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the relative homological algebra approach to some problems related to complements

and supplements and who has introduced the coneat concept.

I would like to thank all people who have worked in translations (from German into
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RAD-SUPPLEMENTED MODULES AND FLAT COVERS OF QUIVERS

ABSTRACT

Let R be an arbitrary ring with unity, M be a left R-module and τ be a radical for

the category of left R-modules. If V is a τ-supplement in M, then the intersection of

V and τ(M) is τ(V ); in particular, if V is a Rad-supplement in M, then the intersection

of V and RadM is RadV . M is τ-supplemented if and only if the factor module of M

by Pτ(M) is τ-supplemented, where Pτ(M) is the sum of all τ-torsion submodules of

M. If V is both a τ-supplement in M and τ-coatomic, then it is a supplement in M.

Every left R-module is Rad-supplemented if and only if R/P(R) is left perfect, where

P(R) is the sum of all left ideals I of R such that Rad I = I. For a left duo ring R,

R is Rad-supplemented as a left R-module if and only if R/P(R) is semiperfect. For

a Dedekind domain R, M is Rad-supplemented if and only if M/D is supplemented,

where D is the divisible part of M. Max-injective R-modules and N eat-coinjective

R-modules coincide, where N eat is the proper class projectively generated by all

simple R-modules. A ring R is a left C-ring if and only if all left max-injective

R-modules are injective. Over a Dedekind domain, a homomorphism f from A to B of

modules is neat in the sense of Enochs if and only if the kernel of f is in RadA and the

image of f is closed in B. The class of all short exact sequences determined by coclosed

submodules forms a proper class. Those determined by neat epimorphisms of Enochs

does not form a proper class. Torsion free covers, relative to a torsion theory, exist

in the category of representations by modules of a quiver for a wide class of quivers

included in the class of the source injective representation quivers provided that any

direct sum of torsion free injective modules is injective. For any quiver Q, Fcw-covers,

that is “componentwise” flat covers, and F⊥
cw-envelopes exist, where Fcw is the class

of all componentwise flat representations of Q. Finally, “categorical” flat covers and

“componentwise” flat covers do not coincide in general, where by “categorical” flat

object we mean Stenström’s concept of flat object defined in terms of purity.
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representations of a quiver, flat representation.
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RAD-TÜMLENMİŞ MODÜLLER VE KUİVERLERİN DÜZ ÖRTÜLERİ

ÖZ

R birim elemanı olan herhangi bir halka, M bir sol R-modül ve τ, sol R-modüller

kategorisi için bir radikal olsun. Eğer V , M’de bir τ-tümleyen ise, o zaman V ile

τ(M)’nin kesişimi τ(V ) olur; özellikle eğer V , M’de bir Rad-tümleyen ise, o zaman V

ile RadM’nin kesişimi RadV olur. M τ-tümlenmişdir ancak ve ancak M’nin Pτ(M)’e

göre çarpan modülü τ-tümlenmiş ise, burada Pτ(M), M’nin bütün τ-burulma alt

modüllerinin toplamıdır. Eğer V , M’de τ-tümleyen ve τ-koatomik ise, o zaman V , M’de

tümleyendir. Her R-modül Rad-tümlenmişdir ancak ve ancak R/P(R) sol mükemmel

ise, burada P(R), Rad I = I şeklindeki R’nin sol ideallerinin toplamıdır. R sol duo

halkası ise, R, bir sol R-modül olarak, Rad-tümlenmişdir ancak ve ancak R/P(R)

yarı-mükemmel halka ise. R Dedekind tamlık bölgesi ise, M Rad-tümlenmişdir ancak

ve ancak M/D tümlenmiş ise, burada D, M’nin bölünebilir kısmıdır. Maks-injektif

ile N eat-koinjektif modüller çakışmaktadır, burada N eat, bütün basit modüller

tarafından projektif olarak üretilen bir öz sınıftır. R sol C-halka’dır ancak ve ancak

bütün maks-injektif R-modüller injektif ise. Bir Dedekind tamlık bölgesi üzerinde,

A’dan B’ye bir f modül homomorfizması Enochs’un tanımına göre düzenlidir ancak

ve ancak f ’nin çekirdeği RadA’nın içinde ise ve görüntüsü B’de kapalı ise. Eşkapalı

altmodüller ile tanımlanan bütün kısa tam dizilerin sınıfı bir öz sınıf biçimindedir,

ama Enochs’un düzenli epimorfizmaları ile tanımlanan sınıf bir öz sınıf biçiminde

değildir. Burulmasız ve injektif R-modüllerin direkt toplamının yine injektif olması

durumunda, kaynak injektif temsil kuiverler sınıfında yer alan geniş bir kuiverler sınıfı

icin, kuiverlerin temsilleri kategorisinde, bir burulma teorisine göre burulmasız örtüler

vardır. Herhangi bir Q kuiveri için, Fcw-örtüler ve F⊥
cw-bürümler vardır, burada Fcw,

Q’nun bileşenlere göre düz temsillerinin sınıfıdır. Kategorik düz örtüler ve bileşenlere

göre düz örtüler genelde çakışmaz, burada “kategorik” düz nesne, Stenström’ün pür

altnesneler cinsinden tanımladığı düz nesnedir.
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CHAPTER ONE

INTRODUCTION

In this introductory chapter, we will give the motivating ideas for our thesis

problems and the main results of this thesis. In Section 1.1, the motivation for

considering Rad-supplements (=coneat submodules) and in general τ-supplements for

a radical τ on the category of left R-modules will be explained. See Section 1.2, for the

reason for considering torsion free covers and neat homomorphisms of Enochs, C-rings

of Renault and max-injective modules. In Section 1.3, we explain the motivation

for the study of covers and envelopes in categories of representations by modules

over quivers. To explain these problems and results, we need some basic definitions,

results, preliminary notions and notation; see Chapter 2. In particular, see Sections

2.2, 2.3, 2.4, 2.5 and 2.6 for preliminary notions needed for Chapter 3 and Chapter

4; see Sections 2.7, 2.8, 2.9 and 2.10 for Chapter 5. In Chapter 3, we study in the

category of left R-modules; we deal with Rad-supplemented modules and in general

τ-supplemented modules, where τ is a radical for the category of left R-modules. In

Chapter 4, we review some results of torsion free covers and neat homomorphisms

of Enochs, and study left C-rings of Renault which turn out to be the rings where

all max-injective modules are injective. In Chapter 5, we study in the category of

representations by modules of a quiver; we deal with the existence of torsion free

covers, relative to a torsion theory, and componentwise flat covers in this category.

Throughout this thesis, R denotes an associative ring with unity. An R-module or

just a module will be a unital left R-module, and R-M od will denote the category of

left R-modules. For modules A and C, Ext1R(C,A) will mean the equivalence classes of

all short exact sequences starting with A and ending with C; for abelian groups, we use

the notation Ext(C,A).
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1.1 Rad-supplemented Modules

Neat subgroups of abelian groups have been introduced in Honda (1956, pp.

43-44): A subgroup A of an abelian group B is said to be neat in B if A∩ pB = pA

for every prime number p (see also Fuchs (1970, §31, p. 131)). After that, they have

been generalized to modules by Stenström (1967a, 9.6) and Stenström (1967b, §3):

A monomorphism f : K −→ L of modules is called neat if every simple module S is

projective relative to the natural epimorphism L−→ L/ Im f , that is, the Hom sequence

HomR(S, L)→ HomR(S, L/ Im f )→ 0

obtained by applying the functor HomR(S,−) to the exact sequence L−→ L/ Im f −→

0 is exact. See Özdemir (2007) for a survey of related results on neat subgroups

and neat submodules. Dually, the class of coneat submodules has been introduced

in Mermut (2004) and Alizade & Mermut (2004): A monomorphism f : K → L of

modules is called coneat if every module M with RadM = 0 is injective with respect

to it, that is, the Hom sequence

HomR(L, M)→ HomR(K, M)→ 0

obtained by applying the functor HomR(−,M) to the exact sequence 0 −→ K −→ L

is exact. A submodule A of a module B is said to be a neat submodule (respectively

coneat submodule) if the inclusion monomorphism A ↪→ B is neat (resp. coneat). See

Mermut (2004, Proposition 3.4.2) or Clark et al. (2006, 10.14) or Al-Takhman et al.

(2006, 1.14) for a characterization of coneat submodules. This characterization is the

particular case τ = Rad in Proposition 1.1.1 given below and this is the reason for

considering Rad-supplements and in general τ-supplements for a radical τ for R-M od.

For more results on coneat submodules see Mermut (2004), Alizade & Mermut (2004),

Clark et al. (2006, §10 and 20.7–8), Al-Takhman et al. (2006) and Özdemir (2007).
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A preradical τ for R-M od is defined to be a subfunctor of the identity functor on

R-M od, that is, for every module N, τ(N)⊆ N and every homomorphism f : N −→M

induces a homomorphism τ(N) −→ τ(M) by restriction. τ is said to be idempotent if

τ(τ(N)) = τ(N), and a radical if τ(N/τ(N)) = 0 for every module N. τ is a left exact

functor if and only if τ(K) = K∩τ(N) for every submodule K ⊆N, and in this case τ is

said to be hereditary. For the main elementary properties that we shall use frequently

for a (pre)radical, see Section 2.4. The following module classes are defined for a

preradical τ for R-M od: the (pre)torsion class and the (pre)torsion free class of τ are

respectively

Tτ = {N ∈ R-M od | τ(N) = N} and Fτ = {N ∈ R-M od | τ(N) = 0}.

The modules inTτ are said to be τ-torsion and the modules in Fτ are said to be τ-torsion

free. Tτ is closed under quotient modules and direct sums, while Fτ is closed under

submodules and direct products.

Proper classes of short exact sequences of modules were introduced in Buschbaum

(1959) to do relative homological algebra (see Section 2.3 for the definition). We

use the language of proper classes of short exact sequences of modules to investigate

the relations among the concepts like complement, supplement, neat and coneat, by

considering the corresponding class of short exact sequences. N eat is the proper

class which consists of all short exact sequences of modules such that every simple

module is projective with respect to it, and the proper class Compl consists of all

short exact sequences of modules where the monomorphism has closed image. In

Stenström (1967b, Remark after Proposition 6), it is pointed out that supplement

submodules induce a proper class of short exact sequences (the term ‘low’ is used

for supplements dualizing the term ‘high’ used in abelian groups for complements).

Generalov uses the terminology ‘cohigh’ for supplements and gives more general

definitions for proper classes of supplements related to another given proper class
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motivated by the considerations as pure-high extensions and neat-high extensions in

Harrison et al. (1963); see Generalov (1983).

A submodule A of a module B is small (or superfluous) in B, denoted by A� B,

if A+K 6= B for every proper submodule K ⊆ B. An epimorphism f : M −→ N of

modules is said to be small (or superfluous) if Ker f �M.

Denote by Suppl the class of all short exact sequences induced by supplement

submodules, that is, Suppl is the class of all short exact sequences

0 //A
f //B

g //C //0 (1.1.1)

of modules such that Im f is a supplement in B, where a submodule A ⊆ B is called a

supplement in B if there is a submodule K ⊆ B such that A+K = B and A∩K � A.

Then as mentioned above, the class Suppl forms a proper class, see Clark et al. (2006,

20.7) and Erdoğan (2004). Every module M with RadM = 0 is Suppl-injective,

that is, M is injective with respect to every short exact sequence in Suppl. Thus

supplement submodules are coneat submodules by the definition of coneat submodules.

In the definition of coneat submodules, using any radical τ for R-M od instead of Rad,

the following proposition is obtained (see Proposition 2.3.4 for the characterization

of coneat submodules). It gives us the definition of a τ-supplement in a module

because the last condition is like the usual supplement condition except that, instead of

U ∩V �V , the condition U ∩V ⊆ τ(V ) is required.

Proposition 1.1.1. (see Clark et al. (2006, 10.11) or Al-Takhman et al. (2006, 1.11))

Let τ be a radical for R-M od. For a submodule V of a module M, the following

statements are equivalent:

(i) Every module N with τ(N) = 0 is injective with respect to the inclusion V ↪→M;
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(ii) there exists a submodule U ⊆M such that

U +V = M and U ∩V = τ(V );

(iii) there exists a submodule U ⊆M such that

U +V = M and U ∩V ⊆ τ(V ).

If these conditions are satisfied, then V is called a τ-supplement in M.

Denote by τ-Suppl the class induced by τ-supplement submodules, that is, it

consists of all short exact sequences (1.1.1) of modules such that Im f is a τ-supplement

in B. By the above characterization of τ-supplements, the class τ-Suppl is the proper

class injectively generated by all modules M such that τ(M) = 0.

The usual definitions are then given as follows for a radical τ for R-M od: For

submodules U and V of a module M, the submodule V is said to be a τ-supplement of

U in M or U is said to have a τ-supplement V in M if U +V = M and U ∩V ⊆ τ(V ).

M is called a τ-supplemented module if every submodule of M has a τ-supplement

in M. We call M totally τ-supplemented if every submodule of M is τ-supplemented.

A submodule N of M is said to have ample τ-supplements in M if for every L ⊆ M

with N +L = M, there is a τ-supplement L′ of N in M with L′ ⊆ L. A module M is

said to be amply τ-supplemented if every submodule of M has ample τ-supplements in

M. For τ = Rad, the above definitions give Rad-supplement submodules of a module,

Rad-supplemented modules, etc. By these definitions, we have: A submodule V of

a module M is a coneat submodule of M if and only if V is a Rad-supplement of a

submodule U of M in M.

The main results of Chapter 3 are given as follows. We shall investigate some

properties of Rad-supplemented modules and in general τ-supplemented modules
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where τ is a radical for R-M od. Rad-supplemented modules are also called generalized

supplemented modules in Wang & Ding (2006). For a survey of related results

on Rad-supplemented modules, see Özdemir (2007, Chap. 6). Remember that

all R-modules are (amply) supplemented if and only if R is a left perfect ring by

characterization of left perfect rings in Wisbauer (1991, 43.9); see Section 2.5 for

perfect rings. One of our main questions is to characterize the rings R for which every

left R-module is Rad-supplemented. In the investigation of this problem, the notions

of radical modules, reduced modules and coatomic modules turn out to be useful (see

Zöschinger (1974).

A module M is said to be a radical module if RadM = M. M is called reduced if

it has no nonzero radical submodule, and M is called coatomic if it has no nonzero

radical factor module.

We prove that the following are equivalent (Theorem 3.5.1):

(i) every left R-module is Rad-supplemented;

(ii) the direct sum of countably many copies of R is a Rad-supplemented left

R-module;

(iii) R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that

Rad I = I.

We also show that a reduced module M is totally Rad-supplemented if and only if M is

totally supplemented (Corollary 3.3.20).

In Büyükaşık & Lomp (2008), it was proved that the class of Rad-supplemented

rings lies properly between those of the semiperfect and the semilocal rings. We show

that a left duo ring R (that is, a ring whose all left ideals is a two-sided ideal) is

Rad-supplemented as a left R-module if and only if R/P(R) is semiperfect (Theorem

3.5.6).
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Whenever possible the related results are given in general for a radical τ for

R-M od. See Al-Takhman et al. (2006) and Clark et al. (2006, §10) for some results on

τ-supplements and τ-supplemented modules. In Koşan & Harmanci (2004) and Koşan

(2007), supplemented modules relative to a hereditary torsion theory have been studied.

There is a bijective correspondence between hereditary torsion theories and left exact

radicals (i.e. hereditary radicals) in R-M od. For a hereditary torsion theory τ = (T ,F )

in R-M od, our definition of τ-supplemented modules coincide with the definition of

τ-weakly supplemented modules introduced in Koşan (2007), but in our case, τ need

not be hereditary; in particular, Rad is not hereditary. In the definitions and properties

of reduced and coatomic modules, instead of Rad, we can use any (pre)radical τ on

R-M od (see Section 3.1), and these will be useful in the investigation of the properties

of τ-supplemented modules. We show that if a module M is τ-coatomic, that is, if M

has no nonzero τ-torsion factor module, then τ(M) is small in M (Proposition 3.1.3).

We also show that if a submodule V of a module M is both a τ-supplement in M and

τ-coatomic, then V is a supplement in M (Proposition 3.3.18). We prove that a module

M is τ-supplemented if and only if M/Pτ(M) is τ-supplemented, where Pτ(M) is the

sum of all τ-torsion submodules of M (Proposition 3.3.16). For some rings R, we also

determine when all left R-modules are τ-supplemented. For a ring R with Pτ(R)⊆ J(R),

every left R-module is τ-supplemented if and only if the quotient ring R/Pτ(R) is left

perfect and τ(R) = J(R), where J(R) is the Jacobson radical of R (Theorem 3.4.6). We

also investigate the property RadV =V ∩RadM for a submodule V of a module M. It

is known that this property holds if V is a supplement in M (Wisbauer, 1991, 41.1) and

moreover if V is coclosed in M (Clark et al., 2006, 3.7). We show that this property

holds when V is a Rad-supplement in M; in general for a radical τ for R-M od, we show

that if V is a τ-supplement in M, then τ(V ) =V ∩ τ(M) (Theorem 3.3.2).

Every abelian group A can be expressed as the direct sum of a divisible subgroup

D and a reduced subgroup C: A = D⊕C. Here D is a uniquely determined subgroup
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of A, it is the sum of all divisible subgroups of A and indeed it is the largest divisible

subgroup of A. The subgroup C is unique up to isomorphism, and C is reduced means

that C has no divisible subgroup other than 0. See, for example, Fuchs (1970, Theorem

21.3). This notion is also generalized to modules over Dedekind domains. Over

Dedekind domains, divisible modules coincide with injective modules as in abelian

groups. Note that for a module M over a Dedekind domain R, M is divisible if and

only if M is a radical module (that is, RadM = M), and this holds if and only if M is

injective; see, for example, Alizade et al. (2001, Lemma 4.4). This is the motivation

for the definition of reduced modules in general. A module over a Dedekind domain is

reduced if it has no nonzero divisible submodules (that is, if it has no nonzero radical

submodules). As in abelian groups every module M over a Dedekind domain possesses

a unique largest divisible submodule D and M = D⊕C for a reduced submodule C of

M (see Kaplansky (1952, Theorem 8)); this D is called the divisible part of M, and

D = P(M).

We show that for a commutative noetherian ring R, a reduced R-module M is

Rad-supplemented if and only if it is supplemented (Proposition 3.6.3). It is clear

that every supplemented module is Rad-supplemented, but the converse is not true

always. For example, the Z-module Q is Rad-supplemented but not supplemented.

Since RadQ = Q (see, for example, Kasch (1982, 2.3.7)), Q is Rad-supplemented

(by Proposition 3.3.13-(i)). But Q is not supplemented by Clark et al. (2006,

20.12). Moreover, we understand this example clearly and give the structure of

Rad-supplemented modules over Dedekind domains in terms of supplemented modules

which have been characterized in Zöschinger (1974). Over a Dedekind domain R,

an R-module M is Rad-supplemented if and only if M/P(M) is (Rad-)supplemented,

where P(M) is the divisible part of M. In fact, P(M) is the sum of all submodules U

of M such that RadU =U , that is, P(M) is the largest radical submodule of M and this

equals P(M) to be the divisible part of M over a Dedekind domain.
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1.2 Enochs’ Neat Homomorphisms and Max-injective Modules

In the first part of Chapter 4, motivated by Theorem 1.2.1 given in Enochs & Jenda

(2000, Chap. 4) related to torsion free covers over commutative domains, we deal

with max-injective modules. Torsion free covers were first defined in Enochs (1963)

and shown to exist for the usual torsion theory over a commutative domain: Over

a commutative domain R, a homomorphism ϕ : T −→ M, where T is a torsion free

R-module, is called a torsion free cover of M if

(i) for every torsion free R-module G and a homomorphism f : G −→M there is a

homomorphism g : G−→ T such that ϕg = f and,

(ii) Kerϕ contains no non-trivial submodule S of T such that rS = rT ∩ S for all

r ∈ R, that is, S is a relatively divisible submodule or shortly an RD-submodule of T ;

see Section 2.3.

If ϕ satisfies (i) and maybe not (ii) above, then it is called a torsion free precover.

It is known that given a family ϕi : Ti −→Mi of torsion free covers, for i = 1,2, . . .n,
n⊕

i=1

Ti −→
n⊕

i=1

Mi is also a torsion free cover (see, for example, Enochs & Jenda (2000,

Proposition 5.5.4)). So, the corresponding question for infinite direct products has been

considered in Enochs & Jenda (2000).

Theorem 1.2.1. (Enochs & Jenda, 2000, Theorem 4.4.1) The following are equivalent

for a commutative domain R:

(i) Every torsion R-module G 6= 0 has a simple submodule;

(ii) ∏
i∈A

ϕi : ∏
i∈A

Ti−→∏
i∈A

Mi is a torsion free cover for every family {ϕi : Ti−→Mi}i∈A

of torsion free covers of R-modules;

(iii) An R-module E is injective if and only if Ext1R(S,E) = 0 for every simple

R-module S.

The notion of C-ring has been introduced in Renault (1964): A ring R is said to be
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a left C-ring if for every (left) R-module B and for every essential proper submodule A

of B, Soc(B/A) 6= 0, that is B/A has a simple submodule. Similarly right C-rings are

defined.

The notion of max-injectivity (a weakened injectivity in view of Baer’s criterion)

has been studied recently by several authors; see, for example, Crivei (1998), Crivei

(2000) and Wang & Zhao (2005): A module M is said to be maximally injective (or

max-injective for short) if for every maximal left ideal P of R, every homomorphism

f : P −→ M can be extended to a homomorphism g : R −→ M. A module M is

max-injective if and only if Ext1R(S,M) = 0 for every simple module S (see Crivei

(1998, Theorem 2)). Max-injective modules are called m-injective modules in Crivei

(1998).

In, for example, Mermut (2004, Proposition 3.3.9), it has been proved that a

commutative domain R is a C-ring if and only if every nonzero torsion R-module has a

simple submodule. So we observe, by Theorem 1.2.1, that for a commutative domain

R, the following are equivalent:

(i) R is a C-ring;

(ii) Every direct product of torsion free covers is again a torsion free cover;

(iii) Every max-injective module is injective.

It has been proved by Patrick F. Smith that for a ring R, Soc(R/I) 6= 0 for every essential

proper left ideal I of R (that is, R is a left C-ring by Proposition 4.1.2) if and only if

every max-injective module is injective (Smith, 1981, Lemma 4). This result also

stated in Ding & Chen (1993) and for its proof the reference to Smith (1981) has been

given. In Section 4.2, we shall give a proof of this result with our interest in the proper

classes N eat and Compl, and with further observations (Theorem 4.2.14). In the

articles Crivei (2000) and Wang & Zhao (2005), this result is not known; all the given

examples in these articles for rings over which every max-injective module is injective
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are indeed left C-rings. For instance, in Crivei (1998) and Wang & Zhao (2005), it

was shown that if R is a left semi-artinian ring (that is, Soc(R/I) 6= 0 for every proper

left ideal I of R), then every max-injective R-module is injective. But, of course, a left

semi-artinian ring is a left C-ring.

For a proper class P , a module A is called P -coinjective if every short exact

sequences of modules starting with A is in P . See Section 2.3 for proper classes of

modules. A module M is P -coinjective if and only if it is a P -submodule of E(M),

the injective envelope of M. So, a module M is Compl-coinjective if and only if

M is a complement submodule (=closed submodule) of E(M). Since M is essential

in E(M), we obtain that Compl-coinjective modules are just injective modules.

N eat-coinjective modules and max-injective modules coincide. In Generalov (1978,

Theorem 5), it was proved that a ring R is a left C-ring if and only if Compl = N eat.

So, it can be easily seen that if R is a left C-ring, then

max-injectives = N eat-coinjectives = Compl-coinjectives = injectives

Conversely, we prove that if all N eat-coinjective modules are injective, then R is a left

C-ring. As a result, we have that the following are equivalent for a ring R (Theorem

4.2.18):

(i) R is a left C-ring;

(ii) All N eat-coinjective (=max-injective) R-modules are injective;

(iii) The direct sum of all simple R-modules is a left Whitehead test module for

injectivity, where a module N is called Whitehead test module for injectivity

if for every module M, Ext1R(N,M) = 0 implies M is injective.

We devote the second part of Chapter 4 to neat homomorphisms of Enochs. The

study of neat homomorphisms, due to Enochs (1971) and Bowe (1972), originated

with a generalization of neat subgroups and torsion free covers of modules; in Enochs
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& Jenda (2000, Proposition 4.3.9) it was shown that torsion free covers are neat

homomorphisms, over a commutative domain.

The concept of neat homomorphism is indeed a natural concept to consider by

the following characterization: A homomorphism f : M −→ N of modules is a neat

homomorphism in the sense of Enochs if and only there are no proper extensions of f in

the injective envelope E(M) of M, that is, there exists no homomorphism g : M′ −→ N

such that M $M′ ⊆ E(M) and g |M= f . This is not the original definition, but one of

the equivalent conditions of being a neat homomorphism given in Bowe (1972) (see

Theorem 4.3.3). We call such homomorphisms E-neat homomorphisms. These E-neat

homomorphisms need not be one-to-one or onto. A monomorphism f : A −→ B is

E-neat if and only if Im f is a closed submodule (=complement submodule) of B (see

Lemma 4.3.4). Thus, the class of all short exact sequences

0 //A α //B
β //C //0 (1.2.1)

of modules such that the monomorphism α is E-neat forms the proper class Compl that

we have already mentioned. So, we investigate the class of all short exact sequences

(1.2.1) such that the epimorphism β : B −→ C is E-neat. We denote this class by

EN eat. We show that EN eat forms a proper class if and only if R is a semisimple

ring (Theorem 4.5.2).

Zöschinger gave the definition of E-neat homomorphisms for abelian groups by

considering the equivalent condition (iv) for being E-neat homomorphism given in

Theorem 4.3.3: A homomorphism f : M → N of modules is E-neat if for every

decomposition f = βα where α is an essential monomorphism, α is an isomorphism.

See Proposition 4.4.1 for this equivalence for modules over arbitrary rings.

See Theorem 4.4.2 for the proof of the theorem given below which has been
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explained by Zöschinger.

Theorem 1.2.2. (Zöschinger, 1978, Satz 2.3∗) Let A and A′ be abelian groups. For a

homomorphism f : A−→ A′, the following are equivalent:

(i) f is E-neat;

(ii) Im f is closed in A′ and Ker f ⊆ RadA;

(iii) f−1(pA′) = pA for all prime numbers p;

(iv) If the following diagram is a pushout diagram of abelian groups and α is an

essential monomorphism, then α′ is also an essential monomorphism:

A
α //

f
��

B

f ′
��

A′
α′
// B′.

By considering the first two equivalent conditions for abelian groups in the previous

theorem, we define Z-neat homomorphisms in general for modules over arbitrary rings:

We call a homomorphism f : A −→ A′ of modules Z-neat if Im f is closed in A′ and

Ker f ⊆RadA. So we wonder if E-neat and Z-neat homomorphisms coincide in general

for arbitrary rings. In the investigation of this problem the following result plays an

important role: The natural epimorphism f : A −→ A/K of modules with K ⊆ A is

E-neat if and only if (A/K)E (E(A)/K) (Corollary 4.4.5). Over a Dedekind domain,

we prove that the natural epimorphism f : A−→A/K is E-neat if and only if K ⊆RadA

(Proposition 4.4.14). Using these results, finally, we prove that E-neat homomorphisms

and Z-neat homomorphisms coincide over Dedekind domains (Theorem 4.4.17).

As a dual to E-neat homomorphisms, Zöschinger has introduced and studied coneat

homomorphisms when he was studying the submodules that have supplements for

abelian groups in Zöschinger (1978, §2): A homomorphism g : C′ → C of modules

is called Z-coneat if for every decomposition g = βα where β is small epimorphism,



14

β is an isomorphism. The reason for his studying such homomorphisms, which

we call Z-coneat homomorphisms not to mix them with our concept coneat, is that

g∗ : Ext(C, A)→ Ext(C′, A) preserves κ-elements for every Z-coneat homomorphism

g : C′→C. κ-elements of Ext(C,A) are the equivalence classes of κ-exact short exact

sequences starting with A and ending with C; a short exact sequence (1.2.1) is called

κ-exact if Imα has a supplement in B. In Zöschinger (1978, Hilfssatz 2.2 (a)), it was

proved that an epimorphism f : A −→ B of abelian groups is Z-coneat if and only if

Ker f is coclosed in A. We devote the last part of Chapter 4 to investigate coclosed

monomorphisms of modules.

Given submodules K ⊆ L⊆M, the inclusion K ⊆ L is called cosmall in M, denoted

by K � � cs
M
//L , if L/K�M/K. A submodule L of a module M is called coclosed in M,

denoted by L� � cc //M , if L has no proper submodule K for which K � � cs
M
//L . See Clark

et al. (2006, §3.1 and §3.6) for cosmall inclusions and coclosed submodules.

We show that the class of all short exact sequences (1.2.1) such that Imα is coclosed

in B forms a proper class, denoted by Coclosed (Theorem 4.6.4). Note that Zöschinger

calls a module M weakly injective if for every extension M ⊆ X , M is coclosed in X ,

that is, M is Coclosed-coinjective (see Zöschinger (2006)). In Zöschinger (2006), it

was shown for every noetherian, local, one-dimensional commutative domain R with

field of fractions K and completion R̂ that R̂
⊗

R K as R̂-module and K/R as R-module

are weakly injective.

1.3 Torsion Free and Componentwise Flat Covers in Categories of Quivers

Given a class F of objects in an abelian category A , recall from Enochs (1981)

that, an F -precover of an object C is a morphism ϕ : F −→C with F ∈F such that

HomA(F ′,F)−→HomA(F ′,C)−→ 0 is exact for every F ′ ∈F , that is, the following
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diagram commutes:

F ′

����~
~

~
~

F
ϕ //C

.

If, moreover, every morphism f : F −→ F such that ϕ f = ϕ is an automorphism, then

ϕ is said to be an F -cover.

Dually, an F -preenvelope of M is a morphism ϕ : M −→ F with F ∈F such that

HomA(F,F ′) −→ HomA(M,F ′) is surjective for every F ′ ∈F , that is, the following

diagram commutes:

M
ϕ //

��

F

~~~
~

~
~

F ′

.

An F -preenvelope ϕ is said to be an F -envelope if every endomorphism f : F −→ F

such that f ϕ = ϕ is an automorphism.

So, for instance, if we take F to be the class of all flat modules, then a flat cover

of a module will be an F -cover. See Section 2.7 for details for abelian categories, and

Section 2.10 for covers and envelopes.

The study of covers and envelopes started in 1953, when Eckman and Schopf proved

that each module over an associative ring has an injective envelope (Eckmann &

Schopf, 1953). On the other hand, Bass characterized rings over which every module

has a projective cover: perfect rings (Bass, 1960). Other authors studied different types

of covers and envelopes, for example, Kiełpiǹski proved the existence of pure-injective

envelopes in the category R-M od (Kiełpiński, 1967), and Warfield gave another proof

of the existence of pure-injective envelopes of modules (Warfield, 1969). Enochs

studied torsion free covers and proved the existence of torsion free covers of modules

over a commutative domain (Enochs, 1963). In the arguments after Enochs & Jenda

(2000, Definition 5.1.1), it has been pointed out that torsion free covers and F -covers
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coincide over a commutative domain R, where F is the class of torsion free R-modules.

Moreover, in 1981, Enochs conjectured that every module over an associative ring

admits a flat cover (Enochs, 1981). This is known as the “flat cover conjecture”. In

the same paper, he noticed the categorical version of injective cover, and then gave

a general definition of covers and envelopes in terms of commutative diagrams, for a

given class of modules. Independently, this definition of covers and envelopes was

given by Auslander and Smalø in terms of minimal left and right approximations

(Auslander & Smalø, 1980). Enochs gave the general definition for a class of modules

over arbitrary rings, while Auslander and Smalø considered finitely generated modules

over finite dimensional algebras. The main idea for studying covers and envelopes

is to use certain aspects of a special class of modules, or more generally objects to

study entire category. Because, once we understand the structure of a class of objects,

we may approximate arbitrary objects by the objects from this class. In 2001, once

the “flat cover conjecture” has been proved in Bican et al. (2001), in a natural way, flat

covers and covers by more general classes of objects have been studied in more general

settings than that of modules. For example, the existence of flat covers was shown

for categories of complexes of modules over a ring R (Aldrich et al., 2001) and of

quasi-coherent sheaves over a scheme (Enochs & Estrada, 2005b). Also, the existence

of flat covers has been studied for the category of representations by modules of some

class of quivers.

A quiver is a directed graph whose edges are called arrows. As usual we denote a

quiver by Q understanding that Q = (V,E) where V is the set of vertices (points) and E

is the set of arrows (directed edges). An arrow of a quiver from a vertex v1 to a vertex

v2 is denoted by

a : v1 −→ v2 or v1
a // v2 .

In this case, we write s(a) = v1 and call the starting (initial) vertex of the arrow a, and

t(a) = v2 and call the terminal (ending) vertex of a.
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A path p of length n ≥ 1 from the vertex v0 to the vertex vn of a quiver Q is a

sequence of arrows

(v0 | a1,a2, . . . ,an | vn)

where ai ∈ E for all 1 ≤ i ≤ n, and we have s(a1) = v0, t(ai) = s(ai+1) for each 1 ≤

i < n, and finally t(an) = vn. Such a path is denoted briefly by anan−1 . . .a1 and may

be visualised as follows:

p : v0
a1 // v1

a2 // v2 // · · · an // vn

For this path p, define the starting vertex s(p)= s(a1)= v0 and the ending vertex t(p)=

t(an)= vn. In this case, we will write, shortly, p : v0−→ vn. An arrow a : v−→w of Q is

also considered as a path of length 1. We also agree to associate with each vertex v∈V

a path of length n = 0, called the trivial path at v, and denoted by pv. It has no arrows

and we takes(pv) = t(pv) = v. Thus, a vertex v ∈V can be considered as a trivial path

pv. Instead of pv, we usually write just v. If p = anan−1 . . .a1 and q = bmbm−1 . . .b1 are

two paths of Q such that s(an) = t(b1), where ai,b j ∈ E for all 1≤ i≤ n and 1≤ j≤m,

then the composition of p and q is defined as qp = bm . . .b1an . . .a1. Thus, two paths

p and q can be composed, getting another path qp whenever t(p) = s(q). So, given a

path p : v1 −→ v2, we have that ppv1 = pv2 p = p.

Therefore, any quiver Q is thought as a category in which the objects are the vertices

of Q, and the morphisms are the paths of Q. Clearly, every object (i.e. vertex) v of Q

has an identity morphism pv (trivial path).

A representation by modules of a given quiver Q = (V,E) is a functor X : Q −→

R-M od. So such a representation is determined by giving a module X(v) to each vertex

v of Q and a homomorphism X(a) : X(v1)−→ X(v2) to each arrow a : v1 −→ v2 of Q.

A morphism η between two representations X and Y is a natural transformation, so

it will be a family {ηv}v∈V of module homomorphisms such that Y (a)ηv1 = ηv2X(a)



18

for every arrow a : v1 −→ v2 of Q, that is, the following diagram commutes for every

arrow a : v1 −→ v2 of Q:

X(v1)
X(a) //

ηv1
��

X(v2)

ηv2
��

Y (v1)
Y (a) // Y (v2)

.

Thus, the representations by modules of a quiver Q over a ring R form a category,

denoted by (Q,R-M od). This is a locally finitely presented Grothendieck category

with enough projectives and injectives (see Section 5.1 for details). By a representation

of a quiver we will mean a representation by modules of a quiver over a ring R.

In Chapter 5, we continue with the program initiated in Enochs & Herzog (1999)

and continued in Enochs et al. (2002), Enochs et al. (2003a), Enochs et al. (2004b),

Enochs & Estrada (2005a), Enochs et al. (2007) and Enochs et al. (2009) to develop

new techniques on the study of representations by modules over (possibly infinite)

quivers. In contrast to the classical representation theory of quivers motivated by

Gabriel (1972b), we do not assume that the base ring is an algebraically closed field

and that all vector spaces involved are finite dimensional. Techniques on representation

theory of infinite quivers have recently proved to be very useful in leading to

simplifications of proofs as well as the descriptions of objects in related categories. For

instance, in Enochs & Estrada (2005b) it was shown that the category of quasi-coherent

sheaves on an arbitrary scheme is equivalent to a category of representations of a

quiver (with certain modifications on the representations). Note that in this thesis we

do not deal with the category of quasi-coherent sheaves on an arbitrary scheme; see,

for example, Hartshorne (1977, Chap. II) for the definitions of the related concepts.

This point of view allows to introduce new versions of homological algebra in such

categories (see Enochs & Estrada (2005b, §5) and Enochs et al. (2003b)). Infinite

quivers also appear when the category of Z-graded modules is considered over the

graded ring R[x] as explained below.



19

Recall that a commutative ring R is called a graded ring (or more precisely, a

Z-graded ring) if R can be expressed as a direct sum R =
⊕

n∈ZRn of its additive

subgroups such that the ring multiplication satisfies Rn ·Rm ⊆ Rn+m for all m,n ∈ Z. In

particular, R0 is a subring of R and each component Rn is an R0-module. For example,

the polynomial ring R[x] is a graded ring with

R[x] =
⊕
n∈Z

Rn, where Rn = Rxn if n≥ 0 and Rn = 0 otherwise .

Let R =
⊕
n∈Z

Rn be a graded ring. An R-module M is called a graded module (or is said

to have an R-grading) if M can be expressed as a direct sum
⊕

n∈ZMn of its additive

subgroups such that Rn ·Mm⊆Mn+m for all m,n∈Z. In particular, Mn is an R0-module

for every n ∈ Z. See, for example, Lang (2002, Chap. X, §5) for graded modules.

The category of graded modules over the graded ring R[x] is equivalent to the

category of representations over R of the quiver

A∞
∞ ≡ ·· · −→ • −→ • −→ • −→ ·· · .

Indeed, a representation · · · −→ A−1
f−1−→ A0

f0−→ A1
f1−→ ·· · of A∞

∞ can be thought of

as a graded module
⊕

n∈ZAn over the polynomial ring R[x], the action of x being given

by module homomorphisms An
fn−→ An+1:

Rn ·Am = Rxn ·Am = Rxn−1 · fm(Am) = R fn+m−1 · · · fm(Am)⊆ RAn+m ⊆ An+m

for all n,m ∈ Z. Conversely, as a graded ring

R[x]≡ ·· · −→ 0−→ 0−→ R ·x−→ Rx ·x−→ Rx2 −→ ·· ·
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and as a graded module

R[x]M ≡ ·· · −→ A−2
·x−→ A−1

·x−→ A0
·x−→ A1

·x−→ A2 −→ ·· ·

In Chapter 5, we introduce new classes in the category of representations of a

(possibly infinite) quiver to compute (unique up to homotopy) resolutions which give

rise to new versions of homological algebra on it. The first of such versions turns to

Enochs’ proof on the existence of torsion free covers of modules over a commutative

domain (see Enochs (1963)) and its subsequent generalization in Teply (1969) and

Golan & Teply (1973) to more general torsion theories in R-M od.

Given a hereditary torsion theory (T ,F ) for R-M od, we define a torsion theory

(Tcw,Fcw) for (Q,R-M od), by defining the torsion class Tcw as follows:

Tcw = {X ∈ (Q,R-M od) | X(v) ∈ T for every vertex v of Q}.

Then the torsion free class Fcw will be as follows:

Fcw = {X ∈ (Q,R-M od) | X(v) ∈ F for every vertex v of Q};

see Proposition 5.2.4. Note that the torsion theory (Tcw,Fcw) is hereditary, that is, it

closed under subrepresentations since the torsion class T is closed under submodules.

In the first part of Chapter 5, we prove that torsion free covers exist in (Q,R-M od)

relative to the torsion theory (Tcw,Fcw), for a wide class of quivers included in the class

of the so-called source injective representation quivers as introduced in Enochs et al.

(2009) (Theorem 5.2.16). This important class of quivers includes all finite quivers
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with no oriented cycles, but also includes infinite line quivers:

A∞ ≡ ·· · // • // • // • ,

A∞ ≡ • // • // • // · · · ,

A∞
∞ ≡ ·· · // • // • // · · ·

On the second part, we will focus on the existence of a version of relative

homological algebra by using the class of componentwise flat representations in

(Q,R-M od). Recently, it has been proved in Rump (2010) that flat covers do exist

on each abelian locally finitely presented category. Here by “flat” the author means

Stenström’s concept of flat object given in Stenström (1968) in terms of the theory of

purity that one can always define in locally finitely presented additive categories (see

Crawley-Boevey (1994)). It is well-known that a short exact sequence of modules is

pure if and only every finitely presented module is projective relative to it (see Example

2.3.3). Using this characterization of pure-exact sequences, Stenström (1968) defined

purity in locally finitely generated Grothendieck categories.

Let C be a Grothendieck category and C be an object in C . The object C is called

finitely generated if whenever C = ∑
i∈I

Ci for a direct family (Ci)i∈I of subobjects of C

(where I is some index set), there is an index i0 ∈ I such that C = Ci0 . The object C

is called finitely presented if it is finitely generated and every epimorphism B −→ C,

where B is a finitely generated object in C , has a finitely generated kernel. The category

C is called locally finitely generated (respectively locally finitely presented) if it has

a family of finitely generated (resp. finitely presented) generators.

Let C be a locally finitely generated Grothendieck category. A short exact sequence

in C is said to be pure if every finitely presented object P of C is projective relative
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to it. An object F of C is said to be a flat object in the sense of Stenström if every

short exact sequence ending with F is pure. We call such flat objects “categorical flat”.

For abelian locally finitely presented categories with enough projectives, this notion of

“flatness” is equivalent to being the direct limit of certain projective objects.

As (Q,R-M od) is a locally finitely presented Grothendieck category with enough

projectives, we infer by using Rump’s result that (Q,R-M od) admits “categorical flat”

covers for every quiver Q and any associative ring R with unity. But there are categories

in which there is a classical notion of flatness having nothing to do with respect to the

theory of purity. This is the case of the notion of “flatness” in categories of presheaves

or quasi-coherent sheaves, where “flatness” is more related with a “componentwise”

notion. Those categories may be viewed as certain categories of representations of

quivers.

We proved the existence of “componentwise” flat covers for every quiver and any

ring R with unity (Theorem 5.3.6), where we call a representation X of (Q,R-M od)

componentwise flat if X(v) is a flat R-module for each vertex v of Q. In particular if X is

a topological space, an easy modification of our techniques can prove the existence of

a flat cover (in the algebraic geometrical sense) for every presheaf on X over R-M od.

Finally, the last part of Chapter 5 contains some examples for comparing “categorical”

flat covers with “componentwise” flat covers which show that these two kinds of covers

do not coincide in general (see Section 5.4).



CHAPTER TWO

PRELIMINARIES

In this chapter, we give the basic definitions, results, tools and notation which will

be used throughout this thesis. We will give further notions and notation when they

are needed. The terminology, notation and our main references are sketched in Section

2.1; we give the definition of proper classes and some related properties in Section

2.3. Some elementary properties of preradicals and torsion theories for R-M od are

given in Section 2.4. Section 2.5 contains some properties of projective covers and

perfect rings. In Section 2.6, we give the definition of torsion free covers of R-modules

over a commutative domain R. See Section 2.2 for the definition of complements and

supplements, and Section 2.10 for the definition of covers and envelopes. For details

for abelian categories, see Section 2.7 and see Section 2.8 for torsion theories in abelian

categories. In Section 2.9, we will give some basic definitions and results of cotorsion

theories, and explain the method of the proof of flat cover conjecture given by Enochs

that uses cotorsion theories (see Bican et al. (2001)).

2.1 Notation and Terminology

Unless otherwise stated, all rings considered will be associative with identity and

not necessarily commutative. R will denote an arbitrary ring. So, if nothing is said

about R in the statement of a theorem, proposition, etc., then that means R is just an

arbitrary ring. An R-module or just a module will be a unital left R-module. R-M od

(respectively M od-R) denotes the category of all left (resp. right) R-modules. A

commutative domain will mean a nonzero commutative ring in which there is no zero

divisor other than zero. N, Z and Q denotes the set of positive natural numbers, the

ring of integers and the field of rational numbers, respectively. Ab, or Z-M od, denotes

23
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the category of abelian groups (i.e. Z-modules). Group will mean abelian group.

As usual, J(R) denotes the Jacobson radical of R, and RadM (respectively SocM)

denotes the radical (resp. the socle) of a module M. E(M) will denote the injective

envelope of a module M. We denote by X ⊆M that X is a submodule of M. For any

modules A and B, HomR(A,B) denotes the set of all homomorphisms from A to B. We

denote by 1M : M −→M the identity map. By a homomorphism f : A −→ B we will

mean a homomorphism of modules from A to B, unless otherwise stated. Ext1R(C,A)

denotes the equivalence classes of extensions of an R-module A by an R-module C. For

abelian groups we will use the notation Ext(C,A). For the definition of Ext1R(C,A), see

Maclane (1963, Chap. III).

We do not delve into the details of definitions of every term used in this thesis.

We refer to Enochs & Jenda (2000), Stenström (1975), Freyd (1964) and Assem

et al. (2006) for details on covers and envelopes, abelian categories or quivers. For

fundamentals of module theory see, for example, Anderson & Fuller (1992), Lam

(1999), Facchini (1998), Kasch (1982), Wisbauer (1991) and Clark et al. (2006); for

details in homological algebra see the books Cartan & Eilenberg (1956), Maclane

(1963) and Rotman (2009); for relative homological algebra, our main references are

the books Maclane (1963), Enochs & Jenda (2000) and the article Sklyarenko (1978);

for abelian groups, see Fuchs (1970).

The notation we use have been given on pages (173-177) and an index will be given

at the end of this thesis.

2.2 Complements and Supplements

Let M be an R-module and A be a submodule of M. It would be best if A is a direct

summand of M, that is, if there exists a submodule B of M such that M = A⊕B; that
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means,

M = A+B and A∩B = 0.

If A is not a direct summand, then we wish at least one of these conditions to hold.

These give rise two concepts: complement and supplement.

Let M be a module and A,B be submodules of M such that M = A+B (that is, the

above first condition for direct sum holds). If A is minimal with respect to this property,

that is, there is no submodule Ã of M such that Ã & A but still M = Ã+B, then A is

called a supplement of B in M and B is said to have a supplement A in M.

A submodule B of a module M need not have a supplement in M. If a module M is

such that every submodule of it has a supplement in M, then it is called a supplemented

module. For the definitions and related properties see Wisbauer (1991, §41) and Clark

et al. (2006, Chap. 4).

Let M be a module and A,B be submodules of M such that A∩B = 0 (that is, the

above second condition for direct sum holds). If A is maximal with respect to this

property, that is, there is no submodule Ã of M such that Ã' A but still Ã∩B = 0, then

A is called a complement of B in M and B is said to have a complement A in M.

Remark 2.2.1. By Zorn’s Lemma, it can be seen that a submodule B of a module M

always has a complement A in M (unlike the case for supplements). In fact, by Zorn’s

Lemma, we know that if we have a submodule Ã of M such that B∩ Ã = 0, then there

exists a complement A of B in M such that A ⊇ Ã. See the monograph Dung et al.

(1994) for a survey of results in the related concepts.

We are interested in the collection of submodules each of which is a complement of

some submodule or supplement of some submodule.

A submodule A of a module M is said to be a complement in M if A is a complement
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of some submodule of M; shortly, we also say that A is a complement submodule of M

in this case. Dually, A is said to be a supplement in M if A is a supplement of some

submodule of M; shortly, we also say that A is a supplement submodule of M in this

case.

A submodule A of a module B is essential (or large) in A, denoted by AEB, if for

every nonzero submodule K of B, we have A∩K 6= 0. A monomorphism f : M −→ N

of modules is called essential if Im f EM.

A submodule A of a module M is said to be closed in M if A has no proper essential

extension in M, that is, there exists no submodule Ã of M such that A & Ã and A is

essential in Ã. We also say in this case that A is a closed submodule.

Note that closed submodules and complement submodules in a module coincide

(see Dung et al. (1994, §1)).

Proposition 2.2.2. (Anderson & Fuller, 1992, Proposition 5.21) Let M be a module

and B a submodule of M. Then B has a complement A in M, and

(i) B⊕AEM;

(ii) (B⊕A)/AEM/A.

A module M is said to be semi-artinian if for every proper submodule U of M,

Soc(M/U) 6= 0, that is, M/U contains a simple submodule.

See Dung et al. (1994, 3.12, 3.13) for some properties of semi-artinian modules and

rings. The following characterization is also given as the definition of semi-artinian

modules there; we give its elementary proof for completeness:

Proposition 2.2.3. A module M semi-artinian if and only if Soc(M/U) is essential in

M/U for every proper submodule U of M.
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Proof. Let M be a semi-artinian module and let U ⊆M be a proper submodule. Since

the factor module M/U is also semi-artinian, it suffices to show that SocMEM. Let

0 6= K be a submodule of M and let K′ be a complement of K in M. Then K ∩K′ = 0

and (K⊕K′)/K′EM/K′ by the previous proposition. So

Soc(M/K′) = Soc((K⊕K′)/K′)∼= SocK.

Since K′ 6=M as K 6= 0 and M is semi-artinian, we obtain SocK 6= 0. Thus K∩SocM =

SocK 6= 0, that is, SocMEM. Conversely, if Soc(M/U)EM/U for every proper

submodule U of M, then obviously Soc(M/U) 6= 0.

For a module M, a well-ordered sequence of fully invariant submodules Socα(M)

of M is defined inductively for each ordinal α as follows:

Soc0(M) = 0,

Socα+1(M)/Socα(M) = Soc(M/Socα(M)),

for every ordinal α, and

Socβ(M) =
⋃

α<β

Socα(M)

for every limit ordinal β. The chain

Soc0(M)⊆ Soc1(M)⊆ Soc2(M)⊆ ·· · ⊆ Socα(M)⊆ . . .

is called the (ascending) Loewy series of M. The module M is said to be a Loewy

module if there is an ordinal α such that M = Socα(M), and in this case the least

ordinal α such that M = Socα(M) is called the Loewy length of M (see, for example,

Facchini (1998, §2.11) for Loewy modules).
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Proposition 2.2.4. (see, for example, Facchini (1998, Lemma 2.58)) A module M is a

Loewy module if and only if M is semi-artinian.

2.3 Proper Classes of R-modules

In this section, we give the definition of proper classes in R-M od (since our

investigations are in the proper classes of modules) and some important examples

of proper classes that we are interested in. We also give the definitions for

projectives, injectives, flats, coprojectives, coinjectives with respect to a proper class,

and projectively generated, injectively generated, flatly generated proper classes. See,

for example, Maclane (1963, Chap. XII) for the general definition of proper classes in

an abelian category. Proper classes of monomorphisms and short exact sequences were

introduced in Buschbaum (1959). For further details we refer to Maclane (1963, Chap.

XII), Stenström (1967a), Mishina & Skornyakov (1976) and Sklyarenko (1978).

Let P be a class of short exact sequences of R-modules and R-module

homomorphisms. If a short exact sequence

E : 0 //A
f //B

g //C //0 (2.3.1)

belongs to P , then f is said to be a P -monomorphism and g is said to be a

P -epimorphism (both are said to be P -proper and the short exact sequence is said

to be a P -proper short exact sequence). The class P is said to be proper (in the sense

of Buchsbaum) if it satisfies the following conditions:

P1. If a short exact sequence E is in P , then P contains every short exact sequence

isomorphic to E .

P2. P contains all splitting short exact sequences.
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P3. (i) The composite of two P -monomorphisms is a P -monomorphism if this

composite is defined.

(ii) The composite of two P -epimorphisms is a P -epimorphism if this composite

is defined.

P4. (i) If g and f are monomorphisms, and g f is a P -monomorphism, then f is a

P -monomorphism.

(ii) If g and f are epimorphisms, and g f is a P -epimorphism, then g is a

P -epimorphism.

For a proper class P of R-modules, a submodule A of a module B is called a

P -submodule of B, if the inclusion monomorphism iA : A −→ B, iA(a) = a, a ∈ A,

is a P -monomorphism.

A module F is said to be flat if for every exact sequence 0 −→ A −→ B of right

modules, the tensored sequence 0−→ A⊗R F −→ B⊗R F is exact.

Definition 2.3.1. Let P be a proper class of modules.

(i) A module M is said to be P -projective (respectively P -injective) if it is projective

(resp. injective) with respect to all short exact sequences in P .

(ii) A right module M is said to be P -flat if M is flat with respect to every short exact

sequence E ∈ P , that is, M⊗E is exact for every E in P .

(iii) A module C is said to be P -coprojective if every short exact sequence (2.3.1) of

modules ending with C is in the proper class P . Dually, a module A is said to be

P -coinjective if every short exact sequence (2.3.1) of modules starting with A is

in the proper class P .

Definition 2.3.2. For a given class M of modules,

(i) the class of all short exact sequences E of modules such that HomR(M,E) is

exact for all M ∈ M is the largest proper class P for which each M ∈ M is
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P -projective, and it is called the proper class projectively generated by M and

denoted by π−1(M ).

(ii) the class of all short exact sequences E of modules such that HomR(E,M) is

exact for all M ∈ M is the largest proper class P for which each M ∈ M is

P -injective, and it is called the proper class injectively generated by M and

denoted by ι−1(M ).

(iii) Let M be a class of right modules. The class of all short exact sequences E of

modules such that M⊗E is exact for all M ∈M is the largest proper class P of

(left) R-modules for which each M ∈M is P -flat. It is called the proper class

flatly generated by the class M of right modules and denoted by τ−1(M ).

A module M is said to be finitely presented if there is a an exact sequence

Rm −→ Rn −→M −→ 0

for some positive integers m and n.

The character module functor is the functor

(−)[ = HomZ(−,Q/Z) : R-M od −→M od-R.

So, for a (left) R-module M, M[ = HomZ(M,Q/Z) is a right R-module.

For a functor T from a category A of left or right R-modules to a category B of

left or right S-modules (where R,S are rings), and for a given class F of short exact

sequences in B , let T−1(F ) be the class of those short exact sequences of A which are

carried into F by the functor T . If the functor T is left or right exact, then T−1(F ) is

a proper class; see Stenström (1967a, Proposition 2.1).
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We give some examples of proper classes, which are interesting for the purpose of

this thesis:

Example 2.3.3. The proper classes P ureZ and its generalization P ureR form the

origins of relative homological algebra; this is the reason why proper classes are also

called purities (for example, in Mishina & Skornyakov (1976), Generalov (1972, 1978,

1983)).

(i) S plitR: The smallest proper class of modules consists of only splitting short

exact sequences of modules.

(ii) AbsR (absolute purity): The largest proper class of modules consists of all short

exact sequences of modules.

(iii) P ureZ: The proper class of all short exact sequences (2.3.1) of abelian groups

and abelian group homomorphisms such that Im f is a pure subgroup of B, where

a subgroup A of a group B is pure in B if A∩nB = nA for all integers n. The short

exact sequences in P ureZ are called pure-exact sequences of abelian groups (see

Fuchs (1970, §29)).

(iv) P ureR is the classical Cohn’s purity; it was introduced by Cohn (1959) for

arbitrary rings as a generalization of purity in abelian groups:

P ureR = π
−1( all finitely presented R-modules )

= τ
−1( all finitely presented right R-modules )

= τ
−1( all right R-modules )

= [(−)[]−1(S plitR).

= ι
−1({M[ |M is a finitely presented right R-module})

See, for example, Facchini (1998, §1.4) for the proof of first four of these

equalities. See Sklyarenko (1978, Proposition 6.2) for the last equality.
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(v) Compl and Suppl: The class of all short exact sequences (2.3.1) of modules such

that Im f is a complement (respectively supplement) in B forms a proper class

as has been shown more generally by Stenström (1967b), Generalov (1978),

Generalov (1983). See also Erdoğan (2004) and Clark et al. (2006, 10.5 and

20.7) for the proofs of Compl and Suppl being proper classes.

(vi) N eat: The class of all short exact sequences (2.3.1) of modules such that Im f is

a neat submodule of B (that is, f is a neat monomorphism) forms a proper class

following Stenström (1967a) and Stenström (1967b):

N eat = π
−1(all simple R-modules)

= π
−1({R/P|P maximal left ideal of R})

= π
−1({M|SocM = M, M an R-module}).

Dually, the class of coneat submodules has been introduced in Mermut (2004)

and Alizade & Mermut (2004):

(vii) Co-N eat: The class of all short exact sequences (2.3.1) of modules such that

Im f is a coneat submodule of B (that is, f is a coneat monomorphism) forms a

proper class:

Co-N eat = ι
−1(all R-modules with zero radical)

= ι
−1({M ∈ R-M od|RadM = 0}).

Fuchs calls a ring R to be an N-domain if R is a commutative domain and N eat =

τ−1( all simple R-modules ). He proved that a ring R is an N-domain if and only if R

is a commutative domain whose all maximal ideals are projective (and so all maximal

ideals invertible and finitely generated); see Fuchs (2010).

The criterion for being a coneat submodule is like being a supplement in the
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following weaker sense:

Proposition 2.3.4. (Mermut, 2004, Proposition 3.4.2) For a submodule A of a module

B, the following are equivalent:

(i) A is coneat in B,

(ii) There exists a submodule K ⊆ B such that (K ≥ RadA and,)

A+K = B and A∩K = RadA.

(iii) There exists a submodule K ⊆ B such that

A+K = B and A∩K ⊆ RadA.

One of the generalizations of pure subgroups of abelian groups to modules over

arbitrary rings is relative divisibility: A submodule A of a module B is called relatively

divisible or briefly RD-submodule if rA = A∩ rB for every r ∈ R. This terminology

is due to Warfield (1969) See, for example, Fuchs & Salce (2001, Chap I, §7) for

properties of RD-submodules.

Proposition 2.3.5. (Warfield, 1969, Proposition 2) Let R be a ring and let r ∈ R. The

following are equivalent for a short exact sequence

E : 0 //A
iA //B

g //C //0

of R-modules where A is a submodule of B and iA is the inclusion map:

(i) HomR(R/Rr,B)
g∗ //HomR(R/Rr,C) is epic (that is, R/Rr is projective relative

to E);

(ii) R/rR⊗A
1R/rR⊗iA //R/rR⊗B is monic (that is, R/rR is flat relative to E);

(iii) rA = A∩ rB (that is, A is an RD-submodule of B).
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Note that the notion of Cohn’s purity is a strengthened version of the concept of

RD-submodule. Note also that Enochs calls RD-submodules pure submodules in his

definition of torsion free covers (see Section 1.2). By pure submodules in this thesis,

we will mean pure submodules in the sense of Cohn.

A ring R is said to be left semihereditary if every finitely generated ideal of R is

projective as a left R-module. A semihereditary commutative domain is called a Prüfer

domain.

Over Prüfer domains, pure submodules and RD-submodules of a module coincide

(see Warfield (1969, Corollary 5) or, for example, Fuchs & Salce (2001, Theorem

8.11)).

The following proposition that gives a basic relationship between flat modules and

pure-exact sequences will be useful:

Proposition 2.3.6. (by Lam (1999, Corollary 4.86))

Let E : 0 //A //B //C //0 be a short exact sequence of modules.

(i) Assume B is flat. Then E is pure if and only if C is flat.

(ii) Assume C is flat. Then B is flat if and only if A is flat.

(iii) C is flat if and only if every short exact sequences ending with C is pure, that is,

C is P ureR-coprojective.

Definition 2.3.7. A proper class P is called ∏-closed (respectively ⊕-closed) if for

every collection {Eλ : 0 //Aλ
//Bλ

//Cλ
//0}λ∈Λ in P , the direct product

∏
λ∈Λ

Eλ : 0 //∏λ Aλ
//∏λ Bλ

//∏λCλ
//0

(
resp. the direct sum

⊕
λ∈Λ

Eλ : 0 //⊕
λ Aλ

//⊕
λ Bλ

//⊕
λCλ

//0
)

is in P .
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Proposition 2.3.8. (Sklyarenko, 1978, Propositions 1.2 and 3.2) Every projectively

(respectively injectively) generated proper class is ∏-closed (resp. ⊕-closed).

Proposition 2.3.9. (by Sklyarenko (1978, Proposition 9.3)) Let P be a proper class.

(i) If P is ∏-closed, then every product of P -coinjective modules is P -coinjective.

(ii) If P is ⊕-closed, then every direct sum of P -coprojective modules is

P -coprojective.

2.4 Preradicals and Torsion Theories for R-M od

In this section, we give the definition a torsion theory and some properties of

(pre)radicals for R-M od (since we are interested in radicals on R-M od in Chapter

3). Preradicals were first introduced in Maranda (1964). We refer to Clark et al. (2006,

§6) for elementary properties of preradicals and torsion theories for R-M od. See also

Crivei (2004); injective modules relative to a torsion theory have been studied.

See Section 1.1 for the definition of (pre)radicals on R-M od.

We collect the main elementary properties that we shall use frequently for a

(pre)radical on R-M od in the following proposition:

Proposition 2.4.1. (Clark et al., 2006, p. 55) Let τ be a preradical on R-M od, M be a

submodule of a module N and (Mλ)λ∈Λ be a family of modules. Then

(i) if τ(M) = M, then M ⊆ τ(N),

(ii) if τ(N/M) = 0, then τ(N)⊆M,

(iii) τ

(⊕
λ∈Λ

Mλ

)
=

⊕
λ∈Λ

τ(Mλ),

(iv) τ

(
∏
λ∈Λ

Mλ

)
⊆ ∏

λ∈Λ

τ(Mλ).
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For completeness, note also the following properties of (pre)radicals with their

proofs:

Proposition 2.4.2. For a preradical τ on R-M od and a homomorphism f : M −→ N

of modules, we have:

(i) f (τ(U)) ⊆ τ( f (U)) for every submodule U of M. In particular, f (τ(M)) ⊆

τ( f (M)).

(ii) If U is a submodule of M such that U = τ(U), then f (U) = τ( f (U)).

(iii) For every submodule K of M, if U is a submodule of M such that U = τ(U), then

(U +K)/K = τ((U +K)/K). In particular, if K ⊆U ⊆M and U = τ(U), then

U/K = τ(U/K).

Proof. (i) It follows by considering the restriction f ′ : U −→ f (U). Since τ is a

preradical f (τ(U)) = f ′(τ(U))⊆ τ( f (U)).

(ii) U = τ(U) (by hypothesis) implies that f (U) = f (τ(U)) ⊆ τ( f (U)) ⊆ f (U) by

part (i), and so f (U) = τ( f (U)).

(iii) It follows by taking the canonical epimorphism f : M −→M/K in (ii); because

then (U +K)/K = f (U) = τ( f (U)) = τ((U +K)/K).

Proposition 2.4.3. For a preradical τ on R-M od and modules K ⊆M, we have:

(i) (τ(M)+K)/K ⊆ τ(M/K).

(ii) If τ is a radical and K ⊆ τ(M), then τ(M/K) = τ(M)/K (see, for example,

Stenström (1975, Chap. VI, Lemma 1.1)).

Proof. (i) Let f : M −→M/K be the natural epimorphism. Since τ is a preradical,

(τ(M)+K)/K = f (τ(M))⊆ τ( f (M)) = τ(M/K).
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(ii) Since K ⊆ τ(M) it follows, by (i), that

τ(M)/K = (τ(M)+K)/K ⊆ τ(M/K).

Conversely, since τ is a radical we have

τ [(M/K)/(τ(M)/K)]∼= τ(M/τ(M)) = 0 .

Thus τ(M/K)⊆ τ(M)/K by Proposition 2.4.1-(ii).

When we consider a ring R as a left R-module, we already have that A = τ(RR) is

a left ideal of R; in fact, it is a two-sided ideal of R (as the following theorem shows),

so that we can consider the quotient ring R/A which we shall use in the results for

τ-supplemented modules.

Theorem 2.4.4. (Stenström, 1975, Chap. VI, §1, Examples (3)) For each ring R and

any preradical τ for R-M od, when R is considered as a left R-module, the left ideal

τ(RR) is a two-sided ideal of R.

Proof. Let A = τ(RR). Since τ is a preradical, A = τ(RR) is a fully invariant submodule

of the left R-module R (that is, f (A)⊆ A for every endomorphism f : RR−→ RR). Let

r ∈ R. For the R-module endomorphism f : RR−→ RR, defined by f (x) = xr for every

x ∈ R, we must have Ar = f (A)⊆ A as required.

Let τ be a preradical for R-M od. For a free R-module F , the property τ(F) = τ(R)F

is easily obtained. Indeed, if F =
⊕

i∈I R for some index set I, then

τ(F) =
⊕
i∈I

τ(R) =
⊕
i∈I

τ(R)R = τ(R)F.

This also holds for projective modules since a projective module is a direct summand

of a free module: τ(P) = τ(R)P for a projective module P.
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Definition 2.4.5. A torsion theory for R-M od is a pair (T ,F ) of classes of modules

such that

(i) HomR(T,F) = 0 for all T ∈ T , F ∈ F .

(ii) If HomR(C,F) = 0 for all F ∈ F , then C ∈ T .

(iii) If HomR(T,C) = 0 for all T ∈ T , then C ∈ F .

Here, T is called a torsion class and its modules are called torsion modules, while F

is called a torsion free class and its modules are called torsion free modules.

Every class of modules A generates and cogenerates a torsion theory in the

following sense.

Definition 2.4.6. Let A be a class of modules in R-M od.

(i) Consider the classes of modules

F1 = {Y ∈ R-M od | HomR(A,Y ) = 0, for all A ∈ A}

and

T1 = {X ∈ R-M od | HomR(X ,F) = 0, for all F ∈ F1}.

Then (T1,F1) is a torsion theory called the torsion theory generated by A .

(ii) Consider the classes of modules

T2 = {X ∈ R-M od | HomR(X ,A) = 0, for all A ∈ A}

and

F2 = {Y ∈ R-M od | HomR(T,Y ) = 0, for all T ∈ T2}.

Then (T2,F2) is a torsion theory called the torsion theory cogenerated by A .

Note that T1 is the least torsion class containing A , whereas F2 is the least

torsionfree class containing A .
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Recall that a torsion theory (T ,F ) for R-M od is hereditary if the torsion class T

is closed under submodules. Equivalently, the torsion free class F is closed under

injective envelopes (by Proposition 2.8.7 since R-M od has enough injectives).

Let M be a module and let a ∈ M. Then the set (M : a) = {r ∈ R | ra ∈ M} is a

left ideal of R. For a submodule N of M, (0 : N) = {r ∈ R | rN = 0} is the annihilator

of N, denoted by AnnR(N). For an element x ∈ M, (0 : x) = {r ∈ R | rx = 0} is the

annihilator of x, denoted by AnnR(x).

Definition 2.4.7. A non-empty set F(R) of left ideals of R is called a Gabriel filter if

(i) for every I ∈ F(R) and every a ∈ R, we have (I : a) ∈ F(R) and,

(ii) for every J ∈ F(R) and every left ideal I of R with (I : a) ∈ F(R) for all a ∈ J,

we have I ∈ F(R).

The following result can be found, for example, in Crivei (2004):

Theorem 2.4.8. (see the proof of Crivei (2004, Theorem 1.3.3)) Let (T ,F ) be a

hereditary torsion theory for R-M od. Then for the Gabriel filter F(R) for (T ,F )

we have

F(R) = {I | I is a left ideal of R and R/I ∈ T }.

Note that Rx ∈ T if and only if Ix = 0 for some I ∈ F(R). Equivalently, Rx ∈ F if

and only if Ix 6= 0 for every I ∈ F(R).

Theorem 2.4.9. (by Crivei (2004, Theorem 2.1.1)) Let τ = (T ,F ) be a hereditary

torsion theory for R-M od. The following are equivalent for a module M:

(i) M is injective with respect to every short exact sequence

0 //A //B //C //0

such that C ∈ T ;



40

(ii) Any homomorphism from a left ideal I of R such that R/I ∈ T to M can be

extended to a homomorphism from R to M;

(iii) Ext1R(C,M) = 0 for every module C ∈ T .

A module M satisfying these equivalent conditions is called τ-injective.

Let M be a module. An element m ∈ M is said to be a singular element of M if

AnnR(m)ER. The set of all singular elements of M is denoted by Z(M), that is,

Z(M) = {m ∈M | AnnR(m)ER}.

The submodule Z(M) is called the singular submodule of M. The module M is said to

be a singular module if Z(M) =M, and is said to be a nonsingular module if Z(M) = 0.

See, for example, Lam (1999, Chap. 3, §7) for some properties related to singular

modules.

Proposition 2.4.10. (Lam, 1999, Chap. 3, 7.6-(3)) A module M is singular if and only

if M ∼= B/A for some modules A⊆ B such that AEB.

We give some examples of torsion theories which will be used in Chapter 4 (see, for

example, Crivei (2004, Example 1.2.16)).

Example 2.4.11. Let τD be the torsion theory generated by the class of semisimple

(or even simple) modules. Then τD is a hereditary torsion theory, called the Dickson

torsion theory. Its torsion and torsion free classes are respectively

TD = {A ∈ R-M od | A is semi-artinian} and FD = {A ∈ R-M od | SocA = 0}.

In a torsion theory τ = (T ,F ), the torsion class T need not be closed under taking

injective envelopes. τ is called stable if the torsion class T is closed under taking

injective envelopes. τ is said to be faithful if R ∈ F .
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Let Z2(M) = {x ∈M | x+Z(M) ∈ Z(Z/Z(M))} for a module M.

Example 2.4.12. Let τG be the torsion theory generated by all singular modules. Then

τG is a stable hereditary torsion theory, called the Goldie torsion theory. Its torsion and

torsion free classes are respectively

TG = {A | Z2(A) = A} and FG = {A | A is nonsingular }.

Note that if R∈FG, that is, if R is nonsingular, then TG consists of all singular modules.

Remark 2.4.13. In Thorem 4.3.7, Bowe has given his result for Goldie torsion theory

with R nonsingular; he has called this torsion theory Singular Theory.

2.5 Projective Covers and Perfect Rings

In this section, we give some elementary definitions and properties for projective

covers of modules and perfect rings which are needed in Chapter 3.

For modules P and M, an epimorphism f : P→M is said to be a projective cover

if P is projective and Ker f � P.

Definition 2.5.1. Let R be a ring.

(i) R is called left perfect (semiperfect) if every (finitely generated) left R-module

has a projective cover.

(ii) R is said to be a left max ring if every left R-module has a maximal submodule

or equivalently, RadM�M for every left R-module M.

(iii) R is said to be a semilocal ring if R/J(R) is a semisimple ring (that is a left

(and right) semisimple R-module) (see Lam (2001, §20)). Semilocal rings are

also referred to as rings semisimple modulo their radical (see Anderson & Fuller

(1992, §15, pp. 170-172)).
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Proposition 2.5.2. Let R an arbitrary ring.

(i) If P is a projective module and U is a submodule of P such that P/U has a

projective cover, then U has a supplement V in P such that V is a direct summand

of P (and hence projective) (see Wisbauer (1991, 42.1)).

(ii) A ring R is (left or right) semiperfect if and only if the left (or right) R-module R

is supplemented (see Wisbauer (1991, 42.6)).

(iii) For a semilocal ring R, RadM = JM for every left R-module M where J = J(R)

(see, for example, Anderson & Fuller (1992, Corollary 15.18)).

Recall that a subset I of a ring R is said to be left T-nilpotent in case for every

sequence {ak}∞
k=1 in I there is a positive integer n such that a1 · · ·an = 0.

Some of the principal characterizations of left perfect rings given by Bass are

contained in the following theorem:

Theorem 2.5.3. (see, for example, Anderson & Fuller (1992, Theorem 28.4)) The

following are equivalent for a ring R:

(i) R is left perfect;

(ii) R is a semilocal ring and J(R) is left T-nilpotent;

(iii) R is a semilocal left max ring.

2.6 Torsion Free Covering Modules over Commutative Domains

In this section, we review some basic properties of torsion free covers for the

usual torsion theory over a commutative domain, and in general for hereditary torsion

theories.
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See Section 1.2 for the definition of torsion free covers of modules over

commutative domains.

If F is the class of all torsion free modules, then F -covers coincide with torsion

free covers defined in Section 1.2. The following is not the usual definition of torsion

free covers, but agree with it.

Proposition 2.6.1. (see arguments after Enochs & Jenda (2000, Definition 5.1.1))

Let F be the class of all torsion free R-modules over a commutative domain R. A

homomorphism ϕ : T −→M of modules is torsion free cover of M if and only if ϕ is an

F -cover of M.

In Enochs (1963, Theorem 1) it was proved that every module over a commutative

domain has a torsion free cover (see also Enochs & Jenda (2000, Theorem 4.2.1)).

That is, he proved the existence of torsion free covers for the usual torsion theory over

a commutative domain. In Teply (1976) and Golan & Teply (1973), this result has been

generalized to faithful hereditary torsion theories for R-M od.

Let (T ,F ) be a faithful hereditary torsion theory for R-M od. A torsion free

precover ϕ : F −→M (i.e., ϕ satisfies (i) in the definition of torsion free covers given

in Section 1.2) is called a torsion free cover of M if Kerϕ contains no non-trivial

submodule N of F such that F/N ∈ F .

For a partially ordered set L, a subset K ⊆ L is said to be cofinal if, for every n ∈ L,

there exists k ∈ K such that n≤ k.

A Gabriel filter F(R) for a hereditary torsion theory τ = (T ,F ) for R-M od is said

to have a cofinal subset of finitely generated left ideals if, for every I ∈ F(R), there

exists a finitely generated left ideal J ⊆ I such that J ∈ F(R). Note that if a hereditary

torsion theory τ has a cofinal subset of finitely generated left ideals, then τ is said to be
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of finite type (see Golan (1986, Chap. 42)).

Theorem 2.6.2. (Teply, 1969, Theorem 1.5) Let (T ,F ) be a hereditary torsion theory.

If any direct sum of torsion free injective modules is injective, then F(R) has a cofinal

subset of finitely generated left ideals.

Theorem 2.6.3. (Teply, 1976, Theorem) Let (T ,F ) be a faithful hereditary torsion

theory. If the Gabriel filter F(R) has a cofinal subset of finitely generated left ideals,

then every R-module has a unique torsion free cover.

Corollary 2.6.4. Let (T ,F ) be a faithful hereditary torsion theory. If any direct sum

of torsion free injective modules is injective, then every R-module has a unique torsion

free cover.

2.7 Abelian Categories

In this section we recall some definitions and elementary properties of abelian

categories. For more details we refer to Stenström (1975, Chaps. IV-V) or Freyd

(1964).

A category C is defined to consist of three ingredients: a class Obj(C ) of objects of

C , a set HomC (A,B), whose elements are called morphisms from A to B for every

ordered pair (A,B) of objects, and composition HomC (C′,C′′)×HomC (C,C′) −→

HomC (C,C′′) for every ordered triple (C,C′,C′′) of objects. These ingredients subject

to the following axioms (note that we often write α : C −→C′ or C α−→C′ instead of

α ∈ HomC (C,C′′), and the composition of α ∈ Hom(C,C′) and β ∈ Hom(C′,C′′) is

denoted by βα):

(i) HomC (C,C′) and HomC (D,D′) are disjoint sets if (C,C′) 6= (D,D′),

(ii) composition is associative: if α : C −→C′, β : C′ −→C′′ and γ : C′′ −→C′′′ are

morphisms, then γ(βα) = (γβ)α.
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(iii) for every object C, there is an identity morphism 1C : C−→C such that 1Cα=α

and β1C = β for all α : C′ −→C and β : C −→C′′.

The opposite category C op is defined to be a category with Obj(C op)= Obj(C ), with

morphisms HomC op(A,B) = HomC (B,A), and with composition the reverse of that in

C ; that is, g∗ f = f ◦g, where ∗ is a composition in C op and ◦ is a composition in C .

A morphism α : C−→C′ in a category C is an isomorphism if there exists β : C′−→

C such that αβ = 1C′ and βα = 1C.

Definition 2.7.1. If C and D are categories, then a functor T : C −→ D is a function

such that

(i) if A ∈ Obj(C), then T (A) ∈ Obj(D),

(ii) if f : A−→ A′ in C , then T ( f ) : T (A)−→ T (A′) in D ,

(iii) if f : A−→ A′ and g : A′ −→ A′′ in C , then T (g f ) = T (g)T ( f ),

(iv) T (1A) = 1T (A) for every A ∈ Obj(C ).

Thus, there is a map

HomC (C,C′)−→ HomD(T (C),T (C′)) (2.7.1)

given by f 7→ T ( f ) for every pair C,C′ ∈ Obj(C ). The functor T is called faithful if

these maps are one-to-one and, T is called full if they are onto. A functor T : C op−→D

is said to be a contravariant functor from C to D .

Definition 2.7.2. Let S and T be functors C −→D . A natural transformation η : S−→

T is obtained by taking for each object C in C a morphism ηC : S(C) −→ T (C) in D ,
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so that for every morphism α : C −→C′ in C the following diagram commutes:

S(C)
ηC //

S(α)
��

T (C)

T (α)
��

S(C′)
ηC′
// T (C′)

.

η is called a natural equivalence if each ηC is an isomorphism in D .

A category C is called a small category if the class of objects of C is a set. If

I is a small category and C is any category, the functor category Fun(I,C ) can be

defined, where the objects are the functors I −→ C and the morphisms are the natural

transformations between such functors; see, for example, Stenström (1975, Chap. IV,

§7) for details.

A category C is called a preadditive category if each set HomC (C,C′) is an abelian

group and the composition map HomC (C′,C′′)×HomC (C,C′) −→ HomC (C,C′′) is

bilinear, that is, given morphisms f ,g ∈ HomC (C,C′) and α,β ∈ HomC (C′,C′′), we

have α( f +g) = α f +αg and (α+β) f = α f +β f .

Let C and D be preadditive categories. A functor T : C −→ D is called additive

if T (α+α′) = T (α)+T (α′) for all α,α′ : C −→C′ in C , that is, the map (2.7.1) is a

group homomorphism.

Definition 2.7.3. Let C and D be two preadditive categories, and let S : C −→D and

T : D −→ C be two additive functors. S is said to be a left adjoint of T (symmetrically

T is said to be a right adjoint of S) if there is a natural equivalence

η : HomC (−,T (−))−→ HomD(S(−),−)

of functors C op×D −→ Ab, that is, for every pair of objects C ∈ Obj(C ) and D ∈
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Obj(D), there is an isomorphism

ηC,D : HomC (C,T (D))−→ HomD(S(C),D)

which is natural in C and D.

Let C be a preadditive category. A zero object in C is an object Z of C such that

HomC (C,Z) = 0 and HomC (Z,C) = 0 (the trivial abelian group) for every object C of

C . Any two zero objects are isomorphic, so we denote them by a single zero object 0

of C . A morphism f : A −→ B in C is a monomorphism if f α = 0 implies α = 0 for

every morphism α : X −→ A. Dually, f is an epimorphism if β f = 0 implies β = 0

for every morphism β : B −→ X . Two monomorphisms f : A −→ B and f ′ : A′ −→ B

are said to be equivalent if there is an isomorphism h : A −→ A′ such that f ′h = f .

An equivalence class of monomorphisms into C ∈ Obj(C ) is called a subobject of C.

Dually, quotient objects are defined. Two epimorphisms f : A −→ B and g : A −→ B′

are said to be equivalent if there is an isomorphism h : B−→ B′ such that h f = g. An

equivalence class of epimorphisms onto A ∈ Obj(C ) is called a quotient object of A.

When A is a subobject of B we write A⊆ B, and so we write B/A for the quotient object

Coker(A−→ B) of B.

Definition 2.7.4. Let C be a preadditive category with a zero object and let f : A−→ B

be a morphism in C . Then a kernel of f , denoted by ker f , is a morphism k : K −→ A

such that f k = 0, and for every morphism g : C−→ A with f g= 0, there exists a unique

morphism h : C−→ K such that g = kh. Note that, K is denoted by Ker f and that ker f

is a unique monomorphism (more precisely, any two kernels of a morphism represent

the same subobject). Also, f is a monomorphism if and only if Ker f = 0.

Dually, a cokernel of f , denoted by coker f , is a morphism p : B −→ C such that

p f = 0, and for every morphism g : B −→ D with g f = 0, there exists a unique

morphism h : C −→ D such that hp = g. Note that, C is denoted by Coker f and that
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coker f is a unique epimorphism, and f is an epimorphism if and only if Coker f = 0.

Definition 2.7.5. Let C be a preadditive category with a zero object. A product of

a family (Ci)i∈I of objects of C is an object C together with morphisms πi : C −→

Ci (i ∈ I) such that for every object X and morphisms fi : X −→Ci, there is a unique

morphism f : X −→ C with πi f = fi for all i ∈ I. The product C is unique up to

isomorphism and is denoted by ∏
i∈I

Ci.

Dually, a coproduct of a family (Ci)i∈I of objects of C is an object C together with

morphisms ei : Ci −→ C (i ∈ I), such that for every object X and morphisms fi :

Ci −→ X , there is a unique morphism f : C −→ X with f ei = fi for all i ∈ I. The

coproduct C is unique up to isomorphism and is denoted by
⊔
i∈I

Ci. Note that, since C

is a preadditive category, the coproduct is called a direct sum and is denoted by
⊕
i∈I

Ci.

Let C be a preadditive category with a zero object such that every morphism has

a kernel and a cokernel. For every morphism α : B −→ C, we have the following

commutative diagram (see, for example, Stenström (1975, Chap. IV, §4) for details):

Kerα
kerα // B α //

λ
��

C cokerα // Cokerα

Coker(kerα)
α̃

// Ker(cokerα)

µ

OO . (2.7.2)

Definition 2.7.6. Let C be a preadditive category with a zero object. C is said to be an

abelian category if

(i) every finite family of objects of C has a product and a coproduct,

(ii) every morphism in C has a kernel and a cokernel, and

(iii) the morphism α̃ of (2.7.2) is an isomorphism for every morphism α.

For every morphism f : A−→ B in an abelian category, the image of f is defined as
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Im f = Ker(coker f ). Thus f has a factorization

A
α // Im f

β // B

where α is an epimorphism and β is a monomorphism.

Let C be an abelian category. A sequence

· · · //Cn−1
αn−1 //Cn

αn //Cn+1 // · · ·

is exact at Cn if Imαn−1 = Kerαn (equal as subobjects of Cn).

An additive functor T : C −→ D between abelian categories C and D is said to be

an exact functor if it carries exact sequences in C into exact sequences in D .

Let C be an abelian category. A short exact sequence in C is a sequence

0 //A
f //B

g //C //0 such that Im f = Kerg. In this case, f is a

monomorphism and g is an epimorphism. Two short exact sequences

E : 0 //A
f //B

g //C //0 and E′ : 0 //A
f ′ //B′

g′ //C //0

in C starting with A and ending with C are said to be equivalent if we have a

commutative diagram

0 // A
f //

1A
��

B
g //

ψ

��

C //

1C
��

0

0 // A
f ′ // B′

g′ //C // 0

with some morphism ψ : B −→ B′, where 1A : A −→ A and 1C : C −→ C are identity

morphisms. Denote by ExtC (C,A) the set of equivalence classes of all short exact

sequences in C starting with A and ending with C.
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Let C be an abelian category. A class F of objects in C is said to be closed under

extensions if for every short exact sequence

0 //A
f //B

g //C //0

of objects in F , we have B ∈ F whenever A,C ∈ F . An object Q of C is said to be

projective if the functor HomC (Q,−) : C −→ Ab is exact, and is said to be injective if

the functor HomC (−,Q) : C op −→ Ab is exact.

The category C is said to have enough projectives if every object of C is a quotient

object of a projective object, and C is said to have enough injectives if every object

is a subobject of an injective object. For instance, it is well-known that the category

R-M od has enough projectives and injectives.

Let C an abelian category. An object C of C is said to be a generator for C if

HomC (C,−) is faithful, and is a cogenerator if HomC (−,C) is faithful.

Proposition 2.7.7. (Stenström, 1975, Propositions IV.6.3, 6.5) A projective object P of

an abelian category C is a generator if and only if there exists a nonzero morphism

P−→C for every C 6= 0 in C , and an injective object E is a cogenerator if and only if

there exists a nonzero morphism C −→ E for every C 6= 0 in C .

Definition 2.7.8. A family (Ui)i∈I of objects of an abelian category C is said to be

a family of generators for C if for every nonzero morphism α : B −→ C in C , there

exists a morphism β : Ui −→ B, for some i ∈ I, such that αβ 6= 0. If, moreover, C

has coproducts, then
⊕

i∈I Ui is a generator for C (see, for example, Stenström (1975,

Chap. IV, Example 3)).

Let C be a preadditive category, I be a small category and F : I−→ C be a functor.

A set of morphisms αi : X −→ F(i) for all i ∈ Obj(I) is said to be compatible if for
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every morphism λ : i−→ j in I, the following diagram commutes:

X
α j

!!CCCCCCCC
αi

}}||||||||

F(i)
F(λ) // F( j)

.

In category theory, the functor F is often referred to as a diagram in C of type I, and

the set αi of morphisms as a commutative cone with vertex X over the diagram F .

A commutative co-cone with vertex X over the diagram F , denoted by α : F −→ X ,

is a set of morphisms αi : F(i) −→ X for all i ∈ Obj(I) such that for every morphism

λ : i−→ j in I the following diagram commutes:

F(i)
F(λ) //

αi !!BBBBBBBB
F( j)

α j}}{{{{{{{{

X

.

Definition 2.7.9. A limit (or projective limit) of a diagram F : I −→ C is a cone π :

lim
←−

F −→ F such that for every cone α : X −→ F there exists a unique morphism

ξ : X −→ lim
←−

Fsuch that πiξ = αi for every i ∈ Obj(I). This limit is unique up to

isomorphism, if it exists. The category C is called complete if the limit exists for every

diagram F : I−→ C when I is small.

A colimit (or inductive limit) of a diagram F : I −→ C is a co-cone ι : F −→ lim
−→

F

such that for every co-cone α : F −→ X there exists a unique morphism ξ : lim
−→

F −→ X

such that ξιi = αi for every i ∈ Obj(I). This colimit is unique up to isomorphism, if

it exists. The category C is called co-complete if the colimit exists for every diagram

F : I−→ C when I is small.

A partially ordered set I is called a directed set if for every i, j ∈ I, there exists a

k ∈ I such that i≤ k and j ≤ k. If I is a directed set and C is an arbitrary category, then
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a functor I −→ C is called a direct system in C , and a functor Iop −→ C is called an

inverse system in C . The colimit of a direct system I−→ C is called a direct limit, and

the limit of an inverse system Iop −→ C is called an inverse limit.

Note that, for a cofinal subset K of a directed set I, the direct limit (respectively

inverse limit) over I is isomorphic to the direct limit (resp. inverse limit) over K (see,

for example, Rotman (2009, Exercise 5.22, p. 255)).

Let C be an abelian category. A well-ordered direct system {Cα : α < λ} of objects

in C is said to be continuous if C0 = 0 and, for every limit ordinal ω < λ, we have

Cω = lim
−→

Cα, where the limit is taken over all ordinals α < λ. A continuous directed

system {Cα : α < λ} is called a continuous directed union if all morphisms in the

system are monomorphisms.

A cocomplete abelian category (or abelian category with coproducts) C is called

a Grothendieck category if direct limits are exact in C and C has a generator.

For example, the category R-M od is a Grothendieck category by Stenström (1975,

Proposition I.5.3).

For a cocomplete abelian category C , a family (Ci)i∈I of subobjects of an object C

of C is said to be a direct family if I is a directed set when one defines i≤ j whenever

Ci ⊆C j.

Let C be an abelian category and C be an object in C with a family {Ci}i∈I of

subobjects. The monomorphisms Ci −→C induce a morphism α :
⊕

i∈I Ci −→C. The

image of α is called the sum of the subobjects Ci and is denoted by ∑
i∈I

Ci. Dually, the

epimorphisms C −→ C/Ci induce a morphism β : C −→∏
i∈I

C/Ci. The kernel of β is

called the intersection of the subobjects Ci and is denoted by
⋂
i∈I

Ci.

In the following proposition, for two monomorphisms f : Ci −→C and g : C j −→C
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(i.e., Ci and C j are subobjects of C), we write Ci≤C j if there is a morphism h :Ci−→C j

such that gh = f (h will then be a monomorphism).

Proposition 2.7.10. (Stenström, 1975, Chap. IV, Proposition 4.2) If {Ci}i∈I is a family

of subobjects of C in an abelian category C , then ∑
i∈I

Ci is a least upper bound and
⋂
i∈I

Ci

is a greatest lower bound for the family.

Proposition 2.7.11. (Stenström, 1975, Proposition V.1.1) Let C be a cocomplete

abelian category and let C be an object of C . Then direct limits are exact in C if

and only if for every subobject B of C one has

(
∑
i∈I

Ci

)
∩B = ∑

i∈I
(Ci∩B)

where (Ci)i∈I is a direct family of subobjects of C.

Let C be a Grothendieck category. A subobject B of an object C is said to be

essential if B∩C′ 6= 0 for every nonzero object C′ with C′ ⊆C. An injective envelope

of an object in C is an essential monomorphism C−→E, where E is an injective object.

Proposition 2.7.12. (Stenström, 1975, Chap. X, Corollary 4.3) Every object in a

Grothendieck category is a subobject of an injective object.

From the previous result we deduce that every Grothendieck category has enough

injectives. Moreover, by for example Stenström (1975, Chap. V, Example 1), every

Grothendieck category has injective envelopes.

See Section 1.3 for the definition of a locally finitely generated category.

Proposition 2.7.13. (see, for example, Stenström (1975, Chap. V, Proposition 3.2))

Let C be a Grothendieck category. An object C of C is finitely generated if and only if

the functor HomC (C,−) preserves direct unions, that is,

lim
−→

HomC(C,Di)∼= HomC(C,∑
i

Di)
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for every direct family (Di)i∈I of subobjects of an object D in C .

Proposition 2.7.14. ((see, for example, Stenström (1975, Chap. V, Proposition 3.4)))

Let C be a locally finitely generated Grothendieck category. An object C of C is finitely

presented if and only if the functor HomC (C,−) preserves direct limits, that is,

lim
−→

HomC(C,Di)∼= HomC(C, lim
−→

Di)

for every direct system (Di)i∈I in C .

Proposition 2.7.15. (Stenström, 1975, Chap. V, Example 2) Every finitely generated

projective object is finitely presented.

2.8 Torsion Theories for Abelian Categories

In this section we give the definition and some useful properties of torsion theories

in abelian categories. We refer to Stenström (1975, Chap. VI, §2) for further details

for torsion theories in abelian categories.

A category is said to be locally small if the class of the subobjects of any given

object is a set (recall that subobjects are equivalence classes of monomorphisms).

Torsion theories were introduced in Dickson (1966) for an abelian category C which

was moreover assumed to be subcomplete, that is, locally small and for every set

{Cλ}λ∈Λ of subobjects of C ,
⊕
λ∈Λ

Cλ and ∏
λ∈Λ

Aλ exist. Thus, throughout this section,

unless otherwise stated, we assume C to be a complete, cocomplete and locally small

abelian category.

A preradical τ of C is defined to be a subfunctor of the identity functor on C , that is,

for every object C, τ(C) is a subobject of C and every morphism C −→D in C induces
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a morphism τ(C)−→ τ(D) by restriction.

If τ1 and τ2 are preradicals, then the preradicals τ1τ2 and τ1 : τ2 can be defined as

follows:

τ1τ2(C) = τ1(τ2(C)) and (τ1 : τ2)(C)/τ1(C) = τ2(C/τ1(C)).

A preradical τ is said to be idempotent if τ(τ(C)) = τ(C), and is called a radical if

τ : τ = τ, that is, τ(C/τ(C)) = 0 for every object C of C .

To a preradical τ the following two classes of objects in C are defined:

Tτ = {C ∈ Obj(C ) | τ(C) =C}, Fτ = {C ∈ Obj(C ) | τ(C) = 0}.

Tτ is called a pretorsion class which is closed under quotient objects and coproducts,

and Fτ is called pretorsion free class which is closed under subobjects and products

(see, for example, Stenström (1975, Chap. VI, Proposition 1.2)).

Any preradical τ is a functor preserves monomorphisms. In general this functor

need not be exact.

Proposition 2.8.1. (see, for example, Stenström (1975, Chap. VI, Proposition 1.7))

The following are equivalent for a preradical τ for the category C :

(i) τ is a left exact functor;

(ii) if D⊆C, then τ(D) = τ(C)∩D;

(iii) τ is idempotent and Tτ is closed under subobjects.

If these equivalent conditions are satisfied, then τ is called a hereditary preradical.

Torsion theories for abelian categories were introduced in Dickson (1966, p. 224):
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Definition 2.8.2. A torsion theory for the category C is a pair (T ,F ) of classes of

objects in C such that

(i) HomC (T,F) = 0 for all T ∈ T , F ∈ F .

(ii) If HomC (C,F) = 0 for all F ∈ F , then C ∈ T .

(iii) If HomC (T,C) = 0 for all T ∈ T , then C ∈ F .

T is called a torsion class and its objects are torsion objects, while F is called a torsion

free class and its objects are torsion free objects.

Proposition 2.8.3. (Stenström, 1975, Chap. VI, Proposition 2.1) The following

properties of a class T of objects in the category C are equivalent:

(i) T is a torsion class for some torsion theory;

(ii) T is closed under quotient objects, coproducts and extensions.

Proposition 2.8.4. (Stenström, 1975, Chap. VI, Proposition 2.2) The following

properties of a class F of objects in the category C are equivalent:

(i) F is a torsion free class for some torsion theory;

(ii) F is closed under subobjects, products and extensions.

Proposition 2.8.5. (Stenström, 1975, Chap. VI, Proposition 2.3) There is a bijective

correspondence between torsion theories and idempotent radicals in C .

A torsion theory (T ,F ) for the category C is called hereditary if T is hereditary,

that is, T is closed under subobjects.

Proposition 2.8.6. (Stenström, 1975, Chap. VI, Proposition 3.1) There is a bijective

correspondence between hereditary torsion theories and left exact radicals.

Proposition 2.8.7. (Stenström, 1975, Chap. VI, Proposition 3.2) Let C have injective

envelopes. A torsion theory (T ,F ) for C is hereditary if and only if F is closed under

injective envelopes.
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2.9 Cotorsion Theories

This section contains some definitions and elementary properties of cotorsion

theories (or cotorsion pairs). The notion of cotorsion groups has been introduced in

Harrison (1959) and independently in Nunke (1959) and Fuchs (1960). The concept

of cotorsion theory were introduced by Salce (1979) in the category of abelian groups;

however, the definition can be extended to abelian categories. Actually, the definition

of cotorsion theory is analogous of the definition of torsion theory, replacing the functor

Hom by Ext. Cotorsion theories have been used to study covers and envelopes (see

Enochs & Jenda (2000, Chap. 7)), particularly in the proof of the flat cover conjecture

which has been open for nearly twenty years (see Bican et al. (2001)).

Throughout this section, the letter A will denote an abelian category, and all classes

considered are closed under isomorphisms.

Given a class F of objects of A , ⊥F (respectively F ⊥) is defined as the class of

objects C such that ExtA(C,F) = 0 (resp. ExtA(F,C) = 0) for all F ∈ F . ⊥F and F ⊥

are called orthogonal classes of F .

Definition 2.9.1. Let (F ,C ) be a pair of classes in A . A class D is said to generate the

pair (F ,C ) if ⊥D = F (and so D ⊆ F ⊥) and a class G is said to cogenerate (F ,C ) if

G⊥ = C (and so G ⊆ ⊥C ).

A pair (F ,C ) of classes of objects in A is called a cotorsion theory (or a cotorsion

pair) if F ⊥ = C and ⊥C = F .

The following examples of cotorsion theories can be found, for example, in Enochs

& Jenda (2000, §7.1).

Example 2.9.2. The pairs (R-M od,I n j) and (P ro j,R-M od) are cotorsion theories
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where I n j and P ro j denote the classes of injective and projective modules respectively.

The cotorsion theory (R-M od,I n j) is cogenerated by the set of modules R/I where I

is a left ideal of R (because, an R-module E is injective if and only if Ext1R(R/I,E) = 0

for all left ideals I of R), and it is generated by the class of injective modules.

Note that if (F ,C ) is a cotorsion theory, then F and C are both closed under

extensions and direct summands, and if the category A has projective (respectively

injective) objects, then F (resp. C ) contains all the projective (resp. injective) objects.

Also, F is closed under arbitrary direct sums and C is closed under arbitrary direct

products. If the pair (F ,C ) is generated by a set X (not just a class), then (F ,C ) is

generated by the object ∏
M∈X

M, and if (F ,C ) is cogenerated by a set X (not just a

class), then (F ,C ) is cogenerated by the object
⊕
M∈X

M.

An abelian group G is called cotorsion if Ext(T,G) = 0 for every torsion free group

T ; see, for example, Fuchs (1970, §54). This notion has been generalized to modules:

An R-module M is said to be cotorsion if Ext1R(F,M) = 0 for all flat modules F ; see,

for example, Enochs & Jenda (2000, Definition 5.3.22).

Example 2.9.3. (Enochs & Jenda, 2000, Lemma 7.1.4) Let F be the class of all flat

modules. Then F ⊥ = C is the class of cotorsion modules. In this case, (F ,C ) will be

a cotorsion theory; it is called flat cotorsion theory.

Definition 2.9.4. A pair (F ,C ) of classes of objects in A is said to have enough

injectives if for every object M in A there is an exact sequence

0−→M −→C −→ F −→ 0

with C ∈ C and F ∈F , and (F ,C ) is said to have enough projectives if for every object

M there is an exact sequence

0−→C −→ F −→M −→ 0
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with F ∈ F and C ∈ C .

Remark 2.9.5. Eklof and Trlifaj proved that every cotorsion theory cogenerated by a

set of modules has enough projectives and injectives (Eklof & Trlifaj, 2001, Theorem

10). Moreover, the flat cover conjecture of Enochs (that is, every module has a flat

cover) (Enochs, 1981) is equivalent to the conjecture that the flat cotorsion theory

(F ,C ) of R-modules has enough projectives. Indeed, if (F ,C ) has enough projectives,

then for every R-module M there is an exact sequence

0 //C //F
ϕ //M //0

with C ∈ C and F ∈ F . So, for every flat module F ′, we obtain that

HomR(F ′,F)−→ HomR(F ′,M)−→ 0

is exact since Ext1R(F
′,C) = 0 (as C is cotorsion). This means that ϕ : F −→ M is a

flat precover (see the next section for the definition of a cover), and it is known that

the existence of flat precovers implies the existence of flat covers (by Enochs (1981,

Theorem 3.1)). Therefore, Enochs proved the flat cover conjecture by proving that

(F ,C ) is cogenerated by a set.

2.10 Covers and Envelopes

In this section, we give some needed properties of covers and envelopes for a given

class of objects in an abelian category. See Section 1.3 for the definitions and the

motivation for the study of covers and envelopes. Throughout this section the letter A

will denote an abelian category, and F will denote a class of objects in A .

The proofs of the following elementary properties of F -covers and F -envelopes
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can be found, for example, in Xu (1996, §1.2) for module categories, but the same

argument of the proofs carry over to abelian categories. Suppose that F is closed

under isomorphisms, direct summands and under finite direct sums.

If an F -cover exists, then it is unique up to isomorphism:

Proposition 2.10.1. If ϕ1 : F1 −→M and ϕ2 : F2 −→M are two different F -covers of

an object M, then F1 ∼= F2.

Also, F -covers are direct summands of F -precovers:

Proposition 2.10.2. Suppose that an object M admits an F -cover, and that ϕ : F −→

M is an F -precover. Then F = F1⊕K for subobjects F1 and K of F such that the

restriction ϕ |F1: F1 −→M is an F -cover of M and K ⊆ Ker(ϕ).

We have the dual results for F -envelopes, that is, if an F -envelope exists then it is

unique up to isomorphism, and F -envelopes are direct summand of F -preenvelopes.

The following two results are known as Wakamutsu’s Lemmas (see, for example,

Xu (1996)).

Proposition 2.10.3. (Xu, 1996, Lemma 2.1.1) Let ϕ : F −→ M be an F -cover of an

object M. If the class F is closed under extensions, then Ker(ϕ) ∈ F ⊥.

Dually we have

Proposition 2.10.4. (Xu, 1996, Lemma 2.1.2) Let ϕ : M −→ F be an F -envelope of an

object M. If the class F is closed under extensions, then Coker(ϕ) ∈ ⊥F .



CHAPTER THREE

RAD-SUPPLEMENTED MODULES

In this chapter, we investigate some properties of Rad-supplemented modules and

in general τ-supplemented modules where τ is a radical for R-M od. In Section 3.5, we

answer one of our main questions that when are all left R-modules Rad-supplemented.

We investigate some further properties of τ-supplemented modules in Section 3.3.

For some rings R, we also determine when all left R-modules are τ-supplemented in

Section 3.4. We describe Rad-supplemented modules over Dedekind domains using

the structure of supplemented modules over Dedekind domains which was completely

determined in Zöschinger (1974) (see Section 3.6). See Wisbauer (1991, §41) and the

recent monograph Clark et al. (2006) for the results (and the definitions) related to

(weak) supplements and (weakly) supplemented modules.

Throughout this chapter we shall follow the terminology and notation as in Clark

et al. (2006, §10) and Al-Takhman et al. (2006), since we will mainly refer to these for

τ-supplemented modules and Rad-supplemented modules. Unless otherwise stated, τ

will be a radical for R-M od.

3.1 τ-reduced and τ-coatomic Modules

Let τ be a preradical for R-M od and let M be a module. By taking τ instead of Rad

in the definitions of reduced and coatomic module definitions in Zöschinger (1974, p.

47), we define the following:

(i) M is said to be a τ-torsion module if τ(M) = M, that is, M is in the pretorsion

class Tτ.

(ii) M is said to be a τ-reduced module if it has no nonzero τ-torsion submodule,

61
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that is, for every submodule U of M, τ(U) = U implies U = 0 or equivalently,

τ(U) 6=U for every nonzero submodule U of M.

(iii) M is said to be a τ-coatomic module if it has no nonzero τ-torsion factor

module, that is, for every submodule U of M, τ(M/U) = M/U implies U = M

or equivalently, τ(M/U) 6= M/U for every proper submodule U of M.

For τ = Rad, a Rad-torsion module will be called a radical module, a Rad-reduced

module will be called a reduced module and a Rad-coatomic module will be called

a coatomic module following the terminology in Zöschinger (1974). Coatomic

modules appear in the theory of supplemented, semiperfect, and perfect modules. See

Zöschinger (1974, Lemma 1.5) for some properties of reduced and coatomic modules.

Remark 3.1.1. See Golan (1986, pp. 29,63) for the definitions and properties

of τ-dense submodules of a module and τ-cotorsionfree modules for a hereditary

idempotent preradical τ on R-M od: A submodule N of a module M is said to be

τ-dense in M if M/N is τ-torsion, that is, τ(M/N) = M/N, and a module M is said

to be τ-cotorsionfree if it has no proper τ-dense submodules. Our definition of

τ-coatomic module coincides with τ-cotorsionfree module, but in our case, τ need not

be idempotent or hereditary; in particular, Rad is not hereditary. The properties for

τ-cotorsionfree modules given in Golan (1986) hold under this hereditary assumption.

For example, arbitary direct sum of τ-cotorsionfree modules is τ-cotorsionfree when

τ is a hereditary idempotent preradical, but in our case, for just an (idempotent)

preradical τ, arbitrary direct sum of τ-coatomic modules need not be τ-coatomic.

By the results in Stenström (1975, Chap. VI, §2), the properties of τ-torsion and

τ-reduced modules in the following Proposition 3.1.2 are obtained.

Proposition 3.1.2. Let τ be a preradical for R-M od.

(i) The class of τ-torsion modules is closed under quotients and direct sums.



63

Moreover, if τ is a radical, then the class of τ-torsion modules is closed under

extensions.

(ii) Every factor module of a τ-coatomic module is τ-coatomic.

(iii) The class of τ-reduced (respectively τ-coatomic) modules is closed under

extensions, that is, if

0 //A //B //C //0 (3.1.1)

is a short exact sequence of modules such that A and C are τ-reduced (resp.

τ-coatomic), then B is also τ-reduced (resp. τ-coatomic).

Proof. (i) Let M be a τ-torsion module, that is, τ(M) = M. Then for every

submodule K ⊆ M, we have M/K = (τ(M)+K)/K ⊆ τ(M/K) by Proposition

2.4.3-(i). Thus τ(M)/K = τ(M/K) since τ(M/K) ⊆M/K is always true. Now,

for a family (Mi)I of τ-torsion modules (for some index set I) we have, by

Proposition 2.4.1, that

τ

(⊕
i∈I

Mi

)
=

⊕
i∈I

τ(Mi) =
⊕
i∈I

Mi.

Moreover, if τ is a radical and

0−→ A−→ B−→C −→ 0

is a short exact sequence such that A and C ∼= B/A are τ-torsion modules, then

B/A = τ(B/A) = τ(B)/A

where the last equality holds by Proposition 2.4.3-(ii) (since A = τ(A) ⊆ τ(B)).

This implies that τ(B) = B.

(ii) Let M be a τ-coatomic module and let U ⊆M. Suppose that τ[(M/U)/(K/U)] =
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(M/U)/(K/U) for submodules U ⊆ K ⊆ M. Since (M/U)/(K/U) ∼= M/K,

we obtain that τ(M/K) = M/K, and so M = K (since M is τ-coatomic). Thus

M/U = K/U .

(iii) To prove this, in the above short exact sequence (3.1.1) we can assume, without

loss of generality, that A ⊆ B, C = B/A, the map A −→ B is the inclusion

homomorphism and the map B−→C = B/A is the canonical epimorphism. Let

U be a submodule of B. Suppose firstly that A and C = B/A are τ-reduced, and

τ(U) = U . Then by Proposition 2.4.2-(iii), (U +A)/A = τ((U +A)/A). Since

B/A =C is τ-reduced, we obtain that (U +A)/A = 0, and so U ⊆ A. Therefore

since A is τ-reduced, U = 0 as required. Now suppose that A and C = B/A are

τ-coatomic, and τ(B/U) = B/U . Then by Proposition 2.4.2,

τ[(B/U)/((U +A)/U)] = (B/U)/((U +A)/U).

We have the following natural isomorphisms:

(B/A)/((U +A)/A)∼= B/(U +A)∼= (B/U)/((U +A)/U).

So we also have τ[(B/A)/((U +A)/A)] = (B/A)/((U +A)/A). Since B/A =C

is τ-coatomic, (U +A)/A = B/A and so U +A = B. Then we have

A/(U ∩A)∼= (U +A)/U = B/U and τ(B/U) = B/U.

Then τ(A/(U∩A))=A/(U∩A) which implies that U∩A=A as A is τ-coatomic.

Thus A⊆U , and so U +A = B implies that U = B as required.

Proposition 3.1.3. Let τ be a radical for R-M od. If a module M is τ-coatomic, then

τ(M)�M.

Proof. Suppose τ(M)+ L = M for some submodule L ⊆ M. Since M/L = (τ(M)+

L)/L ⊆ τ(M/L), we obtain that M/L = τ(M/L). This gives L = M since M is
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τ-coatomic. Hence τ(M)�M.

3.2 The Largest τ-torsion Submodule Pτ(M)

In this section, we define the largest τ-torsion submodule Pτ(M) of a module M,

and give some properties of it which will be used frequently in this chapter.

By Pτ(M) we denote the sum of all τ-torsion submodules of M, that is,

Pτ(M) = ∑{U ⊆M | τ(U) =U}.

Note that for τ = Rad, Pτ(M) will be denoted by just P(M).

Remark 3.2.1. It can be seen immediately that a module M is τ-reduced if and only if

M is Pτ-torsion free, that is, Pτ(M) = 0.

Remark 3.2.2. For a ring R, P(RR) will be the sum of all left ideals I of R such that

Rad I = I. In this thesis, by P(R) we will mean P(RR). Now, define P(RR) to be the

sum of all right ideals I of R such that Rad I = I. Thus, the question has been raised

whether P(RR) = P(RR) or not. For example, J(RR) = J(RR) and so the notation J(R)

is used for the Jacobson radical of R.

The following theorem contains some useful elementary properties of Pτ(M):

Theorem 3.2.3. Let τ be a preradical for R-M od and let M be an R-module.

(i) Pτ is an idempotent preradical.

(ii) If M ⊆ N for a module N, then Pτ(M)⊆ τ(N). In particular, Pτ(M)⊆ τ(M).

(iii) τ(Pτ(M)) = Pτ(M), that is, Pτ(M) is a τ-torsion module, and so Pτ(M) is the

largest τ-torsion submodule of M (by its definition).
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(iv) If Pτ(M)⊆V for a submodule V of M, then Pτ(M)⊆ τ(V ).

(v) Pτ(τ(M)) = Pτ(M)

(vi) The pretorsion class of Pτ equals the pretorsion class of τ and the pretorsion free

class of Pτ contains the pretorsion free class of τ:

TPτ
= Tτ and FPτ

⊇ Fτ.

(vii) Moreover, if τ is a radical, then the factor module M/Pτ(M) is τ-reduced, that

is, Pτ

(
M/Pτ(M)

)
= 0, and so Pτ is an idempotent radical.

Proof. (i) Clearly, Pτ(M) ⊆ M for every R-module M. Let f : M −→ N be a

homomorphism of R-modules. If U is a τ-torsion submodule of M, then f (U) is

a τ-torsion submodule of N by Proposition 2.4.2-(ii). So

f (Pτ(M)) = f
(
∑{U ⊆M | τ(U) =U}

)
= ∑{ f (U) | U ⊆M,τ(U) =U}

⊆ ∑{V ⊆ N | τ(V ) =V}= Pτ(N).

This shows that Pτ is a preradical. To show that Pτ is idempotent, we only need to

show that Pτ(M)⊆ Pτ(Pτ(M)). For every submodule U of M such that τ(U) =U ,

we clearly have U ⊆ Pτ(M), and so U ⊆ Pτ(Pτ(M)). Thus

Pτ(M) = ∑{U ⊆M | τ(U) =U} ⊆ Pτ(Pτ(M)).

(ii) For every submodule U of M such that τ(U) = U , since U ⊆ N also, we have

U = τ(U)⊆ τ(N) by Proposition 2.4.1-(i). Thus

Pτ(M) = ∑{U ⊆M | τ(U) =U} ⊆ τ(N).
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(iii) Clearly, τ(Pτ(M))⊆ Pτ(M). Conversely, we have

Pτ(M) = Pτ(Pτ(M))⊆ τ(Pτ(M))

by parts (i) and (ii).

(iv) If Pτ(M)⊆V , then τ(Pτ(M))⊆ τ(V ). Since τ(Pτ(M)) = Pτ(M) by part (iii), the

result follows.

(v) Since τ(M) ⊆M, we already have Pτ(τ(M)) ⊆ Pτ(M). Conversely, by part (ii),

Pτ(M) ⊆ τ(M) and so Pτ(Pτ(M)) ⊆ Pτ(τ(M)). By part (i), Pτ(Pτ(M)) = Pτ(M).

Thus Pτ(M)⊆ Pτ(τ(M)).

(vi) Let N be any module. If τ(N) = N, then by definition of Pτ, we obtain N ⊆

Pτ(N) ⊆ N, and so Pτ(N) = N. Conversely, if Pτ(N) = N, then by part (ii),

N =Pτ(N)⊆ τ(N)⊆N, so τ(N) =N. Now if τ(N) = 0, then by part (ii), Pτ(N)⊆

τ(N) = 0, and thus Pτ(N) = 0 as desired.

(vii) Suppose U/Pτ(M) = τ(U/Pτ(M)), where U is a submodule of M such that

Pτ(M)⊆U . Then Pτ(M)⊆ τ(U) by part (iv). So

U/Pτ(M) = τ(U/Pτ(M)) = τ(U)/Pτ(M)

by Proposition 2.4.3-(ii) which implies U = τ(U), and so by definition of Pτ(M),

we obtain U ⊆ Pτ(M). Thus U = Pτ(M), that is, U/Pτ(M) = 0. This means that

M/Pτ(M) is τ-reduced, and so Pτ(M/Pτ(M)) = 0.

Remark 3.2.4. In general, given any class A of modules, a preradical τA is defined by

setting for every module N,

τ
A(N) = ∑{Im f | f : A−→ N in R-M od, A ∈ A}.

and if A is a pretorsion class, then τA is an idempotent preradical (see, for example,
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Clark et al. (2006, 6.5)). In our case, the preradical Pτ is equal to τA when the pretorsion

class A is equal to the pretorsion class of τ (i.e., A = Tτ). See also Stenström (1975,

Chap. VI, §1); Pτ is the largest idempotent preradical that is smaller than τ and see

Stenström (1975, Chap. VI, Exercise 4) for the parts (iii), (v) of Theorem 3.2.3. Since

Pτ is an idempotent radical when τ is a radical, it gives a torsion theory for R-M od with

torsion class TPτ
= Tτ and torsion free class FPτ

.

Proposition 3.2.5. For a preradical τ, the class of τ-reduced modules is closed under

submodules, direct products and direct sums.

Proof. Let M be a τ-reduced module and let U ⊆M. Then Pτ(U)⊆ Pτ(M) = 0, that is,

U is τ-reduced. For a family (Ni)i∈I of τ-reduced modules,

Pτ

(
∏

i
Ni

)
⊆∏

i
Pτ(Ni) = 0 (by Proposition 2.4.1-(iv)),

that is, the product is τ-reduced. Finally, since the direct sum is a submodule of the

direct product the result follows immediately.

3.3 τ-supplemented Modules

Throughout the rest of this chapter, τ denotes a radical on R-M od. See

Al-Takhman et al. (2006) and Clark et al. (2006, §10) for properties of τ-supplements

and τ-supplemented modules. In this section we give some further properties of

τ-supplemented modules.

A module M is called π-projective if for any submodules U,V of M such that M =

U +V , there exists a homomorphism f : M −→M with Im f ⊆U and Im(1− f )⊆V .

See Wisbauer (1991, 41.14) for details.

The following proposition contains some properties from Al-Takhman et al. (2006)
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that we shall use frequently:

Proposition 3.3.1. (Al-Takhman et al., 2006, 2.2, 2.3, 2.6) Let M be a τ-supplemented

module. Then

(i) Every factor module and every direct summand of M is τ-supplemented.

(ii) M/τ(M) is a semisimple module.

(iii) If N is a τ-supplemented module, then M+N is τ-supplemented.

(iv) If M is π-projective, then M is amply τ-supplemented.

For a submodule V of a module M, it is known that the property

RadV =V ∩RadM

holds if V is a supplement in M (Wisbauer, 1991, 41.1) and moreover if V is coclosed

in M (Clark et al., 2006, 3.7). We show that this property also holds when V is a

Rad-supplement in M. In general:

Theorem 3.3.2. If V is a τ-supplement in a module M, then τ(V ) =V ∩ τ(M).

Proof. τ(V )⊆V ∩ τ(M) always holds. To show the converse we only require to show

that (V ∩ τ(M))/τ(V ) = 0. Since V is a τ-supplement in M, there exists a submodule

U ⊆M such that U +V = M and U ∩V = τ(V ) by Proposition 1.1.1-(ii). Then

M/(U ∩V ) = (U/(U ∩V ))⊕ ((V/U ∩V )) = (U/τ(V )⊕ (V/τ(V )).

Since τ is a radical, we obtain

τ(M/τ(V )) = τ(U/τ(V ))⊕ τ(V/τ(V )) = τ(U/τ(V ))⊕0 = τ(U/τ(V )).
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Since τ(V )⊆ τ(M), we have, by Proposition 2.4.3, that

τ(M)/τ(V ) = τ(M/τ(V )) = τ(U/τ(V )), and

(V ∩ τ(M))/τ(V ) = (V/τ(V ))∩ (τ(M)/τ(V )) = (V/τ(V ))∩ τ(U/τ(V ))

⊆ (V/τ(V ))∩ (U/τ(V ))

= (U ∩V )/τ(V ) = τ(V )/τ(V ) = 0.

Corollary 3.3.3. If V is a Rad-supplement in a module M, then RadV =V ∩RadM.

We shall also give other proofs of this result after giving some needed properties.

Proposition 3.3.4. Let M be a module and let V be a Rad-supplement in M. For

K ⊆M, if K ⊆ RadM, then K∩V ⊆ RadV .

Proof. Assume that V is a Rad-supplement of a submodule U ⊆M in M. Now suppose

on the contrary that K∩V *RadV . Then there exists a maximal submodule T ⊆V such

that K∩V * T . So there exists an m∈ (K∩V )\T . Since T is a maximal submodule of

V , T +Rm =V . Thus M =U +V =U +T +Rm. Since Rm⊆ K ⊆ RadM, we obtain

Rm� M as Rm is a finitely generated submodule of RadM. So M = (U +T )+Rm

implies that U +T = M. Then by modular law V =V ∩M =V ∩ (U +T ) = (V ∩U)+

T = T since V ∩U ⊆ RadV ⊆ T . This contradicts with T being a maximal submodule

of V .

Second proof of Corollary 3.3.3. For a submodule V ⊆M, RadV ⊆V ∩RadM always

holds. Conversely, let x ∈ V ∩RadM. Then Rx ⊆ V and Rx ⊆ RadM. Then by

Proposition 3.3.4, we obtain Rx = Rx∩V ⊆ RadV . So x ∈ RadV as required. �

The formula RadV = V ∩RadM holds for all submodules V ⊆M only in the case

RadM = 0.

Proposition 3.3.5. Let M be a module. Then the following are equivalent:
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(i) RadV =V ∩RadM for every submodule V ⊆M,

(ii) RadM = 0.

Proof. (i)⇒ (ii): Let x ∈ RadM and let V = Rx. Then V ⊆ RadM and, by hypothesis,

RadV = V ∩RadM = V . But since V = Rx is cyclic (and so finitely generated), V ⊆

RadV implies that V �V . Thus Rx=V = 0, and so x= 0 which shows that RadM = 0.

(ii)⇒ (i): Let V be a submodule of M. Then RadV ⊆ V ∩RadM always holds.

Since RadM = 0, RadV = 0 =V ∩RadM.

Corollary 3.3.6. Let M be a module. Every submodule of M is a Rad-supplement

(coneat) in M if and only if M is semisimple.

Proof. (⇐) It is obvious, since every submodule of a semisimple module is a direct

summand, and so a Rad-supplement in M. Indeed, if V is a direct summand of M, then

there exists a submodule U ⊆ M such that U ⊕V = M. This means that U +V = M

and U ∩V = 0⊆ RadV , that is, V is a Rad-supplement of U in M.

(⇒) Let V be a submodule of M. Since V is a Rad-supplement in M, there exists a

submodule U of M such that V +U = M and V ∩U ⊆ RadV . We also have RadV =

V ∩RadM (by Corollary 3.3.3). Since RadM = 0 by Proposition 3.3.5, RadV = 0

already. Thus V ∩U ⊆ RadV = 0 implies that V is a direct summand of M, that is, M

is semisimple.

Corollary 3.3.7. For a module M, if RadM 6= 0, then M has a submodule V0 such that

V0 is not a Rad-supplement in M and RadV0 6= V0∩RadM, and so there exists x ∈ V0

such that for the cyclic submodule Rx of V0, Rx�M but Rx 6�V0.

For further insight into the property RadV =V ∩RadM when V is a Rad-supplement

of a submodule U of M in M, we give another proof that goes through the relation

between maximal submodules of M that contains U and maximal submodules of V .

Proposition 3.3.8. Let V be a submodule of a module M and let T be a maximal

submodule of V . Then the following are equivalent:
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(i) There exists a maximal submodule L of M such that L∩V = T .

(ii) V/T is not small in M/T , that is, the inclusion T ⊆V is not cosmall in M.

Proof. (i)⇒ (ii): T = L∩V ⊆ L implies T ⊆ L. Since T is a maximal submodule

of V , there exists an x ∈ V \ T . Then x /∈ L because if x ∈ L, then we would have

x ∈ L∩V = T , contradicting x /∈ T . Thus L+Rx = M since L is a maximal submodule

of M. Since Rx⊆V as x ∈V , we obtain L+V = M. Then since T ⊆V and T ⊆ L,

M/T = (L+V )/T = (L/T )+(V/T )

and L/T 6= M/T because L 6= M as L is maximal submodule of M. This shows that

V/T is not small in M/T .

(ii) ⇒ (i): Since V/T is not small in M/T , (V/T ) + (L/T ) = M/T for some

submodule L ⊆ M such that T ⊆ L 6= M. Since V/T is simple as T is a maximal

submodule of V , (V/T )∩ (L/T ) is either 0 or V/T . If (V/T )∩ (L/T ) = V/T , then

V/T ⊆ L/T and M/T = (V/T )+(L/T ) = L/T , contradicting L 6= M. Thus

(V ∩L)/T = (V/T )∩ (L/T ) = 0,

and so we have V ∩ L = T . Since (V/T )∩ (L/T ) = 0, we obtain M/T = (V/T )⊕

(L/T ). Hence

M/L∼= (M/T )/(L/T )∼=V/T

is simple which implies that L is maximal in M.

Proposition 3.3.9. Let M be a module and V be a Rad-supplement submodule of M.

If T is a maximal submodule of V , then there exists a maximal submodule L of M such

that L∩V = T .

Proof. Suppose T is a maximal submodule of V . Then V/T is simple. Since V is

a Rad-supplement in M, there exists a submodule U ⊆ M such that U +V = M and

U ∩V ⊆RadV . Let L =U +T . Then since T ⊆V , L+V = (U +T )+V =U +V = M.
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Since T is maximal in V and RadV is the intersection of all maximal submodules of

V , we have U ∩V ⊆ RadV ⊆ T . Thus

L∩V = (U +T )∩V = (U ∩V )+T = T.

Now we have L 6= M because if L = M, then V = M∩V = L∩V = T contradicting T

is maximal in V . Thus

M/T = (L+V )/T = (L/T )+(V/T )

where L/T 6= M/T . This shows that V/T is not small in M/T . Now use Proposition

3.3.8 to end the proof.

Indeed, the above proofs show the following:

Proposition 3.3.10. Let M be a module and U,V be submodules of M such that V is

a Rad-supplement of U in M. For every maximal submodule T of V , the submodule

U +T is maximal in M.

This gives another proof of Corollary 3.3.3:

Third proof of Corollary 3.3.3. For a submodule V ⊆ M, RadV ⊆ V ∩RadM always

holds. Suppose V is a Rad-supplement of a submodule U of M in M, that is, U +V =M

and U ∩V ⊆ RadV . Using the previous proposition, since the radical of a module is

the intersection of all its maximal submodules, we obtain:

V ∩RadM ⊆ V ∩
⋂
{U +T | T maximal in V}

=
⋂
{V ∩ (U +T ) | T maximal in V}

=
⋂
{T | T maximal in V}= RadV
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Note that in the second equality we have used the following: when T is a maximal

submodule of V , then since U ∩V ⊆ RadV ⊆ T ⊆V , we have

V ∩ (U +T ) = (U ∩V )+T = T. �

Proposition 3.3.11. Let K,L,M be modules such that K ⊆ L⊆M.

(i) If K is a τ-supplement in M, then it is a τ-supplement in L.

(ii) If K ⊆ τ(L) and L/K is a τ-supplement in M/K, then L is a τ-supplement in M.

(iii) If K is a τ-supplement in L and L is a τ-supplement in M, then K is a

τ-supplement in M.

Proof. (i) Since K is a τ-supplement in M, there exists a submodule U ⊆ M such

that U +K = M and U ∩K ⊆ τ(K). So L = L∩M = L∩ (U +K) = L∩U +K

and (L∩U)∩K =U ∩K ⊆ τ(K).

(ii) Since L/K is a τ-supplement in M/K, there exists a submodule U ⊆ M with

K ⊆ U such that U/K + L/K = M/K and (U/K)∩ (L/K) ⊆ τ(L/K). So we

obtain U +L = M and

(U ∩L)/K = (U/K)∩ (L/K)⊆ τ(L/K) = τ(L)/K

where the last equality holds by Proposition 2.4.3 since K⊆ τ(L). Hence U∩L⊆

τ(L), and so L is a τ-supplement (of U) in M.

(iii) Recall that τ-Suppl is the class of all short exact sequences

0 //A
f //B

g //C //0

of modules such that Im f is a τ-supplement in B. By Proposition 1.1.1, the

class τ-Suppl is the proper class injectively generated by all modules M such

that τ(M) = 0. By the definition of proper classes, the composition of two
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τ-Suppl-monomorphisms is an τ-Suppl-monomorphism (see Section 2.3). If K

is a τ-supplement in L and L is a τ-supplement in M, then the inclusions K ↪→ L

and L ↪→ M are τ-Suppl-monomorphisms and so their composition K ↪→ M is

also an τ-Suppl-monomorphism, that is, K is a τ-supplement in M.

Proposition 3.3.12. Let M be a module and let N,K be submodules of M such that

M = N +K. If K is τ-supplemented, then K contains a τ-supplement of N in M.

Proof. Since K is τ-supplemented, the submodule N∩K of K has a τ-supplement in K,

that is, there exists a submodule L ⊆ K such that (N ∩K)+L = K and (N ∩K)∩L ⊆

τ(L). Then M = N +K = N +(N ∩K)+L = N +L and N ∩L = (N ∩K)∩L ⊆ τ(L).

Hence L is a τ-supplement of N in M.

Proposition 3.3.13.

(i) Every τ-torsion module is τ-supplemented.

(ii) The module Pτ(M) is τ-supplemented for every module M.

Proof. (i) Let M be a τ-torsion module, that is, τ(M) = M. Then each submodule

U of M has a τ-supplement M in M, that is, U +M = M and U ∩M =U ⊆M =

τ(M).

(ii) Since, by Theorem 3.2.3-(iii), Pτ(M) is a τ-torsion submodule of M, the result

follows by (i).

Theorem 3.3.14. If a module M is τ-reduced and τ-supplemented, then M is

τ-coatomic, RadM = τ(M) and M is weakly supplemented.

Proof. Let U be a proper submodule of M. Since M is τ-supplemented, there exists a

submodule V ⊆M such that U+V =M and U∩V ⊆ τ(V ). So we have τ(V/(U∩V ))=

τ(V )/(U∩V ) (by Proposition 2.4.3). We also have τ(V ) 6=V since M is τ-reduced, and

so τ(V )/(U ∩V ) 6= V/(U ∩V ). Therefore, using the fact that M/U = (U +V )/U ∼=
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V/(U ∩V ) we obtain

τ(M/U)∼= τ(V/(U ∩V )) = τ(V )/(U ∩V ) 6=V/(U ∩V ),

or equivalently, τ(M/U) 6= M/U , that is, M is τ-coatomic. By Proposition 3.1.3,

τ(M)� M and thus τ(M) ⊆ RadM. By Proposition 3.3.1, M/τ(M) is semisimple

since M is τ-supplemented. Then Rad(M/τ(M)) = 0, and so RadM ⊆ τ(M). Hence

RadM = τ(M). Since RadM = τ(M) � M and M is a semilocal module (that is,

M/RadM = M/τ(M) is semisimple), we obtain that M is weakly supplemented by

Lomp (1999, Theorem 2.7).

Theorem 3.3.15. If M is a τ-supplemented module, then RadM ⊆ τ(M), and

Rad(M/Pτ(M)) = τ(M/Pτ(M)) = τ(M)/Pτ(M).

Proof. By Proposition 3.3.1, M/τ(M) is semisimple and so Rad(M/τ(M)) = 0 which

gives RadM ⊆ τ(M). The module M/Pτ(M) is τ-supplemented as a factor module

of the τ-supplemented module M. Since M/Pτ(M) is τ-reduced, Rad(M/Pτ(M)) =

τ(M/Pτ(M)) by Theorem 3.3.14. Finally, since Pτ(M)⊆ τ(M) (by Theorem 3.2.3-(ii)),

τ(M/Pτ(M)) = τ(M)/Pτ(M) (by Proposition 2.4.3).

Proposition 3.3.16. The following are equivalent for a module M and a submodule

K ⊆ Pτ(M):

(i) M is τ-supplemented;

(ii) M/K is τ-supplemented;

(iii) M/Pτ(M) is τ-supplemented.

Proof. Since every factor module of a τ-supplemented module is τ-supplemented,

(i) ⇒ (ii) ⇒ (iii) are clear. To prove (iii) ⇒ (i), take a submodule U ⊆ M. By
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hypothesis, there exists a submodule V ⊆M with Pτ(M)⊆V such that

[(U +Pτ(M))/Pτ(M)]+ [V/Pτ(M)] = M/Pτ(M)

and

(U ∩V +Pτ(M))/Pτ(M) = [(U +Pτ(M))/Pτ(M)]∩ [V/Pτ(M)]

⊆ τ(V/Pτ(M)) = τ(V )/Pτ(M).

Note that the last equality holds by Theorem 3.2.3-(iv). So we have U +V = M and

U ∩V ⊆ τ(V ), that is, V is a τ-supplement of U in M.

Corollary 3.3.17. The following are equivalent for a ring R:

(i) every R-module is τ-supplemented;

(ii) every free R-module is τ-supplemented;

(iii) every τ-reduced R-module is τ-supplemented.

Proof. (i)⇒ (ii) and (i)⇒ (iii) are clear. (ii)⇒ (i) follows since every module is

an epimorphic image of a free R-module and being τ-supplemented is preserved under

passage factor modules. To prove (iii)⇒ (i) take an R-module M. Since M/Pτ(M)

is τ-reduced, we obtain that M/Pτ(M) is τ-supplemented by the hypothesis. So M is

τ-supplemented by Proposition 3.3.16.

Proposition 3.3.18. If V is a τ-supplement in a module M and V is τ-coatomic, then V

is a supplement in M.

Proof. Since V is a τ-supplement in M, there exists U ⊆M such that U +V = M and

U ∩V ⊆ τ(V ). Since V is τ-coatomic, we have by Proposition 3.1.3 that τ(V )� V .

Then U ∩V ⊆ τ(V )�V , and thus V is a supplement in M.

Proposition 3.3.19. If M is a τ-reduced module that is totally τ-supplemented, then M

is totally supplemented.
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Proof. Since being τ-reduced is inherited by submodules, it is enough to prove that M

is supplemented. Let U ⊆ M and V be a τ-supplement of U in M. Then U +V = M

and U ∩V ⊆ τ(V ). By hypothesis, V is τ-supplemented and τ-reduced. So by Theorem

3.3.14, V is τ-coatomic. Then τ(V )� V by Proposition 3.1.3. Therefore U ∩V � V ,

and so V is a supplement of U in M. Hence M is supplemented.

Clearly supplemented modules are Rad-supplemented, thus we obtain the following

result:

Corollary 3.3.20. If M is a reduced module, then M is totally Rad-supplemented if and

only if M is totally supplemented.

3.4 When are all Left R-modules τ-supplemented?

In this section we shall characterize the rings all of whose (left) modules are

τ-supplemented for some particular radicals τ including Rad. We start to this section

with some basic definitions.

See Section 2.5 for projective covers and perfect rings.

An epimorphism f : N → M is said to be a τ-cover if Ker f ⊆ τ(N). If moreover

N is projective, then f is called a projective τ-cover. A ring R is called left τ-perfect

(τ-semiperfect) if every (finitely generated) left R-module has a projective τ-cover.

These rings are studied in Azumaya (1992) and Xue (1996) for the radical τ = Rad,

and in Nakahara (1983) for a larger class of preradicals.

The relation between τ-cover and τ-supplements is the following:
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Proposition 3.4.1. (by Al-Takhman et al. (2006, 2.14)) For a module M and a

submodule U ⊆M, the following are equivalent:

(i) M/U has a projective τ-cover;

(ii) U has a τ-supplement V which has a projective τ-cover.

It is clear from the definitions and Proposition 3.4.1 that if R is a left τ-(semi)perfect

ring then every (finitely generated) left R-module is τ-supplemented. But the converse

need not be true, for example when τ = Rad; see Example 3.5.3.

Lemma 3.4.2. If R is a ring that is a τ-reduced left R-module and if the free left

R-module F = R(N) is τ-supplemented, then τ(R) is left T -nilpotent.

Proof. Since Pτ(R) = 0 and Pτ(F) = (Pτ(R))(N) = 0, F is τ-reduced. Then F is

τ-coatomic by Theorem 3.3.14, and so by Proposition 3.1.3

τ(R)F = (τ(R))(N) = τ(F)� F.

Therefore τ(R) is left T -nilpotent by Anderson & Fuller (1992, Lemma 28.3).

Theorem 3.4.3. If R is a ring that is a τ-reduced left R-module, then the free left

R-module F = R(N) is τ-supplemented if and only if R is left perfect and τ(R) = J(R).

Proof. Suppose F = R(N) is τ-supplemented. Then R is τ-supplemented as a direct

summand of F . Since R is also τ-reduced by hypothesis, we obtain τ(R) = J(R)

by Theorem 3.3.14. By Lemma 3.4.2, J(R) = τ(R) is left T -nilpotent. Since R is

τ-supplemented, R/J(R) = R/τ(R) is semisimple by Proposition 3.3.1. Hence R is left

perfect by Theorem 2.5.3. Conversely suppose R is left perfect and τ(R) = J(R). Let

U ⊆ F = R(N). Since R is left perfect, every left R-module, and in particular, F/U has

a projective cover. Then by 2.5.2-(i), U has a supplement V in the free module F such

that V is a direct summand of F . Since F is free, its direct summand V is projective. So

τ(V ) = τ(R)V by properties of radicals. Since V is a supplement of U in M, U +V =M
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and U ∩V � V . So U ∩V ⊆ Rad(V ). Since R is a left perfect ring, it is a semilocal

ring (see Theorem 2.5.3), and so Rad(V ) = J(R)V (by Proposition 2.5.2-(iii)). Thus

U ∩V ⊆Rad(V ) = J(R)V = τ(R)V = τ(V ). Hence V is a τ-supplement of U in M.

Remark 3.4.4. Note that the above proof for the converse implication works for every

free left R-module F , not necessarily countably generated. Moreover, since every

factor module of a τ-supplemented module is τ-supplemented and every module is

isomorphic to a factor module of a free module, we have:

Corollary 3.4.5. If R is a ring that is a τ-reduced left R-module, then every (free) left

R-module is τ-supplemented if and only if R is left perfect and τ(R) = J(R).

It is easy to see that a radical τ on R-modules is also a radical on R/Pτ(R)-modules

since every R/Pτ(R)-module can be considered as an R-module (with annihilator

containing Pτ(R)). We shall use this fact in the proof of the following theorem:

Theorem 3.4.6. For a ring R with Pτ(R)⊆ J(R), the following are equivalent:

(i) every left R-module is τ-supplemented;

(ii) every free left R-module is τ-supplemented;

(iii) the free left R-module F = R(N) is τ-supplemented;

(iv) the quotient ring R/Pτ(R) is left perfect and τ(R) = J(R).

Proof. (i)⇔ (ii) follows by Corollary 3.3.17. (ii)⇒ (iii) is clear.

(iii)⇒ (iv): Since F is τ-supplemented, so is its factor module F = F/Pτ(F) ∼=

(R/Pτ(R))(N). The R-module F can be considered as an R/Pτ(R)-module and τ can be

considered also as a radical on R/Pτ(R)-modules. By Theorem 3.4.3, since R/Pτ(R) is

τ-reduced, we obtain that the quotient ring R/Pτ(R) is left perfect and

τ(R/Pτ(R)) = J(R/Pτ(R)).
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Then by Proposition 2.4.3, τ(R/Pτ(R)) = τ(R)/Pτ(R) (since Pτ(R)⊆ τ(R) by Theorem

3.2.3-(ii)), and J(R/Pτ(R)) = J(R)/Pτ(R) since Pτ(R) ⊆ J(R) by hypothesis. Hence

τ(R) = J(R).

(iv)⇒ (ii): By properties of radicals, since Pτ(R)⊆ τ(R) = J(R) by hypothesis, we

obtain for the left perfect quotient ring S = R/Pτ(R) that:

τ(S) = τ(R/Pτ(R)) = τ(R)/Pτ(R) = J(R)/Pτ(R) = J(R/Pτ(R)) = J(S).

By Corollary 3.4.5, every free S-module is τ-supplemented, where we consider τ also

as a radical on S-modules. Let F be a free R-module. Then F ∼= R(I) for some

index set I. By Proposition 3.3.16, it is enough to prove that F = F/Pτ(F) ∼= S(I)

is τ-supplemented. But this holds since F can be considered as a free S-module.

3.5 When are all Left R-modules Rad-supplemented?

Using the results of the previous sections for τ = Rad, we obtain the following

characterization of the rings R over which every R-module is Rad-supplemented. Of

course, more work still remains to understand P(R) and the condition that R/P(R) is

left perfect.

Theorem 3.5.1. For a ring R, the following are equivalent.

(i) every left R-module is Rad-supplemented;

(ii) every reduced left R-module is Rad-supplemented;

(iii) every reduced left R-module is supplemented;

(iv) the free left R-module R(N) is Rad-supplemented;

(v) R/P(R) is left perfect.
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Proof. (i)⇔ (iv)⇔ (v) is obtained by Theorem 3.4.6 since P(R) ⊆ Rad(R) = J(R).

(i)⇔ (ii) follows by Corollary 3.3.17. (iii)⇒ (ii) holds since supplemented modules

are Rad-supplemented. To prove (ii)⇒ (iii) , take any reduced left R-module M. Then

every submodule of M is also reduced, and so Rad-supplemented by hypothesis (ii).

So M is a reduced module that is totally Rad-supplemented. Thus, by Corollary 3.3.20,

M is totally supplemented, and so supplemented.

A preradical τ for R-M od is said to be normal if τ(P) 6= P for every nonzero

projective module P.

Proposition 3.5.2. (Nakahara, 1983, Theorem 1.5) Let τ be a normal radical for

R-M od. Then R is left τ-perfect if and only if τ = Rad and R is left perfect.

The following is an example of a ring R that is not left perfect (and so not left

Rad-perfect by Proposition 3.5.2 since Rad is normal by, for example, Kasch (1982,

Theorem 9.6.3)) but where all R-modules are Rad-supplemented.

Example 3.5.3. Let k be a field. In the polynomial ring k[x1,x2, . . .] with countably

many indeterminates xn (n ∈ N), consider the ideal I = (x2
1,x

2
2 − x1,x2

3 − x2, . . .)

generated by x2
1 and x2

n+1− xn for every n ∈ N. In the quotient ring R = k[x1,x2, . . .]/I,

the maximal ideal M = (x1,x2, . . .)/I of R generated by all xn = xn + I, n ∈ N, is the

unique maximal ideal of R. This is because, if K is any maximal ideal of R, then

x2
1 = 0 ∈ K and so x1 ∈ K since K is a prime ideal. Now x2

2 = x1 ∈ K and so x2 ∈ K. By

induction, we obtain x2
n = xn−1 ∈ K and so xn ∈ K for all n ∈ N. Therefore K = M, as

desired. Since xn = x2
n+1 for every n ∈N, we obtain M = M2. So RadM = M, and thus

P(R) = M. Since the ring R/P(R) = R/M is a field (and so perfect), every R-module is

Rad-supplemented (by Theorem 3.5.1). By Anderson & Fuller (1992, Lemma 28.3),

M = J(R) is not (left) T -nilpotent (since J(R)M = M2 = M), and so R is not a (left)

perfect ring (by Theorem 2.5.3).
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In Büyükaşık & Lomp (2008), it is proved that the class of rings that are

Rad-supplemented lies properly between the classes of semilocal rings and semiperfect

rings.

Recall that a ring R is said to be a left duo ring if every left ideal of R is a two-sided

ideal.

We shall characterize the left duo rings R that are Rad-supplemented left R-modules,

firstly, by proving the following lemma:

Lemma 3.5.4. If R is a left duo ring and I, A, B are left ideals of R such that A+B = R

and A∩B = IA∩ IB, then A∩B = I(A∩B).

Proof. Clearly I(A∩B)⊆ A∩B. Conversely let x ∈ A∩B = IA∩ IB. Since A+B = R,

we have a+ b = 1 for some a ∈ A and b ∈ B. Then x = xa+ xb and x = ∑i∈I′ siai =

∑i∈I′′ tibi where I′, I′′ are finite index sets, ai ∈ A, bi ∈ B and si, ti ∈ I. Now we have,

xb = ∑
i∈I′

siaib ∈ I(AB) and xa = ∑
i∈I′′

tibia ∈ I(BA).

Since R is a left duo ring, AB⊆ A∩B and BA⊆ A∩B. So,

x = xa+ xb ∈ I(BA)+ I(AB)⊆ I(A∩B),

and thus A∩B⊆ I(A∩B).

Theorem 3.5.5. If R is a left duo ring such that P(R)= 0, then R is a Rad-supplemented

left R-module if and only if R is semiperfect.

Proof. If R is semiperfect, then R is a supplemented, and so a Rad-supplemented, left

R-module. Conversely, suppose R is a Rad-supplemented left R-module. Then R is

semilocal and R is an amply Rad-supplemented left R-module by Proposition 3.3.1.

Let A′ be a left ideal of R. Since R is an amply Rad-supplemented left R-module,

A′ has a Rad-supplement B in R, and B has a Rad-supplement A ⊆ A′ in R. So R =
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A′+B = A+B, A∩B ⊆ A′∩B ⊆ RadB and A∩B ⊆ RadA. Thus A∩B = (RadA)∩

(RadB). Let J = J(R). Then A∩B = JA∩ JB = J(A∩B) by Lemma 3.5.4. Since R is

a semilocal ring, Rad(A∩B) = J(A∩B). Then A∩B is a radical submodule of R, and

so A∩B ⊆ P(R) = 0. This gives that R = A⊕B. Therefore JB ⊆ J� R implies that

Rad(B) = JB� B since B is a direct summand of R. Hence B is a supplement of A′

in R. This shows that R is a supplemented left R-module, and thus R is semiperfect by

Proposition 2.5.2-(ii).

Theorem 3.5.6. For a left duo ring R, the following are equivalent:

(i) R/P(R) is semiperfect;

(ii) the left R-module R is Rad-supplemented;

(iii) every finitely generated free left R-module is Rad-supplemented;

(iv) every finitely generated left R-module is Rad-supplemented.

Proof. (ii)⇒ (iii) follows by Proposition 3.3.1. (iii)⇒ (iv) holds since every finitely

generated module is an epimorphic image of a finitely generated free module and

Rad-supplemented modules are closed under epimorphic images.

(iv)⇒ (ii) is clear.

(i) ⇒ (ii): Since the quotient ring S = R/P(R) is semiperfect, R/P(R) is a

Rad-supplemented left S-module, and so a Rad-supplemented left R-module. Then

the left R-module R is Rad-supplemented by Proposition 3.3.16.

(ii)⇒ (i): The factor module R/P(R) is also a Rad-supplemented left R-module.

So the ring S = R/P(R) is a Rad-supplemented left S-module with P(S) = 0, and so

S = R/P(R) is semiperfect by Theorem 3.5.5.

Remark 3.5.7. Note that all implications except (ii) ⇒ (i) of Theorem 3.5.6 hold

for each ring R, while the implication (ii) ⇒ (i) raises the question whether a

Rad-supplemented ring R with P(R) = 0 is necessarily semiperfect.
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3.6 Rad-supplemented Modules over Dedekind Domains

Most of the results which will be given in this section can be found in Özdemir

(2007, Chap. 6), but we give the proofs here for completeness.

Following the terminology in abelian groups, an R-module M over a Dedekind

domain is said to be bounded if rM = 0 for some nonzero r ∈ R.

The structure of supplemented modules over Dedekind domains is completely

determined in Zöschinger (1974):

Theorem 3.6.1. (Zöschinger, 1974, Theorems 2.4. and 3.1) Let R be a Dedekind

domain with quotient field K 6= R. Let M be an R-module.

(i) Suppose R is a local Dedekind domain, that is, a discrete valuation ring (DVR)

with the unique prime element p. Then M is supplemented if and only if M∼=Ra⊕

Kb⊕ (K/R)c⊕B for some R-module B, where a, b, c are nonnegative integers

and pnB = 0 for some integer n > 0.

(ii) Suppose R is non local. Then M is supplemented if and only if M is torsion and

every primary component of M is a direct sum of an artinian submodule and a

bounded submodule.

Part (i) of the above theorem for Rad-supplemented modules is obtained as follows:

Theorem 3.6.2. Let R be a DVR with quotient field K 6= R, and p be the unique prime

element. Then M is Rad-supplemented if and only if M ∼= Ra⊕K(I)⊕ (K/R)(J)⊕B for

some R-module B, where a is a nonnegative integer, I, J are arbitrary index sets and

pnB = 0 for some integer n > 0.

Proof. (⇒) If M1 is the divisible part of M, then there exists a reduced submodule

M2 of M such that M = M1⊕M2. Since M2 is also Rad-supplemented, it is coatomic
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by Theorem 3.3.14. Then by Zöschinger (1974, Lemma 2.1), M2 = Ra⊕B, for some

nonnegative integer a and a bounded module B. Since M1 is divisible, M1 ∼= K(I)⊕

(K/R)(J) for some index sets I and J (see Kaplansky (1952, Theorem 7)).

(⇐) The module N = K(I)⊕ (K/R)(J) is divisible, and so RadN = N. Then N is

Rad-supplemented by Proposition 3.3.13. By Theorem 3.6.1, the module Ra⊕B is

supplemented, and hence Rad-supplemented. Therefore the direct sum Ra⊕K(I)⊕

(K/R)(J)⊕B is Rad-supplemented.

For the structure of coatomic modules over commutative Noetherian rings see

Zöschinger (1980); the Noetherian assumption in the following proposition is needed

to have that every submodule of a coatomic module over a commutative Noetherian

ring is coatomic (Zöschinger, 1980, Lemma 1.1).

Proposition 3.6.3. Let R be a commutative noetherian ring and M be a reduced

R-module. Then M is Rad-supplemented if and only if M is supplemented.

Proof. Suppose M is Rad-supplemented. Then M is coatomic by Theorem 3.3.14, and

so every submodule of M is coatomic since R is a commutative noetherian ring. Let U

be a submodule of M and V be a Rad-supplement of U in M. Then V is coatomic, and

so U ∩V ⊆ RadV �V . Thus V is a supplement of U in M. The converse is clear.

Since the structure of supplemented modules over Dedekind domains is known by

Theorem 3.6.1-(ii), it is enough to characterize Rad-supplemented modules in terms of

supplemented modules. Note that, for an R-module M, where R is a Dedekind domain,

P(M) equals the divisible part of M.

Theorem 3.6.4. Let R be a Dedekind domain and M be an R-module. Then M is

Rad-supplemented if and only if M/P(M) is (Rad)supplemented.

Proof. Since R is a Dedekind domain, M has a decomposition as M = P(M)⊕N for

some reduced submodule N of M. If M is Rad-supplemented, then N ∼= M/P(M) is
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also Rad-supplemented. Since N is reduced, N is supplemented by Proposition 3.6.3.

Conversely, suppose N ∼= M/P(M) is Rad-supplemented. By Proposition 3.3.13-(ii),

the submodule P(M) is already Rad-supplemented. Therefore M = P(M)⊕ N is

Rad-supplemented as a sum of two Rad-supplemented modules.

These characterizations can be used to provide examples of Rad-supplemented

modules which are not supplemented:

Example 3.6.5. Let R be a Dedekind domain with quotient field K 6= R. The R-module

M = K(I) is Rad-supplemented for every index set I. If R is a local Dedekind domain

(i.e. a DVR), then M is supplemented only when I is finite. If R is a non-local Dedekind

domain, then M is not supplemented for every index set I, since M is not torsion.



CHAPTER FOUR

ENOCHS’ NEAT HOMOMORPHISMS AND MAX-INJECTIVE MODULES

In this chapter, we deal with neat homomorphisms of Enochs which we call E-neat

homomorphisms and max-injective modules. For some properties of left C-rings,

see Section 4.1. In Section 4.2, we are interested in max-injective modules. We

observe that they are nothing but N eat-coinjective modules. See Section 4.3, for

E-neat homomorphisms; we collect some useful properties of them taken from Bowe

(1972). In Section 4.4, we investigate the homomorphisms which we call Z-neat

homomorphisms, due to Zöschinger; in fact, we deal with the question that when

E-neat and Z-neat homomorphisms coincide. Zöschinger has showed their equivalence

for abelian groups and we prove they are equivalent over Dedekind domains. In Section

4.5, we consider E-neat homomorphisms which are epimorphism, and we show that

E-neat epimorphisms do not define a proper class. In Section 4.6, we are interested in

Z-coneat homomorphisms of Zöschinger which were introduced by dualizing E-neat

homomorphisms. We also study the class of all short exact sequences defined by

coclosed submodules.

4.1 C-rings of Renault

This section contains some properties of left C-rings of Renault (1964). See Section

1.2 for the definition of a left C-ring. For further details, see, for example, Mermut

(2004, §3.3).

A commutative Noetherian ring in which every nonzero prime ideal is maximal is a

C-ring (see Mermut (2004, Proposition 3.3.6)). So, in particular, a Dedekind domain is

also a C-ring. And moreover, Stenström shows that if R is a commutative Noetherian

88
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ring in which every nonzero prime ideal is maximal (and thus R is a C-ring), then

Compl = N eat (Stenström, 1967b, Corollary to Proposition 8). Generalov gives a

characterization of this equality in terms of the ring R.

See also Mermut (2004, Theorem 3.3.2) for a proof of the following result:

Proposition 4.1.1. (Generalov, 1978, Theorem 5) A ring R is a left C-ring if and only

if Compl = N eat.

Proposition 4.1.2. (Renault, 1964, Proposition 1.2) A ring R is a left C-ring if and

only if for every essential proper left ideal of R, Soc(R/I) 6= 0.

Proposition 4.1.3. (Mermut, 2004, Proposition 3.3.9) A commutative domain R is a

C-ring if and only if every nonzero torsion module has a simple submodule.

4.2 Max-injective Modules are Injective only for C-rings

In this section, we deal with max-injective modules, and we give a proof of the

result that all max-injective R-modules are injective over a left C-ring R with our

interest in the proper classes N eat and Compl; it is indeed already given in Smith

(1981).

Of course, all injective R-modules are max-injective for every ring R, but the

converse is not always true as the following example shows:

Example 4.2.1. (Crivei, 1998, Example 16) Let R = F [[X ,Y ]] be the ring of formal

power series on the set of commuting indeterminates X ,Y over a field F . Then R is a

max-injective R-module which is not injective.

Note the following useful diagram lemma:
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Lemma 4.2.2. (see, for example, Fuchs & Salce (2001, Lemma I.8.4)) Suppose

0 // A // B //g //C // 0

0 // A1 f1
//

α

OO

B1 //

OO

C1 //

β

OO

0

is a commutative diagram of modules with exact rows. Then β can be lifted to a

homomorphism C1 −→ B if and only if α can be extended to a map B1 −→ A, that

is, there exists β̃ : C1 −→ B such that gβ̃ = β if and only if there exists α̃ : B1 −→ A

such that α̃ f1 = α:

0 // A // B //g //C // 0

0 // A1 f1
//

α

OO

	

B1 //

OO

α̃

``
�

C1 //

β

OO

β̃

``

0

The following result has been given in Crivei (1998); we give its elementary proof

here for completeness:

Proposition 4.2.3. (Crivei, 1998, Theorem 2) For a module M, the following are

equivalent:

(i) M is max-injective;

(ii) Ext1R(S,M) = 0 for every simple module S;

(iii) Ext1R(S,M) = 0 for every semisimple module S;

(iv) M is injective with respect to every short exact sequence ending with a simple

module, that is,

0 // A
f //

α

��

B
g //

α̃��~
~

~
~

S // 0

M

(v) every simple module S is projective with respect to the following short exact

sequence:

0 //M i // E(M)
σ // E(M)/M //0 , (4.2.1)
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where i is the inclusion monomorphism and σ is the natural epimorphism.

Proof. (i)⇒ (ii): Let

0 //M
f //B

g //S //0

be a short exact sequence with S simple. We can assume that M ⊆ B and f is the

inclusion monomorphism. We show that this sequence splits. Since R projective, we

have the following commutative diagram with exact rows for S ∼= R/P, where P is a

maximal left ideal of R:

0 // M � � f // B //g // S // 0

0 // P � �

i
//

α

OO�
�
�

R
σ
//

h

OO�
�
�β̃

__

S //

1S

OO

α̃

^^

0

Here h : R −→ B exists since R is projective (i.e. gh = 1Sσ), and α = h|P. By

hypothesis, since M is max-injective, there is a homomorphism β̃ : R−→M such that

β̃i = α, and so by Lemma 4.2.2, there is also a homomorphism α̃ : S −→ B such that

gα̃ = 1S, that is, the first row splits. Hence Ext1R(S,M) = 0.

(ii)⇒ (iv) : Let

0 //A //B //S //0

be a short exact sequence with S simple. For every homomorphism f : A −→ M, we

obtain the following pushout diagram:

0 // A //

f
��

B //

���
�
�

β

~~

S //

1S
���
�
�

α

��

0

0 //___ M //___ B′ g
//___ S //___ 0

By hypothesis, the second row splits, and so there is a homomorphism α : S−→ B such

that gα = 1S. Thus by Lemma 4.2.2, f can also be extended to β : B −→ M, that is,

β|A = f . Hence M is injective with respect to the first row as required.

(iv)⇒ (i) : Let f : P−→M be a homomorphism, where P is a maximal ideal of R.
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We have the following diagram with exact row:

0 // P i //

f
��

R
g //

g
���

�
�

�
R/P // 0

M

Since R/P is simple, f can be extended to g by hypothesis. Hence M is max-injective.

(ii)⇒ (iii) : Let S be a semisimple module. Then S =
⊕
i∈I

Si for simple submodules

Si of S. Thus,

Ext1R(S, M) = Ext1R

(⊕
i∈I

Si, M

)
∼= ∏

i∈I
Ext1R(Si, M) = 0,

where the isomorphism follows by, for example, Rotman (2009, Proposition 7.21) and

the last equality by hypothesis.

(iii)⇒ (ii) : Clear since a simple module is semisimple.

(ii)⇔ (v) : For every simple module S, Ext1R(S, M) = 0 if and only if the induced

sequence

0 //HomR(S, M) //HomR(S, E(M)) //HomR(S, E(M)/M) //0

is exact by the long exact Hom−Ext sequence, because E(M) is an injective module.

This means that S is projective with respect to the short exact sequence (4.2.1).

The following result has been observed by Engin Büyükaşık, for the proper class

projectively generated by simple modules. It holds in general for every projectively

generated proper class as has been shown in Sklyarenko (1978, Proposition9.5).

Proposition 4.2.4. A module M is N eat-coinjective if and only if Ext1R(S,M) = 0 for

every simple modules S.

Proof. (⇒) Let

E : 0 //M //B //S //0
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be a short exact sequence from Ext1R(S,M), where S is simple. Since E starts with M

and M is N eat-coinjective by hypothesis, E ∈N eat. Now since N eat is projectively

generated by simples, E splits.

(⇐) Let

E : 0 //M //B //C //0

be a short exact sequence starting with a module M, and f : S−→C be homomorphism

where S is a simple module. Then we have the following pullback diagram:

0 // M // B //h //C // 0

0 //___ M g
//___

1M

OO�
�
�

B′ //___

OO�
�
�β

``

S //___

f

OO

α

__

0

By hypothesis, the second row splits, that is, there is a homomorphism β : B′ −→ M

(as M a direct summand) such that βg = 1M. Thus by Lemma 4.2.2, there is also a

homomorphism α : S−→ B such that hα = f . This means S is projective w.r.t the first

row. Thus E ∈N eat, and so M is N eat-coinjective.

Thus max-injective modules are nothing but just N eat-coinjective modules (by

Propositions 4.2.3 and 4.2.4). Note that, a module M is N eat-coinjective if and

only if M is neat in every module containing M. Also note that a module M is

N eat-coinjective if and only if M is neat in its injective envelope E(M).

By Proposition 4.2.3, a module M is max-injective if and only if M is injective

with respect to every short exact sequence ending with a simple module. Instead of

simple modules, semi-artinian modules can be taken. To prove (i) implies (ii) in the

following theorem, Crivei have used Loewy series of C; a homomorphism ψ : A−→M

was extended to B by transfinite induction since B/A ∼= C is a Loewy module (by

Proposition 2.2.4, as C is semi-artinian).

Theorem 4.2.5. (Crivei, 1998, Theorem 6) The following are equivalent for a module

M:
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(i) M is max-injective;

(ii) M is injective with respect to every short exact sequence of modules

0 //A //B //C //0

where C is a semi-artinian module.

Remark 4.2.6. The following connection between max-injective modules and torsion

theories was given in Crivei (2000). Let τD = (T ,F ) be the Dickson torsion theory for

R-M od; the torsion class T consists of semi-artinian modules and the torsion free class

F consists of all modules with zero socle (see Example 2.4.11). The corresponding

Gabriel filter F(R) consists of all left ideals of R such that R/I is a left semi-artinian

module (see Definition 2.4.7). A module M is τD-injective if any homomorphism from

any left ideal I ∈ F(R) to M can be extended to R or equivalently, if M is injective with

respect to every short exact sequence of modules 0−→ A−→ B−→C−→ 0, where C

is τD-torsion. Thus, by Theorem 4.2.5, a module M is max-injective if and only if it is

τD-injective.

We know by Proposition 4.1.1 that if R is a left C-ring, then Compl = N eat, and so

N eat-coinjectives (i.e. max-injectives) are Compl-coinjectives which are known to be

just injectives. So, our goal on this section is to prove the converse.

Lemma 4.2.7. Let A be a submodule of a module B.

(i) If Soc(B/A) = 0, then B/A is N eat-coprojective and so A is neat in B.

(ii) Equivalently, if A is not neat in B, then Soc(B/A) 6= 0.

Proof. Clear since N eat is the proper class projectively generated by all simple

modules and there is no nonzero homomorphism from a simple module to B/A when

Soc(B/A) = 0.
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The following result is needed for the proof of Lemma 4.2.9:

Proposition 4.2.8. (Mermut, 2004, Corollary 3.2.5) For a short exact sequence

E : 0 //A
iA //B

g //C //0

of modules, where A is a submodule of B and iA is the inclusion map, the following are

equivalent:

(i) E ∈N eat = π−1({R/P|P is a maximal left ideal of R});

(ii) For every maximal left ideal P of R, and for every b ∈ B, if Pb ⊆ A, then there

exists a ∈ A such that P(b−a) = 0.

Lemma 4.2.9. Let A be a submodule of a module B. If A is essential and neat in B,

then Soc(B/A) = 0.

Proof. Suppose on the contrary that Soc(B/A) 6= 0. Then there exists a simple

subdmodule S = R(b+ A) ∼= R/P of B/A where b ∈ B \ A and P is a maximal left

ideal of R such that P = {r ∈ R | rb ∈ A}. So Pb ⊆ A, then by the characterization of

neat submodules in Proposition 4.2.8, there exists a ∈ A such that P(b−a) = 0. Since

b 6∈ A, b−a /∈ A also. But then for the element b−a ∈ B\A, we obtain a contradiction

with A being essential in B, because

0 = P(b−a) = [R(b−a)]∩A 6= 0.

Note that the first equality follows since {r ∈ R | r(b−a) = 0}= {r ∈ R | rb ∈ A}= P

since a ∈ A.

So, by Lemmas 4.2.7 and 4.2.9, we obtain:

Corollary 4.2.10. For an essential submodule A of a module B, we have A is neat in B

if and only if Soc(B/A) = 0.
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Corollary 4.2.11. Let A be a submodule of a module B. Let K be a complement of A in

B and let A′ be a complement of K in B such that A′ contains A. Then we already know

that A is essential in A′ and A′ is closed (and so neat) in B. In this case, the following

are equivalent:

(i) A is neat in B;

(ii) A is neat in A′;

(iii) Soc(A′/A) = 0.

Theorem 4.2.12. If all N eat-coinjective modules are injective, then for every module

A that is not injective, E(A)/A is semi-artinian, and so Soc(E(A)/A) is essential in

E(A)/A.

Proof. Let A ⊆ U $ E(A). In this case, the injective envelope of the submodule U

is also E(A). If U is neat in E(U) = E(A), then U will be N eat-coinjective. But

then by our hypothesis U will be injective, and so we will have U = E(U) = E(A),

contradicting U 6= E(A). So we must have that U is not neat in E(A). But then

by Corollary 4.2.10, Soc(E(A)/U) 6= 0. Hence Soc[(E(A)/A)/(U/A)] 6= 0 since

(E(A)/A)/(U/A) ∼= E(A)/U . This proves that every nonzero homomorphic image

of E(A)/A has a nonzero socle. Thus E(A)/A is semi-artinian and so every nonzero

homomorphic image of E(A)/A has essential socle. In particular, Soc(E(A)/A) is

essential in E(A)/A.

Corollary 4.2.13. If all N eat-coinjective modules are injective, then for every module

A that is not injective, if A$ B⊆ E(A), then Soc(B/A) 6= 0.

Proof. By Theorem 4.2.12,

Soc(B/A) = (B/A)∩Soc(E(A)/A) 6= 0

since Soc(E(A)/A) is essential in E(A)/A and B/A 6= 0 as B 6= A by hypothesis.
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Theorem 4.2.14. If all N eat-coinjective modules are injective, then R is a left

C-ring, that is, for every module B and for every essential proper submodule A of

B, Soc(B/A) 6= 0.

Proof. Let A be an essential proper submodule of a module B. Then we can assume

that A $ B ⊆ E(A). In this case, A 6= E(A), that is, A is not injective and Corollary

4.2.13 gives Soc(B/A) 6= 0.

Whitehead test modules for projectivity and injectivity have been studied in Trlifaj

(1996): A module N is said to be a Whitehead test module for projectivity (shortly a

p-test module) if for every module M, Ext1R(M,N) = 0 implies M is projective. Dually,

i-test modules are defined; a module N is said to be a Whitehead test module for

injectivity (shortly an i-test module) if for every module M, Ext1R(N,M) = 0 implies

M is injective.

Remark 4.2.15. Note that for R = Z, the question “Is Z a p-test Z-module?” or

equivalently, the question “Is there a Whitehead group G (that is, Ext(G,Z) = 0) which

is not free?” is the well-known Whitehead problem. Eklof and Shelah have given a full

answer to this problem (Eklof & Shelah, 1994): It was proved that for any uncountable

cardinal λ, if there is a λ-free Whitehead group of cardinality λ (that is, every subgroup

of cardinality < λ is free) which is not free, then there are many Whitehead groups of

cardinality λ which are not free.

J. Trlifaj showed the existence of i-test modules for an arbitrary ring, and p-test

modules for a left perfect ring.

Proposition 4.2.16. (Trlifaj, 1996, Proposition 1.2) Let R be a ring. Let E be the set

of all proper essential left ideals of R. Put M =
⊕
I∈E

R/I. Then M is an i-test module.

Proposition 4.2.17. (Trlifaj, 1996, Proposition 1.4) Let R be a left perfect ring. Denote

by M the class of all maximal left ideals of R. Put N =
⊕
I∈M

R/I. Then N is a p-test

module.
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We collect some characterizations of C-rings in the following theorem:

Theorem 4.2.18. For a ring R, the following are equivalent:

(i) R is a left C-ring;

(ii) Compl = N eat;

(iii) All max-injective (i.e. N eat-coinjective) R-modules are injective;

(iv) S⊥ = I n j, where S and I n j denote the classes of all (semi)simple R-modules

and injective R-modules respectively;

(v)
⊕

P ⊆
max.

R

R/P is an i-test module, where the direct sum is over all maximal left ideals

of R.

Proof. (i)⇔ (ii) is by Proposition 4.1.1, and (iii)⇔ (iv) follows by Proposition 4.2.3.

(i)⇒ (iii) follows by arguments given just before Lemma 4.2.7. (iii)⇒ (i) is Theorem

4.2.14.

By Proposition 4.2.3, Ext1R(S,M) = 0 for every simple module S if and only if

Ext1R(T,M) = 0 for every semisimple module T . So, {all simple modules}⊥ =

{all semisimple modules}⊥. (iv)⇒ (v) : Suppose that Ext1R

 ⊕
P ⊆

max.
R

R/P, M

 = 0

for a module M. Then we have by, for example, Rotman (2009, Proposition 7.21) that

∏
P ⊆

max.
R

Ext1R(R/P, M)∼= Ext1R

 ⊕
P ⊆

max.
R

R/P, M

= 0,

and so Ext1R(R/P, M) = 0 for every left maximal ideal P of R, that is, M ∈ S⊥ where S

is the class of all simple R-modules. Thus M is injective by hypothesis (iv).

(v)⇒ (iv) : I n j ⊆ S⊥ is clear since for an injective module M, Ext1R(S, M) = 0

for every module S. Conversely, let M ∈ S⊥, that is, Ext1R(S, M) = 0 for every simple
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module S. Since for every simple module S, S ∼= R/P for a maximal left ideal P of R,

we obtain, by Rotman (2009, Proposition 7.21), that

Ext1R

 ⊕
P ⊆

max.
R

R/P, M

∼= ∏
P ⊆

max.
R

Ext1R(R/P, M) = 0.

Thus, by hypothesis (v), M is an injective module.

Proposition 4.2.19. Any direct product of max-injective modules is max-injective.

Proof. Since N eat is a projectively generated proper class, it is ∏-closed by

Proposition 2.3.8, and so any product of N eat-coinjective (i.e. max-injective) modules

is also N eat-coinjective by Proposition 2.3.9. This result can also be proved using the

standard argument to prove that direct product of injectives is injective.

Second proof : If {Mi}i∈I is a family of max-injective modules, then

Ext1R

(
S, ∏

i∈I
Mi

)
∼= ∏

i∈I
Ext1R(S, Mi) = 0

for every simple module S, that is, ∏i∈I Mi is max-injective. Here the isomorphism

follows by, for example, Rotman (2009, Proposition 7.22) and the last equality by

Proposition 4.2.3.

Note that if R is a left C-ring, then every direct product of closed (=complement)

submodules is closed (see Proposition 4.3.6). But, we do not know if the converse

holds.

4.3 E-neat Homomorphisms

In this section, the definition due to Enochs (1971) and Bowe (1972) of neat

homomorphisms (we call E-neat homomorphisms) and some properties of them will
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be given.

Definition 4.3.1. A homomorphism f : M −→ N is called E-neat if given any proper

submodule H of a module G and any homomorphism σ : H −→M, the homomorphism

σ has a proper extension in G whenever f σ has a proper extension in G, that is, a

commutative diagram

H //

σ

��

G′ //

τ   @
@

@
@ G

M f
// N

(4.3.1)

with H $ G′ ⊆ G, always guarantees the existence of a commutative diagram

H //

σ

��

G′′ //

~~|
|

|
|

G

M
f // N

(4.3.2)

with H $ G′′ ⊆ G.

A submodule T of N is called E-neat if the canonical monomorphism i : T −→ N

is E-neat (see Bowe (1972)).

Example 4.3.2. (i) A is a neat subgroup of an abelian group B (i.e., pA = A∩ pB

for every prime number p) if and only if the monomorphism i : A ↪→ B is E-neat

(Enochs & Jenda, 2000, Example 4.3.8).

(ii) For a commutative domain, if a homomorphism ϕ : T −→M is torsion free cover,

then ϕ is E-neat (Enochs & Jenda, 2000, Proposition 4.3.9).

The following equivalent conditions for E-neat homomorphisms (especially (iv))

are very useful:

Theorem 4.3.3. (by Bowe (1972, Theorem 1.2)) The following are equivalent for a

homomorphism f : M −→ N:
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(i) f is an E-neat;

(ii) In Definition 4.3.1, it suffices to take G = R and H a left ideal of R;

(iii) In Definition 4.3.1, it suffices to take σ a monomorphism and G as an essential

extension of H;

(iv) There are no proper extensions of f in the injective envelope E(M) of M.

We shall frequently use the last equivalent condition in the previous theorem for

E-neat homomorphisms. Note that this is a natural concept; by Zorn’s lemma, for a

given homomorphism f : A −→ B, there exists a maximal extension f̃ : Ã −→ B in

the injective envelope E(A) of A for some Ã such that A ⊆ Ã ⊆ E(A), and that f̃ is an

E-neat homomorphism:

E(A)

Ã
f̃

!!CCCCCCCCC
?�

OO

A f
//?�

OO

B

and f̃ is E-neat. The following result can be found in Bowe (1972, §1), without

proof, as an example of E-neat homomorphisms; the E-neat monomorphisms are just

Compl-monomorphisms:

Lemma 4.3.4. For a submodule M of a module N, the inclusion monomorphism i :

M −→ N is E-neat if and only if M has no proper essential extensions in N, that is, M

is a closed submodule (=complement submodule) of N.

Proof. (⇒) Suppose that the monomorphism i : M ↪→ N is E-neat and that M is not

closed in N, that is, M has a proper essential extension N′ in N (i.e. MEN′ ⊆ N and
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M 6= N′). Now embed N′ into the injective envelope E(M) of M (since M E N′):

M � � E //

��

N′

α||y
y

y
y

E(M)

We can assume that N′ ⊆ E(M) and α is the inclusion monomorphism. So we have the

commutative diagram:

M � �

6=
//

1M
��

N′ �
� //

� _

���
�
� E(M)

M � � i // N

Since i : M −→ N is E-neat, there exists a commutative diagram:

M � �

6=
//

1M
��

N′′ �
� //

φ~~}
}

}
}

E(M)

M � �

i
// N

with M $ N′ ⊆ E(M), that is, φ|M = 1M. Let ψ = iφ : N′′ −→ N. Thus ψ is a proper

extension of i in the injective envelope of M. This contradicts with the fact that i is an

E-neat monomorphism (see Theorem 4.3.3-(iv)). Hence M is closed in N.

(⇐) Conversely, suppose that M is closed in N and that i : M −→ N is not E-neat.

Then by Theorem 4.3.3, there is a proper extension σ : M′ −→ N for some M′ %M of

i : M −→ N in the injective envelope E(M) of M:

E(M)

M′
?�

OO

σ

""E
E

E
E

E

M
?�

j /
OO

� � i // N

Since MEE(M), we have MEM′, and so σ must be a monomorphism. Because, if

Kerσ 6= 0, then M∩Kerσ 6= 0 since MEM′. But M∩Kerσ = Ker i = 0 since σ j = i.
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Now identifying σ(M′) with M′, we obtain M ⊆M′ = σ(M′) ⊆ N. Since M is closed

in N and MEM′, we must have M = M′. But this contradicts the fact that M′ % M.

Hence i : M −→ N is E-neat.

Remark 4.3.5. Let R be a left C-ring. Then a submodule A⊆ B is neat in B if and only

if it is closed in B, and so we infer from the previous result that A is neat in B if and

only if it is E-neat.

Since a monomorphism is E-neat if and only if it is a closed monomorphism

(=Compl-monomorphism), we have:

Proposition 4.3.6. Let R be a left C-ring. If { fi : Ei −→ Fi}i∈A is a family of

Compl-monomorphisms (i.e. closed monomorphisms), then f =∏
i∈A

fi : ∏
i∈A

Ei−→∏
i∈A

Fi

is also Compl-monomorphism. So, if every fi is an inclusion monomorphism and Ei is

a closed submodule of Fi for every i∈ A, then ∏i∈A Ei is a closed submodule of ∏i∈A Fi.

Proof. Since over a left C-ring, N eat = Compl (by Proposition 4.1.1) and N eat is a

projectively generated proper class, it is ∏-closed by Proposition 2.3.8. So every direct

product of closed (=complement) submodules is closed.

The following theorem give a characterization for the direct product of E-neat

homomorphisms for the Singular Torsion Theory (=Goldie torsion theory) for R-M od

with R nonsingular; see Example 2.4.12):

Theorem 4.3.7. Bowe (1972, Theorem 2.4) Let (TG,FG) be the Singular Theory for

R-M od with Z(RR) = 0 (i.e. R ∈ FG). Then the following are equivalent:

(i) For all nonzero proper essential left ideals I of R, R/I contains a simple

submodule (i.e. Soc(R/I) 6= 0) [that is, R is a left C-ring];

(ii) every nonzero module E ∈ TG contains a simple submodule;
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(iii) f = ∏
i∈A

fi : ∏
i∈A

Ei −→∏
i∈A

Fi is an E-neat homomorphism for every family { fi :

Ei −→ Fi}i∈A of E-neat homomorphisms of modules.

Remark 4.3.8. (see Bowe (1972, Theorem 2.5)) Let (TD,FD) be the Dickson Torsion

Theory for R-M od. Then if Z(RR) = 0, Soc(RR) = 0 and the equivalent conditions of

Theorem 4.3.7 are satisfied, then the Singular Torsion Theory and the Dickson Torsion

Theory coincide. Indeed,

(i) If R is a left C-ring such that Z(RR) = 0, then TG ⊆ TD.

(ii) If SocR R = 0, then every simple R-module is in TG.

(iii) If R is a left C-ring such that Z(RR) = 0 and SocR R = 0, then TG = TD.

The following result has been given in Bowe (1972) without proof:

Proposition 4.3.9. (Bowe, 1972, Remark 1 after Theorem 1.2)

(i) If f : M −→ N and g : N −→G are E-neat homomorphisms, then g f is a E-neat

homomorphism.

(ii) If f : M −→ N is a E-neat homomorphism and N is injective, then M is also

injective.

Proof. (i) Suppose we have the following commutative diagram for modules H $

K′ ⊆ K:

H � �

6=
//

σ

��

K′ //

τ

��

K

M f
// N g

// G

Since g is E-neat and g f σ has a proper extension in K, we obtain that f σ has

a proper extension, that is, there is a module K′′ % H and a homomorphism

φ : K′′ −→ N such that φ|H = f σ. Now since f is E-neat, there is a module

K′′′ % H and a homomorphism ϕ : K′′′ −→M such that ϕ|H = σ. This means σ

has a proper extension in K, that is, g f is E-neat.
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(ii) Since N is injective, we have the following commutative diagram:

M � � //

f
��

E(M)

f̃||y
y

y
y

N

Now suppose that M is not injective, then M 6= E(M). But, this means that f has

a proper extension f̃ in the injective envelope E(M) of M. This contradicts with

f being E-neat. Hence M is injective.

Recall that a ring R is said to be left hereditary if every left ideal of R is projective.

The following theorem characterizes left hereditary rings in terms of E-neat

homomorphisms:

Theorem 4.3.10. (Bowe, 1972, Theorem 2.1) For a ring R, the following are

equivalent:

(i) R is left hereditary.

(ii) Quotients of injective R-modules are injective.

(iii) If f is a E-neat homomorphism and f = ip is the natural decomposition of f

with p an epimorphism and i a monomorphism, then p and i are E-neat.

(iv) If f is a E-neat homomorphism and f = hg, where h and g are epimorphisms,

then h and g are E-neat.

Proposition 4.3.11. If f : E −→ F and g : F −→ G are homomorphisms and g f is

E-neat, then f is also E-neat.

Proof. Suppose we have the following diagram for modules H $ K′ ⊆ K:

H � �

6=
//

σ

��

K′ �
� //

τ

��

gτ

  @
@

@
@ K

E f
// F g

// G
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We must show that σ has a proper extension in K. Since g f σ=(gτ)|H and g f is E-neat,

there is a module K′′ % H and a homomorphism φ : K′′ −→ E such that φ|H = σ, that

is, φ is a proper extension of σ in K:

H � �

6=
//

σ

��

K′′

φ~~}
}

}
}

� � // K

E f
// F

.

4.4 Z-neat Homomorphisms

In this section, we firstly give an equivalent definition of E-neat homomorphisms

considered by Zöschinger. Also, by considering the first two equivalent conditions

of Theorem 4.4.2 given by Zöschinger for abelian groups, we define Z-neat

homomorphisms of R-modules using the second condition (ii). We show that E-neat

homomorphisms and Z-neat homomorphisms coincide over Dedekind domains as in

the case of abelian groups given by Zöschinger.

Zöschinger (1978) gives an equivalent definition for E-neat homomorphisms as

follows (without proof):

Proposition 4.4.1. (Zöschinger, 1978, p. 307) f : A−→ A′ is a E-neat homomorphism

if and only if for every decomposition f = βα where α is an essential monomorphism,

α is an isomorphism.

Proof. (⇒) Let f = βα where α : A−→ B is an essential monomorphism and β : B−→

A′ is a homomorphism. Since α is a monomorphism, identifying α(A) = A, we obtain

A = α(A)EB. So there is a monomorphism g : B −→ E(A) such that gα = i where



107

i : A−→ E(A) is inclusion:

A � � α

E
//

i
��

B

g}}{
{

{
{

E(A)

So we can use that B ⊆ E(A) and g is the inclusion monomorphism. Thus f has an

extension β in the injective envelope E(A) of A:

E(A)

B
?�

g
OO

β

""E
E

E
E

E

A
?�

α

OO

f
// A′

Since f is E-neat, this extension cannot be proper, that is, α must be an isomorphism.

(⇐) Conversely, to show that f is E-neat, suppose that there is an extension β of f

in E(A), that is, suppose we have the following commutative diagram where A⊆ B⊆

E(A) and α is the inclusion monomorphism:

E(A)

B
?�

OO

β

""E
E

E
E

E

A
?�

α

OO

f
// A′

Since AEE(A), we obtain AEB, and so by hypothesis f = βα implies that α is an

isomorphism. Hence f has no proper extension in E(A) which implies f is E-neat.

Zöschinger has given the following theorem which gives a characterization of

E-neat homomorphisms for abelian groups in Zöschinger (1978) without proof. He

has explained us how to prove. In the following proof for abelian groups, we should

also use the characterization of E-neat epimorphisms of modules over any ring given
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in Corollary 4.4.5: For a submodule K of a module A, the natural epimorphism

f : A −→ A/K is E-neat if and only if A/KEE(A)/K. Moreover, we shall use the

following result for abelian groups in the proof of the following theore: For abelian

groups A ⊆ B, A is a neat subgroup of B if and only if A is a closed subgroup of B if

and only if the inclusion monomorphism i : A ↪→ B is E-neat.

Theorem 4.4.2. (Zöschinger, 1978, Satz 2.3∗) Let A and A′ be abelian groups. For a

homomorphism f : A−→ A′ the following are equivalent:

(i) f is E-neat.

(ii) Im f is closed in A′ and Ker f ⊆ RadA.

(iii) f−1(pA′) = pA for all prime numbers p.

(iv) If the following diagram is a pushout diagram of abelian groups and α is an

essential monomorphism, then α′ is also an essential monomorphism:

A
α //

f
��

B

f ′
��

A′
α′
// B′

Proof. Let f = ip : A −→ A/K ∼= Im f ↪→ A′ where K = Ker f , p : A −→ A/K is the

natural epimorphism and i : Im f ↪→ A′ is the inclusion monomorphism.

(i)⇒ (ii) : Since R = Z is hereditary, we obtain by Theorem 4.3.10 that i and p are

E-neat. Since the monomorphism i is E-neat, Im i = Im f is closed in A′ by Lemma

4.3.4. Now we have by Corollary 4.4.5 that A/KEE(A)/K, and so Soc(E(A)/K) ⊆

A/K. To show that K ⊆ RadA =
⋂

p prime

pA, we shall show that K ⊆ pA for all prime

numbers p. Let x ∈ K. Since K ⊆ E(A) and E(A) is divisible, for every prime number

p, there exists y ∈ E(A) such that x = py. So, p(y+K) = x+K = 0 in E(A)/K. Thus

y+K ∈ Soc(E(A)/K)⊆ A/K, that is, y ∈ A, and so x = py ∈ pA.

(ii)⇒ (i) : By Proposition 4.3.9, it suffices to show that the homomorphisms i and
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p are E-neat. Since Im i = Im f is closed in A′, i : Im f ↪→ A′ is E-neat by Lemma

4.3.4. To show the the epimorphism p : A −→ A/K, where K = Ker f , is E-neat we

shall show that A/K E E(A)/K by Corollary 4.4.5. Let 0 6= x +K ∈ E(A)/K with

x ∈ E(A). If x ∈ A, then we are done, so assume that x /∈ A. Since AEE(A) there

exists an integer n such that 0 6= nx ∈ A, and so n(x+K) ∈ A/K. If n(x+K) 6= 0

in E(A)/K, then we are done. Suppose that n(x+K) = 0 in E(A)/K. In this case,

we can assume that n is the order of the element x+K in the abelian group E(A)/K.

Since x 6= A, we have n > 1. Firstly, if n = p is a prime number, then px ∈ K. So,

px ∈ pA since K ⊆ RadA =
⋂

q prime

qA by hypothesis. Then px = pa for some a ∈ A,

and so p(x−a) = 0. Thus x−a ∈ Soc(E(A)), and so x−a ∈ A since Soc(E(A)) ⊆ A

as AEE(A). This shows that x ∈ A, contradicting x /∈ A. Secondly, suppose that n is

not prime. Then there exists a prime number p and m ∈ Z+ such that n = pm where

1 < m < n. Let y = mx. Then y /∈ K since m(x+K) 6= 0 as n is the order of x+K. So,

0 6= y+K ∈ E(A)/K with y ∈ E(A). If y ∈ A, then 0 6= m(x+K) ∈ A/K and we are

done. Suppose y /∈A. Then 0 6= y+K ∈E(A)/K with y∈E(A) and py= pmx= nx∈K.

Now as in the first case in the previous arguments, we obtain that y ∈ A which is a

contradiction.

(ii)⇒ (iii) : Since Im f = f (A) is closed in A′, it is a neat subgroup of A′, that

is, p f (A) = f (A)∩ pA′ for every prime number p. Let p be a prime number. Then

f (pA) = p f (A) ⊆ pA′, and so pA ⊆ f−1(pA′). Conversely, take any element x ∈

f−1(pA′). Then f (x) ∈ pA′, and since x ∈ A already, we obtain f (x) ∈ f (A)∩ pA′ =

p f (A). So, f (x) = p f (a) for some a ∈ A or equivalently, f (x− pa) = 0, that is,

x− pa ∈ Ker f ⊆ RadA =
⋂

q prime

qA

by hypothesis. Thus x− pa ∈ pA, and so x = p(a+a′) for some a′ ∈ A. This implies

x ∈ pA, and thus pA = f−1(pA′) .

(iii)⇒ (ii) : We show that Im f = f (A) is a neat subgroup of A′. Let p be a prime
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number. Of course, p f (A)⊆ f (A)∩ pA′. For the converse, let f (a) = pa′ ∈ f (A)∩ pA′

for some a ∈ A and a′ ∈ A′. Then a ∈ f−1(pA′) = pA by hypothesis. So a = pã for

some ã ∈ A. Thus f (a) = p f (ã) ∈ p f (A) as required. For every prime number p,

Ker f = f−1(0)⊆ f−1(pA′) = pA by hypothesis. Thus Ker f ⊆
⋂

p prime pA⊆ RadA.

(i)⇔ (iv) : It follows by Theorem 4.4.4 proved below.

Remark 4.4.3. In the pushout diagram of Theorem 4.4.2-(iv), it is always true that if α′

is an essential monomorphism, then α is an essential monomorphism by, for example,

Anderson & Fuller (1992, §5, Exercise 15).

Because of the equivalent conditions (i) and (iv) for abelian groups in the previous

theorem, we define Z-neat homomorphisms of modules; see Section 1.2 for the

definition of Z-neat homomorphisms.

Zöschinger has explained us how to prove the equivalence of the conditions (i) and

(iv) in the previous theorem for an arbitrary ring:

Theorem 4.4.4. The following are equivalent for a homomorphism f : A−→ A′:

(i) f : A−→ A′ is E-neat;

(ii) If

A � � α //

f
��

E(A)

f ′
��

A′
α′
// B′

is a pushout diagram of f and the inclusion monomorphism α, then α′ is an

essential monomorphism;

(iii) If

A
α //

f
��

B

f ′
��

A′
α′
// B′
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is a pushout diagram of f and α where α is an essential monomorphism, then α′

is also an essential monomorphism.

Proof. (i)⇒ (ii) : Suppose that the pushout diagram in (ii) is given with α an essential

monomorphism. Of course, α′ is monic by the properties of pushout. We show that

α′ is essential. Without loss of generality, we can assume that A′ ⊆ B′ and α′ is an

inclusion monomorphism, and so f (a) = f ′(a) for all a ∈ A. Now suppose on the

contrary that A′ 5 B′. Then there exists a nonzero complement C′ of A′ in B′, and so

A′⊕C′ E B′. By pushout of f and α we have the following commutative diagram with

exact rows, where ψ is an isomorphism:

0 // A
α //

f
��

E(A)
g //

f ′

���
�
�

E(A)/A //

ψ

���
�
� 0

0 // A′
α′ //____ B′

h //____ B′/A′ // 0

.

Here g and h are natural epimorphisms and ψ(x+A) = f ′(x)+A′ for every x ∈ E(A).

Let ψ−1(A′⊕C′/A′) =U/A where A⊆U ⊆E(A). Since (A′⊕C′)/A′∼=C′ 6= 0, U/A 6=

0 as ψ is an isomorphism, and so A $U . Since, for every u ∈U , f ′(u)+A′ = ψ(u+

A) ∈ (A′⊕C′)/A′ we obtain f ′(U)⊆ A′⊕C′. Thus we have found a proper extension

πσ of f in E(A), where σ : U −→ A′⊕C′ is the restriction of f ′ to U defined by

σ(u) = f ′(u) for every u ∈U , and π : A′⊕C′ −→ A′ is the projection onto A′:

E(A)

U σ //?�

OO

A′⊕C′

π

��
A f

//?�

i 6=
OO

A′

This contradicts with f being E-neat. Hence α′ must be essential.

(ii) ⇒ (iii) : Consider the pushout diagram given in (iii) with α an essential

monomorphism. Without loss of generality, assume A ⊆ B and α is the inclusion
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monomorphism. Clearly α′ is monic by the properties of pushout. Since A E B we

can also assume B ⊆ E(A). Take a pushout of β and f ′, that is, obtain the second

square (2) in the following diagram. This gives us the following pushout diagram of f

and βα since the squares (1) and (2) are pushout diagrams:

A

(1)

� � α //

f
��

B

(2)

� � β //

f ′
��

E(A)

f ′′
���
�
�

A′
α′
// B′

β′
//____ C′

.

Thus, by hypothesis (ii), β′α′ is an essential monomorphism, and so α′ is also essential.

(iii)⇒ (i) : Suppose that f = βα where α is an essential monomorphism:

A
α //

f
��

B

β���������

A′

By pushout we have the following commutative diagram with exact rows:

0 // A
α

	
//

f
��

B //

���
�
�

β
~~~~

~~~~~

C //

1C
���
�
�

γ

��

0

0 // A′
α′
//___ B′

� //___ C // 0

.

Since β exists, there exists γ : C −→ B′ that makes the indicated triangle commutative

by Lemma 4.2.2. That means the second row splits, that is, α′(A′) is a direct summand

of B′. But by hypothesis α′ is essential since α is essential. So α′(A′) = B′ must hold.

Thus α is an isomorphism.

Corollary 4.4.5. For a module A and a submodule K, the natural epimorphism f :

A−→ A/K is E-neat if and only A/KEE(A)/K.

Proof. The result follows immediately from Theorem 4.4.4 by taking the following

pushout diagram where α and α′ are inclusion monomorphisms, and f ′ is the natural
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epimorphism:

A � � α //

f
��

E(A)

f ′
��

A/K
α′
// E(A)/K

.

Proposition 4.4.6. (Generalov, 1983, Proposition 4) Let R be a ring that can be

embedded in a module S such that RadS = R. Then:

(i) For every module A, there exists a module B such that RadB = A.

(ii) If, in addition, the module S/R is semisimple, then an essential extension B of A

such that B/A is a semisimple module can be taken as B in (i).

Lemma 4.4.7. For an abelian group A, there exists an abelian group B⊇ A such that

RadB = A, AEB, and B/A is semisimple.

Proof. For the submodule S := ∑
p prime

Z 1
p ⊆Q of the Z-module Q of rational numbers,

we have S/Z= Soc(Q/Z) is a semisimple Z-module and RadS = Z (see, for example,

Mermut (2004, Lemma 4.6.2)). Thus the result follows by Proposition 4.4.6.

Recall that a ring R is said to be a left quasi-duo ring if each maximal ideal is a

two-sided ideal.

Proposition 4.4.8. (Generalov, 1983, Lemma 3) Let R be a left quasi-duo ring. Then

for every module M,

RadM =
⋂

P ⊆
max.

RR

PM,

where the intersection is over all maximal left ideals of R.

Lemma 4.4.9. (by Generalov (1983, Theorem 7, Proposition 4)) Let R be a

commutative domain of which every maximal ideal is invertible and K be the field

of fractions of R. Let S ⊆ K be the submodule of the R-module K such that S/R =

Soc(K/R). Then:
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(i) RadS = R and S/R is a semisimple R-module,

(ii) For a free R-module F :=
⊕
λ∈Λ

R for some index set Λ, take the R-module A :=⊕
λ∈Λ

S. Then RadA = F and A/RadA is a semisimple R-module.

Proof. The proof in Mermut (2004, Lemma 5.4.1) for Dedekind domains works also

in this lemma.

(i) Since S/R = Soc(K/R), it is clearly semisimple. So Rad(S/R) = 0. Hence

RadS ⊆ R. Let P be a maximal ideal of R. Then P is an invertible ideal by

hypothesis, that is, for the submodule P−1 ⊆ K, PP−1 = R. Hence P−1 is a

homogenous semisimple R-module with each simple submodule isomorphic to

R/P. So, the quotient P−1/R is also semisimple. Thus P−1/R ⊆ Soc(K/R) =

S/R which implies that P−1⊆ S. So R= PP−1⊆ PS. Then, by Proposition 4.4.8,

RadS =
⋂

P ⊆
max.

RR

PS⊇ R,

and thus RadS = R.

(ii) RadA =
⊕

λ∈Λ RadS =
⊕

λ∈Λ R = F and A/RadA =
⊕

λ∈Λ(S/R) is semisimple.

Lemma 4.4.10. Let A and B be submodules of a module. If AE (A+B) and B is

semisimple, then B⊆ A.

Proof. Let B =
⊕
i∈I

Si, where Si is a simple submodule of B for all i ∈ I (where I is

some indexing set). Let S⊆ B be one of the Si’s, say S = Rx for some 0 6= x ∈ S. Since

AE (A+B) and x = 0+ x ∈ A+B, there is 0 6= r ∈ R such that 0 6= rx ∈ A, and so

0 6= rx ∈ S∩A. This implies that S∩A = S since S is simple, that is, S⊆ A. Thus every

simple submodule S of B belongs to A. Hence B⊆ A.
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Lemma 4.4.11. Let R be a commutative domain of which every maximal ideal is

invertible. Let K ⊆ A be R-modules with RadA = 0. If the natural epimorphism

f : A−→ A/K is E-neat, then K = 0.

Proof. By Lemma 4.4.9, there exists an R-module S such that RadS = R and S/R

is semisimple. So by Proposition 4.4.6, there exists an R-module B ⊇ K such that

RadB=K with KEB, and B/K is semisimple. Then we can embed B into the injective

envelope E(A) of A:

K � � E //
� _

��

B

}}{
{

{
{

E(A)

So we can assume that K ⊆ B ⊆ E(A). Now, by Corollary 4.4.5, A/K E E(A)/K,

and so A/KE (A+B)/K = (A/K)+ (B/K) since A+B ⊆ E(A). The module B/K

is semisimple by hypothesis, and so we obtain B/K ⊆ A/K by Lemma 4.4.10. Thus

B⊆ A, and K = RadB⊆ RadA = 0, that is, K = 0.

Corollary 4.4.12. Let R be a commutative domain of which every maximal ideal is

invertible. If f : A−→ A′ is an E-neat epimorphism and RadA = 0, then Ker f = 0 and

so f is an isomorphism.

Proposition 4.4.13. If R is a left C-ring and if all maximal left ideals of R are

projective, then R is a left hereditary ring.

Proof. Since every maximal left ideal of R is projective, it follows by Crivei (1998,

Theorem 10) that every factor module of a max-injective module is max-injective.

Since R is aleft C-ring, by Theorem 4.2.14, every max-injective module is injective.

Thus, every factor module of an injective module is injective. Hence R is left hereditary

by Theorem 4.3.10.

Recall that a ring R is an N-domain if and only if R is a commutative domain whose

all maximal ideals are projective (and so all maximal ideals are invertible and finitely
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generated). So, if R is an N-domain and a C-ring, then R is a commutative hereditary

domain, that is, a Dedekind domain (by Proposition 4.4.13).

Theorem 4.4.14. Let R be Dedekind domain. For R-modules K ⊆ A, the natural

epimorphism f : A−→ A/K is E-neat if and only if K ⊆ RadA.

Proof. (⇐) Suppose that for A ⊆ B ⊆ E(A), there exists a homomorphism h : B −→

A/K that extends f :

E(A)

B
?�

OO

h

##G
G

G
G

G

A
?�

OO

f
// A/K

Then h(a) = f (a) = a+K for every a ∈ A, and AE B since AE E(A). Therefore

h(K) = 0, and so we obtain the following diagram:

A/K � � //

1A/K
��

B/K

h′||y
y

y
y

A/K

such that h′(b+K) = h(b) for every b ∈ B. This diagram is also commutative: for

every a ∈ A, h′(a+K) = h(a) = f (a) = a+K = 1A/K(a+K). This means that the

diagram splits, and so A/K is a direct summand of B/K. Then there is a submodule

C with K ⊆ C ⊆ B such that (A/K)⊕ (C/K) = B/K. So A+C = B and A∩C = K.

Since K ⊆ RadA by hypothesis, we obtain that A is a Rad-supplement of C in B or

equivalently, A is a coneat submodule of B. Then A is also a neat submodule of B

by Mermut (2004, Theorem 5.4.6). So A is closed in B by Proposition 4.1.1 since the

Dedekind domain is is a C-ring. But then AEB implies that A=B. Thus f : A−→A/K

has no proper extension in the injective envelope of A. Hence f is E-neat by Theorem

4.3.3.

(⇒) Conversely, suppose that f : A−→ A/K is an E-neat homomorphism. We have
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the following commutative diagram:

A
f //

σ

��

A/K
ρ

((PPPPPPPPPPPPP

A/(RadA)
φ // (A/K)/(Rad(A/K))

where σ and ρ are natural epimorphisms, and φ = βα, where

α : A/RadA−→ (A/RadA)/((RadA+K)/RadA)

is the natural epimorphism and

β : (A/RadA)/((RadA+K)/RadA)−→ (A/K)/(Rad(A/K))

is defined by

(a+RadA)+ [(RadA+K)/RadA] 7→ (a+K)+Rad(A/K).

Thus φ(a + RadA) = (a + K) + Rad(A/K) for every a ∈ A. Since f is E-neat (by

hypothesis) and ρ is E-neat (by “(⇐)” of this theorem), we obtain φσ = ρ f is E-neat

by Proposition 4.3.9. Since R is left hereditary and φ and σ are epimorphisms, φ is

E-neat by Theorem 4.3.10. So α is E-neat by Proposition 4.3.11 since φ = βα is

E-neat. Now since the natural epimorphism α is E-neat and Rad(A/RadA) = 0, we

obtain by Lemma 4.4.11 that (Rad+K)/RadA = 0, that is, RadA+K = RadA. Thus

K ⊆ RadA as required.

Corollary 4.4.15. Let R be a Dedekind domain. For every R-module A, the natural

epimorphism f : A−→ A/RadA is E-neat.

Corollary 4.4.16. Let R be a Dedekind domain. An epimorphism f : A −→ B of

modules is E-neat if and only if Ker f ⊆ RadA.
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Now we give the main result of this section which generalizes the equivalence of (i)

and (ii) in Theorem 4.4.2 for abelian groups to Dedekind domains:

Theorem 4.4.17. Let R be a Dedekind domain. Then a homomorphism f : A −→ A′

of R-modules is E-neat if and only if it is Z-neat, that is, Im f is closed in A′ and

Ker f ⊆ RadA.

Proof. We have f = ip where p : A −→ A/Ker f ∼= Im f is the natural epimorphism

and i : Im f −→ A′ is the inclusion monomorphism.

(⇒) Suppose that f : A −→ A′ is E-neat. Since R is hereditary, both of p and i

are E-neat by Theorem 4.3.10. Thus Im i = Im f is closed in A′ by Lemma 4.3.4

since the monomorphism i is E-neat, and Ker f ⊆ RadA by Corollary 4.4.16 since

the epimorphism p is E-neat.

(⇐) Conversely, suppose that f : A −→ A′ is Z-neat. Then since Im f is closed

in A′ the monomorphism i is E-neat by Lemma 4.3.4, and since Ker f ⊆ RadA the

epimorphism p is E-neat by Corollary 4.4.16. Hence the composition f = ip is also

E-neat by Proposition 4.3.9-(i).

4.5 The Class of E-neat Epimorphisms

In this section, we deal with properties of E-neat homomorphisms which are

epimorphisms. By showing that a splitting epimorphism is not always E-neat, we show

that the class of all short exact sequences of modules defined by E-neat epimorphisms

does not form a proper class.

Theorem 4.5.1. A splitting epimorphism f : M −→ N is E-neat if and only if Ker f

is injective. That is, for modules A and B, the splitting (projection) epimorphism f :

A⊕B−→ A is E-neat if and only if Ker f ∼= B is injective.

Proof. (⇒) Suppose that f is E-neat. Consider the injective envelope E(B) of B. Since
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BEE(B), we have an essential monomorphism

α : A⊕B ↪→ A⊕E(B)⊆ E(A)⊕E(B)⊆ E(A⊕B).

Indeed, A+B⊆ A+E(B) and for a ∈ A∩E(B),Ra∩B⊆ A∩B = 0, and so BEE(B)

implies Ra = 0, that is, a = 0. Clearly, A⊕BEA⊕E(B). Thus we obtain the following

commutative diagram:

E(A⊕B) = E(A)⊕E(B)

A⊕E(B)
?�

OO

σ

((QQQQQQQQ

A⊕B
?�

α

OO

f
// A

where σ is a projection. In the above diagram, σα((a,b)) = σ((a,b)) = a = f ((a,b)),

that is, σ|A⊕B = f . But since f is E-neat, it cannot have a proper extension in the

injective envelope of A⊕B by Theorem 4.3.3. Then A⊕B = A⊕E(B), and so B =

E(B). Hence B∼= Ker f is injective.

(⇐) Let M = A⊕B, that is, M = A+B and A∩B = 0. Then E(M) = E(A⊕B) =

E(A)⊕B since B∼= Ker f is injective by hypothesis. By Theorem 4.3.3-(iv) it suffices

to show that f does not have a proper extension in E(M). Suppose on the contrary

that f has an extension g : C −→ A in E(M) where M ⊆C ⊆ E(M). Then we have the

following commutative diagram, where i : A ↪→ A⊕B is the inclusion monomorphism:

E(M) = E(A)⊕B

C
?�

OO

g

''OOOOOOOOOOOOOOO

M = A⊕B
?�

j

OO

f
// A

A
?�

i

OO

1A

77ooooooooooooooo
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Since ji : A ↪→C splits, there exists a submodule K of C such that C =A⊕K. Therefore,

M = A⊕ B ↪→ C = A⊕K, and so B ∼= (A⊕ B)/A ⊆ C/A. Since B is injective by

hypothesis, (A⊕B)/A is a direct summand in C/A, and so C/A = (A⊕B)/A⊕ (L/A)

for a submodule L of C with A⊆ L. Thus C = (A⊕B)+L and (A⊕B)∩L = A. So we

have the following commutative diagram:

A � � //

1A
��

L
e

���������
� � //C

g
wwoooooooooooooo

A

with g |L= e. Since A is a direct summand of C, it is also a direct summand of L. So,

L = A⊕U for some U ⊆ L. Then C = (A⊕B)+L = (A⊕B)+(A⊕U) = A⊕B⊕U .

So we have M = A⊕B ⊆C ⊆ E(M). Since MEE(M), we have MEC. But, then we

must have U = 0 since M = A⊕B is a direct summand of C = (A⊕B)⊕U . Hence

C = M as required.

Theorem 4.5.1 shows that the class EN eat only contains splitting short exact

sequences which starts with an injective module. So it does not contain all splitting

short exact sequences if there modules that are not injective (that is, if the ring R is not

semisimple). Now let us check whether EN eat satisfies the other conditions for being

a proper class (P1, P3, P4 in Section 2.3):

Theorem 4.5.2. The class EN eat satisfies the conditions P1 and P3 for every ring R,

and P4-(ii) for left hereditary rings, but it does not satisfy the conditions P2 unless the

ring R is semisimple. As a result, the class EN eat forms a proper class if and only if

R is a semisimple ring.

Proof. P1. Let

E : 0 //A
f //B

g //C //0 and E′ : 0 //A
f ′ //B′

g′ //C //0
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be short exact sequences of modules that are isomorphic, that is, we have the following

commutative diagram:

0 // A
f //

1A
��

B
g //

ψ

��

C //

1C
��

0

0 // A
f ′ // B′

g′ //C // 0

with some isomorphism ψ : B−→ B′, where 1A : A−→ A and 1C : C−→C are identity

maps. Assume thatE∈EN eat, that is, g : B−→C is an E-neat epimorphism. We shall

to show that E′ ∈ EN eat, that is, g′ : B′ −→C is an E-neat epimorphism. Suppose we

have a commutative diagram for modules H $ G′ ⊆ G:

H � �

6=
//

σ

��

ϕ

���
�

�
�

G′ �
� //

τ

��@@@@@@@@ G

B
ψ
// B′

g′
//C

Since ψ is an isomorphism, the homomorphism ϕ = ψ−1σ : H −→ B exists. Now

since g′ψ : B−→C is E-neat, there is a submodule G′′ 'H of G and a homomorphism

γ : G′′ −→ B such that γ|H = ϕ:

H � �

6=
//

ϕ

��

G′′ �
� //

γ
~~}

}
}

}
ψγ

���
�
� G

B
ψ
// B′

g′
//C

Since there is ψγ : G′′ −→ B′ such that (ψγ) |H= ψ(γ |H) = ψϕ = σ, we obtain g′ is

E-neat.

P2. By Theorem 4.5.1, the splitting short exact sequences which do not start with an

injective module are not in EN eat. So P2 holds if and only if every left R-module

is injective, that is, if and only if R is a semisimple ring (see, for example, Sharpe &

Vámos (1972, Proposition 3.7)).

P3. (i) Let f : A −→ B and g : B −→ C be EN eat-monomorphisms, that is, the row
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containing f and the column containing g in the following diagram are in the class

EN eat. We shall show that g f is an EN eat-monomorphism. Consider the following

commutative diagram, where we assume that A ⊆ B ⊆ C, and f and g are inclusion

monomorphisms, and the other maps are naturally defined:

0 // A
f //

1A
��

B α //

g
��

B/A //

β

��

0

0 // A
g f //C h //

γ

��

C/A //

ϕ

��

0

C/B
1C/B //

��

C/B

��
0 0

(4.5.1)

According to the diagram, the epimorphisms α and γ are E-neat, and we must show that

the epimorphism h is E-neat. Suppose we have a commutative diagram for modules

H $ G′ ⊆ G:

H � �

6=
//

σ

��

G′ �
� //

τ

��

ϕτ

""E
E

E
E G

C h
//C/A

ϕ
//C/B

Since (ϕτ) |H= ϕ(τ |H) = (ϕh)σ and ϕh : C −→C/B is E-neat, there is a submodule

G′′ % H of G and φ : G′′ −→C so that φ|H = σ:

H � �

6=
//

σ

��

G′′ �
� //

φ}}|
|

|
|

|
G

C h
//C/A

This means that h : C −→C/A is E-neat.

(ii) Let α : A −→ B and β : B −→ C be EN eat-epimorphisms. Then α

and β are E-neat, and so βα is E-neat by Proposition 4.3.9-(i), that is, βα is

EN eat-epimorphism.
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P4. (ii) Let R be a left hereditary ring, and let α : A −→ B and β : B −→ C be

epimorphisms. If βα is an EN eat-epimorphism, that is, if βα is E-neat, then β is

an E-neat by Theorem 4.3.10 (since α and β are epimorphisms).

As a result, if R is semisimple, then EN eat = S plitR. Indeed, if R is semisimple,

then every left R-module is injective. So, every short exact sequence in EN eat is

splitting. Now, every splitting short exact sequence is in EN eat by Theorem 4.5.1.

Conversely, if EN eat forms a proper class, then P2 of being a proper class holds,

and so R is semisimple.

Let f : A −→ B and g : B −→ C be monomorphisms and g f be an

EN eat-monomorphism. To show that EN eat satisfies P4-(i), we must show that

f is an EN eat-monomorphism. Consider the commutative diagram (4.5.1). So we

must show that α : B−→ B/A is E-neat when h : C −→C/A is E-neat. But this is not

satisfied, for example, for abelian groups as the following example shows:

Example 4.5.3. Let Z(5) be the localization of the prime ideal (5) = 5Z of Z. Then

Z(5) consists of all rational numbers with denominators relatively prime to 5, that is,

Z(5) =
{a

b
| a,b ∈ Z and (b,5) = 1

}
.

Obviously, we have Z⊆Z(5)⊆Q. We shall show that the epimorphism α :Q−→Q/Z

is E-neat, but the epimorphism β : Z(5) −→ Z(5)/Z is not E-neat. Since Q is injective,

RadQ=Q, and so Kerα = Z⊆ RadQ. This means α is E-neat by Proposition 4.4.14.

Since Z(5) is q-divisible for every prime q 6= 5, we obtain

Rad(Z(5)) =
⋂

q prime

qZ(5) = 5Z(5).

Then Kerβ = Z * 5Z(5) = Rad(Z(5)) since, for example, 3 ∈ Z \ 5Z(5). Indeed, if
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3 ∈ 5Z(5), then 3 = 5(a
b) for some a,b ∈ Z with b relatively prime to 5. But, then

a = 3b
5 ∈ Z which is impossible. Hence β is not E-neat, again by Proposition 4.4.14.

4.6 Z-coneat Homomorphisms and the Proper Class Coclosed

Our interest in this section is coneat homomorphisms of Zöschinger which have

been studied in Zöschinger (1978) (we call them Z-coneat homomorphisms) and

the class of coclosed monomorphisms. We also study coclosed monomorphisms of

modules and we show that the class of all short exact sequences defined by is coclosed

submodules forms a proper class, denoted by Coclosed. The properties needed to

prove this found in Clark et al. (2006) and Zöschinger (2006).

See Section 1.2 for the definition of E-neat homomorphisms and its dual definition

of Z-coneat homomorphisms considered by Zöschinger for abelian groups:

Dual to Theorem 4.4.2 for E-neat homomorphisms, the following theorem was

given by Zöschinger (1978) for Z-coneat homomorphisms of abelian groups. Note

that for an abelian group A and an integer n, A[n] = {a ∈ A | na = 0}.

Theorem 4.6.1. (Zöschinger, 1978, Satz 2.3) For a homomorphism g : C′ → C of

abelian groups, the following are equivalent:

(i) g is Z-coneat;

(ii) Kerg is coclosed in C′ and SocC ⊆ Img;

(iii) g(C′[p]) =C[p] for all prime p;

(iv) If the diagram below is a pullback diagram and β is a small epimorphism, then

β ′ is also a small epimorphism.
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B′

g′
��

β′ //C′

g
��

B
β

//C

Now we show that Coclosed forms a proper class.

The following proposition contains some properties of coclosed submodules, which

will be used in this section, from Clark et al. (2006):

Proposition 4.6.2. (Clark et al., 2006, 3.7) Let K ⊆ L⊆M be submodules. Then:

(i) If L� � cc //M, then L/K � � cc //M/K .

(ii) If K � � cc //M, then K � � cc //L and the converse is true if L� � cc //M.

For completeness note the following lemma from Zöschinger (2006) with its proof:

Lemma 4.6.3. (Zöschinger, 2006, Lemma A.4) Let U ⊆ V ⊆ M be submodules. If

U � � cc //M and V/U � � cc //M/U , then V � � cc //M.

Proof. Assume that V/X � M/X where X ⊆ V for some submodule X of M with

X ⊆V . We shall show that X =V . Firstly, let us show that U/(U ∩X)�M/(U ∩X).

Assume that U/(U ∩X)+W/(U ∩X) = M/(U ∩X) for a submodule W of M with

U ∩X ⊇W . Clearly, we have U +W = M. To show that W = M, we shall show that

V/(U +W ∩X)�M/(U +W ∩X). Suppose that

V/(U +W ∩X)+Z/(U +W ∩X) = M/(U +W ∩X)

for a submodule Z of M with (U +W ∩X)⊆ Z. Clearly, Clearly we have V +Z = M.

Since U ⊆ Z, by modular law, we have Z = Z∩M = Z∩(U +W ) =U +(Z∩W ). Then

V +U +(Z∩W ) = Z +V = M, and so V +(Z∩W ) = M since U ⊆V . Thus,

M/X =V/X +[(Z∩W )+X ]/X .
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Since V/X � M/X by hypothesis, we obtain M/X = [(Z ∩W )+X ]/X , and so (Z ∩

W )+X = M. Now, by modular law, we have

W =W ∩M =W ∩ ((Z∩W )+X) = (Z∩W )+(W ∩X),

and so W ⊆ Z since W ∩X ⊆ Z already. So M =U +W =U +Z = Z since U ⊆ Z. This

shows that V/(U +W ∩X)+Z/(U +W ∩X) = M/(U +W ∩X). But then we have

(V/U)/[(U+W ∩X)/U ]∼=V/(U+W ∩X)�M/(U+W ∩X)∼=(M/U)/[(U+W ∩X)/U ].

So V/U = (U +W ∩X)/U since V/U � � cc //M/U by hypothesis. This clearly implies

V =U +W ∩X . Then, by modular law,

X = X ∩V = X ∩ (U +(W ∩X)) = (X ∩U)+(W ∩X),

and so X ⊆W since U ∩X ⊆W . Since U ⊆ V and U +W = M, we have V +W =

M. So M/X = V/X +W/X . This implies that W/X = M/X since V/X �M/X (by

assumption) or equivalently, W = M which shows that U/(U ∩X)�M/(U ∩X). Now

since U � � cc //M (by hypothesis), we obtain U =U∩X , and so U ⊆. Hence X =V since

X/U ⊆V/U and V/X �M/X . Indeed, since

(V/U)/(X/U)∼=V/X �M/X ∼= (M/U)/(X/U)

we obtain V/U = X/U (since V/U � � cc //M/U by hypothesis).

Theorem 4.6.4. The class Coclosed, that is, the class of all short exact sequences

0 //A α //B
β //C //0

of modules such that Imα is coclosed in B forms a proper class.

Proof. Let K ⊆ A⊆ B and C be submodules.
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P1. Suppose we have the following commutative diagram of modules and module

homomorphisms:

0 // A
f //

1A
��

B
g //

ψ

��

C //

1C
��

0

0 // A
f ′ // B′

g′ //C // 0

with some isomorphism ψ : B−→ B′, where 1A : A−→ A and 1C : C−→C are identity

maps. We can assume that A⊆B′ and f ′ is an inclusion monomorphism. We shall show

that, if A� � cc //B , then A� � cc //B′ . If there is a submodule K ⊆A such that A/K�B′/K,

then we have ψ
−1(A)/K�ψ

−1(B′)/K. Since ψ−1(B′) = B and ψ−1(A) = A as ψ is an

isomorphism, we obtain A/K� B/K, and so A = K since A� � cc //B . Hence A� � cc //B′ .

P2. Coclosed contains all splitting short exact sequences, since every direct summand

is coclosed. Indeed, let A⊕B = M for submodules A,B of a module M. Let us show

that A� � cc //M . Suppose that there is a submodule K ⊆ A such that A/K�M/K. Since

(A/K)∩ ((B+K)/K) = [A∩ (B+K)]/K = (K +A∩B)/K = 0,

we obtain M/K = (A/K)⊕ (B+K)/K. Since A/K � M/K by hypothesis, we have

A/K = 0 or A = K. Hence A� � cc //M .

P3. (i) Let f : A −→ B and g : B −→ C be Coclosed-monomorphisms. We can

assume that B ⊆ C and g is an inclusion monomorphism. Since A� � cc //B and

B� � cc //C , we obtain A� � cc //C by Proposition 4.6.2-(ii). This means that g f is a

Coclosed-monomorphism.

(ii) Let K ⊆ A ⊆ B and assume that the natural epimorphisms α : B −→ B/K and

β : B/K −→ B/A∼= (B/K)/(A/K) be Coclosed-epimorphisms. We shall show that βα

is a Coclosed-epimorphism, that is, A� � cc //B by the following commutative diagram
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where f , g and h are inclusion monomorphisms, and α and β are natural epimorphisms:

0 // K � � f //

1A
��

A //
� _

g
��

A/K //
� _

h
��

0

0 // K � � // B α //

βα

��

B/K //

β

��

0

B/A
1B/A

//

��

B/A

��
0 0

Then according to the diagram, we have K � � cc //B and A/K � � cc //B/K . We shall show

that A� � cc //B . This follows by Lemma 4.6.3.

P4. (i) Let f : A −→ B and g : B −→ C be monomorphisms and let g f be a

Coclosed-monomorphism. We shall show that f is a Coclosed-monomorphism. We

can assume that A⊆ B⊆C. We have A� � cc //C and we shall show that A� � cc //B . This

result follows by Proposition 4.6.2-(ii).

(ii) Let A ⊆ B ⊆C. For the natural epimorphisms, α : C −→C/A and β : C/A −→

C/B ∼= (C/A)/(B/A), assume that βα is a Coclosed-epimorphism. We shall show

that β is a Coclosed-epimorphism. We have B� � cc //C and we shall show that

B/A� � cc //C/A . This result follows by Proposition 4.6.2-(i).



CHAPTER FIVE

TORSION FREE AND COMPONENTWISE FLAT COVERS OF QUIVERS

In this chapter, we study in the category of representations by modules of a quiver

Q, denoted by (Q,R-M od), which is a Grothendieck category with enough injectives

and projectives. In Section 5.1 we give some preliminary notions and explain the

category (Q,R-M od).

In Enochs et al. (2004a), it was proved that for the existence of F -covers and

F ⊥-envelopes in the general setting of a Grothendieck category (not necessarily

with enough projectives), it suffices to show that the class F satisfies some standard

conditions. In this way, we prove the existence of “componentwise” flat covers in

(Q,R-M od) for every ring R and any quiver Q in Section 5.3. We also prove the

existence of torsion free covers in (Q,R-M od) for a wide class of quivers in Section

5.2. In the last section, we compare the “categorical” flat covers and “componentwise”

flat covers giving some examples.

Throughout this chapter, all torsion theories considered for R-M od will be

hereditary, and faithful (i.e., R will be torsion free). Also, we will consider the

following two properties during this chapter:

(A) Any direct sum of torsion free injective R-modules is injective.

(B) For every vertex v of a quiver Q, the set {t(a) | s(a) = v} is finite.

5.1 The Category (Q,R-M od)

The notions of quiver and linear representation of a quiver were introduced in

Gabriel (1972a). The classical representation theory of quivers involved finite quivers

129
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(i.e., a quiver with finitely many vertices and edges) and assumed that the ring was an

algebraically closed field with the assumption that all vector spaces involved were finite

dimensional. But recently, representations by modules over more general quivers have

been studied (see Enochs & Herzog (1999), Enochs et al. (2002), Enochs et al. (2003a),

Enochs et al. (2004b), Enochs & Estrada (2005a), Enochs et al. (2007), Enochs et al.

(2009)).

See Section 1.3 for the definition of quivers and some related notions that needed in

this chapter:

Example 5.1.1. The following is an example of a quiver whose vertices are v0,v1,v2

and whose arrows are α,β,δ,γ:

Q≡ v0 -
α-

β
v1 -

γ

-δ
v2 .

A tree is a quiver Q having a vertex v such that for every vertex w of Q, there exists

a unique path p : v−→ w. Such a vertex is unique and it is called the root of the tree.

For a given quiver Q, the (left) path space (or the path tree associated to Q), denoted

by P(Q), is the quiver whose vertices are the paths p of Q and whose arrows are

the pairs (p,ap) : p −→ ap, where a is an arrow of Q such that ap is defined (i.e.

s(a) = t(p)). For every vertex v of Q, denote by P(Q)v the subtree of P(Q) containing

all paths of Q starting at v.

Example 5.1.2. Let Q be the quiver in Example 5.1.1. Then the left path spaces of Q

are the following:
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δα

α

(α,δα)
>>~~~~~~~~

(α,γα)
// γα

P(Q)v0 ≡ v0

(v0,α)
@@��������

(v0,β) ��======== ;

β
(β,δβ)//

(β,γβ) ��>>>>>>>> δβ

γβ

,

δ

P(Q)v1 ≡ v1

(v1,δ)
@@��������

(v1,γ) ��======== ;

γ

P(Q)v2 ≡ v2

Recall that a representation by modules of a given quiver Q is defined as a functor

X : Q −→ R-M od. Such a representation is determined by giving a module X(v) for

every vertex v of Q and a homomorphism X(a) : X(v1) −→ X(v2) for each arrow a :

v1 −→ v2 of Q.

A morphism η between two representations X and Y is a natural transformation, so

it will be a family of homomorphisms ηv : X(v)−→Y (v) such that Y (a)ηv1 = ηv2X(a)

for each arrow a : v1 −→ v2 of Q, that is, the following diagram commutes:

X(v1)
X(a) //

ηv1
��

X(v2)

ηv2
��

Y (v1) Y (a)
// Y (v2)

.

Thus the representations of a quiver Q by modules over a ring R form a category,

denoted by (Q,R-M od).

Remark 5.1.3. Actually, our category (Q,R-M od) is a special case of the functor

category Fun(I,C ) where I = Q and C = R-M od (see Section 2.7 page 46). So,

by Stenström (1975, Chap. IV, Proposition 7.1), we infer that (Q,R-M od) is an

abelian category, and from the arguments given in the proof we notice that kernels,
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cokernels and products are constructed “componentwise”. From this we deduce that

colimits and limits are computed “componentwise” as well. In particular, this tells us

that intersections (which are a special case of pullbacks) and sums are also computed

componentwise.

Therefore, η will be a monomorphisms (respectively, epimorphism, isomorphism)

whenever ηv is a monomorphism (resp. epimorphism, isomorphism) of modules for all

v ∈V . In particular, if ηv’s are just inclusions, then X is said to be a subfunctor of Y or,

by using our terminology, a subrepresentation of Y . Similarly, quotient representations

are also defined componentwise.

Example 5.1.4. Let Q be the quiver in Example 5.1.1. Then a representation of Q is

given as follows: X ≡ X(v0) -
f0-

g0
X(v1) -

g1

-f1 X(v2)

is a representation of Q, where X(v0),X(v1),X(v2) are modules and f0,g0, f1,g1 are

homomorphisms.

Definition 5.1.5. For a given quiver Q and a ring R, the path ring of Q over R,

denoted by RQ, is the free left R-module whose base are all paths of Q, and where

the multiplication is the obvious composition between two paths:

q · p =

 qp if t(p) = s(q)

0 if t(p) 6= s(q)

The product of basis elements is then extended to arbitrary elements of RQ. In other

words, there is a direct sum decomposition

RQ = RQ0⊕RQ1⊕ . . .⊕RQn⊕ . . .

of the free left R-module RQ, where, for each n ≥ 0, RQn is the submodule of RQ



133

generated by the set Qn of all paths of length n.

A ring R is said to be a ring with enough idempotents if there exists a family {eα}α∈A

of pairwise orthogonal idempotents eα ∈ R (that is, eα 6= eβ for α 6= β and e2
α = eα for

all α,β ∈ R) such that

R =
⊕
α∈A

eαR =
⊕
α∈A

Reα.

R is said to be a ring with local units if for every finite set S ⊆ R, there exists an

idempotent e ∈ R such that S⊆ eRe.

By Wisbauer (1991, Chap.10, §49), we have a ring R with enough idempotents is a

ring with local units.

Remark 5.1.6. RQ is a ring with enough idempotents,. Indeed, the set of vertices of

Q is a family of orthogonal idempotents (since v ·w = 0 for v 6= w, and v2 = v for all

v,w ∈V ) such that

RQ =
⊕
v∈V

vRQ =
⊕
v∈V

RQv.

So, RQ is a ring with local units. Indeed, consider the sets

A = {s(pi) : ∑
i

ri pi ∈ S} and B = {t(p j) : ∑
j

s j p j ∈ S}

where pk is a path of Q for each k and rk,sk ∈ R. Then e = ∑
v∈A∪B

v is the required

idempotent.

Note that RQ has an identity element if and only if the set of vertices V of Q is finite

(see, for example, Assem et al. (2006, chap. II, Lemma 1.4)). In this case,

1RQ = v1 + v2 + · · ·vn

where v1,v2, . . .vn are distinct vertices of Q.
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Remark 5.1.7. It is known that the categories (Q,R-M od) and RQ-M od, the category

of unital RQ-modules or equivalently, the category of left RQ-modules RQM such that

RQM = M, are equivalent; see, for example, Estrada (2003, Chap. 2) for details.

Indeed, given a representation X of Q, we have an R-module
⊕

v∈V X(v), and the action

of a path p = v0 −→ v1 −→ ·· · −→ vn is the composition of homomorphisms

⊕
v∈V

X(v)−→ X(v0)−→ X(v1)−→ ·· · −→ X(vn)−→
⊕
v∈V

X(v),

where the first homomorphism is the projection homomorphism and the last is the

inclusion homomorphism. Thus, by this action, any representation X of Q can be given

an RQ-module structure. Conversely, let M be an RQ-module. Then we can construct

a representation X of Q so that X(v) = vM for all v ∈V , and for each arrow a : v−→ w

of Q, X(a) : vM −→ wM is just scalar multiplication by a (that is, for each vm ∈ vM,

X(a)(vm) = avm = am = wam ∈ wM). For this equality, where Q is finite and R is

an algebraically closed field with all vector spaces involved are finite dimensional, see

also Assem et al. (2006, Chap. III.1) or Auslander et al. (1995, Chap. III, Theorem

1.5).

Example 5.1.8. Let Q be a quiver consisting of a single point but no arrows. The

defining basis of the path ring RQ is {v}, where v is the identity of the path ring RQ.

Thus RQ ∼= R, where the isomorphism being induced by the R-linear map such that

v 7→ 1. So, (Q,R-M od)∼= RQ-M od ∼= R-M od. This means that a representation of Q

is just an R-module.

Example 5.1.9. Let Q be the quiver consisting of a single point and a single loop:

Q≡ v• aff

Then the defining basis of the path ring RQ (i.e. the paths of Q) is {v,a,a2, . . .}, where

v is the identity of RQ. Thus RQ ∼= R[x], where R[x] is a ring of polynomials with

coefficients in R and where the isomorphism being induced by the R-linear map such
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that v 7→ 1 and a 7→ x. So, (Q,R-M od)∼= R[x]-M od.

Note that RQ is a projective generator of RQ-M od (see Wisbauer (1991, Chap. 10,

§49.1)). So, it follows that (Q,R-M od) is a Grothendieck category with a projective

generator, and thus with enough projectives by, for example, Stenström (1975, Chap.

IV, §6, Example (3)). Moreover, for the explicit presentation of the method to construct

a family of projective generators for the category (Q,R-M od), see Enochs et al.

(2004b) or Estrada (2003, Chap. 2). Also, (Q,R-M od) has enough injectives (see

Stenström (1975, Chap. X, Corollary 4.3)).

Remark 5.1.10. For a given quiver Q, one can define a family of projective generators

from an adjoint situation as it is shown in Mitchell (1972). The family {Sv(R) | v ∈V}

is a family of projective generators for the category of representations (Q,R-M od)

where for each v ∈ V the functor Sv : R-M od −→ (Q,R-M od) is defined in Mitchell

(1972, §28) as follows:

For an R-module M, the representation Sv(M) is defined for all w ∈V by

Sv(M)(w) =
⊕

p∈Q(v,w)

M

where Q(v,w) is the set of all paths of Q such that s(p) = v and t(p) = w, and for each

arrow a : w1→ w2 of Q,

Sv(M)(a) :
⊕

q∈Q(v,w1)

M −→
⊕

p∈Q(v,w2)

M

is given by (mq)Q(v,w1) 7→ (up)p∈Q(v,w2), where

up =


0 if p /∈ aQ(v,w1),

mq if p ∈ aQ(v,w1)
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and aQ(v,w1) = {aq | q ∈ Q(v,w1)}. In other words,

Sv(M)(a) =
⊕

q∈Q(v,w1)

M
⊕

q 1M−→
⊕

p∈aQ(v,w1)

M ↪→
⊕

p∈Q(v,w2)

M.

Then Sv is a left adjoint functor of the evaluation functor Tv : (Q,R-M od)−→ R-M od

given by Tv(X) = X(v) for every representation X in (Q,R-M od); see, for example,

Enochs et al. (2004b, Propositions 3.1 and 3.2). That is, for every v ∈V , we have

HomQ(Sv(M), X)∼= HomR(M, Tv(X)).

Since (Q,R-M od) has coproducts, we obtain by Definition 2.7.8 that
⊕
v∈V

Sv(R) is a

generator for (Q,R-M od).

Example 5.1.11. Consider the quiver

Q≡ •v
b
//

c

!!
•w1 a

// •w2 .

Then Q(v,w1) = {b}, Q(v,w2) = {ab,c} and aQ(v,w1) = {ab}. For a module M,

we have Sv(M)(w1) = Mb, Sv(M)(w2) = Mab⊕Mc, and Sv(M)(a) = 1Mab ⊕ 0, where

Mb = Ma = Mab = M. In other words,

Sv(M)(a) : M −→M⊕M is given by m 7→ (m,0).

Proposition 5.1.12. The category (Q,R-M od) is locally finitely presented.

Proof. We shall show that for every finitely generated module M, Sv(M) is a finitely

generated representation in (Q,R-M od) for every v ∈ V . Let ∑i∈I Yi be a direct union

of subrepresentations of Y . Since Sv is a left adjoint functor of the restriction functor

Tv, we have

HomQ(Sv(M),∑
i

Yi)∼= HomR(M,∑
i

Yi(v)).
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Since ∑iYi is computed componentwise and M is finitely generated module, we obtain

HomR(M,∑
i

Yi(v))∼= lim
−→I

HomR(M,Yi(v))∼= lim
−→I

HomQ(Sv(M),Yi)

Thus by Proposition 2.7.13, Sv(M) is finitely generated. So, {Sv(R) | v∈V} is a family

of finitely generated projective generators, and so finitely presented generators (by

2.7.15). Hence (Q,R-M od) is a locally finitely presented category.

5.2 Torsion Free Covers in (Q,R-M od) Relative to a Torsion Theory

By injective representations of a quiver Q, we mean injective objects in the category

(Q,R-M od).

Throughout this section, Q will be a source injective representation quiver , that is,

for every ring R every injective representation X in (Q,R-M od) is characterized by the

following conditions (call shortly SIRQ):

(i) X(v) is an injective R-module, for every vertex v of Q.

(ii) For every vertex v, the morphism

X(v)−→ ∏
s(a)=v

X(t(a))

induced by X(v) −→ X(t(a)) is a splitting epimorphism, where the product is

over all arrows a in Q with s(a) = v; see Enochs et al. (2009, Definition 2.2).

Remark 5.2.1. (Enochs et al., 2009, Proposition 2.1) For each quiver Q, if X ∈

(Q,R-M od) is injective, then the above conditions (i) and (ii) of SIRQ always hold.

Now let us give some examples of source injective representation quivers:

(i) Each quiver with a finite number of vertices and without oriented cycles is a
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source injective representation quiver.

(ii) The infinite line quivers:

A∞ ≡ ·· · // • // • // • ,

A∞ ≡ • // • // • // · · · ,

A∞
∞ ≡ ·· · // • // • // · · ·

are source injective representation quivers.

(iii) Infinite barren trees are source injective representation quivers: Recall that if T is

a tree with the root v, we can divide the set of vertices into “states” in such a way

that the first state is {v}, the second is the set of sons of v (that is, the vertices

w such that there is an arrow from v to w), the third is given by the sons of the

vertices in the second state, and so on. We say that T is barren if the number

of vertices ni of the i′th state of T is finite for every i ∈ N, and the sequence

of positive natural numbers n1,n2, . . . stabilizes, that is, there exists r ∈ N such

that nr+ j = nr for all j ∈ N (see Enochs et al. (2009, Corollaries 5.4-5.5)). For

example, the tree

• // • // · · ·

• //

??~~~~~~~

��@@@@@@@ • // • // · · ·

• // • // · · ·

is barren.

(iv) The quiver with two vertices and infinitely many arrows between these two

vertices is a source injective representation quiver, but does not satisfy the

property (B) (at page 129): • -
-

...

-
...
•

Once we have given some examples of source injective representation quivers, now



139

let us give an example that is not a source injective representation quiver:

Example 5.2.2. The n-loop, that is a loop with n vertices, is not a source injective

representation quiver. To see this, let vi be a vertex and ai : vi −→ vi+1 be an arrow of

the quiver for all i = 1,2, . . . ,n, where vn+1 = v1. Now consider the representation

X defined as follows: X(vi) = E × ·· · × E (n times) and X(ai)(x1, . . .xn) =

(xn,x1, . . . ,xn−1), where E is an injective R-module and xi ∈ E for all i = 1, . . .n.

Then it is clear that X satisfies the conditions (i) and (ii) of SIRQ. But, X is not an

injective representation since it is not a divisible RQ-module. This is because, there is

element (anan−1 · · ·a1 + a1an · · ·a2 + · · ·+ an−1an−2 · · ·an)− 1RQ of RQ which is not

zero divisor such that

[(anan−1 · · ·a1 +a1an · · ·a2 + · · ·+an−1an−2 · · ·an)−1RQ] ·m = 0

for every element m = (m1, . . . ,mn) where mi ∈ X(vi) = E × ·· · × E for all i =

1,2, . . . ,n. Indeed, if mi = (m1
i ,m

2
i , . . . ,m

n
i ), where m j

i ∈ E, for all i, j = 1, . . . ,n, then

(anan−1 · · ·a1) ·m+(a1an · · ·a2) ·m+ · · ·+(an−1an−2 · · ·an) ·m =

X(an)X(an−1) · · ·X(a1)m1 + · · ·+X(an−1)X(an−2) · · ·X(an)mn =

X(an) · · ·X(a2)(m1
n,m

1
1, . . . ,m

1
n−1)+ · · ·+X(an−1) · · ·X(a1)(mn

n,m
n
1, . . . ,m

n
n−1) = · · ·

((m1
1, . . . ,m

1
n),0, . . . ,0)+ · · ·+(0, . . . ,0,(mn

1, . . . ,m
n
n)) = (m1, . . . ,mn) = m

See Remark 5.1.7 for the action of a path used in this example.

Now let (T ,F ) be a torsion theory for R-M od. Then we can define a torsion theory

(Tcw,Fcw) for (Q,R-M od), by defining the torsion class such that

Tcw = {X ∈ (Q,R-M od) | X(v) ∈ T for all v ∈V}.
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This is because Tcw is closed under quotient representations, direct sums and extensions

(as so is T ) (see, for example, Stenström (1975, VI, Proposition 2.1)).

Remark 5.2.3. Since the torsion class Tcw is closed under subrepresentations, our

torsion theory (Tcw,Fcw) is hereditary.

Proposition 5.2.4. Let X ∈ (Q,R-M od). Then X ∈ Fcw if and only if X(v) ∈ F for all

v ∈V .

Proof. (⇒) Let X ∈ Fcw. Then for every M ∈ T , we have

HomR(M,Tv(X))∼= HomQ(Sv(M),X) = 0

since Sv(M) ∈ Tcw (as T is closed under direct sums). Thus X(v) = Tv(X) ∈ F for all

v ∈V .

(⇐) Suppose that X(v) ∈ F for all v ∈V . Let A ∈ Tcw. If γ : A−→ X is a morphism

of representations, then we have module homomorphisms γv : A(v) −→ X(v) for all

v ∈ V . Since A(v) ∈ T , then HomR(A(v),X(v)) = 0 and so γv = 0 for all v ∈ V . Thus

γ = 0, that is, HomQ(A,X) = 0. This means that X ∈ Fcw.

Theorem 5.2.5. Any representation of Fcw can be embedded in a torsion free and

injective representation.

Proof. Let X ∈ Fcw be any representation of Q. Since (Q,R-M od) has enough

injectives and (Tcw,Fcw) is hereditary, then Fcw is closed under injective envelopes (see

Dickson (1966, Theorem 2.9)). Thus X can be embedded in its torsion free injective

envelope.

Lemma 5.2.6. Let X ,X ′,Y and Z be representations of Q.

(i) If X has an Fcw-precover and Z ⊆ X, then Z also has an Fcw-precover.

(ii) If X is injective, then ψ : X ′ −→ X is an Fcw-precover of X if and only if for every

morphism φ : Y −→X with Y ∈Fcw and Y injective, there exists f : Y −→X ′ such

that ψ f = φ.
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Proof. (i) Let ψ : X ′ −→ X be an Fcw-precover. Consider the morphism ψ1 :

ψ−1(Z)−→ Z. Then ψ−1(Z)∈Fcw since Fcw is closed under subrepresentations.

Now for every morphism φ : Y −→ Z with Y ∈ Fcw, there is a morphism

f : Y −→ X ′ such that ψ f = φ. Therefore, f (Y ) ⊆ ψ−1(Z) and so φ can be

factored through ψ1.

(ii) The condition is clearly necessary. Let φ1 : Y1 −→ X be a morphism with Y1 ∈

Fcw. Then by Theorem 5.2.5, Y1 can be embedded in a representation Y ∈ Fcw

which is injective. Now since X is injective, there is a morphism φ : Y −→ X

such that φ |Y1= φ1. So, by hypothesis, there exists a morphism f : Y −→ X ′ such

that ψ f = φ. It follows that (ψ f ) |Y1= φ |Y1= φ1.

Lemma 5.2.7. Let E be a module and let {Ei}i∈I be a direct family of submodules of

E. If
⊕
i∈I

Ei is injective, then ∑
i∈I

Ei is injective.

Proof. Define homomorphisms ϕ :
⊕

i

Ei −→∑
i

Ei by

ϕ((ei1,ei2, . . . ,eim)) = ei1 + ei2 + · · ·+ eim ,

and ψ : ∑
i

Ei −→
⊕

i

Ei by

ψ(ek1 + ek2 + · · ·+ ekm) = (0, . . . ,0,ek1 + ek2 + · · ·+ ekm︸ ︷︷ ︸
∈Et

,0, . . . ,0).

The second homomorphism is well-defined since I is a directed set. Indeed, since

{Ei}i∈I is a direct family of submodules, for every i, j ∈ I, there exists a k ∈ I with

k ≥ i, j such that Ei ⊆ Ek and E j ⊆ Ek, and so there exists a t ≥ ki such that Eki ⊆ Et

for all i = 1,2, . . . ,m. This implies that ek1 + ek2 + · · ·+ ekm ∈ Et . Therefore, we have

ϕψ(ek1 +ek2 +· · ·+ekm)=ϕ(0, . . . ,0,ek1 +ek2 +· · ·+ekm ,0, . . . ,0)= ek1 +ek2 +· · ·+ekm.
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So, ϕψ = 1∑Ei . Thus, ψ is a monomorphisms, and so ∑i Ei is a direct summand of⊕iEi

(since ⊕iEi is injective by hypothesis). Hence ∑
i

Ei is also injective.

Lemma 5.2.8. Let E ∈ (Q,R-M od) and let {Ei}i∈I be a direct family of injective

subrepresentations of E such that Ei ∈ Fcw for all i ∈ I. If R satisfies (A) and if Q

satisfies (B), then ∑
i∈I

Ei ∈ Fcw and it is injective.

Proof. Since each Ei is an injective representation such that Ei ∈ Fcw, then Ei(v) is an

injective module such that Ei(v) ∈ F , for all v ∈ V and i ∈ I. So,
⊕

i

Ei(v) is also an

injective module by hypothesis. Then by Lemma 5.2.7, ∑
i

Ei(v) is also injective. Then

the representation ∑
i

Ei satisfies the condition (i) of SIRQ. Now taking the union of

the splitting epimorphisms Ei(v) −→ ∏
s(a)=v

Ei(t(a)), we obtain the following splitting

epimorphism:

(
∑

i
Ei

)
(v)−→∑

i
∏

s(a)=v
Ei(t(a))∼= ∏

s(a)=v

(
∑
i∈I

Ei

)
(t(a))

where the isomorphism follows since the product is finite by hypothesis (as Q satisfies

(B)). This means ∑
i

Ei is also satisfies (ii). Thus it is an injective representation since Q

is a source injective representation quiver. Finally, since Ei(v) ∈ F then ∑
i

Ei(v) ∈ F

for all v ∈V , and so ∑
i

Ei ∈ Fcw.

Proposition 5.2.9. Let Q be any quiver satisfying (B). Then R satisfies (A) if and only

if any direct sum of injective representations of Fcw is injective.

Proof. (⇒) The proof is the same as the proof of Lemma 5.2.8 by taking
⊕
i∈I

Ei instead

of ∑
i∈I

Ei.

(⇐) The proof is immediate by considering the quiver Q ≡ ·v which trivially

satisfies (B). This is because (Q,R-M od)∼= R-M od in this case.

Note that, in the previous proposition, which will be useful in the proof of the

following theorem, we cannot omit the assumption that Q satisfies (B) as the following

example shows:
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Example 5.2.10. Consider the following quiver Q that has infinitely many arrows

starting at v0,

v1

Q≡ v0 //

...
>>~~~~~~~~

...   @@@@@@@@ v2

v3

which, of course, does not satisfy (B) for the vertex v0. For the ring of integers, R = Z,

consider the category (Q,Z-M od). Then the indecomposable injective and torsion free

representations of (Q,Z-M od) (with respect to the usual torsion theory) are as follows:

0

E0 ≡Q //

...
;;wwwwwwwwww

... ##HHHHHHHHH
0 ,

0

Q

E1 ≡Q //

...
;;wwwwwwwww

... ##HHHHHHHHH
0 ,

0

0

E2 ≡Q //

...
::tttttttttt

... %%JJJJJJJJJJ Q · · ·

0

that is, for all i ∈ N, the representation Ei has a module Q at the vertices v0 and vi, and

zero otherwise. Therefore, the direct sum of the representations of Ei for i ≥ 1will be

as follows:

Q

⊕
i≥1 Ei ≡ Q(N) //

...
==||||||||

... !!BBBBBBBB
Q

Q

If we show that
⊕
i≥1

Ei is not an injective representation of (Q,Z-M od), then we will

see that the statement of Proposition 5.2.9 does not hold for this Q (since R=Z satisfies

(A)). Now suppose on the contrary that
⊕
i≥1

Ei is injective. Then, by Remark 5.2.1, we
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have (ii) of SIRQ, that is,

⊕
i≥1

Ei(v0) =

(⊕
i≥1

Ei

)
(v0)−→ ∏

s(a)=v0

(⊕
i≥1

Ei

)
(t(a)) = ∏

s(a)=v0

⊕
i≥1

Ei(t(a))

is a splitting epimorphism or equivalently, Q(N) −→ QN is a splitting epimorphism.

However, this is impossible since Q(N) has a countable basis, but QN does not have it

since QN is uncountable.

Recall that a representation of a quiver Q is said to be finitely generated if it is

finitely generated as an object of the category of representations of Q.

Theorem 5.2.11. Let Q be any quiver satisfying (B). If R satisfies (A), then

every injective representation of Fcw is the direct sum of indecomposable injective

representations of Fcw.

Proof. Following the proof of Stenström (1975, Proposition 4.5) we argue as follows.

Let E ∈ Fcw be an injective representation of Q. Consider all independent families

(Ei)i∈I of indecomposable torsion free and injective subrepresentations of E. Then by

Zorn’s lemma, there is a maximal such family (Ei)i∈I . Since ⊕i∈IEi ∈ Fcw and it is

injective (by Proposition 5.2.9), we can write E = (
⊕

i

Ei)⊕E ′. To show that E ′ = 0

it is enough to show that every injective representation with 0 6= E ′ ∈ Fcw contains a

nonzero indecomposable direct summand. Consider the set of all subrepresentations

of E ′ such that

Σ = {E ′′ ⊂ E ′ | E ′′ ∈ Fcw is injective s.t. C * E ′′ where 0 6=C ⊆ E ′ is f.g.}

(In fact, we can take such a nonzero finitely generated representation C, since

(Q,R-M od) is locally finitely generated). Now take E = ∑
E ′′∈Ω

E ′′ where Ω is a chain

of Σ. Then by Lemma 5.2.8, E ∈ Fcw and it is injective. Clearly C * E since

C is finitely generated (indeed, if C ⊆ E then C ⊆ E ′′ for some E ′′ ∈ Ω which is
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impossible). This shows that E ∈ Σ and in fact it is an upper bound of Ω. Then by

Zorn’s lemma Σ has a maximal element, say E ′′. Now we have E ′ = E ′′⊕D where

0 6= D is an indecomposable representation. For if D = D′ ⊕D′′ with D′ 6= 0 and

D′′ 6= 0, then (E ′′+D′)∩ (E ′′+D′′) = E ′′, and so either C * E ′′+D′ or C * E ′′+D′′

which contradicts the maximality of E ′′ in Σ. Hence, every nonzero E ′ contains an

indecomposable direct summand, which completes the proof.

Proposition 5.2.12. Let Q be any quiver satisfying (B). If R satisfies (A), then

(Q,R-M od) admits Fcw-precovers.

Proof. Since the category (Q,R-M od) has enough injectives, it suffices to show that

any injective representation X has an Fcw-precover (by Lemma 5.2.6-(i)), and so we can

take an injective representation Y ∈Fcw (by Lemma 5.2.6-(ii)). Let {Eµ | µ∈Λ} denote

the set of representatives of indecomposable injective representations of Fcw. Let Hµ =

HomQ(Eµ,X) and then define X ′ =
⊕
µ∈Λ

E(Hµ)
µ . So there is a morphism ψ : X ′ −→ X

such that ψ |Eµ∈Hµ. Thus every morphism φ : Y −→ X with an injective representation

Y ∈Fcw factors through the canonical map ψ : X ′−→X , since Y =
⊕
µ∈Λ′

Eµ (by Theorem

5.2.11) where Λ′ ⊆ Λ.

To prove that (Q,R-M od) admits Fcw-covers, we first need the following results.

See Theorem 2.4.8 for the Gabriel filter F(R).

Lemma 5.2.13. (by Teply (1969, Proposition 2.1)) Let F ∈ F . If R satisfies (A), then

we have F/
⋃
i∈K

Fi ∈ F for a chain {Fi}i∈K of submodules of F with F/Fi ∈ F .

Proof. Suppose on the contrary that F/
⋃

i

Fi /∈F . Then there exists I ∈ F(R) such that

Ix ⊆
⋃

i

Fi, where x ∈ F \
⋃

i

Fi. Since F(R) has a cofinal subset of finitely generated

left ideals (by Theorem 2.6.2), there exists a finitely generated left ideal J ⊆ I such

that J ∈ F(R). So, Jx ⊆
⋃

i

Fi and this implies that Jx ⊆ Fk for some k ∈ K (since J is

finitely generated and {Fi}i∈K is a chain of submodules). But this contradicts with the

fact that F/Fk ∈ F .
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We also need the following lemmas by the same methods of proofs given in, for

example, Xu (1996, Lemmas 1.3.6-1.3.7) for the usual torsion theory for R-M od over

commutative domains.

Lemma 5.2.14. Let Q be any quiver satisfying (B) and let R satisfy (A). If ψ : X ′ −→ X

is an Fcw-precover of the representation X, then we can derive an Fcw-precover φ :

Y −→ X such that there is no non-trivial subrepresentation S⊆ ker(φ) with Y/S ∈Fcw.

Proof. Let Σ be a set of all subrepresentations S ⊆ X ′ such that S ⊂ ker(ψ) and

X ′/S ∈ Fcw. Then the union of any chain of elements of Σ, say T =
⋃

S, belongs

to Σ. Indeed, since X ′/S ∈ Fcw for every S ∈ Σ, then X ′(v)/S(v) ∈ F . So, by Lemma

5.2.13, X ′(v)/T (v) ∈ F for every vertex v of Q. This means that X ′/T ∈ Fcw. Clearly

T ⊆ ker(ψ). Let T ′ be a maximal element of Σ by Zorn’s lemma. Thus if we take

Y = X ′/T ′, then the induced map φ : Y −→ X is the desired torsion free precovering

of X ; for if there exists a morphism φ′ : Y ′ −→ X with Y ′ ∈ Fcw, then there is a

morphism f ′ : Y ′ −→ X ′ such that ψ f ′ = φ′ (since ψ is a precovering). Now, taking

the morphism f = σ f ′ : Y ′ −→Y (where σ : X ′ −→ X ′/T ′ is the natural morphism) we

obtain φ f = (φσ) f ′ = ψ f ′ = φ′ as desired. Diagrammatically,

Y ′

φ′

��

f

���
�

�
�f ′

{{
X ′

σ //

ψ

77Y
φ // X

(here φ is the induced map X ′/T ′ −→ X ′/ker(ψ) ∼= Im(ψ) ⊆ X). Moreover, if

there is a subrepresentation L/T ′ ⊆ Y = X ′/T ′ such that L/T ′ ⊆ ker(φ) and X ′/L ∼=

(X ′/T ′)/(L/T ′) ∈ Fcw, then L ⊆ ker(ψ) (since ψ(L) = φσ(L) = φ(L/T ′) = 0). But

then L ∈ Σ, and so L = T ′ since T ′ is maximal in Σ.

The cardinality of a representation M of a quiver Q is defined as |M|= |
⊕
v∈V

M(v)|.
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Lemma 5.2.15. Let Q be any quiver satisfying (B) and let R satisfy (A). If φ : Y −→ X

is an Fcw-precovering of X with no non-trivial subrepresentation S ⊆ Y such that S ⊆

ker(φ) and Y/S ∈ Fcw, then this Fcw-precover is actually an Fcw-cover of X.

Proof. Let f : Y −→ Y be a morphism such that φ = φ f , that is, the diagram

Y
f

���������
φ

��
Y

φ

// X

is commutative. We will show that f is an automorphism. Since ker f ⊆ ker(φ) and

Y/ker f ∈ Fcw (as Y/ker f ∼= Im f ⊆ Y and Fcw is closed under subrepresentations),

ker f = 0 by hypothesis, that is, f is one-to-one. Now it remains to show that f is

onto. Let A be a set such that Y ⊆ A and |Y |< |A|. Let Σ be a set of pairs (Y0,φ0) such

that φ0 : Y0 −→ X is an Fcw-precovering of X without non-trivial subrepresentations

S⊆ ker(φ0) with Y0/S ∈ Fcw, and Y0 ⊆ A as a subset. Σ 6= 0, since (Y,φ) ∈ Σ. Partially

order Σ by setting (Y0,φ0) ⊆ (Y1,φ1) if and only if Y0 ⊆ Y1 and φ1 |Y0= φ0. Now,

for every chain {(Yα,φα)}α∈W of Σ, let Y ∗ = ∪α∈WYα and define φ∗ : Y ∗ −→ X by

φ∗(x) = φβ(x) if x ∈ Yβ. Then (Y ∗,φ∗) ∈ Σ. In fact, Y ∗ ∈ Fcw and Y ∗ ⊆ A is clear, and

if there is φ′ : F −→ X with F ∈ Fcw, then there exists g′ : F −→ Yβ, for every β ∈W ,

such that φβg′ = φ′. So, taking f ′ = ig′ : F −→ Y ∗ (where i : Yβ −→ Y ∗ is inclusion),

we obtain, for every x ∈ F ,

(φ∗ f ′)(x) = (φ∗ig′)(x) = (φ∗g′)(x) = φβg′(x) = φ
′(x).

Thus φ∗ : Y ∗ −→ X is an Fcw-precovering of X . Beside, if there is a subrepresentation

S⊆ ker(φ∗) with Y ∗/S ∈ Fcw, then

⋃
α∈W

(Yα +S)/S = Y ∗/S ∈ Fcw, and so Yα/(S∩Yα)∼= (Yα +S)/S ∈ Fcw.

Moreover, S∩Yα ⊆ ker(φα) since S∩Yα ⊆Yα implies that φα(S∩Yα) = φ∗(S∩Yα) = 0.
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Thus S∩Yα = 0 for all α ∈W (since (Yα,φα) ∈ Σ), and so S = 0.

Now let (Y ∗,φ∗) be a maximal element of Σ which exists by Zorn’s lemma. Consider

the commutative diagram which exists since φ is a Fcw-precovering and Y ∗ ∈ Fcw:

Y ∗
f1

~~}}}}}}}}
φ∗

��
Y

φ

// X .

Since ker( f1) ⊆ ker(φ∗) and Y ∗/ker( f1) ∈ Fcw, ker( f1) = 0, that is, f1 is one-to-one.

We will show that f1 is onto. Suppose on the contrary that f1 is not onto, that is,

f1(Y∗) $ Y . Then f1v(Y ∗(v)) $ Y (v) for some vertices v ∈ V \V ′ of Q (note that,

f1w : Y ∗(w)−→Y (w) is onto for the remain vertices w ∈V ′ of Q). Let B⊆ A such that

|B| = |Y (v)− f1v(Y ∗(v))| and such that Y ∗(v)∩B = 0. Such a B is available because

|A| > |Y | = |Y ∗| > |Y ∗(v)| (where the equality holds since Y ⊆ Y ∗ and f1 : Y ∗ −→ Y

is one-to-one). Let Y v
0 = Y ∗(v)∪B and let gv : Y v

0 −→ Y (v) be the bijection such that

gv |Y ∗(v)= f1v and gv(B) = Y (v)− f1v(Y ∗(v)) for all v ∈ V \V ′. Then Y v
0 can be made

uniquely into an R-module so that gv becomes an R-isomorphism. So we can define a

representation Y0 such that Y0(v) =Y v
0 if v ∈V \V ′ and Y0(v) =Y ∗(v) if v ∈V ′; and for

each arrow a : v1 −→ v2 of Q, if v1,v2 ∈V \V ′ then:

Y0(a) : Y0(v1)−→ Y0(v2)≡ Y v1
0

gv1
// Y (v1)

Y (a) // Y (v2)
gv2−1
// Y v2

0

and if v1,v2 ∈V ′, then Y0(a) =Y ∗(a) : Y ∗(v1)−→Y ∗(v2) . So there is an isomorphism

g = (gv)v∈V : Y0 −→ Y of representations, where gv = gv if v ∈ V \V ′ and gv = f1v

if v ∈ V ′ (note that, if v ∈ V ′ then f1v will be an isomorphism). We see that Y ∗ ⊆ Y0

as representations. Consider the pair (Y0,φg). Then since g is an isomorphism and

φ : Y −→ X is an Fcw-precovering of X , φg : Y0 −→ X is also an Fcw-precovering of X .
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Moreover, if S⊆ ker(φg) with Y0/S ∈ Fcw, then g(S)⊆ ker(φ) and

Y/g(S) = g(Y0)/g(S)∼= Y0/S ∈ Fcw.

So, by hypothesis, g(S) = 0 and so S = 0. This shows that (Y0,φg) ∈ Σ. Finally,

φg |Y ∗= φ f1 = φ∗, and so (Y0,φg)	 (Y ∗,φ∗). But this is a contradiction since (Y ∗,φ∗)

is maximal in Σ. Thus B = /0, and so |Y (v)− f1v(Y ∗(v))|= |B|= 0. Hence f1v is onto

for every vertex v of Q, that is, f1 is onto. So f1 is an isomorphism. Now, we have

φ∗ = φ f1 = φ( f f1). So, f f1 is an isomorphism by the same argument. Hence f is onto

as desired.

Theorem 5.2.16. Let Q be any quiver satisfying (B) and let R satisfy (A). Then every

representation in (Q,R-M od) has a unique, up to isomorphism, Fcw-cover.

Proof. The existence part of the proof follows by Proposition 5.2.12 and and Lemmas

5.2.14 and 5.2.15, and the uniqueness part follows by Proposition 2.10.1.

Example 5.2.17. Let R satisfy (A). Consider the quiver Q≡•−→•. For every module

M, if we take the torsion free cover ψ : T −→M of M (this is possible in R-M od, see

Corollary 2.6.4), then

T
ψ

��
M

Kerψ
i //

��

T
ψ

��
0 // M

is an Fcw-cover of the representation 0−→M. In fact, if there is a morphism

T1
α //

��

T2

β

��
0 // M

where T1 −→ T2 ∈ Fcw, then there exists f : T2 −→ T such that ψ f = β since ψ is

torsion free precover, and so taking g = f α : T1 −→ Kerψ (it is well-defined since for

every x ∈ T1,ψ f α(x) = βα(x) = 0) we see that it is an Fcw-precover. And if there is
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an endomorphism f = (g, f ) : T −→ T such that ψ f = ψ, then f is an automorphism

(since ψ is a torsion free cover), and so g is a monomorphism. To show that g is

epic, take any y ∈ Kerψ. Then y = f (x) for some x ∈ T (since f is epic). Since

ψ(x) = ψ f (x) = 0, x ∈ Kerψ and thus y = f (x) = g(x) implies that g is epic. Hence f

is an automorphism, that is, ψ is an Fcw-cover.

Remark 5.2.18. In Dunkum (2009), the question was raised whether the category

(A∞,R-M od) admits torsion free covers, where

A∞ ≡ • −→ • −→ ·· · .

By Theorem 5.2.16, if R satisfies (A), then the category (A∞,R-M od) admits torsion

free covers (since the quiver A∞ satisfies (B)).

5.3 Componentwise Flat Covers in (Q,R-M od)

In Rump (2010), flat covers are shown to exist in locally finitely presented

Grothendieck categories. Then the category (Q,R-M od) admits flat covers for every

quiver Q since it is a locally finitely presented Grothendieck category. This is because

(Q,R-M od) has a family of finitely generated projective generators, and thus, by

Proposition 2.7.15, (Q,R-M od) has a family of finitely presented generators. Here

by “flat” we mean categorical flat representations of Q defined as lim
→

Pi where each Pi

is a projective representation of Q; see Enochs et al. (2004b).

Now we will define flat representations componentwise which are different from

categorical flat representations.

Definition 5.3.1. Let Q be any quiver and let M be a representation of Q. We call M

componentwise flat if M(v) is a flat R-module for all v ∈V .
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This definition is not the categorical definition of flat representations, but it is

the correct one when we consider (Q,R-M od) as the category of presheaves over a

topological space. From now on, by Fcw we denote the class of all componentwise flat

representations.

Also, let us define pure subrepresentations componentwise.

Definition 5.3.2. Let M be a representation of Q. We call a subrepresentation P ⊆M

componentwise pure if P(v)⊆M(v) is pure submodule for all v ∈V .

An element x of a representation X of a quiver Q is defined to be an element of X(v)

for some v ∈V .

In the proof of the following lemma, we can consider the representation generated

by an element “x”. Let M be a representation of Q and let x ∈M (so x ∈M(v) for some

v ∈V ). Since Sv is a left adjoint of Tv (see Remark 5.1.10), we have

HomR(R,M(v))∼= HomQ(Sv(R),M)

for all v ∈ V . So we have a unique morphism ϕ : Sv(R) −→ M that corresponds

to the homomorphism ϕx : R −→ M(v) given by ϕx(1) = x. Thus Im(ϕ) is the

subrepresentation of M generated by x.

Lemma 5.3.3. Let ℵ be an infinite cardinal such that ℵ ≥ sup{|R|, |V |, |E|}. Let M

be a representation of Q. Then for every x ∈ M, there exists a componentwise pure

subrepresentation P of M such that | P |≤ℵ and x ∈ P.

Proof. Let x ∈ M(v) with v ∈ V . Then consider the subrepresentation M0 ⊆ M

generated by x. Then |M0| ≤ℵ since

|Sv(R)(w)|= |
⊕

Q(v,w)

R| ≤ |V | · |E| · |N| · |R| ≤ℵ ·ℵ0 = ℵ.
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Since |M0(v)| ≤ℵ for all v ∈V , we can apply Xu (1996, Lemma 2.5.2), so there exist

pure submodules M1(v) of M(v) such that |M1(v)| ≤ℵ and M0(v) ⊆M1(v), ∀v ∈ V .

Now consider the subrepresentation M2 of M generated by M1(v) such that M1(v) ⊆

M2(v) for all v∈V . Then |M2|= |
⊕
v∈V

M2(v)|= |V | · |M2(v)| ≤ℵ since |M2(v)| ≤ℵ as

|M1(v)| ≤ℵ for all v∈V . So applying Xu (1996, Lemma 2.5.2) again, there exist pure

submodules M3(v) of M(v) such that |M3(v)| ≤ ℵ and M2(v) ⊆M3(v) for all v ∈ V .

Now consider the subrepresentation M4 of M generated by M3(v) such that M3(v) ⊆

M4(v). Then |M4| ≤ℵ. So proceed by induction to find a chain of subrepresentations

of M: M0 ⊆ M1 ⊆ M2 ⊆ ·· · such that |Mn| ≤ ℵ for every n ∈ N. Therefore, by

taking P =
⋃

n<ω Mn we obtain a pure subrepresentation P of M which satisfies the

hypothesis of the lemma. Indeed, P is a componentwise pure subrepresentation of M,

because for every v ∈ V , the set {n ∈ N : Mn(v) is pure in M(v)} is cofinal, and the

set {n ∈ N : Mn is a subrepresentation of M} is also cofinal. Finally, it is clear that

|P| ≤ℵ0 ·ℵ = ℵ, and x ∈ P since x ∈M0(v).

Let A be an abelian category. Recall that the pair (F ,F⊥) of classes in A is

cogenerated by a set if there exists a set T ⊆F such that T⊥ = F⊥ (see Definition

2.9.1 or, for example, Enochs & Jenda (2000, Chap.7)).

Theorem 5.3.4. The pair (Fcw,F⊥
cw) is cogenerated by a set.

Proof. Let F ∈Fcw and take any element x0 ∈ F . Then by Lemma 5.3.3, there exists

a componentwise pure subrepresentation F0 ⊆ F such that x0 ∈ F0 and |F0| ≤ℵ for a

suitable cardinal number. Since a pure submodule of a flat module is flat, F0 ∈Fcw,

and so F/F0 ∈Fcw (see Proposition 2.3.6). Then take any element x1 ∈ F/F0 and find

a componentwise pure (and so componentwise flat) subrepresentation F1/F0 ⊆ F/F0

such that x1 ∈F1/F0 and |F1/F0| ≤ℵ. Since F0,F1/F0 ∈Fcw, we have F1 ∈Fcw and so

F/F1 ∈Fcw. Now take x2 ∈ F/F1 and, since Fcw is closed under direct limits, proceed

by transfinite induction to find, when α is a successor ordinal, subrepresentations Fα ⊆

F such that Fα/Fα−1 ∈Fcw (and so Fα ∈Fcw) and that |Fα/Fα−1| ≤ ℵ. When ω is
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a limit ordinal, define Fω =
⋃

α<ω Fα. So Fω ∈Fcw and |Fω| ≤ ℵ for every ω. Now

there exists an ordinal λ such that F is a direct union of the continuous chain {Fα |

α < λ} where by construction F0,Fα+1/Fα ∈Fcw and |F0| ≤ℵ, |Fα+1/Fα| ≤ℵ. Thus

if we choose a set T of representatives of all componentwise flat representations with

cardinality less than or equal to ℵ, then by Eklof & Trlifaj (2001, Lemma 1), we see

that the pair (Fcw,F⊥
cw) is cogenerated by T (note that Eklof & Trlifaj (2001, Lemma

1) is for R-M od, but the same arguments of the proof carry over general Grothendieck

categories; indeed, the proof needs only embeddability of each module into an injective

one, so the lemma holds in any Grothendieck category).

To show that the category (Q,R-M od) admits Fcw-covers and F⊥
cw-envelopes we

shall use the following theorem.

Theorem 5.3.5. (Enochs et al., 2004a, Theorem 2.6) Let F be a class of objects

of a Grothendieck category C which is closed under direct sums, extensions and

well ordered direct limits and such that the generator of C is in F . If (F ,F⊥) is

cogenerated by a set, then every object M in C has an F -cover and an F⊥-envelope.

Theorem 5.3.6. For every quiver Q, any representation of Q has an Fcw-cover and an

F⊥
cw-envelope.

Proof. It is clear that Fcw is closed under direct sums, extensions and well ordered

direct limits (as so is the class of all flat modules). Moreover, Sv(R)(w) =
⊕

Q(v,w)

R

is a projective (and so flat) module for all w ∈ V . Thus Sv(R) ∈ Fcw, and so the

projective generator
⊕
v∈V

Sv(R) of (Q,R-M od) is in Fcw. Now, apply Theorem 5.3.5

with Theorem 5.3.4 to get the result.

Over Prüfer domains, a module is flat if and only if it is torsion free (see Rotman

(1979) for the details). Combining this fact with the previous result, we have that:
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Theorem 5.3.7. Let R be a Prüfer domain. Then every representation in (Q,R-M od)

has an Fcw-cover agreeing with its Fcw-cover.

Remark 5.3.8. In Example 5.2.10, since Q does not satisfy (B) we cannot use Theorem

5.2.16 to determine whether (Q,Z-M od) admits Fcw-covers. However, since R = Z is

a Prüfer domain, (Q,Z-M od) admits Fcw-covers by Theorem 5.3.7.

5.4 Comparison of Categorical and Componentwise Flat Covers

In this section, we will provide some examples on the different kinds of covers have

been studied throughout the chapter.

The categorical flat representations are characterized (for rooted quivers) in Enochs

et al. (2004b, Theorem 3.7) as follows: a representation F of a quiver Q is flat if and

only if F(v) is a flat module and the morphism

⊕
t(a)=v

F(s(a))−→ F(v)

is a pure monomorphism for every vertex v ∈V . In this case, as we pointed out at the

beginning of Section 5.3, it is known that (Q,R-M od) admits categorical flat covers

for every quiver Q. Moreover, we have proved in Theorem 5.3.6 that (Q,R-M od) also

admits Fcw-covers (=componentwise flat covers). In this section, we will give some

examples of categorical flat covers and of Fcw-covers showing that these two kinds of

covers do not coincide in general.

Since every module has a flat cover (Bican et al., 2001), every module has a

cotorsion envelope by Xu (1996, Theorem 3.4.6).

Example 5.4.1. Let Q be the quiver • −→ •. Let us take any module M and the flat

cover ϕ : F −→M of it. Then:
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(i)

0 //

��

F
ϕ

��
0 // M

is a flat cover of the representation 0−→M. To see this, let

F1
α //

��

F2

β

��
0 // M

be a morphism, where α is a pure monomorphism and F1,F2 are flat modules. Then

F2/F1 is also a flat module. Since ϕ is a flat cover, there exists δ : F2 −→ F such that

ϕδ = β. It is clear that ϕδα = βα = 0, and so there exists a unique h : F1 −→ Kerϕ

such that δα = ih, where i : Kerϕ −→ F is inclusion. From the short exact sequence

0−→ F1 −→ F2 −→ F2/F1 −→ 0, we obtain

HomR(F2,Kerϕ)−→ HomR(F1,Kerϕ)−→ 0,

since Ext1R(F2/F1,Kerϕ) = 0 by Wakamutsu’s lemma (see Proposition 2.10.3). So

there is z : F2 −→ Kerϕ such that zα = h. Now if we consider δ− z : F2 −→ F , then

clearly ϕ(δ− z) = β and (δ− z)α = 0.

(ii) If we take the flat cover f : G−→ Kerϕ of Kerϕ then

G t //

��

F
ϕ

��
0 // M

is an Fcw-cover of the representation 0−→M. In fact, if

F1
α //

��

F2

β

��
0 // M
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is a morphism where F1 −→ F2 ∈Fcw, then clearly there exists h : F2 −→ F such that

ϕh = β, since ϕ is a flat cover. Since ϕhα = βα = 0, the map hα : F1 −→ Kerϕ is

well-defined. Then there exists h′ : F1 −→ G such that f h′ = hα since f is a flat cover,

and so hα = th′. This shows that {0,ϕ} is an Fcw-precover. To see that it is a cover,

suppose there is an endomorphism

G t //

g
��

F
g′
��

G t // F

such that 0g = 0 and ϕg′ = ϕ. Then clearly g′ is an automorphism since ϕ is a flat

cover. Now we show that g is also an automorphism. Since ϕg′i = ϕi = 0, there exists

ψ : Kerϕ−→Kerϕ where i : Kerϕ−→ F an inclusion monomorphism (see Definition

2.7.4). Actually, ψ is an automorphism (see the comment of g being an automorphism

in Example 5.2.17), and so from the commutative diagram

G
f //

g
��

Kerϕ

ψ

��
G

f // Kerϕ

we obtain that g is also an automorphism (by using the fact that f is a cover).

Remark 5.4.2. Note that in the previous example 0−→ F cannot be an Fcw-precover

of 0 −→M. Because by (ii), G −→ F is an Fcw-cover of 0 −→M with G 6= 0 and it

is known that covers are direct summand of precovers (see Proposition 2.10.2). So, if

0−→ F were an Fcw-precover of 0−→M, then we would have

(0−→ F) = (G−→ F)⊕ (H1 −→ H2) = (G⊕H1 −→ F⊕H2)

for some representation H1 −→ H2 of Q. This implies that 0 = G⊕ H1 which

contradicts the fact that G 6= 0.
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Remark 5.4.3. Comparing with Example 5.2.17; Kerϕ −→ F is a torsion free cover

but not an Fcw-cover of 0−→M (unless Kerϕ is a flat module). Because the class of

torsion free modules is closed under submodules, but the class of flat modules is not.

Example 5.4.4. Let Q be the quiver • −→ •. Let us take any module M and the flat

cover ϕ : F −→M of it. Then,

F id //

ϕ

��

F
ϕ

��
M id // M

is both a (categorical) flat cover and an Fcw-cover of the representation M id // M .

In fact, if there is a morphism

F1
h //

ψ1
��

F2

ψ2
��

M id // M

where F1,F2 are flat modules and h is a pure monomorphism, then clearly there is

f : F2 −→ F such that ϕ f = ψ2 (since ϕ is a flat cover). Taking f h : F1 −→ F , we see

that ϕ f h = ψ2h = ψ1. This means that F id // F is a flat precover, and clearly it is a

flat cover (since idF is a pure monomorphism). Since we have not used the fact that h

is pure, then F id // F is also an Fcw-cover of M id // M .

Example 5.4.5. Let Q be the quiver • −→ • −→ • and let M be a module. Let us take

the flat cover ϕ : F −→M of M. Then:

(i) If we take the cotorsion envelope i : F −→ C of F , then C will be a flat module

by Xu (1996, Theorem 3.4.2)). Therefore, we have a (categorical) flat representation

F ≡ F i //C
k1 //C×F where k1 is a canonical inclusion (since C×F is flat, and

k1 and i are pure monomorphisms). We show that

F
ϕ

��
M

F i //

ϕ

��

C
k1 //

0
��

C×F
ϕp2
��

M // 0 // M
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is a flat cover of the representation M of Q, where p2 : C×F −→ F is a projection. In

fact, if there is a morphism

F1
α //

t1
��

F2
β //

0
��

F3

t3
��

M // 0 // M

with F1,F2,F3 flat modules and α,β pure monomorphisms, then clearly there exists

f : F1 −→ F such that ϕ f = t1 since F is a flat cover of M. From the short exact

sequence 0−→ F1 −→ F2 −→ F2/F1 −→ 0, we obtain that

HomR(F2,C)−→ HomR(F1,C)−→ 0

is exact, since Ext1R(F2/F1,C) = 0 (as F2/F1 is flat and C is cotorsion). Here F2/F1

is flat because α is a pure monomorphism. So, there exists g : F2 −→ C such that

gα = i f . Now, since F is a flat cover of M, there exists τ2 : F3 −→ F such that ϕτ2 = t3.

Moreover, from the short exact sequence

0−→ F2 −→ F3 −→ F3/F2 −→ 0 (5.4.1)

we obtain that

HomR(F3,C)−→ HomR(F2,C)−→ 0

is exact. Then there exists τ1 : F3 −→ C such that τ1β = g. Since ϕτ2β = t3β = 0,

there exists a unique γ : F2 −→ Kerϕ such that γ = τ2β. Similarly, if we take Kerϕ

instead of C, by (5.4.1), there exists z : F3 −→ Kerϕ such that zβ = γ. Therefore, by

defining h : F3 −→ C×F such that h(x) =
(
τ1(x),(τ2− z)(x)

)
for all x ∈ F3, we see

that ϕp2h = ϕ(τ2− z) = t3, and moreover hβ =
(
τ1β,(τ2− z)β

)
= (g,0) = k1g . Thus

ϕ : F −→M is a flat precover. To see that it is a cover, let s = { f ,g,h} : F −→ F be

an endomorphism such that ϕs = ϕ. It is clear that f and g are automorphisms. For

h : C×F −→C×F , we set hi j = πihe j ( i, j = 1,2) where πk is a projection and ek is
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an injection. We can write h in a matrix form as

 h11 h12

h21 h22

 .

Since hk1 = k1g, we have h11 = g and h21 = 0, and since ϕ is a cover, ϕ = ϕh22 implies

that h22 is an automorphism. Hence h is an automorphism and so is s, that is, ϕ is a flat

cover of M.

(ii) If we take the flat cover f : G−→ Kerϕ of Kerϕ, then it is immediate that

F 0 //

ϕ

��

G t //

0
��

F
ϕ

��
M 0 // 0 0 // M

is an Fcw-cover of the representation M −→ 0−→M. In fact,

G t //

0
��

F
ϕ

��
0 // M

is an Fcw-cover of the representation 0−→M (by Example 5.4.1-(ii)), and

F //

ϕ

��

0

0
��

M // 0

is an Fcw-cover of the representation M −→ 0.



CHAPTER SIX

CONCLUSIONS

In the first part of this thesis, we focused on Rad-supplemented modules and in

general τ-supplemented modules, where τ is a radical for R-M od. Our main result is

that every left R-module is Rad-supplemented if and only if R/P(R) is a left perfect

ring, where P(R) consists of all left ideals I of R such that Rad I = I. We devote

the second part to neat homomorphisms of Enochs and max-injective modules. We

prove that every max-injective R-module is injective if and only if the ring R is a left

C-ring, with our interest in the proper class Compl and N eat. In the last part of the

thesis, we deal with the category of representations by modules of a quiver, denoted by

(Q,R-M od). We show the existence of torsion free covers, relative to a torsion theory,

for a wide class of quivers under some conditions, in (Q,R-M od). We also prove the

existence of componentwise flat covers in (Q,R-M od) for any ring R and any quiver

Q.

160
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Estrada, S. (2003). Cubiertas y Envolventes en Categorias de Representatciones. Ph.D.

thesis, Universidad de Almerı́a, Departamento de Álgebra y Analisis Matemático,
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NOTATION

R an associative ring with unit unless otherwise stated

R[x] the ring of polynomials with indeterminate x

Z, N the ring of integers, the set of all positive integers

Q the field of rational numbers

R-module or module a left R-module

R-M od, M od-R the categories of left R-modules, right R-modules

Ab = Z-M od the categeory of abelian groups (Z-modules)

∼= isomorphic

⊆, ⊆
max.

submodule, maximal submodule

� small (=superfluous) submodule

E essential submodule

K � � cs
M
//L cosmall inclusion in M

M � � cc //N coclosed submodule

M⊗R N the tensor product of the right R-module M and the left

R-module N

HomR(M,N) all R-module homomorphisms from M to N

Ext1R(C,A) the equivalence classes of short exact sequences of R-modules

starting with A and ending with C

Ker f the kernel of the homomorphism f

Coker f the cokernel of the homomorphism f

Im f the image of the homomorphism f

E(M) the injective envelope (hull) of a module M

SocM the socle of the R-module M

RadM the radical of the R-module M

Z(M) the singular submodule of the R-module M
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M[ the character module, that is, the right R-module

HomZ(M,Q/Z) where M is a left R-module

JacR or J(R) the Jacobson radical of the ring R

AnnR(X) (0 : X) = {r ∈ R|rX = 0}= the left annihilator of a subset X

of a left R-module M

AnnR(x) (0 : x) = {r ∈ R|rx = 0}= the left annihilator of an element x

of a left R-module M

τ a preradical for the category R-M od

Pτ(M) the largest τ-torsion submodule of the R-module M, that is,

Pτ(M) = ∑{U ⊆M | τ(U) =U}

(T ,F ) a torsion theory with the torsion class T and the torsion free

class F

F(R) a Gabriel filter of left ideals of the ring R

Obj(C ) the class of objects of the category C

F ⊥, ⊥F the right orthogonal class, the left orthogonal

class of objects of an abelian category A , that is,

F ⊥ = {C ∈ Obj(A) | Ext1R(F,C) = 0, ∀F ∈ F },
⊥F = {C ∈ Obj(A) | Ext1R(C,F) = 0, ∀F ∈ F }

(F ,C ) a cotorsion theory (or cotorsion pair) in an abelian category,

that is, F ⊥ = C and ⊥C = F

P a proper class of R-modules

π−1(M ) the proper class of R-modules projectively generated by a

class M of R-modules

ι−1(M ) the proper class of R-modules injectively generated by a class

M of R-modules

τ−1(M ) the proper class of R-modules flatly generated by a class M

of right R-modules
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S plitR the smallest proper class of R-modules consisting of only

splitting short exact sequences of R-modules

AbsR the largest proper class of R-modules consisting of all short

exact sequences of R-modules (absolute purity)

P ureZ the proper class of pure-exact sequences of abelian groups

N eatZ the proper class of neat-exact sequences of abelian groups

P ureR the proper class of pure-exact sequences of R-modules

(Cohn’s purity)

Compl the proper class of R-modules determined by complement

submodules

Suppl the proper class of R-modules determined by supplement

submodules

N eat the proper class of R-modules determined by neat submodules

Co-N eat the proper class of R-modules determined by coneat

submodules

Coclosed the proper class of R-modules determined by coclosed

submodules

EN eat the class of all short exact sequences of R-modules defined by

E-neat epimorphisms

I n j the class of all injective modules

P ro j the class of all projective modules⊕
i∈I

Ci coproduct (or direct sum) in a preadditive category

∏
i∈I

Ci product in a preadditive category

Q = (V,E) a quiver with the set of vertices V and the set of arrows E

v a−→ w an arrow of a quiver with starting vertex s(a) = v and terminal

vertex t(a) = w



176

X(v) a module assigned to the vertex v of Q in a representation X

of Q

(Q,R-M od) the category of representations by modules of Q over R

the property (A) (A): for a torsion theory for R-M od, a direct sum of torsion

free injective modules is injective

the property (B) (B): {t(a) | a ∈ E and s(a) = v} < ∞, for every vertex v of a

quiver Q = (V,E)

SIRQ the conditions for being a source injective representation

quiver

RQ the path ring of Q, that is, a free left R-module whose base

are the paths of Q (it may not have an identity element). It is

a ring with enough idempotents and it has an identity element

if and only if the set of vertices of Q is finite.

RQ-M od the category of unital RQ-modules (i.e. RQM such that

RQM = M)

Q(v,w) the set of all paths of Q starting at v and ending at w

Sv the Mitchell’s functor Sv : R-M od −→ (Q,R-M od), defined

as Sv(M)(w) =
⊕

p∈Q(v,w)

M; for each arrow a : w1 → w2,

Sv(M)(a) :
⊕

q∈Q(v,w1)

M −→
⊕

p∈Q(v,w2)

M given by (mq)q 7→

(up)p, where up = mq if p ∈ aQ(v,w1) and up = 0 otherwise

Tv the restriction functor Tv : (Q,R-M od) −→ R-M od,

Tv(X) = X(v) for each v ∈ V , and for each morphism

η : X −→ Y in (Q,R-M od), Tv(η) = ηv : X(v)−→ Y (v)

HomC (A,B) the set of all morphisms from A to B in the category C

HomQ(X ,Y ) the set of all morphisms between the representations X and Y

in the category (Q,R-M od)

ExtC (C,A) the equivalence classes of short exact sequences in an abelian

category C starting with A and ending with C
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ker f the kernel of a morphism f : A→ B in an abelian category;

it is a monomorphism ker f : Ker f → A, where Ker f is a

subobject of A

coker f the cokernel of a morphism f : A→ B in an abelian category;

it is an epimorphism coker f : B→ Coker f , where Coker f

lim
−→

colimit or direct limit

lim
←−

limit or inverse limit

|X | cardinality of a set X
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thesis, 129
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thesis, 129

abelian category, 48

adjoint functor, 46

annihilator

– of a module, 39

– of an element, 39

arrow

– of a quiver, 16

barren tree, 138

bilinear map, 46

bounded module, 85

cardinality of a representation, 146

category, 44

abelian –, 48

co-complete –, 51

complete –, 51

Grothendieck –, 52

locally finitely generated –, 21

locally finitely presented –, 21

locally small –, 54

opposite –, 45

preadditive –, 46

small –, 46

subcomplete –, 54

character functor, 30

closed

– in a module, 26

– submodule, 26

– under extensions, 50

⊕-closed proper class, 34

∏-closed proper class, 34

co-complete category, 51

co-cone, 51

coatomic

– module, 62

τ-coatomic module, 62

coatomic module, 6

coclosed submodule, 14

cofinal

– subset, 43

having – subset of finitely generated

ideals, 43

cogenerated pair of classes, 57

cogenerator

– object, 50

a pair cogenerated by a set, 152

Cohn’s purity, 31

coinjective with respect to a proper class

(P -coinjective), 29

cokernel, 47

colimit, 51

compatible, 50
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complement

– in a module, 25

– of a submodule in a module, 25

– submodule of a module, 26

have a – in a module, 25

complete category, 51

composition of paths, 17

cone, 51

coneat

– monomorphism, 2

– submodule, 2, 5

Co-N eat proper class, 32

Z-coneat homomorphism, 13

continuous direct system of subobjects, 52

continuous directed union, 52

coproduct, 48

coprojective with respect to a proper class

(P -coprojective), 29

cosmall inclusion, 14

cotorsion

– group, 58

– module, 58

– pair, 57

– theory, 57

cover

injective –, 16

projective –, 15, 41

τ-cover, 78

torsion free –, 9

C-ring, 10

Dickson torsion theory, 40

direct family of subobjects, 52

direct sum, 48

direct summand, 24

direct system, 52

directed set, 51

divisible part of a module, 8

duo ring, 6, 83

E-neat homomorphism, 12

E-neat

– submodule, 100

E-neat

– homomorphism, 100

envelope

F -envelope, 15

injective –, 15

epimorphism

– in a category, 47

equivalent –, 47

small –, 4

superfluous –, 4

equivalent of short exact sequences, 49

essential

– monomorphism, 26

– object, 53

– submodule (E), 26
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exact

– functor, 49

– sequence, 49

short – sequence, 49

faithful functor, 45

faithful torsion theory, 40

finite type

torsion theory of –, 44

finitely generated

– representation, 144

finitely generated object, 21, 53

finitely presented object, 21, 54

flat

– cotorsion theory, 58

– cover conjecture, 16, 59

– module, 29

– object, 22

– representation for rooted quivers,

154

– with respect to a proper class

(P -flat), 29

categorical – object, 22

categorical – representation, 150

componentwise –, 22

componentwise – representation, 150

componentwise flat representation, 22

τ−1(M ), the proper class flatly

generated by a class M of

modules, 30

full functor, 45

fully invariant submodule, 37

functor, 45

– full, 45

adjoint –, 46

contravariant –, 45

faithful –, 45

Gabriel filter, 39

generated pair of classes, 57

generator

– object, 50

a family of –, 50

Goldie torsion theory, 41

graded module, 19

graded ring, 19

Grothendieck category, 52

hereditary

– preradical in abelian categories, 55

– torsion theory in abelian categories,

56

hereditary preradical, 3

hereditary ring, 105

i-test module, 97

idempotent

orthogonal –, 133

ring with enough –, 133
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idempotent preradical, 55

identity morphism, 45

image, 48

injective

– cover, 16

– envelope, 15

– envelope of an object, 53

– object, 50

– with respect to a proper class

(P -injective), 29

category having enough –, 50

ι−1(M ), the proper class injectively

generated by a class M of

modules, 30

pair of classes having enough –, 58

τ-injective, 40

w.r.t a torsion theory, 94

Whitehead test module for injectivity,

11, 97

injective envelope of an object, 53

intersection of subobjects, 52

inverse system, 52

isomorphism in a category, 45

κ-element, 14

κ-exact sequence, 14

kernel, 47

λ-free group, 97

large monomorphism, 26

large submodule, 26

limit, 51

colimit, 51

direct –, 52

inductive –, 51

inverse –, 52

projective –, 51

local unit, 133

locally finitely generated category, 21

locally finitely presented category, 21

locally small category, 54

Loewy length, 27

Loewy module, 27

Loewy series, 27

m-injective module, 10

max ring, 41

max-injective module, 10

maximally injective module, 10

module

τ-supplemented –, 5

amply τ-supplemented –, 5

bounded –, 85

coatomic –, 6, 62

flat –, 29

generalized supplemented –, 6

graded –, 19

Loewy –, 27

m-injective –, 10
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max-injective –, 10

nonsingular –, 40

π-projective –, 68

Rad-supplemented –, 5

radical –, 6, 62

reduced –, 6, 62

semi-artinian –, 26

singular –, 40

supplemented –, 25

τ-coatomic –, 62

τ-cotorsionfree –, 62

τ-injective –, 40

τ-reduced –, 61

τ-torsion –, 61

torsion –, 38

torsion free –, 38

totally τ-supplemented –, 5

weakly injective –, 14

Whitehead test – for injectivity, 11

Z-graded –, 19

monomorphism

– in a category, 47

equivalent –, 47

essential –, 26

inclusion –, 29

large –, 26

N-domain, 32, 115

natural equivalence, 46

natural transformation, 17, 45, 131

neat

– high extension, 4

– monomorphism, 2

– subgroup of an abelian group, 2

– submodule, 2

E-neat homomorphism, 12

N eat proper class, 32

normal preradical, 82

orthogonal class, 57

p-test module, 97

path

– of a quiver, 17

– ring of a quiver, 132

– space, 130

– tree, 130

action of a –, 134

trivial –, 17

perfect

τ-perfect ring, 78

perfect ring, 15, 41

Prüfer domain, 34

preadditive category, 46

precover

torsion free –, 9

preenvelope

F -preenvelope, 15

preradical
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– in abelian category, 54

hereditary –, 3

idempotent –, 55

left exact –, 3

normal –, 82

presheaf, 22

pretorsion class of objects, 55

pretorsion free class of objects, 55

product, 48

projective

– cover, 15, 41

– generators for (Q,R-M od), 135

– object, 50

– τ-cover, 78

– with respect to a proper class

(P -projective), 29

category having enough –, 50

pair of classes having enough –, 58

π-projective module, 68

π−1(M ), the proper class projectively

generated by a class M of

modules, 29

Whitehead test module for

projectivity, 97

proper class, 28

Co-N eat –, 32

N eat –, 32

coinjective with respect to a –

(P -coinjective), 29

coprojective with respect to a –

(P -coprojective), 29

⊕-closed –, 34

flat with respect to a – (P -flat), 29

τ−1(M ), the – flatly generated by a

class M of modules, 30

injective with respect to a –

(P -injective), 29

ι−1(M ), the – injectively generated

by a class M of modules, 30

P -epimorphism, 28

P -monomorphism, 28

P -proper, 28

P -proper short exact sequence, 28

P -submodule, 29

∏-closed –, 34

projective with respect to a –

(P -projective), 29

π−1(M ), the – projectively generated

by a class M of modules, 29

τ-Suppl–, 5

the largest –, 31

the smallest –, 31

pure

– exact sequence of objects, 21

– high extension, 4
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– subgroup of an abelian group, 31

– submodule, 31

componentwise – representation, 151

Purity

Theory of–, 21

quasi-duo ring, 113

quiver, 16

finite –, 130

quotient object, 47

quotient representation, 132

Rad-supplement, 5

Rad-supplemented module, 5

radical

– in an abelian category, 55

left exact – in abelian categories, 55

radical module, 6, 62

RD-submodule, 9, 33

reduced

– module, 62

– subgroup, 8

τ-reduced module, 61

reduced module, 6

relatively divisible, 33

relatively divisible submodule, 9

representation of a quiver, 17, 131

ring

– with local units, 133

C-ring, 10

duo –, 6, 83

graded –, 19

hereditary –, 105

max –, 41

N-domain, 32

path –, 132

perfect –, 15, 41

Prüfer domain, 34

quasi-duo –, 113

semi-artinian –, 11

semihereditary –, 34

semilocal –, 41

semiperfect –, 41

τ-perfect –, 78

τ-semiperfect –, 78

root of a tree, 130

semi-artinian module, 26

semi-artinian ring, 11

semihereditary ring, 34

semilocal ring, 41

semiperfect

τ-semiperfect ring, 78

semiperfect ring, 41

singular

– element, 40

– module, 40

– submodule, 40

nonsingular module, 40
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Singular torsion theory, 41

SIRQ, 137

small (�), 4

small category, 46

small epimorphism, 4

source injective representation quiver, 137

stable torsion theory, 40

subcomplete category, 54

subrepresentation, 132

sum of subobjects, 52

superfluous (�), 4

superfluous epimorphism, 4

supplement

τ-supplemented module, 5

– in a module, 4, 26

– of a submodule in a module, 25

– submodule of a module, 26

amply τ-supplemented module, 5

generalized supplemented module, 6

have a τ-supplement, 5

have a – in a module, 25

have ample τ-supplements, 5

Rad-supplement submodule, 5

Rad-supplemented module, 5

supplemented module, 25

τ-supplement submodule, 5

totally τ-supplemented module, 5

weak supplement, 61

weakly supplemented module, 61

τ-cotorsionfree module, 62

τ-dense submodule, 62

τ-injective module, 40

T-nilpotent subset, 42

torsion

– class, 38

– class of objects, 56

– free covers relative to a torsion

theory, 43

– module, 38

– object, 56

– theory cogenerated by a class of

modules, 38

– theory for R-M od, 38

– theory generated by a class of

modules, 38

– theory in abelian categories, 56

– theory of finite type, 44

Dickson – theory, 40

faithful – theory, 40

Goldie – theory, 41

hereditary – theory in abelian

categories, 56

Singular – theory, 41

stable – theory, 40

τ-torsion module, 3, 61

torsion free
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– class, 38

– class of objects, 56

– cover, 9

– module, 38

– object, 56

– precover, 9

τ-torsion free module, 3

tree, 130

barren –, 138

vertex

– of a quiver, 16

ending –, 16

initial –, 16

starting –, 16

terminal –, 16

Wakamutsu’s Lemma, 60

weak supplement, 61

weakly injective module, 14

weakly supplemented module, 61

Whitehead

– group, 97

– problem, 97

– test module for injectivity, 11, 97

– test module for projectivity, 97

λ-free group, 97

zero object, 47

Z-neat homomorphism, 13


