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CLASSIFICATION OF SPEECH AND MUSICAL SIGNALS USING 

WAVELET DOMAIN FEATURES 

 

ABSRACT 

 

          In this study, performance of wavelet transform based features for the speech / 

music discrimination task has been investigated. In order to extract wavelet domain 

features, discrete and complex wavelet transforms have been used. The performance 

of the proposed feature set has been compared with a feature set constructed from the 

most common time/frequency and cepstral domain features used in speech/music 

discrimination such as number of zero crossings, spectral centroid, spectral flux and 

Mel cepstral coefficients.  In order to measure the performances of the feature sets 

for the speech/music discrimination, artificial neural networks have been used as 

classification tool. The principal component analysis has been applied to eliminate 

the correlated features before classification stage. Considering the number of 

vanishing moments and orthogonality, the best performance is obtained with 

Daubechies8 wavelet among the other members of the Daubechies family. According 

to the results the proposed feature set outperforms the traditional ones. 

 

     Keywords: speech/music discrimination, wavelet transform, Daubechies wavelet, 

artificial neural networks 

 

 

 

 

 

 

 

 

 

 

 



 v 
 

KONUŞMA VE MÜZ ĐK ĐŞARETLER ĐNĐN DALGACIK ORTAMI 

ÖZNĐTEL ĐKLER KULLANARAK SINIFLANDIRILMASI 

 

ÖZ 

 

     Bu çalışmada, müzik ve konuşma ayrımı için dalgacık dönüşümü tabanlı 

özniteliklerin başarımı araştırılmıştır ve zaman/frekans tabanlı öznitelikler gibi 

literatürde sıkça kullanılan öznitelik çıkartım yöntemleri ile karşılaştırımı yapılmıştır. 

Dalgacık tabanlı öznitelikleri çıkartmak için, ayrık ve karmaşık dalgacık dönüşümleri 

kullanılmıştır. Önerilen öznitelik setinin başarımı; sıfır geçişlerinin sayısı, izgesel 

merkez, izgesel akı ve mel kepstral katsayıları gibi konuşma/müzik ayrımında 

kullanılan en yaygın zaman/frekans ve kepstral tabanlı öznitelikler ile oluşturulmuş 

öznitelik seti ile karşılaştırılmıştır. Elde edilen özniteliklerin sınıflandırılmasında 

yapay sinir ağları kullanılmıştır. Sınıflandırma aşamasından önce birbiri ile ilişkili 

özniteliklerin elenmesi amacıyla temel bileşen analizi uygulanmıştır. Sönümlenen 

momentler ve birimdiklik değerlendirilerek, db8 dalgacığının Daubechies ailesi 

içindeki diğer dalgacıklardan daha yüksek başarı gösterdiği belirlenmiştir. Elde 

edilen sonuçlara göre, konuşma/müzik ayrımında önerilen yöntemin, önceki 

yöntemlere daha üstün olduğu görülmüştür. 

 

Anahtar kelimeler: konuşma/müzik ayrımı, dalgacık dönüşümü, Daubechies 

dalgacığı, yapay sinir ağları 
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CHAPTER ONE 

INTRODUCTION 

 

     Today, discrimination of speech and musical signals has been an important field 

due to the requirement of more efficient use of communication tools and increase in 

the media capabilites. The aim of a speech / music discrimination (SMD) system is to 

separate speech and music signals from each other by imitating the behaviour of the 

human ear by using efficient code and algorithms. SMD systems can be used a pre-

processing stage tool for automatic speech recognition (ASR) systems, audio 

decoding, content based multimedia retrieval and automatic channel selection in 

radio broadcasts. 

 

1.1 Speech / Music Discrimination 

 

     There have been several studies on SMD systems which use different feature 

extraction and classification methods. In addition, the classified material used in 

these studies may vary among each other. 

 

     One of the preliminary works in this area was made by J. Saunders (Saunders, 

1996). In the article, a real time system that can discriminate speech and audio 

signals in FM radio broadcasts has been proposed.  The system has been designed to 

change the channel when ads begin on radio broadcast. The author notes that he 

could manage to reach 98% as classification performance. The distribution of zero 

crossing rates and an algorithm based on lop-sidedness of this distribution have been 

used in the feature extraction stage of the study. 

 

           In another work on decomposition of recordings, a discriminator for automatic 

segmentation of radiophonic musical sounds has been developed using combined 

supervised and unsupervised methods (Richard, Ramona, & Essid, 2007). The 

extracted features are grouped under four titles as temporal features (ZCR, temporal 

statistical moments, modulation coefficients,...), Spectral features (spectral statistical 

moments, spectral slope, spectral flux,...), Cepstral features (MFCC, Constant Q
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transform cepstral coefficients) and Perceptual features (Relative loudness, 

perceptive sharpness,...). These parameters are selected using a simple feature 

elimination program and then support vector machines (SVM) are used for 

classification stage. Each time frame is labelled with one of music, speech or mixed 

at the end of the classification. For longer segments, a smoothing procedure is 

defined using unsupervised approach. 

 

     In automatic speech recognition systems (ASR), it is an essential problem to de-

activate the system when there is no speech signal at the input. For these types of 

applications, SMD systems can be used as a pre-processing tool. A system designed 

for this purpose given in (Scheirer & Slaney, 1997) extracts 13 features such as 4 Hz 

modulation energy, Percentage of low-energy frames, spectral roll off point, spectral 

centroid, spectral flux, zero crossing rate, cepstrum resynthesis residual magnitude 

and pulse metric in the fetaure extraction stage. The authors note that they have also 

used variances of spectral roll off point, spectral centroid, spectral flux, zero crossing 

rate and cepstrum resynthesis residual magnitude to form feature vector. The 

performance is examined in two aspects such as frame-by-frame and long segments 

(2.4 sec) using different classifier schemes. It is noted in the paper that the error 

could be decreased to 1.4% for long segment database while the classification error 

for frame-by-frame segments is 5.8%. The authors also add that several radio stations 

have been used to collect samples. This collection contains length of 20 min. 

recordings and each one of these recordings contains 80 samples with length of 15 

sec. for each one. At classification stage, GMM, k-NN and k-d spatial classifiers 

have been preferred by the authors. 

   

      A speech music discriminator system designed for radio broadcasts that has been 

proposed in (Pikrakis, Giannakopulos, & Theodiris, 2008) uses a multilayer 

procedure with three–stage structure. According to this method, the aim in the first 

stage is to define the speech and music segments that are seperable at first glance 

with high accuracy. In this stage, spectral entropy and region growing based 

parameters are extracted. The segments which could not be classified in the first 

stage are segmented with more complex methods and procedures such as Dynamic 
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Programming and Bayesian Networks. The last stage aims to define exact boundaries 

of segments. The classification is performed for different music genres and the 

overall performance is given as 96% in the study. 

 

      Another study given in (Matsunaga, Mizuno, Othsuki, & Hayashi, 2004) aims 

automatically indexing of broadcast news by suggesting a new method to define 

audio source intervals. The process includes two stages as determination of audio 

sources and post processing stage for undefined segments. The three features 

proposed by the authors are based on spectral cross-correlation and given as spectral 

stability, white noise similarity and sound spectral shape. To make comparison with 

previous works, two different feature sets have been used by the authors. The first 

feature set includes energy, pitch frequency, frequency centroid and bandwitdh. In 

the other set, the 3 features proposed by the authors are added to four features used in 

first feature set. It is claimed in the paper that the performance has increased about 

6.6% after addition of 3 parameters to previous ones. 

 

     One of the application fields of speech/music discriminators is audio coding. It is 

important to provide low bit rate – high quality sound in applications such as 

wireless communications, telephone, teleconference, internet communications and 

digital music broadcast. However, coding of music and speech utilizes different 

techniques in general. An effective algorithm for music coding may not be suitable 

and cause problems for speech coding applications. A pre-processing stage including 

SMD is needed to avoid these types of problems in such applications. In a study, a 

SMD system which minimizes the discrimination error for coding system has been 

proposed using a Genetic Fuzzy System (GFS) integrated to decision stage 

(Exposito, Galan, Reyes, & Candias, 2007). The authors state that they have avoided 

many classification errors and reached 94.30% accuracy using GFS and GMM 

classifier. Speech samples with length of one hour in total from different accents and 

different genders have been collected for generating speech database. One hour for 

recording including different genres of music such as rock, pop etc. has been used for 

music database. 
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     In another study on audio coding (Rong-Yu, 1997), average zero crossing rate has 

been considered at feature extraction stage for non-overlapped segments with length 

of 480 samples. In a similar work on multimode wideband coding of speech and 

musical signals (Tancerel, Ragot, Ruoppila, & Lefebvre, 2000), a SMD system has 

been used as pre-processing tool. In the study, the discrimination is achieved by 

using long term statistics in feature extraction stage and GMM for classification. 

 

     SMD systems also play an important role in multimedia applications such as 

content based multimedia retrieval, content compression and automatic speaker 

indexing. 

 

     In (El-Maleh, Klein, Petrucci, & Kabal, 2000), line spectral frequencies (LSFs) 

and zero crossing based parameter are used for feature extraction over length of 20 

msec segments. In classification stage, in order to make comparison with previous 

works, the labelling has been made for length of 1 sec (50 frames) using quadratic 

Gaussian classifier. The feature extraction over short time segments makes study 

convenient for real time multimedia applications. In addition, a new feature named as 

Linear Prediction Zero Crossing Ratio (LP-ZCR) is proposed which is calculated 

using proportion of the number of zero crossings at the output of a linear prediction 

filter to number of zero crossings at the input. For classification, two types of 

classifiers are used: quadratic Gaussian classifier and nearest neighbour classifier. It 

is noted by the authors that speech database was created by taking samples from 5 

men and 5 women speakers with 8 KHz sampling frequency and for music database, 

music recordings with different genres were used. 28 000 frames of speech samples 

(9.3 min.) and 32 000 frames of music have been used as training data. 

 

     The audio content analysis plays an important role when content-based indexing 

and audio retrieval are concerned. In (Lu, Zhang, & Jiang, 2002), the audio content 

analysis is implemented. The audio classification is done using a two-stage 

procedure: In the first stage, KNN Classifier and a new feature based on linear 

spectral pairs vector quantization (LSP-VQ) is used in order to discriminate speech 

and non-speech segments. In second phase of classification process, the segments 
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labelled as non-speech in first stage are decomposed subclasses such as music, 

enviromental sounds and silence. A new method is proposed using quasi-GMM and 

LSP correlation analysis based unsupervised speaker segmentation algorithm. The 

classification results are addressed in many aspects in the study. 

 

     Another study on this field is given in (Zhang & Kuo, 2001), where audio content 

analysis is performed for online audiovisual data segmentation and classification. 

The audio data taken from films and TV programs is subjected to segmentation and 

these segments are labelled with basic classes like as speech, music, song, 

environmental sounds with music in the backround, speech with music in the 

backround and silence. The energy function, average number of zero crossings, 

fundamental frequency and spectral peak tracks are calculated in feature extraction 

stage to make the study applicable in real time operations. The authors note that they 

have managed to exceed 90% as classification performance. 

 

     The system proposed in (Minami, Akutsu, Hamada, & Tonomura, 1998) can be 

given as an example of video indexing studies. A spectrogram based analysis that 

aims music detection is used for video indexing. According to authors’ approach, 

spectrogram is taken as a gray level image and classification is made using image 

intensity values of this spectrogram. 

 

     The gray correlation based features are used in another publication on music 

speech discrimination (Gong & Xiong-wei, 2006). Unlike the previous studies, 

amplitude of RMS value statistics based gray correlation analysis method is used for 

content based indexing and retrieval of cognitive media.  It is stated by the authors 

that this method based on geometric relation of sequences with over 90% as 

classification performance. In analysis section, the data is divided into segments with 

length of 1 sec. and gray correlation analysis is performed over these segments.  

 

     In some studies, unlike their predecessors, only one feature is preferred instead of 

using many features (Karneback, 2001; Wang, Gao, & Ying, 2003). It is claimed in 

(Karnebeck, 2001) that, the main difference between music and speech is the 
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bandwidth. Low frequency modulation has been used as feature in the study. 

Waxholm database and different types of music samples from cd recordings have 

been used for speech and music databases, respectively.  

 

     The other method proposed in (Wang & other., 2003) uses only a new feature 

based on low energy ratio and this new feature is called by the authors as modified 

low energy ratio. It is stated in the paper that it is possible to get higher performance 

results than previous works using this new parameter. Authors use news broadcasts 

from radio and TV channels and dialogs from movies to define speech database. For 

music database, instrumental songs have been used. The performance results are 

given as 98.4% for speech and 97% for music in the paper. 

 

     For some applications including real time operations, the efficient and faster 

algorithms are as important as the classification results. To meet these needs; in 

(Wang, Wu, Deng, & Yan, 2008), a SMD system have been proposed using 

hierarchical oblique decision theory to provide balance between low complexity and 

high accuracy. In this way, they reach to 98% accuracy with a delay of 10 msec. for 

each frame. 228 512 frames for music and 237 671 frames for speech have been used 

for extraction of parameters such as normalized spectral flux between frames, 

normalized spectral flux between subbands, standart deviations of energy levels, 

energy ratio and harmonic structure ability. Authors have suggested hierarchical 

oblique decision classifiers which they have trained using extracted features for 

classification stage. It is mentioned in the paper that this method is more flexible and 

simpler in terms of DSP implementation and it is possible to get more accurate 

results. Authors add they have achieved to get a classifcation performance of 98.3%  

 

     A system working with high speed and high accuracy proposed in (Panagiotakis 

& Tziritas, 2005) can manage to reach 95% accuracy with 20 msec. frame delay and 

it is using only two characteristics of signals such as RMS based average density of 

zero crossings and average frequency. In classification stage, at first a decision is 

given for if the present frame is silence and in the next step, the classification is made 

for nonsilent frames to define whether they are speech or music. Any classifier is not 
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used for classification. Instead, the extracted features are subjected to some tests and 

the final decision is given by looking at the results of these tests. 

 

     It is mentioned in (Ruiz-Reyes, Vera-Candeas, Muñoz, García-Galán, & Cañadas, 

2009) that the timbral feautures used in most of previous studies are not very 

effective for speech/music discrimination as contrary to common thought. In this 

publication, different from previous studies, a robust system is proposed for 

speech/music discrimination using fundamental frequency estimation. For 

classification stage, a classical statistical pattern recognition classifier followed by a 

fuzzy rule based system has been used. The authors have obtained the highest 

success rate as 97%. However, accuracy is measured as 95% for the case where all 

classifiers are taken into consideration.  

 

     In other published studies on speech / music discrimination, generally the feauture 

extraction methods show differences and these differences are also valid for 

classification schemes and datasets. There are studies which make comparison 

between other publications in terms of feature extraction. In (Carey, Parris, & Lloyd- 

Thomas, 1999), it is stated that 4 types of features such as amplitudes, cepstra, pitch 

and zero crossings are compared in the study and cepstral and delta cepstral 

coefficients show higher classification performance than other parameters. 

 

     Mel frequency cepstral coefficients (MFCCs) are frequently used for feature 

extraction stage of speech / music discrimination applications. As an example, the 

first degree statistics of MFCCs are examined in (Harb & Chen, 2003) to design a 

SMD system. Authors of the paper have noted that they have reached 96% 

classification performance using only a part of 80 sec. of a dataset with length of 20 

000 sec. and using neural networks as classifier. It is noted in the report that the 

proposed method can be applied to any radio source regardless from content of data. 

 

                 When other studies that use MFCC are concerned, we encounter with speech 

recognition and musical genre classification applications. A study on genre 

classification uses features including timbral features (zero crossings, centroid, roll 
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off, flux, MFCC), MPEG-7 features (Audio SpectrumCentroid, Audio Spectrum 

Spread, Audio Spectrum Flatness, Harmonic Ratio, Modified Harmonic Ratio ), 

Rythm features ( Beat Strength, Rythmic Regularity) and other features as (RMS, 

Time Envelope, Low Energy Rate, Loudness, Central Moments, Predictivity Ratio) 

(Burred & Lerch, 2003). A feature selection algorithm which compares these features 

among themselves is used and a 3-component Gaussian Mixture Model is preferred 

as classifier by the authors. The database contains 850 files with 30 sec. length for 

each one and the classification results are given by comparing the direct approach 

with the hierarchical approach proposed by the authors.  

 

    In (Ezzaidi & Rouat, 2007), the issue is addressed from a comparison aspect 

between statistical theory and information theory measurements in this study on 

musical genre classification. 

 

     Automatic speech recognition (ASR) systems for robotics are another application 

field of speech / music discriminators. The study in (Choi, Song, & Kim, 2007) can 

be given as one of the publications for these types of applications. In this paper, a 

speech / music discriminator for speech recognition system of a robot has been 

designed as pre-processing stage by the authors. Mean of minimum cepstral 

distances (MMCD) are used in feature extraction stage. Speech Information 

Technology and Industry Promotion Center (SiTec) that contains 13 hours of 

recordings created by 50 different male and female speakers is used for generation of 

speech database. RWC Music Database Subworking group of the Real World 

Computing Partnership (RWCP) of Japan has provided the music database as well. 

The authors say that they have achieved to get a success of 99.64% and emphisize 

that the used dataset contains speech closely recorded speech voices and original CD 

tracks. 

 

     One of the popular methods used in SMD systems is Discrete Wavelet Transform 

(DWT) (Tzanetakis, Essl, & Cook, 2001; Didiot, Illina, Fohr, & Mella, 2010; Khan 

& Al-Khatib, 2006; Ntalampiras & Fakotakis, 2008). When the literature is 

concerned in general, it is possible to see that DWT is used commonly in many 
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application areas of speech and audio signal processing. The study in (Tzanetakis & 

other. , 2001) describes some applications of DWT to the problem of extracting 

information from non-speech audio. The authors make an automatic classification of 

various types of audio using the DWT and compare with other traditional feature 

extraction methods proposed in the literature. Statistics over the set of the wavelet 

coefficients are used in order to reduce the dimensionality of the extracted feature 

vectors. In this way, the mean of the absolute value of the each subband, the standart 

deviation of the coefficients in each subband and ratios of the mean values between 

adjacent subbands are used for feature extraction. A window of 65536 samples at 

22050 Hz sampling rate with hop size of 512 seconds (corresponds to approximately 

3 seconds) is used as input to the feature extraction process and twelve levels 

(subbands) of coefficients are used resulting in a feature vector with 45 dimensions. 

Three classification experiments are evaluated in the study as MusicSpeech, Voices 

and Classical. 

  

     In (Khan & other. , 2006), DWT coefficients are used in feature extraction stage 

of a machine learning based speech / music discriminator. The mean and variance of 

DWT coefficients are used as input to the classification stage. The wavelet families 

of Haar, Meyer and two types of Daubechies (DB2 and DB15) are investigated in the 

paper. It is stated by the authors that extracted features using Meyer or DB15 

wavelets do not contribute much to the process of classification and the results for 

the Haar wavelets, however, indicate that they have performed more accurate 

clustering than that of DB2 wavelets. The experiments were carried out using a 

database of music, speech, and speech added on music data in the study where all 

speech and speech+music data were conversational and included examples from both 

genders. The audio samples were extracted from documentaries and from different 

movies as well. The authors evaluate the results for several classifiers such as 

Multilayer Perceptron (MLP) Neural Networks, Radial Basis Functions (RBF) 

Neural Networks ve Hidden Markov Model (HMM) classifiers. 

 

      In (Didiot & other. , 2010), a wavelet based parameterization for a SMD sytem 

has been proposed. The authors state that DWT parameters must be preferred rather 
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than Fourier Transform based features for applications which use non-stationary 

signals like music and speech sounds. The results are evaluated for three wavelet 

family and numerous vanishing moments. Static, dynamic and long term parameters 

are investigated in the classification stage of the system. 

 

     It has been presented an effective approach which addresses the issue of 

speech/music discrimination using DWT in (Ntalampiras & Fakotakis, 2008). 

Multiresolution analysis is applied to the input signal by the authors while the most 

significant statistical features are calculated over a predefined texture size. For 

implementation, speech/music discrimination is based on six statistical 

measurements including mean, variance, minimum value, maximum value, standard 

deviation and the median taken from the low frequency information of the signal. 

Both male and female speech is obtained from the TIMIT database and an EBU 

music collection is used for music database. The classification results are obtained 

for 4 wavelet families given as Haar (Daubechies 1), Daubechies 4, Symlets 2 and 

Biorthogonal 3.7. The authors note that Haar must be used in the task of speech / 

music discrimination. They also add that it has demonstrated very good performance 

achieving 91.8% recognition rate despite the fact that the system is based solely on 

wavelet signal processing. 
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1.2 Aim of Thesis 

 

     In the literature, many successful methods including time domain, frequency 

domain and time/frequency domain have been proposed to be used at feature 

extraction stages of speech / music discrimination systems. Since it provides compact 

representation of signals in both time and frequency domains, discrete wavelet 

trnasform (DWT) stands out among other methods.  

 

     The first aim of this study is to further examine the capabilities of DWT for SMD 

by considering the feature extraction strategies, the properties of different wavelets 

and the length of the analysis window.   

 

     It is known that DWT suffers from the lack of shift invariance and oscillatory 

behavior. As complex wavelet transform (CWT) proposes an acceptable solution to 

these problems, it also provides compact representation for nonstationary signals.  

The second aim of this thesis is to observe if CWT is a convenient method for SMD 

systems by proposing a new CWT based parameterization system at feature 

extraction stage. The dual tree method which constructs approximately analytical 

wavelets will be used for the implementation of the CWT in the thesis. In order to 

make comparison, performance results of CWT and DWT based classification over 

other two methods such as time/fequency based features and DWT based energy 

features will be examined. 

 

1.3 Outline of thesis 

 

     The thesis is organised in to 5 chapters as follows:  

 

Chapter 2 is a detailed review of features used in the thesis. In this chapter, four 

different feature extraction methods are described and the advantages of proposed 

method is stated at the end of this section. In Chapter 3, a brief information about 

artificial neural networks (ANN) is given since it has been used as classification tool 

in the thesis. It is also mentioned about the principal component analysis (PCA) that 
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used for pre-classification stage. Chapter 4 is the most important section of thesis 

since it contains results of the experiments performed in this study. At the beginning 

of chapter, a detailed information on the material used in the thesis is presented and 

the results are examined. In the last chapter of the thesis, a comparative discussion is 

made about expected and encountered results. The benefits and advantages of thesis 

is discussed as well in this chapter. 
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CHAPTER TWO 

FEATURES FOR SPEECH / MUSIC DISCRIMINATION 

 

     In this chapter, the related theoretical back ground of the features used in the 

thesis will be given. 

 

2.1 Time/Frequency Domain Features and Mel Cepstral Coefficients 

 

     The time domain features such as number of zero crossings and frequency domain 

features such as low energy ratio, spectral centroid, spectral roll-off and spectral flux 

are commonly used for music/speech discrimination. Also, Mel frequency cepstrum 

coefficients are shown to be successful in music/speech classification and 

recognition applications. For comparison, a feature vector constructed from these 

features has been used for classification as the first method of this thesis. 

 

2.1.1 Number of Zero Crossings 

 

     It is a time-domain feature which represents the number of zero crossing in a 

frame. It is a useful feature in music and speech discrimination since it is a measure 

of the dominant frequency in the signal (Saad, El-Adawy, Abu-El-Wafa, & Wahba, 

2002; Scherier & other, 1997). The number of zero crossings are calculated as 

 

[ ]
2

1
sgn( ( )) -sgn( ( -1))

2

N

t
n

Z x n x n
=

= ∑           (2.1) 

 

where x(n) is the thn  component of the frame of length N. 
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2.1.2 Low Energy Ratio 

 

     This feature gives the number of the frames of where the effective or root mean 

square (RMS) energy is less than the average energy. The RMS energy for each 

frame is determined as 

2

1

1 K

RMS k
k

X X
K =

= ∑           (2.2) 

 

where kX  is the magnitude of thk  frequency component in the frame. Since the 

energy distribution is more left-skewed than for music, this measure will be higher 

for speech (Scherier & other, 1997 ). 

 

2.1.3 Spectral Centroid 

 

     This is the measure of the center of mass of the frequency spectrum and 

calculated as 

 

1

1

K

k kk
K

kk

f X
SC

X
=

=

= ∑
∑

          (2.3) 

 

where Xk is the magnitude of the component in the frequency band fk  (Saad & other., 

2002; Scherier & other., 1997). 

 

2.1.4 Spectral Roll-off 

 

     This feature is important in determining the shape of the frequency spectrum. The 

spectral roll-off point Rk is the frequency where the 95% of the spectral power lies 

below as summarized in 

 

2 2

1 1

0.95
kR K

k k
k k

X X
= =

=∑ ∑           (2.4) 
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where k
tX  is the magnitude of the component of the thk  frequency. Since the most of 

the energy is in the lower frequencies for speech signals, Rk has lower values for 

speech (Saad & other., 2002; Scherier & other., 1997). 

 

2.1.5 Spectral Flux: 

 

     It represents the spectral changes between adjacent frames and calculated as 

 

( )
2

1

1

K
t t

t k k
k

SF X X −

=

= −∑           (2.5) 

 

where k
tX  is the thk  frequency component of the tht  frame. Then the average of the 

all frames are calculated. The music has a higher rate of changes than speech, thus 

this value is higher for music (Saad & other., 2002; Scherier & other., 1997). 

 

2.1.6 Mel Frequency Cepstrum Coefficients (MFCC)  

 

     The Mel frequency spectrum is the linear cosine transform of a log power 

spectrum on a nonlinear mel scale of frequency (Zheng, Zhang, & Song, 2001 ). The 

Mel scale is inspired from the human auditory system in which the frequency bands 

are not linearly spaced. Thus the sound is represented better. The calculation of the 

MFCC includes the following steps:  

 

1. The discrete Fourier transform (DFT) transforms the windowed speech segment 

into the frequency domain and the short-term power spectrum P(f) is obtained. 

 

2. The spectrum P(f) is warped along its frequency axis f (in hertz) into the mel-

frequency axis as P(M) where M is the mel-frequency,  

 

10( ) 2595log 1
700

f
M f

 = + 
 

         (2.6) 
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3. The resulted warped power spectrum is then convolved with the triangular band-

pass filter P(M) into ( )Mθ . The convolution with the relatively broad critical-band 

masking curves ( )Mθ significantly reduces the spectral resolution of ( )Mθ  in 

comparison with the original P(f), which allows for the down sampling of ( )Mθ . 

 

              ( ) ( ) ( )k k
M

M P M M Mθ ψ= −∑ , k=1,…,K          (2.7) 

 

Then K outputs X(k) = ln( ( )kMθ ); (1... )k K=  are obtained. In the implementation, 

( )kMθ  is the average instead of the sum. 

 

4. The MFCC are computed as 

 

( )
1

( ) cos ( 0.5 )
K

k
k

MFCC d X d k
K

π
=

 = −  
∑ , k=1,…,D.       (2.8) 

 

2.2 Wavelet Transform 

 

          Although it is not the most effective way of representing a signal, sometimes it 

is important to provide representation of a signal in terms of its spectrum or Fourier 

Transform. It is well known that speech and music signals contain a combination of 

several frequencies and they show different characteristics for different time 

locations. However, Fourier Transform does not show changes in the structure of 

frequency domain, that is, it shows only global frequency content independently 

from time information. In this way, if a stationary signal is in question, then Fourier 

Transform can be useful. For non-stationary signals, the transform must be 

performed locally using analysis windows  (Heil & Walnut, 1989). In Figure 2.1, the 

representation schemes for different transformations are given. As it can be seen in 

(a), Fourier Transform does not perform any windowing for transformation of signal. 

On the other hand, in (b) and (c), STFT and Wavelet transforms use windows to 

analyze the signal and this property makes them an appropriate tool for processing of 

non-stationary signals.  
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   Figure 2.1 Different time-frequency representations for the three transforms: (a) Fourier Transform, 

    (b)  STFT and (c) wavelet transform (Chun-Lin, 2010) 

 

     Short time Fourier transform (STFT) and wavelet transform (WT) can be given as 

examples for methods that use windows to analyse the signals locally. STFT use 

costant length windows for analysis and this sometimes causes problems in terms of 

representation. WT uses windows which can scale their sizes adaptively to provide 

good resolution in time and frequency domain. Both STFT and WT use the 

correlation between the signal and analysis function (Chun-Lin, 2010). As it is 

shown in Figure 2.2, continuous wavelet transform is performed using translated and 

scaled versions of a mother wavelet. The transformation is represented for two 

different scaling values such as s=5 and s=20. 

 

 
Figure 2.2 Continous wavelet transform for a non-stationary signal for different scaling parameters. 

(Sumbera, 2001) 
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     To perform Contionuos Wavelet Transform, the convolution between the signal 

and analysis function is calculated as analogous to Fourier transform. The only 

difference between two methods is that wavelets are used instead of sinusoids in 

wavelet transform. Wavelets are functions which oscillate locally and they are 

limited in time domain. Wavelet functions contain parameters which allow to 

shifting and scaling of windows and in this way, they provide a better resolution both 

in time and frequency domain than STFT (Merry, 2005). 

 

     Another implementation for wavelet transforms is performed with filter banks and 

is named as Discrete Wavelet Transform (DWT). DWT subjects a signal to some 

filtering process using filter banks and decompose it to coefficients called as detail 

and approximation. These coefficients provides a good representation of signals with 

giving frequency information and time location of that frequency component. 

 

2.2.1 The Continous Wavelet Transform 

 

     A mother wavelet function limited in time domain 2( ) ( )t L Rψ ∈  is defined where 

limited in time domain refers to taking values in a limited region over time axis. 

These wavelets are normalized and also have zero mean property (Chun-Lin, 2010). 

 

     Mathematically, these properties are given as  

 

       
2 *

( ) 0

( ) ( ) ( ) 1

t dt

t t t dt

ψ

ψ ψ ψ

∞

−∞
∞

−∞

=

= =

∫

∫

                (2.9) 

 

     The mother wavelet has the capability of forming the basis set denoted as   

 

,

1
( ) ( ) , ,s u

t u
t u R s R

ss
ψ ψ +− = ∈ ∈ 
 

       (2.10) 
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where u and s are translating and scaling parameters, respectively. The translating 

parameter in the equation shows the region that is being analyzed. { }, ( )u s tψ  is 

obtained orthonormally which is ensured by multiresolution property.  

 

     It is possible to map a one dimensional signal ( )f t  to the two dimensional 

coefficients ( , )Wf s u  that contain time and frequency information using this 

transform. These two parameters are used to locate a certain frequency (scaling 

parameter s) at a particular time instant (translating parameter u). 

 

     Continous wavelet transform is given as 

 

        ,( , ) ( ), s uWf s u f t ψ=< >                             (2.11) 

*
,

*

( ) ( )

1
( ) ( )

s uf t t dt

t u
f t dt

ss

ψ

ψ

∞

−∞
∞

−∞

=

−=

∫

∫

 

 

     The inverse continous wavelet transform is given as  

 

2
0

1 1
( ) ( , )

t u ds
f t Wf s u du

C s ssψ

ψ
∞ ∞

−∞

− =  
 

∫ ∫           (2.12) 

 

     where Cψ   is defined as 

 

                           
2

0

( )w
C dw

wψ
ψ∞

= < ∞∫               (2.13) 

 

     This equation is also called the admissibility condition where ( )wψ  is the Fourier 

transform of the mother wavelet  ( )tψ (Chun-Lin, 2010). 
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     Continuous wavelet transform is calculated by taking discrete samples for the 

scaling parameter s and translation parameter u  and the resulting wavelet 

coefficients are called wavelet series (Merry, 2005).  

      

     Wavelet series can be calculated as 

 

, ,( ) ( )m n m nXwt x t t dtψ
∞

−∞

= ∫    with /2
, 0 0 0( )m m

m n s s t nuψ ψ− −= −           (2.14) 

 

where integers m and n control the wavelet dilatation and translation. 

 

2.2.2 The Discrete Wavelet Transform 

 

     The continous wavelet transform uses functions that contain parameters such as 

translating and scaling to make multiresolution analysis. However, DWT performs 

this analysis by using multiresolution filter banks and specific wavelet filters (Merry, 

2005). 

 

     2.2.2.1 Filter Banks 

 

     Filter banks refer to collection of filters which decompose the signals into 

different frequency bands. The discrete signals are applied to analysis filter bank and 

decomposed to their frequency components filtering by L(z) and H(z), low-pass and 

high-pass filters, respectively. The outputs of the filters represent the same frequency 

content with input by coming together, but the amount of samples are doubled. So, 

the outputs of filters in analysis filter bank are subjected to downsampling by a factor 

2. 

 

     The signals are upsampled by a factor 2 as contrary to analysis filter bank and 

passed through the synthesis filters L0(z) and H0(z) in reconstruction process. 

Summing of outputs of these synthesis filters yields the reconstructed signal [ ]y k  as 

given in Figure 2.3. 
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                                 Figure 2.3 Two channel filter bank (Merry, 2005) 

 

     2.2.2.2 Perfect reconstruction 
 
     The filter banks should be biorthogonal to satisfy perfect reconstruction property 

(Merry, 2005). To ensure satisfying of this property, aliasing and distortion must be 

prevented by some design criteria (Strang & Nguyen, 1997). In the two channel filter 

bank given in Figure 2.3, the signal is decomposed into two frequency bands using 

low-pass ( )L z  and high-pass ( )H z  filters. There will not be loss of information if the 

filters have sharp-edge structure, however, it is not possible to implement these types 

of filters in practice since always a transition band exists. This case causes amplitude 

and phase distortion in each of the channels (Schneiders, 2001). For a two channel 

filter bank, aliasing can be avoided by designing the filters of the synthesis filter 

bank as (Strang & other., 1997) 

 

      
'( ) ( )

'( ) ( )

L z H z

H z L z

= −
= − −

          (2.15) 

 

     A product filter '
0( ) ( ) ( )P z L z L z=  is defined to prevent distortion. This distortion 

can be tackled if (Schneiders, 2001) 

 

0 0( ) ( ) 2 NP z P z z−− − =         (2.16) 

 

     In the equation, N is given as the overall delay in filter banks. 
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The perfect reconstruction filter bank can be designed in two steps: 

 

1. A low-pass filter 0P  satisfying the equation given above is designed. 

 

2. 0( )P z  is factored into '( ) ( )L z L z  and '( )H z and ( )H z  are calculated using 

equations given above. 

 

     2.2.2.3 Multiresolution Filter Banks 

 

     In previous section, a two channel decomposition has been presented which uses 

low-pass and high-pass filters that give approximation and detail coefficients at their 

outputs, respectively.  A three-level filter bank is shown in Figure 2.4. 

 

 
                    Figure 2.4 Tree level filter bank: (a) analysis bank (b) synthesis bank (Merry, 2005) 

 

     As it can be seen, the filter bank can be designed depending on the desired 

resolution. ( )lc k  are the coefficients that represent the lowest half of the frequency 

content of the frequencies in [ ]x k  and  ( )hc k coefficients are vice versa. It should not 
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be forgotten that the downsampling operation by factor 2 is performed after each 

filter. 

 

     After each level, highest and lowest frequency components are represented by the 

outputs of high-pass and low-pass filter outputs. As mentioned before, the level of 

filtering can be increased or decreased arbitrarily depending on the desired 

resolution. For a special set of filters ( )L z  and ( )H z , this structure is called as DWT 

and the filters are named as wavelet filters (Merry, 2005). 

 

     2.2.2.4 Vanishing moments 

 

     The vanishing moment represents how a function decays toward infinity (Chun-

Lin, 2010). For example, the function 2cos /t t  decays at a rate of  21/ t   as t 

approaches to infinity. The estimation of rate of decay is performed by the 

integration, 

 

                   ( )kt f t dt
∞

−∞
∫                      (2.17) 

 

The parameter k in the integration shows the rate of decay. It is said that the wavelet 

function  ( )tψ  has p vanishing moments if 

 

                                    ( ) 0kt t dtψ
∞

−∞

=∫  for 0 k p≤ ≤           (2.18) 

 
      

     2.2.2.5 The Fundamental Wavelet Families 

 

     Wavelet transforms contain an infinite set of several wavelet types. Selection of 

different wavelets exists different characteristics such as how smooth they are and 

whether they provide a good representation in time / frequency domain (Graps, 

1995). 
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     Daubechies Wavelets are the wavelets which have been designed for a given 

vanishing moment p and minimum size discrete filter. In these types of wavelets, if it 

is asked to use a wavelet function with p vanishing moments, the minimum filter size 

will be length of 2p (Chun-Lin, 2010). 

 

     Within each family of wavelets (such as the Daubechies family), wavelet 

subclasses are defined by the number of coefficients and by the level of iteration. 

Number of vanishing moments are also essential in terms of classification of 

wavelets within a family. For example, the wavelets within the Daubechies wavelet 

family are divided into subclasses according to number of vanishing moments 

(Graps, 1995). Some examples of the wavelet family members are shown in Fig. 2.5. 

The number of next to the wavelet name represents the number of vanishing 

moments in the figure. 

 

 
Figure 2.5 Several different families of wavelets (Graps, 1995). 
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(a) 

 

(b) 

 

(c) 

                  Figure 2.6 The wavelet functions with low pass and high pass filter coefficients for 
                  (a) Haar, (b) Daubechies8 and (c) Daubechies20  
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2.3 Wavelet Transform Based Energy Features 

 

     In study of Didiot & other. (2010), it has been talked about the energy based 

features which are calculated using wavelet transform. According to study, the 

energy distribution in each frequency band is a very relevant acoustic cue and 

energy, calculated from DWT, can be used as a speech/music discrimination feature.  

In our study, these energy based parameters have also been used in order to make 

comparison among different feature extraction methods. 

 

     2.3.1 Instantaneous Energy 

 

     This is a feature which gives the energy distribution in each band and given as: 

 

2
10

1

1
log ( ( ))

jN
E
j j

rj

f w r
N =

 
=   

 
∑                (2.19) 

 

where ( )jw r  is the wavelet coefficient at time position r and frequency band j and N 

is the length of the analysis window. 

 

    2.3.2 Teager Energy 

 

     Teager Energy has been recently applied for speech recognition and given as: 

 

                               ( ) ( )( )
-1 21

log ( ) -1 * ( 1)10
1

NT jEf w r w r w rj j j jN rj

 
 
 = − +∑
 =
 

               (2.20) 

 

     It is said that the discrete Teager Energy Operator (TEO), allows modulation 

energy tracking and gives a better representation of the formant information in the 

feature vector compared to MFCC in (Didiot & other., 2010). It is also pointed out 

that the Teager energy is a noise robust parameter for speech recognition because the 

effect of additive noise is attenuated. 
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2.4 Complex Wavelet Transform 

 

2.4.1 Introduction  

 

     In previous section, a detail explanation has been presented about DWT and 

important points of DWT based feature extraction has been mentioned.   One of the 

properties which makes DWT so essential is getting information which cannot be 

provided by Fourier Transform. DWT allows to expression of signals without losing 

information about location in time domain and it provides an optimal representation 

for signals including sudden transitions like jumps and spikes. In this way, DWT is 

often used in applications such as image processing, speech processing, statistical 

signal processing for noise removing, signal modeling and compression. However, 

although all these advantages of DWT, it has some shortcomings which makes 

complex wavelet transform superior than DWT. In these section, the shortcomings of 

DWT based analysis and how CWT overcomes these problems will be examined.  

 

     2.4.1.1 Oscillations 

 

     As previously mentioned, since wavelets are band-pass and time-limited 

functions, they exhibit oscillatory behaviour around singularities. This behaviour 

makes difficult to extract singularities and analysis with wavelet based modeling. 

Wavelet coefficients take high values in parts containing singularities. 

 

     2.4.1.2 Shift Variance 

 

     One of the disadvantages of DWT is its sensivity to a small shift of the signal in 

time domain. This situation leads to problems in DWT based analysis. The designed 

algorithm must be capable of coping with high valued DWT coefficients caused by 

shifted singularities. 
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2.4.1.3 Aliasing 

 

     DWT coefficients are obtained with dowsampling operations between non-ideal 

low pass and high pass filters and this process cause aliasing problems. Although the 

inverse DWT can eliminate this problem, wavelet and scaling coefficients should not 

be changed in order to do this elimination and in addition, artifacts in reconstructed 

signal cause loss of balance between forward and inverse DWT transforms. 

 

     2.5.1.4 Lack of Directionality 

 

     This problem emerges particularly in image processing applications. It makes 

difficult to process edges and corners in 2 or higher dimensional signals. 

 

     In (Selesnick & other. , 2005), it is said that Fourier transform can overcome these 

problems and it can be given as a solution. It is possible to see a smooth 

representation has been provided and there aren’t positive and negative oscillations 

in frequency domain when the amplitude of Fourier transform is concerned. The 

amplitude of FT is not affected from any shifts in the signal as well and also, FT does 

not experienced with aliasing and lack of directionality problems. The biggest 

difference between FT and DWT can be seen by looking at decomposition methods 

of these two transforms. FT decompose the signals into complex valued sinusoids 

differently from DWT’s real valued wavelets. 

 

( ) ( )cos .sinjwte t j t= Ω + Ω           (2.21) 

 

     Since there is a phase difference of 90° between cos and sin, these two elements 

form a Hilbert Transform pair by coming together. The analytical signal formed by 

this pair provides a one-sided spectrum in frequency domain. 

 

          Complex Wavelet Transform (CWT) has been proposed inspiring by the 

Fourier Transform which does not suffer from these types of problems. CWT is 

defined with a complex-valued scaling function and complex-valued wavelet 
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   ( ) ( ) ( )c r it t j tΨ = Ψ + Ψ            (2.22) 

 

where  ( )r tΨ and  ( )i tΨ  are real and imaginary parts of the complex wavelet ( )c tΨ . 

If these functions are 90°  out of phase with each other, that is, if they form a Hilbert 

Transform pair, then  ( )c tΨ  becomes analytic signal and it has a one-sided spectrum. 

Projecting the signal onto 2 (2 )j j
c t nψ − , the complex wavelet coefficients are 

obtained as 

 

( , ) ( , ) ( , )c r id j n d j n jd j n= +           (2.23) 

 

     Complex Wavelet Transform can be performed in two class. In first one, a 

complex wavelet  ( )c tΨ  that forms an orthonormal or biorthogonal basis is searched. 

The second method seeks a redundant representation and it searches  ( )r tΨ  and  

( )i tΨ  that provide orthonormal and biorthogonal bases individually. Resulting CWT 

has 2x redundancy in 1-D and has power to overcome the shortcomings of DWT. In 

this thesis, the dual-tree approach for performing complex wavelet transform which 

is a natural approach to second, redundant type has been preferred.  
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Figure 2.7 Sensitivity of DWT and CWT coefficients to shiftings in time domain  (Selesnick & other. 

, 2005) 

 

     In Figure 2.7, it is possible to see that DWT coefficients are very sensitive to any 

shift in time domain while CWT coefficients are not. For two impulse signals x(n) = 

δ(n − 60) and x(n) =    δ(n − 64), the real coefficients of conventional real discrete 

wavelet transform (with Daubechies length-14 filters) and magnitude of the complex 

coefficients of the dual-tree complex wavelet transform are shown in the figure. 
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2.4.2 Dual-Tree Complex Wavelet Transform (DT-CWT) 

 

     Dual-Tree Complex Wavelet Transform was first introduced by Kingsbury in 

1998 (Kingsbury, 1998). The dual tree implements an analytic wavelet transform by 

using two real discrete wavelet transform with two filterbank trees; the first DWT 

gives the real and the second one gives the the imaginary part of the CWT. Analysis 

and synthesis filter banks can be illustrated as in the Figure 2.8 where h0(n) and h1(n) 

denote the lowpass/ high-pass filter pair for the upper filterbank which implements 

WT for real part. In the same way, g0(n) and g1(n) denote the low-pass / high-pass 

filter pair for the lower filterbank for imaginary part. In this approach, the key 

challenge is joint design of two filterbanks to get complex wavelet and scaling 

function as close as possible to analytic (Selesnick & other. , 2005). 

 

 
     Figure 2. 8 Analysis filter bank for the dual tree CWT (Selesnick & other. , 2005) 

 

     The filters used for real and imaginary parts of the transform must satisfy  the 

perfect reconstruction condition given as 
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0 0

1 0

( ) ( 2 ) ( )
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h n h n k k
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δ+ =

= − −
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     Two low pass filters of dual tree h0(n) and g0(n) satisfying a very simple property 

makes corresponding wavelets to form an approximate Hilbert Transform pair: One 

of them must be approximately a half- sample shift of the other (Selesnick, 2001) 

 

{ }0 0( ) ( 0.5) ( ) ( )g hg n h n t tψ ψ= − ⇒ = Η          (2.25) 

 

     Since 0( )h n  and 0( )g n  are defined only on integers, it will be useful to rewrite the 

half-sample delay condition in terms of magnitude and phase functions separately in 

frequency domain to make the statement rigorous: 

 

           
0 0

0 0

( ) ( )

( ) ( 0.5 )

jw jw

jw jw

G e H e

G e H e w

=

∠ = ∠ −
               (2.26) 

 

There are two popular methods for design of filters for DT-CWT (Selesnick & other., 

2005): 

 

     2.4.2.1 Q-Shift Solution 

 

     According to q-Shift solution, g0(n) must be selected as  

 

              0 0( ) ( 1 )g n h N n= − −                       (2.27) 

 

where N is the length of filter h0(n) and is even. In this case the magnitude condition 

in 2.25 is satisfied but not the phase condition.  

 

           
0 0

0 0

( ) ( )

( ) ( 0.5 )

jw jw

jw jw

G e H e

G e H e w

=

∠ ≠ ∠ −
             (2.28) 

     The quarter-shift (q-shift) solution has an interesting property that causes to take   

its name: When you ask that g0(n) and h0(n) be related as 0 0( ) ( 1 )g n h N n= − −  and 
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also that they approximately satisfy 0 0( ) ( 0.5 )jw jwG e H e w∠ = ∠ − , then it turns out 

that the frequency response of h0(n) has approximately linear phase. This is verified 

by writing 0 0( ) ( 1 )g n h N n= − −  in terms of Fourier transforms 

 

                   * ( 1)
0 0( ) ( )jw jw j N wG e H e e− −=          (2.29) 

 

where the *  represents complex conjugation. This implies that the phases satisfy 
 

                                  0 0( ) ( ) ( 1)jw jwG e H e N w∠ = −∠ − −           (2.30) 

 

If the two filters satisfy the phase condition approximately, it can be written that 

 

                      0 0( ) 0.5 ( ) ( 1)jw jwH e w H e N w∠ − = −∠ − −           (2.31) 

 

And we have the equation, 
 

                                 0( ) 0.5( 1) 0.25jwH e N w w∠ ≈ − − +            (2.32) 

 

     As it can be seen, 0( )h n  is an approximately linear-phase filter. This means that 

0( )h n  is approximately symmetric around the point n = 0.5 (N − 1) − 0.25. This is 

one quarter away from the natural point of symmetry and solutions of this kind were 

introduced as q-shift dual-tree filters for this reason (Selesnick & other., 2005). 

      

     2.4.2.2 Common Factor Solution 

 

     Another method for filter design stage named as Common Factor Solution (CFS) 

can be used to design both orthonormal and biorthogonal solutions for the Dual Tree 

CWT (Selesnick, 2001).    

      

     In this approach, the filters, 0h  and 0g  are set as, 
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                      0( ) ( ) * ( )h n f n d n=               (2.33) 

 

                    0( ) ( ) * ( )g n f n d L n= −          (2.34) 

 

where ( )d n is supported on 0 n L≤ ≤  and * represents the discrete time convolution. 

In terms of Z-transform, we have  

 

                0( ) ( ) ( )H z F z D z=                    (2.35) 

 

               ( )0( ) ( ) 1/LG z F z z D z−=           (2.36) 

 

     In this kind of solution, the magnitude part of half - sample delay condition is 

satisfied; however, the phase part is not exactly satisfied as in q-shift solution 

(Selesnick & other., 2005). 

 

                      0 0( ) ( )jw jwG e H e=             (2.37) 

 

           0 0( ) ( ) 0.5jw jwG e H e w∠ ≠ ∠ −          (2.38) 

 

     So, we must design the filters so that the phase condition is approximately 

satisfied. Using the equations, 

 

                      0( ) ( ) ( )H z F z D z=               (2.39) 

 

                ( )0( ) ( ) 1/LG z F z z D z−=            (2.40) 

we can say, 

 

                     0 0( ) ( ) ( )G z H z A z=               (2.41) 

where 
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( )1/

( )
( )

Lz D z
A z

D z

−

=            (2.42) 

 

     ( )A z is an all-pass transfer function; the magnitude of ( )A z  is ( ) 1jwA e = . Then, 

from the equation 

 

                     0 0( ) ( ) ( )G z H z A z=               (2.43) 

we have 

 

                     0 0( ) ( )jw jwG e H e=               (2.44) 

 

and 

 

     0 0( ) ( ) ( )jw jw jwG e H e A e∠ = ∠ + ∠          (2.45) 

 

     As it can be seen easily, for satisfaction of phase property, the  ( )D z  must be 

chosen so that  

 

           ( ) 0,5jwA e w∠ ≈ −                            (2.46) 

 

     With this result, it can be said that ( )A z  should be a fractional delay all-pass 

system (Selesnick, 2001).  

 

     ( )D z  can be defined by adapting Thiran’s formula for maximally flat delay 

allpole filter (Thiran, 1971)  to maximally flat delay all pass filter. 

 

        
1

( ) 1 ( )
L

n

n

D z d n z−

=

= +∑                        (2.47) 

with  
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                                ( ) ( )
( ) ( 1)

( 1)
n L n

n
n

L
d n

τ
τ

−= −
+

                                   (2.48) 

 

where ( )nx  represents the rising factorial 

 

                  ( ) : ( )( 1)( 2)....( 1)nx x x x x n= + + + +                                 (2.49) 

 

 

With this ( )D z , we have the approximation  

 

                                            ( )A z zτ−≈  around 1z =                         (2.50) 

 

or equivalently, 

 

                  ( ) jwA w e τ−≈  around 0w =                        (2.51) 

 

     The coefficients of  ( )d n  can be computed easily using the ratio (Selesnick, 

2001) 

 

( )
( )

1 1

1

( ) ( 1)( 1)

( ) ( ) ( 1)

L
n n n
L

n nn

Ld n

d n L

τ τ
τ τ

+ +

+

− ++ = −
− +

( )( )

( 1)( 1 )

L n L n

n n

τ
τ

− − −=
+ + +

              (2.52) 

 

     Using this ratio, the filter ( )d n  can be generated as follows: 

 

(0) 1

( )( )
( 1) ( )

( 1)( 1 )

d

L n L n
d n d n

n n

τ
τ

=
− − −+ =
+ + +

 , 0 1n L≤ ≤ −          (2.53) 

 

     The second step, finding ( )F z  so that 0( )h n  and 0( )g n satisfy the PR conditions, 

requires only a solution to a linear systems of equations and a spectral factorization. 
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     To obtain wavelet bases with K vanishing moments, we let 

 

                   1( ) ( )(1 )KF z Q z z−= +                                (2.54) 

 

So, 

 

              1
0( ) ( )(1 ) ( )KH z Q z z D z−= +                          (2.55) 

 

             1
0( ) ( )(1 ) (1/ )K LG z Q z z z D z− −= +                   (2.56) 

 

     ( )Q z of minimal degree is obtained using a spectral factorization approach. The 

procedure consists of two steps (Selesnick, 2001). 

 

1) ( )r n is found with minimal length such that  

 

 a) ( ) ( )r n r n= −  

 

 b) 1( )( 2 ) ( ) (1/ )KR z z z D z D z−+ +  is halfband. 

 

2) ( )Q z is set to be a spectral factor of ( )R z  

 

                        ( ) ( ) (1/ )R z Q z Q z=                             (2.57) 

 

     The first step can be carried out by solving only a system of linear equations. By 

defining 

 

    1( ) : ( 2 ) ( ) (1/ )KS z z z D z D z−= + +                            (2.58) 

the half band condition can be written as  

 

                          ( ) 2 ( * )( ) (2 ) ( )
k

n s r n s n k r kδ  = ↓ = −  ∑               (2.59) 
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The second step assumes ( )R z  permits spectral factorization. 

 

     With ( )Q z obtained in this way, the filters 0( )H z and 0( )G z satisfy the PR 

conditions and have desired half-sample delay. 

 

     Using this design procedure, the filters 0( )h n  and 0( )g n of (minimal length) 

2( )L K+ are defined. K and L are the number of zeros at 1z = −  and degree of 

fractional delay, respectively. (Selesnick, 2001) 

 

     As it can be seen, the design procedure allows for an arbitrary number of 

vanishing wavelet moments to be specified. In Figure 2.9, filter  coefficients obtained 

by common factor solution is shown . It can be seen from the figure that the complex 

wavelet defined by real and imaginer components has an approximately one-sided 

spectrum as referring to it is an approximately analytical signal.  

 
        Figure 2. 9 Aproximate Hilbert Transform Pair of orthonormal wavelet bases with N = 20,  

         K = 5, L = 5 (Selesnick, 2001). 
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CHAPTER THREE 

ARTIFICIAL NEURAL NETWORKS AND PRINCIPAL COMPONENT 

ANALYSIS 

 

3.1 Artificial Neural Networks  

    

     An Artificial Neural Network (ANN) is a tool that aims to solve problems by 

imitating the mental calculations which are specific to human brains. A human brain 

contains small computing units named as “neurons” that can perform very simple 

calculations. Neurons have the ability of building networks that can operate in paralel 

to solve more difficult problems (Roy, 2000). These networks allow to paralel 

implementations for nonlinear static or dynamic systems. Also they have a very 

important feature such that their adaptive nature replaced programming with learning 

by example to solve complex problems. This feature makes these networks very 

attractive in application domains where one has little or incomplete understanding of 

the problem to be solved but where training data is readily available. The most 

widely used learning algorithm in ANNs is the Backpropagation Algorithm (Jha, 

2003). There are various types of ANNs which use this algorithm such as 

Multilayered Perceptron, Radial Basis Function and Kohonen Networks. 

 

     ANNs have been used for a wide variety of applications where statistical methods 

such as discriminant analysis, logistic regression, Bayes analysis, multiple regression 

and ARIMA time-series model are traiditionally employed (Jha, 2003). It has been 

mentioned by Haykin (1999) that there are several benefits of ANNs including 

nonlinearity, input-output mapping, adaptivity, evidental response, fault tolerance 

and so on. In this regard, ANNs are considered a powerful tool for data analysis and 

classification. 
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3.1.1 Architecture of an artificial neuron 

 

     The most simple procedure performed by a neuron can be expressed in the form 

of  yi=f(zi) in general. Here  yi , zi  and f represent the output of ith neuron, input of the 

i th neuron and a non-linear function, respectively. The nonlinear function f, also 

called a node function, takes different forms in different models of the neuron; a 

typical choice for the node function is a step function or a sigmoid function (Roy, 

2000). The neurons get their input signals from other neurons or from external 

sources such as various organs of the body like the eyes, the ears and the nose. The 

output signal from a neuron may be sent to other neurons. 

 

 
                  Figure 3.1 Architecture of an artificial neuron (Roy, 2000) 

 

     In Figure 3.1, an artificial neuron structure is given with its inputs, weights and 

output. It is possible to see in the figure that how an artifical neuron defines its 

output. 

 

3.1.2 Multilayered Artificial Neural Networks      

 

     The neurons can form large scale ANN architectures by coming together and 

connecting among themselves. The basic architecture includes three types of neuron 

layers: input, hidden, and output layers. In feed-forward networks, the signal flow is 

from input to output units, strictly in a feed-forward direction (Abraham, 2005). In 
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Figure 3.2, a feed-forward multilayered network is shown with three basic layers 

such as input, hidden and output. The weights are represented as connections 

between each layer in the figure. 

 

 
                       Figure 3.2 Multilayered Artificial Neural Network (Abraham, 2005) 

 

3.1.3 Learning Algorithms for Neural Networks 

 

     Before classification process, an ANN must be configured in order to produce 

desired outputs for a given set of inputs. There are several methods to strength the 

connections of the weights such as setting the them explicitly or training the neural 

network by feeding it with training patterns and changing its weights according to 

some learning rule. The learning methods in neural networks can be classified as 

three types. These are given as supervised learning, unsupervised learning, and 

reinforcement learning. In supervised learning, an input vector is presented at the 

inputs together with a set of desired responses, one for each node, at the output layer. 

A forward pass is performed, and the errors between the desired and actual response 

for each node in the output layer are found. The weight changes are determined using 

these errors according to learning rule in use. The desired outputs of distinct output 

nodes are provided by an external teacher in supervised learning method. The 

backpropagation algorithm, the delta rule, and the perceptron rule are the best- 

known examples of this technique (Abraham, 2005). 
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     A perceptron is a single layer neural network and its weights and biases could be 

trained to produce a correct target vector when presented with the corresponding 

input vector. The training technique used is named as the perceptron learning rule. 

Perceptrons are especially suited for simple problems in pattern classification. 

Training procedure of a perceptron contains four essential points. According to this 

learning rule, initially random weights are used for connections and training samples 

have been applied to perceptron. The output of the network is obtained with these 

existing weights and if the output of the network does not match with the desired 

output, the weights are updated according to rule given as 

 

( ) ( 1) ( )ij ij ijw t w t w t= − + ∆           (3.1) 

 

where 

 

      ( ) ( )ij k k iw t d y xη∆ = −            (3.2) 

 

η  is the learning rate, kd  is desired output, ky  is output of the perceptron and ix  is 

the input of the network in the equation. 

 

     Perceptron learning rule is similar to Hebbian learning. The only difference is that 

when the network responds correctly, no connection weights are modified. On the 

other hand, Hebbian learning continually strengthens its weights without bound 

(Abraham, 2005). 

 

     In backpropagation algorithm, the weights are updated by taking the partial 

derivative of the error of the network with respect to each weight. The learning rule 

for backpropagation algorithm is given as  

 

                          ( ) ( 1)
( )ij ij

ij

E
w t w t

w t
η α∂∆ = − + ∆ −

∂
           (3.3) 

 

where η and α are the learning rate and momentum respectively. 
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     The momentum term determines the effect of past weight changes on the current 

direction of movement in the weight space. A good choice of both η and α are 

required for the training success and the speed of the neural network learning. 

 

     The simple perceptron is usable only for linearly separable or linearly 

independent problems. However, backpropagation learning with sufficient hidden 

layers can approximate any nonlinear function to arbitrary accuracy. This makes 

backpropagation learning neural network a good candidate for signal processing and 

modeling. 

 

     Backpropagation (BP) may stuck at a local minimum mainly because of the 

random initialized weights. For some initial weight settings, BP may not be able to 

reach a global minimum of weight space, while for other initializations the same 

network is able to reach an optimal minimum. A long recognized bane of analysis of 

the error surface and the performance of training algorithms is the presence of 

multiple stationary points, including multiple minima.  Empirical experience with 

training algorithms show that different initialization of weights yield different 

resulting networks. Hence, multiple minima not only exist, but there may be huge 

numbers of them. In practice, there are four types of optimization algorithms that are 

used to optimize the weights (Abraham, 2005). The first three methods, gradient 

descent, conjugate gradients, and quasi-Newton use minimization of a quadratic error 

function to perform optimization. The fourth method of Levenberg and Marquardt 

uses minimization of an error function that is based on squared error criterion. A 

common feature for these training algorithms is given as the requirement of efficient 

calculation of gradients. 
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3.2 Principal Component Analysis 

 

     Principal component analysis (PCA) has been performed in order to reduce the 

dimension of feature vectors and to provide more compact representation of the 

speech and music samples.  PCA is a way of identifying patterns in data and 

expressing the data in such a way as to highlight their similarities and differences. 

Since patterns in data can be hard to find in case of high dimension,  PCA is a 

powerful tool for analysing data. (Lindsay & Smith, 2002) 

 

 
                                   Figure 3.3 PCA process 

 

     PCA with variance maximization contains four essential steps as given in Figure 

3.3. For PCA to work properly, you have to subtract the mean from each of the data 

sets. This produces a data set whose mean is zero.  After calculation of covariance 

matrix, eigenvectors and eigenvalues of this matrix are obtained.  Eigenvectors show 
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the direction of the axes with maximum variance and eigenvalues represent the 

significance of the corresponding axis.  

 

     Variance maximization method uses a linear combination  (Hyvarinen, Karhunen, 

& Oja, 2001) 

 

                            1 1 1
1

n
T

k k
k

y w x w x
=

= =∑                                             (3.4) 

 

of the elements 1,..., nx x of the vector x to perform PCA. 1kw  are scalar coefficients or 

weights and they are elements of an n-dimensional vector 1w , and 1
Tw denotes the 

transpose of 1w . 

 

     In the equation, the factor 1y  is named as first principal component of x where 

variance of 1y  is maximally large. To perform PCA process, a weight vector 1w  

maximizing the PCA criterion is searched.  

 

2 2
1 1 1 1 1 1 1 1( ) { } {( ) } { }PCA T T T

XJ w E y E w x w E xx w w C w= = = =                (3.5) 

 

so that 1 1w = . 

 

     The matrix XC is the covariance matrix of x with size of nxn and given for the 

zero-mean vector x by the correlation matrix  

 

                                        { }T
XC E xx=                                                        (3.6) 

 

     Solution to the PCA problem is given in terms of the unit-length eigenvectors 

1,..., ne e of the the matrix XC . Eigenvectors are ordered in a way such that the 

corresponding eigenvalues 1,..., nd d  satisfy 1 2 ... nd d d≥ ≥ ≥ . 
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     The solution maximizing (3.5) is given by  

 

                  1 1w e=                                                                 (3.7) 

 

Thus the first principal component of x is 1 1
Ty e x=  

 

     It is possible to generalize the criterion 1
PCAJ  in eq. (3.5) to m principal 

components with m is any number between 1 and n. The m-th (1 m n≤ ≤ ) principal 

component is denoted as T
m my w x=  where mw is the corresponding unit norm weight 

vector. The variance of my is now maximized under the constraint that  my  is 

uncorrelated with all the previously found principal components: 

 

{ } 0,m kE y y k m= <                                                            (3.8) 

 

This condition yields: 

 

{ } {( )( )} 0T T T
m k m k m X kE y y E w x w x w C w= = =                        (3.9) 

 

     We already know that 1 1w e=  and for the second principal component, we have 

the condition that 2 1 1 2 1 0T Tw Cw d w e= = . It must be searched that maximal variance 

2 2
2 2{ } {( ) }TE y E w x= in the subspace orthogonal to the first eigenvector of XC . 

The solution is given as  

 

                          2 2w e=                                                   (3.10) 

 

 

 

In general representation, kw  is given as  
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                            k kw e=                                                (3.11) 

 

In this way, the thk  principal component is given as T
k ky e x= . 

 

     As an example, the pca process for a two-dimensional vector is given in Figure 

3.4. In the figure,  the first principal component z1 is the combination of variables 

that explains the greatest amount of variation. The second principal component z2 

defines the next largest amount of variation and is independent to the first principal 

component. 

 

      

 
Figure 3.4 The principal component analysis representation for a two dimensional feature vector. 

(Jolliffe, 2002). 
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CHAPTER FOUR 

RESULTS 

 

     In this chapter of the thesis, the results of SMD using time/frequency domain 

based and wavelet based features will be given. 

 

4.1 Dataset and Preprocessing 

 

     The two different data sets have been utilized in the thesis and the features have 

been extracted separately for these two different datasets. In the first dataset, TIMIT 

database has been used for speech and several CD recordings with various musical 

genres have been used for music database. To obtain second dataset, radio broadcasts 

were recorded containing music and speech. The sampling frequency was set as 

44100 Hz in every stage of thesis. However, since the data taken from TIMIT 

database is sampled with 16000 Hz, they have been interpolated in the pre-

processing stage in order to set sampling frequency to 44100 Hz. The segmentation 

has been performed for a frame of 4196 samples with 512 samples overlapping 

which corresponds to a frame length of 95 ms since use of shorter window lengths 

may limit the discriminative characteristics of window. 

 

     Both datasets used in the thesis contain samples with length of 0.5 sec. While the 

first dataset includes 4290 music and 4620 speech samples, the second dataset 

contains 2190 music and 2624 speech samples entirely derived from radio broadcasts 

in contrary to first dataset. In rest of the context, first and second data sets will be 

named as Dataset1 and Dataset2, respectively. For the performance evaluation, the 

data sets have been divided into two groups as training and test sets. A detailed 

representation for dataset1 and dataset2 is given in Table 4.1. 
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Table 4.1 Content of datasets used in the thesis. 

Overall Database Train Set Test Set  

Speech Music Speech Music Speech Music 

Dataset1 4620 4290 3080 2860 1540 1430 

Dataset2 2624 2190 1749 1460 875 730 

 

    Before classification stage, the features that are highly correlated with the other 

features have been eliminated using principal component analysis (PCA) to reduce 

length of feature vectors. The principal components that contribute less than 0.05% 

to the total variation in the data set have been eliminated. Table 4.2 shows the length 

of the feature vectors before and after PCA. According to figure, it can be said that 

there is a reduction rate about 50%  in terms of feature vector lengths after PCA 

process. 

 

   Table 4.2 Lengths of the feature vectors before and after PCA 

 

DWT based feature vector 

 

DWT 

based 

energy 

feature 

vector 

CWT based features 

CFS Q_Shift 

Dimension T/F 

based 

feature 

vector 

H
aa

r 

D
b2

 

D
b8

 

D
b1

5 

D
b2

0 

D
b8

 

C
oi

f1
 

5-
B

an
d 

7-
B

an
d 

5-
B

an
d 

7-
B

an
d 

Original 21 38 38 38 38 38 10 10 25 35 25 35 

PCA 20 19 19 22 21 21 5 3 11 15 11 14 

 

     The used methods show different complexity behaviors in feature space. As an 

example, the PCA analyses for methods with highest and lowest accuracy are given 

in the Figure 4.1 and Figure 4.2. 
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                            Figure 4.1 Principal component analysis of DWT (Daubechies8) based feature                       

                             vector extracted for speech and music samples. 

 

 

        
                            Figure 4.2 Principal component analysis of DWT based energy feature vector   

                            extracted for speech and music samples.  
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     As it can be seen from the figures,  Db8 based DWT features have higher 

discrimination capability than DWT based energy features.  In Figure 4.1, the first 

and second principal components provide a good projection and representation, 

however, the samples are interwined in the feature space for DWT based energy 

features as given in Figure 4.2. 

 

     In classification stage of thesis, the feedforward artificial neural networks with the 

scaled conjugate gradient (SCG) backpropagation algorithm in MATLAB’s Neural 

Networks Toolbox which belongs to class of the conjugate gradient algorithms have 

been used. SCG algorithm uses step size scaling instead of line-search per learning 

iteration and this makes it faster than other second order algorithms (Charalambous, 

1992). This algorithm performs well for networks with a large number of weights 

where it is as fast as the Levenberg-Marquardt and resilient backpropagation 

algorithms, its performance does not degrade quickly. Also, the conjugate gradient 

algorithms have relatively modest memory requirements. The number of hidden 

neurons has been preferred as 40 and the target mean square error has been defined 

as 0.001, heuristically.  

 

     All codes and programs in the thesis were written in MATLAB. The codes for 

time/frequency based features, DWT based statistical and energy features were 

written by the author of thesis. For DWT based analysis, Wavelet Toolbox of 

MATLAB has been used. For CWT based analysis, the codes are taken from the 

study of I. Selesnick (Selesnick, I.W., 2001) for common factor solution based filter 

design and the programs written by two students under supervision of I.Selesnick 

(Cai, S. & Li, K, 2002)  have been used for Q-Shift filter based analysis. 

 

     In the following section, the classification results will be given for four types of 

feature vectors. The performance has been given as the accuracy of the classification 

which can be formulated as 
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TP TN
Accuracy

TP FP TN FN

+=
+ + +

          (4.1) 

 

where TP, TN , FP  and FN  represent number of speech samples labeled as speech, 

number of music samples labeled as music, number of music samples labeled as 

speech and number of  speech samples labeled as music, respectively. 

 

4.2 Classification Performance 

 

4.2.1 Performance for Time / Frequency Based Features 

 

      The feature vector of this method includes mean and variances of the parameters 

obtained with time/frequency domain features and Mel Frequency Cepstral 

Coefficients. For this method, the length of the feature vector is 21. The parameters 

such as mean of spectral centroid, variance of spectral centroid, mean of spectral roll 

off, variance of spectral roll off, mean of spectral flux, variance of spectral flux, 

mean of zero crossings, variance of zero crossings, low energy ratio and Mel 

frequency cepstral coefficients are represented in the Table 1 as Cm, Cvar, RLfm, 

RLfvar, FLUXm, FLUXvar, zerocrosm, zerocrosv, low_energy and melcepst, 

respectively. 

 

Table 4.3 The content of feature vector for time/frequency based features 
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Table 4.4 Classification results for for time/frequency based features. 

Performance (%) Dataset1 Dataset2 

TFPa 99.72 94.27 

 

 
          Figure 4.3 Performance of time/frequency based features for dataset1 and dataset2 

 

4.2.2 Performance for DWT Based Features 

 

     In the second method, feature extraction has been performed for several wavelets 

such as Haar (db1), db2, db8, db15 and db20. The filter length is 2N for a 

Daubechies wavelet which has N vanishing moments. 12-level decomposition has 

been considered in feature set which covers the analyzed frequency range in detail, 

therefore 1 approximation and 12 detail signals are obtained for each frame. 

 

          In Figure 4.4 and Figure 4.5, 12-level discrete wavelet decomposition using 

db8 wavelet for music and speech signals are presented. The speech and music 

signals show different characteristics particularly for different frequency bands as it 

can be seen from the figures.  
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    Figure 4.4 The 12-band decomposition with db8 wavelet for a music signal used in the thesis 

 

 

 

 
   Figure 4.5 The 12-band decomposition with db8 wavelet for a speech signal used in the thesis 
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        The length of feature vector which is constructed from the statistical measures 

including mean, standard deviation and ratios of the decomposed signals is 38 as it is 

shown in Table 4.5. 

 

Table 4.5 The length of feature vector for DWT based features is 38. 

Features 

Mean of detail and 

approx. coefs (12-

band) 

Std. of detail and 

approx. coefs (12-

band) 

Ratios of  detail and 

approx. coefs. (12-

band) 

Length of 

feature 

vector (38) 

13 13 12 

 

The classification results are given in Table 4.6.  

 

Table 4.6 Classification results for DWT based features. 

     
 

Performance (%) Dataset1 Dataset2 

Haar 99.9 96.51 

db2 99.93 97.69 

db8 99.97 99.19 

db15 99.83 98.63 

db20 99.9 98.69 
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          Figure 4.6 Accuracy results of DWT based features for dataset1 and dataset2 with different    

          wavelets 

 

     Table 4.6 shows that the DWT has the ability of discrimination of speech and 

music signals with high accuracy. As in the first method mentioned in section 4.2.1, 

the performance of the Database 1 is also higher for this method since the signals are 

more separable. The accuracy changes slightly depending on the used wavelet.  It can 

be said that db8 is the most successful wavelet in terms of classification of speech 

and music with the accuracy rates of 99.97% for Dataset1 and 99.19% for Dataset2.  

 

     When the DWT based feature extraction is performed for shorter samples such as 

with length of lower than 0.5 sec., it has been observed that the classification 

performance tends to decrease, since the wavelets cannot represent the segments that 

have such a short length. 

 

     In order to see the contribution of ratio parameters to the discrimination 

performance, a classification has been also performed using the feature vectors with 

length of 26 where the feature set does not contain ratios of frequency sub-band 

coefficients. The PCA process is also applied to features which do not contain ratio 

parameters and results are given in Table 4.7. At the end of this experiment, it has 

been observed that ratio parameters provide a contribution to overall performance 
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about 1-1.5% for DWT based parameters. 

 

Table 4.7 The length of feature vector of DWT based parameters with and without ratio parameters 

after PCA process.  

DWT based feature vector 
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Original 38 26 38 26 38 26 38 26 38 26 

After PCA 19 13 19 13 22 16 21 16 21 16 

 

 

Table 4.8 Comparison of the classification results between DWT based feature sets with ratio 

parameters and   without ratio parameters. 

 

     In Table 4.8, it can be seen that db8 shows the best result if the feature vector 

contains ratio parameters. In absence of ratio parameters, db20 shows higher 

performance among other wavelet families. The number of vanishing moments is 

related with the smoothness of the wavelet although there is not a proved 

correspondence.  Since Haar and db2 mother wavelets have a few vanishing 

moments, they have sharp transitions. Therefore, they cannot represent smooth 

signals such as music samples. For db8 and wavelets with more vanishing moments, 

Wavelets Performance with ratio 
parameters 

Performance without 
ratio parameters 

Haar 96.51 94.58 

db2 97.69 95.95 

db8 99.19 97.69 

db15 98.63 97.88 

db20 98.69 98.32 
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an acceptable accuracy has been obtained. Db8 has been chosen since using a higher 

order will result in a more complex computation due to the increasing number of the 

filter coefficients.  

 

4.2.3 Performance for DWT based energy features 

 

     In this method, only detail coefficients have been used at the feature extraction 

stage. The decomposition has been performed for 5 levels of subbands and two 

energy parameters such as instantaneous and teager energy have been obtained for 

each band.  In this way, length of the feature vector for each sample is 10 according 

to this method as shown in Table 4.9.  

 

   Table 4.9  The length  of feature vector for DWT based energy features is 10. 

Features Instantaneous Energy  (5-band) Teager Energy (5-band) 

Length of feature 

vector (10) 
5 5 

  

     According to classification results given in Table 4.10, this method has not 

provided high performances comparing to other methods.  

    

 Table 4.10 Classification results for DWT based energy features.  

 

Performance (%) Dataset1 Dataset2 

Db8 89.02 91.21 

Coif1 82.93 77.45 
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      Figure 4.7 Accuracy results for DWT based energy features dataset1 and dataset2 with different        

      wavelets. 

 

4.2.4 Performance for CWT Based Features 

 

     The complex wavelet transform (CWT) has been accomplished by using two filter 

design methods introduced in Chapter 3. The decomposition has been made for 5 and 

7 levels in order to avoid increasing length of the feature vector. The feature vectors 

have been constructed from mean, variance and median of the magnitudes of 

complex wavelet coefficients at each band instead of using all coefficients to avoid 

increasing in length of feature vector. In this way, the length of feature vectors are 

defined for each sample is given as 25 or 35 for 5-level and 7-level decomposition, 

respectively. The content of feature vector is given in Table 4.11. 

 

Table 4.11 The length of feature vector for CWT based features is 25 for 5-level decomposition and  
35 for 7-level decomposition. 

Features 

3.moment  

for each 

band 

4.moment  

for each 

band 

Mean 

of each 

band 

Standard 

deviation 

of each 

band 

Median of each band 

Length 

(25 or 35) 

 

5 or 7 5 or 7 5 or 7 5 or 7 5 or 7 



 

 

60 
 
 

 

 
 
 
 
 

 

Table 4.12 Classification results for CWT based features with different filter design methods and 

different     numbers of subbands. 

Performance (%) Dataset1 Dataset2 

CFS      (5 Levels) 99.12 98.13 

Q_Shift (5 Levels) 99.93 97.95 

CFS      (7 Levels) 99.87 97.82 

Q_Shift (7 Levels) 99.93 97.57 

 

       In Table 4.12, it can be seen that Dataset1 can be easily discriminated with the 

proposed features with slightly more accurate results with Q-shift parameters.  

According to these results, an increment in the number of frequency bands does not 

contribute to the classification. CFS solution based CWT coefficients have higher 

accuracy rate than Q-Shift solution for Dataset2. It is possible to say that any 

remarkable enhancement in classification results has not been observed since 

complexity in feature space increase when high-level decomposition is performed. 

 

 
Figure 4.8 Accuracy results of CWT based features for dataset1 and dataset2 

 

     Classification performance of samples shorter than 0.5 sec. stated in previous 

section is also valid for CWT based features. It has been observed for CWT based 

parameterization that it is not very effective in terms of classification of signals with 
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such a short length as in DWT.      

 

     It was mentioned that ratio parameters of adjacent subbands provided a 

contribution about 1-1.5% to classification performance for DWT based parameters. 

As in other methods, the PCA process has been applied to CWT based features 

which do not contain ratio parameters before classification stage and dimensions of 

new feature vectors are given in Table 4.13. It has been also investigated for CWT 

based parameters if there is an increase in terms of classification performance. The 

results are given in Table 4.14 

 

Table 4.13 The length of feature vector of CWT based parameters with and without ratio parameters 

after PCA process  

CWT based feature vector 

 

Q_Shift  CFS 

5-Level 7-Level 5-Level 7-Level 

Length of feature vector 
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Original 29 25 41 35 29 25 41 35 

PCA 13 11 18 14 13 11 18 15 

 

    Table 4.14 Comparison of classification performances between CWT based parameters with ratio 
parameters and without ratio parameters. 

 

Filter Design Method & 

Number of subbands 

Performance with 

ratio parameters (%) 

Performance without 

ratio parameters (%) 

CFS & 5-Level 97.88 98.13 

CFS & 7-Level 98.50 97.82 

Q_SHIFT & 5-Level 97.76 97.95 

Q_SHIFT & 7-Level 98.50 97.95 
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     According to results in Table 4.14, addition of ratio parameters to CWT based 

feature vector does not make a remarkable contribution to classification performance. 

However, it should be noted that in this method, 5-band and 7-band decompositions 

have been made differently from DWT based feature extraction method. Hence, it 

can be thought as the effect of ratio parameters in CWT is less than in DWT because 

of   the difference between decomposition levels of two methods. 

 

4.2.5 General Performance 

     General performance is given as in the Table 4.15. 

 

Table 4.15 General classification results     
 

 

 

 

 

 

 

 

 

 

 

     

 

       

 

     When Table 4.15 is taken into consideration, it can be seen that wavelet based 

parameters have higher classification results than traditional time / frequency based 

methods. In general, all methods are successful in classification of samples in 

Dataset1, which indicates that the TIMIT speech data and CD recordings are 

separable.  However, it is not possible to say same thing for Dataset2 since the 

samples in Database 2 reflects a more realistic case where samples are recorded from 

Performance (%) Dataset1 Dataset2 

Haar 99.9 96.51 

db2 99.93 97.69 

db8 99.97 99.19 

db15 99.83 98.63 

db20 99.9 98.69 

TFPa 99.72 94.27 

CFS      (5 Levels ) 99.12 98.13 

Q_Shift (5 Levels ) 99.93 97.95 

CFS      (7 Levels ) 99.87 97.82 

Q_Shift (7 Levels ) 99.93 97.57 

DWT_Energy (db8) 89.02 91.21 

DWT_Energy (coif1) 82.93 77.45 
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radio broadcast.  The best performance has been obtained with db8 wavelet. The 

complex wavelet based features performs better than time / frequency based methods 

and wavelets with fewer vanishing moments.  However, they are not as successful as 

the db8. The similarity of the mother wavelet with the analyzed waveforms is an 

important criterion for the wavelet analysis which may be the cause of this 

performance difference.  Therefore, the accuracy for different databases may differ 

drastically. 

 

 
                           Figure 4.9 General Accuracy 

 

     When these feature extraction methods are considered in terms of their calculation 

times, DWT based energy features emerge as the fastest algorithm in terms of feature 

extraction since it contains only ten parameters in feature vector. On the other hand, 

DWT based energy features have the lowest classification performance among the 

considered methods according to results. In Table 4.16, the computation times for 

feature extraction stage for all methods used in the thesis are given.  
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Table 4.16.  Average computation times for feature extraction methods used in the thesis   

 Speech (msn.) Music (msn.) 

Time/freq. based features 0.2768 0.2745 

Haar 0.0357 0.0382 

Daubechies2 0.0401          0.04 

Daubechies8 0.0485 0.0462 

Daubechies15 0.1035 0.1034 

Daubechies20          0.155 0.1547 

Daubechies8 based energy features 0.0216 0.0217 

Coiflet1 based energy features 0.0176 0.0176 

Q-shift based CWT features 0.0298 0.0296 

CFS based CWT features 0.0301          0.03 

 

     According to average computation times in Table 4.16, a sorting among the 

feature extraction methods can be made as: 

 

TF DWT CWT DWTEt t t t> > >  

 

where TFt , DWTt ,  CWTt  and  DWTEt  show the computation time for the methods based 

on time/frequency, DWT, CWT and DWT based energy features.  

  

     The calculation time for DWT based statistical feature extraction shows 

differences according to used wavelet in the analysis. Wavelet families including 

high number of vanishing moments such as db15 and db20 spend more time for 

computation comparing to other wavelet families since they have longer filter 

lengths. It is encountered that the db8 families as the optimum wavelet for DWT 

based analysis since it shows highest performance in classification of speech and 

music and it has acceptable calcularion time.  

 

     CWT based method is faster than DWT based analysis and it shows performance 

results close to DWT. In this perspective, CWT based features can be used for online 
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implementation as well.   

 

     Time/frequency based analysis is the slowest method since it performs many 

computations in time and frequency domain and it has a long feature vector with 

length of 38. It should be noted that the silence parts of samples could be determined 

more quickly than the feature extraction methods during online implementation since 

only a threshold value is considered to give decision if the segment is silence or not.  

 

4.3 Graphical User Interface (GUI) Design for Speech / Music Discrimination 

 

     A graphical user interface has been designed as well in order to perform speech 

music discrimination visually. An online labelling module has been also embedded 

to the interface and observation of performance for real time classification has 

become possible with this tool. 

 

4.3.1 Main Module 

 

     Main module can be used to see classification results obtained by methods used in 

the thesis.In Figure 4.8, the GUI designed for main module is shown. Using “Load 

File” button, the file to be analyzed is selected and the “play” button plots and plays 

the signal at the same time. Since time/ frequency based features are also used at 

classification stage, it is important to see the general structure of spectrogram. For 

this aim, there is a button named as “Spectrogram of signal” in the module to plot 

time/frequency properties. In the DWT based features part of module, 12-level 

decomposition is performed using selected wavelet from pop-up menu. It is also 

possible to see shape of wavelet and wavelet coefficients using “Show Wavelet” and 

“Plot Wavelet Coefficients” buttons, respectively. For CWT based features there is 

also a pop-up menu which you can select the filter design method for analysis. It can 

be seen the existing complex wavelet with its real and imaginer parts using “Plot 

Filter Corfficients” button in CWT based feature extraction part of the module. For 

time/frequency based feature extraction, there is also a button and the values of 
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parameters such as spectral centroid, spectral rolloff, spectral flux, number of zero 

crossings and low energy ratio of loaded file exist in the blanks when this button is 

pushed. It is possible to get the classification results of four feature extraction 

methods simultaneously using “Classification Results” button. If “Online Labelling 

Module” button is pushed, the online labelling module will appear in a new window. 

This module will be introduced in the next section. 

 

 

Figure 4.8. Graphical user interface for main module 

 

4.3.2 Online Labelling Module 

 

     This module has been designed to observe speech / music classification 

performance for online implementations.  In the given module in Figure 4.9, a pre-

recorded sample is fetching using “Open” button and the online labelling process is 

started using “Start” button. “Pause” button makes it possible to stop the process 

temporarily and using “Continue” button the labeling process can be continued from 
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where it is stopped. The “Stop” button interrupts the program and ends the label 

assignment process.  

 

 

Figure 4.9 Graphical user interface for online labelling module 

 

     In the module, the red letters under the signal graph shows the pre-assigned labels 

for data and  “S”, “M” and “_” are used to indicate speech, music and silence parts of 

data, respectively. Online classification results are shown with blue color under pre-

assigned labels as it can be seen from Figure 4.9. These labels are assigned for 

segments which have the length of 0.5 sec. In online label assigning, features are 

extracted using 12- level DWT with db8 wavelet for each sample since it has given 

the most accurate results in experiments and a previously trained artificial neural 

network is used to determine the labels.   
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CHAPTER FIVE 

CONCLUSION 

 

5.1 Summary 

 

     The discrimination of music and speech have been an important task in 

multimedia signal processing with the increasing role of the multimedia sources in 

our life. The music/speech discrimination systems can be used in several applications 

as a preproecssing stage such as in the development of the efficient coding 

algorithms for audio decoders, in automatic speech recognition when the recordings 

include music such as radio broadcasts, in content based multimedia retrieval and in 

automatic channel selector design problem for radios. In addition, there are other 

emerging applications with a growing interest for music/speech discriminators. 

    

     In this thesis, classification of speech and music signals has been investigated in 

many aspects. The feature extraction has been performed with four different methods 

and artificial neural networks have been used as a classification tool. Two different 

databases have been used and feature extraction has been made individually for these 

databases. The first method has a parameter vector which contains time/frequency 

based features and mel-cepstrum coefficients with length of 21.  Second and third 

method use DWT based features. In second method, using several types of mother 

wavelets, 12-level decomposition has been performed to cover the analysis frequency 

range in detail. The length of feature vector constructed from the statistical measures 

of the coefficients and ratios between the adjacent subbands is 38. The third method 

contains DWT based energy parameters named as Teager and Instantaneous energy 

differently from second method. The length of feature vector for third method is 10. 

The last method is based on Complex Wavelet Transform (CWT) and two different 

filter design strategies including Common Factor Solution and Q_Shift solution have 

been used at feature extraction stage. CWT has been performed for 5-level and 7-

level to avoid further increase in the length of the feature vector which results in 

feature vectors with length of 25 and 35 for 5 and 7 bands, respectively. It has been 

observed that time / frequency based features are not very effective in discrimination 
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of speech / music samples when they are used alone. However, if they are used 

together, the accuracy tends to increase conspicuously. 

 

     The methods except the energy based ones, shown higher performance for 

Database 1 than the results for Database 2. Because, the second database consists of 

the recordings from radio broadcasts which reflects a more realistic case.  

 

     The selection of the analysis window length which specifies the content of the 

nonstationary signal and the speed of implementation is an important choice for 

SMD. The selection of a short window order of miliseconds as in literature will not 

give the necessary information on time varying frequency content, since the signal 

can be assumed as stationary in this interval. On the other hand, the usage of long 

windows order of seconds which is reported as successful limits the online 

application of the algorithms. In this study, it has been observed that the 0.5 sec 

analysis window length is effective in terms of performance. 

 

     CWT and DWT based features have shown a high success comparing to time / 

frequency based features according to classification results. Different accuracy rates 

have been encountered for different mother wavelets belonging to Daubechies 

wavelet family. Daubechies8 demonstrated the highest classification performance 

among the others. The CWT based classification has shown results as 99.93% for 

Database1 and 98.13% for Database2. When all features are concerned, we see that 

Daubechies8 based parameters have superior discrimination features in terms of 

classification of speech and music. 

 

     In the thesis, the contribution of the ratio parameters to the discrimination 

performance have also been examined for DWT and CWT based features. It has been 

observed that ratio parameters provide a contribution about 1-1.5% to the overall 

performance for DWT based parameters. However, the results were inconclusive for 

CWT. 

 



 

 

70 
 

 
 

    Classification performance of DWT based feature vector in method 2 varies 

depending on mother wavelet used in feature extraction stage.  When the number of 

vanishing moments is increased, the wavelet becomes smoother. These smooth 

wavelets produce large coefficients for slowly changing signals like music, while it 

produces relatively small coefficients for speech signals. This can be used as a 

discriminative property for SMD. The Haar and db2 wavelets have a few vanishing 

moment, this may cause to prevent the good representation of signal in frequency 

domain. In contrary, db15 and db20 have much more filter coefficients and vanishing 

moments, but this increases the complexity in the feature space and also requires 

longer computations. In this way, db8 has emerged as the most ideal wavelet type of 

wavelets used in the thesis. 

 

     In classification stage, artificial neural networks have been used as classification 

tool. The number of hidden neurons has been preferred as 40 and the target mean 

square error has been defined as 0.001, heuristically. Conjugate gradient algorithms 

have been selected as learning algorithm since they have advantages according to 

other methods. Also, principal component analysis has been performed before 

classification stage to represent signals more efficiently and to decrease the 

dimension of feature vector. 

 

5.2 Advantages 

 

     In this thesis, the speech and music samples with length of 0.5 sec. have been 

used at feature extraction and classification stages. Although longer segments are 

used in the literature generally, it has been shown in the thesis that 0.5 sec. length is 

enough to get high performance in classification of speech and music. The proposed 

algorithm used in the thesis is computationally efficient (average running time for 

proposed method is <50 msn) and this allows the use of method for online 

implementation. As mentioned before,  a fast running speech / music discrimination 

system with high accuracy can be designed by using suggested method as a 

preprocessing stage for several applications. 
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5.3 Disadvantages 

 

     The observed SMD performance of CWT based features were less than the DWT 

based ones.  A feature set which reflects the most powerful properties of CWT must 

be constructed. The filter structure used in CWT based parameterization has the 

possibility of presence of unsuitable charactestics in terms of speech/music 

discrimination and as a result, the accuracy is observed as lower than performance of 

DWT based features. In this manner, adaptive filter design is required to get more 

succesful results. 

 

5.4 Future Studies 

 

     Since the SMD is an hot topic for multimedia applications, the studies can be 

extended in several directions. One of them might be the research on adaptive filter 

design methods to reveal more advantages of CWT on DWT in speech / music 

discrimination. Therefore, the parameters fort he SMD tasks can be determined 

automatically according to the problem at hand.  

 

     The dataset can be expanded to include mixed speech-music samples. In this way, 

a multiclass classification can be performed instead of binary classification for future 

studies.  

 

     The performance of CWT based features can further examined to construct a 

more discriminated feature space  

 

     An hardware implementation can be done using digital signal processors to have a 

faster SMD system. 
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