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A NEW APPROACH TO IP LEVEL CONGESTION CONTROL 

 
ABSTRACT 

  

Due to the fast growth of the demand for the use of internet during the last decade, 

congestion control mechanisms to keep the throughput high and the average queuing 

delays low get of vital importance. In this thesis, the usage of the congestion control 

strategies in the growing world of networking is investigated. The purpose of this 

thesis is to present a new approach, which is called as “Orange” in IP level 

congestion control as an active queue management mechanism and to compare its 

performance of our proposed algorithm with that of the other mechanisms. Within 

the framework of this thesis, the best operating point of Orange algorithm is 

evaluated by using the empirical formulas we derive. It is investigated that when the 

best operating point parameters are applied, Orange gives the best performance 

among other active queue management algorithms. 

 

In the context of this thesis, a general procedure for constructing threshold control 

policies that are implementable is described; and computer simulation is used to 

show that these policies perform well, especially in congestion conditions. The 

results obtained from the computer simulation are also used to justify the congestion 

reducing routing strategy approach.  

 

The key observation shows that a good routing strategy that prevents servers from 

idling and wasting resource capacity is required for the networks when there is 

substantial work in the system.  

 

Keywords: Queuing theory, congestion avoidance, congestion control, routing, 

threshold, computer simulation, active queue management. 
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IP SEVİYESİNDE TIKANIKLIK DENET İMİNE YENİ BİR YAKLA ŞIM 

 

ÖZ 

 

Son yıllarda internet kullanımına olan talebin hızlı artışının etkisiyle, ağ 

verimliliğini yüksek ve ortalama kuyruk gecikmelerini düşük tutan tıkanıklık 

denetim yöntemleri önem kazanmıştır. Bu tez çalışmasında sürekli büyüyen 

bilgisayar ağları dünyasındaki tıkanıklık denetim yöntemlerinin kullanımını 

incelenmiştir. Bu tezin amacı ip seviyesinde tıkanıklık denetimine “Orange” adını 

verdiğimiz aktif kuyruk yönetimi olan yeni bir yaklaşım önermek ve önerdiğimiz bu 

yöntemin başarımını diğer yöntemler ile karşılaştırmaktır. Bu tezin kapsamında, 

geliştirdiğimiz ampirik formüller kullanılarak Orange algoritmasının en iyi çalışma 

parametreleri ölçümlendirilmiştir. Bu çalışma parametreleri uygulandığında, Orange 

algoritmasının diğer aktif kuyruk yönetimi algoritmaları arasında en iyi sonuçları 

verdiği gözlemlenmiştir. 

 

Bu tezin içeriğinde, uygulanabilir eşik değerli denetim yöntemlerinin kurulması 

için genel bir yöntem tasarlanmış ve programladığımız bilgisayar benzetimi bu tür 

yöntemlerin özellikle ağır trafik şarlarında iyi çalıştığını göstermek için 

kullanılmıştır. Bilgisayar benzetiminden elde edilen sonuçlar çalışmamızda incelenen 

tıkanıklık azaltan iletim yöntemini doğrulamakta da kullanılmaktadır.  

 

Sistemde büyük ölçüde iş olduğunda, sunucuların boş kalmasını ve kaynak 

kapasitesinin boşa harcanmasını engelleyen iyi bir iletim yönteminin, ağlar için 

gerekli olduğu ortaya çıkmıştır.   

 

Anahtar Kelimeler: Kuyruk teoremi, tıkanıklık önleme, tıkanıklık denetimi, 

yönlendirme, eşik değer, bilgisayar benzetimi, aktif kuyruk yönetimi.  
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1CHAPTER ONE 

INTRODUCTION 

 

1.1 General  

The Internet (or simply the Net) is a global information system of interconnected 

computer networks. It is a network of networks in which users at any one computer 

can get information according to their access permission from any other computer 

that is linked by copper wires, fiber-optic cables, wireless connections, and other 

technologies. It is not only the underlying communications technology, but also 

higher-level protocols and end-user applications, the associated data structures and 

the means by which the information may be processed, manifested, or otherwise 

used. Physically, the Internet uses a portion of the total resources of the currently 

existing public telecommunication networks. Internet also uses the standardized 

Internet Protocol Suite (TCP/IP) to serve billions of users worldwide. It is a network 

of networks that consists of millions of private and public, academic, business, and 

government networks. 

Today, the Internet is a public, cooperative, and self-sustaining facility accessible 

to hundreds of millions of people worldwide and supports popular services such as 

most notably the inter-linked hypertext documents of the World Wide Web (WWW), 

the infrastructure to support electronic mail, online chat, file transfer and file sharing, 

gaming, e-commerce, social networking, publishing, video on demand, 

teleconferencing, telecommunications, voice over IP applications.  

The origins of the Internet reach back to the 1960s when the United States funded 

research projects of its military agencies. The original aim was to build robust, fault-

tolerant and distributed computer networks. It was foreseen by the Advanced 

Research Projects Agency (ARPA) of the U.S. government in 1969 and was first 

known as the ARPANET. The main advantage of ARPANet's design can be 

explained like that the network could keep functioning even if some parts of it were 

destroyed because of any attack or other disaster. It was designed by giving 
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possibility to the messages that they could be routed or re-routed in more than one 

direction. 

 

1.2 The Evolving Internet 

The Internet revolutionizes our society, our economy and our technological 

systems. No one knows how far, or in what direction, the Internet will evolve. In 

addition, no one should underestimate its importance.  

Since the beginning of networking technology, the number of the host computer 

systems has increased from four to an estimated 600 million hosts today (Figure 1.1) 

(www.isc.org). During the last decade, internet continues to grow vigorously, 

approximately doubling in each year. This exponential grow rate is expected to be 

continued for the next decades. Future networking demands will require the internet 

to grow faster. In the future, it is expected that many of new electronic devices will 

be internet connected; this will require the internet to continue its rapid scaling well 

into the future. 

 

Figure 1.1 Internet domain host count (www.isc.org). 
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In parallel to the internet growth rate, the need for speed, connectivity, and 

reliability have become of vital importance. Network performance is vital to 

businesses operations as well as bringing a product to the consumers through 

electronic commerce.  

As the number of the internet users and the related demand for high-speed 

networks continue to increase and to be distributed non-uniformly, today’s internet 

backbone has started to operate at its capacity. However, the sufficient infrastructure 

for high-speed networks is not expected to grow accordingly, due to high investment 

costs. Because of this trade off, network problems have emerged as a significant 

problem in all forms of our life, commerce, affecting the way in which many of us 

work and communicate. 

Unfortunately, although its design has focused on robustness, the Internet has the 

largest performance and availability bottleneck today for end-to-end applications. 

Congestion causes network connections experience high loss rates during busy hours. 

Effective congestion avoidance and control policies become essential in order to 

handle the increasing demand. 

The exact causes of Internet performance problems are difficult to be determined 

because if its scale, heterogeneity, and dynamic nature. However, the design of the 

Internet protocols had been made in the early 1980s, and it is clear that several of the 

assumptions have lost their validity today. 

The TCP/IP Internet protocol architecture was designed in the early 1980s, at a 

time when there were many fewer hosts connected to it and typical links carried 

only 56 Kbps. Many of the assumptions underlying the Internet’s design have 

changed since then. For example, the designers of Internet congestion control 

intended it to work well with connections that last many round trips, long enough 

for end-to-end feedback to work. Most connections today, however, carry only a 

small number of packets. Transferring a typical 10 Kbyte Web page requires a 

minimum of six to seven round trips as the server probes the network to determine 

the maximum rate at which it can send. If there is excess capacity in the network, 

the overhead of these probes will prevent the server from fully utilizing the 
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network. If the network is congested, these short, bursty connections will increase 

the probability of dropped packets. The designers of Internet transport protocols 

assumed that packet loss rates would be less than 1%, yet current packet loss rates 

have been measured as averaging 5% to 6%. 

Assumptions about Internet routing have changed as well. The Internet was 

originally designed to provide universal reachability between networks; all 

network links were available to carry traffic for any host. Today’s Internet 

restricts the exchange of routing information according to business agreements 

between service providers. These agreements result in situations where A can 

reach B, and B can reach C, but A cannot reach C. Further, because current 

Internet routing ignores performance information, two hosts may be forced to 

communicate over excessively long or overloaded links. Adding a slow link can 

actually hurt performance, because packets can be routed over it in preference to 

faster links. 

Finally, the Internet was built by a small community of researchers. In that 

environment, it was reasonable to assume that end hosts would cooperate in the 

management of network resources. As the Internet has evolved from a research 

project into a popular consumer technology, this assumption has lost some of its 

validity. For example, there are several commercial Internet “accelerators” that 

provide better performance for a single user at the expense of other users. 

Expecting billions of Internet devices to cooperate to prevent network congestion 

in the future is arguably too optimistic (Savage et al., 1999, s. 51). 

 

1.3 The Area of Research 

In the recent years, the unpredictable growth and the corresponding evolution of 

the Internet has moreover pointed out the congestion problem, one of the problems 

that historically have affected the network performance. The network congestion 

phenomenon is induced when the amount of data injected in the network is larger 

than the amount of the data that can be delivered to destination. 
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In many situations in computer communications and networks, there is 

competition among a collection of competing users for the available resources. These 

competitions cause congested network traffic, which is undesirable. The competitors 

are usually frames or packets, of varying sizes, which arrive at unpredictable 

moments and compete for access to a transmission channel. The resources being 

shared include the bandwidth of the links, the buffer memory on the routers 

(switches) where packets are queued waiting to be transmitted over these links, and 

the processor speeds of these routers. When enough packets are contending for the 

same link, the queue overflows and packets have to be dropped. It is at this stage that 

the network is said to be congested.  

In a congested network, the gateways along the route would see occasional traffic 

that go beyond the capacity limit. There are only two possibilities for the gateways 

along the route; buffer the packets or drop them. Standard gateways usually try to 

place the incoming packets in their buffers, which work like a basic FIFO (‘First In, 

First Out’) queue and only drop packets if the queue is full. Reserving enough 

buffers for long queues in gateways increases the chance of accommodating short 

traffic bursts. In spite of high cost of increasing the buffer size in gateways, 

significant queuing delay problem could not be still avoided by increasing the buffer. 

Eventually, packet loss will occur regardless of how long the maximum queue is. 

The goal of congestion control mechanisms is simply to use the network as 

efficiently as possible by accomplishing the highest possible throughput, a low 

packet loss ratio and small delay. Congestion must be avoided because it results in 

high queue length causing packet delay and loss.   

The control of queuing networks has important practical applications in the 

modeling of manufacturing, telecommunications, and computer systems. In this 

thesis, we will consider dynamic (state-dependent) control strategies, which can offer 

significant improvements in network performance over static policies, which do not 

take into account failures in the network or changes in traffic patterns. For example, 

by re-routing traffic and re-allocating resources, dynamic routing schemes are 

capable of responding to the randomly varying demands in a network, managing 

resources more efficiently and reducing congestion. In particular, we will be 
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concerned with threshold routing strategies, which are, dynamic routing schemes, 

which depend on the current state of various queues in relation to fixed threshold 

values. 

 

1.4 Objectives and Scope 

The basic goal of congestion control is to maximize the throughput of the link and 

minimize the average delay of packets in the network. In addition, it should consider 

fair allocation of the resources among all the users. More specifically, a congestion 

control scheme must satisfy: 

• Low overhead. In particular, congestion control should not increase 

traffic during congestion. This is one of the reasons why explicit 

feedback messages are considered undesirable. 

 

• Responsiveness. The congestion control scheme is required to match 

the demand dynamically to the available capacity. 

 

• Must continue to work even when the rate of transmission errors, out of 

sequence packets, deadlocks, and lost packets increases considerable 

under congestion. 

In order to control and avoid congestion, we discuss the problem in terms of 

congestion control. We propose a new approach, which is implemented in IP level to 

drop (mark), the packets when the congestion will likely occur. We intend to use an 

active queue management algorithm in IP level, which we call Orange. Orange will 

replace RED (Random Early Detection) which will be used at the gateways as the 

algorithm to decide which packets are to be marked to indicate a congestion 

condition. 

However, the design of an IP level algorithm is not straightforward, because of 

the heuristic involved with control rules; moreover, the tuning of the parameters of 
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an algorithm, as scaling factors, membership functions and control rules is a very 

complex task. Currently there are not many simple methods available for the design 

of the similar knowledge base.  

 

1.5 Overview of the Thesis 

In chapter one, we introduce the subject of the work, namely the congestion and 

its control. We describe the internet, internet’s fast evolution in the last decades, and 

the result of this evolution, which evolves in congestion. 

In chapter two, we define the congestion collapse, which is the undesirable 

inevitable result of any congested network. We introduce the basic concepts of 

congestion control including the fairness, the flow control and its difference from 

congestion control, the classification of congestion control mechanisms. Moreover, 

we describe the general idea behind the congestion control algorithm of the 

transmission control protocol (TCP) which is the most commonly used end-to-end, 

transport layer protocol for today’s Internet and multimedia applications that 

supports flow and congestion control. 

In chapter three, as the application of queuing theory provides the theoretical 

framework for the design and study of computer networks, we revise the basics of 

queuing theory, which is the mathematical base of our proposed algorithm. We 

mentioned the general terms including arrival process, service process, queuing 

discipline and notation of queuing theory as well as the probability theory and the 

Markov chains, which are used to solve the queuing problems.  

In chapter four, we review the literature about the congestion control mechanisms, 

which have been already studied by several authors. We review the scheduling 

algorithms, active queue management algorithms including the most widely known 

type which is RED (Random Early Detection), its derivatives, and performance 

comparison among them.  
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In chapter five, we revise the mathematical background behind our proposed 

algorithm. Generic M/M/2 queue analysis with heterogeneous servers with a 

threshold is the basis of our proposed algorithm. Markov chains are used for the 

mathematical analysis.  We also describe the details of our proposed algorithm, 

namely Orange. 

In chapter six, we describe the basics of the widely used, public domain discrete 

event simulator targeted at network protocol research, which we call “NS (Network 

Simulator)”. We explain the proper method of analyzing the simulation results with 

“Awk” which is the one of the most interesting text processing languages used for 

NS trace analysis. In addition, we update NS core to implement our proposed 

algorithm, which we call “Orange”. Moreover, we give information about the 

simulation topology and related experimental work to simulate our proposed 

algorithm. We discuss the results we achieve at the end of the work, advantages of 

our proposed algorithm, and comparison of our algorithm with similar works. 

In chapter seven, we conclude with a summary and identification of key 

contributions and main findings of this thesis and address the possible avenues of 

further research based on this work. 
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2CHAPTER TWO 

BASICS OF CONGESTION CONTROL 

 

2.1 Overview 

A network is considered congested when too many packets try to access the same 

transmission line, router and other resources. In this case, demanded load exceeds the 

capacity of network and packets start to be dropped. Additionally, congestion 

collapse is a condition, which a network can reach, when little or no useful 

communication is happening due to congestion.  

Congestion should be immediately controlled otherwise; there may be many 

chances of occurring congestion collapse. During congestion collapse, only a fraction 

of the existing bandwidth is utilized by traffic useful for the receiver. Traffic demand 

is high but little useful throughput, which is called goodput, is available, and there 

are high levels of packet delay and loss (caused by routers discarding packets 

because their output queues are too full). Actions need to be taken by both the 

transmission protocols and the network routers in order to avoid a congestion 

collapse and furthermore to ensure network stability, throughput efficiency and fair 

resource allocation to network users. 

  

2.2 Congestion Collapse 

The current congestion control mechanisms for the Internet date back to the 

1980’s. Those mechanisms were designed to stop congestion collapse for the traffic 

of 1980’s where there was no end-to-end congestion control mechanism in TCP/IP. 

The Internet first experienced a problem called congestion collapse in the 1980s.  

John Nagle identified congestion collapse as a possible problem as far back as 

1984 (Nagle, 1984). It was first observed on the early Internet in October 1986, when 
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the NSFnet phase-I backbone dropped three orders of magnitude from its capacity of 

32 kbps to 40 bps, and continued to occur until end nodes started implementing Van 

Jacobson's congestion control between 1987 and 1988. Congestion collapse is 

described as a stable condition of degraded performance that stems from unnecessary 

packet retransmissions (Nagle, 1984). Nowadays, it is, however, more common to 

refer to “congestion collapse” when a condition occurs where increasing sender rates 

reduces the total throughput of a network. The existence of such a condition was 

already acknowledged in Gerla & Kleinrock (1980) that uses the word “collapse”.  

We consider a network where sources send at a rate limited only by the source 

capabilities. Such a network may suffer of congestion collapse, which we explain 

now on an example.  

 

10
0 k
bp
s

 
Figure 2.1 A sample network topology to illustrate the inefficiency for unresponsive sources. 

 

Consider first the network illustrated in Figure 2.1, which shows two service 

providers with two customers each. They are interconnected with a 110 kbps link and 

do not know each other’s network configuration. Source 0 sends data to Destination 

0, while Source 1 sends data to Destination 1, respectively. The sources are limited to 

send only by their access rates (their first link). Moreover, there are no congestion 

control feedbacks in the network. There are five links with capacities shown in the 

Figure 2.1. Source 0 sends at 100 kbps and Destination 0 receives at 100 kbps, while 

Source 1 sends at 1000 kbps and Destination 1 receives at only 10kbps. Source 0 can 

send only at 10 kbps because it is competing with Source 1 on the bottleneck link, 

which sends at a high rate on that link. However, Destination 1 is limited to receive 
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at 10 kbps. As the Source 1 is unaware of the global network situation, it keeps 

sending at 1000 kbps (10 times more than the Source 0 on the same bottleneck link). 

This situation results in the bottleneck link carries 10 times more packets of Source 1 

than that of Source 0. Most of the packets from Source 1 will be dropped due to the 

lack of capacity of the receiver’s link. Source 1 will take unnecessarily more 

bandwidth than Source 0 in bottleneck link resulting in the total throughput of the 

link will be 20 kbps, which is undesirable. 

If Source 1 would be aware of the global situation, and if it would cooperate, then 

it would send at 10 kbps only on the bottleneck link. In this case, Source 1 would 

allow Source 0 to send at 100 kbps. The total throughput of the network would then 

become 110 kbps, which is the ideal case and desirable.  

The first example has shown some inefficiency. In complex network scenarios, 

this may lead to a form of instability known as congestion collapse. This means that 

the limit of the achieved throughput approaches to zero when the offered load 

increases. 

In the original scenario, throughput is limited by the receiver’s link rates, which is 

20 kbps. If the sources would cooperate, the throughput would go up to 110 kbps (its 

maximum rate, which is constrained to this, limit by the bottleneck link).  If Source 1 

knew that it would never attain more throughput than 10 kbps and would therefore 

refrain from increasing the rate beyond this point, Source 0 could send at its limit of 

100 kbps.   

Generally we can say that, as the rate approaches the capacity limit, the 

throughput curve becomes smoother (this is called the knee), and beyond a certain 

point, it suddenly drops (this is called cliff) and then decreases further even to zero. 

The explanation for this strange phenomenon is congestion. Since both sources 

keep increasing their rates no matter what the capacities beyond their access links 

are, there will be congestion in the network. The bottleneck link’s queues will grow 

having more packets from Source 1. Roughly speaking, for every packet from Source 

0, there are 10 packets from Source 1. This means that the packets from Source 1 
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unnecessarily occupy bandwidth of the bottleneck link that could be used by the data 

flow. The more the Source 1 sends, the greater the congestion problem. 

Congestion control deals with such problems. In Ramakrishnan & Jain (1988), the 

term “congestion control” is distinguished from the term “congestion avoidance” via 

its operational range: schemes that allow the network to operate at the knee are called  

congestion avoidance schemes, whereas congestion control just tries to keep the 

network to the left of the cliff. In practice, it is hard to differentiate mechanisms like 

this as they all share the common goal of maximizing network throughput while 

keeping queues short. 

The previous discussion has illustrated the “Efficiency Criterion”. In a packet 

network, sources should limit their sending rate by taking into consideration the state 

of the network. Ignoring this may put the network into congestion collapse. One 

objective of congestion control is to avoid such inefficiencies. Congestion collapse 

occurs when some resources are consumed by traffic that will be later discarded.  

 

2.3 Fairness 

Fairness is described as allocating the same share of all available resources among 

the competing users in a network. We consider the network topology in Figure 2.2. 

We want to maximize the network throughput in this topology. Sources send at a rate 

“x i, i = 0, 1 ..., I”, and all links have a capacity equal to “c”. We assume that we 

implement some form of congestion control and that there are negligible losses. 

Thus, the flow on “link i” is “n0x0 + nixi”. For a given value of “n0” and “x0”, 

maximizing the throughput requires that “nixi = c - n0x0” for “i = 1,..., I”. The total 

throughput, measured at the network output, is thus “Ic - (I - 1) n0x0”; it is maximum 

for “x0 = 0”. 
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Figure 2.2 A sample network topology to illustrate the fairness. 

 

This example shows that maximizing network throughput as a primary objective 

may lead to gross unfairness; in the worst case, some sources may get a zero 

throughput, which is probably considered unfair by these sources. In summary, the 

main objective of congestion control is to provide both high throughput (efficiency) 

and some form of fairness.  

 

2.4 Flow Control 

Congestion control could be considered to be in networks where neither the 

sender nor the receiver is involved if the intermediate nodes can take part as 

controllers and measuring points at the same time. However, most network 

technologies are designed to operate in a wide range of environment conditions. 

Consider a network where a sender and a receiver are interconnected via a single 

link. There are no intermediate nodes in this topology, and thus, no possibility for 

congestion. Although the congestion phenomenon is not a problem in this topology, 

the receiver should slow down the sender if it is not fast enough to handle the 

incoming packets. In this case, the function of informing the sender to reduce its rate 

is normally called flow control.  

“The goal of flow control is to protect the receiver from overload, whereas the 

goal of congestion control is to protect the network” (Rusmin et al., 2007).Whatever 

the reason, the underlying mechanism behind congestion control and flow control is 
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very similar. Feedback messages are used to tune the rate of a flow. Since it is 

important to protect both receiver and the network from overload at the same time, 

the sender should send at a rate, which is the minimum of the results of the flow 

control and congestion control calculations. Because of this similarity, the terms flow 

control and congestion control are mostly used synonymously. Sometimes flow 

control is considered as a special case of the congestion control. 

 

2.5 Additive Increase Multiplicative Decrease 

Additive Increase Multiplicative Decrease (AIMD) (Dah-Ming & Jain, 1989) 

algorithm is a feedback control algorithm of TCP’s congestion avoidance schema for 

sharing the available resource among competing users. AIMD algorithm tries to keep 

the congestion window growing linearly as long as there is no congestion indication 

(as a congestion indicator, a loss event is generally described to be either a timeout or 

the event of receiving three duplicate ACKs) in the network. Flows from each source 

probe for its share of the available resources (i.e. bandwidth) by linearly increasing 

their transmission rate (window size) until loss occurs (the additive increase stage). 

When congestion occurs, the sources cut their transmission rates (congestion 

window) in half in a multiplicative fashion (the multiplicative decrease stage). The 

result is a saw-tooth behavior that represents the probe for bandwidth. The other 

forms of AIMD in congestion control are additive increase additive decrease 

(AIAD), multiplicative increase additive decrease (MIAD) and multiplicative 

increase multiplicative decrease (MIMD). With these modifications, the AIMD 

algorithm has been the dominant algorithm in congestion control since the beginning 

of the congestion control phenomena.   
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2.6 Overview of TCP’s Congestion Control 

The transmission control protocol (TCP) (Postel, 1981) is the most commonly 

used transport layer protocol for today’s Internet and multimedia applications. A 

large amount of Internet traffic is carried by TCP. The Transmission Control 

Protocol is a reliable, connection-oriented, full duplex, byte-stream, transport layer 

protocol. In other words, TCP is an end-to-end protocol that supports flow and 

congestion control.  

The congestion control within the TCP plays a critical role in adjusting data 

sending rate to avoid congestion from happening. Senders to infer network 

conditions between sender and receiver use acknowledgments for data sent, or lack 

of acknowledgments. Together with timers, TCP senders and receivers can control 

the congestion control behavior of a data flow. 

TCP implements a window based flow control mechanism. Roughly speaking, a 

window based protocol means that current window size defines a strict upper bound 

on the amount of unacknowledged data that can be in transit between a given sender 

receiver pair. TCP sources waits for an ACK from receiver as a signal to insert a new 

packet into network without adding to the level of congestion. TCP is said to be self-

clocking. In this approach, sources which are responsive (adaptive, or compliant) are 

considered to reduce their transmission rate.  Non-compliant flows can obtain larger 

bandwidth against the responsive flows.   

TCP uses timeouts and duplicate acknowledgements as congestion notifications. 

Each packet is associated with a timer. If it expires, timeout occurs, and the packet is 

retransmitted. The value of the timer, denoted by RTO, should ideally be of the order 

of an RTT. RTT is measured by the TCP connection. If a packet has been lost, the 

receiver keeps sending acknowledgements but does not modify the sequence number 

field in the ACK packets. When the sender observes several ACKs acknowledging 

the same packet, it concludes that a packet has been lost. 
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The TCP uses a network congestion avoidance algorithm that includes various 

aspects of an additive-increase-multiplicative-decrease (AIMD) scheme, with other 

schemes such as slow-start in order to achieve congestion avoidance. Two such 

variations are those offered by TCP Tahoe and Reno. Before going further about 

TCP Tahoe and Reno, it is better to remember a short history of evaluation of TCP’s 

Congestion Control Schema. 

In 1974, Cerf & Kahn conducted research on packet network interconnection 

protocols and co-designed the DoD TCP/IP protocol suite. Then, three-way 

handshake mechanism was described by Tomlinson (1975). In 1981, TCP & IP 

protocol was first explained in RFC 793 & 791 and it was supported by BSD Unix 

4.2 in 1983. In 1984, Nagle’s algorithm (Nagle, 1984) was used to reduce the 

overhead of small packets to predict congestion collapse. In 1986, congestion 

collapse was first observed. In 1987, Karn’s algorithm was used to better estimate 

round-trip time. In 1988, Van Jacobson’s algorithms were described slow start, 

congestion avoidance, fast retransmit (all implemented in 4.3BSD Tahoe) 

SIGCOMM 88. The TCP Tahoe and Reno algorithms were retrospectively named 

after the 4.3BSD Unix operating system in which each first appeared. In 1990, 

4.3BSD Reno included fast recovery, delayed ACK’s. Improvements were made in 

4.3BSD-Reno and subsequently released to the public as “Networking Release 2” 

and later 4.4BSD-Lite. In 1993, TCP Vegas (not implemented) was described by 

Brakmo et al., (1993) as a real congestion avoidance schema. In 1994, Explicit 

Congestion Notification (ECN) was described by Floyd (1994). After that some 

modifications were followed on TCP’s congestion control algorithm including 

T/TCP Transaction TCP (Braden, 1996), NewReno and SACK TCP Selective Ack 

(Mahdavi et al., 1996), FACK TCP Forward Ack extension to SACK (Mathis & 

Mahdavi, 1996). In 2001, Ramakrishnan et al., (2001) added explicit congestion 

notification bit to the IP headers. In 2004, New Reno modification added to the 

TCP’s fast Recovery Algorithm by Floyd et al., (2004). In 2010, Kuzmanovic et al., 

(2010) added explicit congestion notification (ECN) capability to TCP’s SYN/ACK 

packets. Floyd et al., (2010) added acknowledgement congestion control to TCP in 

2010.  
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2.6.1 TCP Tahoe and Reno 

In order to avoid congestion collapse, TCP uses its own congestion control 

strategy and for each connection, TCP keeps a congestion window, limiting the total 

number of unacknowledged packets that may be in transit end-to-end.  

The congestion window can be thought of as being a counterpart to advertised 

window. Whereas advertised window is used to prevent the sender from overrunning 

the resources of the receiver, the purpose of congestion window is to prevent the 

sender from sending more data than the network can handle in the current load 

conditions. 

TCP uses slow start mechanism to increase the congestion window after a timeout 

and after a connection is initialized. In this strategy, the rate of increase is very rapid 

but the initial rate is slow. Basically, slow start works by increasing the congestion 

window by one maximum segment size MSS each time for every packet 

acknowledged so that the congestion window effectively doubles for every round trip 

time (RTT). It starts with a window of two times the maximum segment size (MSS). 

Once a loss event has occurred where the initial slow start threshold “ssthresh” is 

large or the threshold “sstresh” has been reached, the algorithm enters congestion 

avoidance state. The threshold is updated at the end of each slow start, and will often 

affect subsequent slow starts triggered by timeouts. 

At this point, the connection goes to congestion avoidance phase where the value 

of congestion window is increased linearly (less aggressively) instead of exponential 

growth. This linear increase will continue until a packet loss is detected. 

Congestion avoidance: As long as non-duplicate ACKs are received, the 

congestion window is additively increased by one MSS every round trip time. When 

a packet is lost, the likelihood of duplicate ACKs being received is very high (it's 

possible though unlikely that the stream just underwent extreme packet reordering, 

which would also prompt duplicate ACKs). The behavior of Tahoe and Reno differ 

in how they detect and react to packet loss:  
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• Tahoe: Loss is detected when a timeout expires before an ACK is 

received. Tahoe will then reduce congestion window to one MSS, and 

reset to slow-start state.  

 

• Reno: If three duplicate ACKs are received, Reno reduces the 

congestion window by half, performs a “fast retransmit”, and changes 

to a state called “Fast Recovery”.  If an ACK times out, slow start is 

used as it is with Tahoe. 

 
 

2.6.2 Fast Retransmit 

Duplicate ACKs that were mentioned to be one way of detecting lost packets can 

also be caused by reordered packets. When receiving one duplicate ACK the sender 

cannot yet know whether the packet has been lost or just gotten out of order but after 

receiving several duplicate ACKs it is reasonable to assume that a packet loss has 

occurred. The purpose of fast retransmit mechanism is to speed up the retransmission 

process by allowing the sender to retransmit a packet as soon as it has enough 

evidence that a packet has been lost. This means that instead of waiting for the 

retransmit timer to expire, the sender can retransmit a packet immediately after 

receiving three duplicate ACKs. 

 

2.6.3 Fast Recovery  

In Tahoe TCP the connection always goes to slow start after a packet loss. 

However, if the window size is large and packet losses are rare, it would be better for 

the connection to continue from the congestion avoidance phase, since it will take a 

while to increase the window size from one to ssthresh. The purpose of the fast 

recovery algorithm in Reno TCP is to achieve this behavior. In a connection with fast 

retransmit, the source can use the flow of duplicate ACKs to clock the transmission 

of packets. When a possibly lost packet is retransmitted, the values of ssthresh and 



19 
 

 
 

cwnd will be set to “ssthresh = cwnd/2” and “cwnd = ssthresh” meaning that the 

connection will continue from the congestion avoidance phase and increases its 

window size linearly. 

In congestion avoidance phase, TCP retransmits the missing packet that was 

signaled by three duplicate ACKs and waits for an acknowledgment of the entire 

transmit window to return to the congestion avoidance. If there is no 

acknowledgment, Reno TCP enters the slow-start state after an experienced timeout. 

Both of the two algorithms reduce congestion window to one maximum segment size 

(MSS) on a timeout event. 

 

2.6.4 TCP Vegas 

Until Larry Peterson and Lawrence Brakmo, University of Arizona researchers, 

introduced TCP Vegas in mid 1990s, where timeouts were set and round-trip were 

measured for every packet in the transmit buffer, all TCPs setting timeouts and 

measuring round-trip delays were based upon only the last transmitted packet in the 

transmit buffer. In addition, additive increases are used in the congestion window by 

TCP Vegas.  

 

2.6.5 TCP New Reno 

The difference between the TCP Reno and the TCP New Reno is the improved 

retransmission during the fast recovery phase. During fast recovery, a new unsent 

packet from the end of the congestion window is sent for every duplicate ACK that is 

returned to TCP Reno, to keep the transmit window full. The sender assumes that the 

ACK points to a new hole for every ACK that makes partial progress in the sequence 

space and the next packet beyond the acknowledged sequence number is sent. 
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New Reno has the capability of filling large holes or multiple holes in the 

sequence space - much like TCP SACK. It gets this capability from the timeout timer 

which is reset whenever there is progress in the transmit buffer. During the hole 

filling process in New Reno, high throughput is maintained because it can send new 

packets at the end of the congestion window during fast recovery; even there exist 

multiple holes, of multiple packets each. TCP records the highest outstanding 

unacknowledged packet sequence number when it enters fast recovery. It returns to 

the congestion avoidance state when this sequence number is acknowledged. 

When there are no packet losses but instead they are reordered by more than three 

packet sequence numbers, a problem occurs with New Reno. When this kind of 

conditions occurs, it enters fast recovery mistakenly. After the delivery of reordered 

packet, ACK sequence-number progress occurs. To the end of fast recovery, every 

bit of sequence-number progress produces a duplicate and retransmission that is 

immediately acknowledged which is needless. 

The aim of TCP Congestion control scheme is to decrease the delays and increase 

the throughput. It introduces the concept of fairness and tries to avoid congestion 

collapse. Because more than 95% of today’s flows are TCP flows, this kind of 

congestion control scheme makes the internet more stable and robust. 

 

2.7 Classification of Congestion Control 

Congestion control is a mechanism to inform the sender about the changing 

condition of the network. There are two basic methods available for congestion 

control; rate based and window based. 

In rate-based control, sources know an explicit rate at which they can send (a 

specific data rate). The rate is assigned to the source at the negotiation phase of a 

connection (ATM or RSVP cases), and the receiver or a router informs the sender of 

a new rate if the network’s state changes at later stages (ABR class of ATM).  
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In window-based control, the sender maintains a special window (a predetermined 

number of packets or bytes that it is allowed to be sent before any feedback arrives 

from the network or receiver). In other words, congestion window is a limit on the 

number of packets that the sender is able to send. The sender increases the window 

size as long as it gets positive feedbacks (acknowledgements) from the receiver. The 

sender decreases the rate at which it sends in case of a packet failure. Since the 

sender’s behavior is controlled by the presence or absence of incoming feedback 

from the network, window-based control is said to be self-clocking. 

There are three possibilities available for a packet in a network. Packets can be 

delayed, dropped, or changed. Packets can be delayed due to the distance, queuing in 

the nodes, or retransmissions at the link layer. Packets can be dropped because buffer 

memories in the nodes could be full, packets could not be admitted (quality of 

service applications), or the routers could be malfunctioning. Packets can be 

changed, because the link noises could make packet be changed. All of these reasons 

indicate congestion in the network.  

There are two different approaches available in window-based control; hop-by-

hop and end to end. In hop-by-hop approach, sources need feedback from the next 

hop in order to send any amount of packets. The next hop obtains some feedback 

from the following hop and so on. The feedback may be positive (credits) or negative 

(backpressure). In the simplest form, the protocol is stop and go. Hop by hop control 

is used with full duplex Ethernet using 802.3x frames called “Pause” frames. 

In end-to-end approach, sources continuously obtain feedback from all nodes it 

uses. The feedback is piggybacked in packets returning towards the source, or it may 

simply be the detection of a missing packet. Sources respond to negative feedback by 

reducing their rate and to positive feedback by increasing it. All reactions to 

feedback are left to the sources in end-to-end control whereas the intermediate nodes 

take action for the feedback in hop-by-hop control. 

Rate-based control is easy to implement, and more proper for streaming media 

applications because it does not stop if no feedback arrives. These types of 

applications should keep sending their packets regardless of the feedback from the 
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network. If window-based control is used, re-ordering and delays of the packets 

make the streaming application meaningless or hard to understand.   

From a network perspective, window-based flow control is more proper because 

the sender will automatically stop sending when there is an incipient congestion 

indication in the network. The disadvantage of window-based control is that it may 

lead to traffic bursts.  

Sender sends the packets in a regular spacing. If the network is congested, then 

these packets must be queued at the bottleneck queue. As soon as the congestion is 

resolved, the bottleneck queue starts to send the corresponding queued packets with a 

reduced spacing (depending on the capacity of the remaining part of the link). This 

effect (pacing effect) also occurs when the acknowledgements (and not the data 

packets) experience congestion. 

In addition to the effect of congestion, if the window is too small, the link will be 

underutilized. In order to utilize the link, the sender must be able to increase its rate 

as long as the link’s capacity. Increasing the window by one packet in response to an 

ACK is not enough. Increasing the rate means to have the window grow by more 

than one packet per ACK, and decreasing it means reducing the window size. The 

ideal window size (which has the sender saturate the link) in bytes is the product of 

the bottleneck capacity and the RTT. Thus, in addition to the necessity of precise 

RTT estimation for the sake of self-clocking (i.e. adherence to the conservation of 

packets principle), the RTT can also be valuable for determining the ideal maximum 

window. 

 

2.8 RTT Estimation 

The Round Trip Time (RTT) is defined as the time between sending a packet into 

the network and receiving back the corresponding ACK for that packet. The RTT is 

an important parameter of various algorithms in congestion control. In end-to-end 

congestion control schemas, sources retransmit their packets, which have been lost 
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on the network because of an incipient congestion for reliable transmission. Sources 

use acknowledgement mechanism for their packets, which have a special consecutive 

number. If any of them is missing for a long time, the sources assume that the packet 

has been dropped. This mechanism is called Automatic Repeat Request (ARQ), 

requires a timer value that is initialized with a certain timeout value when each 

packet is sent.  

Finding the right timeout value is an important subject in the context of 

congestion control. Larger values of this timer can cause longer times for a packet to 

be retransmitted. This situation will negatively affect the delays and the throughput 

in the network, because sources reduce their rates unnecessarily. Smaller values of 

this timer can cause a packet to be retransmitted unnecessarily. Therefore, network 

capacity will be wasted. If we omit the transient delay changes in the network, the 

ideal value for a timeout is said to be generally one RTT or a function of an RTT. 

Predetermined value of timeouts may result in performance issues because of the 

state changes within the network (delay in queues, path changes and so on). 

Timeouts values must be adaptive over the history of RTT samples.  

As a common rule of thumb, RTT prediction should be conservative: generally, it 

can be said that overestimating the RTT causes less harm than underestimating it. An 

RTT estimator should be robust against short dips while ensuring appropriate 

reaction to significant peaks. 
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3CHAPTER THREE 

BASICS OF QUEUEING SYSTEMS 

 

3.1 General 

Queuing is an aspect of our modern life that we may encounter at every step in 

our daily activities. The queuing arises whenever a shared facility needs to be 

accessed for service by a large number of jobs, customers or data packets. Our 

interest of queuing systems arises for its relation to its use in the study of 

communication systems and computer networks. The various computers, routers and 

switches in such a network may be modeled as individual queues with respect to 

their buffer memory coupled with service elements. The whole system may itself be 

modeled as a queuing network providing the required service to the messages, 

packets or cells that need to be carried. Application of queuing theory provides the 

theoretical framework for the design and study of such networks. Throughout our 

thesis, we are going to use the theoretical background and notation of queuing 

systems to analyze our proposed algorithm. 

The objective of queuing theory is to understand such queuing phenomenon in 

order to predict the performance, control, and sometimes optimize the system where 

the queuing occurs. Due to the range of applicability and potential gain of controlling 

these systems, proper understanding of queuing can be a powerful tool.  

 

 
Figure 3.1 General queuing system.  
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In general, a queuing system involves customers who enter the system, wait in 

line (a queue), are served, and leave the system as shown in Figure 3.1. The key 

features of queuing systems can be classified as characteristics of arrivals, service 

discipline, and characteristics of service.  

 

3.2 The Arrival Process and the Queue 

The queue is characterized by the maximum permissible number of customers that 

it can contain. This number is either potentially infinite or finite. It is dependent on 

the physical limitations of the memory “available space” of the system. The ease 

with which we can analytically modeling a queuing system of unlimited length is 

much greater than that with which we can model a limited queue situation. We will 

further use infinite capacity of modeling a queue in our thesis.  

The arrival process is characterized by the arrival rate (λ). The arrival time is 

simply the amount of time between two adjacent frames. “Arrival rate” is the 

reciprocal of arrival time (1/λ). 

The arrival process has three main characteristics:  

• The size of the population. Most queues arise from a population that is 

very large compared to the overall queue size.  

• The pattern of the arrival process. Most frames join the queue in a random 

nature with each one being independent of the others, both in their chance 

of joining the queue and in the time in which they join.  

• The behavior of the arrivals. Most people once they have joined the queue 

remain in it known as “settling”.  

Some, however, refuse to join because they feel it is too long known as “balking”. 

Others once in, leave before they reach the service, as they become inpatient known 

as “reneging”. We will further use infinite population, exponentially distributed 

inter-arrival times and settling behavior of modeling a queue in our thesis.  
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3.3 The Service Process and the Server  

Systems are usually described in terms of the number of channels they have and 

the number of phases they have. The channels are the number of areas providing the 

service known as “server”.  

The service process is characterized by the service time (µ). The service time is 

simply the amount of time required to transmit a frame. Since the bit-rate of the 

channel is constant, this is strictly proportional to the length of the frame. “Service 

rate” is the reciprocal of service time (1/µ). In some types of services, the time taken 

to see each patient is constant, but in many the time taken to see the patient is 

variable and in most systems, these are random and can be described by the negative 

exponential distribution. In simple terms, this states that the probability of a very 

long service time is low, with most people being seen around the average service 

time. 

 

3.4 Queuing Discipline 

Queuing discipline refers to the rule by which customers in the queue receive their 

service.  

• First in first out (FIFO). This is the approach to handling data packet 

requests from queues or stacks so that the oldest request is serviced. 

• Shortest service time (SST). This is where the patient with the shortest 

procedure is seen first. It is seen in the selection of some types of 

procedures for operating lists. 

• Last come first served (LCFS). The obvious example here is people 

getting out of a lift, those who entered last get out first.  
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• Earliest due date (EDD). This may occur when the latest date for 

treatment has been fixed. For instance, when patients approach as the 

maximum period they are allowed to wait. 

• Shortest weighted service time (SWST). This is similar to SST, but can be 

weighted according to agreed criteria of how important it is to see that 

particular patient. To be successful the weights should not be arbitrary, 

but should be tied to defined criteria.  

 

3.5 Probability Distribution of Arrival or Service Times 

The statistical pattern by which the customers arrive at the queuing system occurs 

either according to some predetermined schedule or at random. If the pattern is 

scheduled, then analytical model is unnecessary. If the pattern is random, then it is 

necessary to determine the specific type of probability distribution of the time 

between consecutive arrivals to the queue or departures from the servers. 

 

3.5.1 Poisson Distribution 

Arrivals to the queuing system or departures from servers occur randomly, but a 

certain average rate. An equivalent assumption is that the probability distribution of 

the time between consecutives arrivals is exponential, and that the number of arrivals 

during a certain time interval is independent of the number of arrivals that have 

occurred in previous time intervals (i.e. “memory-less”) (see Figure 3.2). The 

mathematical relationship of the Poisson distribution is;
    

 

����� = ����	
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�!       Eqn 3.1

 

 

where; 
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( )nP t  = probability that there will be exactly n customers into the system during a 

specified time increment, t. 

λ = mean arrival time. 

 

 
Figure 3.2 Poisson distribution. 

 

Although the Poisson distribution represents the arrival pattern for many queuing 

systems, it does not portray the situation for all settings. It is crucial, therefore, to 

verify the specific type of arrival pattern for the system under investigation prior to 

the selection of the analytical model.  

 

3.5.2 Exponential Distribution 

The probability of completing a service to a customer in any subsequent time 

interval is independent of how much service time has already elapsed for that 

customer. The exponential probability distribution (see Figure 3.3) has a memory-

less property and is given by the following formula; 

��� � �� = ����
     Eqn 3.2 

where; 
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( )P t T>  = the probability that the service time “t”, exceeds a specific time “T” 

for a mean service rate of “µ”.  

 

 
Figure 3.3 Exponential distribution. 

 

3.5.3 Gamma (Erlang) Distribution 

The gamma distribution has two parameters and thus can represent an entire 

family of distributions. The ability to vary these parameters easily gives the Erlang 

distribution great flexibility in modeling service situations that are characterized by a 

number of subtasks. The Erlang distribution is of particular value when the type of 

service to be provided a customer consists of “k” subtasks, each of which has an 

identical exponential distribution. In reality, however, a task needs only to behave in 

total as though it were the sum of “k” identically distributed tasks; it does not have to 

be capable of actual subdivision. The mean service time of each of the “k” subtasks 

would then be “1/kµ”. The mean of the total service time is then “k/kµ” or “1/µ”. 

This value represents the expected completion time of the entire task. The Erlang 

probability distribution of the total service time “t” is 

1 ( )
( )

( 1)!
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k

µ µ−
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Notice that, for the case when “k = 1”, the Erlang distribution becomes the 

exponential distribution. Also, if “k = ∞”, the service time will become a constant. 

See Figure 3.4. 

 
Figure 3.4 Gamma (Erlang) distribution. 

 

3.6 Notation for Queuing Systems 

As we describe, a queue is described as follows: 

• Arrival process of requests; 

• List of requests waiting service; 

• Service policy adopted for the different requests in the list; 

• Number of servers that characterize the maximum number of 

simultaneously served requests; 

• Statistics of the service duration of each request. 

To describe all the above aspects, the following notation has been introduced by 

Kendall. It has the form “A/B/c/K/m/Z” where “A” describes the type of the arrival 

process (e.g., “A = M” for a Poisson process; “A = GI” for a renewal arrival 

process). “B” represents the statistics of service duration of a request (e.g., “B = M” 

for an exponentially distributed service duration; “B = G” for a generally distributed 

service process). “c” indicates the number of servers (i.e., “c” can be a suitable 
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integer value or even infinity). ”K” denotes the number of rooms for service requests 

in the queuing system, including the currently served request: “K” can be a given 

finite value or infinity (in this case it is omitted in the notation). “m” specifies how 

many sources can produce requests of service: “m” can be a given finite value or 

infinity (in such case it is omitted). Finally, “Z” gives the queue discipline. 

Usually the shorter notation “A/B/c” is used and it is assumed that there is no 

limit to the queue size, the customer source is infinite, and the queue disciple is 

FIFO. 

For A and B the following symbols are traditionally used: 

• GI; general independent inter-arrival time, 

• G; general service time distribution, 

• Hk; k-stage hyper-exponential inter-arrival or service time distribution, 

• Ek; Erlang-k inter-arrival or service time distribution, 

• M; Exponential (Markovian – memory-less) inter-arrival or service time 

distribution, 

• D; deterministic (constant) inter-arrival or service time distribution. 

 

3.7 Queues and Probability Theory 

Probability theory is the basic mathematical tool to analyze algorithms and 

systems in computer science. In probability theory, a stochastic process or random 

process is the collections of interdependent random variables. It is the counterpart to 

a deterministic process (or deterministic system).  

Queues are special cases of stochastic processes that are represented by a state 

X(t) denoting the number of queued “entities”. The queue is characterized by an 

arrival process of service requests, a waiting list of requests to be processed, a 
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discipline according to which requests are selected in the queue to be served and a 

service process. A stochastic process is identified by a different distribution of 

random variable “X” at different time instants “t”. A stochastic process is 

characterized by: 

• The state space, that is the set of all the possible values that can be 

assumed by “X(t)”. Such space can be continuous or discrete (in such a 

case the stochastic process is named chain). 

• Time variable: variable “t” can belong to a continuous set or to a discrete 

one. 

• Correlation characteristics among “X(t)” random variables at different 

instant “t” values. 

In order to account for these correlation aspects, we describe “X(t)” in terms of its 

joint probability distribution function at different instants “t = {ti, t2, ..., tn}” and for 

different values “x = {xi, x2, ..., xn}” for any “n”: 

PDFx(x,t) = Prob{X(t1) ≤ xl, X(t2) ≤ x2,...,X(tn) ≤ xn}  Eqn 3.4 

This process “X(t)” is strict-sense stationary if for any “n” value and “t” the 

following equality hold (i.e., distribution PDFx(x,t) is invariant to temporal 

translations): 

PDFx(x,t+τ) = PDFx(x,t)   Eqn 3.5 

Typically, we use the wide-sense stationary requiring that the expected value 

“E[X(t)]” is independent on “t” and the correlation “E[X(t)X(t+ τ)]” is independent 

on “τ”. A process is independent when for any “n” and “t” we have: 

PDFX(x,t) = Prob{ X(t1) ≤ xl } Prob{ X(t2) ≤ x2 }... Prob{ X(tn) ≤ xn }   Eqn 3.6
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The same relationship holds in terms of probability density functions (we take 

partial derivatives on the left side and we take the total derivatives of the single 

distributions on the right side). In the case of an independent process, the random 

variables at the different instants are completely uncorrelated. 

A special type of stochastic process is a Markov chain, where “X(t)” can only 

assume discrete values and is characterized by the fact that its state at instant “tn+i”, 

“X(t n+i)”, depends only on the state at the previous instant “tn, X(tn)”. The chain 

evolves in time by making transitions between states. The stochastic process 

evolution is only characterized by its state value at the present instant, but not on the 

time already spent in this state. This memory-less characteristic is guaranteed only by 

state sojourn times exponentially distributed in the case of a continuous-time chain 

(whereas the geometric distribution must be considered for a discrete-time chain). 

The formal definition of a continuous-time Markov chain “X(t)” is: 

Prob{X(tn+1)=xn+1|X(tn)=xn,X(tn-1)=xn-…,X(t1)=x1}=Prob{X(tn+1)=xn+1|X(tn)=xn     

Eqn 3.7 

 

In case that the time instants where the chain can perform transitions are 

discrete, we have a discrete-time chain. A Markov chain is characterized by means of 

the mean rates that correspond to the different transitions from a state to another. 

Some important sub-classes of Markov chains are as follows: 

• Birth-death chains, where from state “X = i”, it is only possible to go to 

states “X = i-1” or “X = i+l”. 

• Renewal processes: these are “point” processes (i.e., arrival processes or 

only-birth processes) like the arrival of points on the time axis. The inter-

time from adjacent points (i.e., arrivals) are independent identically 

distributed. A special case of renewal processes if the Poisson arrival 

process, where inter-arrival times are exponentially distributed with a 

constant rate. 
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• Semi-Markov chains: these are chains where the sojourn time in a state has 

a general distribution. By observing these chains at the state transition 

time, we obtain an imbedded Markov chain, which can be considered (and 

solved) as a discrete-time Markov chain. Semi-Markov chains will be used 

to solve “M/G/l” (and “G/M/l” queues). 

 
Figure 3.5 Continuous-time Markov chain with denoted mean transition rates. 

 

 
Figure 3.6 Discrete-time Markov chain with denoted transitional 
probabilities. 

 

Markov chains are characterized by state diagrams that describe the states 

(denoted by circles) and the allowed transitions (denoted by arrows) among them. In 

the case of a continuous-time chain, transitions may occur at any instants and are 

characterized by mean rates of exponential distributions (see Figure 3.5). Whereas, 

for discrete-time chains, transitions occur at given time instants and are characterized 

by transition probabilities that characterize the geometric distributions of the state 
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sojourn times (See Figure 3.6). In this case, states may have transitions into 

themselves. The sum of all the transitional probabilities leaving a state must be equal 

to one (normalization condition). 

 

3.8 Birth-death Markov Chains 

Queuing systems are generally characterized by continuous-time Markov chains 

that describe the behavior of a “population” with states representing the natural 

numbers {0, 1, 2 . . .}. For a generic state “k”, only transitions to states “k-1” and 

“k+1” are allowed. Let us denote: 

• λi, the mean birth rate from state “i” to state “i+1”; 

• µm, the mean death rate from state “m” to state “m-1”; 

• Pn, the probability of state “n”. 

 
Figure 3.7 Birth-Death Markov chain. 

 

A general example of Markov chain is shown in Figure 3.7. In this figure, we 

assume an infinite number of states. The time behavior of this chain is described by 

the Kolmogorov - Chapman equations. A sufficient (equilibrium) condition to a have 

a steady-state behavior is the following ergodicity condition: 

Ǝ an index k0 so that for each k ≥ k0, we have λk < µk.  
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Figure 3.8 Cuts for the balance equations at equilibrium. 

 

This condition expresses the fact that there is a state beyond which the birth rate is 

lower than the death rate. Assuming that the equilibrium condition is fulfilled, we 

study the chain in Figure 3.7 at equilibrium by imposing the balance of the “fluxes” 

across any given closed curve encircling states in the diagram. Many equilibrium 

conditions can be stated; namely circles around a state or cuts that intercept transition 

arrows between two states. The simplest approach is to make cuts between any 

couple of states in the diagram as shown in Figure 3.8 and to write the corresponding 

balance equations described below: 

Cut 1 balance:  λ�P0	=	μ1P1	 ⇒	P1 =	 λ�	μ1 P0 

Cut 2 balance: λ�P1	=	μ2P2	 ⇒	P2 =	 λ�μ2 P1 =	 λ�μ2 	 λ�	μ1 P0  Eqn 3.8

   .… 

Cut i balance: λ ��Pi-1	=	μiPi	 ⇒	Pi =	 λ#��μi Pi-1 =	P0 	∏ λ	��μn
 �&� 							∀(	 ) 1	 

 

All the state probabilities are expressed as functions of both the transitional rates 

and the probability of state “0”, namely P0. Therefore, we impose a normalization 

condition in order to obtain P0: 
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*Pi
+

 &� = 1 ⇒ P0 * PiP0
+

 &� = 1⇒ P0 ,1 + *. λ���μn
 

�&�
+

 &� / = 1 ⇒ P0

= 1
1 + ∑ ∏ λ���μn �&�+ &�

 

Eqn 3.9 

Birth death Markov Chains comprises the mathematical model to construct the 

state probabilities of our algorithm. Therefore, we  use the birth death Markov 

Chains background in our work.      
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4CHAPTER FOUR 

LITERATURE REVIEW 

 

4.1 Congestion Avoidance Mechanisms 

TCP congestion control mechanism is effective once the network is congested. It 

does not try to avoid congestion without congestion notifications (triple duplicates 

and timeouts). TCP probes the network by increasing the window size (packet send 

rate) until the point at which congestion happens, and then decreases the window size 

after any congestion notification. TCP needs to lose packets to be aware of the 

available bandwidth of the connection. Another alternative to congestion control is 

congestion avoidance. It aims to avoid congestion by predicting the incipient 

congestion to notify the responsive sources when congestion is about to happen. 

Responsive sources reduce its packet-sending rate so that they will be aware of the 

incipient congestion before they lose any packet. 

However, congestion avoidance mechanism has still some disadvantages. It 

considers the responsive flows, which reduce the rate at which they send when it gets 

a signal from the network about the congestion. It awards unresponsive flows like 

UDP flows, which have a constant sending rate during connection. In this scheme, 

the delays in the network will increase because packets will be dropped only after the 

queues have already built up. Another disadvantage is that, it needs global 

synchronization. All the flows will reduce their sending rate simultaneously, which 

will decrease the throughput. Finally, although most of the flows are TCP flows, 

there are still some flows are not TCP compliant. Those flows may not respond to the 

congestion and will eventually take over all the links’ bandwidth and exhaust the 

network. 

With all these disadvantages, researchers begin to consider the needs of 

controlling congestion at the gateways (IP Level). Two types of different approaches 

arise to control congestion; scheduling algorithms and queue management 

algorithms.  
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4.2 Scheduling Algorithms 

A scheduling algorithm (Figure 4.1) keeps separate queues for each flow. A flow 

cannot degrade the quality of other flows. The advantage of the scheduling 

algorithms is to give a fair share of the bandwidth to all competing users. However, it 

does not scale well to a large number of flows. It requires heavy and expensive 

computations and more memory resources. 

 
Figure 4.1 Scheduling algorithm. 

 

In the future, new applications such as teleconferencing, voice over IP (VoIP), 

IPTv will get more usage in networking world. These applications will require the 

ability of the network to guarantee the demanded bandwidth. They would expect the 

network to ensure that each flow of traffic receives its fair share of the bandwidth 

and is able to provide an upper bound on the end-to-end delay. This demand requires 

a Quality of Service (QoS) mechanism to manage limited resources among 

competing users. Quality of Service mechanism uses a traffic-scheduling algorithm 

at the output links of switches and routers on the network. The main function of the 

packet scheduler at the output link is to determine the next packet for transmission 

among the packets, which wait for transmission from different flows. A scheduling 

algorithm must satisfy the following properties; fairness, efficiency, and low latency.  

Fairness is described as allocating the same share of all available resources among 

the competing users in a network. This ensures that, a flow takes it fair share of the 

available bandwidth even if an unresponsive flow tries to transmit their packets at a 

rate faster than its fair share. 
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Latency is generally defined as how much time it takes for a packet of data to get 

from one designated point to another. In some cases, latency is measured by sending 

a packet that is returned to the sender and the round-trip time is considered the 

latency. For the applications that need a guaranteed rate, latency is measured as the 

length of time it takes a new flow to begin receiving service at the guaranteed rate. 

Efficiency is the measurement of performance of packet switched networks. 

Efficiency is mostly affected by the processor speeds, and hardware resources in a 

gateway. A packet scheduler should make its scheduling decision in a time as small 

as possible to achieve a higher efficiency. Hence, it is desirable that the time to 

enqueue a received packet or to dequeue a packet for transmission is as independent 

as possible of the number of flows sharing the output link.  

Scheduling algorithms are generally classified into two categories: sorted priority 

schedulers and frame-based schedulers. Sorted priority schedulers keep a global 

variable called as the virtual time or the system potential function. This variable is 

used by a sorted priority scheduler to compute the timestamp for each packet 

indicating the relative priority of the packet for transmission over the output link. 

Packet scheduler makes a list of pickets’ timestamps in an increasing order. Each 

packet is transferred to their output link according to their timestamps. Most known 

sorted priority schedulers are Weighted Fair Queuing (WFQ), Self Clocked fair 

Queuing (SCFQ), Start Time Fair Queuing (SFQ), Frame Based Fair Queuing (FFQ), 

and Worst Case Fair Weighted Fair Queuing (WF2Q).  

The sorted priority schedulers vary as how they can calculate the global virtual 

time function. There are two different performance criteria behind sorted priority 

schedulers;  

• The complexity of computing the system virtual time. 

A per packet work complexity of O(1) is most desirable. For WFQ, the worst case 

complexity is O(n) where n is the number of flows sharing the same output link. 

However, in a number of schedulers such as SCFQ, SFQ and FFQ proposed in recent 

years, the complexity of the computing the virtual time is O(1).  
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• The complexity of maintaining a sorted list of packets based on their 

timestamps, and the complexity of computing the maximum or the 

minimum in this list prior to each packet transmission.  

 For n flows the work complexity of the scheduler prior to each packet 

transmission is O(log n). 

In frame-based schedulers such as Deficit Round Robin (DRR) and Elastic Round 

Robin (ERR), the scheduler visits all the non-empty queues in a round robin order. 

During each service opportunity of a flow, the intent of such a scheduler is to provide 

to the flow an amount of service proportional to its fair share of the bandwidth. The 

frame-based schedulers do not maintain a global virtual time function and do not 

require any sorting among the packets available for transmission. This reduces the 

implementation complexity of frame based scheduling disciplines to O(1), making 

them attractive for implementation in routers, and especially so, in hardware 

switches. 

Elastic Round Robin (ERR) is a recently proposed frame based scheduling 

discipline for best effort traffic, that achieves very good efficiency with a low per 

packet work complexity of O(1) with respect to the number of flows. In addition, it 

has better fairness properties than other schedulers of equivalent work complexity 

such as DRR. ERR can also be easily adapted for scheduling guarantee rate 

connections, and that it belongs to the class of Latency Rate (LR) Servers, with a 

latency bound significantly lower than those of other scheduling disciplines of 

comparable work complexity. These properties of ERR makes it an attractive 

scheduling discipline for both best effort and guaranteed rate services. 
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4.3 Active Queue Management Algorithms 

Active queue management algorithms use a single FIFO (First In First Out) queue 

for all flows flowing through the router. It uses a certain algorithm manage the length 

of the packet queue by dropping packets when necessary or appropriate. This kind of 

approach requires no state information and scales well.  

TCP congestion control algorithm detects congestion only after a packet has been 

dropped along the path. Increasing the queue size does not solve the congestion 

problem. The responsive sources detect packet loss as a congestion indicator. If the 

packets will not be dropped because of high queue sizes at the gateways, sources will 

keep increasing the sending rate causing longer delays in the network, which is not 

desirable. It is important to find out the ideal maximum queue length. This parameter 

should be tuned properly in order to minimize the average delay in the network. In 

order to maximize the utilization of the link, we consider a single flow and a single 

link. Links are best characterized by their bandwidth-delay product for end-to-end 

systems where bandwidth (capacity of the link) in bits per second and delay (average 

RTT of flows) of the link in seconds. Generally, we can say that the queue limit of a 

router should be set to the bandwidth-delay product. This general rule is outdated, 

because it leads to quite a large buffer space at the gateways. As an update to this 

general rule, dividing the bandwidth-delay product by the square root of the number 

of flows in the network gives better results. 

Queues should be generally kept short. Therefore, it is important to have 

mechanisms that keep throughput high but average queue sizes low. 

Active Queue Management (AQM) is an IP level (gateway based) congestion 

control scheme where gateways notify the sources of incipient congestion. The aim 

of AQM systems is to keep the average queue sizes at the gateways low. Keeping the 

queue sizes low has some advantages including, 

• Provide queue space to absorb bursts of packet arrivals,  

• Avoid lock-out and bias effects, from a few flows dominating queue 

space,  
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• Provide lower delays for interactive applications. 

All AQM schemes detect impending queue buildup and notify the sources before 

the queues at the gateways overflows. AQM algorithms differ in the mechanism used 

to detect congestion and in the type of control method used to achieve a stable 

operating point for the queue size. Trying to keep the queue size stable at a desired 

level causes a tradeoff between link utilization and queuing delay. A short queue 

reduces latency at the router but setting the target queue size too small may reduce 

link utilization by limiting the router’s ability to buffer short bursts of arriving 

packets. 

The way in which the congestion notification is delivered to the sources is the 

other important property of AQM schemes, which affects the performance. Two 

different alternatives are available used to notify the sources. 

Early Congestion Notification (ECN) adds an explicit signaling mechanism by 

allocating bits in the IP and TCP headers of the packets flowing through the router. 

In turn, the destination will transmit such information to the source piggybacking it 

into the acknowledgement message. Another way of speaking, gateways signal 

congestion to the sources by “marking” a packet (setting a bit in the header). 

The current Transmission Control Protocol, which is the dominant transport 

protocol in today’s internet, is not able to manage the ECN bit. Generally speaking, 

gateways drop the packets randomly with a probability when the queue sizes grow up 

in order to notify the sources about the incipient congestion.  

 

4.4 Explicit Congestion Notification 

Explicit Congestion Notification (ECN), which is an extension to the Internet 

Protocol, is defined in Ramakrishnan et al., (2001). It features end-to-end notification 

of network congestion without dropping packets. This feature is optional and it is 

only used when both of the endpoints signal that they want to use it. Dropping 

packets to signal congestion is the traditional way in TCP/IP networks. After ECN is 
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negotiated, a router, which is ECN-aware, may set a bit in the IP header instead of 

dropping a packet in order to signal the beginning of congestion. The receiver side 

echoes back the congestion indication to the sender side and it reacts as a packet drop 

were detected. 

For networks with mechanisms for the detection of incipient congestion, the use 

of ECN mechanisms for the notification of congestion to the end nodes prevents 

unnecessary packet drops. For bulk-data connections, the user is concerned only 

with the arrival time of the last packet of data, and delays of individual packets are 

of no concern. For some interactive traffic, however, such as telnet traffic, the 

user is sensitive to the delay of individual packets. For such low-bandwidth delay-

sensitive TCP traffic, unnecessary packet drops and packet retransmissions can 

result in noticeable and unnecessary delays for the user. For some connections, 

these delays can be exacerbated by a coarse-granularity TCP timer that delays the 

source’s retransmission of the packet. 

A second benefit of ECN mechanisms is that with ECN, sources can be informed 

of congestion quickly and unambiguously, without the source having to wait for 

either a retransmit timer or three duplicate ACKs to infer a dropped packet. For 

bulk-data TCP connections, the delay for the retransmission of an individual 

packet is not generally an issue. For bulk-data TCP connections in wide-area 

environments, the congestion window is generally sufficiently large that the 

dropped packet is detected fairly promptly by the Fast Retransmit procedure. 

Nevertheless, for those cases where a dropped packet is not detected by the Fast 

Retransmit procedure, the use of ECN mechanisms can improve a bulk-data 

connection’s response to congestion. If the source is delayed in detecting a 

dropped packet, perhaps due to a small congestion control window and a coarse-

grained TCP timer, the source can lie idle. This delay, when combined with the 

global synchronization, can result in substantial link idle time (Floyd, 1994). 

As the use of wireless networks grows, packet loses at the physical layer can be 

seen frequently. Packet losses are not always congestion notification. This false 

alarm causes the sender reduce its rate unnecessarily. In ECN, sender reduces its rate 

only if gets binary feedback about congestion from the receiver. Otherwise, it keeps 
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increasing the rate. Especially in wireless networks, ECN will maximize the link 

utilization. 

 

4.5 DECbit 

DECbit congestion avoidance scheme is the earliest example of congestion 

detection at gateways which is described by (Ramakrishnan & Jain, 1990). In 

DECbit scheme, each router monitors the queue size and explicitly notifies the 

sources when congestion is about to occur. This notification is implemented by 

setting a bit (DECbit) in the header of the packet that flows through the router. The 

router sets this bit if the average queue length is greater than or equal to one at the 

time the packet arrives at the router. When this explicit notification arrives to the 

sender in the header of the packet acknowledgement, the sources adjust its sending 

rate in order to avoid congestion. The sender uses the window based flow control 

mechanism. The sender updates their windows of data packets once every two round 

trip times. If at least half of the packets in the last window have the congestion 

indication bit set, then the window size is decreased exponentially, otherwise it is 

increased linearly. In other words, the sender decreases the congestion window by 

0.875 times if 50 percent or more of the last windows worth of packets have the 

DECbit sent, otherwise the sender increments the congestion window by one packet. 

The queue length at the router as a function of time can be shown in Figure 4.2. The 

average queue length is calculated by the ratio of the area under the curve and the 

averaging interval. The use of DECbit mechanisms for the notification of congestion 

to the end nodes prevents unnecessary packet drops. This increases the performance 

and the utilization of the network. The main disadvantages of DECbit are averaging 

queue size for short periods of time and no difference between congestion detection 

and indication.  
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Figure 4.2 Queue length over time in DECbit. 

 

4.6 Drop Tail & Drop Front on Full Algorithms 

The drop tail algorithm is the simplest and most deployed algorithm, which is 

implemented by means of a First In First Out queue management. It simply drops the 

arriving packet if the buffer is full. Besides tail drop, an alternative queue disciplines 

drop front on full. Under the “drop front on full” algorithm, the router drops the 

packet at the front of the queue when the queue is full and a new packet arrives.  

The biggest advantage of the drop tail algorithm is the easiness and the simplicity 

of the implementation, suitability to heterogeneity and its decentralized nature. 

However, it suffers several disadvantages such as, the higher delays suffered by 

packets when they go through longer queues. Both of these solve the lockout 

problem, but neither solves the full-queues problems. The algorithms do not perform 

well when the buffer is either long or short. If the buffer is long, a packet may 
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experience long delay. If the buffer is short, it is difficult for the algorithm to 

accommodate bursty traffic. These algorithms may cause global synchronization, 

which leads to the loss of throughput. If the queue is full or almost full, an arriving 

burst will cause multiple packets to be dropped. This can result in a global 

synchronization of flows throttling back, followed by a sustained period of lowered 

link utilization, reducing overall throughput. Both these two issues may lead the 

network to collapse. 

Generally, drop tail algorithm is used as a baseline for comparing the performance 

of all the newly proposed IP level congestion control algorithms. 

 

4.7 Random Drop Algorithm 

The basic idea behind random drop algorithm is simple. For each arriving packet, 

if the buffer is full, the algorithm will randomly choose a packet from the queue to 

drop. This seems an improvement of the drop tail algorithm. However, it does not 

solve any of the disadvantages of the drop tail algorithm.   

 

4.8 Early Random Drop Algorithm 

Both the drop tail and random drop algorithms react to the congestion situation 

after it has already happened. Moreover, they both face some serious problems. Early 

random drop algorithm drops packets before the router’s queues have been 

completely full. The early random drop algorithm is the first one falls into this 

category. The early random drop algorithm drops each packet arriving at the gateway 

with a fixed drop probability, if the queue length exceeds a certain drop level 

(threshold). This algorithm makes improvements over the drop tail and random drop 

algorithms but still with similar problems. 
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4.9 Random Early Detection Algorithm (RED) 

To eliminate the Drop Tail disadvantages and to anticipate the source answers to 

incipient congestion situations, Floyd and Jacobson propose a mechanism called 

Random Early Detection (RED) (Floyd & Jacobson, 1993). RED is a popular 

example of active queue management (AQM) mechanisms (Braden et al., 1998) 

(Feng et al., 1999). RED is an active policy of queue management, which is now 

widely deployed and makes a decision to drop a packet randomly when the queue 

average length ranges between a minimum and a maximum threshold. The 

probability of packet dropping/marking is obtained from the average queue length 

accordingly to a linear law.  

The basic idea of RED algorithm is to keep the average queue size low (and hence 

end-to-end delay) while allowing occasional bursts of packets in the queue. In the 

RED algorithm, the packet dropping probability is proportional to that connection’s 

share of the throughput through the router. RED performs better than the drop tail 

algorithm because it has higher throughput and lower delays. It avoids global 

synchronization and has the ability to accommodate short bursts. It is easy to 

implement. It controls the average queue size even in the absence of non-adaptive 

sources. Because of its various advantages, in 1998, RED has been recommended as 

the standard of congestion avoidance mechanism in gateways. Pseudo code of RED 

algorithm can be found below. 

 

For any arrival of packets, 

  Calculate the average queue size (avg) 

  If minTh ≤ avg ≤ maxTh 

   Calculate packet dropping probability (Pa) 

   Drop the arrived packet with probability Pa 

  Else if maxTh ≤ avg 

   Drop the arriving packet 
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Figure 4.3 RED Algorithm.  

 

The RED algorithm (see Figure 4.3) calculates the average queue size by 

assigning different weights (the exponential weight factor, a user-configurable value) 

to old value and current measure. This means the adoption of a low pass filter to 

reduce the high frequency variation of the instantaneous queue. For high values of n, 

the previous average becomes more important. A large factor smooths out occasional 

bursts and keeps the queue length low. The average queue size is unlikely to change 

very quickly. The RED algorithm will be slow to start dropping packets, but it may 

continue dropping packets for a time after the actual queue size has fallen below the 

minimum threshold. The slow moving average will accommodate temporary bursts 

in traffic. If the value of n gets too high, RED will not react to congestion. Packets 

will not be dropped by the RED algorithm. This would mean higher queuing delays.  

On the other hand, if the maximum threshold is set to a low value, the average 

queue size is easily affected from the current queue size. The resulting average may 

fluctuate with changes in the traffic levels. In this case, the RED process responds 

quickly to long queues. Once the queue falls below the minimum threshold, the 

process will stop dropping packets. If the value of n gets too low, RED will overreact 

to temporary traffic bursts and drop traffic unnecessarily. This would mean a bad 

usage of the link because of severe buffer oscillations. From these considerations 
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follows that it is very difficult to find out the right trade-off, and it is hard to tune 

RED to achieve both high link utilization and low delay and packet losses. 

Although RED is a big success in internet congestion control, it still suffers from 

some problems. Dropping packets from flows in proportion to their bandwidth does 

not always lead to fair bandwidth sharing. For example, if two TCP connections 

unevenly share one link, dropping one packet periodically from the low speed flow 

will almost certainly prevent it from claiming its fair share, even if the faster flow 

experiences more packet drops. RED is designed to work with adaptive flows. Non-

adaptive flows can take over the link’s bandwidth. A non-adaptive connection can 

force RED to drop packets at a high rate from all connections. RED heavily penalizes 

TCP flows and awards non-TCP flows. 

In the last years, the active queue management policies have been object of a large 

interest in networking and several proposals (Feng et al., 1999; Ott et al., 1999; 

Clark & Fang, 1998) have been presented to find more effective control policies than 

RED. REM and PI (Hollot et al., 2001) are proposed to solve the problems, which 

RED faces. Their solution is very similar to each other. REM aims to achieve a high 

utilization of link capacity, scalability, negligible loss and delay. As an improvement 

to RED, REM algorithm differentiates between the congestion measure of each 

router and the dropping probability. REM algorithm maintains a so-called variable 

price, which eliminates the dependence of the dropping probability from the current 

value of the queue size. The REM algorithm uses the current queue size and the 

difference from a desired value to calculate the dropping probability accordingly to 

an exponential law. A source calculates the price of the whole path using the 

knowledge of the total number of packets dropped on the path. The main 

disadvantages of REM algorithm is that it gives no incentive to cooperative sources 

and a properly calculated and fixed value of price variable must be known globally. 

However, Lin &Morris (1997) define fragile TCP flows as those emanating from 

sources with either large round-trip delays or small send window sizes and robust 

TCP flows as having either short round-trip delays or large send windows. This 

description emphasizes a flow ability to react to indications of both increased and 



51 
 

 
 

decreased congestion at the bottleneck router. Their research indicates that RED is 

not fair when the router traffic includes both robust and fragile flows. 

Floyd's original ECN paper (Floyd, 1994) shows the advantages of ECN over Red 

using both LAN and WAN scenarios with a small number of flows. Christiansen 

et al., (2000) use a LAN use a LAN test bed to emulate a large number of web 

clients accessing a web server through a RED router. They show that RED is 

difficult to tune for throughput and delay, and they conclude that minTh is the 

most significant RED parameter for performance tuning. Although they do 

consider flows with a large variation in round-trip time (RTT), they do not 

consider fairness in their analysis. 

Bagal et al., (1999) compare the behavior of RED, ECN and a TCP rate-based 

control mechanism using traffic scenarios that include 10 heterogeneous flows. 

They conclude that RED and ECN provide unfair treatment when faced with 

either variances due to the RTTs of the heterogeneous flows or variances in flow 

drop probabilities (Kinicki & Zheng, 2001). 

Kinicki & Zheng (2001) investigate the behavior and performance of RED with 

ECN congestion control mechanisms with many heterogeneous TCP Reno flows 

using the network simulation tool, NS2. By comparing the simulated performance of 

RED and ECN routers, they find that ECN does provide better goodput and fairness 

than RED for heterogeneous flows. However, when the demand is held constant, the 

number of flows generating the demand has a negative effect on performance. 

Meanwhile the simulations with many flows demonstrate that the bottleneck router's 

marking probability must be aggressively increased to provide good ECN 

performance. This investigation builds on these recent results to experiment with 

adaptive variations of ECN. 

Kinicki & Zheng (2001) conduct simulation experiments on four Adaptive ECN 

(AECN) mechanisms. The results show these approaches can be used within an 

AQM framework to improve goodput and fairness for ECN routers. We are going to 

survey in detail most widely used congestion control algorithms on IP level in the 

next sections. 
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4.10 Weighted Random Early Detection (WRED) 

In addition to the basic functionalities of RED, Weighted Random Early Detection 

(WRED) is used as the Cisco implementation of RED for standard Cisco IOS 

platforms (Cisco IOS Quality of Service Solutions Configuration Guide, Release 

12.2). It provides the IP Precedence feature to provide quality of service, which gives 

the ability to provide different priority to different applications, users, or data flows, 

or to guarantee a certain level of performance to a data flow. In WRED, drop 

decisions are made depending on IP precedence of the flow of interest. It drops the 

packets of the flows with lower priority when the queues start to be congested. 

Different classes of services can be configured with difference drop probabilities. 

WRED can be configured to ignore IP precedence when making drop decisions. This 

working mode is similar to classical RED algorithm.  

WRED chooses packets from other flows to drop rather than the flows with IP 

precedence. Ordinary traffic flows with lower precedence have a higher drop rate, 

and therefore is more likely to be throttled back. 

Global synchronization for responsive flows happens during period of congestion 

because packets start to be dropped all at once. Each source reduces their 

transmission rate at the same time when packet loss occurs. After that, sources 

increase their transmission rate when the congestion is cleared. WRED avoids the 

global synchronization as the congestion avoidance mechanism on the routers. 

WRED is a congestion avoidance technique by randomly dropping the packets 

prior to congestion. Responsive flows respond to packet loses by decreasing their 

transmission rate until the congestion is cleared as RED performs. In addition to 

RED functions, WRED drops packets selectively based on IP precedence. Packets 

with a higher IP precedence are less likely to be dropped than packets with a lower 

precedence.  

WRED reduces the chances of tail drop by selectively dropping packets when the 

output interface begins to show signs of congestion. By dropping some packets 

early rather than waiting until the queue is full, WRED avoids dropping large 
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numbers of packets at once and minimizes the chances of global synchronization. 

Thus, WRED allows the transmission line to be used fully at all times. In addition, 

WRED statistically drops more packets from large users than small. Therefore, 

traffic sources that generate the most traffic are more likely to be slowed down 

than traffic sources that generate little traffic. 

WRED is only useful when the bulk of the traffic is TCP/IP traffic. With TCP, 

dropped packets indicate congestion, so the packet source will reduce its 

transmission rate. With other protocols, packet sources may not respond or may 

resend dropped packets at the same rate. Thus, dropping packets does not decrease 

congestion. WRED treats non-IP traffic as precedence 0, the lowest precedence. 

Therefore, non-IP traffic, in general, is more likely to be dropped than IP traffic. 

Figure 4.4 illustrates how WRED works. 

 

Figure 4.4 WRED algorithm. 

 

WRED makes early detection of congestion possible and provides for multiple 

classes of traffic. It also protects against global synchronization. For these 

reasons, WRED is useful on any output interface where you expect congestion to 

occur. However, WRED is usually used in the core routers of a network, rather 

than at the edge of the network. Edge routers assign IP precedence to packets as 

they enter the network. WRED uses this precedence to determine how to treat 
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different types of traffic (Cisco IOS Quality of Service Solutions Configuration 

Guide, Release 12.2). 

 

4.11 Distributed Weighted Random Early Detection (DWRED) 

Distributed WRED is an implementation of WRED. DWRED provides VIP 

processing as well as all functionalities of WRED. In DWRED algorithm, when a 

new packet is queued at the router, the average queue is calculated. If the average 

queue size is less than the minimum threshold parameter, then the arriving packet is 

enqueued. If the average queue size is between the minimum threshold and the 

maximum threshold parameter, the packet is dropped with a packet drop probability. 

If the average queue size is greater than the maximum threshold, the packet is 

dropped. 

The basic improvement in DWRED is to keep separate thresholds parameters on 

the queue size and weights for different IP precedence. This property provides 

different qualities of service for different traffic. Standard traffic may be dropped 

more frequently than premium traffic during periods of congestion. 

 

4.12 Flow-Based Weighted Random Early Detection (Flow-Based WRED) 

Flow-based WRED is an extension of WRED that provides fairness to all flows. 

Flow-based WRED classifies incoming traffic into flows according to the 

destination, source addresses and ports, and keeps state information about the flows, 

which have packets at the output queues. Flow-based WRED prevents each flow to 

occupy more than its permitted share of the resources using the state information and 

the classification of the flows. Flow-based WRED penalizes more the flows, which 

take over the resources available in the router. In order to provide fairness to all 

flows, flow-based WRED keeps a count of the number of the active flows, which 

have packets at the output queues. Using the number of active flows and the output 
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queue size, flow-based WRED calculates the number of buffers available per flow. 

Flow-based WRED permits each active flow to have a determined number of packets 

at the output queue by scaling the number of buffers available per flow by a 

configured factor. This scaling factor is common to all flows. Each flow is limited to 

have a maximum number of packets by the scaled number of buffers. The probability 

of a packet drop from a certain flow that exceeds the number of packets allowed by 

its per-flow limit increases.  

 

4.13 Flow Random Early Drop Algorithm (FRED) 

Flow Random Early Drop (FRED) is a modified version of RED algorithm. 

FRED algorithm aims to provide more resources for adaptive flows and to reduce the 

resource utilization of non-adaptive flows. The algorithm keeps state information of 

all flows currently present in the gateway. FRED keeps a parameter called strike for 

each flow. Strike is defined as the number of times that the flow has failed to respond 

to congestion notification. FRED penalizes flows with high strike values. For each 

flow, FRED keeps its queue length (qleni), the maximum queue length (maxq) and 

the minimum queue length (minq). It keeps the average queue size (avgcq) and 

calculates this parameter every time a new packet has been enqueued or serviced. At 

each packet arrival, FRED determines the flow of this packet. If the queue length of 

this flow exceeds the maximum queue length (maxq) for this queue, or this queue has 

a strike value bigger than 1 and its queue length is not less than the average queue 

length of all the queues (avgcq), this coming packet will be dropped. Both these two 

situations indicate this queue has tried more than once to break the maxq threshold or 

is trying to break the threshold, which makes it tend to be a misbehaving flow, so this 

coming packet will be dropped. Other than these two situations, FRED will act just 

like RED when the total queue length is less than minth (accept) or bigger than 

maxth (drop). When the total queue length falls between minth and maxth, it will 

check if the queue length of this current flow is larger than the average queue length 

of all the queues (avgcq) or the minimum queue length of this queue (minq). If so, 

FRED will perform random drop. If not, it will accept the coming packet. This 
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situation is based on the idea that flows with fewer packets queued in the buffer 

should be rewarded. When the algorithm sees a flow’s queue length has not reached 

the average of all the flows or the minimum allowable queue length, FRED will 

reward this flow by accepting its packet. Figure 4.5 shows a comparison between the 

RED and FRED algorithm. 

FRED algorithm provides fairness to all flows as the biggest advantage over RED. 

FRED awards the flows with less packets queued in the buffer than the average. 

FRED penalizes the flows with more packets. However, FRED keeps state 

information and some parameters for each distinct type of flows. FRED requires 

more memory to store the state information and processor capabilities to make 

computations about dropping decisions. FRED does not scale well. It also suffers the 

problem of setting the proper parameter values. 

 

 

Figure 4.5 Comparison between the RED and FRED algorithm. 

 

4.14 Stabilized RED Algorithm (SRED) 

The stabilized RED algorithm (SRED) (Ott et al., 1999) is a buffer management 

algorithm in order to make a stable buffer usage without affecting the number of 

flows in the router’s buffer. SRED presents to improve performance and fairness of 
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the algorithms derived from RED idea. Unlike the FRED, SRED do not keep or 

analyze the state information of individual flows.  

The main idea behind SRED is to estimate the number of active connections or 

flows in the buffer to adapt dropping probability accordingly. This estimation is 

based on a zombie list (Figure 4.6) where flows with high bandwidth are likely to be 

in the list. SRED creates an empty list and initializes the hit parameter to zero. At 

each packet arrival if the zombie list is not full, the packet’s flow identifier (source 

address, destination address, etc.) is added to the list. At each packet arrival if the 

zombie list is full, the arriving packet is compared with a zombie in the list. If the 

arriving packet’s flow matches the zombie, we declare a “hit”. In that case, the Count 

of the zombie is increased by one, and the timestamp is reset to the arrival time of the 

packet in the buffer. If the two are not of the same flow, we declare a “no hit”. In that 

case, with probability the flow identifier of the packet is overwritten over the zombie 

chosen for comparison. The SRED algorithm can be found in Figure 4.7. 

A hit indicates that the flow has a higher probability of occupying the buffer and 

thus it might be unresponsive, a hit with a high-count value increases the probability, 

and a hit with a high count and a high total occurrence increases the probability even 

further.  

The performance of the SRED algorithm is independent of the number of active 

connections. It does not need to have a special parameter for average queue length. It 

does not need to have state information. This reduces memory needs in the router. 

 
Figure 4.6 Zombie list. 
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Figure 4.7 SRED algorithm. 

 

However, SRED requires more computation especially for some high-speed links. 

Its control mechanism to reduce the resource usage of the non-adaptive flows is still 

not satisfactory enough. Its estimation of the number of active flows is not accurate 

when files have random sizes, rather than infinite size. The proper settings of the 

parameters are still difficult. 

 

4.15 Choose & Keep for Responsive Flows, Choose & Kill for Unresponsive 

Flows (CHOKe) 

Choose & Keep for Responsive Flows, Choose & Kill for Unresponsive Flows 

(CHOKe) (Pan et al., 2000) is another modified version of RED. In addition to 

keeping the advantages of RED algorithm, the CHOKe algorithm aims to identify 

and penalize unresponsive flows with an easy implementation. It tries to reduce the 

the resource consumption of the flows, which consume the most resources. In the 

CHOKe algorithm, whenever a new packet arrives at the router, it updates the 

average queue size and compares the new value of the average queue size with the 

minimum threshold value. If the average queue size is less than the minimum 

threshold value, then the algorithm enqueues the incoming packet. If the average 
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queue size is greater than the minimum threshold, then it draws a packet randomly 

from the FIFO buffer and compares with the arriving packet. If both packets belong 

to the same flow, then both packets are dropped, else the incoming packet is admitted 

into the buffer with a probability that depends on the level of congestion. This 

probability is computed exactly the same as in RED. The CHOKe algorithm is 

shown in Figure 4.8. 

CHOKe is a simple, easy to implement RED variant and stateless algorithm, 

which does not require any special data structure. It keeps the advantages of RED 

algorithm including the ability to avoid global synchronization, keeping the average 

buffer sizes low (low delays) and lack of bias against busty traffic. It improves the 

performance than RED by penalizing the unresponsive flows. 

 
Figure 4.8 CHOKe algorithm. 
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However, this algorithm is not likely to perform well when the number of flows is 

large compared to the buffer space. The CHOKe algorithm still awards unresponsive 

flows like UDP. As the number of the flows in the router, the computations of the 

CHOKe get more expensive.  

 

4.16 Comparison and Classifications of Major IP Level Algorithms 

In this section, a comparison between RED and its variants including FRED, 

SRED, CHOKe is presented. In RED, there is no per flow treatment. RED does not 

keep or reserve buffers for flow information. Hence, RED is said to be the most 

unfair algorithm among its variants. RED is designed to work with adaptive flows. It 

rewards the non-adaptive flows like UDP. FRED algorithm is a complete per-flow 

treatment algorithm and fair for both adaptive and non-adaptive flows. It keeps flow 

information for each flow. It has better protection for adaptive flows and isolates 

non-adaptive greedy traffic. Both the SRED and CHOKe algorithms have per flow 

treatment for high-bandwidth flows (which tend to be non-adaptive flows or 

misbehaving flows). However, the SRED algorithm identifies those non-adaptive 

flows and does not take any effective actions to penalize those flows. Only the 

CHOKe algorithm not only identifies, but also penalizes the non-adaptive flows. 

SRED does not compute the average queue size giving less computational overhead.  

RED and SRED are unfair whereas FRED and CHOKe are fairer. However, RED 

and CHOKe, FRED is too expensive, because it keeps state information for all the 

flows. The comparison between RED algorithm and its variants is summarized in 

Table 4.1. 

Table 4.1 Comparision between RED and its variants 

Algorithm Fairness 
Ease of 

Configuration 
Buffer Size 

Requirement 
Per-flow 

Information 
Computational 

Overhead 
RED Bad Bad Bad No Bad 

SRED Good Good Good Yes Bad 
FRED Bad Good Good No Good 

CHOKe Bad Good Good No Good 
DECBit Good Good Good No Good 
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4.17 Summary on Active Queue Management Mechanisms 

Additive Increase, Multiplicative Decrease principle is the basis of TCP’s 

congestion control mechanism. IP level congestion control algorithms use this 

property of responsive flows to congestion notifications like TCP. Although the 

dominant protocol in internet is TCP, the number of non-adaptive flows like UDP in 

the internet increases. The congestion control algorithms should be able to identify 

and penalize the misbehaving flows to achieve a proportional fairness for adaptive 

flows. 

Active queue management mechanisms use a drop probability depends on average 

amount of traffic, not on the specific short-term traffic statistics. The main advantage 

of active queue management mechanisms is to reduce the delay without sacrificing 

link utilization by absorbing bursts due to bursty sources or converging flows. With 

active queue management, it is easy to decide how many packets are accepted in a 

buffer for scheduling those accepted packets differently, depending on the nature of 

the applications. The main drawback of active queue management mechanisms is 

that it is not so easy to detect misbehaving flows that are not TCP friendly.  

However, internet routers should implement active queue management 

mechanisms, which are in IP level to reduce average delay, to manage average queue 

length, to reduce packet dropping, and to avoid global synchronization in the 

internet. It is necessary to find effective mechanisms to deal with flows that are 

unresponsive to congestion notification or are responsive but more aggressive than 

TCP. 

As we have investigated in this chapter, current active queue management 

mechanisms have their own advantages as well as they have their own drawbacks. 



 

62 

5CHAPTER FIVE 

DESCRIPTION OF OUR APPROACH 

 

5.1 Orange, Our Proposed Algorithm 

Multiple server queuing systems have wide applicability to the analysis of 

computer and communication systems. Although it simplifies the analysis of multiple 

server system, the homogeneity constraint is frequently violated in operational 

systems. The heterogeneity (different service rates) of the servers occurs in a 

communication network supporting that the communication channels (servers) can 

be affected by different transmission rates, processor speeds, available memories, 

etc. In this work, we address a special case of multiple server queuing systems where 

only two heterogeneous servers are involved. Under these circumstances, a queuing 

discipline designed for a system with two heterogeneous servers and a queue using a 

threshold type policy, referred to as Orange is defined and analyzed. 

The main motivation for using a threshold-based approach is that many systems 

incur significant server setup, usage, and removal costs. More specifically, under 

light loads, it is not desirable to operate unnecessarily many servers, due to 

incurred setup, and usage costs; on the other hand, it is also not desirable for a 

system to exhibit very long delays, which can result due to lack servers under 

heavy loads. One approach improving the cost performance ratio of a system is to 

react to changes in workload through the use of thresholds. For instance, one can 

maintain the expected job response time in a system at an acceptable level, and at 

the same time maintain an acceptable cost for operating that system, by 

dynamically adding or removing servers, depending on the system load. 

(Golubchik & Lui, 2002). 

In this work, we consider to simulate a two heterogeneous servers and one queue 

with a threshold-based queuing system in order to achieve both higher throughput 

and lower queuing delays. We also consider finding a close relationship between the 

parameters of our algorithm using the mathematical analysis. The contributions of 
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this work are as follows. To the best of our knowledge, none of the works described 

earlier consider to use a virtual drop server to drop the incoming packets when the 

actual queue size (or average) exceeds a threshold level. The only adjustable 

parameter based on the changing conditions of the network is the service time of the 

virtual drop server.  Since for many applications, this service time is not usable, we 

consider it an important and distinguishing characteristic of our work. We first aim to 

give an exact solution for computing the steady state probabilities of our model using 

Kolmogorov-Chapman equations. However, we feel that the exact solution is quite 

complicated and hard to be derived and not that necessary in practical applications. 

Moreover, thus, the main contribution of this work is an efficient solution of a 

threshold based queuing system with two heterogeneous servers and one queue.        

By using the threshold type policy and the use of virtual drop server, we have 

proposed a new approach to drop or mark packets when the congestion will likely 

occur. We have intended to use an IP level congestion control proposal, which we 

call Orange. Orange will replace RED as an active queue management algorithm to 

decide which packets are to be marked to indicate a congestion condition. The idea 

behind Orange is similar to RED which also uses “early dropping” concept to 

regulate the flows before congestion occurs. Here, “early” refers the fact that actually 

as long as there is space in the queue buffer to place the incoming packet; we still 

chose to drop them to warn TCP friendly sources (responsive or adaptive) against 

that possible congestion situation. 

In a threshold queuing discipline, customers (in our case, packets) are preferably 

routed to the faster server. Customers are allowed to queue up while the slower 

server remains idle until the queue size reaches a certain “threshold” value, at which 

a point a customer is removed from the queue and sent to the slower server for 

service. The threshold value becomes critical control parameter affecting system’s 

overall performance, and facilitating optimal system control. The primary 

performance parameter is the mean number of customers in the system, and 

accordingly the average waiting time per packet. Optimization of the two 

heterogeneous servers problem is considered over an infinite time horizon with an 

average cost criterion. Although linear holding and service costs are considered, it is 
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generally assumed that there is no additional cost incurred to turn on or to turn off a 

server.  

Orange is based on the idea of dropping packets, randomly whenever some 

conditions are met, that is equivalent of using an alternate server to the default link of 

that outgoing interface. Orange waits for a random amount of time after a dropping 

occurs before another one may be considered. This is the time equivalent of a service 

time sample of the “drop server”.  

Orange proposal’s main idea relies on a single queue, two server M/M/2 model 

analyses. In this, first server is the link transmission element, and the second one is 

the unpreferred alternative link. The second one is used only when queue size 

exceeds a threshold. The optimum threshold value for such a system is analyzed by 

M. Kemal Şiş Ph.D. thesis (Şiş, 1994) and studied also in Gökhan Çatalkaya’s Msc. 

Thesis (Çatalkaya, 2003). We expect to utilize this theoretical analysis in Orange’s 

analytical evaluation giving the best operation point for responsive sources. Orange 

takes the mentioned optimum threshold policy to decide when the incoming packets 

will be “dropped through the virtual drop server”.  

Orange allows the incoming packet go to the queue for transmission if the queue 

size is below the threshold (Orange Limit). It drops the incoming packet and sets the 

timer if the timer is idle and the queue size is in between the Orange limit and the 

queue limit (maximum queue size). While the timer continues to be busy, Orange 

does not drop any incoming packet. Orange drops all incoming packets if the queue 

is full. One can refer to the Figure 5.1 for pseudo code of Orange algorithm. 

If (queue limit) then 
 Drop(packet) 
Else  
 If (Orange limit) then  If (timer is idle) then  
   Drop(packet) 
   Begintimer() 
  Else  
   Enque(packet) 
  End if 
 Else  
  Enque(packet) 
 End if 
End if 

Figure 5.1 Pseudo code of Orange algorithm. 
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The queuing model behind the Orange algorithm is mainly based on the M/M/2 

queues. We intend to make a detailed analysis of the various types of M/M/2 queues. 

The M/M/2 case shown in Figure 5.2 is the simplest non-trivial case of a local model 

for a node in a network. In this type of network, for the traffic at the concerned node, 

there is only one final destination, but there are two different links by which the 

traffic can be carried toward the destination node. There may be several incoming 

links to the node; however, since all the traffic is destined to the same destination 

node it can all be stored in one queue. Arrivals to this queue are modeled as a 

Poisson arrival process (mean rate λ). Time spent on a link is modeled as 

exponentially distributed so links can be thought of as servers with exponentially 

distributed service times (mean rate µ). Therefore, the birth rate is always equal to λ, 

whereas the death rate depends on the state. 

 

 
Figure 5.2 M/M/2 queue model. 

5.2 Generic M/M/2 Queue Analysis 

For the simplicity of the analysis for a generic M/M/2 case, we choose 

“µ 1=µ2=µ”. We also study the detailed analysis of this case with heterogeneous 

servers where “µ1 > µ2”. The intensity of the arrival process is “ρ = λ/µ”. The system 

is described by a Markov chain of the number of messages, as shown in Figure 5.2. 

Under the stability assumption, the Markov chain can be solved by means of the cut 

equilibrium conditions. The Markov chain modeling of this queue is shown in Figure 

5.3. 
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Figure 5.3: Continuous time Markov chain model for M/M/2 queue. 

 

Cut 1 balance: λP0	=	µP1	 ⇒	P1 = 	2P0  

Cut 2 balance: λP1	=	2µP2	 ⇒	P2 =	 34
5 P0      

  

Cut 3 balance: λP2	=	2µP3	 ⇒	P3 =	 37
54 P0     

… 

Cut n balance: 	Pn = 	2 83
59� P0, ; � 0 

We can finally write the normalization condition in order to obtain P0: 

�� = �
�<∑ =	=�>	?� = �

�<5@∑ 8A49	>	?� ��B = 5�3
5<3	    Eqn 5.1 

 

Note that “P0 > 0” (i.e., the system is stable, because sometimes it can be idle at 

regime) entail “ρ < 2 Erlangs”. The mean number of messages in the system can be 

obtained by means of the first derivative of the PGF of the state probability 

distribution, P (z). This PGF is obtained as a sum of different contributions of the 

type “znPn”; hence, for the first derivative the value of the term “z0P0” is not relevant. 

This is the reason why we use a P (z) related function, named P*(z), obtained as: 

 

�∗�D� = 	∑ 5�3
5<3 D�2 83

59�+�&� = 2 5�3
5<3

�
��EA4

= 4 5�3
5<3

�
5�E3   Eqn 5.2 

 

Note that P*(z) is not a PGF (P*(z=1) is not equal to 1), however, it can be used 

as a PGF in evaluating the first derivative and the mean number of messages in the 

queuing system, N: 
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G = HI∗(E)HE E&� = 4 5�35<3 3(5�E3)4E&� = J3J�34    Eqn 5.3 

The mean message delay to cross the queuing system (from the arrival to the 

transmission completion) can be obtained by means of the Little theorem as: 

 

� = KL = J/�J�34      Eqn 5.4 

 

5.3 M/M/2 Queue Analysis with Heterogeneous Servers 

We consider a variant of the M/M/2 queue where the service rates of the two 

servers are not identical. This would be the case, for example, in a heterogeneous 

multiprocessor system. The queuing structure is shown in Figure 5.4. Assume 

without loss of generality that “µ1 ≥ µ2”. Jobs wait in line in the order of their arrival. 

When both servers are idle, the faster server is scheduled for service before the 

slower one. The state diagram of the system is given in Figure 5.4. 

 
Figure 5.4: The State diagram for the M/M/2 heterogeneous queue. 

 

Balance equations, in the steady state, can be written by equating the rate of flow 

into a state to the rate of flow out of that state: 

λP(���)	=	µ�P(0)	+	µ5Q(001) (λ+µ�)P(�)	=	µ5Q(0)	+	λP(000)         Eqn 5.5 
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(λ+µ�+µ5)Q(�)	=	(µ�+µ5)Q(1)	+	λQ(001)+	λP(0) 
(λ+µ�+µ5)Q(�)	=	(µ�+µ5)Q(n+1)	+	λQ(n-1)				; > 1 

The traffic intensity for this system is 

2 = λ
µ�+µ4      Eqn 5.6 

The previous form equation is similar to the balance equation of a birth-death 

process.  

P(�)	=	 λ
µ�+µ4 P(���)									n > 1                  Eqn 5.7 

By repeated use of this equation, we have  

P(�)	=	2P(���)=2���	P(�)								n > 1         Eqn 5.8 

From the above equations, we can obtain by solving linear equations by Gaussian 

elimination using elementary row operations: 

 

O -µ5 0 (λ+µ�)		-µ� (λ+µ5) 00 µ5 µ�
P O Q(�)	Q(001)P(0)

P = 	 OλP(���)0λP(���)P 
The augmented matrix form; 

O -µ5 0 (λ+µ�)		-µ� (λ+µ5) 00 µ5 µ�
									λP(���)0									λP(���)P 

 

RSS
ST-µ5 0 (λ+µ�)0 (λ+µ5) − µ�

µ5 (λ+µ�)0 µ5 µ�

									λP(���)							− µ�
µ5 	λP(���)

									λP(���) VWW
WX 
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RS
SS
ST
-µ5 0 (λ+µ�)0 (λ+µ5) − µ�

µ5 (λ+µ�)
0 0 µ�(λ+µ�)(λ+µ5) + µ�

									λP(���)							− µ�
µ5 	λP(���)

								( µ�(λ+µ5)+1)	λP(���)VW
WW
WX
 

 

@µ�(λ+µ�)
(λ+µ4) + µ�B	�(�) = @ µ�(λ+µ4) +1B 	λP(���)   Eqn 5.9 

 

Yµ�(2λ+µ�+µ5)Z	�(�) = Yλ+µ5+µ�Z	λP(���)   Eqn 5.10 

 

�(�) = 	P(���) λ
µ�

Yλ+µ�+µ4Z
(2λ+µ�+µ4)	 = 	P(���) λ

µ�
@1+ λ

µ�+µ4B
(1+ 2λ

µ�+µ4)	  Eqn 5.11 

�(�) = �<3
�<53

λ
µ�

�(���)    Eqn 5.12 

By substitution, we can have the probability equation of the other initial states 

Q(�) = 3
�<53

λ(λ+µ4)
µ�µ4

�(���)     Eqn 5.13 

Q(���) = 3
�<53

λ
µ4

�(���)     Eqn 5.14 

Now, observing that 

[∑ Q(�)�\� ] + Q(���) + �(�) +�(���) = 1    Eqn 5.15 

We have 

(∑ 2��\� )Q(�) +	�(���) 	 ^ 3
�<53

λ
µ4

+ �<3
�<53

λ
µ�

+ 1_ = 1   Eqn 5.16 

Or 

�
��3

3
�<53

λ(λ+µ4)
µ�µ4

�(���) +	�(���) ^ 3
�<53

λ
µ4

+ �<3
�<53

λ
µ�

+ 1_ = 1  Eqn 5.17 

From which we get 
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������ =	 ^1 + λ(λ+µ4)
µ�µ4(��3)(�<53)_��

     Eqn 5.18 

The average number of jobs in the system may now be computed by observing 

that the number of customers in the system in state (K, s1, s2) is K + s1 + s2. 

Therefore, the number of average jobs is given by, 

`aGb = Y∑ c�(d) + Q(�,�,�) + ∑ (c + 1)Q(d)d\�d\� Z   Eqn 5.19 

	`aGb = �(�) + Q(�,�,�) + ∑ (c + 1)Q(d)d\�     Eqn 5.20 

`aGb = �(�) + Q(�,�,�) + ∑ Q(d)d\� + ∑ cQ(d)d\�    Eqn 5.21 

`aGb = 1 − �(�,�,�) + Q(�) ∑ c2d��+d&�     Eqn 5.22 

`aGb = 1 − �(�,�,�) + e(�)(��3)4      Eqn 5.23 

`aGb = �f(��3)4          Eqn 5.24 

Where; 

 g = ^µ�µ4(�<53)λ(λ+µ4) + ���3_      Eqn 5.25 

 

5.4 M/M/2 Queue Analysis with a Threshold K=1 

We consider a variant of the M/M/2 queue where the service rates of the two 

servers are different where “µ1 ≥ µ2”.  There is a threshold on using the slower server 

which is “K=1”. This means that the slower server will be busy if and only if there is 

more than one customer in the queue. The queuing structure is shown in Figure 5.5.  

 
Figure 5.5 Continuous time Markov chain for M/M/2 queue with threshold K 
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λP(���)	=	µ�P(0)	+	µ5Q(001) (λ+µ�)P(�)	=	µ5Q(0)	+	λP(000) + µ��(1)	 (λ+µ5)Q(���)	=	µ�Q(0)     Eqn 5.26 

(λ+µ�)P(�)	=	µ5Q(1)	+	λP(0)	 (λ+µ� + µ5)Q(�)	=	λ	Q(���) +	µ�Q(1) 
Now, we have five unknowns and five equations, we can write these equations in 

matrix form. 

RSS
SST

µ� µ5 0(λ+µ�) 0 -µ50-λ0
(λ+µ5)0-λ

-µ50(λ+µ� + µ5)
			

0 0-µ� 00(λ+µ�)0
0-µ5-µ�VW

WWW
X
RS
SSS
T P(0)	Q(���)Q(�)P(�)Q(1) VW

WWW
X
	=

RS
SS
TλP(000)λP(000)000

	
VW
WW
X 	 

For K = 0, we have 3 initial states, for K = 1, we have 5 initial states, so for K, we 

will have 3 + (2*K) states. 

(λ+µ�+µ5)Q(�)	=	(µ�+µ5)Q(2)	+	λQ(0)+	λP(1)   Eqn 5.27 

(λ+µ�+µ5)Q(�)	=	(µ�+µ5)Q(n+1)	+	λQ(n-1)				; > 1 

The sum of all probabilities equals unity, 

[∑ Q(�)�\� ] + P(0) + 	Q(���) + Q(�) 		+ P(�) +	Q(1) = 1   Eqn 5.28 

One can find a symbolic solution for initial states by Gaussian elimination using 

elementary row operations. So all states probabilities can be written in terms of 

P(000). Then we can find the average number of customer in the system in terms of 

λ, µ�, µ5. By Little’s Theorem, we can find the average delay per packet. 
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5.5 M/M/2 Queue Analysis with a Threshold K 

Within the framework of this work, we consider an M/M/2 queuing model where 

a threshold on the queue size controls to use or not to use the slower server. In the 

simplest non-trivial case, we may consider a switching node with two out-going links 

and one type of traffic load stored in a single outbound buffer. This may seem too 

basic for any router application; however, applications that are more meaningful may 

also be decomposed into such several basic nodes.  

The mathematical formulation of the performance criterion is a model for 

measuring the actual physical performance of the network. The dynamic local 

strategy that we consider will be based on a performance criterion to model the 

congestion reducing capability of the network at the node level. Furthermore, this 

performance criterion, we claim, is a good approach to minimizing a delay (source-

to-destination) objective in the overall network. Lin and Kumar (Lin and Kumar, 

1984) showed that the optimal policy, for an M/M/2 node model and for a cost 

function defined as the mean sojourn time of customers in the system, is of 

“threshold type”. Continuous time Markov chain for a M/M/2 Queue with threshold 

K is given in Figure 5.6. 

 

 
Figure 5.6 Continuous time Markov chain for M/M/2 queue with threshold K. 

 

We assume here that “µ1≥ µ2” and “µ1+µ2 > 1”. 

We can write the state probability equations below; 

Initial states; 

µ1 + µ2 

λ 

λ λ 

µ1 

µ2µ2

µ1 

µ1 

001 

λ 

000 010 

011 K1

λ λ 
…. 

µ1 
…. 

µ1 

µ1 

λ 

K1

µ2

(K+1)1
µ1 + µ2 

λ 

λ 



73 
 

 
 

P(���)	λ=	P(0)	µ�+	Q(001)µ5 

Q(001)(λ+µ5) = Q(0)µ� 

P(�)(λ+µ�)	=	P(000)λ+Q(0)µ5 + P(1)µ�    Eqn 5.29 

Q(�)(λ+µ�+µ5) = Q(001)λ	+	Q(1)µ� 

 

Intermediate states; 

P(�)	(λ+µ�)=P(0)λ	+	Q(1)µ5 + P(2)µ�	 Q(�)(λ+µ�+µ5) = Q(0)λ+Q(2)µ� 

P(5)	(λ+µ�)=P(1)λ	+	Q(2)µ5 + P(3)µ�	  Eqn 5.30 

Q(5)(λ+µ�+µ5) = Q(1)λ+Q(3)µ� 

P(h)	(λ+µ�)=P(2)λ	+	Q(3)µ5 + P(4)µ�	 Q(h)(λ+µ�+µ5) = Q(2)λ+Q(4)µ� 

……. 

P(�)	(λ+µ�)=P(n-1)λ	 + P(n+1)µ�+	Q(n)µ5	    (0 < n < K)  Eqn 5.31 

Q(�)(λ+µ�+µ5) = Q(n-1)λ+Q(n+1)	µ�												(0 < n < K) 

 P(i)	(λ+µ�)=P(K-1)λ	+	Q(K)µ5	                                     (n = K)   Eqn 5.32 

Q(i)(λ+µ�+µ5) = Q(K-1)λ+Q(K+1)	(µ� + µ5) + P(K)λ						(n = K) 

 Q(�)(λ+µ�+µ5) = Q(n-1)λ+Q(n+1)	(µ� + µ5)														(k <	n < ∞)  Eqn 5.33 

The balance equation of a birth-death process is 

 P(�)(λ+µ�+µ5) = P(n-1)λ+P(n+1)	(µ� + µ5)							; > 1   Eqn 5.34 

By repeated use of this balance equation, we have 

 

P(�)= λ(µ�<µ4) P(n-1)    Eqn 5.35 
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P(�)= λ
(µ�<µ4) P(n-1) = @ λ(µ�<µ4)B��� P(�)						; > 1  Eqn 5.36 

For the states K < n < ∞ 

^* Q(m)+
�&i<� _	+ A = 1    Eqn 5.37 

 a∑ ρm+�&i<� b	Q(o<�)	+ A = 1    Eqn 5.38     

 

2� = λ(µ�<µ4)     Eqn 5.39     

 

1(��3) Q(o<�) + 	A = 1    Eqn 5.40 

For the solution of the initial states, namely A where (0 =< n < K); we have a 

square matrix with dimension of (3+2*K) like in the following representation. 

RS
SS
SS
T µ5 µ� 0(λ+µ5) 0 -µ�0-λ0…

(λ+µ�)0−r…
-µ5(λ+µ� + µ5)0…

			
0 0 … …0 0 … …-µ�0(r + μ�)…

0 … …-µ� … …−μ5… −μ�… …… .	 	 	 	 VW
WW
WW
X

RS
SS
SS
SS
T	Q(001)P(0)Q(0)P(1)Q(1)…	P(K-1)Q(K-1) VW

WW
WW
WW
X
 	=

RS
SS
SS
TλP(000)0λP(000)0000…

	
VW
WW
WW
X
	 

We have calculated for the results for some small K (especially 0, 1) values 

relating the rational functions. These results could also be calculated by using a 

general-purpose symbolic-numerical-graphical mathematics software product namely 

Maple or Mathematica. However, one can never see a clear pattern, in this form of 

representation. 

By using z-transform analysis, we can derive the exact expressions. However, the 

exact expressions for P, and Q, for even moderate K values, become very 

cumbersome. Because of this, the exact optimum value of K involves a very 

complicated implicit formula and it is not necessary to find the exact equation for 

optimum value of K. Instead, we can use an empirical solution for it. For this 
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purpose, we write these equations in Z-domain further to be solved. These equations 

can be represented by the following equations in the Z-domain. 

Original equations; 

P(�)	(λ+µ�)=P(n-1)λ	 + P(n+1)µ�+	Q(n)µ5	    (0 < n < K)  Eqn 5.41 

Q���(λ+µ�+µ5) = Q(n-1)λ+Q(n+1)	µ�												(0 < n < K) 

Equations in the Z-domain; 

P(z)(λ+µ�)=λ	D���(D) + µ�YD�(D) − D�(0)Z + µ5Q�z�	    (0 < n < K) Eqn 5.42 

Q�z�(λ+µ�+µ5) = λD��Q(D)+µ�YDQ(D) − DQ(0)Z												(0 < n < K) 

Original equations; 

Q���(λ+µ�+µ5) = Q(n-1)λ+Q(n+1)	(µ� + µ5)														(k <	n < ∞)  Eqn 5.43 

 

Equations in the Z-domain; 

Q�z�(λ+µ�+µ5) = λD��Q(D)+(µ� + µ5)			YDQ(D) − DQ(0)Z															(k <	n < ∞)  

Eqn 5.44 

These equations can be used to find the solution by using the inverse z-transform. 

After finding the solution of the above equations, the probability of each state as a 

function of the initial state P(000) could be determined. This initial state could be a 

function of (λ, µ�,µ5,K).  Using these probability equations, the average number of 

packets in the system and by Little’s formula the average delay per packet in terms of 

µ5,K could be determined. Exact expressions for P, and Q, for even moderate K 

values, become very cumbersome and are out of scope of this work. Instead, it is 

enough to use an empirical solution in order to find a relationship between system 

parameters. One of the main contributions of our work is to minimize the average 

delay per packet using the optimum value of threshold K.  
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5.6 Two Server Queue One Server Idle Below a Threshold 

M/M/2 queue with a threshold is studied by (Şiş, 1994). In his work, First passage 

time to an idle period (FPTIP) is studied. FPTIP value is derived as a function of µ1, 

µ2, λ. Here, we want to evaluate a formula for the average queue size and waiting 

time for the same system. The exact solution becomes cumbersome and is not 

efficient and necessary for M/M/2 system with a threshold. Moreover, the main 

contribution of this work is to find a direct relationship between the threshold value 

and the service time pair that give the minimum waiting delays per packet instead of 

finding an exact solution. For this aim, we consider to use the equations, which 

Morrison (1990) has studied in his paper.  

In his work, Morrison finds an efficient solution of a threshold based queuing 

system with two heterogeneous servers and one queue.  In his work, for the sake of 

simplicity, he considers a birth-death queuing system with two exponential servers 

with mean rates “µ”, and Poisson arrivals with mean rate is “λ < 2µ”, first in first out 

queuing discipline, unlimited buffer size of the bottleneck queue. Both servers are in 

use when the number of the customer in the system is more than a threshold level 

“c”. Only one server is in use when the number of the customers in the system is less 

than “c + 1”. Thus, the service rate of both servers is equal to each other; it is not 

important which server becomes idle. This system reduces to the generic M/M/2 case 

when “c” is one. So it is necessary to study the cases where ”c > 1” for a non-trivial 

generalization. 

The equilibrium probabilities of the number in the system are known (Kleinrock, 

1975) and the mean waiting and sojourn times may be obtained from these by 

Little’s formula. The system can be summarized as a single server system where the 

mean service rate is “µ” when there are less than “c + 1” customers in the system, 

and “2µ” when there are more than “c” customers are in the system. 

From Morrison’s study, we easily state that, the equilibrium probability P0 that 

there is no customer in the system is  
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�
I� = u ����	/	v�w

����	/	v� + 5v
�5v��� 8�

v9x 										yz{	λ	 ≠ μ
} + 2																																																							yz{	λ	 = μ   Eqn 5.45 

The equilibrium probability Pi that there are “i” customers in the system is  

� = ~��(λ	/	μ) 																																							yz{	0	 ≤ (	 ≤ }
��(λ	/	μ)x(λ	/2μ) �x									yz{	(	 ≥ }    Eqn 5.46 

The mean waiting and sojourn times are given by 

〈�〉 = �� 8�
	v9

x 	� v
(v��)4 a(μ	/λ	)x�� − 1b + (} − 1) � �(5v��) − �(v��)� +

�(5v��)4� 																		yz{	λ	 ≠ μ    Eqn 5.47 

〈�〉 = I�5� }(} + 1)												yz{	λ	 = μ   Eqn 5.48 

〈�〉 = �� @λ	μBx 	� μ(μ − λ)5 a(μ	/λ	)x − 1b + (}) ^ 1(2μ − λ) − 1(μ − λ)_
+ 2μ(2μ − λ)5� 																		yz{	λ	 ≠ μ 

Eqn 5.49 

〈�〉 = I�5� (}5 + 3} + 4)												yz{	λ	 = μ    Eqn 5.50 

We can adapt the Morrison’s results into our case by substituting “2µ = µ1 + µ2”, 

“µ  = µ1”, and “c = K + 1” in the above equations. Therefore, the mean waiting and 

sojourn times of M/M/2 with a threshold K case are found as 

〈�〉 = �� 8 �	v�9i<� 	� v�(v���)4 a(μ�	/λ	)i − 1b + (k) � �((v�<	v4)��) − �(v���)� +
�((v�<	v4)��)4� 																		yz{	λ	 ≠ μ�    Eqn 5.51 

〈�〉 = I�5� (k + 1)(k + 2)												yz{	λ	 = μ�   Eqn 5.52 
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〈�〉 = �� 8 �
	v�9

i<� 	� v��v����4 a�μ�	/λ	)i<� − 1b + (k + 1) � �((v�<	v4)��) − �(v���)� +
(v�<	v4)((v�<	v4)��)4� 																		yz{	λ	 ≠ μ�    Eqn 5.53 

〈�〉 = I�5� ((k + 1)5 + 3(k + 1) + 4)												yz{	λ	 = μ�   Eqn 5.54 

Where 

�I� = u��(�	/	v�)���
��(�	/	v�) + (v�<	v4)((v�<	v4)��) 8 �v�9i<� 										yz{	λ	 ≠ μ�k + 3																																																													yz{	λ	 = μ�    Eqn 5.55 

Those derived formulas are used to justify the simulation results, which is 

available in next chapter. The equations are valid in a system where the Poisson 

arrivals and exponentially distributed service rates are applied. However, most of the 

flows in today’s networking world consist of responsive flows like TCP, which 

adjust their sending rate according to the congestion indications from the network. 

Therefore, memory-less arrival process cannot be a realistic assumption. In systems, 

which have the memory-less property, the time distribution until the next event is the 

same regardless of how much time has passed since the last event, and the average 

time until the next event is the same as the average inter-event time. This property is 

also a direct consequence of the complete randomness of the Poisson process; what 

happens in the current interval is independent of what has happened in the previous 

interval. 

The main goal of active queue management algorithms is to warn TCP friendly 

sources about the incoming congestion situation so that they will be able to reduce 

their sending rate to prevent the network to get in congestion collapse. The main 

objection of our proposed algorithm is to provide better conditions (high throughput 

and low per packet delays) for the networks where not only the constant bit rate 

sources but also the responsive sources are available. Therefore, it is meaningful to 

provide practically an empirical formula to determine the best operating point for 

Orange having its system parameters (threshold and service time) tuned for such 

conditions. 
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6CHAPTER SIX 

MATERIALS AND METHODS 

 

6.1 Constructing the Simulation Environment 

The experimental investigation aims to verify the results of our proposed study 

with the mathematical analysis. One important contribution of our work is to validate 

the proposed model experimentally. Network simulators have been extensively used 

to validate and evaluate the performance of network protocols.  

 

6.1.1 Introducing NS (Network Simulator) 

The NS (Network Simulator) is a good example of a widely used, public domain 

discrete event simulator targeted at network protocol research. It was originally 

implemented at LBL (Lawrence Berkeley Laboratory) and is currently being 

extended as part of the DARPA-funded VINT (Virtual Internet Test-bed) project at 

USC ISI.  

NS is an event driven, packet level network simulator, developed by University of 

California Berkeley. Version 1 of NS was developed in 1995 and version 2 was 

released in 1996. Version 2 included a scripting language called Object oriented Tcl 

(OTcl). (Further, we mean the NS-2 by using NS.) It is an open source software 

package available for both Windows (via Cygwin) and Linux platforms. NS has 

many and expanding uses including: 

• To evaluate the performance of existing network protocols. 

• To evaluate new network protocols before use. 

• To run large scale experiments not possible in real experiments. 

• To simulate variety of IP networks. 
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NS is popularly used in the simulation of routing and multicast protocols. It 

implements network protocols such as TCP and UDP, traffic source behavior such as 

FTP, Telnet, Web, CBR and VBR, router queue management mechanism such as 

Drop Tail, RED and CBQ, routing algorithms such as Dijkstra, and more. NS also 

implements multicasting and some of the MAC layer protocols for LAN simulations. 

The NS project is now a part of the VINT Project that develops tools for simulation 

results display, analysis and converters that convert network topologies generated by 

well-known generators to NS formats. 

NS implements the following features: 

• Router queue management techniques DropTail, RED, CBQ, 

• Multicasting 

• Simulation of wireless networks 

o Developed by Sun Microsystems + UC Berkeley (Daedalus 

Project) 

o Terrestrial (cellular, adhoc, GPRS, WLAN, BLUETOOTH), 

satellite 

o IEEE 802.11 can be simulated, Mobile-IP, and adhoc protocols 

such as DSR, TORA, DSDV and AODV. 

• Traffic source behavior- WEB, CBR, VBR 

• Transport agents- UDP/TCP 

• Routing 

• Packet flow 

• Network topology 

• Applications- Telnet, FTP, Ping 

• Tracing packets on all links/specific links 

 

The simulation engine of NS is implemented in C++, and uses the object-oriented 

version of Tool Command Language developed at MIT (OTcl) as its front end. 

Accessing the NS library through this front end is possible with commands or scripts 

that are written in the Tcl language.  
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With an interpreter style of code execution, the NS program interprets each line of 

user script in a Tcl program during execution time and produces the output in the 

form of a formatted text file.  Post processing is performed in order to filter particular 

data throughout the simulation time. Tools are required, such as “gnuplot” as to 

create graphs or Network Animator (nam) as to display an animated visualization of 

the NS simulations. (See Figure 6.1) 

 

Figure 6.1 Simplified user's view of NS. 

 

Besides the interpreted style of code execution, NS gives us a chance to write all 

commands in a script file for further execution. An OTcl script will do the following. 

• Initiates an event scheduler. 

• Sets up the network topology using the network objects. 

• Tells traffic sources when to start/stop transmitting packets through the 

event scheduler. 

Another major component of NS besides network objects is the event scheduler. 

An event in NS is a packet ID that is unique for a packet with scheduled time and the 

pointer to an object that handles the event. The event scheduler in NS performs the 

following tasks: 
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• Organizes the simulation timer. 

• Fires events in the event queue. 

• Invokes network components in the simulation.                                                                                                                             

Depending on the user’s purpose for an OTcl simulation script, simulation results 

are stored as trace files, which can be loaded for analysis by an external application: 

• A NAM trace file (filename.nam) for use with the Network Animator 

Tool 

• A Trace file (filename.tr) for use with XGraph or TraceGraph. 

NS is written in C++ with OTcl interpreter as a front end. For efficiency reason, 

NS separates the data path implementation from control path implementations. NS is 

a Tcl interpreter to run Tcl Scripts.  By using C++/OTcl, the network simulator is 

completely object oriented. 

• Scripting Language Tcl - Tool Command Language (pronounced 

“tickle”) 

• System Programming Language (C/C++) 

In terms of lines of source code, NS was written with 100k lines of C++ code, 70k 

lines of Tcl code and 20k of documentation.  

TclCL is the language used to provide a linkage between C++ and OTcl. Toolkit 

Command Language (Tcl/OTcl) scripts are written to set up/configure network 

topologies. TclCL provides linkage for class hierarchy, object instantiation, variable 

binding and command dispatching. OTcl is used for periodic or triggered events. 

Event scheduler and basic network component objects are written and compiled 

with C++. These compiled objects are made available to the OTcl interpreter through 

an OTcl linkage that creates a matching OTcl object for each of the C++ objects and 

makes the control functions and the configurable variables specified by the C++ 

object act as member functions and member variables of the corresponding OTcl 

object. It is also possible to add member functions and variables to a C++ linked 

OTcl object.  Architectural view of NS can be found in Figure 6.2.  
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Figure 6.2 Architectural view of NS. 

 

NS is designed to run from on most UNIX based operating systems. It is possible 

to run NS on Windows machines using Cygwin (A linux emulator for windows). 

Standard development packages like “make”, “gcc” and their dependencies must be 

available to compile the sources.  

In NS, the network is constructed using nodes, which are connected using links. 

Events are scheduled to pass between nodes through the links. Nodes and links can 

have various properties associated with them. Agents can be associated with nodes 

and they are responsible for generating different packets (e.g. TCP agent or UDP 

agent). The traffic source is an application, which is associated with a particular 

agent (e.g. ping application). NS is very structured. This is illustrated in the Figure 

6.3. 

Links are required to complete the topology. In NS, the output queue of a node is 

implemented as part of the link, so when creating links the user also has to define the 

queue type. NS supports numerous queue types including FIFO, RED (Random 

Early Detection), Drop Tail, FQ (Fair Queuing), SFO(Stochastic). 
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Figure 6.3 Two nodes, a link, an agent and an application. 

 

Figure 6.4 shows the construction of a simplex link in NS. If a duplex link is 

created, two simplex links will be created, one for each direction. In the link, packet 

is first enqueued at the queue. After this, it is either dropped (passed to the Null 

Agent and freed there), or dequeued (passed to the Delay object which simulates the 

link delay). Finally, the TTL (time to live) value is calculated and updated.  

 
Figure 6.4 Link in NS. 
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Traffic generation in NS is based on the objects of two classes, the class Agent 

and the class application. Every node in the network that needs to send or receive 

traffic has to have an agent attached to it. On top of an agent runs an application. The 

application determines the kind of traffic that is simulated. There are two types of 

agents in NS: UDP and TCP agents 

The Agent/LossMonitor can monitor number of packets transferred, as well as 

packets lost. A procedure can be scheduled to poll the LossMonitor every T seconds 

and obtain throughput information. 

Four traffic applications are available in NS. They go on top of a UDP agent to 

simulate network traffic.  

CBR (Constant Bit Rate): A CBR traffic object generates traffic according to a 

deterministic rate. Packets are of a constant size.  

Exponential: Traffic is determined by an exponential distribution. Packets are a 

constant size. This produces an on/off distribution. Packets are sent at a fixed rate 

during on periods. No packets are sent during off periods.  

Pareto: The distribution for traffic generation is taken from a pareto on/off 

distribution. This is generally used to generate aggregate traffic that exhibits long-

range dependency.  

Traffic Trace: Traffic is generated according to a trace file. The binary file must 

contain 2 * 32 fields in network (big-endian) byte order. The first field contains the 

time in milliseconds until next packet is generated. The second field contains the 

length in bytes of the next packet. The method filename of the Tracefile class 

associates a trace file with the Tracefile object.  

In order to be able to calculate the results from the simulations, the data has to be 

collected. NS supports two primary monitoring capabilities: traces and monitors. The 

traces enable recording of packets whenever an event such as packet drop or arrival 

occurs in a queue or a link. The monitors provide a means for collecting quantities, 

such as number of packet drops or number of arrived packets in the queue. The 
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monitor can be used to collect these quantities for all packets or just for a specified 

flow (a flow monitor). 

First, the output file is opened and a handle is attached to it. Then the events are 

recorded to the file specified by the handle. Finally, at the end of the simulation, the 

trace buffer has to be flushed and the file has to be closed. This is usually done with a 

separate finish procedure. If links are created after these commands, additional 

objects for tracing (EnqT, DeqT, DrpT and RecvT) will be inserted into them. These 

new objects will then write to a trace file whenever they receive a packet.  

This trace file contains enqueue operations (‘+’), dequeue operations (‘-’), receive 

events (‘r’) and drop event (‘d’). The fields in the trace file are: type of the event, 

simulation time when the event occurred, source and destination nodes, packet type 

(protocol, action or traffic source), packet size, flags, flow id, source and destination 

addresses, sequence number and packet id.  

Tracing all events from a simulation to a specific file and then calculating the 

desired quantities from this file for instance by using Perl or Awk and Matlab is an 

easy and suitable way when the topology is relatively simple and the number of 

sources is limited. However, with complex topologies and many sources this way of 

collecting data can become too slow. The trace files will also consume a significant 

amount of disk space. 

There are several advantages to using NS. First, it provides flexibility by allowing 

simulation of protocols at different layers of the network protocol stack. Because it 

has been widely used by the networking research community, it has accumulated 

considerable “common knowledge” in the form of contributed modules 

implementing different network protocols. Providing a comparable simulation 

framework is indeed one of VINT's goals. For example, at the routing layer, it 

supports both unicast and multicast. At the transport layer, NS includes 

implementations of different versions of TCP. NS can also be used in emulation 

mode; this allows the simulator to interface to a live network by accepting/injecting 

traffic from/into a real network. NS’s emulation facility is especially useful since it 



87 
 

 
 

serves as an intermediate step between pure simulation and full-blown live 

experimentation.  

Trace driven simulations have been widely used in systems validation and 

performance evaluation in different areas of computer science and electrical 

engineering. They have been particularly important in computer networking research. 

Seminal work in protocol design and performance evaluation has made extensive use 

of trace driven simulations. More recently, performance evaluation and tuning of 

World Wide Web protocols and applications have also employed trace driven 

simulation techniques. 

As a result, public domain packet traces have been made available to the Internet 

research community. The National Laboratory for Applied Network Research 

(NLANR) maintains a collection of packet traces (containing only packet header 

information) that are publicly accessible. The Internet Traffic Archive is another 

well-known source of publicly available Internet packet traces. 

We implement the proposed algorithm within NS and drive our simulations using 

several packet traces that are representative of traffic on the Internet. Packet traces 

serve as input to the proposed traffic models and intrusion detection and response 

control systems. Simulations subject the proposed models and control systems to 

various traffic patterns and boundary conditions. Simulation results provide feedback 

into the modeling tasks and become keys to understanding and tuning the proposed 

model. 

 

6.1.2 Post Simulation Analysis 

With an interpreter style of code execution, the NS program interprets each line of 

user script in a Tcl program during execution time and produces the output in the 

form of a formatted text file.  Post processing is performed in order to filter particular 

data throughout the simulation time. Because of this, some text processing tools like 

Awk, Perl are required to produce the statistics information from NS’s trace files.  
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We prefer to use Awk, which is one of the most interesting text processing 

languages used for NS trace analysis. Awk text-processing programming language is 

a useful and simple tool for manipulating text for tallying information from text files, 

creating reports from the results, and performing mathematical operations on files of 

numeric data. Awk text-processing language is useful for such tasks as:  

• Tallying information from text files and creating reports from the 

results.  

• Adding additional functions to text editors like “vi”.  

• Translating files from one format to another.  

• Creating small databases.  

• Performing mathematical operations on files of numeric data.  

Awk is not really well suited for extremely large, complicated tasks. It is also an 

“interpreted” language that is, an Awk program cannot run on its own, it must be 

executed by the Awk utility itself. That means that it is relatively slow, though it is 

efficient as interpretive languages go, and that the program can only be used on 

systems that have Awk.  

To analyze trace files generated by the TCL simulation scripts, we develop some 

Awk scripts to calculate average throughput, average delay and average jitter for a 

given flow of the topology and to produce instantaneous throughput information, 

which can then be used to plot graphs (e.g. using Gnuplot) (see the Appendices D, E 

and F) . 

 

6.1.3 Integrating ORANGE to NS 

One important contribution of our work is to validate the proposed model 

experimentally because of the heuristic involved. We choose NS as our simulation 

platform and install latest version of all in one package of NS (ns-allinone-2.30) to 

Linux Ubuntu Version 10.4 (32 bit). Our goal is to implement the proposed study 

within NS and evaluate their performance analysis. Simulation results provided 
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feedback into the modeling tasks and become keys to understanding and tuning the 

proposed model.  

Some simulation experiments have been performed for our proposed Orange 

algorithm in order to keep throughput high but average packet delay (thus, average 

queue sizes) low compared to DropTail and RED algorithms. We have developed, 

C++ codes for Orange algorithm in the NS core, Tcl codes for creating the sample 

topology, and the Awk scripts to post process the output trace files, which can be 

found in the Appendices. In order to integrate a new protocol into NS, we need to 

write a new class derived from the original RED code, which is a part of the NS 

queue library. However, the main difference between RED and Orange take place 

when a new packet comes to the queue.  We have also added a new function, which 

is a decision mechanism when to drop the incoming packet.  

A new C++ orange class has been derived from NS’s default class “queue”. 

Following lines show its definition. 

class Orange : public Queue { 
 public: 
  Orange(); 
  ~Orange()     { 
     delete q_;} 
 protected: 
  void reset(); 
  int command(int argc, const char*const* argv); 
  void enque(Packet*); 
  Packet* deque(); 
  PacketQueue *q_; /*Underlying FIFO queue*/ 
  int drop_front_; 
  int summarystats; 
  void print_summarystats(); 
  int qib_; 
  int mean_pktsize_; 
  int orange_limit; 
  int queue_limit; 
  double orange_timer; 
  double ExpOrangeTimer; 
  double lastDrop; 
  int byOrange; 
  int byDroptail;  
}; 
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Constructor of this class initializes a new queue and variables, which are defined 

on protected zone by default values in “ns-2.30/tcl.lib/ns-default.tcl”. Method 

timeout() sets a new timer with timestamp which equals to orange_timer. Method 

t_status() returns the status of the timer, possible return values are TIMER_IDLE, 

TIMER_PENDING and TIMER_HANDLING. Method command parses tcl 

command which is passed from the oTcl object. Methods deque() and enque(), deque 

and enque the queue by the methods of the class “Queue”.  

There are a few requirements in order to integrate Orange into NS. After we 

develop orange.cc and orange.h files (see Appendices A, B, C), we must copy them 

into the folder “ns/queue”, “edit ns/tcl.lib/ns-default.tcl”, and add following lines. 

Queue/Orange set drop_front_ false 
Queue/Orange set summarystats_ false 
Queue/Orange set queue_in_bytes_ false 
Queue/Orange set mean_pktsize_ 500 
Queue/Orange set queue_limit_ 30 
Queue/Orange set orange_limit_ 20 
Queue/Orange set orange_timer_ 50 

Edit makefile, add “queue/orange.o” somewhere where the queues are. That is 

enough, the only thing we must do is to recompile the NS by using “make clean”, 

“make depend”, and “make” commands. 

After these modifications, we develop some Awk scripts in order to analyze the 

experiments output. Some information resulted from these scripts are, simulation 

start time, simulation end time, number of sent packets, number received packets, 

number of dropped packets, average throughput, average delay, etc.  In addition to 

this, we develop an extra Awk script that counts the drops according to the drop 

reason for which whether the drop is caused by physical limits of the queue buffer or 

the drop is caused earlier by the algorithm itself. We have ability to get this 

information by modifying the implementations of both Red and Orange algorithm in 

NS core. Finally, we develop a script (see Appendix D), which helps us to draw size 

of the bottleneck queue over time, and calculates the average queue size from the 

output file of the NS simulations. All scripts we develop help us to observe clearly 

the results of the experiments.  
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6.2 Topology Alpha with Poisson Sources  

After making necessary modifications in NS, we decide to verify and test the 

simulation environment and our proposed algorithm with the theoretically computed 

values. For this aim, we decide to construct and use the topology in Figure 6.5, 

namely Topology Alpha.  We have written the Tcl code that generates the topology, 

and the necessary Poisson Sources where its packet sizes at the input of the ongoing 

link is to be set to a finite value before the simulation starts. Source code of the script 

can be found in the Appendix G. In this set of simulation, especially to compare the 

simulation results with the mathematical calculation, we need to use Poisson sources, 

which are not available in the NS’s default installation. In order to use the Poisson 

sources, we patched the default NS installation to include the Poisson Sources with 

the source codes by Kostas Pentikousis (2004). 

Figure 6.5 Topology Alpha. 

 

However, Poisson sources in patched NS generate packets of constant size that we 

have to set in the beginning of the simulation. In order to overcome this lack of NS, 

we make a large number of Poisson sources involve in the simulation by setting the 

packet size of each traffic source is different and determined by random number 
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generator that generates exponentially distributed packet sizes with an average value. 

Aggregating Poisson sources in this way generates a traffic source with exponentially 

distributed sending rates, and packet sizes with a mean value, which is assumed to be 

in the mathematical analysis.  

Note that, we have four different nodes in simulation topology. Because, in NS, 

the total number of agents we can connect to a node is 256, so we have to connect the 

1000 sources and destinations to 4 different nodes where each node has 250 different 

sources.  

 

6.2.1 Simulation of a M/M/1/K Queue  

We start our work from a well-known simple model in a finite capacity system, 

namely, the “M/M/1/K” queue. “M/M/1/K” queue is the most popular finite capacity 

system where the customers arrive according to a Poisson process at rate “λ” and 

receive exponentially distributed service with a mean service rate “µ” from a single 

server. The difference from the “M/M/1” queue system is that at most “K” customers 

are allowed to be queued into the system. In case the queue is full of packets, the 

incoming packet is simply discarded. In communication systems, discarded packets 

are called “lost” packets and the system is called “loss” system. There is a special 

case when “K = 1” where the capacity of the queue is only one packet. It means that 

only one packet is allowed to be queued if the server is idle. The “block calls 

rejected” is used and the system is referred to as a queue with truncation like in 

telephone systems. (See Figure 6.6) 

 

Figure 6.6 M/M/1/K queue system. 
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The packet loss rate of an “M/M/1/K” queue is given by the following equation 

(Gupta et al., 2009). 

p = (1-3)3���
��3���     Eqn 6.1 

where           

  2 = λ
µ
      Eqn 6.2 

The average queue length is given by the following equation (Gupta et al., 2009). 

q = 3��3 − (K+1)3���
��3���     Eqn 6.3 

In order to test our modifications in NS, we would like to simulate “M/M/1/K” 

queue and compare the results with the above formulas. This queue requires that the 

service time, and the size of the packets to be exponentially distributed. Aggregating 

Poisson sources in this way generates a queue close to “M/M/1/K” queue.  

In this set of simulation, we want to aggregate traffic to generate a total arrival 

rate “λ = 1200 packets/s”, and average packet size equal to 100 bytes. Suppose that 

we aggregate 1000 Poisson sources. The packet arrival rate of each source is then 1.2 

pps. The packet size of each source is set by sampling an exponential random 

variable of average 100 bytes. Each link capacity between the source and the 

bottleneck node should be high enough to prevent unnecessary packet drops. To be at 

the safe side, 100 Mbps link capacity with zero link delays is good enough to prevent 

unnecessary packet drops. Please note that since the sources generate packets 

regardless of the capacity of the link in front of them, link capacities do not have any 

effect on the simulation as long as they are high enough. Poisson sources with 

different packet sizes compete for a bottleneck link with zero delay and the capacity 

of 1Mbps. Thus, the average service rate of the link can be computed for 100 bytes 

packets as 1250 pps. The buffer size “K” is 100 packets. Average queue size is then 

computed using the above formula for the simulation parameters as 22.33 packets. 
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We make a simulation of ten seconds using the Topology Alpha with the above 

parameters and obtain some results after using post text processing tools. We use the 

DropTail queue at the bottleneck queue in the simulation, and find the average queue 

size from the simulation is 22.65 packets, which corresponds to the computed value. 

This result shows that our simulation environment is constructed and tested properly.  

 

Table 6.1 Simulation results of M/M/1/K queue 

Queue  
Type 

Sent 
Packets 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Delay 

ms 

Average 
Throughput 

Kbps 

Average 
Queue 
Size 

Drop Tail 
     

13.139     
     

12.341     12204     52.91 
 

951.55 22.65 

 

Simulation results can be found in Table 6.1. In Table 6.1, “Sent Packets” gives 

the number of the packets that have already injected to the network from the traffic 

source to their destinations. “Arrival to Router” gives the number of the packets that 

have already received by the bottleneck queue. The difference between “Sent 

Packets” and “Arrival to Router” comes from the fact that when the time simulation 

stops, there have been still some packets in transit. “Arrival to Destination” gives the 

number of the packets that have already delivered to their final destination. In other 

words, it gives the number of the packets that have been successfully transmitted. 

The difference between “Arrival to Router” and “Arrival to Destination” comes from 

the fact that some of the packets could be dropped along their way to their final 

destination due to the early drop of the queuing algorithm applied or the force drop 

of the queuing algorithm when its internal buffer gets full. “Average Delay” gives 

the average delay per packet in milliseconds. “Average Throughput” gives the 

average value of the throughput of the bottleneck link during simulation. Note that, 

this value includes the number of the retransmitted packets (if any). It means that, it 

is not “Goodput” which is defined as the number of packets that are exchanged 

between the applications that use the network excluding the retransmitted packets. 

“Average Queue Size” gives the average queue size in packets. 
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6.2.2 Effect of Orange on Simulation’s Performance 

In order to test our algorithms performance, we make a simulation of Topology 

Alpha for another ten seconds and obtain some results after using post text 

processing tools. After integrating a new queue type into NS, namely Orange, we use 

this object when creating links in Tcl layer of the NS similar to the following 

statement:  

“$ns duplex-link $node0 $node1 1Mb 20ms Orange”. 

As an example, this command creates a duplex link between two nodes, which 

have 1 Mbps bandwidth, 20 ms delay, and Orange queue type. The physical buffer 

size of the bottleneck queue is fixed at 120 packets based on published rules of 

thumb for accommodating the network bandwidth delay product. Queue size is 

calculated in packets not in bytes.  

In order to test our algorithm’s performance, we have simulated the Topology 

Alpha for different queue types (DropTail, Orange, and RED). When Orange is 

applied to the above topology, the queue model can be considered as an “M/M/2” 

queue with a threshold. It means that the faster server, which is the primary server at 

the output link of the queue, remains the same whereas the virtual drop server 

appears when the number of the packets at the buffer of the queue exceeds a 

threshold level. In this set of experiments, we use the mathematical model behind the 

“M/M/2” queue with a threshold, which we have already studied in Section 5.6. 

Remember that, the maximum threshold value of the RED algorithm is three 

times of its minimum threshold parameter unless specifically specified. The other 

parameters for RED are kept the same as NS’s default parameters. Different values 

of the minimum threshold of both RED and Orange can be applied upon our request. 

Orange timer (the service time of the unpreferred alternate link) of the bottleneck 

queue is given in milliseconds and this value is directly proportional of the capacity 

of the link at the output of the queue of virtual drop server. In Orange, while the 

packet, which takes service from virtual drop server, is being dropped, the virtual 

drop server will not consider to drop another packet. For example, 8 ms service time 
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corresponds to 1 Mbps bandwidth. It means that, if the link is fully utilized, 125 

packets will take service per second. In other words, the service time of the virtual 

drop server is 8 ms/packet. 

In this set of simulation, we want to aggregate traffic to generate a total arrival 

rate “λ = 1200 pps”, and average packet size equal to 100 bytes by aggregating 1000 

Poisson sources. The packet size of each source is set by sampling an exponential 

random variable of average 100 bytes. Each link capacity between the source and the 

bottleneck node is 100 Mbps with zero link delays. Bottleneck link capacity is Mbps 

and zero delays. Thus, the average service rate of the link can be computed for 100 

bytes packets as 1250 pps. Minimum threshold value of Orange is 14 packets 

(making c = 15 packets) and service time of the virtual drop server is 5 ms, which 

corresponds to a service rate of 200 packets per second. It is assumed that there 

would be a virtual link at the output buffer of the server with a capacity of 200 Kbps. 

Using the above parameters, we can calculate the results from the Morrison’s 

equations. Remember that Morrison finds the mean waiting time “W” as; 

〈�〉 = �� 8 �
	v�9

x 	� v��v����4 a�μ�	/λ	)x�� − 1b + (} − 1) � �((v�<	v4)��) − �(v���)� +
�((v�<	v4)��)4� 																		yz{	λ	 ≠ μ�   Eqn 6.4 

 

This waiting time can be compared with the average queue size in our simulations 

with a calculation by using the Little’s formula. Average queue size (q) is then 

computed by “W = q / λ”. Using the equation 6.4, waiting time is computed as 

0.006989, and correspondingly using the Little’s formula, the average queue size is 

computed as 8.38 packets. 

Simulation results can be found in Table 6.2. Average queue size is obtained by 

simulation as 9.04 packets, which corresponds to the computed value of average 

queue size 8.38 packets. The difference between the simulation results and the 

computed values are very close. We are able to state that our derived formulas give 

the correct results and correspond to the simulation results. 
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Table 6.2 Simulation results of M/M/2 queue with a threshold 

Queue  
Type MinTh 

Orange 
Timer 
(ms) 

Sent 
Packets 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Delay 

ms 

Average 
Queue 
Size 

Orange        14 5     13178 12680 11728 8.49 9.04 

 

6.3 Topology Bravo with Responsive Sources 

To compare our simulation results with theoretical analysis, so far, we have used 

Poisson sources with an exponential distributed sending times with a mean value, 

instead of responsive sources. It is obvious that in practical cases, the use of the 

responsive flows is much higher than the flows with constant sizes. Therefore, we 

decide to use the responsive sources like TCP, which increase their sending rate 

(window size) as long as they get acknowledgements from the receiver. It means that 

responsive flows adjust their sending rates according to the available bandwidth 

along their path to the final destination. To make this type of experiment, we decide 

to use the following topology, namely Topology Bravo (see Figure 6.7) with TCP 

sources, which are responsive to the network condition changes (see Appendix H).  

 

 Figure 6.7 Topology Bravo.  

 

In the Topology Bravo, for the sake of simplicity, instead of 1000 Poisson 

sources, we use an ftp source with packet size of 1000 bytes. The capacity of the link 

is 10 Mbps with zero delay. FTP packet source is linked to their final destination 

along a bottleneck link with capacity of 1Mbps with zero delay. We make the link 

delays zero to prevent their effect to our simulation results. The packet size is fixed 

at 1000 bytes, and Orange timer is fixed at 10 ms. Maximum buffer size of the queue 

is fixed at 120 packets as always. Slow Start Threshold is fixed at 500 in NS settings. 

RED’s maximum threshold value is the three times of the its minimum threshold 

value in this set of experiments. 
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First, we made a simulation of ten seconds using Ftp source, which starts to send 

the packets at the time zero. At the end of ten seconds simulation time, we find the 

simulation results, which can be found in Table 6.3. Note that, we include “Total 

Drop” and “Maximum Queue Size” to the simulation results. “Maximum Queue 

Size” gives the maximum size of the queue during simulation. “Total Drop” gives 

the number of packets, which have already been dropped by the bottleneck queue 

during simulation. As it is seen from the simulation results, Orange performs better 

in average queue size and average packet delay. 

 

Table 6.3 Simulation results of Topology Bravo when ftp source and continuous traffic 

Q. Type 

 
 
 

Min 
Th 

Arrival 
to  

Router 
Arrival to 

Destination 
Total 
Drop  

 
 

Average 
Delay 

ms 

 
 

T.Put 
in 

kbps 

Maximum 
Queue 

Size 

Average 
Queue 

Size 

Total 
Download 

in sec. 

DropTail - 12202 12019 183 768.28 961 120 113.93 - 

RED 15 11959 11810 149 157.38 944 120 17.51 - 

Orange 10 12192 12019 173 75.54 961 16 7.97 - 

Orange 15 12097 11915 182 105.71 959 20 11.57 - 

 

Although, the performance criteria, average packet delay and average queue size 

even the throughput are enough to compare our proposed algorithm’s performance 

with that of the other algorithms, we decide to make more realistic analysis to 

prevent effect of TCP’s unnecessary packet retransmission. To achieve this aim, we 

add another performance criterion, namely total download time to our simulation 

results. Even the packets is being retransmitted, simulation stops when the transfer of 

the complete file of predetermined size finishes. Although, this download time also 

includes packet retransmissions, we can conclude that queuing algorithm performs 

better if the download time is smaller. 

 

To realize this, we made another set of simulation with an Ftp source, which 

produces only 10,000 packets to transfer to their final destination. We use the 

“produce” command in NS to produce the ftp traffic of predetermined size like in the 

following code.  

$ns at 0 "$ftp0 produce 10000" 
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Total size of the file that needs to be transferred comes to 10 MB. Simulation 

finishes when the download of the file finishes. The results of the simulation can be 

found in Table  6.4. It is obviously observed that the total download times decreases 

when Orange algorithm is applied. Previous performance parameters; throughput, 

average delay, and average queue size are still better when Orange algorithm is used.   

 

Table 6.4 Simulation results of Topology Bravo when ftp source and download of a file 

Q. Type 

 
 
 

Min 
Th 

Arrival 
to  

Router 
Arrival to 

Destination 
Total 
Drop  

 
 

Average 
Delay 

ms 

 
 

T.Put 
in 

kbps 

Maximum 
Queue 

Size 

Average 
Queue 

Size 

Total 
Download 

in sec. 

DropTail - 10245 10123 122 736.64 961 120 87.44 84.22 

RED 15 10214 10052 162 89.71 930 59 9.36 86.42 

Orange 10 10154 10016 138 74.55 961 14 7.85 83.34 

Orange 15 10098 10018 80 105.56 959 20 11.55 83.54 

 

 

6.4 Topology Charlie and More on Testing the Download Performance 

After we show that, Orange performs better than DropTail and RED algorithms in 

throughput and average queuing delays, we decide to extend our simulation 

experiments using the download time criteria for a topology with two different TCP 

sources, namely Topology Charlie that can be found in Figure 6.8 (see Appendix I). 

In the following topology, there are two ftp sources that produce 10,000 packets that 

need to be transferred to their destinations over the same bottleneck link. When both 

of the sources complete to transfer their packets, the simulation finishes. The time of 

which a source completes transmission is the download time for that source. The sum 

of the download times of these two sources is called the total download time, which 

are our performance criteria as well as the average queuing delays in this set of 

experiments. As the total number of the packets that are transferred is 20,000 and the 

packet size is 1000 bytes, we can say that total size of the file to be downloaded is 20 

MB. Orange timer is fixed at 6.5 ms, and RED’s maximum threshold value is the 

three times of the its minimum threshold value in this set of experiments. Maximum 
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buffer size of the queue is 120 packets. The simulation results can be found in Table 

6.5. 

10 Mbps, 10 ms

10
 M
bp
s, 
10
 m
s

 
Figure 6.8 Topology Charlie. 

 

Table 6.5 Simulation results of Topology Charlie 

Q. Type 

 
 
 

minTh 

Arrival 
to  

Router 
Arrival to 

Destination 
Total 
Drop 

Average 
Delay ms 

Maximum 
Queue 

Size 

Average 
Queue 

Size 

Flow 1 
Download 

in sec. 

 
Flow 2 

Download 
in sec. 

Total 
Download 

in sec. 

DropTail - 20029 20011 28 719.40 120 81.96 157.32 168.56 325.88 

RED 10 20329 20057 272 131.74 98 12.23 152.44 168.07 320.51 

Orange 10 20407 20025 382 79.04 12 5.90 148.68 168.94 317.62 

Orange 15 20301 20031 270 119.15 16 10.63 148.67 169.36 318.03 

Orange 20 20193 20011 182 144.07 21 13.56 145.96 169.42 315.38 

 

As the average throughput does not correspond to the goodput, which we have 

described earlier, and include the unnecessary packet retransmissions, we prefer to 

use total download parameter to be sure about the best transfer time of a file at a 

predetermined size. One can easily see that when Orange algorithm is used, the 

average queue size, and average delay in ms (milliseconds) significantly decreases 

compared to DropTail, and RED. Moreover, when Orange algorithm is used the total 

download times are shorter compared to that of DropTail, and RED. This means that 

Orange algorithm prevents unnecessary packets retransmissions and performs better 

than other active queue management algorithms. 



101 
 

 
 

6.5 Topology Delta for Orange’s Performance Tests 

To continue to test more the Orange’s performance over similar algorithms we 

decide to use the Topology Delta (see Figure 6.9), where there are three different 

traffic sources competing for one common destination through one common link. We 

have developed a Tcl script that creates the nodes, links, and traffic sources (see 

Appendix J). 

 

Figure 6.9 Topology Delta.  

 

The physical buffer size of the bottleneck queue is fixed at 120 packets based on 

published rules of thumb for accommodating the network bandwidth delay product. 

Queue size is calculated in packets. TCP packet sizes are 1000 bytes. CBR packet 

sizes are 1000 bytes. Simulation time is 5 seconds. Maximum threshold value of the 

RED algorithm is three times of its minimum threshold parameter unless specifically 

specified. The other parameters for RED are the NS’s default parameters. The orange 

timer (the service time of the unpreferred alternate link) of the bottleneck queue is 

6.5 ms. Simulation results can be found in the Table 6.6. 
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Table 6.6 The results of the simulation of Topology Delta  

 

Note that we include “Total Drop by Router”, “Early Drop”, and “Force Drop” 

parameters to the simulation results. “Early Drop” gives the number of the packets 

that have already been dropped by an active queue management algorithm when the 

(average) queue length exceeds a threshold level. “Force Drop” gives the number of 

packets that have been already dropped by the FIFO queue because there is no 

physically space left in the queue buffer. “Total Drop by Router” gives the sum of 

“Force Drop” and “Early Drop” parameters. We have seen from the results of our 

experiments that when Orange algorithm is used, we achieve higher throughput and 

lower queuing delays compared to drop tail gateway and RED algorithms. 

  

6.6 Topology Echo and Main Experimental Work 

Up to now, we have used topologies, which could be best suited to experimental 

aims. However, in most of the practical cases, most of the traffic is formed by the 

responsive sources of large amounts. Those are the flows of surfing a web site, or 

download a file from the internet. It is more complicated to control those flows. In 

order to test our algorithm’s performance in a topology, which we can see in most of 

the practical cases, we decide to use a sample topology, namely Topology Echo, 

consisting of heterogeneous TCP flows whose link delays are varying. This topology 

has also been studied by Kinicki and Zheng (Kinicki and Zheng, 2001). They have 

MinTh 
Queue  
Type 

Sent 
Packets 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Throughput 

Kbps 

Average 
Delay 

ms 

Average 
Queue 
Size 

Total 
Drop 
by 

Router 
Early  
Drop 

Force  
Drop 

  
Drop 
Tail 

        
971     

        
971                601     973.64 730.82 93.90 284 0 284 

10 Red       1026          1026                596     975.91 363.30 38.66 429 429 0 

10 Orange        935            935                583     980.70 115.24 8.90 351 351 0 

15 Red      1014          1014                603     976.69 485.91 56.94 376 342 34 

15 Orange        954            954                587     980.04 153.27 13.42 366 366 0 

20 Red      1029          1029                602     976.33 595.96 72.44 371 300 71 

20 Orange       956            956                592     979.82 194.97 18.47 363 363 0 
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used this topology to test their own algorithm’s performance with that of RED 

algorithm. They claim that the chosen RED parameters in their work give the best 

result when RED algorithm is applied. To test our algorithm with other IP level 

congestion control methods, we have chosen the same topology, which has many 

heterogeneous TCP Reno flows, and this topology is best suited for our performance 

comparisons of our proposed algorithm.  

 

 

Figure 6.10 Topology Echo. 

 

In the Topology Echo, which is given in Figure 6.10, all flows are divided into 

three flow groups (fragile, average, and robust) based on the instantaneous round trip 

time of each flow. The mentioned Orange router maintains a single flow queue for 

each flow group, which is a FIFO queue that stores a pointer to a packet in the router 

queue for each packet. The aim of this topology consisting of three flow groups is to 

establish a real network situation, which has many flows with too many RTT’s.   

In this work, we run a series of simulation experiments using the NS simulator to 

compare the performance of Orange with RED and its variants with heterogeneous 

TCP Reno sources. The simulated network topology consists of one router, one sink 

and a number of simulated FTP sources. Each FTP source feeds 1000-byte packets 

into a single congested link attached to the router. The TCP ACK packets are 40 
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bytes long and each source has a window size of 64 packets. The capacity of the 

bottleneck link is 10 Mbps with a 5 ms delay to the sink. When the demand is kept 

constant, the number of the flows that generates the demand has a negative effect on 

performance. We choose one-way link delays for the fragile, average and robust 

sources of 95 ms, 45 ms and 20 ms respectively. Thus, the fragile, average and robust 

flows have round trip times of 200 ms, 100 ms and 50 ms when there is no queuing 

delay at the router. The router queue size was fixed at 120 packets based on 

published rules of thumb for accommodating the network bandwidth delay product. 

All simulations for this study run for 100 simulated seconds and include an equal 

number of fragile, average and robust TCP flows. Half of the flows in each flow 

group start at time zero the second half start at time 2 seconds. For example, for a 60-

flow simulation, 10 fragile, 10 average and 10 robust flows start at time 0, and the 

remaining 30 flows start at 2 seconds. The first 20 seconds of simulated time are not 

considered to reduce the startup and transient effects. The sum of the capacities of all 

the incoming flows is held constant at 90 Mbps for all simulations in this study 

regardless of the number of flows. Thus when the number of flows are increased the 

individual link capacities are proportionally decreased. Unless specifically specified 

the values for RED parameters of minth and maxth are set in such a way that maxth 

is three times of the minth. 

We have developed a Tcl script to construct the Topology Echo in the simulation 

(see Appendix K). The number of flow groups, the number of the flows in a group 

and the aggregate bandwidth demanded are the parameters to this script.  

In this set of experiments, our aim is to keep the aggregate throughput high but the 

average packet delay and the average queue sizes low. We have four sets of 

simulation; each has a different minimum threshold value (10, 15, 20, 25). In RED 

queue type, when the average queue size exceeds the minimum threshold value, 

queue starts to drop the incoming packets according with a dropping probability 

value based on the calculation of the maximum dropping probability and the value of 

the average queue size. In Orange queue type, when the current queue size exceeds 

the minimum threshold value, queue starts to drop the incoming packets according 

the busy – idle status of the alternate drop server. RED has a maximum threshold 
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value parameter to drop all the incoming packets when the average queue size 

exceeds it. Maximum threshold of the RED is three times of its minimum threshold 

parameter and unless it is specifically specified. Specifically specified RED’s 

maximum threshold values in the simulation are indicated in tables. 

On the other hand, Orange has no maximum threshold parameter, but it has the 

parameter, which is the service time of the alternate server. It is the busy period 

between the time that the Orange drops a packets and the time that the Orange queue 

will consider another packet to drop (busy time for dropping a packet). This time 

value (Orange Timer) is not constant, it is exponentially distributed about a mean 

average value, which is parameter of Orange queue type. We have simulated our 

sample topology with the values of the service time of the alternate server from 

values of 1 second to 10000 seconds in order to test the effect of the service time to 

the Orange’s overall performance. As the Orange’s service time goes to infinity, its 

operating behavior approaches the drop tail. With a big service time, Orange drops a 

packet and after this time, it never drops any packets because its alternate drop server 

is busy during the simulation time. That is why drop tail queue type is not included in 

our simulation. The results of the experiments are given in Tables 6.7, Table 6.8, 

Table 6.9, and Table 6.10. Average throughput graph when threshold is 10 and 

average delay graph when threshold is 10 are also given in Figure 6.11, and Figure 

6.12. 
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Table 6.7 Simulation results of Topology Echo when threshold is 10 

Orange  
Timer 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Throughput 

Kbps 

Average 
Delay 

ms 

Average 
Queue 

Size 
Total Drop 
by Router 

Early  
Drop 

Force 
Drop 

RED-30  105809               96107     9610.84 79.18 23.82           9745             9745     0 
1  105795               94927     9493.04 62.30 7.00        10872           10872     0 
2  106217               95164     9516.54 65.09 7.99         11053           11053     0 
3  105929               95227     9522.86 68.87 9.35         10697           10697     0 
4  107522               95915     9591.63 70.94 11.19         11605           11605     0 
5  106453               95971     9597.22 69.56 14.59         10474           10474     0 
6  106022               96067     9606.77 74.24 17.06           9950            9950     0 

6.5  106092               96122     9612.53 77.86 18.71           9977             9977     0 
7 105890               96145     9614.52 84.02 23.24           9740             9740     0 
8  105538               96153     9615.43 119.80 63.99           9369             9369     0 
9  104507               96154     9615.44 97.18 39.18           8333             8333     0 

10  103540               96154     9615.53 105.42 54.74           7401             7401     0 
50  101777               96154     9615.53 146.67 110.95           5606             1551     4055 

100  102084               96154     9615.52 146.87 112.44           5908               782    5126 
1000  102427               96154     9615.54 145.45 111.70           6278                 80     6198 

10000  102450               96154     9615.53 146.49 113.29           6301                   8     6293 

 

Table 6.8 Simulation results of Topology Echo when threshold is 15 

Orange  
Timer 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Throughput 

Kbps 

Average 
Delay 

ms 

Average 
Queue 

Size 
Total Drop 
by Router 

Early  
Drop 

Force 
Drop 

RED-45 105047  96153  9615.48  88.27  33.83  8908  8908  0  
RED-30 105602  96059  9606.00  80.66  25.26  9530  9530  0  

1 106308  95465  9546.53  65.65  11.23  10849  10849  0  
2 106043  95523  9552.46  70.38  11.97  10514  10514  0  
3 105891  95612  9661.40  73.50  13.56  10287  10287  0  
4 107332  96037  9603.82  74.87  16.43  11299  11299  0  
5 106098  96100  9610.26  73.04  18.98  10014  10014  0  
6 105689  96133  9613.37  77.51  21.00  9564  9564  0  

6.5 105709  96133  9613.41  81.04  22.37  9592  9592  0  
7 105770  96154  9615.63  88.56  28.26  9602  9602  0  
8 105517  96154  9615.53  119.08  93.88  9364  9364  0  
9 104463  96154  9615.64  97.96  40.56  8327  8327  0  

10 103575  96153  9615.44  105.41  54.89  7402  7402  0  
50 101743  96154  9615.43  146.65  110.70  5577  1559  4018  

100 101980  96154  9615.53  145.73  111.26  5846  782  5064  
1000 102207  96154  9615.63  146.94  113.26  6052  78  5974  

10000 102529  96154  9615.43  146.01  112.75  6345  8  6337  
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Table 6.9 Simulation results of Topology Echo when threshold is 20 

Orange  
Timer 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Throughput 

Kbps 

Average 
Delay 

ms 

Average 
Queue 

Size 
Total Drop 
by Router 

Early  
Drop 

Force 
Drop 

RED-60 104402  96154  9615.53  96.67  43.32  8275  8275  0  
RED-30 105302  95915  9591.64  82.41  26.99  9401  9401  0  

1 105999  95608  9560.86  69.41  15.02  10392  10392  0  
2 105929  95616  9561.77  74.39  16.12  10318  10318  0  
3 105827  95857  9585.87  78.04  17.99  9965  9965  0  

3.5 106326  96086  9608.79  75.12  19.77  10240  10240  0  
4 106818  96110  9611.11  78.83  20.83  10693  10693  0  

4.5 105367  96078  9607.86  81.51  21.81  9289  9289  0  
5 105779  96111  9611.19  77.17  23.95  9663  9663  0  

5.5 105220  96128  9612.82  82.74  23.57  10240  10240  0  
6 105601  96152  9615.28  81.98  26.22  9439  9439  0  

6.5 105278  96147  9614.90  85.78  27.43  9156  9156  0  
7 105529  96153  9615.35  89.93  30.75  9383  9383  0  
8 105570  96154  9615.53  118.80  62.90  9373  9373  0  
9 104455  96154  9615.54  99.91  42.76  8302  8302  0  

10 103542  96154  9615.53  105.76  54.73  7402  7402  0  
50 101735  96154  9615.73  146.35  110.72  5587  1548  4039  

100 102009  96154  9615.53  146.56  112.02  5860  784  5076  
1000 102252  96154  9615.53  145.96  112.78  6073  80  5993  

10000 102406  96154  9615.63  146.43  113.28  6263  8  6255  

 

 

 
Figure 6.11 Average throughput graph when threshold is 10. 
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Table 6.10 Simulation results of Topology Echo when threshold is 25 

Orange  
Timer 

Arrival 
to  

Router 
Arrival to 

Destination 

Average 
Throughput 

Kbps 

Average 
Delay 

ms 

Average 
Queue 

Size 
Total Drop 
by Router 

Early  
Drop 

Force 
Drop 

RED-75 103970  96154  9615.54  103.78  52.56  7819  7819  0  
RED-30 104466  94820  9482.20  83.27  28.80  9658  9658  0  

1 105803  95829  9583.09  72.12  19.23  9970  9970  0  
2 105878  95925  9592.58  77.26  20.23  9955  9955  0  
3 105613  95989  9599.21  81.59  22.24  9620  9620  0  

3.5 106092  96154  9615.48  78.84  24.36  9938  9938  0  
4 106433  96128  9612.87  82.87  25.60  10319  10319  0  

4.5 105154  96101  9610.27  84.07  25.62  9053  9053  0  
5 105438  96152  9615.27  81.30  28.38  9289  9289  0  

5.5 104946  96141  9614.22  86.47  27.58  8805  8805  0  
6 105104  96154  9615.44  85.95  31.01  8947  8947  0  

6.5 105055  96154  9615.54  89.07  31.65  8919  8919  0  
7 105172  96154  9615.44  93.13  34.45  9015  9015  0  
8 105536  96154  9615.63  121.48  66.15  9358  9358  0  
9 104329  96154  9615.54  99.75  42.92  8176  8176  0  

10 103548  96154  9615.53  105.02  54.56  7398  7398  0  
50 101750  96154  9615.53  146.35  110.79  5596  1543  4053  

100 102001  96153  9615.45  146.81  112.51  5848  783  5065  
1000 102365  96154  9615.63  145.82  112.54  6212  79  6133  

10000 102211  96154  9615.49  146.22  113.00  6072  8  6064  

 

 

 
Figure 6.12 Average delay graph when threshold is 10. 
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6.7 Analysis of the Simulation Results 

The performance parameters that we have compared RED and Orange are the 

average throughput (Kbps), average delay (ms), average queue size. It is obvious that 

in most of the regions, Orange has better performance compared to RED and Drop 

Tail especially when the service time of the alternate server is around from 4 ms to 7 

ms. Orange provides better performance for smaller timer values as the minimum 

threshold value increases.  

In Table 6.7 when the threshold is 10, RED’s throughput is measured as 9610 

Kbps, average delay, and average queue are measured as 79.18, and 23.82, 

respectively. In this set of experiments, Orange’s minimum threshold value is fixed 

at 10 packets. It means that Orange starts to drop the incoming packets when the 

queue size exceeds 10 packets. Orange’s service time is adjusted from low values to 

the high values. When it gets higher, Orange approaches to work like a DropTail 

queue. Orange drops the packet, and it never gets idle because the service time for 

that packet is too high to consider another packet to drop or not. While keeping the 

threshold at a fixed level which is 10 for this set of simulations, total throughput 

increases, as the service time increases whereas average delay, and average queue 

size decrease. Orange gives better results than RED when Orange’s timer is adjusted 

around 6.5-7. This is the point where Orange provides higher throughput values and 

lower delay values than that of RED. It is obvious that average delay is directly 

proportional to average queue size. It increases as the average queue size increases.  

In Table 6.8 when the threshold is 15, RED’s throughput is measured as 9615 

Kbps, average delay, and average queue are measured as 88.26, and 33.83, 

respectively when RED’s minimum threshold value, and maximum threshold value 

are fixed at 15, 45 respectively. RED’s throughput, average delay, and average queue 

are measured as 9606, 80.65, 25.26, respectively when  RED’s minimum threshold 

value, and maximum threshold value are fixed at 15, 30 respectively. In this set of 

experiments, Orange’s minimum threshold value is fixed at 15 packets. As we know, 

RED starts to consider dropping packets when the average queue size exceeds its 

minimum threshold value. Therefore, as we expect, the average delay and average 
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queue size are a little bit more than the previous results. Orange gives better results -

higher throughput and lower delay- than RED when Orange’s timer is adjusted 

around 5-6 ms.  

In Table 6.9 when the threshold is 20, RED’s throughput is measured as 9615 

Kbps, average delay, and average queue are measured as 96.67, and 43.31, 

respectively when RED’s minimum threshold value, and maximum threshold value 

are fixed at 20, 60 respectively. RED’s throughput, average delay, and average queue 

are measured as 9591, 82.40, 26.98, respectively when  RED’s minimum threshold 

value, and maximum threshold value are fixed at 20, 30 respectively. Orange’s 

minimum threshold value is fixed at 20 packets. Orange gives better results -higher 

throughput and lower delay- than RED when Orange’s timer is adjusted around 4-5 

ms.  

In Table 6.10 when the threshold is 25, RED’s throughput is measured as 9615 

Kbps, average delay, and average queue are measured as 103.77, and 52.56, 

respectively when RED’s minimum threshold value, and maximum threshold value 

are fixed at 25, 75 respectively. RED’s throughput, average delay, and average queue 

are measured as 9482, 83.27, 28.80, respectively when  RED’s minimum threshold 

value, and maximum threshold value are fixed at 25, 30 respectively. Orange’s 

minimum threshold value is fixed at 25 packets. Orange gives better results -higher 

throughput and lower delay- than RED when Orange’s timer is adjusted around 4 ms.  

When we try to track the change the change in Orange’s timer optimum value as 

compared to the change in the set threshold value, we can fit an inverse proportional 

relation to the square root of threshold (K). For instance, if we compare the 

simulation results where the threshold value is 10 with the results where the 

threshold value is 25, service time of the alternate server should be multiplied by 

�10/25 = 	√0.4 ≅ 0.632 . Thus, to get the optimum value of the alternate server’s 

average service time, if we multiply best service time value where the threshold is 10 

with this coefficient, we can easily see that the result fits very well with the result 

where the threshold is 25. (6.5 ms * 0.632 = 4.10 ms). This last value is the best 

service time value of the alternate server where the threshold is 25. 
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Consequently, empirically fitting relationship can be formulated as  

��{�(}�	�(��	 ∝ 	 �
√i    Eqn 6.5 

where “K” is Orange’s threshold value for the best performance of our simulation.  

Hence, we can state that, from the analysis of the simulation, empirical results 

suggests with our used simulation parameters are ��{�(}�	�(��	 = 	 5�
√i in 

milliseconds. A comparison between the simulation results and this empirical 

formula is given in Table 6.11.We can easily see that the results fit well. 

Table 6.11 A comparison between simulation results and empirical formula 

Threshold 
Applied 

Orange's Timer in ms 
Best Result from 

Simulation 
Calculation from 

Empirical Formula 

10                                6.50                                      6.32     

15                                6.00                                      5.16     

20                                4.50                                      4.47     

25                                4.00                                      4.00     

  

6.8 Empirical Validation of Orange’s System Parameters 

We have made our experiments for different threshold values and different service 

times for slower server in order to find the best operating point of our algorithm in a 

congested network environment, which includes responsive flows. Our aim is to find 

a relation between the values of the threshold and the service time of the slower 

server at the operating point from the experiments and the mathematical analysis. Şiş 

(1994) studied the optimum threshold value of an M/M/2 queue where Poisson 

arrivals, and exponentially distributed service times are of interest (when the service 

rates of both servers are predetermined).  He proved that the first order approximate 

value of optimum threshold, is the largest non-negative integer which satisfies (if 

there is no such non-negative integer, it is zero) 

1

2

1K
µ λ

µ
−≤ −%      Eqn 6.6 



112 
 

 
 

This approximate value for the optimum value of the threshold gives satisfactory 

result under the assumption that “µ1” is considerably greater than “µ2” and “µ1 >> λ”. 

Here, the results are approached as there is a continuous flow of traffic arriving to the 

queue with the average rate of “λ” units/time and similarly µi units/time is the 

continuous average out-flow through link i. Therefore, the results are valid in the 

systems where memory-less sources like Poisson sources are applied. If “µ1” is not 

considerably larger than “µ2”, it is clear that threshold is nearly zero. When “µ1” is 

considerably larger than “µ2”, if “ µ1 >> λ”, for optimum threshold we can use the 

approximate value in Equation 6.6. The only remaining case is the case where “µ1 >> 

µ2“, but “(µ1-λ) ≈ 0”. There, actually a non-zero threshold value occurs which is not 

anticipated in our approximation. Although this afore mentioned analysis can be 

made to find the expected delay value to relate it with the threshold value, this would 

be restricted to the case where Poisson arrivals and exponentially distributed service 

times are involved. 

 

In order to test our algorithm’s performance in a network where the responsive 

flows are dominant, we use the responsive sources (ftp sources) in our simulation. 

Responsive sources probe the available bandwidth in the network, and they adjust 

their sending rate as long as there is no packet loss. Arrival rate will be almost the 

same as the service rate of the server. We can easily say that, in our experiment “(µ1-

λ) ≈ 0”. We need to find an equation for this case in terms of µ1, µ2, λ, and K under 

these circumstances where responsive flows are involved. 

Padhye and his friends (Padhye et al., 1998) develop a simple analytic 

characterization of the steady state throughput of a bulk transfer TCP flow (i.e., a 

flow with a large amount of data to send, such as FTP transfers) as a function of loss 

rate and round trip time. Their model captures not only the behavior of TCP's fast 

retransmit mechanism but also the effect of TCP's timeout mechanism on throughput.  

In their work, Nt represents the number of packets transmitted in the interval [0,t] 

and “Bt (Nt/t)” represents the throughput on that interval. Thus, Bt represents the 

throughput of the connection, rather than its goodput. They define the long-term 

steady-state TCP throughput B to 
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B	=	 lim�→∞ �� = lim�→∞ K
�    Eqn 6.7 

They have assumed that if a packet is lost in a round, all remaining packets 

transmitted until the end of the round are also lost. Therefore they define p to be the 

probability that a packet is lost, given that either it is the first packet in its round or 

the preceding packet in its round is not lost. They are interested in establishing a 

relationship B(p) between the throughput of the TCP connection and the loss 

probability (p). 

In their work, when timeout occurrences are ignored, B(p) is derived to be; 

B(p)	� �
��� �				 h

5�      Eqn 6.8 

where “b ” is the number of packets acknowledged by a received ACK. In many 

TCP implementations, “b  = 2”. When timeouts are taken into account, they derive 

the B(p) as; 

B(p)	� �
����			4¡¢

7 <��£ �¤�,h�				7¡¢
¥ ¦ (�<h5 4)    Eqn 6.9 

By this formula, we can easily observe that TCP favors the flows with short RTT. 

It means that when downloading a file from a closer server, the download 

performances will be better. We can observe that the relationship between loss rate p 

and throughput is not linear but an inverse square root relation! It means when p is 

increased 4 times, throughput drops to half.  

As we have already shown from the simulation results in section 6.7, while the 

service time of the drop server increases, the optimum value of the threshold 

decreases in order to achieve the best operating point. If the service time of the drop 

server were too low, the threshold would be high enough to prevent unnecessary 

packet drops. If the threshold were too low, we need high values of the service time 

of the drop server to make the drop server idle after dropping a packet. To use the 

drop server for enough times, it must work faster. Therefore, we can easily say that 
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the optimum value of the threshold is inversely proportional to the service time of the 

drop server. We have found empirically a relation like; 

��{�(}�	�(�� = 	 �v5 ∝ �
√i    Eqn 6.10 

On the other hand, according to the Padhye and his friends (Padhye et al., 1998), 

we can state that TCP’s throughput is inversely proportional with the square root of 

dropping probability (P). We can also intuitively claim that the dropping probability 

is inversely proportional with the threshold (K): 

§ ∝ �
i       Eqn 6.11 

If we think alternate server as a real server, departures from it contributes to the 

total throughput. Therefore, the service rate of the alternate server, and the 

throughput can be assumed that they are directly proportional.  

μ5 ∝ �(§)      Eqn 6.12 

If we use the last two formulas in Padhye’s simple throughput equation, then we 

get  

�(§) ∝ �
��� � h

5� 	 � �
��� �hi

5� 	    Eqn 6.13 

In general TCP implementations, b value is fixed as 2 and we can assumed that 

the RTT is constant during simulation so without specifying proportionality 

constants, we can end up with 

μ5 ∝	√k      Eqn 6.14 

or, alternate server’s service time is inversely proportional with square root of 

threshold (K): 

¨{©;ª�«¬�(��{ = �
v5 ∝	 �

√i   Eqn 6.15 
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We can just conclude that, empirically the best value of the service time is 

inversely proportional with the square root of the threshold value applied as we have 

already stated in Equation 6.5. 

Furthermore, if we can estimate as “a rule of thumb”, the best value of µ2 

departing from the capacity of the main (bottleneck) link, it can be estimated in the 

order of “1/10” to “1/5” of the capacity of the main link. And by using our empirical 

formula, we can try to find an optimal threshold (K) value. This finishes selecting 

Orange parameters that gives the best operating point. This parameter estimation 

procedure is much simpler, effective, and more meaningful than the tuning the 

complex RED parameters. 

The other way around, if we take the threshold value of Orange departing from 

the minimum threshold value proposed for RED implementers, we can easily 

calculate the best optimum value of Orange’s timer for the best performance of 

active queue management. 

Explanation of this relates the drop server to behave like a TCP friendly source. 

The implication of this can be very meaningful. Mentioning TCP friendliness in 

general means reacting to congestion in the same way as TCP, considering only 

Triple Duplicate (TD) packet loss occurrences that result in TD, this would mean to 

be conformant with the throughput Equation 6.8. We have demonstrated that our 

empirical result is in accordance with Equation 6.8, therefore suggesting the TCP 

friendliness for the best operating conditions.  

However, keeping in mind that alternate server’s output is, in return as 

retransmission, a load for the original sender (TCP source), they will be part of the 

offered load, hence throughput is in relation with alternate server’s link capacity or 

service time. 
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7CHAPTER SEVEN 

CONCLUSIONS 

 

7.1 Drawbacks of Current Active Queue Management Algorithms 

The network calculation on detecting incipient congestion is called active queue 

management (AQM) as we describe earlier. Many active queue management 

schemes studied in recent literatures are based on early congestion notification to 

sources. These schemes are classified into AQM schemes based on queue value. This 

category is also called as queue-based AQM algorithm, which uses the average (or 

instantaneous) queue length to calculate the packet dropping probability. RED is the 

most widely used active queue management algorithm, which is the recommendation 

approach by Internet Engineering Task Force (IETF).  

However, although RED is certainly an improvement over traditional drop-tail 

queues, it has several drawbacks in practical usages. Abbosov & Korukoglu (2009) 

summarizes the drawbacks of RED algorithm as follows; 

RED performance is highly sensitive to its parameter settings. In RED, at least 4 

parameters, namely, maximum threshold (maxth), minimum threshold (minth), 

maximum packet dropping probability (maxp), and weighting factor (wq) have to 

be properly set. RED performance is sensitive to the number of competing 

sources/flows. RED performance is sensitive to the packet size. With RED, wild 

queue oscillation is observed when the traffic load changes (Abbosov & 

Korukoglu, 2009). 

In addition, one of RED’s main weaknesses is usage of indirect congestion 

indicator namely the average queue length. The misbehavior of packet dropping or 

marking occurs when the queue gets large but exhausting rapidly or small but filling 

up rapidly. This phenomenon is called as lag domino effect. While the existence of a 

persistent queue indicates congestion, its length gives very little information to the 

severity of congestion. A single source which is unaware the congestion situation and 
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transmitting at a rate greater than the bottleneck link capacity can cause a queue to 

build up easily as a large number of sources can do.  

Other weakness of RED is the parameter configuration problem. Since the RED 

algorithm relies on queue lengths, it has an inherent problem in determining the 

severity of congestion. As a result, RED requires a wide range of parameters to 

operate correctly under different congestion scenarios. While RED can achieve an 

ideal operating point, it can only do so when it has a sufficient amount of buffer 

space and is correctly parameterized. The average queue size varies with the level of 

congestion and with the parameter settings and the throughput is sensitive to the 

traffic load and to RED parameters. Therefore, tuning RED parameters is 

unavoidable, especially under realistic environment. 

 

7.2 Advantages of Orange  

The most effective detection of congestion occurs at the node level. The router at 

the nodes can reliably distinguish between propagation delay and persistent queuing 

delay. The router has a cohesive view of the queuing behavior over time; the 

perspective of individual connections is limited by the packet arrival patterns for 

those connections. In addition, a router at the nodes is shared by many active 

connections with a wide range of round trip times, tolerances of delay, throughput 

requirements, etc.; decisions about the duration and magnitude of transient 

congestion to be allowed at the node are best made by the router at the node itself in 

IP level. 

Orange as an IP level active queue management algorithm, which can be applied 

at the current Internet routers can be useful in controlling the average queue size 

even in a network where the transport protocol cannot be trusted to be cooperative. 

Orange can control the improving congestion and provides the upper bound on the 

buffers. Orange gives best performance for a network where the transport protocol 

responds to congestion indications from the network. Orange is designed for a 

network where a single marked or dropped packet is sufficient to signal the presence 
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of congestion to the transport-layer protocol. The probability that the Orange chooses 

a particular connection to notify during congestion is roughly proportional to that 

connection’s share of the bandwidth at the gateway.  

Orange is an effective mechanism for congestion avoidance at the routers, in 

cooperation with network transport protocols. If Orange drops packets when the 

queue size exceeds the threshold, rather than simply setting a bit in packet headers, 

then Orange controls the average queue size in effect. This action provides an upper 

bound on the average delay at the router. For Orange, the rate at which the algorithm 

marks packets for dropping, depends on service time of the alternate server 

(unpreferred link). This approach avoids the global synchronization that results from 

many connections decreasing their windows at the same time. Because, Orange’s 

timer is set randomly and two successive packets may or may not be dropped. 

Orange gateway is a simple router algorithm that could be implemented in current 

networks or in high-speed networks of the future. Orange allows practical design 

decisions to be made about the average queue size and the maximum queue size 

allowed at the router. 

Another advantage of Orange is that it has less adjustable parameters than RED. 

Orange requires minimum amount of processor and memory consumption. Tuning 

and optimizing the parameters used for generic topologies has easier in Orange rather 

than RED.  

In addition, it avoids the global synchronization, which results from both TCP 

connections reducing their windows at the same time where each connection goes 

through Slow-Start, reducing the window to one, in response to a dropped packet, 

and thus results a lower throughput and higher queuing delays. 
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7.3 Concluding Remarks 

The main contribution of this work is to present an IP level congestion control 

mechanism to control the performance of a traffic network at the node level. In this 

work, a new active queue management algorithm called Orange is designed and 

evaluated. The main idea behind Orange comes from the analysis of two 

heterogeneous servers and one queue with a threshold-based queuing system in order 

to achieve both higher throughput and lower queuing delays. In addition, we consider 

to find out an empirical relationship between the system parameters of our algorithm 

using the mathematical analysis. Simulation results are used to tune up the empirical 

formulation. By achieving this aim, we consider to use a virtual drop server to drop 

the incoming packets when the actual queue size exceeds a threshold level. The only 

adjustable parameter based on the changing conditions of the network is the service 

time of the virtual drop server.  Since for many applications, this service time is not 

usable, we consider it an important and distinguishing characteristic of our work.  

By using the threshold type policy and the use of virtual drop server, we have 

proposed a new approach to drop or mark packets when the congestion will likely 

occur. The primary performance parameter is the mean number of customers in the 

system, and accordingly the average waiting time per packet as well as the 

throughput of the network.  

This study confirms that generally Orange performs better than RED due to the 

fact from simulations that it results in higher throughput values and lower queuing 

delays (thus the lower mean waiting times per packet) for the networks with 

heterogeneous flows. Orange simulations indicate that Orange requires less 

parameter settings than RED. 

We can propose that Orange will replace RED as an active queue management 

algorithm to decide which packets are to be marked to indicate a congestion 

condition for the current Internet routers. We still chose to drop them to warn TCP 

friendly sources (responsive or adaptive) against that possible congestion situation.  
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7.4 Recommendations for future research 

Policy for using an alternate route (link) for the packets, which are destined to a 

certain network, may be implemented as a threshold checking on the size of this 

flows dedicated queue’s size. In addition, RED and its derivatives use threshold on 

average queue size in order to decide whether to drop or accept an arriving packet to 

the node. Our analysis would be extended to find new policies, which could be more 

efficient in that extent.  

There are many areas for further research on Orange gateways. The foremost open 

question involves determining the optimum average queue size for maximizing 

throughput and minimizing delay for various network configurations. The answer of 

this this question is heavily dependent of the characterization (modeling) of the 

network traffic and behavior of traffic offering servers.  

One area for further research concerns traffic dynamics with a mix of Drop Tail 

and Orange gateways, as would result from partial deployment of Orange gateways 

in the current internet. Another area for further research concerns the behavior of the 

Orange gateway machinery with transport protocols other than TCP, including open 

or closed-loop rate-based protocols.  

The list of packets marked by the Orange could be used by the gateway to identify 

connections that are receiving a large fraction of the bandwidth through the gateway. 

The gateway could use this information to give such connections lower priority at the 

gateway. We can leave this as an area for further research. 
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APPENDICES 

 
A. Full Source Code of Orange Algorithm: orange.cc & orange.h 

 

Source code of Orange Algorithm.  

 
 
#ifndef orange_h 
#define orange_h 
 
#include <string.h> 
#include "queue.h" 
#include "config.h" 
 
class Orange : public Queue { 
 public: 
  Orange(); 
  ~Orange() { 
   delete q_; 
  } 
 protected: 
  void reset(); 
  int command(int argc, const char*const* argv); 
  void enque(Packet*); 
  Packet* deque(); 
  PacketQueue *q_; /*Underlying FIFO queue*/ 
  int drop_front_; 
  int summarystats; 
  void print_summarystats(); 
  int qib_; 
  int mean_pktsize_; 
  int orange_limit; 
  int queue_limit; 
  double orange_timer; 
  double ExpOrangeTimer; 
  double lastDrop; 
  int byOrange; 
  int byDroptail; 
}; 
 
#endif 
/*------------------------------------------------- ---------------*/ 

 
#ifndef lint 
static const char rcsid[] =  
  "@(#) $Header: /nfs/jade/vint/CVSROOT/ns-2/queue/orange.cc,v 1.15 2003/01/16 19:02:54 sfloyd Exp $ 
(LBL)"; 
#endif 
 
 
#include "orange.h" 
#include "flags.h" 
#include "basetrace.h" 
#include "hdr_qs.h" 
#include "random.h" 
 
static  class OrangeClass : public TclClass { 
 public: 
  OrangeClass() : TclClass("Queue/Orange") {} 
  TclObject* create(int, const char*const*) { 
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   return (new Orange); 
  } 
} class_orange; 
 
Orange::Orange(){ 
 q_ = new PacketQueue; 
 pq_ = q_; 
 
 bind_bool("drop_front_", &drop_front_); 
 bind_bool("summarystats_", &summarystats); 
 bind_bool("queue_in_bytes_", &qib_); 
 bind("mean_pktsize_", &mean_pktsize_); 
 bind("orange_limit_", &orange_limit); 
 bind("queue_limit_", &queue_limit); 
 bind("orange_timer_", &orange_timer); 
  
 //printf("Timer: %f\n", orange_timer); 
  
} 
 
void Orange::reset(){ 
 Queue::reset(); 
} 
 
int Orange::command(int argc, const char*const* argv) { 
 if (argc == 2) { 
  if (strcmp(argv[1], "printstats") == 0) { 
   print_summarystats(); 
   return (TCL_OK); 
  } 
 } 
 
 if (argc == 3) { 
  if (!strcmp(argv[1], "packetqueue-attach")) { 
   delete q_; 
   if (!(q_ = (PacketQueue*) TclObject::lookup(argv[2]))) { 
    return (TCL_ERROR); 
   } 
   else { 
    pq_ = q_; 
    return (TCL_OK); 
   } 
  } 
 } 
 
 return Queue::command(argc, argv); 
} 
 
void Orange::enque(Packet* p) { 
 
 if (summarystats) { 
  Queue::updateStats(qib_?q_->byteLength():q_->length()); 
 } 
 
 int qlimBytes  = queue_limit  * mean_pktsize_; 
 int qlimBytes2 = orange_limit * mean_pktsize_; 
 
 if ((!qib_ && (q_->length() + 1) >= queue_limit) || 
  ( qib_ && (q_->length() + hdr_cmn::access(p)->size()) >= qlimBytes)){ 
 
  //if the queue would overflow if we added this packet... 
  if (drop_front_) {  /*remove from head of queue*/ 
   q_->enque(p); 
   Packet *pp = q_->deque(); 
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   drop(pp); 
   byDroptail++; 
  } 
  else { 
   drop(p); 
   //printf("DROP!"); 
   byDroptail++; 
  } 
 } 
 else { 
  if ((!qib_ && (q_->length() + 1) >= orange_limit) || 
         ( qib_ && (q_->length() + hdr_cmn::access(p)->size()) >= qlimBytes2)){ 
 
   double now = Scheduler::instance().clock(); 
   double differ = now - lastDrop; 
   //printf("\nnow-%5.3f ",now"); 
   //printf("\tlastdroptime-%5.3f ", lastDrop); 
   //printf("\tdifference-%5.3f ", differ); 
   //printf("\torangetimer-%5.3f ", orange_timer/1000); 
    
   //double ExpOrangeTimer = orange_timer; 
   //printf("ExpOrangeTimer: %f\n", ExpOrangeTimer); 
 
   if ((differ >= ExpOrangeTimer/1000) || lastDrop == 0) { 
    lastDrop = now; 
    ExpOrangeTimer = Random::exponential (orange_timer); 
    if (drop_front_) { 
     q_->enque(p); 
     Packet *pp = q_->deque(); 
     drop(pp); 
     byOrange++; 
    } 
    else { 
     drop(p); 
     byOrange++; 
    } 
    //print("DROP!"); 
   } 
   else { 
    q_->enque(p); 
   } 
  } 
  else { 
   q_->enque(p); 
  } 
 } 
 
 if (byOrange && byDroptail) { 
  //printf("\nNumber of dropped packets by droptail: %d", byDroptail); 
  //printf("\nby %d threshold and %5.3fms timer: %d", orange_limit, orange_timer, byOrange); 
  //printf("\n-------------------------------------------------\n"); 
 } 
} 
 
Packet* Orange::deque(){ 
 
 if (summarystats && &Scheduler::instance() != NULL) { 
  Queue::updateStats(qib_?q_->byteLength():q_->length()); 
 } 
 return q_->deque(); 
} 
 
void Orange::print_summarystats(){ 
 double now = Scheduler::instance().clock(); 
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 printf("True average queue: %5.3f", true_ave_); 
 printf("\nNumber of dropped packets by %d threshold: %d", orange_limit, byOrange); 
 printf("\nNumber of dropped packets by droptail: %d", byDroptail); 
 if (qib_) { 
  printf(" (in bytes)"); 
 } 
 printf("\ntime: %5.3f\n", total_time_); 
} 

 

 

B. Source Code of the Function: Drop_Early_Orange 
 

The aim of the function is to decide if the incoming packet to the queue will be 

dropped or not according to the busy – idle state of the orange timer. 

 

int ORANGEQueue::drop_early_orange(Packet* pkt) 
{ 
  
double now = Scheduler::instance().clock(); 
double differ = now - lastDrop; 
  
 
if ((differ >= (orange_timer_/1000)) || lastDrop == 0) { 
{ 
 lastDrop = now; 
 expOrangeTimer = Random::exponential (orange_timer_); 
     
 byOrange++; 
    
 return (1); //DROP 
 }    
 
 
return (0);   // no DROP/mark Alternate server is busy 
} 
 
 
 
 

C. Source Code of the Function: enqueue 
 

The aim of the function is to enqueue the incoming packet according to the 

algorithm applied. 

 
 
void ORANGEQueue::enque(Packet* pkt) 
{ 
 hdr_cmn* ch = hdr_cmn::access(pkt); 
 ++edv_.count; 
 edv_.count_bytes += ch->size(); 
 
 register double qavg = edv_.v_ave; 
 int droptype = DTYPE_NONE; 
 int qlen = qib_ ? q_->byteLength() : q_->length(); 
 int qlim = qib_ ? (qlim_ * edp_.mean_pktsize) : qlim_;  
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 if (qlen >= edp_.th_min && drop_early_orange(pkt)) { 
   
   droptype = DTYPE_UNFORCED; 
 
 } else { 
  /* No packets are being dropped.  */ 
  edv_.v_prob = 0.0; 
  edv_.old = 0;   
 } 
 if (qlen >= qlim) { 
  // see if we've exceeded the queue size 
  droptype = DTYPE_FORCED; 
 } 
 
 if (droptype == DTYPE_UNFORCED) {  
   
  if (pkt_to_drop != pkt) { 
   q_->enque(pkt); 
   q_->remove(pkt_to_drop); 
   pkt = pkt_to_drop;   
} 
  if (de_drop_ != NULL) { 
  
  if (EDTrace != NULL)  
    ((Trace *)EDTrace)->recvOnly(pkt); 
 
   reportDrop(pkt); 
   de_drop_->recv(pkt); 
  } 
  else { 
   reportDrop(pkt); 
   drop(pkt); 
  } 
 } else {  
  /* forced drop, or not a drop: first enqueue pkt */ 
  q_->enque(pkt); 
 
  /* drop a packet if we were told to */ 
  if (droptype == DTYPE_FORCED) { 
   /* drop random victim or last one */ 
   pkt = pickPacketToDrop(); 
   q_->remove(pkt); 
   reportDrop(pkt); 
   drop(pkt); 
   if (!ns1_compat_) { 
    // bug-fix from Philip Liu, <phill@ece.ubc.ca> 
    edv_.count = 0; 
    edv_.count_bytes = 0; 
   } 
  } 
 }  
  
 double now = Scheduler::instance().clock(); 
  if (droptype == DTYPE_FORCED) 
  printf("%10f ByTailDrop\n", now); 
   
        
  if (droptype == DTYPE_UNFORCED)   
  printf("%10f ByOrange\n", now); 
  
 return; 
} 
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D. Queue Size Script: queueSize.awk 
 

This awk script produces a trace file of queue size over time from the output 

trace of NS.  

 
BEGIN { 
  queueSize = 0 
  prevTime = 0  
  prevQSize = 0 
} 
 
{ 
 # Trace line format: normal 
 if ($2 != "-t") { 
  event = $1 
  time = $2 
  if (event == "+" || event == "-") node_id = $3 
  if (event == "r" || event == "d") node_id = $4 
  flow_id = $8 
  pkt_id = $12 
  pkt_size = $6 
  flow_t = $5 
  level = "AGT" 
 } 
 # Trace line format: new 
 if ($2 == "-t") { 
  event = $1 
  time = $3 
  node_id = $5 
  flow_id = $39 
  pkt_id = $41 
  pkt_size = $37 
  flow_t = $45 
  level = $19 
 } 
  
 WillPrint = 0 
  
 # Update total received packets' size and store packets arrival time 
 if (level == "AGT" && node_id == src && event == "+"){ 
  queueSize++  
  WillPrint = 1 
  }  
     
 if (level == "AGT" && node_id == src && event == "-"){ 
  queueSize--  
  WillPrint = 1 
  }  
  
  if (level == "AGT" && node_id == dst && event == "d"){ 
 queueSize--  
  WillPrint = 1 
  }  
 
  if (WillPrint == 1) 
  printf("%10g %10g\n", time, queueSize)   
 
} 
 
END { 
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} 

E. Simulation Statistics Script: avgStats.awk 
 

This awk script produces statistical information about simulation from the 

output trace of NS.  

 
BEGIN { 
 recvdSize = 0 
 startTime = 1e6 
 stopTime = 0 
} 
 
{ 
 # Trace line format: normal 
 if ($2 != "-t") { 
  event = $1 
  time = $2 
  if (event == "+" || event == "-") node_id = $3 
  if (event == "r" || event == "d") node_id = $4 
  flow_id = $8 
  pkt_id = $12 
  pkt_size = $6 
  flow_t = $5 
  level = "AGT" 
 } 
 # Trace line format: new 
 if ($2 == "-t") { 
  event = $1 
  time = $3 
  node_id = $5 
  flow_id = $39 
  pkt_id = $41 
  pkt_size = $37 
  flow_t = $45 
  level = $19 
 } 
 
 # Store packets send time 
 if (level == "AGT" && flow_id == flow && node_id == src && 
     sendTime[pkt_id] == 0 && (event == "+" || event == "s") && pkt_size >= pkt) { 
  if (time < startTime) { 
   startTime = time 
  } 
  sendTime[pkt_id] = time 
  this_flow = flow_t 
 } 
 
 # Update total received packets' size and store packets arrival time 
 if (level == "AGT" && flow_id == flow && node_id == dst && 
     event == "r" && pkt_size >= pkt) { 
  if (time > stopTime) { 
   stopTime = time 
  } 
  # Rip off the header 
  hdr_size = pkt_size % pkt 
  pkt_size -= hdr_size 
  # Store received packet's size 
  recvdSize += pkt_size 
  # Store packet's reception time 
  recvTime[pkt_id] = time 
 } 
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} 
 
END { 
 # Compute average delay 
 delay = avg_delay = recvdNum = 0 
 for (i in recvTime) { 
  if (sendTime[i] == 0) { 
   printf("\nError in delay.awk: receiving a packet that wasn't sent %g\n",i) 
  } 
  delay += recvTime[i] - sendTime[i] 
  recvdNum ++ 
 } 
 if (recvdNum != 0) { 
  avg_delay = delay / recvdNum 
 } else { 
  avg_delay = 0 
 } 
 
 # Compute average jitters 
 jitter1 = jitter2 = jitter3 = jitter4 = jitter5 = 0 
 prev_time = delay = prev_delay = processed = deviation = 0 
 prev_delay = -1 
 for (i=0; processed<recvdNum; i++) { 
  if(recvTime[i] != 0) { 
   if(prev_time != 0) { 
    delay = recvTime[i] - prev_time 
    e2eDelay = recvTime[i] - sendTime[i] 
    if(delay < 0) delay = 0 
    if(prev_delay != -1) { 
     jitter1 += abs(e2eDelay - prev_e2eDelay) 
     jitter2 += abs(delay-prev_delay) 
     jitter3 += (abs(e2eDelay-prev_e2eDelay) - jitter3) / 16 
     jitter4 += (abs(delay-prev_delay) - jitter4) / 16 
     } 
#     deviation += (e2eDelay-avg_delay)*(e2eDelay-avg_delay) 
     prev_delay = delay 
     prev_e2eDelay = e2eDelay 
   } 
   prev_time = recvTime[i] 
   processed++ 
  } 
 } 
 if (recvdNum != 0) { 
  jitter1 = jitter1*1000/recvdNum 
  jitter2 = jitter2*1000/recvdNum 
 } 
# if (recvdNum > 1) { 
#  jitter5 = sqrt(deviation/(recvdNum-1)) 
# } 
 
 # Output 
 if (recvdNum == 0) { 
 
 printf("####################################################################\n" \ 
         "#  Warning: no packets were received, simulation may be too short  #\n" \ 
         
"####################################################################\n\n") 
 } 
 printf("\n") 
 printf(" %15s:  %g\n", "flowID", flow) 
 printf(" %15s:  %s\n", "flowType", this_flow) 
 printf(" %15s:  %d\n", "srcNode", src) 
 printf(" %15s:  %d\n", "destNode", dst) 
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 printf(" %15s:  %d\n", "startTime", startTime) 
 printf(" %15s:  %d\n", "stopTime", stopTime) 
 printf(" %15s:  %g\n", "receivedPkts", recvdNum) 
 printf(" %15s:  %g\n", "avgTput[kbps]", (recvdSize/(stopTime-startTime))*(8/1000)) 
 printf(" %15s:  %g\n", "avgDelay[ms]", avg_delay*1000) 
 printf(" %15s:  %g\n", "avgJitter1[ms]", jitter1) 
 printf(" %15s:  %g\n", "avgJitter2[ms]", jitter2) 
 printf(" %15s:  %g\n", "avgJitter3[ms]", jitter3*1000) 
 printf(" %15s:  %g\n", "avgJitter4[ms]", jitter4*1000) 
# printf(" %15s:  %g\n", "avgJitter5[ms]", jitter5*1000) 
 
# %9s %4s %4s %6s %5s %13s %14s %13s %15s %15s %15s %15s %15s\n\n", \ 
#        "flow","flowType","src","dst","start","stop","receivedPkts",  \ 
#        "avgTput[kbps]","avgDelay[ms]","avgJitter1[ms]","avgJitter2[ms]", \ 
#        "avgJitter3[ms]","avgJitter4[ms]","avgJitter5[ms]") 
# printf("  %6g %9s %4d %4d %6d %5d %13g %14s %13s %15s %15s %15s %15s\n\n", \ 
#        flow,this_flow,src,dst,startTime, stopTime, recvdNum,   \ 
#        (recvdSize/(stopTime-startTime))*(8/1000),avg_delay*1000,  \ 
#        jitter1,jitter2,jitter3*1000,jitter4*1000,jitter5*1000) 
} 
 
function abs(value) { 
 if (value < 0) value = 0-value 
 return value 
} 

 

 

F. Instant Throughput Script: instantThroughput.awk 
 

This awk script produces a trace file of throughput over time from the output 

trace of NS.  

 

BEGIN { 
 recv = 0 
 currTime = prevTime = 0 
 printf("# %10s %10s %5s %5s %15s %18s\n\n", \ 
        "flow","flowType","src","dst","time","throughput")        
} 
 
{ 
 # Trace line format: normal 
 if ($2 != "-t") { 
  event = $1 
  time = $2 
  if (event == "+" || event == "-") node_id = $3 
  if (event == "r" || event == "d") node_id = $4 
  flow_id = $8 
  pkt_id = $12 
  pkt_size = $6 
  flow_t = $5 
  level = "AGT" 
 } 
 # Trace line format: new 
 if ($2 == "-t") { 
  event = $1 
  time = $3 
  node_id = $5 
  flow_id = $39 
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  pkt_id = $41 
  pkt_size = $37 
  flow_t = $45 
  level = $19 
 } 
 
 # Init prevTime to the first packet recv time 
 if(prevTime == 0) 
  prevTime = time 
 
 # Calculate total received packets' size 
 if (level == "AGT" && flow_id == flow && node_id == dst && 
     event == "r" && pkt_size >= pkt) { 
  # Rip off the header 
  hdr_size = pkt_size % pkt 
  pkt_size -= hdr_size 
  # Store received packet's size 
  recv += pkt_size 
  # This 'if' is introduce to obtain clearer 
  # plots from the output of this script 
  if((time - prevTime) >= tic*10) { 
   printf("  %10g %10s %5d %5d %15g %18g\n", \ 
    flow,flow_t,src,dst,(prevTime+1.0),0) 
   printf("  %10g %10s %5d %5d %15g %18g\n", \ 
    flow,flow_t,src,dst,(time-1.0),0) 
  } 
  currTime += (time - prevTime) 
  if (currTime >= tic) { 
   printf("  %10g %10s %5d %5d %15g %18g\n", \ 
          flow,flow_t,src,dst,time,(recv/currTime)*(8/1000)) 
   recv = 0 
   currTime = 0 
  } 
  prevTime = time 
 } 
} 
 
END { 
 printf("\n\n") 
} 
 

 

 
G. Script for Topology Alpha 
 

 

The aim of this script is to construct the M/M/1/K queue Topology Alpha. In 

order to connect 1000 poisson sources to a node, we use 4 different nodes as at most 

250 sources can be connected to a node. 

 
 
#Create a simulator object 
set ns [new Simulator] 
 
#Open the nam trace file 
set nf [open out.nam w] 
$ns namtrace-all $nf 
 
#Open the trace file 
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set nftr [open out.tr w] 
$ns trace-all $nftr 
                            
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf nftr file_0 file_1 
        close $nf 
        close $nftr   
        close $file_0  
        close $file_1 
 
  set parse { 
 { 
     if ($6 == "cwnd_") { 
      print $1, $7;   
     } 
 }}        
        exec awk $parse cwnd0.tr > xcwnd0.tr  
        exec awk $parse cwnd1.tr > xcwnd1.tr      
         
  #exec /ns/xgraph xcwnd0.tr & 
  #exec nam out.nam & 
  exit 0   
} 
 
set pkt 0 
set run 1000 
 
# seed the default RNG 
global defaultRNG 
$defaultRNG seed 9999 
 
# create the RNGs and set them to the correct substream 
set arrivalRNG [new RNG] 
set sizeRNG [new RNG] 
 
for {set k 1 } {$k <= $run} {incr k} { 
  $arrivalRNG next-substream 
  $sizeRNG next-substream 
} 
 
 
set pktsize [new RandomVariable/Exponential] 
$pktsize set avg_ 100 
$pktsize use-rng $sizeRNG 
 
set S [$ns node] 
set D [$ns node] 
   
$ns duplex-link $S $D 1Mb 10ms RED 
$ns queue-limit $S $D 10000 
 
for {set i 1} {$i <= 4} {incr i} {  
  set s($i) [$ns node] 
  set d($i) [$ns node] 
 
  $ns duplex-link $s($i) $S 100Mb 0ms DropTail 
  $ns duplex-link $D $d($i) 100Mb 0ms DropTail 
   
  for {set j 1} {$j <= 250} {incr j} {     
    set udp($i,$j) [new Agent/UDP] 
    $ns attach-agent $s($i) $udp($i,$j) 
     
    set null($i,$j) [new Agent/Null] 
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    $ns attach-agent $d($i) $null($i,$j) 
     
    $ns connect $udp($i,$j) $null($i,$j) 
 
    set poisson($i,$j) [new Application/Traffic/Poisson] 
    $poisson($i,$j) attach-agent $udp($i,$j) 
     
    $poisson($i,$j) set interval_ [expr 1.0/1.2] 
     
      
    set pkt  [expr round([$pktsize value])] 
    #puts  "$i, $j:    $pkt" 
    $poisson($i,$j) set packetSize_ $pkt 
    #$poisson($i,$j) set packetSize_ 1000   
 
    $ns at 0 "$poisson($i,$j) start" 
  } 
} 
          
#Call the finish procedure  
$ns at 10.0 "finish" 
 
#Run the simulation 
$ns run 
 
 

H. Script for Topology Bravo 
 

The aim of this script is to construct Topology Bravo. 

 
#Create a simulator object 
set ns [new Simulator] 
 
#Open the trace file 
set nftr [open out.tr w] 
$ns trace-all $nftr 
                                         
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf nftr file_0 file_1 
        close $nf 
        close $nftr   
        close $file_0  
        close $file_1 
} 
 
#Create four nodes 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
 
#Create links between the nodes 
$ns duplex-link $n2 $n0 10Mb 0ms DropTail 
$ns duplex-link $n0 $n1 1Mb 0ms ORANGE 
 
#$ns queue-limit $n3 $n4 5 
$ns queue-limit $n0 $n1 120 
     
#Setup a TCP connection nd attach it to node n0 
set tcp0 [new Agent/TCP/Reno] 
$tcp0 set packetSize_ 1000 
$tcp0 set class_ 1 
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$ns attach-agent $n2 $tcp0 
$tcp0 set window_ 500 
 
#Setup a FTP over TCP connection 
set ftp0 [new Application/FTP] 
$ftp0 attach-agent $tcp0 
$ftp0 set type_ FTP 
 
#Create a Null agent (a traffic sink) and attach it to node n4 
set null0 [new Agent/TCPSink] 
$ns attach-agent $n1 $null0 
$ns connect $tcp0 $null0 
 
 
$ns at 0 "$ftp0 produce 10000" 
          
#Call the finish procedure  
$ns at 100.0 "finish" 
 
#Run the simulation 
$ns run 
 
 
 

I.  Script for Topology Charlie 

The aim of this script is to construct Topology Charlie. 

#Create a simulator object 
set ns [new Simulator] 
 
#Define different colors for data flows 
$ns color 1 Blue 
$ns color 2 Red 
$ns color 3 Green 
 
#Open the nam trace file 
set nf [open out.nam w] 
$ns namtrace-all $nf 
 
#Open the trace file 
set nftr [open out.tr w] 
$ns trace-all $nftr 
 
# Tracing cwnd of TCP Agents 
set file_0 [open cwnd0.tr w]  
set file_1 [open cwnd1.tr w] 
                              
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf nftr file_0 file_1 
        close $nf 
        close $nftr   
        close $file_0  
        close $file_1 
 
  set parse { 
 { 
     if ($6 == "cwnd_") { 
      print $1, $7;   
     } 
 }}        
        exec awk $parse cwnd0.tr > xcwnd0.tr  
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        exec awk $parse cwnd1.tr > xcwnd1.tr      
         
  exec /ns/xgraph xcwnd0.tr & 
  #exec nam out.nam & 
  exit 0   
} 
 
#Create four nodes 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 
 
#Create links between the nodes 
$ns duplex-link $n0 $n2 10Mb 10ms DropTail 
$ns duplex-link $n1 $n2 10Mb 10ms DropTail 
$ns duplex-link $n2 $n3 1Mb 10ms RED 
 
$ns duplex-link-op $n0 $n2 orient right-down 
$ns duplex-link-op $n1 $n2 orient right-up 
$ns duplex-link-op $n2 $n3 orient right 
 
#Monitor the queue for the link between node 2 and node 3 
$ns duplex-link-op $n2 $n3 queuePos 0.5 
 
#$ns queue-limit $n3 $n4 5 
$ns queue-limit $n2 $n3 120 
 
 
#Node0 
#Setup a TCP connection nd attach it to node n0 
set tcp0 [new Agent/TCP/Reno] 
$tcp0 set packetSize_ 1000 
$tcp0 set class_ 1 
$ns attach-agent $n0 $tcp0 
#$tcp0 set window_ 500 
 
#Setup a FTP over TCP connection 
set ftp0 [new Application/FTP] 
$ftp0 attach-agent $tcp0 
$ftp0 set type_ FTP 
 
#Node1 
#Setup a TCP connection nd attach it to node n1 
set tcp1 [new Agent/TCP/Reno] 
$tcp1 set packetSize_ 1000 
$tcp1 set class_ 2 
$ns attach-agent $n1 $tcp1 
#$tcp1 set window_ 500 
 
#Setup a FTP over TCP connection 
set ftp1 [new Application/FTP] 
$ftp1 attach-agent $tcp1 
$ftp1 set type_ FTP 
 
#Create a Null agent (a traffic sink) and attach it to node n4 
set null0 [new Agent/TCPSink] 
$ns attach-agent $n3 $null0 
 
set null1 [new Agent/TCPSink] 
$ns attach-agent $n3 $null1 
 
#Connect the traffic sources with the traffic sink 
$ns connect $tcp0 $null0 
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$ns connect $tcp1 $null1 
 
$tcp0 set fid_ 1 
$tcp1 set fid_ 2 
 
#Trace cwnd_ 
$tcp0 trace cwnd_ 
$tcp1 trace cwnd_ 
$tcp0 trace rtt_ 
$tcp1 trace rtt_ 
$tcp0 trace ssthresh_ 
$tcp1 trace ssthresh_ 
 
$tcp0 attach $file_0 
$tcp1 attach $file_1 
 
 
#Schedule events for the CBR agents 
#$ns at 0 "$ftp0 start" 
#$ns at 20 "$ftp1 start" 
 
#$ns at 200 "$ftp0 stop" 
#$ns at 200 "$ftp1 stop" 
 
$ns at 0 "$ftp0 produce 10000" 
$ns at 20 "$ftp1 produce 10000" 
 
#$ftp0 produce 100 
 
          
#Call the finish procedure  
$ns at 200.0 "finish" 
 
#Run the simulation 
$ns run 
 
 

J. Script for Topology Delta 

The aim of this script is to construct Topology Delta. 

#Create a simulator object 
set ns [new Simulator] 
 
#Define different colors for data flows 
$ns color 1 Blue 
$ns color 2 Red 
$ns color 3 Green 
 
#Open the nam trace file 
set nf [open out.tr w] 
$ns trace-all $nf 
 
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf file_0 file_1 
        close $nf  
        close $file_0  
        close $file_1  
 
  set parse { 
 { 
     if ($6 == "cwnd_") { 



140 
 

 
 

      print $1, $7;   
     } 
 }}        
        exec awk $parse cwnd0.tr > xcwnd0.tr  
        exec awk $parse cwnd1.tr > xcwnd1.tr      
         
  exec xgraph -bb -tk -m xcwnd0.tr xcwnd1.tr & 
  exit 0   
} 
 
#Create four nodes 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 
set n4 [$ns node] 
 
#Create links between the nodes 
$ns duplex-link $n0 $n3 10Mb 10ms DropTail 
$ns duplex-link $n1 $n3 10Mb 10ms DropTail 
$ns duplex-link $n2 $n3 10Mb 10ms DropTail 
$ns duplex-link $n3 $n4  1Mb 20ms DropTail 
 
 
#$ns queue-limit $n3 $n4 5 
 
#set monitor [$ns monitor-queue $n3 $n4 stdout 0.1] 
#[$ns link $n3 $n4] queue-sample-timeout;  
#[$ns link $S $D] start-tracing 
 
#$ns trace-queue $n3 $n4 [open Q3.tr w]   
$ns duplex-link-op $n0 $n3 orient right-down 
$ns duplex-link-op $n1 $n3 orient right 
$ns duplex-link-op $n2 $n3 orient right-up 
$ns duplex-link-op $n3 $n4 orient right 
 
#Monitor the queue for the link between node 2 and node 3 
$ns duplex-link-op $n3 $n4 queuePos 0.5 
 
# Tracing a queue 
#$ns queue-limit $n3 $n4 5000 
#set Queue/Orange orange_limit 200 
#set Queue/Orange queue_limit  300 
 
#Node 0 
#Create a UDP agent and attach it to node n0 
set udp0 [new Agent/UDP] 
$udp0 set class_ 1 
$ns attach-agent $n0 $udp0 
# Create a CBR traffic source and attach it to udp0 
set cbr0 [new Application/Traffic/CBR] 
$cbr0 set packetSize_ 500 
$cbr0 set interval_ 0.005 
$cbr0 attach-agent $udp0 
 
 
 
#Node1 
#Setup a TCP connection nd attach it to node n1 
set tcp0 [new Agent/TCP/Reno] 
$tcp0 set packetSize_ 1000 
$tcp0 set class_ 2 
$ns attach-agent $n1 $tcp0 
#Setup a FTP over TCP connection 
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set ftp0 [new Application/FTP] 
$ftp0 attach-agent $tcp0 
$ftp0 set type_ FTP 
 
#Node2 
#Setup a TCP connection nd attach it to node n2 
set tcp1 [new Agent/TCP/Reno] 
$tcp1 set packetSize_ 1000 
$tcp1 set class_ 3 
$ns attach-agent $n2 $tcp1 
#Setup a FTP over TCP connection 
set ftp1 [new Application/FTP] 
$ftp1 attach-agent $tcp1 
$ftp1 set type_ FTP 
 
#Create a Null agent (a traffic sink) and attach it to node n4 
set null0 [new Agent/Null] 
$ns attach-agent $n4 $null0 
 
set sink0 [new Agent/TCPSink] 
$ns attach-agent $n4 $sink0 
 
set sink1 [new Agent/TCPSink] 
$ns attach-agent $n4 $sink1 
 
 
#Connect the traffic sources with the traffic sink 
$ns connect $udp0 $null0   
$ns connect $tcp0 $sink0 
$ns connect $tcp1 $sink1 
$tcp0 set fid_ 2 
$tcp1 set fid_ 3 
 
# Tracing cwnd of TCP Agents 
set file_0 [open cwnd0.tr w] 
set file_1 [open cwnd1.tr w] 
$tcp0 trace cwnd_ 
$tcp1 trace cwnd_ 
$tcp0 trace rtt_ 
$tcp1 trace rtt_ 
$tcp0 trace ssthresh_ 
$tcp1 trace ssthresh_ 
$tcp0 attach $file_0 
$tcp1 attach $file_1 
 
 
#Schedule events for the CBR agents 
$ns at 0.10 "$cbr0 start" 
$ns at 0.20 "$ftp0 start" 
$ns at 0.20 "$ftp1 start" 
 
$ns at 4.70 "$ftp1 stop" 
$ns at 4.70 "$ftp0 stop" 
$ns at 4.70 "$cbr0 stop" 
 
 
#Call the finish procedure  
$ns at 5.0 "finish" 
 
#Run the simulation 
$ns run 
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K.  Script for Topology Echo 
 

The aim of this script is to construct Topology Echo. Number of flow groups, 

number of flows in a group, and aggregate bandwidth are parameters to this script. 

 

 
#Create a simulator object 
set ns [new Simulator] 
 
set nn     3 
set fn    20 
set AggBW 90 
 
#Open the nam trace file 
set nf [open out.nam w] 
$ns namtrace-all $nf 
 
#Open the trace file 
set nftr [open out.tr w] 
$ns trace-all $nftr 
 
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf nftr file_0     
 
         
        close $file_0 
        close $nf 
        close $nftr    
         
        set parse { 
       { 
          if ($6 == "cwnd_") { 
          print $1, $7;   
          } 
       }}        
         
        exec awk $parse cwnd0.tr > xcwnd0.tr 
                 
  #exec xgraph -bb -tk -m xcwnd0.tr xcwnd1.tr & 
  #exec nam out.nam & 
  exit 0   
} 
 
#Create the nodes 
set n3 [$ns node] 
set n4 [$ns node] 
$ns duplex-link $n3 $n4 10Mb 5ms ORANGE 
 
$ns duplex-link-op $n3 $n4 orient right 
 
#set redqueue [$link $n3 $n4] 
#Queue/ORANGE set thresh_ 3 
#Queue/ORANGE set maxthresh_ 30 
 
$ns queue-limit $n3 $n4 120   
 
#Monitor the queue for the link between node 3 and node 4 
$ns duplex-link-op $n3 $n4 queuePos 0.5 
#set monitor [$ns monitor-queue $n3 $n4 stdout 0.1] 



143 
 

 
 

for {set i 0} {$i < $nn} {incr i} { 
    for {set j 0} {$j < $fn} {incr j} { 
     
    set n($i,$j) [$ns node] 
     
    $ns duplex-link $n($i,$j) $n3 [expr $AggBW/($nn*$fn)]Mb [expr (pow(2,2-$i)*50-10)/2]ms DropTail   
 
    #Setup a TCP connection nd attach it to node n1 
    set tcp($i,$j) [new Agent/TCP/Reno] 
    $tcp($i,$j) set packetSize_ 1000     
    $ns attach-agent $n($i,$j) $tcp($i,$j) 
    #Setup a FTP over TCP connection 
    set ftp($i,$j) [new Application/FTP] 
    $ftp($i,$j) attach-agent $tcp($i,$j) 
    $ftp($i,$j) set type_ FTP 
     
    set sink($i,$j) [new Agent/TCPSink] 
    $ns attach-agent $n4 $sink($i,$j) 
     
    #Connect the traffic sources with the traffic sink 
    $ns connect $tcp($i,$j) $sink($i,$j)   
 
    if {$i == 0} { 
      $ns color [expr $fn *  $i + $j] Blue 
      $tcp($i,$j) set class_ 0 
      $tcp($i,$j) set fid_ [expr $fn *  $i + $j] 
    }  
    if {$i == 1} {  
      $ns color [expr $fn *  $i + $j] Red 
      $tcp($i,$j) set class_ 1 
      $tcp($i,$j) set fid_ [expr $fn *  $i + $j] 
    } 
    if {$i == 2} { 
      $ns color [expr $fn *  $i + $j] Green  
      $tcp($i,$j) set class_ 2 
      $tcp($i,$j) set fid_ [expr $fn *  $i + $j] 
    }           
 
    #Schedule events for the CBR agents 
    if {$j < [expr $fn/2]} { 
      $ns at 0.00 "$ftp($i,$j) start" 
    }  
    if {$j >= [expr $fn/2]} { 
      $ns at 2.00 "$ftp($i,$j) start" 
    }  
     
    $ns at 100.00 "$ftp($i,$j) stop" 
  } 
}  
 
 
 
#Call the finish procedure 
$ns at 100.0 "finish" 
 
#Run the simulation 
$ns run 
 


