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REAL-TIME AUDIO SIGNAL PROCESSING FOR SPEECH 

ENHANCEMENT 

 

ABSTRACT 

 

 

 In most applications, the purpose of speech enhancement is to enhance the quality 

and intelligibility of speech degraded by noise. Speech enhancement algorithms 

reduce or suppress the background noise to some extent and are used for various 

purposes at cellular telephone systems, air-ground communication, and hearing aids, 

etc. A typical speech enhancement study must include at least three main steps; 

enhancement, noise estimation, and evaluation. 

 

 In this thesis, we are focused on real-time speech enhancement by using a digital 

signal processing (DSP) evaluation module. Our purpose is to apply one of the 

speech enhancement algorithms in the literature together with a noise estimation 

algorithm by using real-time audio signal processing techniques. Besides, we are also 

focused on developing a new fusion noise estimation algorithm and utilizing this new 

method for our purposes. During this thesis study, many speech enhancement and 

noise estimation algorithms have been applied on the evaluation module and the 

performance of these algorithms have been evaluated by both subjective and 

objective measures. In addition to that, several additional signal processing 

techniques such as Infinite Impulse Response (IIR) filtering and some other 

enhancements related to software have been used in order to increase the real-time 

performance of the system. By this way, we have developed the final algorithm 

which includes the speech enhancement algorithm, our newly developed fusion noise 

estimation algorithm, and some other audio signal processing techniques combined 

to obtain the maximum performance at real-time. 

 

Keywords: audio, speech, speech enhancement, noise reduction, noise estimation, 

real-time audio signal processing, digital signal processing (DSP), digital signal 

processor. 
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KONUŞMA SESLERİNİN İYİLEŞTİRİLMESİ İÇİN GERÇEK ZAMANLI 

OLARAK SES SİNYALLERİNİN İŞLENMESİ 

 

ÖZ 

 

 Pek çok uygulamada konuşmanın iyileştirilmesinin amacı gürültüye maruz kalan 

konuşma verilerinin kalite ve anlaşılabilirliğini artırmaktır. Arka plan gürültüsünü 

belirli bir ölçüde azaltan ya da bastıran konuşma iyileştirme algoritmaları cep 

telefonu sistemleri, hava-yer irtibatı ve işitme cihazları gibi kullanım alanlarında 

çeşitli amaçlarla kullanılmaktadır. Tipik bir konuşma iyileştirme çalışması en 

azından üç temel adımdan oluşmaktadır; iyileştirme, gürültü tahmini ve 

değerlendirme.  

 

 Bu tezde bir sayısal sinyal işleme (DSP) geliştirme platformu kullanarak gerçek 

zamanda konuşmanın iyileştirilmesi üzerinde çalışmaktayız. Amacımız gerçek 

zamanlı ses sinyali işleme tekniklerini kullanarak literatürde varolan bir konuşma 

iyileştirme algoritmasıyla bir gürültü tahmin algoritmasının birlikte uygulanmasıdır. 

Bunun yanısıra, yeni bir füzyon gürültü tahmin algoritması geliştirmeye 

odaklanılmakta ve bu yeni yöntem amacımıza uygun olarak çalışmamıza dahil 

edilmektedir. Çalışma boyunca pek çok konuşma iyileştirme ve gürültü tahmin 

algoritması sayısal sinyal işleme geliştirme platformu üzerinde uygulanmıştır ve bu 

algoritmalar hem objektif hem de sübjektif kriterler ile değerlendirilmiştir. Buna 

ilave olarak, sistemin gerçek zamanda performansını artırmak maksadıyla sonsuz 

dürtü yanıtlı (IIR) filtre uygulaması gibi çeşitli sinyal işleme teknikleri ve yazılım 

yapısıyla ilgili diğer iyileştirmeler kullanılmıştır. Böylece, gerçek zamanda en iyi 

performansı elde etmek için konuşma iyileştirme algoritması, yeni geliştirilen füzyon 

gürültü tahmin algoritması ve diğer sinyal işleme tekniklerini içeren bir tümleşik 

algoritma geliştirilmiştir. 

 

Anahtar Kelimeler: ses, konuşma, konuşma iyileştirme, gürültü azaltma, gürültü 

tahmini, gerçek zamanlı ses sinyal işleme, sayısal sinyal işleme, sayısal sinyal 

işlemcisi. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

In most applications, the aim of speech enhancement is to improve the quality and 

intelligibility of speech degraded by noise.  

 

Speech enhancement algorithms reduce or suppress the background noise to some 

extent and are sometimes referred to as noise suppression algorithms. 

 

Figure 1.1 shows the speech enhancement process. The clean speech signal      

is degraded by additive noise      and noisy speech signal      is obtained as 

shown in Equation (1.1). Ideally, our purpose is to obtain the clean speech signal 

     again by using a speech enhancement algorithm. 

                        (1.1) 

 

Figure 1.1 Basic speech enhancement process. 

  

 The aims of speech cleaning vary according to the application. Cellular telephone 

systems typically suffer from background noise present in the car, etc. In an air-

ground communication, it is critical to eliminate high levels of cockpit noise. In this, 

as well as in similar communication systems used by military, it is more desirable to 

enhance the intelligibility rather than quality. 

 

Speech 

Enhancement 
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 Hearing-impaired listeners wearing hearing aids (Figure 1.2) experience extreme 

difficulty communicating in noisy conditions. Speech enhancement can be used to 

clean the noisy signal before amplification. 

 

 

Figure 1.2 Hearing aid worn by hearing-impaired listeners. 

  

 These examples show that the goal of speech enhancement varies depending on 

the application at hand. Ideally, we would like to improve both quality and 

intelligibility. In practice, however, most enhancement algorithms improve only the 

quality of speech. It is possible to reduce the background noise, but at the expense of 

introducing speech distortion, which in turn may impair speech intelligibility. Hence, 

the main challenge is to design effective speech enhancement algorithms. 

 

1.2 Typical Solution Steps for a Speech Enhancement Problem 

 

 Basically, there are three steps that should be performed for the solution of a 

speech enhancement problem. These three steps are; enhancement, noise estimation, 

and evaluation. While enhancement and noise estimation algorithms are used for 

development, evaluation algorithms are used to assess the performance of the 

developed system. 
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 The enhancement algorithm deals with improving some perceptual aspects of 

speech. This is the algorithm that performs the main improvement operation. The 

enhancement algorithm requires a noise estimation algorithm in order to determine 

the required information about noise. This information is necessary, because we 

assume that we know nothing about the noise source. The accuracy of noise 

estimation and tracking algorithm is very important in terms of the performance of 

the enhancement algorithm. Because of this, an algorithm that is most suitable for 

our purposes should be used.  

 

 The evaluation algorithms are necessary for testing the performance of the 

developed system. These algorithms can be subjective or objective. We prefer 

objective measures in order to obtain quantitative results about the performance of 

the developed system. There are different objective measures for evaluating 

intelligibility and quality.  

 

 There exist many studies in the literature related to speech enhancement and noise 

estimation (Berouti, M., Schwartz, M. & Makhoul, J. (1979), Hu, Y. & Loizou, P. 

(2004), Jabloun, F. & Champagne, B. (2003), Martin, R. (2001), Hirsch, H. & 

Ehrlicher, C. (1995)). This thesis study considers Scalart, P. & Filho, J. (1996) and 

Ephraim, Y. & Malah, D. (1985) for speech enhancement and Lin, L., Holmes W. H. 

& Ambikairajah, E. (2003) and Hirsch, H. & Ehrlicher, C. (1995) for noise 

estimation as starting points, because these studies produced seemingly better results 

and are more appropriate for real-time application purposes as compared to others. 

Some other techniques such as subspace algorithms and the Karhunen-Loéve 

transform (KLT) based method proposed in Hu, Y. and Loizou, P. (2003) have also 

good performance, but since these algorithms require heavy numerical calculations 

such as eigenvalue decompositions and matrix inverses, they are not suitable for 

employing in a real-time system. In this thesis, it is aimed to obtain a novel real-time 

system that produces satisfactory and competitive results as compared to non real-

time algorithms. It is also aimed to develop a fusion noise estimation algorithm by 

using Lin, L., Holmes W. H. & Ambikairajah, E. (2003) and Ramirez, J., Segura, J. 
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C., Benitez, C., Torre A. & Rubio, A. (2003) and to utilize this noise estimation 

algorithm together with a speech enhancement algorithm. 

 

1.3 Outline of the Thesis 

 

 The rest of the thesis is organized as follows. In Chapter Two, fundementals of 

speech and speech enhancement are given.  Chapter Three presents the used 

hardware platform; the evaluation module of Texas Instruments for developing the 

software. Chapter Four outlines our thesis work related to speech enhancement 

algorithms and noise estimation algorithms performed by using the evaluation 

module. The novel fusion noise estimation algorithm is described in Chapter Five. 

The evaluation results of the developed algorithms are interpreted in Chapter Six. In 

Chapter Seven, the results of the thesis are discussed and our conclusions are given. 
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CHAPTER TWO 

FUNDEMENTALS OF SPEECH ENHANCEMENT 

 

2.1 Speech Production 

  

 The speech signal is a highly nonstationary signal in that its second-order statistics 

(power spectrum) change over time. When examined closely, however, over a 

sufficiently short period of time (10-30 msec), its spectral characteristics are fairly 

stationary. 

 

 Speech segments can be separated into three categories: 

 Periodic 

 Noiselike 

 Silence  

 

 Speech production involves a number of organs and muscles and includes the 

lungs, the larynx, and the vocal tract. The lungs provide the main source of excitation 

in speech production. Figure 2.1 shows these organs and muscles and Figure 2.2 

shows the glottal pulses generated by vocal tracts. 

 

 

Figure 2.1 A cross section of the anatomy of speech production 

(Loizou, P. C., 2007). 
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Figure 2.2 Glottal pulses generated by vocal tracts (NCVS Tutorials – 

Voice Production, www.ncvs.org). 

 

 The time duration of one glottal cycle is known as the pitch period which is 

labeled with T in Figure 2.2. The reciprocal of the pitch period is known as the 

fundamental frequency. Males typically have a lower fundamental frequency than 

females, because their vocal folds are longer and more massive. The fundamental 

frequency is 60-150 Hz for males and 200-400 Hz for females and children. 

 

 The vocal tract acts as a physical linear filter that spectrally shapes the input wave 

to produce distinctly different sounds. 

 

2.2 Engineering Model of Speech Production 

 

 Figure 2.3 shows the engineering model of speech production (Loizou, P. C., 

2007). In this model, the vocal tract is represented by a quasi-linear system that is 

excited by either a periodic or an aperiodic source, depending on the state of vocal 

folds. The output of this model is the speech signal that we can measure accurately. 

Vocal folds are modeled as a switch having two states if we ignore the breathing 

state.  
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Figure 2.3 Engineering model of speech production (Loizou, P. C., 2007). 

 

2.3 The Effects Degrading the Speech Signal 

 

The principal degradations that we can be concerned with are: 

 Additive acoustic noise – such as the noise added to the speech signal when 

recorded in an environment with noticeable background noise, like in an 

aircraft cockpit. 

 Acoustic reverberation – results from the additive effect of multiple 

reflections of an acoustic signal.  

 Convolutive channel effects – results when the communication channel is 

not modelled effectively for the channel equalizer to remove the channel 

impulse response.  

 Non-linear distortion arising such as due to clipping – for example, when 

inappropriate gain is applied at the signal input stage. 

 Electrical interference  

 Codec distortion – distortion caused by the coding algorithm due to 

compression. 

 Distortion introduced by recording apparatus – poor response of 

microphone. 
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2.4 Noise Sources 

 

 Noise appears in different shapes and forms in daily life. It can be stationary, such 

as fan noise from a PC or it can be non-stationary such as in a restaurant where 

sounds of multiple people speaking in the background are mixed with the sound 

coming from the kitchen. Figures 2.4 through 2.7 show time domain noise 

waveforms for a car and a train and their power spectral density estimates, all plotted 

using MATLAB. 

 

 

Figure 2.4 Example noise waveform for a car; s(t) is normalized amplitude. 
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Figure 2.5 PSD estimate of the waveform in Figure 2.4. 

 

                

Figure 2.6 Example noise waveform for a train; s(t) is normalized amplitude. 
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Figure 2.7 PSD estimate of the waveform in Figure 2.6. 

 

2.5 Classes of Speech Enhancement Algorithms 

 

 A number of algorithms have been proposed in the literature for speech 

enhancement. These algorithms can be divided into three main classes: 

 Spectral Subtractive Algorithms 

 Statistical Model Based Algorithms 

 Subspace Algorithms 

 

2.5.1 Spectral Subtractive Algorithms 

 

 Assuming additive noise, the spectrum of the clean signal can be estimated by 

subtracting an estimate of the noise spectrum from the noisy speech spectrum. The 

noise spectrum can be estimated and updated during periods when the signal is 

absent. The assumption made is that noise is stationary or a slowly varying process, 

and that the noise spectrum does not change significantly between the updating 

periods. 
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The enhanced signal is obtained by computing the inverse discrete Fourier 

transform (DFT) of the estimated signal using the phase information of the noisy 

signal. The algorithm is computationally simple as it only involves a forward and an 

inverse Fourier transform.  

 

This operation does not need to be performed on magnitude spectrum; it can also 

be performed on power spectrum or higher order spectrums. Figure 2.8 (Loizou, P. 

C., 2007) shows the general form of the spectral subtraction algorithm. 

 

 

Figure 2.8 General form of the spectral subtraction algorithm (Loizou, 

P. C., 2007). 

  

 Subtracting the expected noise spectrum rather than its instantaneous value causes 

two problems:  

 There is residual broad-band noise after processing. 

 Individual narrow band spectral spikes remain and generate tonal noise often 

referred to as musical noise.  

 

 A number of improvements have been proposed to circumvent these problems 

including the introduction of a gain floor and over-subtraction (Berouti et. al., 1979, 

Vary, P. & Martin R., 2006). Many variants of the spectral subtraction method exist, 

each with its own strengths and weaknesses (Loizou, P. C., 2007).  
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2.5.2 Statistical Model Based Methods – Wiener Filtering 

 

 Wiener filtering approach derives the enhanced signal by optimizing a 

mathematically tractable error criterion, the mean-square error. The system is 

designed in such a way that the output signal is as close to the desired signal as 

possible. The estimation error is computed and made as small as possible. The 

optimal filter that minimizes the estimation error is called the Wiener filter. Figure 

2.9 (Loizou, P. C., 2007) shows the block diagram of the Wiener filtering approach. 

 

 

Figure 2.9 Block diagram of the statistical filtering problem (Loizou, P. C., 

2007). 

 

It should be noted that one of the constraints placed on the filter is that it is linear, 

thus making the analysis easy to handle. In principle, the filter could be finite 

impulse response (FIR) or infinite impulse response (IIR), but often FIR filters are 

used because: 

 They are inherently stable. 

 The resulting solution is linear and computationally easy to evaluate. 

Assuming an FIR filter, we have; 

                                  
         (2.1) 

  

 The mean square of the estimation error is commonly used as a criterion for 

minimization, and the optimal filter coefficients can be derived in time or frequency 

domain (Loizou, P. C., 2007). 
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2.5.3 Statistical Model Based Methods – Nonlinear Estimators 

 

 Nonlinear estimators take the probability density function (PDF) of noise and the 

speech DFT coefficients explicitly into account. They are generally used with a soft-

decision mechanism that takes the probability of speech presence into account. Here, 

the speech enhancement problem is given in a statistical estimation framework. 

When a set of measurements that depend on an unknown parameter are given, we 

wish to find a nonlinear estimator of the parameter of interest. 

 

 In our application, the measurements correspond to the set of DFT coefficients of 

the noisy signal (noisy spectrum) and the parameters of interest are the set of DFT 

coefficients of the clean signal (clean signal spectrum). 

 

 Various techniques exist in the estimation theory literature for deriving these 

nonlinear estimators such as maximum likelihood estimators and Bayesian 

estimators. 

 

2.5.3.1 Maximum Likelihood Estimators 

 

 Maximum likelihood is the most popular approach in statistical estimation theory 

for deriving practical estimators. They are often used even for the most complicated 

estimation problems. 

           
 

                (2.2) 

  

 In speech enhancement terminology, y can be the observed data set,   might be 

the clean speech magnitude and      is the maximum likelihood estimate of  . 

       is the likelihood function (McAulay, R. J. & Malpass, M. L., 1980). 

 

2.5.3.2 Bayesian Estimators 

 

 In maximum likelihood, we assumed that   was deterministic but unknown. In 

Bayesian philosophy,   is assumed as a random variable and the realization of it is to 

be estimated. This approach takes its name from Bayes’ theorem. The Bayesian 
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estimators typically perform better than the maximum likelihood estimators, as they 

make use of prior knowledge (Lotter, T. & Vary, P., 2005, Wolfe, P. & Godsill, S., 

2000, Wolfe, P. & Godsill, S., 2001). 

 

2.5.3.3 MMSE Estimator 

 

 The Wiener estimator is considered to be the optimal (in the mean-square-error 

sense) complex spectral estimator, but it is not the optimal spectral magnitude 

estimator. Short-time spectral amplitude (STSA) is very important with respect to 

intelligibility and quality (Loizou, P. C., 2007). Hence, several authors have 

proposed optimal methods for estimating spectral magnitude, such as; 

 Maximum likelihood method (Ephraim, Y. & Malah, D., 1985), 

 Decision-directed approach (Cohen, I., 2005, Hasan, M., Salahuddin, S. & 

Khan, M., 2004, Cappe, O., 1994). 

 

2.5.4 Subspace Algorithms 

 

 The speech enhancement algorithms described so far were based on signal 

processing and statistical estimation. Subspace algorithms are largely based on linear 

algebra theory. These algorithms are based on the principle that the clean signal 

might be confined to a subspace of the noisy Euclidean space. We could estimate the 

clean signal simply by nulling the components of the noisy vector residing in the 

noise subspace. 

 

 For the implementation of subspace algorithms, singular value decomposition 

(SVD) (Moor, B., 1993) and Karhunen-Loève transform (KLT) (Mittal, U. & 

Phamdo, N., 2000) based algorithms are used in speech enhancement. The majority 

of the subspace algorithms were originally formulated under the assumption that 

noise is white. Some extensions to handle colored noise also exist (Wilkinson, J. H., 

1999, Rezayee, A. & Gazor, S., 2001). The implementation of subspace algorithms 

requires a high computational load as SVD or eigenvalue decomposition (EVD) 

needs to be performed in every frame (Loizou, P. C., 2007). 
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2.6 Noise Estimation Algorithms 

 

 For the speech enhancement algorithms given up to now, it is assumed that an 

estimate of the noise spectrum is available. Such an estimate is critical for the 

performance of the algorithms such as for evaluating Wiener filter, for estimating a 

priori SNR in the MMSE, or for estimating covariance matrix in the subspace 

algorithms. 

 

 The noise estimate has a major impact on the quality of the enhanced signal. If the 

noise estimate is too low with respect to true noise level, annoying residual noise will 

be audible. If the noise estimate is too high, speech will be distorted, possibly 

resulting in intelligibility loss. 

 

2.6.1 Voice Activity Detection (VAD) 

 

 Voice activity detection (VAD) is the process of discriminating between voice 

activity and silence. It is the simplest approach which estimates and updates the noise 

spectrum during the silent segments of the signal. Although such an approach might 

work satisfactorily for stationary noise (e.g., white noise), it will not work well in 

more realistic enviroments (e.g., in a restaurant), where the spectral characteristics of 

noise change constantly. 
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Figure 2.10 An example speech signal; arrows indicate the silent intervals. 

  

 Figure 2.10 shows the silent intervals in a sentence when a voice activity detector 

is active. 

 

 An accurate noise estimate is required at all times, even during the speech 

activity. Noise estimation algorithms continuously track the noise spectrum for 

nonstationary scenarios. There are three main classes of noise estimation algorithms. 

 

2.6.2 Minimal-tracking Algorithms 

 

 These algorithms track the minimum of the noisy speech power in each frequency 

band and estimate the noise level in that band. Examples can be found in Martin, R. 

(1993), Martin, R. (1994), Martin, R. (2001) and Doblinger, G. (1995). 
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2.6.3 Time-recursive Averaging Algorithms 

 

 The principle of these algorithms is that we can estimate and update the noise 

spectrum of that band whenever the effective SNR at a particular frequency band is 

extremely low. Examples can be found in Sohn, J. & Sung, W. (1998), Cohen, I. 

(2002) and Lin, L., Holmes W. H. & Ambikairajah, E. (2003). 

 

2.6.4 Histogram-based Algorithms 

 

 These algorithms assume that the noise levels correspond to the maximum of the 

histogram of energy values. Examples can be found in Hirsch, H. & Ehrlicher, C. 

(1995) and Ris, C. & Dupont, S. (2001). 

 

2.7 Evaluating the Performance of Speech Enhancement Algorithms 

 

The main evaluation methods for speech enhancement systems look at the effect 

of the system on the intelligibility of the speech signal and the improvement in the 

overall quality of the signal.  

 

There are two groups of methods for assessing the intelligibility or quality of 

speech: Subjective and objective methods. 

 

2.7.1 Subjective Methods 

 

These methods require the judgement of human listeners. These can be further 

divided into two categories: 

 

 Absolute scoring methods - a single stimulus is tested, 

 Preference methods - multiple signals are compared. 

 

2.7.2 Objective Methods 

 

The judgment is predicted with some analysis of the system. Objective methods 

can be further divided into two categories: 
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 Intrusive - require access to both original and processed signals, 

 Non-intrusive - only require access to the processed signal. 

 

2.7.3 Quality and Intelligibility Evaluation Techniques 

 

 Quality assessment can be done using subjective listening tests or objective 

quality measures. Subjective evaluation involves comparisons of original and 

processed speech signals by a group of listeners who rate the quality. Objective 

evaluation involves mathematical comparison of the original and processed speech 

signals. Objective measures quantify quality by measuring the numerical “distance” 

between the original and processed signals. Clearly, for an objective measure to be 

valid, it needs to correlate well with the subjective listening tests.  

 

 Quality and intelligibility are different attributes, and the two are not equivalent. 

For that reason, different assessment methods are used to evaluate the quality and 

intelligibility. Quality is highly subjective in nature and is difficult to evaluate 

reliably. Quality measures includes attributes such as “natural”, “raspy”, “hoarse”, 

“scratchy”, and so on. Intelligibility measures assess “what” the speaker said; the 

meaning or the content of the spoken words. Unlike quality, intelligibility is not 

subjective and can be easily measured by presenting the speech material to a group 

of listeners and by asking them to identify the words spoken. 

 

 There are many methods available for evaluating both intelligibility and quality in 

the literature. We will explain the ones that we use for the purpose of evaluating the 

algorithms in the following sections. 

 

2.7.3.1 Perceptual Evaluation of Speech Quality 

 

PESQ, perceptual evaluation of speech quality, is a family of standards 

comprising a test methodology for automated assessment of the speech quality as 

experienced by a user of a telephony system. It is standardised as ITU-T 

recommendation P.862, (2001). Today, PESQ is a worldwide applied industry 
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standard for objective voice quality testing used by phone manufacturers, network 

equipment vendors, and telecom operators. 

 

PESQ was particularly developed to model subjective tests commonly used in 

telecommunications (e.g. ITU-T P.800, 1996) to assess the voice quality by human 

listeners. Consequently, PESQ employs true voice samples as test signals. In order to 

characterize the listening quality as perceived by users, it is of paramount importance 

to load modern telecom equipment with speech-like signals. Many systems are 

optimized for speech and would respond in an unpredictable way to non-speech 

signals (e.g. tones, noise). Guidelines for proper applications of voice test samples 

are defined in the PESQ application guide ITU-T P.862.3. 

 

The block diagram of the PESQ measure is shown in Figure 2.11 below. The 

original (clean) and degraded signals are first level-equalized to a standard listening 

level, and filtered by a filter with response similar to a standard telephone handset. 

The signals are aligned in time to correct for time delays, and then processed through 

an auditory transform to obtain the loudness spectra. The difference, termed 

disturbance, between the two loudness spectra is computed and averaged over time 

and frequency to produce the prediction of subjective mean opinion score (MOS) 

(Loizou, P. C. (2007)). 
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Figure 2.11 Block diagram of PESQ measure computation. 
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2.7.3.2 Spectral Distance Measures Based on LPC 

  

Several objective measures were proposed based on the dissimilarity between   

all-pole models of the clean and enhanced speech signals (Quackenbush, S., 

Barnwell, T. & Clements, M., 1988). These measures assume that over short time 

intervals, speech can be represented by a p
th

 order all-pole model of the form 

                        
 
          (2.3) 

where       are the coefficients of the all-pole filter (determined using linear 

prediction techniques),    is the filter gain, and      is a unit variance white noise 

excitation. Log-likelihood ratio is one of the most common all-pole-measures used to 

evaluate speech-enhancement algorithms. Cepstral distance measures derived from 

the linear predictive coding (LPC) coefficients are also used. 

 

2.7.3.2.1 LLR Objective Speech Quality Measure. The log-likelihood ratio (LLR) 

measure is defined as: 

                 
    
       

  
     

          (2.4) 

where   
                             are the LPC coefficients of the clean 

signal,     
                                are the coefficients of the enhanced 

signal, and    is the (p+1)x(p+1) Toeplitz autocorrelation matrix of the clean signal.  

 

  2.7.3.2.2 Cepstrum Distance Objective Speech Quality Measure. The LPC 

coefficients can also be used to derive a distance measure based on cepstrum 

coefficients. This distance provides an estimate of the log-spectral distance between 

two spectra. The cepstrum coefficients can be obtained recursively from the LPC 

coefficients {  } using the following expression (Rabiner, L. & Schafer, R., 1978)  

         
 

 
                           

        (2.5) 

where  , which is also given in Equation (2.3), is the order of the LPC analysis. A 

measure based on cepstrum coefficients can be computed as follows (Kitawaki, N., 

Nagabuchi, H., & Itoh, K., 1988) 

             
  

      
                  

 
         (2.6) 
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where       and        are the cepstrum coefficients of the clean and enhanced 

signals, respectively. 

 

2.7.3.3 Composite Objective Speech Quality Measure 

 

Composite measures are formed by combining multiple objective measures. The 

rationale behind the use of composite measures is that different objective measures 

capture different characteristics of the distorted signal, and therefore combining them 

in a linear or nonlinear fashion can potentially yield significant gains in correlations. 

One possibility is to use the following linear regression mode 

                       
 
         (2.7) 

where      is the mapping function presumed to be linear,   is the number of 

objective measures involved,        
  are the dependent variables corresponding to 

the subjective ratings of   samples of degraded speech,     is the independent 

(predictor) variable corresponding to the jth objective measures computed for the     

observation (degraded file), and    is a random error associated with each 

observation. The regression coefficients    can be estimated to provide the best fit 

with the data using a least-squares approach which is described in Quackenbush, S., 

Barnwell, T. & Clements, M. (1988). The   objective measures considered in 

Equation (2.7) may include, among other measures, the  LPC-based measures (e.g., 

LLR), segmental SNR measures (e.g., SNRseg), or the PESQ measure. The selection 

of objective measures to include in the composite measures is not straightforward 

and, in some cases, it is based solely on experimental evidence (trial and error) and 

intuition. Ideally, we would like to include objective measures that capture 

complementary information about the underlying distortions present in the degraded 

signal. 

 

 We have used the composite method described in Hu, Y. and Loizou, P. (2006) as 

one of our evaluation methods which involves LLR, SNRseg, weighted spectral 

slope (WSS), and PESQ measures. 
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2.7.3.4 MARS Frequency-Variant fwSNRseg Measure 

 

A linear function      was assumed in Equation (2.7) for mapping   objective 

measures to the observed subjective ratings,        
 . Such a model is accurate only 

when the true form of the underlying function is linear. If it is not, then the modeling 

error will likely be large and the fit will be poor. Nonparametric models, which make 

no assumptions about the form of the mapping function, can alternatively be used. 

More specifically, models based on multivariate adaptive regression splines (MARS) 

have been found to yield better performance for arbitrary data sets (Friedman, J., 

1991). Unlike linear and polynomial regression analysis, the MARS modeling 

technique is data driven and derives its functional form from the data. The basic idea 

of the MARS modeling technique is to recursively partition the domain into smaller 

subregions and use spline functions to locally fit the data in each region. The number 

of splines used in each subregion is automatically determined from the data. The 

MARS model has the following form 

                 
 
            (2.8) 

where       are the basis functions, and   is the number of the basis functions that 

are automatically determined from the data (note that   could be larger than the 

number of objective measures,  ). Spline basis funcitons of the following form were 

proposed in Friedman, J. (1991) 

                  
  

                  (2.9) 

where     are the predictor variables (values of the objective measures),     are the 

split points (knots) determined from a recursive algorithm that partitions the domain 

into smaller subregions,    is the number of splits involved in the computation of the 

     basis function, and       . One of the most powerful features of MARS 

modeling is that it allows for possible interactions between the predictor variables so 

that a better fit can be found for the target variable.  

 

2.7.3.5 Frequency Weighted SNRseg Objective Measure 

 

This method is a segmental SNR measure which is evaluated in frequency 

domain. For this measure to be meaningful, it is important that the original and 
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processed signals be aligned in time and that any phase errors present be corrected. 

The equation of the frequency domain segmental SNR can be given as follows 

          
  

 
 

          
                          

   

   
 
   

   
       (2.10) 

where    is the weight placed on the jth frequency band,   is the number of bands, 

  is the total number of frames in the signal,        is the filterbank amplitude of 

the clean signal in the     frequency band at the     frame, and         is the 

filterbank amplitude of the enhanced signal in the same band. The main advantage of 

using the frequency-based segmental SNR over the time-domain SNRseg is the 

added flexibility of assigning different weights for different frequency bands of the 

spectrum. There is also the flexibility of choosing perceptually motivated frequency 

spacing such as critical-band spacing. 

 

 One potential problem with the estimation of SNRseg is that the signal energy 

during intervals of silence in the speech signal (which are abundant in conversational 

speech) will be very small, resulting in large negative SNRseg values, which will 

bias the overall measure. One way to remedy this is to exclude the silent frames from 

the sum in Equation (2.10) by comparing short-time energy values against a 

threshold. 

 

2.7.3.6 Frequency-Variant fwSNRseg Objective Measure 

 

As an alternative to the frequency domain fwSNRseg measure, the weights for 

each frequency band can be obtained using regression analysis, producing the so 

called frequency-variant objective measures (Quackenbush, S. et. al., 1988). This 

way, the weights can be chosen to give maximum correlation between the objective 

and subjective measures. For these measures, a total of   (one for each band) 

different objective measures,   , are computed for each file, where    is given as 

    
 

 
          

                          
                      (2.11) 
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The optimal weights for each objective measure    of each band are obtained 

using    -order linear regression analysis, yielding the following frequency-variant 

objective measure  

              
 
            (2.12) 

where {  } are the regression coefficients,    is given in Equation (2.11), and    is 

the number of bands (    in Quackenbush, S. et. al., 1988). Nonlinear regression 

analysis can alternatively bu used to derive the frequency-variant objective measures. 

 

2.7.3.7 Speech Recognition 

 

Speech recognition converts spoken words to text. Recognizing the speaker can 

simplify the task of translating speech. Speech recognition applications include voice 

user interfaces such as voice dialing, call routing, voice control of home appliances, 

search, simple data entry, preparation of structured documents, speech-to-text 

processing (e.g., word processors or emails). 

 

Both acoustic modeling and language modeling are important parts of modern 

statistics based speech recognition algorithms. Hidden Markov models (HMMs) are 

widely used in many systems. Language modeling has many other applications such 

as smart keyboard and document classification. 

 

There are several speech-to-text algorithms which transcribe the spoken words 

simultaneously. We use “Dragon NaturallySpeaking” software, version 10.0, from 

Nuance Communications, Inc. for evaluating the intelligibility performance of 

systems that we develop. Methods other than speech recognition can only be used to 

evaluate the quality. However, speech recognition is directly related with the 

intelligibility. This evaluation is performed as follows: 

 Firstly, it is necessary to train the speech-to-text software. A clean speech file 

is used to train the software. 

 After the software is trained, the evaluation is performed using another 

speech file of the same speaker; that is, if an audio book is used, the first 
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chapter of the book can be used to train the algorithm and the second chapter 

of the same book can be used to evaluate the algorithm. 

 In order to evaluate the algorithms, noise files including different types of 

noise (white noise, pink noise, speech noise, etc.) are added to the speech file 

reserved for evaluation, separately.  

 These noisy speech files are used as input files to the evaluation module. The 

audio output of the evaluation module is connected to the audio input of the 

computer and the recordings are saved. Each noisy file is recorded with and 

without application of the enhancement algorithm. We do not use the noisy 

files directly. We record them from the output of the evaluation module 

without any processing in order to eliminate the effect of analog recording, 

evaluation module, cables, etc.  

 Both the noisy speech files and the enhanced speech files are applied to the 

speech-to-text software as inputs. If the number of correctly identified words 

is greater in the enhanced file, it means that the intelligibility increases. 

Otherwise, if the number of correctly identified words in the noisy speech file 

is greater than the one in the enhanced file, then it means that the 

intelligibility decreases. 

 This operation is performed for each noise type that we want to evaluate and 

according to all the results, the intelligibility performance of the system is 

obtained. 
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CHAPTER THREE 

OMAP – L137 EVALUATION MODULE 

 

 The OMAP-L137 EVM is a standalone development platform that enables users 

to evaluate and develop applications for the OMAP-L137 processor.  Note that the 

OMAP-L137 and C6747 are the same devices except the fact that C6747 does not 

include the ARM9 core. Detailed information concerning the OMAP L-137 

processor can be found in Appendix A and OMAP-L137 Processor datasheet, 2008. 

 

 Figures 3.1 and 3.2 (OMAP-L137 EVM Tech. Ref., 2008) show the image of 

OMAP-L137 EVM and its block diagram, respectively. 

 

 

 Figure 3.1 OMAP-L137 EVM. 
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      Figure 3.2 Block diagram of OMAP-L137 EVM. 

     

 OMAP-L137 is selected for this thesis study because of its advantages in terms of 

performance and flexibility such as being a floating point processor, including 

external SDRAM, and having an operating frequency of 300 MHz. Key features of 

the EVM are; 

 A Texas Instruments OMAP-L137 device with a C674x VLIW DSP floating 

point processor and an ARM926EJ-S processor operating up to 300 MHz, 

 64 Megabytes SDRAM, 

 SPI Boot EEPROM, 

 Port Ethernet Phy/switch, 

 SD/MMC/MMC Plus media card interfaces, 

 TLV320AIC3106 Stereo Codec, 

 USB 1.1 USB2 2.0 interfaces, 

 RS-232 interface, 

 On chip real time clock, 

 User LEDs/4 position user DIP switch, 

 Expansion connectors for daughter card use and embedded JTAG emulation. 
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 Figure 3.3 (SPRT529B, 2009) shows the software structure of the OMAP-L137 

EVM. Both processors inside the OMAP-L137 processor can be used or only one of 

them can be in use based on the application at hand. If only a digital signal 

processing task is to be performed, then it makes more sense to use only the DSP 

processor. However, if one wants to develop a media player, for example, then both 

ARM and DSP processors can be used. 

 

Figure 3.3 OMAP-L137 Software Solutions. 

 

3.1 TI C67x DSP Library 

 

 The TI C67x DSPLIB is an optimized floating-point DSP Function Library for C 

programmers using TMS320C67x devices. It includes C-callable, assembly-

optimized general-purpose signal-processing routines. These routines are typically 

used in computationally intensive real-time applications where optimal execution 

speed is critical. In addition, by providing ready-to-use DSP functions, TI DSPLIB 

can significantly shorten DSP application development time. Some example 

functions are given as follows; 
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 DSPF_sp_autocor (autocorrelation)  

 DSPF_sp_biquad (biquad filter)  

 DSPF_sp_convol (convolution)  

 DSPF_sp_fftSPxSP (mixed radix forward fast Fourier transform (FFT) with 

bit reversal)  

 

3.2 Direct Memory Access (DMA) 

 

 Direct memory access (DMA) is a feature of modern computers and 

microprocessors allowing certain hardware subsystems within the computer to access 

system memory for reading and/or writing independent of the central processing unit. 

Many hardware systems use DMA including disk drive controllers, graphics cards, 

network cards, and sound cards.  

 

 Computers that have DMA channels can transfer data to and from devices with 

much less CPU overhead than computers without a DMA channel. Similarly, a 

processing element inside a multi-core processor can transfer data to and from its 

local memory without occupying its processor time and allowing computation and 

data transfer concurrency. 

 

 Without DMA, using programmed input/output (PIO) mode for communication 

with peripheral devices, or load/store instructions in the case of multicore chips, the 

CPU is typically fully occupied for the entire duration of the read or write operation, 

and is thus unavailable to perform other tasks. With DMA, the CPU would initiate 

the transfer, do other operations while the transfer is in progress, and receive an 

interrupt from the DMA controller once the operation has been done. This is 

especially useful in real-time computing applications where not stalling behind 

concurrent operations is critical. Another related application area is various forms of 

stream processing where it is essential to have data processing and transfer in parallel 

in order to achieve sufficient throughput. 



 
 

30 
 

CHAPTER FOUR 

THE EXPERIMENTAL STUDY 

 

In this chapter of the thesis, we outline the applied algorithms for the speech 

enhancement problem. First, a feasibility study for the studied algorithms is given 

and then the flowchart of the proposed algorithm is presented. Then, the equations 

and explanations of the applied speech enhancement, noise estimation, and 

evaluation algorithms are provided. 

 

4.1 Hardware Configuration 

 

We have used the following hardware configuration shown in Figure 4.1 during 

our studies. The computer is used for uploading the software to the evaluation 

module and for inputting audio files to the EVM. All the processing operations are 

performed on the EVM and the processed audio is given from the audio output of the 

EVM to the speakers or headphone.   

 

Figure 4.1 The hardware configuration used during this thesis study. 

 

 The configuration shown in Figure 4.1 is used for the subjective evaluation of the 

developed algorithms whereas we have used the configuration in Figure 4.2 for the 

objective evaluation of the developed algorithms. In this configuration, the only 

difference from Figure 4.1 is the use of a sound card for recording the processed 

speech data. By this way, the recorded files can be evaluated via the evaluation 

algorithms on the computer. 
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Figure 4.2 The hardware configuration used for objective evaluation. 

 

4.2 The Feasibility Study for the Algorithms 

 

The important points for developing our enhancement algorithm can be given as 

follows. 

 The enhancement algorithm should include a noise estimation algorithm to be 

suitable for real-time processing, because the noise source is not considered as 

stationary. This operation is mandatory. 

 The enhancement algorithm might include a block that determines whether the 

frame is speech or not. This step is optional. 

 A decision mechanism might be necessary to decide whether a considered 

speech frame is intelligible enough. If it is not intelligible, then it requires 

enhancement. This step is also optional. 

 The enhancement algorithm should not introduce either speech distortion or 

musical noise as much as possible. This is quite critical in terms of the 

performance of the developed algorithm. 

 In order for the algorithm to be successful, it should at least enhance either the 

quality or intelligibility of the speech. If it enhances only one of them, it 

should not degrade the other. For example, if the algorithm enhances only the 

quality, it is desired that it does not degrade the intelligibility, or at least the 

intelligibility should stay the same. 

 The whole process should not be too long for real-time processing. The 

algorithm at hand should finish its job until the next frame is taken. This issue 

is very critical, because we do not have a chance to store the data. All the 



32 

 

 
 

operations on one frame should be completed in approximately up to 30 msec 

at most. 

 

4.3 The Basic Algorithm 

 

In Figure 4.3, the flowchart of the basic algorithm is given. 

START
Initialize 

Hardware

Wait for DMA to 

collect data

from audio 

decoder

Frame 

Ready?

Apply Input 

Overlapping

Estimate the 

Noise Spectrum

Apply 

Enhancement 

Algorithm

Apply Bandpass 
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Send Output 

Frame to DMA

Audio Out from 

Headphone 

Output

END

Apply Output 

Overlapping

YES

BREAK

NO

INFINITE LOOP

  

Figure 4.3 The flowchart of the basic algorithm. 

 

After the software is executed, the first operation performed here is to initialize 

the hardware. During this process, the audio driver and the audio codec, the McASP 

port which is used to carry digital audio data, and the DMA block are initialized.  

 

After the initialization process, the analog audio data are collected from the line-in 

audio input which exists on the EVM. This audio data correspond to the noisy speech 
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signal. The DMA block collects this data in a previously allocated buffer. When the 

audio frame is ready, the required operations on the collected data are performed. 

The first operation to be performed is the application of overlapping algorithm to the 

input data. Then, the noise spectrum of the input data should be estimated, because it 

is most likely that the noise spectrum is non-stationary. Thus, it is necessary to 

update the noise spectrum constantly. For the current frame, the noise spectrum is 

estimated and updated, and then the speech enhancement algorithm is applied. It is 

possible to increase the number of algorithms to be applied in this step. For example, 

a bandpass filter for filtering out the undesired frequencies other than speech 

frequencies could be used. After the processing operations are ended, an overlapping 

operation on the output data is performed. Next, the enhanced audio frame is 

transferred to the output DMA buffer and the DMA block sends these data to the 

codec. The last operation to be performed here is the digital-to-analog conversion of 

the audio data which is performed by the controller automatically and the audio 

output is given from the headphone output. 

 

The steps explained above are for one audio frame. As shown in the flowchart, 

these steps are applied successively to every input audio frame until the user halts the 

software. 

 

The overlapping, speech enhancement, noise estimation, and filtering operations 

shown in the flowchart are explained in the following sections. 

 

4.4 Application of the Algorithms on EVM 

 

As described in Section 1.2, there are three main steps to be performed for a 

typical speech enhancement study. In Figure 4.4, there is a summary of these steps. 
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    Figure 4.4 Summary of typical steps for the solution of a speech enhancement problem. 

 

We explain speech enhancement and noise estimation algorithms applied on the 

EVM. As mentioned in Chapter Two, there are a variety of algorithms for both 

speech enhancement and noise estimation in the literature. Obviously, it is not 

practical to try all these algorithms. The purpose here is to develop an efficient 

system which is proper for a real-time application and has good performance. The 

main challenges are performance and execution time of the algorithm. Some 

algorithms such as subspace algorithms can have better performance in terms of 

intelligibility, but they cannot be used in a real-time system, because they require 

longer execution time.  

 

In light of these facts, “Log-spectral amplitude estimator (LOG-MMSE)” 

proposed in Ephraim, Y. & Malah, D. (1985) and “Wiener filtering algorithm based 

on a priori SNR estimation (Wiener-SNR)” described in Scalart, P. & Filho, J. (1996) 

are selected as the enhancement algorithms, because these two algorithms are known 

to perform better (Loizou, P. C. (2007)). 

 

We have tried several noise estimation algorithms together with the 

aforementioned enhancement algorithms. Since the noise estimation algorithm 

directly affects the performance of the system, different results are obtained by 

application of different noise estimation algorithms. We have tried voice activity 

• Several algorithms exist as explained before.

• All these algorithms have powerful and weak 
aspects.

Enhancement

• Very important in terms of the performance of the 
enhancement algorithm.

• Different methods are available.

Noise 
Estimation

• Subjective and objective methods are available for 
evaluating the performance of the system.

• Both quality and intelligibility should be evaluated.
Evaluation
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detection (VAD), “Weighted-spectral averaging”, “SNR-dependent recursive 

averaging algorithms” and “Histogram-based algorithms” as explained in (Loizou, P. 

C. (2007)) together with the enhancement algorithms. 

 

For the application of these algorithms, one more step called overlapping is 

necessary. Overlapping operation is not only related with our algorithm, but also it is 

mandatory for a real-time audio application in order to prevent the discontinuities 

which cause a “popping” sound. 

 

The last step performed is the filtering operation after the application of the 

enhancement algorithm, because the speech related frequencies do not occupy the 

whole audio frequency range and filtering out the undesired frequency bands 

increases the performance of the system. 

 

The block diagram given in Figure 4.5 shows the essential steps of the whole 

algorithm applied for speech enhancement. In this section, we will explain 

implementation details at each step. 

 

 Figure 4.5 Main steps of the developed system. 

 

4.4.1 Overlapping Method 

 

As shown in Figure 4.3, after the audio frame is taken from the DMA buffer, the 

overlapping should be performed on the data. Overlapping is used to prevent 

discontinuities between successive frames. There are some methods such as overlap-

add and overlap-save for the implementation of overlapping. 

 

Our input and output buffers include 768 samples and the processing buffer 

includes 1024 samples, because we have used 25% overlapping rate. Since our input 

and output buffers include 768 samples and the sampling frequency is 32 kHz, the 

Enhancement 
Algorithm

Noise PS 
Update

Overlapping Filtering
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time duration for processing one data packet can be at most 24 msec. As shown in 

Figure 4.6, the first 256 elements of the processing buffer is the last 256 elements of 

the previous input buffer and the remaining 768 elements of the processing buffer are 

the elements of the current input buffer. The last 256 elements of each input buffer 

are stored for the next processing buffer. 

 

All the signal processing operations are performed on the processing buffer. For 

our application, these tasks could be obtaining the power spectral density estimate of 

noise, taking FFT, inverse FFT, and executing enhancement algorithm. After the 

processing tasks are done, the output buffer that is sent to the DMA for audio output 

should be obtained. This operation is illustrated in Figure 4.7. 

(n-1)th Data Packet for Processing

(n)th Data Packet for Processing

(n+1)th Data Packet for Processing

 Figure 4.6 Demonstration of the overlapping on the input buffer. 

 

As shown in Figure 4.7, the processed frames have 1024 samples, but the output 

buffer has only 768 samples. Due to overlapping, the last 256 samples of each 

processed frame are stored to be used with the next frame. As shown in Figure 4.7, 

the last 256 samples of the (n-1)
th

 frame are multiplied with a decreasing linear ramp 

function and the first 256 samples of the n
th

 frame are multiplied with an increasing 

ramp function. Then, these two groups of multiplied samples are summed up. 
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        data packet for processing 

        

Frame        

256 Samples 
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Figure 4.7 Demonstration of the overlapping on the output buffer. 

  

Figure 4.8 shows this operation in a different way. Note that the last 256 samples 

of the n
th

 frame are not used with the n
th

 frame. They are stored to be used with the 

(n+1)
th

 frame. As explained before, the last 256 samples of the (n-1)
th

 frame are 

multiplied with a decreasing linear ramp function and added to the first 256 samples 

of the n
th

 frame which are multiplied with an increasing linear ramp function. By this 

way, the n
th

 output buffer containing 768 samples is created. 
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Figure 4.8 Demonstration of the overlapping process on the 

output buffer (illustration on a single frame). 
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4.4.2 The Applied Enhancement Algorithms 

 

In this section, we explain the two enhancement algorithms that we have used 

during our studies; LOG-MMSE and Wiener-SNR algorithms. 

 

4.4.2.1 Wiener-SNR Algorithm 

 

This algorithm is based on the Wiener filtering approach. In speech enhancement 

applications, the input signal      expressed below is the noisy speech signal 

                         (4.1) 

where      is the clean speech signal and      is the noise signal. The objective of 

the Wiener filter is therefore to produce an estimate of the clean signal     . 

 

The corresponding Wiener filters can be derived in time or frequency domain. 

Here, we do not give the derivation which can be found in Loizou, P. C. (2007). 

After the frequency domain derivation, the Wiener filter can be obtained as 

      
       

               
           (4.2) 

where     is the power spectrum of the clean speech signal and     is the power 

spectrum of the noise signal. As we can easily see from Equation (4.2), this filter is 

not realizable, because we do not know the clean speech signal (it is the signal to be 

obtained). If we define  

   
       

       
             (4.3) 

as the a priori SNR at frequency   , we can also express the Wiener filter as follows 

      
  

    
            (4.4) 

 

Note that          , and         when      (at extremely low-SNR 

regions) and         when      (at extremely high-SNR regions). According 

to Equation (4.4), the Wiener filter emphasizes portions of the spectrum where SNR 

is high and attenuates portions of the spectrum where the SNR is low.  
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There are many written articles and many methods are available to obtain an 

estimate of a priori SNR    (Hu, Y. & Loizou, P., 2004, Scalart, P. And Filho, J., 

1996, Cappe, O., 1994, Ephraim, Y. And Malah, D., 1984). For our algorithm, we 

have used a noniterative approach used in Scalart, P. & Filho, J. (1996) for 

estimating the Wiener gain function which can be expressed in terms of    

     
  

    
            (4.5) 

where   is the Lagrangian multiplier which is an adjustable parameter. The focus 

was on getting a good (low-variance) estimate of the a priori SNR    needed in the 

Wiener gain function,     , because it is known that a low-variance estimate of    

can eliminate musical noise. In the method we used, the a priori SNR    was 

estimated using the decision-directed method (Scalart, P. & Filho, J., 1996). More 

specifically,    was estimated as a weighted combination of the past and present 

estimates of   . At frame  ,        was estimated as 

         
           

          
           

        

        
         (4.6) 

with   being a smoothing constant (       in Scalart, P. & Filho, J., 1996).   

         denotes the enhanced signal spectrum obtained at frame m-1, and 

            denote the noisy speech and noise spectra, respectively.        can be 

approximated as 

                                    (4.7) 

where        denotes the current frame estimate of   . This recursion provides 

smoothness in the estimate of   , and consequently can eliminate the musical noise. 

 

 The flowchart given in Figure 4.9 shows the steps of the Wiener-SNR algorithm 

used in the software and Figure 4.10 shows the related equations that are applied at 

each step. 
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 Figure 4.9 Flowchart of Wiener-SNR algorithm for speech enhancement. 
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Figure 4.10 Defining equations of Wiener-SNR algorithm. 
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4.4.3 LOG-MMSE Estimator 

 

The Wiener filtering approach given in the previous section assumes a linear 

relationship between the clean spectrum and the true spectrum. Acknowledging the 

importance of the short-time spectral amplitude (STSA) on speech intelligibility and 

quality, several authors have proposed optimal methods for obtaining the spectral 

amplitudes from noisy observations (Ephraim, Y. & Malah, D., 1985, Cohen, I., 

2005, Hasan, M., Salahuddin, S. & Khan, M., 2004 and Cappe, O., 1994). 

 

The MMSE estimator, unlike the Wiener estimator, does not assume the existence 

of a linear relationship between the observed data and the estimator, but it does 

require knowledge about the probability distributions of the speech and noise DFT 

coefficients.  

 

Although a metric based on the squared error of the magnitude spectra as given in 

Loizou, P. C. (2007) is mathematically tractable, it may not be subjectively 

meaningful. It has been suggested that a metric based on the squared error of the log-

magnitude spectra may be more suitable for speech processing. In Ephraim, Y. & 

Malah, D. (1985), the derivation of an estimator that minimizes the mean-square 

error of the log-magnitude spectra  

                
 
                (4.8) 

is given. In Equation (4.8),     is the expectation operator. The optimal LOG-MMSE 

estimator can be obtained by evaluating the conditional mean of the       as 

                               (4.9) 

from which we can solve for     as 

                                 (4.10) 

 

Lengthy derivations are omitted here.  However, they can be found in Ephraim, Y. 

& Malah, D. (1985). As a result, the optimal LOG-MMSE estimator is obtained as 

    
  

    
     

 

 
 

   

 

 

  
                          (4.11) 

where    is the a priori SNR, and             is the gain function of the LOG-

MMSE estimator. The integral in Equation (4.11) is known as the exponential 
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integral and can be evaluated numerically. The exponential integral, Ei(x), can be 

approximated as follows 

       
   

 

 

 
   

  

 
 

  

           (4.12) 

 

Some other approximations can also be found in the literature (Ephraim, Y. & 

Cohen, I., 2006).  

 

Figure 4.11 shows the flowchart of the LOG-MMSE algorithm including the steps 

of the algorithm and Figure 4.12 shows the equations used in these steps. 
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  Figure 4.11 Flowchart of LOG-MMSE algorithm for speech enhancement. 
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      Figure 4.12 Equations of LOG-MMSE algorithm. 

 

4.4.4 Voice-Activity Detection (VAD) 

  

As explained in the introduction section, voice activity detection (VAD) is the 

process of discriminating between voice activity and silence. This is a binary 

decision algorithm and is executed by comparing the calculated variable for voice 

activity decision with a constant value. 

 

We use VAD at the beginning for updating the noise spectrum. However, we have 

to note that it is not very successful, especially for non-stationary noise case.  

 

Detailed information about different VAD algorithms can be found in Loizou, P. 

C. (2007). The flowchart of the VAD algorithm used in this thesis study is given in 

Figure 4.13 and the related equations are given in Figure 4.14. 
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Figure 4.13 Flowchart of VAD for noise power spectrum estimation. 
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 Figure 4.14 Equations of VAD method. 

 

4.4.5 Weighted Spectral Averaging 

 

Weighted spectral averaging is a simple approach for noise estimation via 

recursive averaging proposed in Hirsch, H. & Ehrlicher, C. (1995). This method is 

described as follows: 

   
        

          
                 (4.13) 

                                        (4.14) 

                                    (4.15) 

where          indicates the magnitude spectrum of the noise,   denotes the 

smoothing factor which is fixed, and   denotes the threshold. 

 

In this approach, the smoothing factor,  , is fixed, but a different method is used 

to control the update of the noise spectrum. More specifically, the decision as to 

whether the noise spectrum should be updated or not is based on the comparison of 

the estimated posterior SNR to a threshold. If the posterior SNR is found to be 
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smaller than a specified threshold, suggesting absence of speech, then the noise 

spectrum is updated. Conversely, if the posterior SNR is found to be larger than the 

threshold, suggesting presence of speech, then the noise spectrum update is 

postponed. 

 

In Figures 4.15 and 4.16, the flowchart and the equations of the weighted spectral 

averaging technique are given, respectively. 
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Figure 4.15 Flowchart of weighted spectral averaging algorithm for noise power spectral estimation. 

 

                                                           (1) 

   
    

   
                                                         (2) 
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     Figure 4.16 Equations of weighted spectral averaging algorithm. 

 

In this method, the threshold value β can have a significant effect on the noise 

spectrum estimation. If β is chosen too small, then the noise spectrum is not updated 

often enough and is underestimated. On the other hand, if β is chosen too large, then 

the noise spectrum is overestimated. In this approach, the β parameter is determined 

experimentally according to the input data at hand. 
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4.4.6 Histogram-Based Noise Estimation 

 

The histogram-based noise estimation algorithms are motivated by the 

observation that the most frequent value of energy values in individual frequency 

bands correspond to the noise level of the specified frequency band; that is, the noise 

level corresponds to the maximum of the histogram of energy values.  

 

In its most basic formulation, the noise estimate is obtained based on the 

histogram of past power spectrum values (Hirsch, H. & Ehrlicher, C., 1995); that is, 

for each incoming frame, we first construct a histogram of power spectrum values 

spanning a window of several hundreds of milliseconds, and take as an estimate of 

the noise spectrum the value corresponding to the maximum of the histogram values. 

This is done separately for each individual frequency bin. A first-order recursive 

smoothing may also be performed on the noise spectrum estimate to smooth out any 

outliers in the estimate. 

 

Figures 4.17 and 4.18 show a simple example of finding the noise level estimate 

at a frequency component. Figure 4.17 shows the noisy signal power spectrum levels 

during an interval of 150 msec and Figure 4.18 is the histogram of this signal 

calculated with 40 bins. The histogram based noise estimation algorithm detects the 

maximum of the histogram and sets that level as the noise level at that frequency. For 

this example, the noise level at frequency 1000 Hz is set as -8.66 dB. 
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Figure 4.17 Normalized power spectrum levels for the noisy signal at f=1000 Hz. 

 

 

Figure 4.18 Histogram of normalized power spectrum levels for the noisy signal at 

f=1000 Hz 
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 The histogram method described in Loizou, P. C. (2007), can be summarized as 

follows: 

 

For each frame λ; 

(1) Compute the noisy speech power spectrum          . 

(2) Smooth the noisy power spectral density (PSD) using first-order recursion 

                                      (4.16) 

where α is a smoothing constant. 

(3) Compute the histogram of D past PSD estimates         

                                using, say, 40 bins. 

(4) Let                   be the counts in each of the 40 bins in the histogram 

and                   denote the corresponding centers of the histogram 

bins. Let      be the index of the maximum count, i.e;  

           
      

             (4.17) 

Then, determine the estimate of the noise PSD (denoted by            as the 

value corresponding to the maximum of the histogram, i.e.,           

       . 

(5) Smooth the noise estimate           using first order recursion 

   
             

                            (4.18) 

where    
       is the smoothed estimate of the noise PSD, and    is the smoothing 

constant. 

 

 Figure 4.19 shows the flowchart of the histogram-based method. 
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Figure 4.19 Flowchart of histogram-based noise estimation algorithm. 

 

Because these steps are performed for each frequency bin (1024 frequency bins 

for our case), it takes too much time for a real-time processing task. Hence, we have 

performed an optimization in order to implement this algorithm in software. 

Especially, Steps 3 and 4 require too much processing power.  

 

In order to use this algorithm as our noise estimation algorithm, we first calculate 

the power spectrum of each noisy speech frame and smooth them. We have generally 

used 80 frames for creating a noise estimate (80 frames takes approximately 2 

seconds for 32 kHz sampling rate). These 80 smoothed noisy power spectrums are 

stored in an 80x1024 array. During the collection of the data, no other operation is 

performed. After all these smoothed noisy frames are collected, the histogram of 

each frequency component is calculated. Since we use 1024-point FFT, there must be 

1024 histogram calculations. This operation needs too much processing power to 

perform during a single period (24 msec). In order to solve this problem, the 

histogram calculation operation is divided into 8 parts and completed during these 8 

periods. Moreover, we have not calculated 1024 histograms. Instead, we have 

calculated 512 histograms for 512 frequency components, because the Fourier 

transform output is symmetrical. Therefore, we calculate the noise PSD by using 512 

frequency components and duplicate these components in order to perform 1024-
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point noise PSD. For the histogram calculation, we have used 40 bins. After this 

operation, the maximum of each histogram must be found. Again, this operation 

needs too much processing power (it is completed during 4 cycles). The maximum of 

each histogram is used to estimate the noise PSD. The last operation is the smoothing 

of the noise PSD with a smoothing constant. 

 

4.4.7 SNR-Dependent Recursive Averaging Noise Estimation 

 

The time-recursive averaging algorithms exploit the observation that the noise 

signal typically has a nonuniform effect on the spectrum of speech, in that some 

regions of the spectrum are affected by noise more than others. Put differently, each 

spectral component will typically have a different effective SNR. Consequently, we 

can estimate and update individual frequency bands of the noise spectrum whenever 

the effective SNR at a particular frequency band is extremely low. Equivalently, we 

can update the individual frequency bands of the noise spectrum whenever the 

probability of speech being present at a particular frequency band is extremely low. 

This observation led to the recursive-averaging type of algorithms in which the noise 

spectrum is estimated as a weighted average of past noise estimates and the present 

noisy speech spectrum. The weights change adaptively depending either on the 

effective SNR of each frequency bin or on the speech-presence probability. 

 

All time-recursive algorithms have the following general form 

   
                 

                                (4.19) 

where           is the noisy speech magnitude spectrum squared (periodogram), 

   
       denotes the estimate of the noise PSD at frame   and frequency k, and 

       is the smoothing factor, which is time and frequency dependent. Different 

algorithms were developed depending on the selection of the smoothing factor 

      . 

 

In the recursive averaging technique proposed in Lin, L., Holmes W.H. & 

Ambikairajah, E. (2003), the smoothing factor        in Equation (4.19) is chosen to 

be a sigmoid function of the posterior SNR       
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                         (4.20) 

β is a parameter with values in the range 15≤ β ≤30 and       is an approximation to 

the posterior SNR given by 

      
         

 

  
    

          
   

          (4.21) 

 

The denominator in Equation (4.21) gives the average of the estimated noise PSD 

for the past 10 frames.  

 

The recursive algorithm can be explained as follows: If speech is present, the 

posterior estimate       will be large and therefore         . Consequently, 

because         , we will have    
          

        ; that is, the noise update 

will cease and the noise estimate will remain the same as the previous frame’s 

estimate. Conversely, if speech is absent, the posterior estimate       will be small 

and therefore         . As a result,    
                ; that is, the noise 

estimate will follow the PSD of the noisy spectrum in the absence of speech. The 

main advantage of using the time smoothing factors, as opposed to using a fixed 

value for       , is that these factors are time and frequency dependent. This means 

that the noise PSD will be adapted differently and at different rates in the various 

frequency bins, depending on the estimate of  posterior SNR,      , in that bin. This 

is particularly suited in situations in which the noise is colored. 

 

4.4.8 Filtering as Post Processing 

 

The sounds of a normal speaking voice contain fundamental frequencies between 

100 and 300 Hz. The overtones contained in these sounds extend the range of 

frequencies to approximately 5000 Hz. Voices of different individuals vary in their 

frequency content. Men usually have voices with lower fundamental and harmonic 

frequencies than those of women and children. The range of fundamental frequencies 

of the singing voice is greater than that of the speaking voice; it varies from about 80 

Hz for a deep bass to about 1200 Hz for a high soprano. The overtones contained in 

the sounds of the singing voice reach as high as 10000 Hz. For purposes of 
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comparison, the frequency range of the instruments of a symphony orchestra 

includes fundamental of about 16 to 4000 Hz with overtones ranging to 12000 Hz or 

higher. 

 

Thus, the speech information is not included inside the entire audio spectrum 

between 0 - 20 kHz. The telephony systems use 300 Hz - 3400 Hz for speech 

transmission, but decreasing this interval can worsen the speech quality. Generally, 

the lowest frequency band that carries speech information can be regarded as 200 Hz, 

while the highest frequency that carries speech frequency can be thought 

approximately between 5 - 10 kHz depending on the harmonics. 

  

By considering this information, we have employed a fourth order IIR filter after 

the speech enhancement operation. This filter is a bandpass filter having cut-off 

frequencies of 200 Hz and 8000 Hz.  

 

The filter is designed using MATLAB “fdatool” as shown in Figure 4.20 and 

applied to the DSP platform software. 

 

After exporting the coefficients of the generated filter to MATLAB workspace, 

there is one more thing that must be done in order to use the filter in the DSP 

platform. MATLAB generates “SOS” and “G” default coefficients which represent 

the second-order section of a given digital filter. These coefficients should be 

converted to the equivalent transfer function representation (“A and B” coefficients) 

using “sos2tf” command of MATLAB. The MATLAB command line “[b,a] = 

sos2tf(sos,g)” returns the transfer function that describes a discrete-time system 

given by SOS in second-order section form with gain G. 
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 Figure 4.20 MATLAB “fdatool” used for designing digital filters. 

 

These generated coefficients are used in DSP evaluation module software. We can 

also check the generated coefficients by plotting the magnitude and phase responses 

as in Figure 4.21.  

 

Figure 4.21 Magnitude and phase responses of the applied filter. 
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CHAPTER FIVE 

A NOVEL FUSION NOISE ESTIMATION ALGORITHM 

 

 In this chapter, we explain the details of our newly developed fusion noise 

estimation algorithm. This algorithm is a combination of two methods related to 

noise estimation introduced in Lin, L., Holmes W. H. & Ambikairajah, E. (2003) and 

Ramirez, J. et. al. (2003). We have proposed two new algorithms called the “reset 

algorithm” and the “β parameter estimation algorithm” inspired by the existing 

methods proposed in Lin, L., Holmes W. H. & Ambikairajah, E. (2003) and Ramirez, 

J. et. al. (2003). The reset algorithm is used to reset the noise estimation algorithm 

when the input data change suddenly. The β parameter estimation algorithm deals 

with dynamically updating the β parameter that is used in the SNR dependent 

recursive averaging noise estimation algorithm introduced in Section 4.4.7. Both 

algorithms require computation of long-term spectral divergence (LTSD) value 

described in Ramirez J. et. al. (2003). 

 

5.1 Long-term Spectral Divergence (LTSD) 

 

 In Ramirez, J. et. al. (2003), it is stated that the proposed speech/non-speech 

detection algorithm assumes that the most significant information for detecting voice 

activity on a noisy speech signal remains on the time-varying signal spectrum 

magnitude. It uses a long-term speech window instead of instantaneous values of the 

spectrum to track the spectral envelope and is based on the estimation of the so-

called long-term spectral envelope (LTSE). The decision rule is then formulated in 

terms of the long-term spectral divergence (LTSD) between speech and noise. 

 

  Following Ramirez, J. et. al. (2003), we also utilize LTSD values in our proposed 

algorithm. In order to calculate LTSD, the following procedure is used. Let      be a 

noisy speech signal that is segmented into overlapped frames and,        be its 

amplitude spectrum for the     band and at frame  . The N-order long-term spectral 

envelope is defined as 

                            
    

       (5.1) 
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 Note that the LTSE is calculated for the interval between    and   . However, 

since our study is at real-time we do not have access to the future samples. Hence, 

we have slightly modified this definition as follows: 

                             
   

       (5.2) 

 

The  -order long-term spectral divergence between speech and noise is defined as 

the deviation of the LTSE with respect to the average noise spectrum magnitude 

     for the     band with k = 0; 1; . . . ;NFFT-1. It is given by; 

                 
 

    
 

          

     

      
         (5.3) 

 

In Ramirez, J. et. al. (2003), it is proved that the optimal window length,  , 

should be around 5 or 6. Hence, we also employ these values in the experiments of 

our study.  

 

5.2 Noise Estimation Reset Algorithm 

 

In this algorithm, our purpose is to reset the noise estimation algorithm in case the 

input data change immediately. At sudden changes, the noise estimation algorithm 

does not operate correctly because of the continuous interval of silence during the 

input switching. Thus, it is necessary to reset the noise estimation algorithm for the 

system to operate correctly.  

 

A case of sudden increase is illustrated in Figure 5.1. Without the reset algorithm, 

it is seen that the noise estimation algorithm does not operate correctly after the 

sudden increase. Hence, the noise estimation algorithm must be restarted. After the 

application of the reset algorithm proposed in this section, the noise estimation 

algorithm continues to operate as desired. Figure 5.2 demonstrates the operation of 

the reset algorithm. It is seen that the noise estimation algorithm is reset as marked in 

Figure 5.2 and continues to operate correctly after the reset occurs. 
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Figure 5.1 Calculated LTSD values after a change in the input signal (without application of the reset 

algorithm). 

 

 

 

Figure 5.2 Calculated LTSD values after a change in the input signal (with application of the reset 

algorithm). 

 

 The flowchart given in Figure 5.3 shows the steps of the noise estimation reset 

algorithm. The operation of the algorithm can be summarized as follows. 

LTSD Number 

LTSD Value 

LTSD Number 

LTSD Value 
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 If the algorithm runs at first time, the previous LTSD vector is filled with ±0.25 of 

current LTSD value. That is; the odd samples of the vector are filled with current 

LTSD value plus 0.25, while the even samples of the vector are filled with current 

LTSD value minus 0.25. This is necessary for the operation of one of the reset cases.  

 

 There are two reset cases for this algorithm. The first case checks if there is a 

sudden increase from the previous LTSD values to the current LTSD value. If the 

current LTSD value is greater than any of the previous LTSD values times LIM1, the 

reset case occurs. The LIM1 value is selected as 1.4 (40% difference). The second 

reset case checks the rate of change of LTSD. If it is too stable, then it is 

experimentally determined that a reset is necessary. In our system, the stability limit 

is ±1%, CNT_LIMIT is assigned as 38 and the total size of previous LTSD vector is 

40. When one of the reset cases occurs, the noise estimation parameters are reset. 
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Figure 5.3 The flowchart of the noise estimation reset algorithm. 



58 

 

 
 

5.3 β Parameter Estimation Algorithm 

 

It is stated in Lin, L., Holmes W. H. & Ambikairajah, E. (2003) that the β 

parameter is important for the rate of noise updates: larger values of β lead to slower 

noise updates, whereas smaller values of β give faster noise updates at a risk of over-

estimation. It is also stated that this value is selected as a constant value before the 

operation.  

 

Because our operation is at real-time and the input data are completely random, 

we do not have a chance to select the β parameter based on the input data. 

Additionally, a selected constant value will not be appropriate for all input signals. 

Thus, we need to estimate and update this parameter at run-time when necessary.  

 

In order to update the β parameter dynamically, we need some feature data. These 

data must have distinctive properties for input signals including different noise types 

and levels. For this purpose, we have experimented with several techniques and 

selected to use long-term spectral divergence (LTSD) which is used for speech/non-

speech analysis of the input data (Ramirez, J. et. al., 2003).  

 

The purpose of the developed algorithm is the selection of different β parameters 

based on the calculated LTSD value. Following our experiments with different signal 

and noise types, we have decided to use four different β values as shown in Figure 

5.4. 
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Figure 5.4 Use of different β values. 

  

If the input data are determined as just noise by the algorithm, a small β value is 

assigned. This value is selected as 0.1. If the input data are determined as only 

speech, which means that there is no or negligible level of noise, then a large β value 

is selected. This value is determined as 1.5 in our algorithm. “  ” and “  ” are the β 

values between noise only and speech only cases. The rationale behind the selection 

of    and    is different from the other two β values. For determining the appropriate 

β value, we check whether the pre-determined number of LTSD samples is outside 

the limit of ±10% of the average LTSD value. If this condition is satisfied, then the β 

value is set to   . However, if this condition is not satisfied, then the β value is set as 

equal to   . This is because, if the amount of LTSD variation with respect to the 

average LTSD value is sufficient in order to perform the speech/non-speech 

discrimination, then a larger β should be used. However, if the amount of LTSD 

variation is not sufficient to perform this discrimination, then a smaller β value 

should be used.    and    values have been selected as 0.45 and 0.6, respectively, 

after experimenting with different input signals. 

 

The calculated LTSD values obtained by using a constant β value (β = 0.6) for 

different input signals are given in figures below. The calculated LTSD values for 

noise-only input are shown in Figure 5.5. It is seen that the LTSD values are small 

and around 20. Thus, a threshold can be used for detection of noise-only input. This 
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threshold is set as 25 based on our experiments. That is, if the calculated LTSD value 

is under 25 for some interval, the input data are decided as noise-only and the β value 

for noise-only case is used. 

 

 

Figure 5.5 Calculated LTSD values for noise only input data. 

 

 In Figure 5.6, the calculated LTSD values for speech-only input case are plotted. 

It is seen that the values are quite high as compared to the noise-only case. Again, a 

threshold should be assigned. This threshold is determined to be 70. Hence, if the 

calculated LTSD values are greater than the determined threshold value, the input 

data are decided as the speech-only and the pre-determined β value for this case is 

set. 

  

LTSD Value 

LTSD Number 
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Figure 5.6 Calculated LTSD values for speech only input data. 

 

 

Figure 5.7 Calculated LTSD values for a signal having a clear speech/non-speech discrimination. 

 

 

LTSD Number 

LTSD Number 

LTSD Value 

LTSD Value 
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Figure 5.8 Calculated LTSD values for a signal not having a clear speech/non-speech discrimination. 

 

The calculated LTSD values for two different signals are shown in Figures 5.7 

and 5.8. We can determine a threshold value as shown in Figure 5.7 with a dashed 

line. By this way, we can easily perform the speech/non-speech discrimination for 

this input signal. If we want to perform VAD for the data in Figure 5.7, the values 

above the threshold would be decided as speech regions and the values under the 

threshold as non-speech regions. However, our purpose here is not to perform VAD. 

It is sufficient for us only to perform the speech/non-speech discrimination. Thus, the 

β value of 0.6 is used for such signals. 

 

If the calculated LTSD values in Figure 5.8 are analyzed, it is seen that the 

speech/non-speech discrimination is not clear as in the previous case. If we try to set 

some threshold values, it is hard to determine speech and non-speech regions for 

these data. Hence, we set the β value as 0.45 if this type of an input signal is 

encountered.  

 

 

LTSD Number 

LTSD Value 
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5.3.1 The Flowchart of the Algorithm 

 

In this section, we give the flowchart of the β parameter estimation algorithm and 

explain its steps. 

Initialize Variables

First 

Calculation of 

Beta?

Average LTSD = 

Current LTSD

Total Avg LTSD 

+=Current LTSD

YES

NO

Avg LTSD Count = 

AVG_CNT

Average LTSD = 

Total AVG LTSD/

AVG_CNT

YES

Avg LTSD 

Count++

NO

Reset Variables,

New Avg Calc 

Flag = TRUE

Average 

LTSD<Noise 

Level Limit?

Average 

LTSD>Clean 

Speech Level 

Limit?

Lower 

Bound<Current 

LTSD<Upper 

Bound?

NO

Beta = Beta for 

noise case
YES

Noise Clean Flag 

= TRUE

Beta = Beta for 

clean speech case

Noise Clean Flag 

= TRUE
YES

Out Of Limit 

Count++

Noise Clean Flag 

= FALSE
YES

NO

Noise Clean Flag 

= FALSE
NO

New Avg Calc 

=TRUE?

Out Of             

Lim Cnt > LIMIT & 

Noise Cln Flag = 

FALSE?

Out Of             

Lim Cnt < LIMIT & 

Noise Cln Flag = 

FALSE?

YES

NO

Beta prev = Beta

START

Beta = Beta1

Beta = Beta2

YES

YES

Beta Prev = 

Beta?

Beta check Flag = 

FALSE

Beta Check 

Flag = TRUE?

NO

Beta = Beta PrevNO

Beta Check Flag = 

TRUE

Beta Check Flag = 

FALSE

YES

Out Of Limit Cnt = 0, 

New Avg Calc = 

FALSE

YES

NO

NO

END

(1)

(2)

(3)

(4)

(5)

(6)
(7) (8)

(9)

(10)
(11) (12)

(13)
(14) (15)

(16)
(17) (18)

(19)

(20)

(21)
(22)

(23)
(24)

(26)
(27)

(28)

(29)

(30) (31)

(32)(33)

(34)

 Figure 5.9 The flowchart of β parameter estimation algorithm. 

 

The flowchart given in Figure 5.9 shows the steps of the β parameter estimation 

algorithm. Because the flowchart looks somewhat complicated, we explain the 

blocks one by one as follows. 
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(1), (33)  Start and End blocks of the algorithm 

 

(2)  Initialization of the required variables for the algorithm. 

 

(3) , (4) If the algorithm runs at first time, then we do not have an “average 

LTSD” value. Thus, it is equalized to the “current LTSD” value at first run of the 

algorithm. 

 

(5)  For a pre-determined number (AVG_CNT) of LTSD samples, the average 

LTSD is computed. For this purpose, the current LTSD values are summed until the 

average LTSD value is calculated. The AVG_CNT is defined as 250. That is, for 

every 250 LTSD samples, the average LTSD value should be computed. 

 

(6) , (7), (8)  If the number of calculated LTSD values reaches to AVG_CNT, 

then the algorithm computes the average LTSD value by dividing the summation of 

calculated LTSD values which are obtained in step (5) by the AVG_CNT. After the 

average LTSD value is obtained, then some variables are reset for new average 

calculation and a flag called “New Avg Calc” showing the average LTSD value is 

calculated in this cycle. 

 

(9)  If the number of summed LTSD values does not reach the desired 

AVG_CNT  value, then the average LTSD value should be calculated in this cycle. In 

this case, the counter that keeps the number of calculated LTSD values for average 

calculation should be increased by one. 

 

(10), (11), (12) If the average LTSD value is smaller than the pre-defined 

“Noise Level Limit” value, then it is decided by the algorithm that the current input 

does not include speech data, but only includes noise data. Therefore, the pre-defined 

β value for the noise case is set as the current β value. The “Noise Clean Flag” is 

used to keep the noise only/speech only cases. That is, if one of the β parameters is 

selected for noise only or speech only case, this flag is set to TRUE. This is 
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necessary because, if β is different than the noise only or speech only case, extra 

operations are needed to be performed. 

 

(13), (14), (15) If the average LTSD value is larger than the pre-defined “Clean 

Speech Level Limit” value, then it is decided by the algorithm that the current input 

includes speech data completely. Thus, the pre-defined β value for the speech only 

case is set as the current β value. The “Noise Clean Flag” value is again set to TRUE. 

 

(16), (17), (18), (19)  If the β value is not set to speech only or noise only β 

values, then it is necessary to determine if the β is set to    or   . For this operation, 

the number of LTSD samples that are outside the range should be counted. As 

already mentioned above, the range is ±10% of the average LTSD value. For each 

LTSD sample, this operation should be performed and the “Out of Limit Count” 

should be increased by one provided that the condition at issue is satisfied. The 

“Noise Clean Flag” should be set to FALSE even if the condition in question is 

satisfied or not. 

 

(20), (32) In this step, “New Avg Calc” flag is checked, because we should 

change the value of β to    or    based on a counting operation. If “New Avg Calc” 

flag is FALSE, the β value is kept unchanged, (the previous β value should be valid).  

 

(21), (22), (23), (24)  If the “Out of Limit Count” is greater than the pre-defined 

“LIMIT” value and “Noise Clean Flag” is FALSE, then the β value should be set as 

  . If the “Out of Limit Count” is smaller than the pre-defined “LIMIT” value and 

“Noise Clean Flag” is again FALSE, then the β value should be set as   . The 

“LIMIT” value is set 40 based on our experiments. That is, if 40 of the LTSD 

samples out of the total 250 samples provide outside limit condition, then    value 

should be used, otherwise    is assigned. If the “Noise Clean Flag” is TRUE, we do 

not perform any operations in this step, because the value of β has already been 

determined for noise only or speech only cases. 
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(25), (26), (27), (28), (29), (30)  There is one more operation to be performed 

before updating the β parameter. Because the input data are completely random, 

there can be some sudden increases or decreases in a certain period of time. In order 

to eliminate these sudden effects, a control case is added. This case checks if the 

following β parameters are obtained as the same value. If two sequential β 

parameters are the same, then we can update the β parameter. If not, the previous β 

value is accepted as valid, namely we do not update the β parameter in this case. 

 

(31) After the β parameter is updated based on the calculated average LTSD 

value, some initial values should be set for next calculations. The “Out of Limit 

Count” is set 0, because this count should be created from the new data set. The 

“New Avg Calc” flag is set as FALSE in order to start the next calculation operation. 
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CHAPTER SIX 

EVALUATION RESULTS 

  

 In this chapter, the evaluation results for quality and intelligibility measures are 

given.  

 

6.1 Evaluation Results for Quality Measure 

 

The results are obtained for different input signals by using different speech 

enhancement and noise estimation algorithms. For all the signals, all possible 

combinations are evaluated. Two tables are created based on the use of a bandpass 

filter. Table 6.1 shows the evaluation results when the bandpass filter is not in use 

and Table 6.2 shows the evaluation results when the bandpass filter is in use. 

 

The first lines of the tables show the optimal values of each quality measure. For 

instance, according to the PESQ measure, the speech quality is very high if the 

calculated value is near 4.5 and the speech quality is very low if the calculated value 

is near 0. The abbreviations used in these tables are given below. 

 Comp FW Mars - Frequency-variant fwSNRseg measure based on MARS 

analysis (Section 2.7.3.4). 

 Comp FW Seg Variant - Frequency-variant fwSNRseg measure (Section 

2.7.3.6). 

 Composite - Composite objective measure (Section 2.7.3.3). 

Each of the three speech quality measures given above produces three ratings: 

o SIG - predicted rating of speech distortion (between 1 and 5). 

o BAK - predicted rating of noise distortion (between 1 and 5). 

o OVL - predicted rating of overall quality (between 1 and 5). 

 LLR - Log likelihood ratio measure (Section 2.7.3.2.1). 

 CEP - Cepstrum distance measure (Section 2.7.3.2.2). 

 Comp FWSEG - frequency-weighted SNRseg measure using a different 

weighting function, the clean spectrum (Section 2.7.3.5). 

 PESQ - PESQ measure based on the ITU standard P.862 (Section 2.7.3.1) 
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 Different noise types are used in our experiments. The PSD estimates of these 

noise types  are given in Figures 6.1 through 6.5. 

 

 

Figure 6.1 PSD estimate of white noise. 

 

 

Figure 6.2 PSD estimate of speech noise. 
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Figure 6.3 PSD estimate of PN pink noise. 

 

 

Figure 6.4 PSD estimate of restaurant ambiance noise. 
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Figure 6.5 PSD estimate of airport noise. 

 

If we analyze the results in Tables 6.1 and 6.2, we see that the results when the 

bandpass filter is active are not better than the ones when the bandpass filter is not in 

use. This can be due to the comparison of clean speech signal and the filtered output, 

because the original speech data include the whole frequency range, but the 

processed speech data do not include the whole frequency range due to filtering 

operation. Therefore, the mathematical comparison may not match well with the 

application in this case. Either using subjective evaluation techniques or filtering the 

original speech data as pre-processing might solve this problem. 

 

 If we compare the speech enhancement and noise estimation algorithms based on 

the evaluation results given in Tables 6.1 and 6.2, we see that Wiener filtering 

approach together with the recursive-averaging noise estimation algorithm has 

produced favorable results for all input signals. Hence, this combination is selected 

for use in our further studies. 
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The objective evaluation results for the new fusion noise estimation algorithm are 

given in Table 6.3. Looking at these results, we can infer that better results are 

obtained when β value is assigned as 0.45 for “News with airport noise” and “Syn. 

Abst. with PN pink noise” input signals while better results are obtained for “G. 

Hitabe with white noise” input signal when β equals to 0.60.  

 

In Table 6.3, the β values labeled with “Auto” means that the β value is 

determined by the novel fusion noise estimation algorithm. As can be seen from the 

results, the new algorithm has produced favorable results for all three cases. If β had 

been selected as a constant value such as 0.45, it would have been appropriate for the 

first and second input signals. However, this would have not been the best selection 

for the last input signal. Thus, using our fusion noise estimation algorithm is a good 

way to determine the β parameter automatically. 

 

Besides, the fusion noise estimation algorithm also works for “noise-only” and 

“speech-only” cases that a constant β value can not handle. We do not give any 

objective results for these cases, but it is obvious that it is not necessary to apply the 

enhancement algorithm when the input data do not include noise. In the same way, if 

the input data includes only noise, we should suppress the input as much as possible, 

because it does not carry any information. 

 

6.2 Evaluation Results for Intelligibility Measure 

 

In this section, the evaluation results for intelligibility measure are given by using 

the procedure explained in Section 2.7.3.7. The clean speech file used in this test has 

not been used in the training phase of the speech-to-text algorithm for a more correct 

evaluation. Three types of noise are added to this file; white noise, speech noise, and 

PN pink noise. We obtain the results for each noise type and as corresponding to the 

application of different noise estimation and enhancement algorithms and filtering 

operation. The evaluation results obtained by using the speech-to-text software is 

given in Table 6.4. 
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Table 6.4 The number of correctly identified words by the speech-to-text software for different 

algorithm applications and noise types. 

Noise Type 
Enhancement 

Algorithm 

Noise 

Estimation 

Algorithm 

IIR 

Filter 

Number of 

Correctly 

Identified Words 

% Word Error 

Rate 

No No No No 749 6 (Org. File. Cmp.) 

White Noise No No No 7 99,07 

White Noise Log-MMSE Hist. Based OFF 15 98,0 

White Noise Log-MMSE Hist. Based ON 26 96,53 

White Noise Log-MMSE Rec. Avg. OFF 77 89,7 

White Noise Log-MMSE Rec. Avg. ON 124 83,4 

White Noise W-SNR Hist. Based OFF 172 77,0 

White Noise W-SNR Hist. Based ON 173 76,9 

White Noise W-SNR Rec. Avg. OFF 176 76,5 

White Noise W-SNR Rec. Avg. ON 328 56,2 

Speech Noise No No No 114 84,78 

Speech Noise Log-MMSE Hist. Based OFF 6 99,2 

Speech Noise Log-MMSE Hist. Based ON 13 98,27 

Speech Noise Log-MMSE Rec. Avg. OFF 14 98,13 

Speech Noise Log-MMSE Rec. Avg. ON 22 97,06 

Speech Noise W-SNR Hist. Based OFF 35 95,33 

Speech Noise W-SNR Hist. Based ON 32 95,73 

Speech Noise W-SNR Rec. Avg. OFF 129 82,78 

Speech Noise W-SNR Rec. Avg. ON 138 81,57 

PN Pink Noise No No No 155 79,3 

PN Pink Noise Log-MMSE Hist. Based OFF 58 92,26 

PN Pink Noise Log-MMSE Hist. Based ON 107 85,71 

PN Pink Noise Log-MMSE Rec. Avg. OFF 199 73,43 

PN Pink Noise Log-MMSE Rec. Avg. ON 192 74,37 

PN Pink Noise W-SNR Hist. Based OFF 297 60,35 

PN Pink Noise W-SNR Hist. Based ON 358 52,2 

PN Pink Noise W-SNR Rec. Avg. OFF 338 54,87 

PN Pink Noise W-SNR Rec. Avg. ON 377 49,67 

 

In this table, “No” means that no algorithm is applied to the noisy speech file; that 

is, the noisy speech file is directly used as an input to the speech-to-text software.  

 

The original speech file used for intelligibility evalulation includes 797 words. 

When the clean speech file is applied to the speech-to-text software, 749 words are 

correctly identified; that is, the word error rate of the speech-to-text software is 6%. 

The number of correctly identified words for noisy signals are calculated with 
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respect to the output of speech-to-text software for clean speech file, not the original 

text. However, since the word error rate of the speech-to-text software is 6%, this 

issue does not have an important effect on the scores. In Table 6.4, the word error 

rates of the noisy speech signals are given with respect to the output of the speech-to-

text software for clean speech file as mentioned. The first word error rate value given 

in this table (6%) is calculated with respect to the original text. 

 

As can be seen from Table 6.4, application of the algorithms generally increases 

the number of correctly identified words. For the white noise case, if no algorithms 

are applied, the number of correctly identified words is only 7. As shown in Figure 

6.6, application of algorithms always increases intelligibility for the white noise case. 

However, the maximum intelligibility is obtained when Wiener-SNR algorithm is 

applied together with recursive-averaging noise estimation algorithm and IIR filter. 

When the speech noise is applied to the clean speech data, this time some algorithms 

reduce the intelligibility as shown in Figure 6.7. In this case, again only the 

combinations of Wiener-SNR and recursive-averaging noise estimation algorithms 

increase the intelligibility while the others decrease it. For the PN pink noise, only 

the combinations of LOG-MMSE and histogram-based noise estimation algorithms 

decrease the intelligibility while the others increase it. Again, the best performance is 

obtained with the application of Wiener-SNR and recursive averaging noise 

estimation algorithms as shown in Figure 6.8.  

 

If the number of correctly identified words is compared with the total number of 

words in the clean speech file, it follows that the word error rate is 49,67% which 

means that only half of the total words are correctly identified at the best case. The 

word error rate is 99,07% for the white noise case, 84,78% for the speech noise case 

and 79,3% for the PN pink noise case without the application of any enhancement 

algorithms. If the values in Table 6.4 are analyzed, it can be seen that Wiener-SNR 

algorithm together with recursive-averaging noise estimation algorithm and IIR filter 

has decreased the word error rate from 99,07% to 56,2% for the white noise case, 

from 84,78% to 81,57% for the speech noise case and from 79,3% to 49,67% for the 
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PN pink noise case. Thus, we can state that application of the enhancement algorithm 

generally decreases the word error rate a great deal. 

 

In conclusion, Wiener-SNR algorithm together with recursive-averaging noise 

estimation algorithm has produced the best results among others for all noise types 

that are experimented with. It has also been seen that application of IIR filtering 

increases the number of correctly identified words considerably. 

 

 

Figure 6.6 Graphical comparisons of speech-to-text algorithm outputs for white noise. 
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Figure 6.7 Graphical comparisons of speech-to-text algorithm outputs for speech noise. 

 

 

Figure 6.8 Graphical comparisons of speech-to-text algorithm outputs for PN pink noise.
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CHAPTER SEVEN 

CONCLUSIONS 

 

Speech enhancement aims to improve speech quality by using various algorithms. 

The objective of enhancement is improvement in intelligibility and/or overall 

perceptual quality of degraded speech signal using audio signal processing 

techniques. 

 

Throughout this thesis work, a real-time system that performs speech 

enhancement task is designed and implemented on the evaluation module of OMAP-

L137 digital signal processor of Texas Instruments. Unlike the algorithms proposed 

in the literature, we have implemented the algorithm at real-time. Therefore, one of 

the most important challenges for us is the speed of the process. This means that the 

operations on the currently processed data must be completed until a new audio 

packet arrives. In addition to this requirement, the developed system needs to 

improve speech quality and/or speech intelligibility. 

 

We have implemented several algorithms by combining different speech 

enhancement, noise estimation algorithms, and filtering operations on the evaluation 

module. In order to implement some algorithms such as histogram-based noise 

estimation and LOG-MMSE speech enhancement algorithm on the evaluation 

module, we have applied several optimizations related to software and the 

architecture of the DSP. For instance, the memory management is very important in 

terms of the performance of the algorithm; the internal and external RAM blocks 

must be used correctly for the maximum performance. Inaccurate memory 

management causes delays in the process which leads to nonexecution of the desired 

algorithms. 

 

In addition to the implementation of the speech enhancement and noise estimation 

algorithms in the literature, we have also proposed a novel fusion noise estimation 

algorithm as outlined in Chapter Five. The proposed algorithm aims to increase the 

performance of the SNR-dependent recursive averaging noise estimation algorithm 
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described in Lin, L., Holmes W.H. & Ambikairajah, E. (2003) by updating the β 

parameter, which determines the rate of the noise updates based on the input signal. 

We have used the decision rule called LTSD which is proposed in Ramirez, J. et. al. 

(2003) in order to estimate the β parameter. By this way, we have proposed a new 

method that updates the β parameter based on the input data as opposed to the use of 

a constant β parameter as in Lin, L., Holmes W.H. & Ambikairajah, E. (2003). 

 

Different speech and noise signals are used during the studies: Atatürk's address to 

the Turkish youth, several news contents, a speech related to old ages, soccer games 

with heavy “Vuvuzela” noise, sounds of pilots in an airplane cockpit, white noise, 

PN pink noise, speech noise, restaurant ambiance noise, and airport noise, etc. The 

developed algorithms are tested by using all these noisy speech files and the 

processed data are evaluated by using both subjective and objective methods. 

 

We have evaluated several combinations of algorithms by using objective 

measures for both quality and intelligibility as described in Chapter Six. We have 

used eight different quality measures in order to evaluate the speech quality. 

According to the obtained results, the Wiener filtering approach together with 

recursive averaging noise estimation algorithm has produced favorable results in all 

cases and has generally provided the best results in terms of all quality measures. As 

already mentioned in Section 6.1, the use of IIR filter has not improved the quality 

noticeably. This is probably because of not filtering of the clean speech signal that is 

used by the objective measures for comparison.  

 

It is seen in Table 6.3 that the use of different β parameter values for different 

input types increases the performance and a constant β parameter value is not 

approprite for all cases. Hence, the β parameter should be updated based on the input 

signal type for a better performance. As shown in Table 6.3, the novel fusion noise 

estimation algorithm succeeds in automatically updating the β parameter based on 

the input signal type and produces acceptably good results for all cases. As described 

in Chapter Five, the β parameter value is determined as one of  the four different pre-

defined values. Further study can be performed in order to derive a procedure or 
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formula that can be used to compute the β parameter value by using some kind of 

audio features instead of using experimentally-determined β values. 

 

We have also evaluated the implemented algorithms in terms of speech 

intelligibility by using a speech recognition technique given in Section 2.7.3.7. 

Generally, most of the algorithms increases the intelligibility, but some of them 

decreases it for some input signals. According to this evaluation technique, again the 

Wiener filtering approach together with recursive averaging noise estimation 

algorithm and IIR filtering is the combination that provides the best performance in 

terms of intelligibility. That combination has decreased the word error rate from 

99,07% to 56,2% for the white noise case, from 84,78% to 81,57% for the speech 

noise case and from 79,3% to 49,67% for the PN pink noise case. Thus, we can state 

that application of the enhancement algorithm generally decreases the word error rate 

and increases the performance in terms of speech intelligibility a great deal. 

 

We have also used “vuvuzela” noise in our studies, but we have not applied 

objective evaluation methods for that noise type. With respect to subjective 

evaluation measures, it is seen that the enhancement algorithms, especially the 

Wiener filtering approach together with recursive-averaging noise estimation 

algorithm, suppresses the “vuvuzela” noise considerably. This combination has 

increased the speech quality without decreasing the speech intelligibility for the input 

signal containing “vuvuzela” noise. 

 

In summary, the combination of Wiener filtering approach and SNR-dependent 

recursive averaging noise estimation algorithm together with the application of IIR 

filtering has improved both speech quality and intelligibility in most cases. The novel 

fusion noise estimation algorithm has increased the performance of the noise 

estimation algorithm in terms of speech quality.  

 

 

 

 



82 

 

 
 

REFERENCES 

 

Berouti, M., Schwartz, M. & Makhoul, J. (1979). Enhancement of speech corrupted 

by acoustic noise. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 208-

211. 

 

Cappe, O. (1994). Elimination of the musical noise phenomenon with the Ephraim 

and Malah noise suppressor. IEEE Trans. Speech Audio Process., 2(2), 346-349. 

 

Cohen, I. (2002). Noise estimation by minima controlled recursive averaging for 

robust speech enhancement. IEEE Signal Process. Lett., 9(1), 12-15. 

 

Cohen, I. (2005). Relaxed statistical model for speech enhancement and a priori SNR 

estimation. IEEE Trans. Speech Audio Process., 13(5), 870-881. 

 

Doblinger, G. (1995). Computationally efficient speech enhancement by spectral 

minima tracking in subbands. Proc. Eurospeech, pp. 1513-1516. 

 

Ephraim, Y. & Malah, D. (1985). Speech enhancement using a minimum mean-

square error log-spectral amplitude estimator. IEEE Trans. Acoust., Speech, 

Signal Process., ASSP-23(2), 443-445. 

 

Hasan, M., Salahuddin, S. & Khan, M. (2004). A modified a priori SNR for speech  

enhancement using spectral subtraction rules. IEEE Signal Process. Lett., 11(4), 450-

453. 

 

Hirsch, H. & Ehrlicher, C. (1995). Noise estimation techniques for robust speech 

recognition. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 153-156. 

 

 

 



83 

 

 
 

Hu, Y. & Loizou, P. (2003). A generalized subspace approach for enhancing speech 

corrupted by colored noise. IEEE Trans. on Speech and Audio Processing, 11, 

334-341. 

 

Hu, Y. & Loizou, P. (2004). Speech enhancement based on wavelet thresholding the 

multitaper spectrum. IEEE Trans. on Speech and Audio Processing, 12(1), 59-67. 

 

Hu, Y. & Loizou, P. (2006). Evaluation of objective measures for speech 

enhancement. Proc. Interspeech, Pittsburg, PA.  

 

ITU-T International  Telecommunication  Union, Telecommunication  

Standardization  Sector of  ITU, P.862 (2001). Perceptual evaluation of speech 

quality (PESQ): An objective method for end-to-end speech quality assessment of 

narrow-band telephone  networks and speech codecs. Series P: Telephone 

Transmission Quality, Telephone Installations, Local Line Networks. 

  

ITU-T International  Telecommunication  Union, Telecommunication 

Standardization  Sector of  ITU, P.862 (1996). Methods for subjective 

determinatıon of transmission quality. Series P: Telephone Transmission Quality. 

 

Jabloun, F. & Champagne, B. (2003). Incorporating the human hearing properties in 

the signal subspace approach for speech enhancement. IEEE  Trans. on Speech 

and Audio Processing, 11(6), 700-708. 

 

Lin, L., Holmes W. H. & Ambikairajah, E. (2003). Adaptive noise estimation 

algorithm for speech enhancement. Electronics Lett., 39(9), 754-755. 

 

Loizou, P. C. (2007). Speech Enhancement: Theory and Practice, CRC Press. 

 

 

 



84 

 

 
 

Lotter, T. & Vary, P. (2005). Speech enhancement by maximum a posteriori spectral 

amplitude estimation using a supergaussian speech model. EURASIP J. Appl. 

Signal Process, 2005 (7), 1110-1126. 

 

Martin, R. (1993). An efficient algorithm to estimate the instantaneous SNR of 

speech signals. Proc. Eurospeech, pp. 1093-1096. 

 

Martin, R. (1994). Spectral subtraction based on minimum statistics. Proc. Euro. 

Signal Process., pp. 1182-1185. 

 

Martin, R. (2001). Noise power spectral density estimation based on optimal  

smoothing and minimum statistics. IEEE Transactions on Speech and Audio       

Processing, 9(5), 504-512. 

 

McAulay, R. J. & Malpass, M. L. (1980). Speech enhancement using a soft-decision 

noise suppression filter. IEEE Trans. Acoust. Speech Signal Process., 28, 137-

145. 

 

Mittal, U. & Phamdo, N. (2000). Signal/noise KLT based approach for enhancing 

speech degraded by noise. IEEE Trans. Speech Audio Process., 8(2), 159-167. 

 

Moor, B. (1993). The singular value decomposition and long and short spaces of 

noisy matrices. IEEE Trans. Signal Process., 41(9), 2826-2838. 

 

NCVS Tutorials – Voice Production. National Center for Voice and Speech,  

http://www.ncvs.org/ncvs/tutorials/voiceprod/tutorial/graphing.html 

 

OMAP-L137 Evaluation Module, Technical Reference, 511345-0001 Rev. A, 

(2008). Spectrum Digital, Inc., www.spectrumdigital.com 

 

OMAP-L137 Low-Power Applications Processor Datasheet, SPRS563D, (2008). 

Texas Instruments, Inc., www.ti.com 



85 

 

 
 

Rabiner, L. & Schafer, R. (1978), Digital Signal Processing of Speech Signals, 

Englewood Cliffs, NJ: Prentice Hall. 

 

Ramirez, J., Segura, J. C., Benitez, C., Torre A. & Rubio, A. (2003). Efficient voice 

activity detection algorithms using long-term speech information. Speech 

Communication, 42, (2004), 271–287. www.elsevier.com/locate/specom 

 

Rezayee, A. & Gazor, S. (2001). An adaptive KLT approach for enhancing speech 

degraded by noise. IEEE Trans. Speech Audio Process., 8(2), 159-167. 

 

Ris, C. & Dupont, S. (2001). Assessing local noise level estimation methods: 

Application to noise robust ASR. Speech Communication, 34, 141-158. 

 

Quackenbush, S., Barnwell, T. & Clements, M. (1988). Objective Measures of 

Speech Quality, Englewood Cliffs, NJ: Prentice Hall. 

 

Scalart, P. & Filho, J. (1996). Speech enhancement based on a priori signal to noise  

estimation. Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing, 629-632. 

 

Sohn, J. & Sung, W. (1998). A voice activity detector employing soft decision based  

noise spectrum adaptation. Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 

365-368. 

 

SPRT529B, (2009). OMAP-L1x Software Solutions. Texas Instruments, www.ti.com 

 

Vary, P. & Martin, R. (2006). Digital speech transmission: Enhancement, coding and 

error concealment. Chichester, England: John Wiley & Sons. 

 

Wilkinson, J. H. (1999). The algebraic eigenvalue problem. New York: Oxford 

University Press.  

 

 



86 

 

 
 

Wolfe, P. & Godsill, S. (2000). Towards a perceptually optimal spectral amplitude 

estimator for audio signal enhancement. Proc. IEEE Int. Conf. Acoust. Speech 

Signal Process., 2, pp. 821-824.  

 

Wolfe, P. & Godsill, S. (2001). Simple alternatives to the Ephraim and Malah 

suppression rule for speech enhancement. Proc. IEEE Int. Conf. Acoust. Speech 

Signal Process., pp. 496-499. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

87 
 

APPENDIX A 

OMAP-L137 PROCESSOR 

 

A.1 Advanced Information 
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A.2 Functional Block Diagram 

 

 

      


