.76 1.14 1.71 2.56 3.84 5.77
14 2.31 2.89 3.61 2.89 2.31 0.95 1.18 1.48 1.85 2.31 1.85 1.48 1.18 0.95 0.76
30 8.75 6.72 9.97 3.58 0.98 2.66 8.59 7.17 5.74 1.64 3.06 0.84 0.23 0.06 0.02
20 0.98 2.6 6.94 6.4 3.08 0.02 0.05 0.12 0.32 0.86 2.29 6.1 5.62 3.37 1.26
14 0 2 4 8 0 0 0 0 0 0 0 0 3.67 5.98 4.35
38 0 6.73 14.8 13 3.47 0 0 0 0 0 0 4.32 12.8 11.2 9.77
31 2.67 4 6 9 9.32 0.3 0.44 0.66 1 1.49 2.24 3.36 5.04 7.56 8.9
20 5.79 5.61 3.93 2.75 1.92 0 0 0 0 1.49 6.67 4.67 3.27 2.29 1.6
39 1.2 3.2 8.52 19 7.11 0.07 0.19 0.52 1.37 3.67 9.78 14.9 5.6 2.1 0.79
38 6.31 7.57 8.75 8.02 7.35 2.11 2.53 3.04 3.65 4.38 5.25 4.83 4.43 4.06 3.72
21 0 3.05 6.35 5.97 5.62 0.73 0.94 1.21 1.55 2 2.57 3.28 3.09 2.9 2.73
29 2.33 5.82 7.66 6.51 6.68 0 2.4 5.19 4.41 4.02 3.45 2.96 2.53 2.17 1.86
30 5.34 6.17 6.17 6.17 6.17 3 3 3 3 3 3 3 3 3 3
22 2.57 3.33 4.83 6.28 5 0.15 1.85 3.49 4.77 3.58 2.68 2.01 1.51 1.13 0.84
37 6.66 7.01 7.38 7.77 8.18 3.22 3.39 3.57 3.76 3.95 4.16 4.38 4.57 3.43 2.57
38 7.87 7.87 7.87 7.87 6.52 2.97 4.11 4.14 4.14 4.14 4.14 4.14 4.14 3.36 2.73
23 0.8 2.12 5.66 6.97 7.46 0.23 0.41 0.74 1.33 2.4 3.35 3.59 3.85 4.12 2.97
37 6.8 7.55 7.55 7.55 7.55 3.14 3.49 3.88 3.88 3.88 3.88 3.88 3.88 3.85 3.21
21 6.68 7.34 4.33 1.86 0.8 1.96 2.16 2.37 2.61 2.87 3.16 3.47 1.49 0.64 0.27
18 0 5.45 4.96 4.14 3.45 3.58 2.98 2.48 2.07 1.73 1.44 1.2 1 0.83 0.69
26 3.18 6 6 5.6 5.23 0.85 1.6 3.02 3.02 3.02 3.02 3.02 3.02 2.82 2.63
11 4.22 2.82 1.88 1.25 0.83 0 0 0 0 0.12 0.68 1.13 1.89 3.15 4.02
25 4.84 6.9 6.59 4.86 1.82 0.61 0.87 1.24 1.77 2.52 3.6 5.15 6.66 2 0.6
30 5.1 5.67 6.3 6.46 6.46 2.37 2.63 2.92 3.15 3.15 3.15 3.15 3.15 3.15 3.15
14 2.42 3.32 3.02 2.74 2.49 0 0 0 1.01 2.78 2.52 2.29 2.09 1.9 1.41
16 5.24 3.93 2.95 2.21 1.66 0.3 0.49 0.79 1.3 2.12 2.6 2.72 2.85 1.75 1.08
28 6.83 7.18 5.88 4.81 3.31 1.52 4.22 4.1 3.89 3.7 3.1 2.54 2.08 1.7 1.17
19 0.7 1.86 4.97 5.68 5.79 0 0 0 0 0.01 0.97 2.58 5.06 5.78 4.61
28 2.49 5.12 8.05 7.99 4.36 1.48 3.33 3.63 3.44 3.26 3.09 2.93 2.77 2.63 1.43
33 5.72 6.24 6.8 7.42 6.83 1.58 1.93 2.36 2.89 3.53 3.85 4.2 4.58 5 3.08
24 0 0 5.24 9.16 9.6 1 1.33 1.77 2.36 2.66 2.78 2.92 3.05 3.2 2.93
39 6.85 7.71 8.68 8.13 7.63 3.1 3.58 4.13 4.21 4.21 4.21 4.21 4.21 4.21 2.96
12 0.8 2.09 2.5 3 3.6 0 0 0 0 0 1.14 1.9 3.17 3 2.78
13 0 0 0.93 5.35 6.72 0 0.17 1.19 1.34 1.46 1.59 1.74 1.9 2.07 1.55
11 6.93 3.07 0.77 0.19 0.05 2.49 1.99 1.6 1.28 1.02 0.82 0.65 0.52 0.42 0.21

1473.27

[4,2,1,3,5]

730.17

[4,2,3,1,5]

1311.21

[3,5,4,1,2]

Inst. 
No L Sublot Sizes

S =5
Sublot SizesBest 

Solution
Best 

Solution

5-5-5

5-10-1

5-10-2

[1,5,3,4,2]

746.98

[4,2,3,1,5]

1355.67

[4,5,3,1,2]

1653.07

[4,2,1,3,5]

5-5-1

5-5-2

5-5-3

5-5-4

5-10-3

5-10-4

5-10-5

S =10

[3,2,1,4,5]

878.39

[5,2,3,1,4]

856.17

[1,2,5,4,3]

1403.69

1675.07

[1,4,3,5,2]

1254.63

[3,1,4,5,2]

1341.58

[3,1,2,4,5]

1291.99

[3,4,5,1,2]

825.13

[5,2,3,1,4]

809.73

[1,2,5,4,3]

1317.62

[1,5,3,4,2]

1213.56

[1,4,2,3,5]

1118.63

1472.85

[1,4,5,3,2]

1141.40

[1,4,3,5,2]

 

 



 

 

152

 

APPENDIX B7 Detailed optimal MIP results of five product instances for  continuous sized 

consistent sublots 

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
14 2.46 2.87 3.35 3.91 1.4 2.04 0.01 0.06 0.33 1.99 2.78 0.56 3.33 2.92 0
22 6.13 5.11 4.26 3.55 2.96 4.37 3.64 3.04 2.53 2.11 1.76 1.46 1.22 1.02 0.85
29 2.62 4.66 8.29 7.67 5.75 0.42 0.74 1.32 2.35 4.18 7.43 7.16 3.25 1.48 0.67
26 1.05 2.1 4.19 8.38 10.3 1.68 3.64 3.36 3.1 2.87 2.65 2.44 2.25 2.08 1.92
19 2.69 3.58 4.77 6.37 1.59 0.43 0.57 0.76 1.01 1.35 1.8 2.4 2.96 3.66 4.08
20 0 9.52 6.38 4.09 0 5.63 6.34 3.02 0.59 1.18 2.36 0.64 0.18 0.05 0.01
20 0.82 3.7 5.64 1.79 8.05 0.01 0 0.04 0 0.16 0.74 3.34 4.05 5.78 5.88
11 0 3.86 7.14 0 0 0 0 0 0 0 0 0 0 4.54 6.46
37 5.28 7.55 8.81 10.3 5.08 2.41 3.44 4.92 5.74 6.69 7.81 4.3 1.23 0.35 0.1
17 2.68 3.28 4 4.3 2.74 0.51 1.14 1.4 1.71 2.09 2.55 3.12 2.19 1.39 0.89
26 0.21 0.64 1.93 5.8 17.4 0.01 0.02 0.06 0.18 0.54 1.62 3.64 4.85 6.46 8.62
26 2.81 3.41 4.69 6.45 8.63 3.13 0.6 0.82 1.13 1.55 2.13 2.94 4.04 4.62 5.04
10 2.57 2.25 1.96 1.72 1.5 1.72 1.5 1.32 1.15 1.01 0.88 0.77 0.65 0.55 0.45
32 8.1 7.43 6.81 6.24 3.42 4.59 4.21 3.86 3.53 3.24 2.97 2.72 2.5 2.29 2.1
37 8.63 8.24 7.87 6.69 5.57 5.04 4.81 4.59 4.38 4.18 3.9 3.25 2.71 2.26 1.88
17 9.53 5.37 1.54 0.44 0.13 0 0 8.62 5.99 1.71 0.49 0.14 0.04 0.01 0
14 2.31 2.89 3.61 2.89 2.31 0.95 1.18 1.48 1.85 2.31 1.85 1.48 1.18 0.95 0.76
30 1.63 13.1 10.8 3.58 0.98 0.06 0.49 3.96 11.8 9.46 3.06 0.84 0.23 0.06 0.02
20 0.98 2.6 6.94 6.4 3.08 0.02 0.05 0.12 0.32 0.86 2.29 6.1 5.62 3.37 1.26
14 0.46 0.91 1.83 3.66 7.15 0.01 0.03 0.06 0.12 0.24 0.47 0.94 1.89 3.78 6.46
38 0 1.13 10.1 14.3 12.5 0 0 0 0 0 4.32 0 12.8 11.2 9.77
31 2.67 4 6 9 9.32 0.3 0.44 0.66 1 1.49 2.24 3.36 5.04 7.56 8.9
20 7.46 5.22 3.66 1.58 2.09 6.86 4.8 3.36 2.35 1.38 0 0 0 0 1.23
39 1.2 3.2 8.52 19 7.11 0.07 0.19 0.52 1.37 3.67 9.78 14.9 5.6 2.1 0.79
38 6.31 7.57 8.75 8.02 7.35 2.11 2.53 3.04 3.65 4.38 5.25 4.83 4.43 4.06 3.72
21 0 5.46 5.35 5.25 4.94 0.89 1.45 2.36 2.77 2.61 2.46 2.31 2.17 2.05 1.93
29 5.92 6.66 6.99 5.35 4.09 3.47 2.56 3.07 3.68 3.84 3.27 2.83 2.42 2.08 1.78
30 5.34 6.17 6.17 6.17 6.17 1.51 2.38 3.74 3.74 3.74 3.74 3.74 3.74 2.38 1.3
22 2.19 3.71 4.83 6.28 5 1.56 3.74 1.56 3.13 1.06 1.73 2.97 3.04 2.19 1.02
37 6.66 7.01 7.38 7.77 8.18 3.12 3.29 3.46 3.64 3.83 4.04 4.25 4.47 4.02 2.88
38 8.06 8.06 8 7.27 6.61 3.09 4.12 4.12 4.12 4.12 4.12 4.12 4.12 3.35 2.72
23 5.4 5.81 5.77 3.67 2.34 0.03 0.09 0.24 0.65 1.72 4.6 5.29 5.15 3.22 2.01
37 7.13 7.92 7.92 7.66 6.38 3.11 3.58 4.03 4.48 4.82 4.49 4.18 3.48 2.9 1.93
21 3.44 3.78 4.16 4.58 5.04 0 0 0.01 0.09 0.79 4.74 4.74 2.57 3.92 4.14
18 3.27 5.18 4.31 3.6 1.64 0 0 0 0 0.14 3.92 2.71 3.92 3.92 3.4
26 3.11 5.88 5.88 5.75 5.37 0.85 1.6 3.02 3.02 3.02 3.02 3.02 3.02 2.82 2.63
11 0.09 0.78 0 3.8 6.33 0.6 1 0.34 1.89 0 0 0 3.15 4.02 0
25 4.69 6.71 5.99 4.39 3.22 0.61 0.87 1.24 1.77 2.52 3.6 5.15 6.66 2 0.6
30 5.28 5.87 6.28 6.28 6.28 2.37 2.63 2.92 3.15 3.15 3.15 3.15 3.15 3.15 3.15
14 4.42 3.4 2.62 2.01 1.55 0 0 2.63 2.39 0 2.17 1.97 1.79 1.63 1.41
16 5.24 3.93 2.95 2.21 1.66 0.3 0.49 0.79 1.3 2.12 2.6 2.72 2.85 1.75 1.08
28 6.83 7.18 5.88 4.81 3.31 2.98 4.1 3.89 3.7 3.51 3.01 2.46 2.01 1.38 0.95
19 0.7 1.86 4.97 5.68 5.79 0.03 0.09 0 0.24 0.63 1.57 3.66 2.74 5.48 4.57
28 2.49 5.12 8.05 7.99 4.36 1.48 3.33 3.63 3.44 3.26 3.09 2.93 2.77 2.63 1.43
33 5.72 6.24 6.8 7.42 6.83 1.72 2.1 2.56 3.13 3.42 3.73 4.07 4.44 4.84 2.98
24 0.94 1.42 4.25 8.5 8.9 1.31 1.75 2.33 2.44 2.56 2.68 2.81 2.94 2.7 2.47
39 6.85 7.71 8.68 8.13 7.63 3.1 3.58 4.13 4.21 4.21 4.21 4.21 4.21 4.21 2.96
12 0.8 2.09 2.5 3 3.6 0.63 0 0 1.05 0 0 1.75 2.92 2.92 2.71
13 0 0 0.5 3.49 9.01 0.19 0.19 1.32 1.44 1.57 1.71 1.87 2.04 1.53 1.15
11 6.93 3.07 0.77 0.19 0.05 2.49 1.99 1.6 1.28 1.02 0.82 0.65 0.52 0.42 0.21

Sublot Sizes

[3,4,5,1,2]

825.13

[5,2,3,1,4]

Inst. 
No L

S =5 S =10
Best 

Solution
Sublot Sizes Best 

Solution

5-5-1

5-5-2

[3,2,1,4,5]

878.39

[5,2,3,1,4]

[4,2,3,1,5]

1311.21

5-5-3

5-5-4

746.23 729.93

5-5-5

5-10-1

[4,2,3,1,5]

1355.67

[4,5,3,2,1]

1653.07

5-10-2

5-10-3

[4,1,3,2,5]

1673.27

[1,4,3,2,5]

1254.11

5-10-4

5-10-5

[3,1,4,5,2]

1341.58

[3,1,2,4,5]

1291.99

856.17

[1,2,5,4,3]

1403.69

[5,1,3,4,2]

809.73

[1,2,5,4,3]

1317.62

[5,1,3,4,2]

[1,4,2,3,5]

1118.63

[5,3,4,1,2]

1464.32

[2,4,3,1,5]

1462.00

[1,4,3,5,2]

1213.56

[1,4,5,3,2]

1141.40
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APPENDIX B8 Computational results of NEH(D,TPLS) heuristic and MIP (within 1000 seconds) for 5 product instances 

# of 
products

Maximum # 
of sublots

# of 
machines

Instance 
No

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

5 5 5 1 878.39 878.39 1.63 879.46 885.00 885 2.34 891 853.78 878.36 1000.00 879.46

5 5 5 2 856.17 856.17 1.50 856.17 860.00 860 3.14 867 831.80 851.33 1000.00 856.17

5 5 5 3 1403.69 1403.69 1.47 1403.69 1414.00 1414 2.02 1419 1403.69 1403.69 411.94 1403.69

5 5 5 4 746.23 746.23 1.49 746.98 752.00 752 6.06 753 735.34 745.89 1000.00 746.98

5 5 5 5 1355.67 1355.67 1.49 1355.67 1361.00 1361 1.86 1364 1355.30 1355.30 36.03 1355.67

5 5 10 1 1653.07 1653.07 2.47 1676.41 1670.00 1670 6.00 1714 1401.76 1667.34 1000.00 1676.41

5 5 10 2 1673.27 1673.27 2.45 1675.07 1683.00 1683 6.69 1695 1470.13 1700.21 1000.00 1675.01

5 5 10 3 1254.11 1254.11 2.03 1254.63 1267.00 1267 8.92 1272 1113.08 1251.52 1000.00 1254.34

5 5 10 4 1341.58 1341.58 1.92 1341.58 1351.00 1351 7.25 1354 1162.00 1346.43 1000.00 1341.51

5 5 10 5 1291.99 1291.99 1.81 1325.46 1306.00 1306 24.00 1346 1173.64 1292.23 1000.00 1325.46

5 10 5 1 825.13 825.13 2.25 825.13 836.00 836 167.61 839 818.00 832.25 1000.00 824.94

5 10 5 2 809.73 809.73 1.95 809.73 818.00 818 633.83 819 792.00 814.71 1000.00 809.73

5 10 5 3 1317.62 1317.62 2.26 1317.62 1331.00 1331 29.50 1332 1292.00 1326.20 1000.00 1317.62

5 10 5 4 729.93 729.93 2.14 730.17 735.58 738 1000.00 741 723.00 730.63 1000.00 730.17

5 10 5 5 1311.21 1311.21 2.11 1311.21 1322.11 1323 1000.00 1328 1298.00 1317.71 1000.00 1311.21

5 10 10 1 1464.32 1464.32 5.50 1473.27 1485.00 1485 748.86 1498 1327.00 1471.42 1000.00 1473.27

5 10 10 2 1462.00 1462.00 6.99 1472.85 1480.00 1480 113.56 1495 1213.00 1528.66 1000.00 1472.81

5 10 10 3 1141.40 1141.40 4.47 1145.36 1153.00 1153 131.75 1167 1045.00 1169.43 1000.00 1143.92

5 10 10 4 1213.56 1213.56 4.92 1213.56 1225.81 1232 1000.00 1237 1144.00 1243.49 1000.00 1213.53

5 10 10 5 1118.63 1118.63 5.03 1118.63 1133.00 1133 100.63 1167 1013.00 1139.85 1000.00 1118.35

1192.39 1192.39 2.79 1196.63 1203.43 1203.90 249.70 1214.90 1108.28 1203.33 922.40 1196.51

Continuous Sized Consistent Sublots Discrete Sized Consistent Sublots Continuous Sized Variable Sublots

Average  
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APPENDIX B9 Computational results of NEH(D,TPLS) heuristic and MIP (within 1000 seconds)  for 10 product instances 

# of 
products

Maximum # 
of sublots

# of 
machines

Instance 
No

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

10 5 5 1 1714.54 1942.18 1000.00 1978.46 1614.40 1949 1000.00 1992 1380.000 1942.18 1000.00 1978.46

10 5 5 2 2057.50 2061.00 1000.00 2142.97 1929.77 2064 1000.00 2154 1650.000 2080.51 1000.00 2142.97

10 5 5 3 1945.61 2115.02 1000.00 2115.02 1938.01 2120 1000.00 2126 1476.667 2115.02 1000.00 2115.02

10 5 5 4 1865.97 1906.97 1000.00 1906.97 1842.28 1908 1000.00 1915 1484.000 1906.97 1000.00 1906.97

10 5 5 5 1584.48 1932.48 1000.00 2151.83 1691.32 1939 1000.00 2158 1512.000 1957.84 1000.00 2151.83

10 5 10 1 2407.50 3069.35 1000.00 3100.85 2374.00 3097 1000.00 3128 1266.028 3278.98 1000.00 3093.18

10 5 10 2 1893.52 2460.70 1000.00 2496.76 1784.30 2471 1000.00 2522 1169.131 2556.73 1000.00 2496.39

10 5 10 3 2241.46 2794.87 1000.00 2895.98 1875.41 2839 1000.00 2912 1106.838 2970.21 1000.00 2895.98

10 5 10 4 1833.65 2369.71 1000.00 2426.89 1797.60 2404 1000.00 2451 1114.200 2524.62 1000.00 2426.89

10 5 10 5 1588.80 2160.16 1000.00 2245.58 1699.99 2178 1000.00 2272 1021.655 2192.66 1000.00 2245.31

10 10 5 1 1555.19 1938.07 1000.00 1938.07 1489.62 1949 1000.00 1950 1107.000 1938.21 1000.00 1938.07

10 10 5 2 1704.57 2045.64 1000.00 2076.08 1483.85 2041 1000.00 2088 1497.000 2049.12 1000.00 2076.08

10 10 5 3 1674.52 2035.52 1000.00 2035.52 1542.80 2047 1000.00 2050 1061.000 2043.45 1000.00 2035.52

10 10 5 4 1621.48 1893.48 1000.00 1895.85 1410.90 1897 1000.00 1902 1174.000 1898.11 1000.00 1895.85

10 10 5 5 1483.37 1942.68 1000.00 2129.57 1281.91 1972 1000.00 2138 1380.025 1936.84 1000.00 2129.57

10 10 10 1 2035.80 2966.44 1000.00 2953.83 1908.91 2973 1000.00 2994 1209.396 3172.52 1000.00 2953.83

10 10 10 2 1515.47 2302.76 1000.00 2367.28 1205.50 2397 1000.00 2399 609.000 2681.41 1000.00 2366.52

10 10 10 3 1604.04 2682.22 1000.00 2731.79 1316.93 2679 1000.00 2749 1090.000 2827.41 1000.00 2731.79

10 10 10 4 1414.48 2227.74 1000.00 2249.50 1207.95 2280 1000.00 2284 720.888 2423.08 1000.00 2248.97

10 10 10 5 1346.46 2049.25 1000.00 2130.75 1040.92 2086 1000.00 2151 813.000 2183.04 1000.00 2126.66

1754.42 2244.81 1000.00 2298.48 1621.82 2264.50 1000.00 2316.75 1192.09 2333.94 1000.00 2297.79Average

Continuous Sized Consistent Sublots Discrete Sized Consistent Sublots Continuous Sized Variable Sublots
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APPENDIX B10 Computational results of NEH(D,TPLS) heuristic and MIP (within 1000 seconds) for 15 product instances 

# of 
products

Maximum # 
of sublots

# of 
machines

Instance 
No

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

Lower 
Bound

Upper 
Bound 
(MIP)

CPU Time 
(Sec)

NEH 
(D,TPLS)

15 5 5 1 1619.40 2658.69 1000.00 2683.42 1258.26 2668 1000.00 2695 1156.000 2667.16 1000.00 2683.42

15 5 5 2 1277.99 2787.95 1000.00 2703.82 1219.17 2770 1000.00 2720 1165.000 2765.50 1000.00 2703.82

15 5 5 3 1508.61 3172.41 1000.00 3172.41 1481.19 3177 1000.00 3182 1286.000 3172.47 1000.00 3172.41

15 5 5 4 1296.03 2951.60 1000.00 2955.06 1305.13 2955 1000.00 2971 1129.000 2953.66 1000.00 2955.06

15 5 5 5 1398.52 2991.60 1000.00 2961.32 1446.07 2971 1000.00 2979 1421.000 3039.48 1000.00 2961.32

15 5 10 1 1248.80 2870.46 1000.00 2882.87 1225.53 2880 1000.00 2904 879.795 3055.34 1000.00 2882.85

15 5 10 2 1554.63 3491.30 1000.00 3336.62 1523.68 3493 1000.00 3360 1031.701 3579.71 1000.00 3329.09

15 5 10 3 1540.09 3496.34 1000.00 3413.50 1622.64 3492 1000.00 3431 1076.678 3686.09 1000.00 3411.10

15 5 10 4 1514.39 3758.19 1000.00 3650.63 1544.18 3652 1000.00 3673 1029.988 3696.92 1000.00 3649.61

15 5 10 5 1484.07 3393.87 1000.00 3427.50 1385.40 3510 1000.00 3449 1006.433 3696.09 1000.00 3418.49

15 10 5 1 1095.45 2619.14 1000.00 2650.82 1133.14 2640 1000.00 2667 1174.000 2637.06 1000.00 2650.82

15 10 5 2 1007.05 2682.58 1000.00 2675.72 987.00 2800 1000.00 2690 985.000 2800.27 1000.00 2675.72

15 10 5 3 1242.74 3171.01 1000.00 3171.01 1068.01 3177 1000.00 3182 1059.000 3171.01 1000.00 3171.01

15 10 5 4 1058.41 2936.42 1000.00 2936.44 1000.41 2947 1000.00 2951 1028.000 2938.71 1000.00 2936.44

15 10 5 5 1259.08 2930.25 1000.00 2924.49 1100.40 2934 1000.00 2941 1344.000 2990.56 1000.00 2924.49

15 10 10 1 1031.59 2827.20 1000.00 2778.27 882.77 2956 1000.00 2801 905.000 2884.82 1000.00 2778.26

15 10 10 2 1188.25 3427.84 1000.00 3403.33 1035.59 3539 1000.00 3431 732.000 3575.73 1000.00 3403.27

15 10 10 3 1128.93 3304.29 1000.00 3261.67 1212.67 3496 1000.00 3290 817.000 3540.68 1000.00 3261.04

15 10 10 4 1273.85 3620.86 1000.00 3567.27 1274.39 3657 1000.00 3597 900.000 3822.28 1000.00 3566.92

15 10 10 5 1076.83 3294.99 1000.00 3315.36 861.11 3342 1000.00 3343 804.000 3469.07 1000.00 3312.92

1290.23 3119.35 1000.00 3093.58 1228.34 3152.80 1000.00 3112.85 1046.48 3207.13 1000.00 3092.40

Continuous Sized Consistent Sublots Discrete Sized Consistent Sublots Continuous Sized Variable Sublots

Average  
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APPENDIX B11 Computational results of NEH(D,TPLS) heuristic for 30 product problems 

NEH (D,TPLS) CPU Time (sec) NEH(D,TPLS) CPU Time (sec) NEH (D,TPLS) CPU Time (sec)
30 5 5 1 4659.68 15.73 4668 29.75 4659.68 30.97
30 5 5 2 6032.89 16.91 6039 33.00 6032.89 30.70
30 5 5 3 5644.49 17.83 5655 34.08 5644.49 33.00
30 5 5 4 5544.26 17.14 5553 32.83 5544.26 33.28
30 5 5 5 5146.18 17.42 5156 34.83 5146.18 33.61
30 5 10 1 5953.07 30.19 5976 61.28 5942.29 68.02
30 5 10 2 5679.77 29.89 5700 67.06 5679.30 72.66
30 5 10 3 6447.61 30.53 6486 69.17 6447.61 78.52
30 5 10 4 5484.67 32.49 5503 69.06 5482.60 74.91
30 5 10 5 6268.57 32.94 6288 67.70 6268.57 74.47
30 5 15 1 6553.03 52.04 6596 98.45 6548.89 121.55
30 5 15 2 6431.42 55.56 6465 107.24 6429.43 143.72
30 5 15 3 5934.10 55.35 5964 105.20 5930.89 136.71
30 5 15 4 6177.08 56.00 6217 106.84 6174.10 144.88
30 5 15 5 6304.68 56.56 6322 107.24 6304.68 139.88
30 10 5 1 4653.41 30.14 4665 47.23 4653.41 54.49
30 10 5 2 6035.76 27.06 6044 50.88 6035.76 59.05
30 10 5 3 5643.01 25.99 5655 51.57 5643.01 60.56
30 10 5 4 5503.81 26.28 5517 51.46 5503.81 60.01
30 10 5 5 5131.79 26.72 5144 51.62 5131.79 61.97
30 10 10 1 5784.99 58.75 5813 105.78 5784.97 219.96
30 10 10 2 5454.56 60.14 5487 108.66 5453.99 234.61
30 10 10 3 6207.25 60.21 6237 115.22 6202.35 287.86
30 10 10 4 5323.35 63.58 5353 115.51 5321.33 207.75
30 10 10 5 6270.53 59.30 6303 109.60 6270.51 185.69
30 10 15 1 6319.57 111.88 6364 180.37 6318.65 336.61
30 10 15 2 6411.68 115.24 6454 199.17 6408.36 641.70
30 10 15 3 5725.28 105.49 5763 190.51 5711.88 371.14
30 10 15 4 6191.22 109.50 6243 192.59 6188.34 402.89
30 10 15 5 6196.01 108.00 6225 193.70 6196.01 410.00

Continuous Sized            
Consistent Sublots

Discrete Sized               
Consistent Sublots

Continuous Sized            
Variable Sublots# of 

products
Maximum # 

of sublots
# of 

machines
Instance 

No
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APPENDIX B12 Computational results of NEH(D,TPLS) heuristic for 50 product problems 

NEH 
(D,TPLS)

CPU Time 
(sec)

NEH 
(D,TPLS)

CPU Time 
(sec)

NEH 
(D,TPLS)

CPU Time 
(sec)

50 5 5 1 8236.18 101.94 8252.00 207.19 8236.18 212.79
50 5 5 2 7935.05 110.28 7950.00 220.91 7935.05 227.20
50 5 5 3 9102.93 109.72 9108.00 221.61 9102.93 230.14
50 5 5 4 8186.08 109.98 8199.00 226.19 8186.08 234.74
50 5 5 5 8710.29 111.23 8721.00 228.22 8710.29 235.08
50 5 10 1 8926.48 230.28 8953.00 473.95 8926.48 472.54
50 5 10 2 9331.76 251.19 9354.00 496.61 9330.58 487.48
50 5 10 3 10086.35 255.31 10108.00 494.23 10085.46 490.90
50 5 10 4 9377.06 256.33 9413.00 498.78 9376.89 442.98
50 5 10 5 9648.34 252.85 9680.00 494.36 9646.22 476.69
50 5 15 1 9827.81 368.50 9857.00 731.70 9823.52 721.37
50 5 15 2 9908.06 386.82 9939.00 782.01 9894.96 761.82
50 5 15 3 10017.81 398.28 10048.00 784.25 10040.25 763.90
50 5 15 4 9295.62 401.16 9327.00 778.34 9286.79 797.00
50 5 15 5 9143.63 405.64 9186.00 773.62 9131.06 821.62
50 5 20 1 9623.18 548.86 9666.00 971.59 9601.70 1002.37
50 5 20 2 10475.24 573.80 10522.00 1021.03 10518.59 1216.79
50 5 20 3 11083.84 587.51 11144.00 1027.47 11089.31 1135.13
50 5 20 4 10590.43 597.31 10646.00 1060.03 10716.56 1245.14
50 5 20 5 10760.43 580.34 10809.00 1049.35 10754.04 1114.56
50 10 5 1 8153.27 152.15 8169.00 307.50 8153.27 333.92
50 10 5 2 7919.37 160.55 7930.00 327.80 7919.37 342.48
50 10 5 3 9096.45 162.68 9108.00 335.01 9096.45 343.16
50 10 5 4 8176.66 164.98 8189.00 334.87 8176.66 347.53
50 10 5 5 8697.03 165.06 8707.00 334.04 8697.03 343.43
50 10 10 1 8883.25 371.43 8917.00 698.59 8883.23 962.53
50 10 10 2 9231.01 368.35 9259.00 703.78 9230.56 750.58
50 10 10 3 10099.14 387.67 10132.00 703.17 10099.11 1029.23
50 10 10 4 9304.78 363.04 9336.00 702.76 9299.43 722.97
50 10 10 5 9625.69 369.65 9655.00 699.43 9624.40 704.98
50 10 15 1 9609.89 717.81 9655.00 1254.24 9609.81 2345.40
50 10 15 2 9649.39 756.75 9693.00 1225.21 9647.82 2198.09
50 10 15 3 9928.72 802.86 9977.00 1311.12 9928.72 4470.84
50 10 15 4 9225.07 720.89 9273.00 1315.80 9115.69 4470.84
50 10 15 5 9150.65 711.44 9197.00 1382.30 9104.21 3133.82
50 10 20 1 9604.11 1152.09 9658.00 2246.94 9603.91 7987.22
50 10 20 2 10115.44 1557.42 10180.00 1902.04 10269.72 11249.16
50 10 20 3 10910.81 1200.72 10981.00 1732.93 10888.77 4718.74
50 10 20 4 10215.43 1071.17 10283.00 1872.95 10328.46 2468.35
50 10 20 5 10608.62 998.51 10667.00 1921.45 10604.94 4921.92
50 20 5 1 8153.00 271.44 8167.00 499.45 8153.00 563.68
50 20 5 2 7922.24 276.96 7936.00 536.31 7922.24 687.94
50 20 5 3 9096.00 276.82 9107.00 544.42 9096.00 610.71
50 20 5 4 8176.00 274.75 8189.00 549.32 8176.00 696.45
50 20 5 5 8692.63 277.43 8708.00 543.86 8692.63 628.87
50 20 10 1 8819.13 692.64 8858.00 1160.46 8851.69 3540.18
50 20 10 2 9313.02 829.99 9344.00 1227.40 9271.87 2632.01
50 20 10 3 9995.44 726.83 10032.00 1213.51 *** ***
50 20 10 4 9035.68 652.29 9084.00 1253.37 *** ***
50 20 10 5 9625.12 635.38 9659.00 1230.14 9625.12 2922.73
50 20 15 1 9493.03 1573.10 9544.00 3266.42 *** ***
50 20 15 2 9522.85 1755.05 9577.00 2441.56 *** ***
50 20 15 3 9692.26 1284.32 9750.00 2546.02 *** ***
50 20 15 4 9028.09 1472.78 9087.00 2595.35 *** ***
50 20 15 5 9097.99 1694.81 9166.00 2318.55 *** ***
50 20 20 1 9368.66 2491.94 9447.00 3991.06 *** ***
50 20 20 2 10114.89 2813.81 10192.00 4659.04 *** ***
50 20 20 3 10728.53 2848.58 10805.00 3273.47 *** ***
50 20 20 4 10297.86 2332.38 10385.00 4078.22 *** ***
50 20 20 5 10436.43 2520.28 10514.00 3466.85 *** ***

*** Out of Memory

Continuous Sized   
Consistent Sublots

Discrete Sized      
Consistent Sublots

Continuous Sized   
Variable Sublots# of 

products
Maximum # 

of sublots
# of 

machines
Instance 

No
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APPENDIX C1 Computational results for continuous sized consistent sublots 

Lower 
Bound

Upper Bound 
(MIP)

Computatio
n Time (Sec)

Initial 
Makespan

Final 
Makespan

Computation 
Time (Sec)

5 5 5 1 878.39 878.39 1.63 879.46 879.46 0.66
5 5 5 2 856.17 856.17 1.50 856.17 856.17 0.62
5 5 5 3 1403.69 1403.69 1.47 1403.69 1403.69 0.55
5 5 5 4 746.23 746.23 1.49 746.98 746.23 0.75
5 5 5 5 1355.67 1355.67 1.49 1355.67 1355.67 0.66
5 5 10 1 1653.07 1653.07 2.47 1676.41 1653.07 3.90
5 5 10 2 1673.27 1673.27 2.45 1675.07 1673.27 3.05
5 5 10 3 1254.11 1254.11 2.03 1254.63 1254.11 1.91
5 5 10 4 1341.58 1341.58 1.92 1341.58 1341.58 1.68
5 5 10 5 1291.99 1291.99 1.81 1325.46 1291.99 1.99
5 10 5 1 825.13 825.13 2.25 825.13 825.13 1.91
5 10 5 2 809.73 809.73 1.95 809.73 809.73 1.82
5 10 5 3 1317.62 1317.62 2.26 1317.62 1317.62 1.58
5 10 5 4 729.93 729.93 2.14 730.17 729.93 2.27
5 10 5 5 1311.21 1311.21 2.11 1311.21 1311.21 1.72
5 10 10 1 1464.32 1464.32 5.50 1473.27 1464.32 7.33
5 10 10 2 1462.00 1462.00 6.99 1472.85 1462.00 15.41
5 10 10 3 1141.40 1141.40 4.47 1145.36 1141.40 8.22
5 10 10 4 1213.56 1213.56 4.92 1213.56 1213.56 6.85
5 10 10 5 1118.63 1118.63 5.03 1118.63 1118.63 5.80

10 5 5 1 1714.54 1942.18 1000.00 1978.46 1942.18 91.40
10 5 5 2 2057.50 2061.00 1000.00 2142.97 2061.03 25.85
10 5 5 3 1945.61 2115.02 1000.00 2115.01 2115.02 39.68
10 5 5 4 1865.97 1906.97 1000.00 1906.97 1906.97 33.98
10 5 5 5 1584.48 1932.48 1000.00 2151.83 1932.48 43.77
10 5 10 1 2407.50 3069.35 1000.00 3100.85 3022.80 69.80
10 5 10 2 1893.52 2460.70 1000.00 2496.76 2461.16 78.68
10 5 10 3 2241.46 2794.87 1000.00 2895.98 2784.37 93.49
10 5 10 4 1833.65 2369.71 1000.00 2426.89 2426.89 49.15
10 5 10 5 1588.80 2160.16 1000.00 2245.58 2178.05 79.80
10 10 5 1 1555.19 1938.07 1000.00 1938.07 1938.07 105.84
10 10 5 2 1704.57 2045.64 1000.00 2076.08 2040.19 73.02
10 10 5 3 1674.52 2035.52 1000.00 2035.52 2035.52 99.43
10 10 5 4 1621.48 1893.48 1000.00 1895.85 1893.48 55.91
10 10 5 5 1483.37 1942.68 1000.00 2129.57 1915.38 150.65
10 10 10 1 2035.80 2966.44 1000.00 2953.83 2927.09 460.86
10 10 10 2 1515.47 2302.76 1000.00 2367.28 2326.40 329.91
10 10 10 3 1604.04 2682.22 1000.00 2731.79 2642.64 504.06
10 10 10 4 1414.48 2227.74 1000.00 2249.50 2221.16 444.05
10 10 10 5 1346.46 2049.25 1000.00 2130.75 2041.22 494.61
15 5 5 1 1619.40 2658.69 1000.00 2683.42 2629.68 179.14
15 5 5 2 1277.99 2787.95 1000.00 2703.82 2682.60 133.02
15 5 5 3 1508.61 3172.41 1000.00 3172.42 3172.41 388.07
15 5 5 4 1296.03 2951.60 1000.00 2955.06 2951.60 112.72
15 5 5 5 1398.52 2991.60 1000.00 2961.32 2958.51 162.61
15 5 10 1 1280.07 2870.46 1500.00 2882.87 2720.35 1409.59
15 5 10 2 1657.10 3387.94 3000.00 3336.62 3284.29 2275.72
15 5 10 3 1540.09 3496.34 1000.00 3413.50 3348.03 891.65
15 5 10 4 1514.39 3758.19 1000.00 3650.63 3628.52 581.73
15 5 10 5 1484.07 3393.87 1000.00 3427.50 3319.89 1094.35
15 10 5 1 1095.45 2619.14 1000.00 2650.82 2630.06 506.52
15 10 5 2 1007.05 2682.58 1000.00 2675.72 2652.68 1042.05
15 10 5 3 1242.74 3171.01 1000.00 3171.01 3171.01 515.00
15 10 5 4 1089.77 2936.42 1500.00 2936.44 2936.42 1220.76
15 10 5 5 1259.08 2930.25 1000.00 2924.49 2924.46 538.02
15 10 10 1 1070.67 2798.11 6000.00 2778.27 2702.86 6089.70
15 10 10 2 1281.06 3327.38 6000.00 3403.33 3210.28 3671.42
15 10 10 3 1328.93 3304.29 6000.00 3261.67 3160.61 3101.94
15 10 10 4 1341.25 3547.96 6000.00 3567.27 3509.74 5542.04
15 10 10 5 1200.40 3285.44 6000.00 3315.36 3231.57 2816.46

1423.81 2180.26 1134.26 2196.23 2158.11 594.42

MIP Model Results Tabu Search based Heuristic Results

Average

# of 
products

Maximum 
# of sublots

# of 
machines

Instance 
No

 



 

 

159

 

APPENDIX C2 Computational results for discrete sized consistent sublots 

Lower 
Bound

Upper 
Bound 

Computation 
Time (Sec)

Initial 
Makespan

Final 
Makespan

Computation 
Time (Sec)

5 5 5 1 885.00 885 2.34 891 889 1.85
5 5 5 2 860.00 860 3.14 867 866 1.17
5 5 5 3 1414.00 1414 2.02 1419 1419 0.97
5 5 5 4 752.00 752 6.06 753 753 1.05
5 5 5 5 1361.00 1361 1.86 1364 1364 1.03
5 5 10 1 1670.00 1670 6.00 1714 1670 3.38
5 5 10 2 1683.00 1683 6.69 1695 1691 5.94
5 5 10 3 1267.00 1267 8.92 1272 1272 2.39
5 5 10 4 1351.00 1351 7.25 1354 1354 2.53
5 5 10 5 1306.00 1306 24.00 1346 1312 4.39
5 10 5 1 836.00 836 167.61 839 839 2.73
5 10 5 2 818.00 818 633.83 819 819 2.72
5 10 5 3 1331.00 1331 29.50 1332 1332 2.41
5 10 5 4 735.58 738 1000.00 741 741 2.83
5 10 5 5 1322.11 1323 1000.00 1328 1328 2.58
5 10 10 1 1485.00 1485 748.86 1498 1494 9.84
5 10 10 2 1480.00 1480 113.56 1495 1485 12.02
5 10 10 3 1153.00 1153 131.75 1167 1163 11.13
5 10 10 4 1225.81 1232 1000.00 1237 1237 9.95
5 10 10 5 1133.00 1133 100.63 1167 1147 9.83

10 5 5 1 1614.40 1949 1000.00 1992 1951 27.99
10 5 5 2 1929.77 2064 1000.00 2154 2070 41.77
10 5 5 3 1938.01 2120 1000.00 2126 2120 30.03
10 5 5 4 1842.28 1908 1000.00 1915 1913 31.24
10 5 5 5 1691.32 1939 1000.00 2158 1941 46.52
10 5 10 1 2374.00 3097 1000.00 3128 3038 172.22
10 5 10 2 1784.30 2471 1000.00 2522 2482 214.78
10 5 10 3 1875.41 2839 1000.00 2912 2819 161.84
10 5 10 4 1797.60 2404 1000.00 2451 2448 103.55
10 5 10 5 1699.99 2178 1000.00 2272 2190 128.93
10 10 5 1 1489.62 1949 1000.00 1950 1950 72.62
10 10 5 2 1483.85 2041 1000.00 2088 2052 111.57
10 10 5 3 1542.80 2047 1000.00 2050 2048 90.80
10 10 5 4 1410.90 1897 1000.00 1902 1899 82.06
10 10 5 5 1281.91 1972 1000.00 2138 1926 158.36
10 10 10 1 1908.91 2973 1000.00 2994 2940 456.00
10 10 10 2 1205.50 2397 1200.00 2399 2322 1194.87
10 10 10 3 1316.93 2679 1000.00 2749 2671 713.05
10 10 10 4 1207.95 2280 1000.00 2284 2267 470.24
10 10 10 5 1040.92 2086 1000.00 2151 2065 604.80
15 5 5 1 1258.26 2668 1000.00 2695 2636 263.01
15 5 5 2 1219.17 2770 1000.00 2720 2691 414.65
15 5 5 3 1481.19 3177 1000.00 3182 3182 189.46
15 5 5 4 1305.13 2955 1000.00 2971 2954 258.12
15 5 5 5 1446.07 2971 1000.00 2979 2965 292.34
15 5 10 1 1288.61 2880 3000.00 2904 2814 2257.90
15 5 10 2 1577.97 3493 3000.00 3360 3302 1599.66
15 5 10 3 1677.64 3483 3000.00 3431 3344 2908.80
15 5 10 4 1615.70 3652 3000.00 3673 3560 2295.04
15 5 10 5 1452.60 3439 3000.00 3449 3386 1044.81
15 10 5 1 1133.14 2640 1000.00 2667 2643 826.56
15 10 5 2 987.00 2800 1000.00 2690 2675 669.18
15 10 5 3 1068.01 3177 1000.00 3182 3182 524.39
15 10 5 4 1000.41 2947 1000.00 2951 2943 615.16
15 10 5 5 1100.40 2934 1000.00 2941 2934 582.95
15 10 10 1 1009.45 2921 10000.00 2801 2722 6734.49
15 10 10 2 1078.53 3331 10000.00 3431 3218 8034.76
15 10 10 3 1303.16 3377 10000.00 3290 3184 5077.26
15 10 10 4 1398.14 3590 10000.00 3597 3532 4284.38
15 10 10 5 1020.70 3325 15000.00 3343 3220 14184.29

1365.44 2198.30 1753.23 2214.83 2172.90 967.69

MIP Model Results

Average

Tabu Search based HeuristicResults# of 
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APPENDIX C3 Computational results for continuous sized variable sublots 

Lower 
Bound

Upper 
Bound 

Computation 
Time (Sec)

Initial 
Makespan

Final 
Makespan

Computation 
Time (Sec)

5 5 5 1 853.78 878.36 1000.00 879.46 879.46 1.03
5 5 5 2 831.80 851.33 1000.00 856.17 856.17 1.41
5 5 5 3 1403.69 1403.69 411.94 1403.69 1403.69 1.64
5 5 5 4 735.34 745.89 1000.00 746.98 746.23 1.28
5 5 5 5 1355.30 1355.30 36.03 1355.67 1355.67 1.08
5 5 10 1 1401.76 1667.34 1000.00 1676.41 1653.07 9.43
5 5 10 2 1470.13 1700.21 1000.00 1675.01 1675.01 5.86
5 5 10 3 1113.08 1251.52 1000.00 1254.34 1253.37 6.88
5 5 10 4 1162.00 1346.43 1000.00 1341.51 1341.52 6.36
5 5 10 5 1173.64 1292.23 1000.00 1325.46 1291.99 8.98
5 10 5 1 818.00 832.25 1000.00 824.94 824.94 4.20
5 10 5 2 792.00 814.71 1000.00 809.73 809.73 6.70
5 10 5 3 1292.00 1326.20 1000.00 1317.62 1317.62 7.30
5 10 5 4 723.00 730.63 1000.00 730.17 729.93 6.61
5 10 5 5 1298.00 1317.71 1000.00 1311.21 1311.21 4.67
5 10 10 1 1327.00 1471.42 1000.00 1473.27 1459.87 63.25
5 10 10 2 1213.00 1528.66 1000.00 1472.81 1461.97 80.42
5 10 10 3 1045.00 1169.43 1000.00 1143.92 1141.36 79.27
5 10 10 4 1144.00 1243.49 1000.00 1213.53 1213.53 40.56
5 10 10 5 1013.00 1139.85 1000.00 1118.35 1118.35 57.70

10 5 5 1 1380.00 1942.18 1000.00 1978.46 1942.18 39.48
10 5 5 2 1650.00 2080.51 1000.00 2142.97 2089.23 24.58
10 5 5 3 1476.67 2115.02 1000.00 2115.01 2115.02 29.84
10 5 5 4 1484.00 1906.97 1000.00 1906.97 1906.97 18.77
10 5 5 5 1512.00 1957.84 1000.00 2151.83 2017.81 49.44
10 5 10 1 1266.03 3278.98 1000.00 3093.18 3079.26 89.67
10 5 10 2 1169.13 2556.73 1000.00 2496.39 2460.70 178.13
10 5 10 3 1106.84 2970.21 1000.00 2895.98 2811.34 289.71
10 5 10 4 1114.20 2524.62 1000.00 2426.89 2426.89 90.88
10 5 10 5 1021.66 2192.66 1000.00 2245.31 2244.96 130.63
10 10 5 1 1107.00 1938.21 1000.00 1938.07 1938.07 90.83
10 10 5 2 1497.00 2049.12 1000.00 2076.08 2074.19 73.00
10 10 5 3 1061.00 2043.45 1000.00 2035.52 2035.52 111.60
10 10 5 4 1174.00 1898.11 1000.00 1895.85 1893.48 129.77
10 10 5 5 1380.03 1936.84 1000.00 2129.57 1949.71 406.85
10 10 10 1 924.00 3157.69 2000.00 2953.83 2925.19 1971.85
10 10 10 2 915.00 2502.41 2000.00 2366.52 2340.99 1346.93
10 10 10 3 960.00 2932.62 2000.00 2731.79 2709.47 989.70
10 10 10 4 702.00 2365.44 2000.00 2248.97 2245.65 814.53
10 10 10 5 853.00 2124.85 2000.00 2126.66 2066.81 2456.93
15 5 5 1 1156.00 2667.16 1000.00 2683.42 2658.47 83.47
15 5 5 2 1165.00 2765.50 1000.00 2703.82 2685.22 69.43
15 5 5 3 1286.00 3172.47 1000.00 3172.42 3172.42 69.94
15 5 5 4 1129.00 2953.66 1000.00 2955.06 2951.60 74.04
15 5 5 5 1421.00 3039.48 1000.00 2961.32 2958.59 94.90
15 5 10 1 879.79 3055.34 1000.00 2882.85 2831.30 560.45
15 5 10 2 1031.70 3579.71 1000.00 3329.09 3320.50 451.11
15 5 10 3 1076.68 3686.09 1000.00 3411.10 3356.52 504.19
15 5 10 4 1029.99 3696.92 1000.00 3649.61 3645.78 692.16
15 5 10 5 1006.43 3696.09 1000.00 3418.49 3412.77 467.15
15 10 5 1 1068.00 2673.42 1500.00 2650.82 2630.06 1390.77
15 10 5 2 1058.00 2688.17 1500.00 2675.72 2675.72 663.72
15 10 5 3 921.00 3171.03 1500.00 3171.01 3171.01 360.77
15 10 5 4 967.00 2936.29 1500.00 2936.44 2936.44 411.79
15 10 5 5 1025.00 3010.25 1500.00 2924.49 2924.49 388.97
15 10 10 1 768.00 2851.63 11000.00 2778.26 2762.87 4405.02
15 10 10 2 1080.00 3445.52 11000.00 3403.27 3320.18 8528.91
15 10 10 3 829.00 3479.74 11000.00 3261.04 3159.06 6915.12
15 10 10 4 900.00 3708.58 11000.00 3566.92 3509.76 10889.39
15 10 10 5 1083.00 3429.87 11000.00 3312.92 3312.92 3236.45

1113.328 2237.468 1932.47 2195.570 2175.230 833.09

Tabu Search based Heuristic ResultsMIP Model Results

Average
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APPENDIX C4 Computational results of TS based heuristic starting from NEH(D,TPLS) and 

LPT(TPT) 

Initial 
Makespan

Final 
Makespan

Computation 
Time (Sec)

Initial 
Makespan

Final 
Makespan

Computation 
Time (Sec)

5 5 5 1 879.46 879.46 0.66 991.91 879.46 0.91
5 5 5 2 856.17 856.17 0.62 906.37 856.17 0.88
5 5 5 3 1403.69 1403.69 0.55 1569.36 1403.69 1.00
5 5 5 4 746.98 746.23 0.75 937.17 746.23 0.81
5 5 5 5 1355.67 1355.67 0.66 1705.24 1355.67 1.28
5 5 10 1 1676.41 1653.07 3.90 1780.21 1653.07 2.12
5 5 10 2 1675.07 1673.27 3.05 1885.50 1676.68 3.09
5 5 10 3 1254.63 1254.11 1.91 1396.30 1254.11 2.38
5 5 10 4 1341.58 1341.58 1.68 1550.57 1341.58 3.17
5 5 10 5 1325.46 1291.99 1.99 1448.93 1291.99 2.11
5 10 5 1 825.13 825.13 1.91 961.47 825.13 2.91
5 10 5 2 809.73 809.73 1.82 852.56 809.73 2.86
5 10 5 3 1317.62 1317.62 1.58 1457.06 1317.62 2.11
5 10 5 4 730.17 729.93 2.27 906.14 729.93 2.45
5 10 5 5 1311.21 1311.21 1.72 1660.43 1311.21 3.83
5 10 10 1 1473.27 1464.32 7.33 1621.25 1464.32 9.92
5 10 10 2 1472.85 1462.00 15.41 1642.93 1462.00 9.53
5 10 10 3 1145.36 1141.40 8.22 1234.07 1141.40 10.34
5 10 10 4 1213.56 1213.56 6.85 1381.66 1213.56 10.99
5 10 10 5 1118.63 1118.63 5.80 1250.65 1118.63 9.80

10 5 5 1 1978.46 1942.18 91.40 2182.50 1942.18 19.94
10 5 5 2 2142.97 2061.03 25.85 2816.93 2061.03 47.71
10 5 5 3 2115.01 2115.02 39.68 2563.31 2115.01 27.62
10 5 5 4 1906.97 1906.97 33.98 2164.40 1906.97 35.62
10 5 5 5 2151.83 1932.48 43.77 2305.03 1932.47 25.67
10 5 10 1 3100.85 3022.80 69.80 3457.67 3066.48 139.63
10 5 10 2 2496.76 2461.16 78.68 3017.74 2460.70 215.39
10 5 10 3 2895.98 2784.37 93.49 3256.86 2817.50 87.98
10 5 10 4 2426.89 2426.89 49.15 2797.79 2380.33 120.38
10 5 10 5 2245.58 2178.05 79.80 2613.88 2132.62 220.58
10 10 5 1 1938.07 1938.07 105.84 2135.97 1938.07 91.02
10 10 5 2 2076.08 2040.19 73.02 2777.24 2091.46 90.41
10 10 5 3 2035.52 2035.52 99.43 2516.85 2035.52 75.05
10 10 5 4 1895.85 1893.48 55.91 2142.45 1893.47 60.81
10 10 5 5 2129.57 1915.38 150.65 2258.59 1915.38 117.03
10 10 10 1 2953.83 2927.09 460.86 3293.30 2992.99 515.42
10 10 10 2 2367.28 2326.40 329.91 2815.49 2300.91 481.68
10 10 10 3 2731.79 2642.64 504.06 3092.93 2635.81 709.68
10 10 10 4 2249.50 2221.16 444.05 2626.51 2227.48 493.54
10 10 10 5 2130.75 2041.22 494.61 2459.77 2051.73 561.01
15 5 5 1 2683.42 2629.68 179.14 3324.61 2666.86 195.18
15 5 5 2 2703.82 2682.60 133.02 3535.04 2742.93 256.82
15 5 5 3 3172.42 3172.41 388.07 3416.89 3172.41 297.83
15 5 5 4 2955.06 2951.60 112.72 3363.83 2951.60 388.99
15 5 5 5 2961.32 2958.51 162.61 3712.03 2958.51 257.47
15 5 10 1 2882.87 2720.35 1409.59 3326.84 2715.09 1084.43
15 5 10 2 3336.62 3284.29 2275.72 3875.91 3338.24 1078.98
15 5 10 3 3413.50 3348.03 891.65 3996.98 3340.82 1161.50
15 5 10 4 3650.63 3628.52 581.73 4341.46 3579.34 2095.20
15 5 10 5 3427.50 3319.89 1094.35 4005.58 3331.99 1571.01
15 10 5 1 2650.82 2630.06 506.52 3276.43 2587.73 1401.85
15 10 5 2 2675.72 2652.68 1042.05 3464.35 2679.44 572.70
15 10 5 3 3171.01 3171.01 515.00 3335.28 3171.01 615.38
15 10 5 4 2936.44 2936.42 1220.76 3291.78 2936.42 710.49
15 10 5 5 2924.49 2924.46 538.02 3666.56 2924.62 1378.84
15 10 10 1 2778.27 2702.86 6089.70 3207.40 2639.80 7141.85
15 10 10 2 3403.33 3210.28 3671.42 3841.03 3185.87 5007.56
15 10 10 3 3261.67 3160.61 3101.94 3865.31 3195.93 3834.19
15 10 10 4 3567.27 3509.74 5542.04 4170.98 3520.24 6720.49
15 10 10 5 3315.36 3231.57 2816.46 3782.78 3231.32 6577.00

2196.23 2158.11 594.42 2553.93 2160.34 776.11Average

TS with NEH(D,TPLS) TS with LPT(TPT)Maximum 
# of 

sublots

Number of 
machines

Instance 
No

Number of 
products

 


