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RAD-SUPPLEMENTED MODULES AND FLAT COVERS OF QUIVERS

ABSTRACT

Let R be an arbitrary ring with unity, M be a left R-module and 7 be a radical for
the category of left R-modules. If V' is a T-supplement in M, then the intersection of
V and t(M) is T(V); in particular, if V is a Rad-supplement in M, then the intersection
of V and RadM is RadV. M is t-supplemented if and only if the factor module of M
by P;(M) is t-supplemented, where P;(M) is the sum of all t-torsion submodules of
M. If V is both a T-supplement in M and T-coatomic, then it is a supplement in M.
Every left R-module is Rad-supplemented if and only if R/P(R) is left perfect, where
P(R) is the sum of all left ideals / of R such that Radl = I. For a left duo ring R,
R is Rad-supplemented as a left R-module if and only if R/P(R) is semiperfect. For
a Dedekind domain R, M is Rad-supplemented if and only if M/D is supplemented,
where D is the divisible part of M. Max-injective R-modules and A eat-coinjective
R-modules coincide, where Aleat is the proper class projectively generated by all
simple R-modules. A ring R is a left C-ring if and only if all left max-injective
R-modules are injective. Over a Dedekind domain, a homomorphism f from A to B of
modules is neat in the sense of Enochs if and only if the kernel of f is in RadA and the
image of f is closed in B. The class of all short exact sequences determined by coclosed
submodules forms a proper class. Those determined by neat epimorphisms of Enochs
does not form a proper class. Torsion free covers, relative to a torsion theory, exist
in the category of representations by modules of a quiver for a wide class of quivers
included in the class of the source injective representation quivers provided that any
direct sum of torsion free injective modules is injective. For any quiver Q, .%,,-covers,
that is “componentwise” flat covers, and ﬁclw-envelopes exist, where .%,,, is the class
of all componentwise flat representations of Q. Finally, “categorical” flat covers and
“componentwise” flat covers do not coincide in general, where by “categorical” flat

object we mean Stenstrom’s concept of flat object defined in terms of purity.



Keywords:  supplement, complement, neat submodule, coneat submodule,
Rad-supplement, coatomic, reduced, radical on modules, neat-coinjective, coclosed
submodule, injectively generated proper class, neat homomorphism, coneat
homomorphism, max-injective, cover, envelope, torsion free cover, flat cover, quiver,

representations of a quiver, flat representation.
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RAD-TUMLENMIS MODULLER VE KUIVERLERIN DUZ ORTULERI

(0Y/

R birim elemani olan herhangi bir halka, M bir sol R-modiil ve T, sol R-modiiller
kategorisi i¢in bir radikal olsun. Eger V, M’de bir t-tiimleyen ise, o zaman V ile
T(M)’nin kesisimi T(V) olur; 6zellikle eger V, M’de bir Rad-tiimleyen ise, 0 zaman V
ile Rad M’nin kesisimi RadV olur. M t-tiimlenmigdir ancak ve ancak M’nin P;(M)’e
gore carpan modiilii T-tiimlenmis ise, burada P;(M), M’nin biitiin t-burulma alt
modiillerinin toplamidir. Eger V, M’de t-tiimleyen ve T-koatomik ise, o zaman V', M’de
tiimleyendir. Her R-modiil Rad-tiimlenmisdir ancak ve ancak R/P(R) sol miikkemmel
ise, burada P(R), Radl = I seklindeki R’nin sol ideallerinin toplamidir. R sol duo
halkas1 ise, R, bir sol R-modiil olarak, Rad-tiimlenmigdir ancak ve ancak R/P(R)
yari-miikemmel halka ise. R Dedekind tamlik bolgesi ise, M Rad-tiimlenmisdir ancak
ve ancak M /D tiimlenmis ise, burada D, M’nin boliinebilir kismidir. Maks-injektif
ile Aleat-koinjektif modiiller cakigsmaktadir, burada Aleat, biitiin basit modiiller
tarafindan projektif olarak iiretilen bir 6z siiftir. R sol C-halka’dir ancak ve ancak
biitiin maks-injektif R-modiiller injektif ise. Bir Dedekind tamlik bolgesi iizerinde,
A’dan B’ye bir f modiil homomorfizmas1 Enochs’un tanimina gore diizenlidir ancak
ve ancak f’nin ¢ekirdegi RadA’nin icinde ise ve goriintiisii B’de kapali ise. Egkapali
altmodiiller ile tamimlanan biitiin kisa tam dizilerin sinif1 bir 6z sinif bicimindedir,
ama Enochs’un diizenli epimorfizmalar: ile tanimlanan simif bir 6z siif biciminde
degildir. Burulmasiz ve injektif R-modiillerin direkt toplaminin yine injektif olmasi
durumunda, kaynak injektif temsil kuiverler sinifinda yer alan genis bir kuiverler sinifi
icin, kuiverlerin temsilleri kategorisinde, bir burulma teorisine gére burulmasiz ortiiler
vardir. Herhangi bir Q kuiveri icin, .%,,,-Ortiiler ve ﬁjw-bﬁrﬁmler vardir, burada %,
Q’nun bilesenlere gore diiz temsillerinin sinifidir. Kategorik diiz ortiiler ve bilesenlere
gore diiz ortiiler genelde cakismaz, burada “kategorik” diiz nesne, Stenstrom’iin piir

altnesneler cinsinden tanimladig1 diiz nesnedir.
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Anahtar sozciikler: tiimleyen, tamamlayan, diizenli altmodiil, kodiizenli altmodiil,
Rad-tiimleyen, koatomik, indirgenmis, modiillerde radikal, diizenli-koinjektif, eskapali
altmodiil, injektif olarak iiretilmis 6z sinif, diizenli homomorfizma, kodiizenli
homomorfizma, maks-injektif, oOrtii, biiriim, burulmasiz ortii, diiz ortii, kuiver, bir

kuiverin temsilleri, diiz temsil.
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CHAPTER ONE
INTRODUCTION

In this introductory chapter, we will give the motivating ideas for our thesis
problems and the main results of this thesis. In Section 1.1, the motivation for
considering Rad-supplements (=coneat submodules) and in general T-supplements for
aradical T on the category of left R-modules will be explained. See Section 1.2, for the
reason for considering torsion free covers and neat homomorphisms of Enochs, C-rings
of Renault and max-injective modules. In Section 1.3, we explain the motivation
for the study of covers and envelopes in categories of representations by modules
over quivers. To explain these problems and results, we need some basic definitions,
results, preliminary notions and notation; see Chapter 2. In particular, see Sections
2.2,23,2.4, 2.5 and 2.6 for preliminary notions needed for Chapter 3 and Chapter
4; see Sections 2.7, 2.8, 2.9 and 2.10 for Chapter 5. In Chapter 3, we study in the
category of left R-modules; we deal with Rad-supplemented modules and in general
T-supplemented modules, where 7 is a radical for the category of left R-modules. In
Chapter 4, we review some results of torsion free covers and neat homomorphisms
of Enochs, and study left C-rings of Renault which turn out to be the rings where
all max-injective modules are injective. In Chapter 5, we study in the category of
representations by modules of a quiver; we deal with the existence of torsion free

covers, relative to a torsion theory, and componentwise flat covers in this category.

Throughout this thesis, R denotes an associative ring with unity. An R-module or
just a module will be a unital left R-module, and R-M od will denote the category of
left R-modules. For modules A and C, Exth(C,A) will mean the equivalence classes of
all short exact sequences starting with A and ending with C; for abelian groups, we use

the notation Ext(C,A).



1.1 Rad-supplemented Modules

Neat subgroups of abelian groups have been introduced in Honda (1956, pp.
43-44): A subgroup A of an abelian group B is said to be neat in B if AN pB = pA
for every prime number p (see also Fuchs (1970, §31, p. 131)). After that, they have
been generalized to modules by Stenstrom (1967a, 9.6) and Stenstrom (1967b, §3):
A monomorphism f : K — L of modules is called neat if every simple module S is

projective relative to the natural epimorphism L — L/Im f, that is, the Hom sequence

Homg(S, L) — Homg(S,L/Im f) — 0

obtained by applying the functor Homg(S, —) to the exact sequence L — L/Im f —
0 is exact. See Ozdemir (2007) for a survey of related results on neat subgroups
and neat submodules. Dually, the class of coneat submodules has been introduced
in Mermut (2004) and Alizade & Mermut (2004): A monomorphism f : K — L of
modules is called coneat if every module M with RadM = 0 is injective with respect

to it, that is, the Hom sequence

Homg (L, M) — Homg(K, M) — 0

obtained by applying the functor Homg(—, M) to the exact sequence 0 — K — L
is exact. A submodule A of a module B is said to be a neat submodule (respectively
coneat submodule) if the inclusion monomorphism A < B is neat (resp. coneat). See
Mermut (2004, Proposition 3.4.2) or Clark et al. (2006, 10.14) or Al-Takhman et al.
(2006, 1.14) for a characterization of coneat submodules. This characterization is the
particular case T = Rad in Proposition 1.1.1 given below and this is the reason for
considering Rad-supplements and in general T-supplements for a radical T for R-M od.
For more results on coneat submodules see Mermut (2004), Alizade & Mermut (2004),

Clark et al. (2006, §10 and 20.7-8), Al-Takhman et al. (2006) and Ozdemir (2007).



A preradical T for R-Mod is defined to be a subfunctor of the identity functor on
R-Mod, that is, for every module N, T(N) C N and every homomorphism f: N — M
induces a homomorphism t©(N) — T(M) by restriction. T is said to be idempotent if
t©(t(N)) = t(N), and a radical if T(N/t(N)) = 0 for every module N. 7 is a left exact
functor if and only if T1(K) = KNt(N) for every submodule K C N, and in this case T is
said to be hereditary. For the main elementary properties that we shall use frequently
for a (pre)radical, see Section 2.4. The following module classes are defined for a
preradical T for R-Mod: the (pre)torsion class and the (pre)torsion free class of T are

respectively

T, = {N € RMod | 1(N) =N} and F.={NeRMod|t(N)=0}.

The modules in T are said to be T-forsion and the modules in [F'; are said to be T-forsion
free. T is closed under quotient modules and direct sums, while F is closed under

submodules and direct products.

Proper classes of short exact sequences of modules were introduced in Buschbaum
(1959) to do relative homological algebra (see Section 2.3 for the definition). We
use the language of proper classes of short exact sequences of modules to investigate
the relations among the concepts like complement, supplement, neat and coneat, by
considering the corresponding class of short exact sequences. Aleat is the proper
class which consists of all short exact sequences of modules such that every simple
module is projective with respect to it, and the proper class Compl consists of all
short exact sequences of modules where the monomorphism has closed image. In
Stenstrom (1967b, Remark after Proposition 6), it is pointed out that supplement
submodules induce a proper class of short exact sequences (the term ‘low’ is used
for supplements dualizing the term ‘high’ used in abelian groups for complements).
Generalov uses the terminology ‘cohigh’ for supplements and gives more general

definitions for proper classes of supplements related to another given proper class



motivated by the considerations as pure-high extensions and neat-high extensions in

Harrison et al. (1963); see Generalov (1983).

A submodule A of a module B is small (or superfluous) in B, denoted by A < B,
if A+ K # B for every proper submodule K C B. An epimorphism f: M — N of

modules is said to be small (or superfluous) if Ker f < M.

Denote by Suppl the class of all short exact sequences induced by supplement

submodules, that is, Suppl is the class of all short exact sequences

0—=A—L B foc— 0 (1.1.1)

of modules such that Im f is a supplement in B, where a submodule A C B is called a
supplement in B if there is a submodule K C B such that A+ K =B and ANK < A.
Then as mentioned above, the class Suppl forms a proper class, see Clark et al. (2006,
20.7) and Erdogan (2004). Every module M with RadM = 0 is Suppl-injective,
that is, M is injective with respect to every short exact sequence in Suppl. Thus
supplement submodules are coneat submodules by the definition of coneat submodules.
In the definition of coneat submodules, using any radical T for R-M od instead of Rad,
the following proposition is obtained (see Proposition 2.3.4 for the characterization
of coneat submodules). It gives us the definition of a T-supplement in a module
because the last condition is like the usual supplement condition except that, instead of

UNV <V, the condition U NV C t(V) is required.

Proposition 1.1.1. (see Clark et al. (2006, 10.11) or Al-Takhman et al. (2006, 1.11))
Let T be a radical for RMod. For a submodule V of a module M, the following

statements are equivalent:

(i) Every module N with t(N) = 0 is injective with respect to the inclusion V.— M;



(ii) there exists a submodule U C M such that

U+V=MandUNV =1(V);

(iii) there exists a submodule U C M such that

U+V=MandUNV C (V).

If these conditions are satisfied, then 'V is called a t-supplement in M.

Denote by t-Suppl the class induced by T-supplement submodules, that is, it
consists of all short exact sequences (1.1.1) of modules such that Im f is a T-supplement
in B. By the above characterization of T-supplements, the class T-Suppl is the proper

class injectively generated by all modules M such that t(M) = 0.

The usual definitions are then given as follows for a radical t for R“Mod: For
submodules U and V of a module M, the submodule V is said to be a T-supplement of
U in M or U is said to have a t-supplement Vin M if U+V =M and UNV C t(V).
M is called a t-supplemented module if every submodule of M has a T-supplement
in M. We call M totally t-supplemented if every submodule of M is T-supplemented.
A submodule N of M is said to have ample t-supplements in M if for every L C M
with N 4+ L = M, there is a T-supplement L' of N in M with L' C L. A module M is
said to be amply t-supplemented if every submodule of M has ample T-supplements in
M. For T = Rad, the above definitions give Rad-supplement submodules of a module,
Rad-supplemented modules, etc. By these definitions, we have: A submodule V of
a module M is a coneat submodule of M if and only if V is a Rad-supplement of a

submodule U of M in M.

The main results of Chapter 3 are given as follows. We shall investigate some

properties of Rad-supplemented modules and in general T-supplemented modules



where T is a radical for R-M od. Rad-supplemented modules are also called generalized
supplemented modules in Wang & Ding (2006). For a survey of related results
on Rad-supplemented modules, see Ozdemir (2007, Chap. 6). Remember that
all R-modules are (amply) supplemented if and only if R is a left perfect ring by
characterization of left perfect rings in Wisbauer (1991, 43.9); see Section 2.5 for
perfect rings. One of our main questions is to characterize the rings R for which every
left R-module is Rad-supplemented. In the investigation of this problem, the notions
of radical modules, reduced modules and coatomic modules turn out to be useful (see

Zoschinger (1974).

A module M is said to be a radical module if RadM = M. M is called reduced if
it has no nonzero radical submodule, and M is called coatomic if it has no nonzero

radical factor module.

We prove that the following are equivalent (Theorem 3.5.1):

(1) every left R-module is Rad-supplemented;

(i1) the direct sum of countably many copies of R is a Rad-supplemented left

R-module;

(iii) R/P(R) is left perfect, where P(R) is the sum of all left ideals 7 of R such that

Radl =1.

We also show that a reduced module M is totally Rad-supplemented if and only if M is

totally supplemented (Corollary 3.3.20).

In Biiyiikasik & Lomp (2008), it was proved that the class of Rad-supplemented
rings lies properly between those of the semiperfect and the semilocal rings. We show
that a left duo ring R (that is, a ring whose all left ideals is a two-sided ideal) is
Rad-supplemented as a left R-module if and only if R/P(R) is semiperfect (Theorem
3.5.6).



Whenever possible the related results are given in general for a radical T for
R-Mod. See Al-Takhman et al. (2006) and Clark et al. (2006, §10) for some results on
T-supplements and T-supplemented modules. In Kosan & Harmanci (2004) and Kosan
(2007), supplemented modules relative to a hereditary torsion theory have been studied.
There is a bijective correspondence between hereditary torsion theories and left exact
radicals (i.e. hereditary radicals) in R-M od. For a hereditary torsion theory T= (7, F)
in R-Mod, our definition of T-supplemented modules coincide with the definition of
T-weakly supplemented modules introduced in Kosan (2007), but in our case, T need
not be hereditary; in particular, Rad is not hereditary. In the definitions and properties
of reduced and coatomic modules, instead of Rad, we can use any (pre)radical T on
R-M od (see Section 3.1), and these will be useful in the investigation of the properties
of T-supplemented modules. We show that if a module M is T-coatomic, that is, if M
has no nonzero 7T-torsion factor module, then t(M) is small in M (Proposition 3.1.3).
We also show that if a submodule V of a module M is both a T-supplement in M and
T-coatomic, then V' is a supplement in M (Proposition 3.3.18). We prove that a module
M is t-supplemented if and only if M/P;(M) is t-supplemented, where P;(M) is the
sum of all t-torsion submodules of M (Proposition 3.3.16). For some rings R, we also
determine when all left R-modules are t-supplemented. For a ring R with Pt(R) CJ(R),
every left R-module is T-supplemented if and only if the quotient ring R/P¢(R) is left
perfect and T(R) = J(R), where J(R) is the Jacobson radical of R (Theorem 3.4.6). We
also investigate the property RadV =V NRadM for a submodule V of a module M. It
is known that this property holds if V is a supplement in M (Wisbauer, 1991, 41.1) and
moreover if V is coclosed in M (Clark et al., 2006, 3.7). We show that this property
holds when V is a Rad-supplement in M; in general for a radical T for R-M od, we show

that if V is a t-supplement in M, then T(V) =V Nt(M) (Theorem 3.3.2).

Every abelian group A can be expressed as the direct sum of a divisible subgroup

D and a reduced subgroup C: A =D @ C. Here D is a uniquely determined subgroup



of A, it is the sum of all divisible subgroups of A and indeed it is the largest divisible
subgroup of A. The subgroup C is unique up to isomorphism, and C is reduced means
that C has no divisible subgroup other than 0. See, for example, Fuchs (1970, Theorem
21.3). This notion is also generalized to modules over Dedekind domains. Over
Dedekind domains, divisible modules coincide with injective modules as in abelian
groups. Note that for a module M over a Dedekind domain R, M is divisible if and
only if M is a radical module (that is, Rad M = M), and this holds if and only if M is
injective; see, for example, Alizade et al. (2001, Lemma 4.4). This is the motivation
for the definition of reduced modules in general. A module over a Dedekind domain is
reduced if it has no nonzero divisible submodules (that is, if it has no nonzero radical
submodules). As in abelian groups every module M over a Dedekind domain possesses
a unique largest divisible submodule D and M = D & C for a reduced submodule C of
M (see Kaplansky (1952, Theorem 8)); this D is called the divisible part of M, and

D=P(M).

We show that for a commutative noetherian ring R, a reduced R-module M is
Rad-supplemented if and only if it is supplemented (Proposition 3.6.3). It is clear
that every supplemented module is Rad-supplemented, but the converse is not true
always. For example, the Z-module Q is Rad-supplemented but not supplemented.
Since RadQ = Q (see, for example, Kasch (1982, 2.3.7)), Q is Rad-supplemented
(by Proposition 3.3.13-(i)). But Q is not supplemented by Clark et al. (2006,
20.12). Moreover, we understand this example clearly and give the structure of
Rad-supplemented modules over Dedekind domains in terms of supplemented modules
which have been characterized in Zoschinger (1974). Over a Dedekind domain R,
an R-module M is Rad-supplemented if and only if M/P(M) is (Rad-)supplemented,
where P(M) is the divisible part of M. In fact, P(M) is the sum of all submodules U
of M such that RadU = U, that is, P(M) is the largest radical submodule of M and this

equals P(M) to be the divisible part of M over a Dedekind domain.



1.2 Enochs’ Neat Homomorphisms and Max-injective Modules

In the first part of Chapter 4, motivated by Theorem 1.2.1 given in Enochs & Jenda
(2000, Chap. 4) related to torsion free covers over commutative domains, we deal
with max-injective modules. Torsion free covers were first defined in Enochs (1963)
and shown to exist for the usual torsion theory over a commutative domain: Over
a commutative domain R, a homomorphism ¢ : 7 — M, where T is a torsion free
R-module, is called a torsion free cover of M if

(1) for every torsion free R-module G and a homomorphism f : G — M there is a
homomorphism g : G — T such that ¢g = f and,

(i) Ker @ contains no non-trivial submodule S of 7" such that S = rT NS for all
r € R, that is, S is a relatively divisible submodule or shortly an RD-submodule of T’
see Section 2.3.

If @ satisfies (i) and maybe not (ii) above, then it is called a torsion free precover.

It is known that given a family @, : T; — M; of torsion free covers, fori =1,2,...n,
n n
GB T, — @M i 1s also a torsion free cover (see, for example, Enochs & Jenda (2000,
i=1 i=1
Proposition 5.5.4)). So, the corresponding question for infinite direct products has been

considered in Enochs & Jenda (2000).

Theorem 1.2.1. (Enochs & Jenda, 2000, Theorem 4.4.1) The following are equivalent

for a commutative domain R:

(i) Every torsion R-module G # 0 has a simple submodule;

(ii) H(Pi : H T — HMi is a torsion free cover for every family {@; : T; — M }ica
€A icA i€A
of torsion free covers of R-modules;

(iii) An R-module E is injective if and only if Ext}e(&E) = 0 for every simple

R-module S.

The notion of C-ring has been introduced in Renault (1964): A ring R is said to be
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a left C-ring if for every (left) R-module B and for every essential proper submodule A
of B, Soc(B/A) # 0, that is B/A has a simple submodule. Similarly right C-rings are
defined.

The notion of max-injectivity (a weakened injectivity in view of Baer’s criterion)
has been studied recently by several authors; see, for example, Crivei (1998), Crivei
(2000) and Wang & Zhao (2005): A module M is said to be maximally injective (or
max-injective for short) if for every maximal left ideal P of R, every homomorphism
f P —> M can be extended to a homomorphism g : R — M. A module M is
max-injective if and only if Ext}e(S ,M) = 0 for every simple module S (see Crivei
(1998, Theorem 2)). Max-injective modules are called m-injective modules in Crivei

(1998).

In, for example, Mermut (2004, Proposition 3.3.9), it has been proved that a
commutative domain R is a C-ring if and only if every nonzero torsion R-module has a
simple submodule. So we observe, by Theorem 1.2.1, that for a commutative domain

R, the following are equivalent:

(i) Ris aC-ring;
(i) Every direct product of torsion free covers is again a torsion free cover;

(iii)) Every max-injective module is injective.
It has been proved by Patrick F. Smith that for a ring R, Soc(R/I) # 0 for every essential
proper left ideal I of R (that is, R is a left C-ring by Proposition 4.1.2) if and only if
every max-injective module is injective (Smith, 1981, Lemma 4). This result also
stated in Ding & Chen (1993) and for its proof the reference to Smith (1981) has been
given. In Section 4.2, we shall give a proof of this result with our interest in the proper
classes A eat and Compl, and with further observations (Theorem 4.2.14). In the
articles Crivei (2000) and Wang & Zhao (2005), this result is not known; all the given

examples in these articles for rings over which every max-injective module is injective
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are indeed left C-rings. For instance, in Crivei (1998) and Wang & Zhao (2005), it
was shown that if R is a left semi-artinian ring (that is, Soc(R/I) # 0 for every proper
left ideal I of R), then every max-injective R-module is injective. But, of course, a left

semi-artinian ring is a left C-ring.

For a proper class P, a module A is called P-coinjective if every short exact
sequences of modules starting with A is in . See Section 2.3 for proper classes of
modules. A module M is P-coinjective if and only if it is a P-submodule of E(M),
the injective envelope of M. So, a module M is Compl-coinjective if and only if
M is a complement submodule (=closed submodule) of E(M). Since M is essential
in E(M), we obtain that Compl-coinjective modules are just injective modules.
N eat-coinjective modules and max-injective modules coincide. In Generalov (1978,
Theorem 5), it was proved that a ring R is a left C-ring if and only if Compl = N eat.

So, it can be easily seen that if R is a left C-ring, then

max-injectives = N eat-coinjectives = Compl-coinjectives = injectives

Conversely, we prove that if all Al eat-coinjective modules are injective, then R is a left
C-ring. As a result, we have that the following are equivalent for a ring R (Theorem

4.2.18):

(1) Ris aleft C-ring;
(ii) All A eat-coinjective (=max-injective) R-modules are injective;

(iii)) The direct sum of all simple R-modules is a left Whitehead test module for
injectivity, where a module N is called Whitehead test module for injectivity
if for every module M, Exth(N,M) = 0 implies M is injective.

We devote the second part of Chapter 4 to neat homomorphisms of Enochs. The
study of neat homomorphisms, due to Enochs (1971) and Bowe (1972), originated

with a generalization of neat subgroups and torsion free covers of modules; in Enochs
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& Jenda (2000, Proposition 4.3.9) it was shown that torsion free covers are neat

homomorphisms, over a commutative domain.

The concept of neat homomorphism is indeed a natural concept to consider by
the following characterization: A homomorphism f : M — N of modules is a neat
homomorphism in the sense of Enochs if and only there are no proper extensions of f in
the injective envelope E(M) of M, that is, there exists no homomorphism g : M' — N
such that M G M’ C E(M) and g [y= f. This is not the original definition, but one of
the equivalent conditions of being a neat homomorphism given in Bowe (1972) (see
Theorem 4.3.3). We call such homomorphisms E-neat homomorphisms. These E-neat
homomorphisms need not be one-to-one or onto. A monomorphism f: A — B is
E-neat if and only if Im f is a closed submodule (=complement submodule) of B (see

Lemma 4.3.4). Thus, the class of all short exact sequences

0—-a-%p P c o 12.1)

of modules such that the monomorphism o is E-neat forms the proper class Compl that
we have already mentioned. So, we investigate the class of all short exact sequences
(1.2.1) such that the epimorphism 3 : B — C is E-neat. We denote this class by
ENeat. We show that EA eat forms a proper class if and only if R is a semisimple

ring (Theorem 4.5.2).

Zoschinger gave the definition of E-neat homomorphisms for abelian groups by
considering the equivalent condition (iv) for being E-neat homomorphism given in
Theorem 4.3.3: A homomorphism f : M — N of modules is E-neat if for every
decomposition f = Ba where o is an essential monomorphism, ¢ is an isomorphism.

See Proposition 4.4.1 for this equivalence for modules over arbitrary rings.

See Theorem 4.4.2 for the proof of the theorem given below which has been
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explained by Zoschinger.

Theorem 1.2.2. (Zéschinger, 1978, Satz 2.3*) Let A and A’ be abelian groups. For a

homomorphism f : A — A', the following are equivalent:

(i) fis E-neat;
(ii) Im f is closed in A’ and Ker f C RadA;
(iii) f~1(pA’) = pA for all prime numbers p;

(iv) If the following diagram is a pushout diagram of abelian groups and o is an

essential monomorphism, then o is also an essential monomorphism:

A—2>B

fl if’

Al —=PB
o/ ’

By considering the first two equivalent conditions for abelian groups in the previous
theorem, we define Z-neat homomorphisms in general for modules over arbitrary rings:
We call a homomorphism f : A — A’ of modules Z-near if Im f is closed in A’ and
Ker f C RadA. So we wonder if E-neat and Z-neat homomorphisms coincide in general
for arbitrary rings. In the investigation of this problem the following result plays an
important role: The natural epimorphism f: A — A/K of modules with K C A is
E-neat if and only if (A/K) < (E(A)/K) (Corollary 4.4.5). Over a Dedekind domain,
we prove that the natural epimorphism f: A — A/K is E-neat if and only if K C RadA
(Proposition 4.4.14). Using these results, finally, we prove that E-neat homomorphisms

and Z-neat homomorphisms coincide over Dedekind domains (Theorem 4.4.17).

As a dual to E-neat homomorphisms, Zoschinger has introduced and studied coneat
homomorphisms when he was studying the submodules that have supplements for
abelian groups in Zoschinger (1978, §2): A homomorphism g : C' — C of modules

is called Z-coneat if for every decomposition g = Bo where [ is small epimorphism,
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B is an isomorphism. The reason for his studying such homomorphisms, which
we call Z-coneat homomorphisms not to mix them with our concept coneat, is that
g" : Ext(C, A) — Ext(C', A) preserves K-elements for every Z-coneat homomorphism
g:C' — C. x-elements of Ext(C,A) are the equivalence classes of k-exact short exact
sequences starting with A and ending with C; a short exact sequence (1.2.1) is called
K-exact if Ima has a supplement in B. In Zdschinger (1978, Hilfssatz 2.2 (a)), it was
proved that an epimorphism f : A — B of abelian groups is Z-coneat if and only if
Ker f is coclosed in A. We devote the last part of Chapter 4 to investigate coclosed

monomorphisms of modules.

Given submodules K C L C M, the inclusion K C L is called cosmall in M, denoted
by KC%L, if L/K < M/K. A submodule L of a module M is called coclosed in M,
denoted by L—“~M, if L has no proper submodule K for which KC%L. See Clark

et al. (2006, §3.1 and §3.6) for cosmall inclusions and coclosed submodules.

We show that the class of all short exact sequences (1.2.1) such that Im o is coclosed
in B forms a proper class, denoted by Coclosed (Theorem 4.6.4). Note that Zdschinger
calls a module M weakly injective if for every extension M C X, M is coclosed in X,
that is, M is Coclosed-coinjective (see Zoschinger (2006)). In Zoschinger (2006), it
was shown for every noetherian, local, one-dimensional commutative domain R with
field of fractions K and completion R that R QrK as R-module and K /R as R-module

are weakly injective.

1.3 Torsion Free and Componentwise Flat Covers in Categories of Quivers

Given a class .# of objects in an abelian category A4, recall from Enochs (1981)
that, an .# -precover of an object C is a morphism ¢ : F — C with F € % such that

Homg(F',F) — Homg(F’,C) — 0 is exact for every F’ € .7, that is, the following



15

diagram commutes:
F'.
/
e
ol
F—2~¢
If, moreover, every morphism f : FF — F such that @ f = @ is an automorphism, then

@ is said to be an .# -cover.

Dually, an .% -preenvelope of M is a morphism ¢ : M — F with F € .% such that
Homg(F,F') — Homg(M,F') is surjective for every F’ € %, that is, the following

diagram commutes:

F/
An % -preenvelope @ is said to be an .% -envelope if every endomorphism f : F — F

such that f@ = ¢ is an automorphism.

So, for instance, if we take .% to be the class of all flat modules, then a flat cover
of a module will be an .% -cover. See Section 2.7 for details for abelian categories, and

Section 2.10 for covers and envelopes.

The study of covers and envelopes started in 1953, when Eckman and Schopf proved
that each module over an associative ring has an injective envelope (Eckmann &
Schopf, 1953). On the other hand, Bass characterized rings over which every module
has a projective cover: perfect rings (Bass, 1960). Other authors studied different types
of covers and envelopes, for example, Kietpinski proved the existence of pure-injective
envelopes in the category R-M od (Kietpifiski, 1967), and Warfield gave another proof
of the existence of pure-injective envelopes of modules (Warfield, 1969). Enochs
studied torsion free covers and proved the existence of torsion free covers of modules
over a commutative domain (Enochs, 1963). In the arguments after Enochs & Jenda

(2000, Definition 5.1.1), it has been pointed out that torsion free covers and .% -covers
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coincide over a commutative domain R, where .% is the class of torsion free R-modules.
Moreover, in 1981, Enochs conjectured that every module over an associative ring
admits a flat cover (Enochs, 1981). This is known as the “flat cover conjecture”. In
the same paper, he noticed the categorical version of injective cover, and then gave
a general definition of covers and envelopes in terms of commutative diagrams, for a
given class of modules. Independently, this definition of covers and envelopes was
given by Auslander and Smalg in terms of minimal left and right approximations
(Auslander & Smalg, 1980). Enochs gave the general definition for a class of modules
over arbitrary rings, while Auslander and Smalg considered finitely generated modules
over finite dimensional algebras. The main idea for studying covers and envelopes
is to use certain aspects of a special class of modules, or more generally objects to
study entire category. Because, once we understand the structure of a class of objects,
we may approximate arbitrary objects by the objects from this class. In 2001, once
the “flat cover conjecture” has been proved in Bican et al. (2001), in a natural way, flat
covers and covers by more general classes of objects have been studied in more general
settings than that of modules. For example, the existence of flat covers was shown
for categories of complexes of modules over a ring R (Aldrich et al., 2001) and of
quasi-coherent sheaves over a scheme (Enochs & Estrada, 2005b). Also, the existence
of flat covers has been studied for the category of representations by modules of some

class of quivers.

A quiver is a directed graph whose edges are called arrows. As usual we denote a
quiver by Q understanding that Q = (V,E) where V is the set of vertices (points) and E
is the set of arrows (directed edges). An arrow of a quiver from a vertex v; to a vertex
vy 1s denoted by

a.:vi—vy Oor v —Lsvo .

In this case, we write s(a) = v| and call the starting (initial) vertex of the arrow a, and

t(a) = v and call the terminal (ending) vertex of a.
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A path p of length n > 1 from the vertex vo to the vertex v, of a quiver Q is a
sequence of arrows

(vo | ar,az,...,an | vn)

where a; € E for all 1 <i <n, and we have s(a;) = vo, t(a;) = s(aj+1) for each 1 <
i < n, and finally #(a,) = v,. Such a path is denoted briefly by a,a,_; ...a; and may

be visualised as follows:

al a An

For this path p, define the starting vertex s(p) = s(a;) = vo and the ending vertex t(p) =
t(an) = vy. In this case, we will write, shortly, p : vo — v,. Anarrow a:v — wof Qs
also considered as a path of length 1. We also agree to associate with each vertex v € V
a path of length n = 0, called the trivial path at v, and denoted by p,. It has no arrows
and we takes(p,) = t(p,) = v. Thus, a vertex v € V can be considered as a trivial path
py- Instead of p,,, we usually write justv. If p =aya,—1...a; and g = b;;,b,,,—1 ... by are
two paths of Q such that s(a,) =t(b1), where a;,b; € E forall 1 <i<mand 1 < j <m,
then the composition of p and ¢ is defined as gp = b,,...b1a,...a;. Thus, two paths
p and ¢ can be composed, getting another path ¢gp whenever 7(p) = s(g). So, given a

path p : vi — v,, we have that pp,, = py,p = p.

Therefore, any quiver Q is thought as a category in which the objects are the vertices
of Q, and the morphisms are the paths of Q. Clearly, every object (i.e. vertex) v of Q

has an identity morphism p,, (trivial path).

A representation by modules of a given quiver Q = (V,E) is a functor X : Q —
R-Mod. So such a representation is determined by giving a module X (v) to each vertex
v of Q and a homomorphism X (a) : X(v;) — X (v;) to each arrow a : vi — v, of Q.
A morphism M between two representations X and Y is a natural transformation, so

it will be a family {n, },cy of module homomorphisms such that Y (a)n,, =n,,X(a)
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for every arrow a : vi — v of Q, that is, the following diagram commutes for every
arrow a : vi — v of Q:

X(1) 2L X (1)

T‘lvll \anz
Y(a
Y (1) 2 ¥ ()

Thus, the representations by modules of a quiver Q over a ring R form a category,
denoted by (Q,R-Mod). This is a locally finitely presented Grothendieck category
with enough projectives and injectives (see Section 5.1 for details). By a representation

of a quiver we will mean a representation by modules of a quiver over a ring R.

In Chapter 5, we continue with the program initiated in Enochs & Herzog (1999)
and continued in Enochs et al. (2002), Enochs et al. (2003a), Enochs et al. (2004b),
Enochs & Estrada (2005a), Enochs et al. (2007) and Enochs et al. (2009) to develop
new techniques on the study of representations by modules over (possibly infinite)
quivers. In contrast to the classical representation theory of quivers motivated by
Gabriel (1972b), we do not assume that the base ring is an algebraically closed field
and that all vector spaces involved are finite dimensional. Techniques on representation
theory of infinite quivers have recently proved to be very useful in leading to
simplifications of proofs as well as the descriptions of objects in related categories. For
instance, in Enochs & Estrada (2005b) it was shown that the category of quasi-coherent
sheaves on an arbitrary scheme is equivalent to a category of representations of a
quiver (with certain modifications on the representations). Note that in this thesis we
do not deal with the category of quasi-coherent sheaves on an arbitrary scheme; see,
for example, Hartshorne (1977, Chap. II) for the definitions of the related concepts.
This point of view allows to introduce new versions of homological algebra in such
categories (see Enochs & Estrada (2005b, §5) and Enochs et al. (2003b)). Infinite
quivers also appear when the category of Z-graded modules is considered over the

graded ring R[x] as explained below.
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Recall that a commutative ring R is called a graded ring (or more precisely, a
Z-graded ring) if R can be expressed as a direct sum R = @,z R, of its additive
subgroups such that the ring multiplication satisfies R,, - R, C R+, for all m,n € Z. In
particular, Ry is a subring of R and each component R, is an Ry-module. For example,

the polynomial ring R[x] is a graded ring with

R[x| = @Rn, where R, = Rx" if n > 0 and R,, = 0 otherwise .
nez
LetR = @RH be a graded ring. An R-module M is called a graded module (or is said
nez
to have an R-grading) if M can be expressed as a direct sum €, M, of its additive
subgroups such that R,, - M,;, C M,,,,, for all m,n € Z. In particular, M,, is an Ry-module

for every n € Z. See, for example, Lang (2002, Chap. X, §5) for graded modules.

The category of graded modules over the graded ring R[x] is equivalent to the

category of representations over R of the quiver

>
88
Il

e e e,

Indeed, a representation --- —> A_ Q Ao & Ay L --- of AZ can be thought of

as a graded module @,,c7 A, over the polynomial ring R[x|, the action of x being given

by module homomorphisms A, i) Apt1:
R, Ay =Rx"-A, = Rx"! fm(Am) =Rfutm—1-" fm(Am) C RAptm € Antm
for all n,m € Z. Conversely, as a graded ring

R[x]z---—>0—>0_>R’_x>Rx'_x>Rx2_>...



20

and as a graded module

RM=-- — A A S AT A S A — -

In Chapter 5, we introduce new classes in the category of representations of a
(possibly infinite) quiver to compute (unique up to homotopy) resolutions which give
rise to new versions of homological algebra on it. The first of such versions turns to
Enochs’ proof on the existence of torsion free covers of modules over a commutative
domain (see Enochs (1963)) and its subsequent generalization in Teply (1969) and

Golan & Teply (1973) to more general torsion theories in R-M od.

Given a hereditary torsion theory (7, F) for R“Mod, we define a torsion theory

(Lo, Few) for (Q,R-“Mod), by defining the torsion class 7, as follows:
Tow=1{X € (Q,RMod) | X(v) € T for every vertex v of Q}.
Then the torsion free class ¥.,, will be as follows:
Few ={X € (Q,RMod) | X(v) € F for every vertex v of Q};

see Proposition 5.2.4. Note that the torsion theory (‘Z.,, %) is hereditary, that is, it

closed under subrepresentations since the torsion class 7 is closed under submodules.

In the first part of Chapter 5, we prove that torsion free covers exist in (Q,R-Mod)
relative to the torsion theory (Zz,,, Fow), for a wide class of quivers included in the class
of the so-called source injective representation quivers as introduced in Enochs et al.

(2009) (Theorem 5.2.16). This important class of quivers includes all finite quivers
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with no oriented cycles, but also includes infinite line quivers:

A = ° ° o
A” = ° ° ° ,
AZ = ° °

On the second part, we will focus on the existence of a version of relative
homological algebra by using the class of componentwise flat representations in
(Q,R-Mod). Recently, it has been proved in Rump (2010) that flat covers do exist
on each abelian locally finitely presented category. Here by “flat” the author means
Stenstrom’s concept of flat object given in Stenstrom (1968) in terms of the theory of
purity that one can always define in locally finitely presented additive categories (see
Crawley-Boevey (1994)). It is well-known that a short exact sequence of modules is
pure if and only every finitely presented module is projective relative to it (see Example
2.3.3). Using this characterization of pure-exact sequences, Stenstrom (1968) defined

purity in locally finitely generated Grothendieck categories.

Let C be a Grothendieck category and C be an object in C. The object C is called
finitely generated if whenever C = ZC" for a direct family (C;);cs of subobjects of C
(where I is some index set), there ils6 Ian index iy € I such that C = C;,. The object C
is called finitely presented if it is finitely generated and every epimorphism B — C,
where B is a finitely generated object in C, has a finitely generated kernel. The category

C is called locally finitely generated (respectively locally finitely presented) if it has

a family of finitely generated (resp. finitely presented) generators.

Let C be a locally finitely generated Grothendieck category. A short exact sequence

in C is said to be pure if every finitely presented object P of C is projective relative
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to it. An object F of C is said to be a flat object in the sense of Stenstrom if every
short exact sequence ending with F is pure. We call such flat objects “categorical flat”.
For abelian locally finitely presented categories with enough projectives, this notion of

“flatness” is equivalent to being the direct limit of certain projective objects.

As (Q,R-Mod) is a locally finitely presented Grothendieck category with enough
projectives, we infer by using Rump’s result that (Q, R-M od) admits “categorical flat”
covers for every quiver Q and any associative ring R with unity. But there are categories
in which there is a classical notion of flatness having nothing to do with respect to the
theory of purity. This is the case of the notion of “flatness” in categories of presheaves
or quasi-coherent sheaves, where “flatness” is more related with a “componentwise”
notion. Those categories may be viewed as certain categories of representations of

quivers.

We proved the existence of “componentwise” flat covers for every quiver and any
ring R with unity (Theorem 5.3.6), where we call a representation X of (Q,R-Mod)
componentwise flat if X (v) is a flat R-module for each vertex v of Q. In particular if X is
a topological space, an easy modification of our techniques can prove the existence of
a flat cover (in the algebraic geometrical sense) for every presheaf on X over R-Mod.
Finally, the last part of Chapter 5 contains some examples for comparing “categorical”
flat covers with “‘componentwise” flat covers which show that these two kinds of covers

do not coincide in general (see Section 5.4).



CHAPTER TWO
PRELIMINARIES

In this chapter, we give the basic definitions, results, tools and notation which will
be used throughout this thesis. We will give further notions and notation when they
are needed. The terminology, notation and our main references are sketched in Section
2.1; we give the definition of proper classes and some related properties in Section
2.3. Some elementary properties of preradicals and torsion theories for R-Mod are
given in Section 2.4. Section 2.5 contains some properties of projective covers and
perfect rings. In Section 2.6, we give the definition of torsion free covers of R-modules
over a commutative domain R. See Section 2.2 for the definition of complements and
supplements, and Section 2.10 for the definition of covers and envelopes. For details
for abelian categories, see Section 2.7 and see Section 2.8 for torsion theories in abelian
categories. In Section 2.9, we will give some basic definitions and results of cotorsion
theories, and explain the method of the proof of flat cover conjecture given by Enochs

that uses cotorsion theories (see Bican et al. (2001)).

2.1 Notation and Terminology

Unless otherwise stated, all rings considered will be associative with identity and
not necessarily commutative. R will denote an arbitrary ring. So, if nothing is said
about R in the statement of a theorem, proposition, etc., then that means R is just an
arbitrary ring. An R-module or just a module will be a unital leff R-module. R-M od
(respectively M od-R) denotes the category of all left (resp. right) R-modules. A
commutative domain will mean a nonzero commutative ring in which there is no zero
divisor other than zero. N, Z and Q denotes the set of positive natural numbers, the

ring of integers and the field of rational numbers, respectively. Ab, or Z-M od, denotes

23
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the category of abelian groups (i.e. Z-modules). Group will mean abelian group.
As usual, J(R) denotes the Jacobson radical of R, and RadM (respectively Soc M)
denotes the radical (resp. the socle) of a module M. E(M) will denote the injective
envelope of a module M. We denote by X C M that X is a submodule of M. For any
modules A and B, Homg (A, B) denotes the set of all homomorphisms from A to B. We
denote by 157 : M — M the identity map. By a homomorphism f: A — B we will
mean a homomorphism of modules from A to B, unless otherwise stated. Exth(C,A)
denotes the equivalence classes of extensions of an R-module A by an R-module C. For
abelian groups we will use the notation Ext(C,A). For the definition of Exts(C,A), see

Maclane (1963, Chap. III).

We do not delve into the details of definitions of every term used in this thesis.
We refer to Enochs & Jenda (2000), Stenstrom (1975), Freyd (1964) and Assem
et al. (2006) for details on covers and envelopes, abelian categories or quivers. For
fundamentals of module theory see, for example, Anderson & Fuller (1992), Lam
(1999), Facchini (1998), Kasch (1982), Wisbauer (1991) and Clark et al. (2006); for
details in homological algebra see the books Cartan & Eilenberg (1956), Maclane
(1963) and Rotman (2009); for relative homological algebra, our main references are
the books Maclane (1963), Enochs & Jenda (2000) and the article Sklyarenko (1978);

for abelian groups, see Fuchs (1970).

The notation we use have been given on pages (173-177) and an index will be given

at the end of this thesis.

2.2 Complements and Supplements

Let M be an R-module and A be a submodule of M. It would be best if A is a direct

summand of M, that is, if there exists a submodule B of M such that M = A @ B; that
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means,

M=A+B and ANB=0.

If A is not a direct summand, then we wish at least one of these conditions to hold.

These give rise two concepts: complement and supplement.

Let M be a module and A, B be submodules of M such that M = A 4 B (that is, the
above first condition for direct sum holds). If A is minimal with respect to this property,
that is, there is no submodule A of M such that A g A but still M = A+ B, then A is

called a supplement of B in M and B is said to have a supplement A in M.

A submodule B of a module M need not have a supplement in M. If a module M is
such that every submodule of it has a supplement in M, then it is called a supplemented
module. For the definitions and related properties see Wisbauer (1991, §41) and Clark

et al. (2006, Chap. 4).

Let M be a module and A, B be submodules of M such that AN B = 0 (that is, the
above second condition for direct sum holds). If A is maximal with respect to this
property, that is, there is no submodule A of M such that A £ A but still ANB =0, then

A is called a complement of B in M and B is said to have a complement A in M.

Remark 2.2.1. By Zorn’s Lemma, it can be seen that a submodule B of a module M
always has a complement A in M (unlike the case for supplements). In fact, by Zorn’s
Lemma, we know that if we have a submodule A of M such that BNA = 0, then there
exists a complement A of B in M such that A D A. See the monograph Dung et al.

(1994) for a survey of results in the related concepts.

We are interested in the collection of submodules each of which is a complement of

some submodule or supplement of some submodule.

A submodule A of a module M is said to be a complement in M if A is a complement
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of some submodule of M; shortly, we also say that A is a complement submodule of M
in this case. Dually, A is said to be a supplement in M if A is a supplement of some
submodule of M; shortly, we also say that A is a supplement submodule of M in this

case.

A submodule A of a module B is essential (or large) in A, denoted by A < B, if for
every nonzero submodule K of B, we have ANK # 0. A monomorphism f: M — N

of modules is called essential if Im f <M.

A submodule A of a module M is said to be closed in M if A has no proper essential
extension in M, that is, there exists no submodule A of M such that A g A and A is
essential in A. We also say in this case that A is a closed submodule.

Note that closed submodules and complement submodules in a module coincide

(see Dung et al. (1994, §1)).

Proposition 2.2.2. (Anderson & Fuller, 1992, Proposition 5.21) Let M be a module

and B a submodule of M. Then B has a complement A in M, and

(i) BOA<M;

(ii) (B®A)/A<IM/A.

A module M is said to be semi-artinian if for every proper submodule U of M,

Soc(M/U) # 0, that is, M /U contains a simple submodule.

See Dung et al. (1994, 3.12, 3.13) for some properties of semi-artinian modules and
rings. The following characterization is also given as the definition of semi-artinian

modules there; we give its elementary proof for completeness:

Proposition 2.2.3. A module M semi-artinian if and only if Soc(M /U) is essential in

MU for every proper submodule U of M.
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Proof. Let M be a semi-artinian module and let U C M be a proper submodule. Since
the factor module M /U is also semi-artinian, it suffices to show that SocM <M. Let
0 # K be a submodule of M and let K’ be a complement of K in M. Then KNK' =0

and (K@ K')/K' AM /K’ by the previous proposition. So
Soc(M/K') = Soc((K®K')/K') = SocK.

Since K’ # M as K # 0 and M is semi-artinian, we obtain Soc K # 0. Thus KNSocM =
SocK # 0, that is, SocM <M. Conversely, if Soc(M/U) <M /U for every proper
submodule U of M, then obviously Soc(M/U) # 0. O

For a module M, a well-ordered sequence of fully invariant submodules Socy (M)

of M is defined inductively for each ordinal o as follows:
Soco(M) =0,

Socg+1(M)/Socq (M) = Soc(M/Soce(M)),

for every ordinal o, and

Socg(M) = U Socy (M)

a<f

for every limit ordinal 3. The chain
Soco(M) C Socy (M) C Socp(M) C -+ C Soce(M) C ...

is called the (ascending) Loewy series of M. The module M is said to be a Loewy
module if there is an ordinal o such that M = Socy (M), and in this case the least
ordinal o such that M = Socy (M) is called the Loewy length of M (see, for example,

Facchini (1998, §2.11) for Loewy modules).
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Proposition 2.2.4. (see, for example, Facchini (1998, Lemma 2.58)) A module M is a

Loewy module if and only if M is semi-artinian.

2.3 Proper Classes of R-modules

In this section, we give the definition of proper classes in R-Mod (since our
investigations are in the proper classes of modules) and some important examples
of proper classes that we are interested in. We also give the definitions for
projectives, injectives, flats, coprojectives, coinjectives with respect to a proper class,
and projectively generated, injectively generated, flatly generated proper classes. See,
for example, Maclane (1963, Chap. XII) for the general definition of proper classes in
an abelian category. Proper classes of monomorphisms and short exact sequences were
introduced in Buschbaum (1959). For further details we refer to Maclane (1963, Chap.
XII), Stenstrom (1967a), Mishina & Skornyakov (1976) and Sklyarenko (1978).

Let P be a class of short exact sequences of R-modules and R-module

homomorphisms. If a short exact sequence

B—%.C 0 (2.3.1)

belongs to P, then f is said to be a P-monomorphism and g is said to be a
P-epimorphism (both are said to be P-proper and the short exact sequence is said
to be a P-proper short exact sequence). The class P is said to be proper (in the sense

of Buchsbaum) if it satisfies the following conditions:

P1. If a short exact sequence E is in P, then P contains every short exact sequence

isomorphic to E .

P2. P contains all splitting short exact sequences.
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P3. (i) The composite of two P-monomorphisms is a P-monomorphism if this
composite is defined.
(i1) The composite of two P-epimorphisms is a P-epimorphism if this composite

is defined.

P4. (i) If g and f are monomorphisms, and gf is a P-monomorphism, then f is a
P-monomorphism.
(i) If g and f are epimorphisms, and gf is a P-epimorphism, then g is a
P-epimorphism.
For a proper class P of R-modules, a submodule A of a module B is called a
P-submodule of B, if the inclusion monomorphism iy : A — B, is(a) = a, a € A,

is a P-monomorphism.

A module F is said to be flat if for every exact sequence 0 — A — B of right

modules, the tensored sequence 0 — A ®g F — B®g F is exact.

Definition 2.3.1. Let P be a proper class of modules.

(1) A module M is said to be P-projective (respectively P-injective) if it is projective

(resp. injective) with respect to all short exact sequences in P.

(i1) A right module M is said to be P-flat if M is flat with respect to every short exact

sequence [E € P, that is, M ® E is exact for every E in P.

(iii)) A module C is said to be P-coprojective if every short exact sequence (2.3.1) of
modules ending with C is in the proper class P. Dually, a module A is said to be
P-coinjective if every short exact sequence (2.3.1) of modules starting with A is

in the proper class 2.

Definition 2.3.2. For a given class M of modules,

(i) the class of all short exact sequences E of modules such that Homg(M,E) is

exact for all M € M is the largest proper class P for which each M € M is
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P-projective, and it is called the proper class projectively generated by M and

denoted by n=! ().

(ii) the class of all short exact sequences E of modules such that Homg(E, M) is
exact for all M € M is the largest proper class P for which each M € M is
P-injective, and it is called the proper class injectively generated by M and

denoted by 1~ (M).

(iii) Let M be a class of right modules. The class of all short exact sequences E of
modules such that M Q [E is exact for all M € M is the largest proper class P of
(left) R-modules for which each M € M is P-flat. It is called the proper class

flatly generated by the class M of right modules and denoted by T~ ! ().

A module M is said to be finitely presented if there is a an exact sequence
R" —R'— M —0
for some positive integers m and n.

The character module functor is the functor
(=)’ = Homy(—,Q/Z) : R-Mod — Mod-R.
So, for a (left) R-module M, M” = Homz(M,Q/Z) is a right R-module.

For a functor T from a category A of left or right R-modules to a category B of
left or right S-modules (where R, S are rings), and for a given class ¥ of short exact
sequences in B, let 7! () be the class of those short exact sequences of 4 which are
carried into F by the functor 7. If the functor T is left or right exact, then T~ (F) is

a proper class; see Stenstrom (1967a, Proposition 2.1).
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We give some examples of proper classes, which are interesting for the purpose of

this thesis:

Example 2.3.3. The proper classes Purez, and its generalization Pureg form the
origins of relative homological algebra; this is the reason why proper classes are also
called purities (for example, in Mishina & Skornyakov (1976), Generalov (1972, 1978,
1983)).

(1) Splitg: The smallest proper class of modules consists of only splitting short

exact sequences of modules.

(1) Absg (absolute purity): The largest proper class of modules consists of all short

exact sequences of modules.

(iii) Purez: The proper class of all short exact sequences (2.3.1) of abelian groups
and abelian group homomorphisms such that Im f is a pure subgroup of B, where
a subgroup A of a group B is pure in B if ANnB = nA for all integers n. The short
exact sequences in Purey, are called pure-exact sequences of abelian groups (see

Fuchs (1970, §29)).

(iv) Pureg is the classical Cohn’s purity; it was introduced by Cohn (1959) for

arbitrary rings as a generalization of purity in abelian groups:

Pureg = m ' ( all finitely presented R-modules )
= 1~ !(all finitely presented right R-modules )
= 1 !(all right R-modules )
= (=) (Splite).

= 17'({M’ | M is a finitely presented right R-module})

See, for example, Facchini (1998, §1.4) for the proof of first four of these

equalities. See Sklyarenko (1978, Proposition 6.2) for the last equality.
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(v) Compl and Suppl: The class of all short exact sequences (2.3.1) of modules such
that Im f is a complement (respectively supplement) in B forms a proper class
as has been shown more generally by Stenstrom (1967b), Generalov (1978),
Generalov (1983). See also Erdogan (2004) and Clark et al. (2006, 10.5 and

20.7) for the proofs of Compl and Suppl being proper classes.

(vi) Nleat: The class of all short exact sequences (2.3.1) of modules such that Im f is
a neat submodule of B (that is, f is a neat monomorphism) forms a proper class

following Stenstrom (1967a) and Stenstrém (1967b):

Neat = m'(all simple R-modules)
= 7' ({R/P|P maximal left ideal of R})

= 7' ({M|SocM = M, M an R-module}).

Dually, the class of coneat submodules has been introduced in Mermut (2004)

and Alizade & Mermut (2004):

(vii) Co-Neat: The class of all short exact sequences (2.3.1) of modules such that
Im f is a coneat submodule of B (that is, f is a coneat monomorphism) forms a

proper class:

Co-Neat =171 (all R-modules with zero radical)

=1 '({M € RMod|RadM = 0}).

Fuchs calls a ring R to be an N-domain if R is a commutative domain and A ear =
7~ !( all simple R-modules ). He proved that a ring R is an N-domain if and only if R
is a commutative domain whose all maximal ideals are projective (and so all maximal

ideals invertible and finitely generated); see Fuchs (2010).

The criterion for being a coneat submodule is like being a supplement in the
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following weaker sense:

Proposition 2.3.4. (Mermut, 2004, Proposition 3.4.2) For a submodule A of a module

B, the following are equivalent:

(i) Ais coneatin B,

(ii) There exists a submodule K C B such that (K > RadA and,)

A+K=B and ANK =RadA.

(iii) There exists a submodule K C B such that

A+K=B and ANK CRadA.

One of the generalizations of pure subgroups of abelian groups to modules over
arbitrary rings is relative divisibility: A submodule A of a module B is called relatively
divisible or briefly RD-submodule if rA = ANrB for every r € R. This terminology
is due to Warfield (1969) See, for example, Fuchs & Salce (2001, Chap I, §7) for

properties of RD-submodules.

Proposition 2.3.5. (Warfield, 1969, Proposition 2) Let R be a ring and let r € R. The

following are equivalent for a short exact sequence

of R-modules where A is a submodule of B and i4 is the inclusion map:
(i) Homg(R/Rr,B)—2>Homg(R/Rr,C) is epic (that is, R/Rr is projective relative
toE);

1R/R®iA

(ii) R/rR®A

R/rR ® B is monic (that is, R/rR is flat relative to E);

(iii) rA =ANrB (that is, A is an RD-submodule of B).
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Note that the notion of Cohn’s purity is a strengthened version of the concept of
RD-submodule. Note also that Enochs calls RD-submodules pure submodules in his
definition of torsion free covers (see Section 1.2). By pure submodules in this thesis,

we will mean pure submodules in the sense of Cohn.

A ring R is said to be left semihereditary if every finitely generated ideal of R is
projective as a left R-module. A semihereditary commutative domain is called a Priifer

domain.

Over Priifer domains, pure submodules and RD-submodules of a module coincide
(see Warfield (1969, Corollary 5) or, for example, Fuchs & Salce (2001, Theorem
8.11)).

The following proposition that gives a basic relationship between flat modules and

pure-exact sequences will be useful:

Proposition 2.3.6. (by Lam (1999, Corollary 4.86))

LetE: 0 A B C 0 be a short exact sequence of modules.

(i) Assume B is flat. Then E is pure if and only if C is flat.

(ii) Assume C is flat. Then B is flat if and only if A is flat.

(iii) C is flat if and only if every short exact sequences ending with C is pure, that is,

C is Pureg-coprojective.

Definition 2.3.7. A proper class P is called []-closed (respectively &-closed) if for

every collection {E : 0 Ay By, Gy 0}xen in P, the direct product

[1E.: 0—=I1As [1).Bx [[L.G—0
AEA

(resp. the direct sum @Ex 00— D) Ay—— Dy BL— P, G,——0 ) isin P.
reA
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Proposition 2.3.8. (Sklyarenko, 1978, Propositions 1.2 and 3.2) Every projectively

(respectively injectively) generated proper class is [[-closed (resp. ®-closed).

Proposition 2.3.9. (by Sklyarenko (1978, Proposition 9.3)) Let P be a proper class.

(i) If P is []-closed, then every product of ‘P-coinjective modules is P-coinjective.

(ii) If P is @®-closed, then every direct sum of P-coprojective modules is

‘P-coprojective.

2.4 Preradicals and Torsion Theories for R-M od

In this section, we give the definition a torsion theory and some properties of
(pre)radicals for R-Mod (since we are interested in radicals on R-Mod in Chapter
3). Preradicals were first introduced in Maranda (1964). We refer to Clark et al. (2006,
§6) for elementary properties of preradicals and torsion theories for R-Mod. See also

Crivei (2004); injective modules relative to a torsion theory have been studied.
See Section 1.1 for the definition of (pre)radicals on R-Mod.

We collect the main elementary properties that we shall use frequently for a

(pre)radical on R-M od in the following proposition:

Proposition 2.4.1. (Clark et al., 2006, p. 55) Let T be a preradical on R-Mod, M be a
submodule of a module N and (M) )yep be a family of modules. Then

(i) if t(M) =M, then M C t(N),

(i) if T((N/M) =0, then t(N) C M,

(iii) © (@m) = D(M).

ACA AEA

(iv) T (Hm) C [T (M)

AEA AEA
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For completeness, note also the following properties of (pre)radicals with their

proofs:

Proposition 2.4.2. For a preradical T on R-Mod and a homomorphism f : M — N

of modules, we have:
(i) f(t(U)) Ct(f(U)) for every submodule U of M. In particular, f(t1(M)) C
Wf(M)).
(ii) If U is a submodule of M such that U = t(U), then f(U) =1(f(U)).
(iii) For every submodule K of M, if U is a submodule of M such that U = t(U), then
(U+K)/K =((U+K)/K). In particular, if K CU CM and U = t(U), then
U/K =1(U/K).
Proof. (i) It follows by considering the restriction f': U — f(U). Since T is a
preradical f(t(U)) = f'(2(U)) S t(f(V)).
(i) U = t(U) (by hypothesis) implies that f(U) = f(t(U)) C t(f(U)) C f(U) by
part (i), and so f(U) =1(f(U)).
(iii) It follows by taking the canonical epimorphism f : M — M /K in (ii); because
then (U+K)/K = f(U)=1(f(U)) =1((U+K)/K). O
Proposition 2.4.3. For a preradical T on R-M od and modules K C M, we have:
(i) (t*(M)+K)/K Ct(M/K).
(ii) If © is a radical and K C ©(M), then t©(M/K) = ©(M)/K (see, for example,
Stenstrom (1975, Chap. VI, Lemma 1.1)).

Proof. (i) Let f: M — M/K be the natural epimorphism. Since 7 is a preradical,

(t(M) +K)/K = f(u(M)) S t(f(M)) =t(M/K).
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(ii) Since K C t(M) it follows, by (i), that
W(M)/K = (x(M) + K) /K C1(M/K).
Conversely, since 7T is a radical we have
T[(M/K)/(x(M)/K)] = t(M /(M) = 0.

Thus ©(M/K) C (M) /K by Proposition 2.4.1-(ii). O

When we consider a ring R as a left R-module, we already have that A = T(gR) is
a left ideal of R; in fact, it is a two-sided ideal of R (as the following theorem shows),
so that we can consider the quotient ring R/A which we shall use in the results for

T-supplemented modules.

Theorem 2.4.4. (Stenstrom, 1975, Chap. VI, §1, Examples (3)) For each ring R and
any preradical T for R-Mod, when R is considered as a left R-module, the left ideal
T(gR) is a two-sided ideal of R.

Proof. Let A =1(gR). Since 7T is a preradical, A = T(gR) is a fully invariant submodule
of the left R-module R (that is, f(A) C A for every endomorphism f : RR — gR). Let
r € R. For the R-module endomorphism f : RR — gR, defined by f(x) = xr for every

X € R, we must have Ar = f(A) C A as required. O

Let 1 be a preradical for R-M od. For a free R-module F, the property ©(F) = T(R)F

is easily obtained. Indeed, if F = @p,; R for some index set /, then
(F) =P t(R) =P t(R)R =t(R)F.
il il
This also holds for projective modules since a projective module is a direct summand

of a free module: T(P) = t(R)P for a projective module P.
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Definition 2.4.5. A torsion theory for R-“Mod is a pair (7, F) of classes of modules
such that

(i) Homg(T,F)=0forall T €T, F € F.
(ii) If Homg(C,F)=0forall F € F,thenC € 7T.

(iii) If Homg(7T,C) =0forall T € 7, thenC € 7.
Here, 7T is called a torsion class and its modules are called torsion modules, while F

is called a torsion free class and its modules are called forsion free modules.

Every class of modules A4 generates and cogenerates a torsion theory in the

following sense.

Definition 2.4.6. Let 4 be a class of modules in R-M od.

(1) Consider the classes of modules

F1={Y € RMod | Homg(A,Y) =0, forall A € 4}

and
T ={X €e RMod | Homp(X,F) =0, forall F € F;}.
Then (77, 1) is a torsion theory called the torsion theory generated by 4.

(i1)) Consider the classes of modules

T ={X € RMod | Homg(X,A) =0, forall A € 4}

and
Fo={Y € RMod | Homg(T,Y) =0, forall T € T, }.
Then (I3, F>) is a torsion theory called the torsion theory cogenerated by A.

Note that 7; is the least torsion class containing A, whereas 7, is the least

torsionfree class containing 4.
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Recall that a torsion theory (7, F) for R-Mod is hereditary if the torsion class 7
is closed under submodules. Equivalently, the torsion free class ¥ is closed under

injective envelopes (by Proposition 2.8.7 since R-M od has enough injectives).

Let M be a module and let a € M. Then the set (M :a) ={r€R|ra€ M} is a
left ideal of R. For a submodule N of M, (0: N) = {r € R| rN = 0} is the annihilator
of N, denoted by Anng(N). For an element x € M, (0:x) = {r € R | rx =0} is the

annihilator of x, denoted by Anng(x).
Definition 2.4.7. A non-empty set F'(R) of left ideals of R is called a Gabriel filter if
(i) for every I € F(R) and every a € R, we have (I : a) € F(R) and,

(ii) for every J € F(R) and every left ideal I of R with (I : a) € F(R) forall a € J,

we have I € F(R).

The following result can be found, for example, in Crivei (2004):

Theorem 2.4.8. (see the proof of Crivei (2004, Theorem 1.3.3)) Let (T,F) be a
hereditary torsion theory for R-Mod. Then for the Gabriel filter F(R) for (T,F)
we have
F(R)={I|Iis aleft ideal of Rand R/I € T }.

Note that Rx € T if and only if Ix = 0 for some I € F(R). Equivalently, Rx € F if
and only if Ix # O for every I € F(R).
Theorem 2.4.9. (by Crivei (2004, Theorem 2.1.1)) Let © = (T, F) be a hereditary
torsion theory for R-Mod. The following are equivalent for a module M :

(i) M is injective with respect to every short exact sequence

such that C € T;
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(ii) Any homomorphism from a left ideal I of R such that R/I € T to M can be

extended to a homomorphism from R to M;

(iii) Exth(C,M) = 0 for every module C € T.

A module M satisfying these equivalent conditions is called t-injective.

Let M be a module. An element m € M is said to be a singular element of M if

Anng(m) < R. The set of all singular elements of M is denoted by Z(M), that is,

Z(M) = {m € M | Anng(m) <R}.

The submodule Z(M) is called the singular submodule of M. The module M is said to
be a singular module if Z(M) = M, and is said to be a nonsingular module if Z(M) = 0.
See, for example, Lam (1999, Chap. 3, §7) for some properties related to singular

modules.

Proposition 2.4.10. (Lam, 1999, Chap. 3, 7.6-(3)) A module M is singular if and only

if M = B/A for some modules A C B such that A <B.

We give some examples of torsion theories which will be used in Chapter 4 (see, for

example, Crivei (2004, Example 1.2.16)).

Example 2.4.11. Let tp be the torsion theory generated by the class of semisimple
(or even simple) modules. Then Tp is a hereditary torsion theory, called the Dickson

torsion theory. Its torsion and torsion free classes are respectively

Ip ={A € R-Mod | A is semi-artinian} and Fp={A € R-“Mod | SocA =0}.

In a torsion theory T = (7, F ), the torsion class 7 need not be closed under taking

injective envelopes. T is called stable if the torsion class 7 is closed under taking

injective envelopes. T is said to be faithful if R € F.
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Let Zy(M)={xeM |x+Z(M) € Z(Z/Z(M))} for a module M.

Example 2.4.12. Let 15 be the torsion theory generated by all singular modules. Then
T 1s a stable hereditary torsion theory, called the Goldie torsion theory. Its torsion and

torsion free classes are respectively

T6=1{A|Zy(A)=A} and F;={A|Aisnonsingular }.

Note that if R € ¥, that is, if R is nonsingular, then 7 consists of all singular modules.

Remark 2.4.13. In Thorem 4.3.7, Bowe has given his result for Goldie torsion theory

with R nonsingular; he has called this torsion theory Singular Theory.

2.5 Projective Covers and Perfect Rings

In this section, we give some elementary definitions and properties for projective

covers of modules and perfect rings which are needed in Chapter 3.

For modules P and M, an epimorphism f : P — M is said to be a projective cover

if P is projective and Ker f < P.

Definition 2.5.1. Let R be a ring.
(1) R is called left perfect (semiperfect) if every (finitely generated) left R-module

has a projective cover.

(i1) R is said to be a left max ring if every left R-module has a maximal submodule

or equivalently, Rad M < M for every left R-module M.

(iii) R is said to be a semilocal ring if R/J(R) is a semisimple ring (that is a left
(and right) semisimple R-module) (see Lam (2001, §20)). Semilocal rings are
also referred to as rings semisimple modulo their radical (see Anderson & Fuller

(1992, §15, pp. 170-172)).
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Proposition 2.5.2. Let R an arbitrary ring.

(i) If P is a projective module and U is a submodule of P such that P/U has a
projective cover, then U has a supplement V in P such that V is a direct summand

of P (and hence projective) (see Wisbauer (1991, 42.1)).

(ii) A ring R is (left or right) semiperfect if and only if the left (or right) R-module R
is supplemented (see Wisbauer (1991, 42.6)).

(iii) For a semilocal ring R, RadM = JM for every left R-module M where J = J(R)

(see, for example, Anderson & Fuller (1992, Corollary 15.18)).

Recall that a subset I of a ring R is said to be left T-nilpotent in case for every

sequence {ay };._, in I there is a positive integer n such that a; - --a, = 0.
Some of the principal characterizations of left perfect rings given by Bass are
contained in the following theorem:

Theorem 2.5.3. (see, for example, Anderson & Fuller (1992, Theorem 28.4)) The

following are equivalent for a ring R:
(i) R is left perfect;
(ii) R is a semilocal ring and J(R) is left T-nilpotent;

(iii) R is a semilocal left max ring.

2.6 Torsion Free Covering Modules over Commutative Domains

In this section, we review some basic properties of torsion free covers for the
usual torsion theory over a commutative domain, and in general for hereditary torsion

theories.
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See Section 1.2 for the definition of torsion free covers of modules over

commutative domains.

If F is the class of all torsion free modules, then F-covers coincide with torsion
free covers defined in Section 1.2. The following is not the usual definition of torsion

free covers, but agree with it.

Proposition 2.6.1. (see arguments after Enochs & Jenda (2000, Definition 5.1.1))
Let F be the class of all torsion free R-modules over a commutative domain R. A
homomorphism @ : T — M of modules is torsion free cover of M if and only if @ is an

F-cover of M.

In Enochs (1963, Theorem 1) it was proved that every module over a commutative
domain has a torsion free cover (see also Enochs & Jenda (2000, Theorem 4.2.1)).
That is, he proved the existence of torsion free covers for the usual torsion theory over
a commutative domain. In Teply (1976) and Golan & Teply (1973), this result has been

generalized to faithful hereditary torsion theories for R-M od.

Let (7,%) be a faithful hereditary torsion theory for R-Mod. A torsion free
precover @ : F — M (i.e., @ satisfies (i) in the definition of torsion free covers given
in Section 1.2) is called a torsion free cover of M if Ker¢ contains no non-trivial

submodule N of F such that F/N € F.

For a partially ordered set L, a subset K C L is said to be cofinal if, for every n € L,

there exists k € K such that n < k.

A Gabriel filter F(R) for a hereditary torsion theory T = (7, F ) for R-Mod is said
to have a cofinal subset of finitely generated left ideals if, for every I € F(R), there
exists a finitely generated left ideal J C I such that J € F(R). Note that if a hereditary

torsion theory T has a cofinal subset of finitely generated left ideals, then 7T is said to be
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of finite type (see Golan (1986, Chap. 42)).

Theorem 2.6.2. (Teply, 1969, Theorem 1.5) Let (‘T , F ) be a hereditary torsion theory.
If any direct sum of torsion free injective modules is injective, then F(R) has a cofinal

subset of finitely generated left ideals.

Theorem 2.6.3. (Teply, 1976, Theorem) Let (I, F) be a faithful hereditary torsion
theory. If the Gabriel filter F(R) has a cofinal subset of finitely generated left ideals,

then every R-module has a unique torsion free cover.

Corollary 2.6.4. Let (T, F) be a faithful hereditary torsion theory. If any direct sum
of torsion free injective modules is injective, then every R-module has a unique torsion

free cover.

2.7 Abelian Categories

In this section we recall some definitions and elementary properties of abelian
categories. For more details we refer to Stenstrom (1975, Chaps. IV-V) or Freyd

(1964).

A category C 1s defined to consist of three ingredients: a class Obj((C) of objects of
C, a set Hom(A,B), whose elements are called morphisms from A to B for every
ordered pair (A,B) of objects, and composition Hom(C',C") x Hom¢(C,C") —
Hom(C,C") for every ordered triple (C,C’,C") of objects. These ingredients subject
to the following axioms (note that we often write o : C — C’ or C % ' instead of
o € Hom(C,C"), and the composition of o € Hom(C,C") and B € Hom(C',C") is
denoted by Bav):

(i) Hom¢(C,C’) and Hom(D, D) are disjoint sets if (C,C’) # (D,D’),

(ii) composition is associative: if o : C — C',B:C' — C" andy: C" — C"" are

morphisms, then y(fa) = (YB)o.
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(iii) for every object C, there is an identity morphism 1¢ : C — C such that Ico. = o

and Blc =P foralla:C’' — Cand f:C — C".

The opposite category C°P is defined to be a category with Obj(C??)= Obj(C), with
morphisms Homop (A, B) = Hom(B,A), and with composition the reverse of that in

C; thatis, g* f = fog, where * is a composition in C°” and o is a composition in C.
A morphism o : C — C” in a category C is an isomorphism if there exists : C' —
C such that o = 1 and Pa = 1¢.

Definition 2.7.1. If C and D are categories, then a functor T : C — D is a function

such that

(i) if A € Obj(C), then T (A) € Obj(D),
(i) if f:A — A'in C, then T(f) : T(A) —> T(A") in D,
(iii) if f:A—>A’and g: A" — A" in C, then T (gf) =T ()T (f),

(iv) T(1a) = I7(a) for every A € Obj(C).

Thus, there is a map

Hom(C,C’") — Homy (T (C),T(C")) (2.7.1)

given by f — T(f) for every pair C,C’ € Obj(C). The functor T is called faithful if
these maps are one-to-one and, 7 is called full if they are onto. A functor T : C°? — D

is said to be a contravariant functor from C to D.

Definition 2.7.2. Let S and T be functors C — D. A natural transformationn : S —

T is obtained by taking for each object C in C a morphism n¢ : S(C) — T(C) in D,
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so that for every morphism o : C — C’ in ( the following diagram commutes:

S(C) 25~ T(C)
S(oc)l lr(a)

S(C') - T(C))

n is called a natural equivalence if each n¢ is an isomorphism in D.

A category (C is called a small category if the class of objects of C is a set. If
I is a small category and C is any category, the functor category Fun(I, C) can be
defined, where the objects are the functors I — C and the morphisms are the natural
transformations between such functors; see, for example, Stenstrom (1975, Chap. 1V,

§7) for details.

A category ( is called a preadditive category if each set Hom(C,C’) is an abelian
group and the composition map Hom(C',C") x Hom(C,C") — Hom(C,C") is
bilinear, that is, given morphisms f,g € Hom/(C,C’) and o, € Hom/(C',C"), we

have a(f+g)=oaf+ag and (a+B)f =af+Bf.

Let C and D be preadditive categories. A functor T : C — D is called additive
if T(a+ao) =T(a)+T(a) for all o, : C — C’ in C, that is, the map (2.7.1) is a

group homomorphism.

Definition 2.7.3. Let C and D be two preadditive categories, and let S : C — D and
T : D — (C be two additive functors. S is said to be a left adjoint of T (symmetrically

T is said to be a right adjoint of S) if there is a natural equivalence
N : Home(—,7(—)) — Homp(S(—),—)

of functors C°? x D — 4b, that is, for every pair of objects C € Obj(C) and D €
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Obj(D), there is an isomorphism

T]C,D . HomC(C, T(D)) — HOH’IQ)(S(C),D)

which is natural in C and D.

Let C be a preadditive category. A zero object in C is an object Z of C such that
Hom(C,Z) = 0 and Hom(Z,C) = 0 (the trivial abelian group) for every object C of
C. Any two zero objects are isomorphic, so we denote them by a single zero object 0
of C. A morphism f: A — B in C is a monomorphism if fo. = 0 implies o = 0 for
every morphism o : X — A. Dually, f is an epimorphism if Bf = 0 implies f =0
for every morphism [ : B — X. Two monomorphisms f:A — Band f': A’ — B
are said to be equivalent if there is an isomorphism /& : A — A’ such that f'/h = f.
An equivalence class of monomorphisms into C € Obj(C) is called a subobject of C.
Dually, quotient objects are defined. Two epimorphisms f: A — Band g: A — B’
are said to be equivalent if there is an isomorphism & : B — B’ such that Af = g. An
equivalence class of epimorphisms onto A € Obj(C) is called a quotient object of A.
When A is a subobject of B we write A C B, and so we write B/A for the quotient object

Coker(A — B) of B.

Definition 2.7.4. Let C be a preadditive category with a zero object and let f : A — B
be a morphism in C. Then a kernel of f, denoted by ker f, is a morphism k: K — A
such that fk =0, and for every morphism g : C — A with fg = 0, there exists a unique
morphism 4 : C — K such that g = kh. Note that, K is denoted by Ker f and that ker f
is a unique monomorphism (more precisely, any two kernels of a morphism represent
the same subobject). Also, f is a monomorphism if and only if Ker f = 0.

Dually, a cokernel of f, denoted by coker f, is a morphism p : B — C such that
pf =0, and for every morphism g : B — D with gf = 0, there exists a unique

morphism 4 : C — D such that hp = g. Note that, C is denoted by Coker f and that
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coker f is a unique epimorphism, and f is an epimorphism if and only if Coker f = 0.

Definition 2.7.5. Let C be a preadditive category with a zero object. A product of
a family (C;);c; of objects of C is an object C together with morphisms w; : C —
C; (i €I) such that for every object X and morphisms f; : X — C;, there is a unique
morphism f : X — C with &;f = f; for all i € I. The product C is unique up to
isomorphism and is denoted by HCI"

Dually, a coproduct of a famille; (Ci)ier of objects of C is an object C together with
morphisms ¢; : C; — C (i € I), such that for every object X and morphisms f; :
C; — X, there is a unique morphism f : C — X with fe; = f; for all i € I. The
coproduct C is unique up to isomorphism and is denoted by |_|Cl~. Note that, since C
is a preadditive category, the coproduct is called a direct sum laid is denoted by EBCi.

iel

Let C be a preadditive category with a zero object such that every morphism has

a kernel and a cokernel. For every morphism o : B — C, we have the following

commutative diagram (see, for example, Stenstrom (1975, Chap. 1V, §4) for details):

Kera kera B o C cokera, Cokera . (2.7.2)

2 £

Coker(kera.) —= Ker(coker o)

Definition 2.7.6. Let C be a preadditive category with a zero object. C is said to be an

abelian category if

(i) every finite family of objects of C has a product and a coproduct,
(i) every morphism in C has a kernel and a cokernel, and

(iii) the morphism & of (2.7.2) is an isomorphism for every morphism o.

For every morphism f : A — B in an abelian category, the image of f is defined as
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Im f = Ker(coker f). Thus f has a factorization

A—%Tmf-P.p

where o is an epimorphism and [3 is a monomorphism.

Let C be an abelian category. A sequence

is exact at Cy, if Im o, = Kera,, (equal as subobjects of C,,).

An additive functor T : C — D between abelian categories C and 9D is said to be

an exact functor if it carries exact sequences in ( into exact sequences in D.

Let C be an abelian category. A short exact sequence in C is a sequence

0 A ! B—%-C 0 such that Imf = Kerg. In this case, f is a

monomorphism and g is an epimorphism. Two short exact sequences

/. B8.C o0 and E:0—=A—t-B -5 -Cc— 0

in C starting with A and ending with C are said to be equivalent if we have a

commutative diagram

with some morphism y : B — B’, where 14 : A — A and 1¢ : C — C are identity
morphisms. Denote by Ext-(C,A) the set of equivalence classes of all short exact

sequences in (C starting with A and ending with C.
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Let C be an abelian category. A class # of objects in ( is said to be closed under

extensions if for every short exact sequence

of objects in ¥, we have B € F whenever A,C € ¥. An object Q of C is said to be
projective if the functor Hom-(Q,—) : C — A4b is exact, and is said to be injective if

the functor Homp(—, Q) : C°? — Ab is exact.

The category ( is said to have enough projectives if every object of C is a quotient
object of a projective object, and C is said to have enough injectives if every object
is a subobject of an injective object. For instance, it is well-known that the category

R-M od has enough projectives and injectives.

Let C an abelian category. An object C of ( is said to be a generator for C if

Hom(C, —) is faithful, and is a cogenerator if Hom(—,C) is faithful.

Proposition 2.7.7. (Stenstrom, 1975, Propositions 1V.6.3, 6.5) A projective object P of
an abelian category C is a generator if and only if there exists a nonzero morphism
P — C for every C # 0 in C, and an injective object E is a cogenerator if and only if

there exists a nonzero morphism C — E for every C # 0 in C.

Definition 2.7.8. A family (U;);c; of objects of an abelian category ( is said to be
a family of generators for C if for every nonzero morphism o : B — C in C, there
exists a morphism B : U; — B, for some i € I, such that aff # 0. If, moreover, C
has coproducts, then @,; U; is a generator for C (see, for example, Stenstrom (1975,

Chap. IV, Example 3)).

Let C be a preadditive category, I be a small category and F : I — ( be a functor.

A set of morphisms o; : X — F (i) for all i € Obj(I) is said to be compatible if for
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every morphism A : i — j in I, the following diagram commutes:

In category theory, the functor F is often referred to as a diagram in C of type 1, and

the set o; of morphisms as a commutative cone with vertex X over the diagram F.

A commutative co-cone with vertex X over the diagram F, denoted by o : FF — X,
is a set of morphisms «; : F (i) — X for all i € Obj(I) such that for every morphism

A : i —> jin I the following diagram commutes:

M FG).
%

Definition 2.7.9. A limit (or projective limit) of a diagram F : I — (C is a cone T :

F(i)

1<i£lF — F such that for every cone o : X — F there exists a unique morphism
E: X — h;nF such that ;€ = o for every i € Obj(I). This limit is unique up to
isomorphism, if it exists. The category (C is called complete if the limit exists for every
diagram F : I — C when I is small.

A colimit (or inductive limit) of a diagram F : I — Cis aco-cone1: F — @F
such that for every co-cone o : F — X there exists a unique morphism & : liLnF — X
such that &; = o; for every i € Obj(I). This colimit is unique up to isomorphism, if

it exists. The category (C is called co-complete if the colimit exists for every diagram

F : 1 — C when Iis small.

A partially ordered set I is called a directed set if for every i, j € I, there exists a

k € I'suchthati < kand j <k. If Iis a directed set and ( is an arbitrary category, then
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a functor I — ( is called a direct system in C, and a functor I°? — ( is called an
inverse system in C. The colimit of a direct system I — (C is called a direct limit, and

the limit of an inverse system I°” — ( is called an inverse limit.

Note that, for a cofinal subset K of a directed set /, the direct limit (respectively
inverse limit) over / is isomorphic to the direct limit (resp. inverse limit) over K (see,

for example, Rotman (2009, Exercise 5.22, p. 255)).

Let C be an abelian category. A well-ordered direct system {Cq : 0t < A} of objects
in C is said to be continuous if Cy = 0 and, for every limit ordinal ® < A, we have
Co = li_r)an, where the limit is taken over all ordinals o0 < A. A continuous directed
system {Cqy : o0 < A} is called a continuous directed union if all morphisms in the

system are monomorphisms.

A cocomplete abelian category (or abelian category with coproducts) C is called
a Grothendieck category if direct limits are exact in C and C has a generator.
For example, the category R-Mod is a Grothendieck category by Stenstrom (1975,

Proposition 1.5.3).

For a cocomplete abelian category C, a family (C;);c; of subobjects of an object C
of C is said to be a direct family if I is a directed set when one defines i < j whenever

G CC;.

Let C be an abelian category and C be an object in C with a family {C;};c; of
subobjects. The monomorphisms C; — C induce a morphism o : @;,;C; — C. The

image of o is called the sum of the subobjects C; and is denoted by ZC,: Dually, the
icl
epimorphisms C — C/C; induce a morphism 3 : C — HC /Ci. The kernel of B is
icl
called the intersection of the subobjects C; and is denoted by ﬂCi.
i€l

In the following proposition, for two monomorphisms f :C; — Cand g:C; — C
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(i.e., C; and C; are subobjects of C), we write C; < C| if there is a morphism & : C; — C;

such that gh = f (h will then be a monomorphism).

Proposition 2.7.10. (Stenstrém, 1975, Chap. 1V, Proposition 4.2) If {C;}ic; is a family
of subobjects of C in an abelian category C, then ZCi is a least upper bound and ﬂ C;

icl icl
is a greatest lower bound for the family.

Proposition 2.7.11. (Stenstrom, 1975, Proposition V.1.1) Let C be a cocomplete
abelian category and let C be an object of C. Then direct limits are exact in C if

and only if for every subobject B of C one has

(ch) NB=Y (CiNB)

iel iel

where (C;)icy is a direct family of subobjects of C.

Let C be a Grothendieck category. A subobject B of an object C is said to be
essential if BN C' # 0 for every nonzero object C' with C' C C. An injective envelope

of an object in C is an essential monomorphism C — E, where E is an injective object.

Proposition 2.7.12. (Stenstrom, 1975, Chap. X, Corollary 4.3) Every object in a
Grothendieck category is a subobject of an injective object.

From the previous result we deduce that every Grothendieck category has enough
injectives. Moreover, by for example Stenstrom (1975, Chap. V, Example 1), every

Grothendieck category has injective envelopes.

See Section 1.3 for the definition of a locally finitely generated category.

Proposition 2.7.13. (see, for example, Stenstrom (1975, Chap. V, Proposition 3.2))
Let C be a Grothendieck category. An object C of C is finitely generated if and only if

the functor Homy(C, —) preserves direct unions, that is,

li_r)nHomC(C,Di) = Homc(C,ZDi)

i
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for every direct family (D;)icr of subobjects of an object D in C.

Proposition 2.7.14. ((see, for example, Stenstrom (1975, Chap. V, Proposition 3.4)))
Let C be a locally finitely generated Grothendieck category. An object C of C is finitely

presented if and only if the functor Hom(C, —) preserves direct limits, that is,
limHom¢(C, D;) = Home¢(C,lim D;)
— —

for every direct system (D )cy in C.

Proposition 2.7.15. (Stenstrom, 1975, Chap. V, Example 2) Every finitely generated

projective object is finitely presented.

2.8 Torsion Theories for Abelian Categories

In this section we give the definition and some useful properties of torsion theories
in abelian categories. We refer to Stenstrom (1975, Chap. VI, §2) for further details

for torsion theories in abelian categories.

A category is said to be locally small if the class of the subobjects of any given

object is a set (recall that subobjects are equivalence classes of monomorphisms).

Torsion theories were introduced in Dickson (1966) for an abelian category C which
was moreover assumed to be subcomplete, that is, locally small and for every set
{Cy.}ren of subobjects of C, G;C;L and I—IA;L exist. Thus, throughout this section,

AEA AeA

unless otherwise stated, we assume ( to be a complete, cocomplete and locally small

abelian category.

A preradical © of C is defined to be a subfunctor of the identity functor on C, that is,

for every object C, ©(C) is a subobject of C and every morphism C — D in C induces
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a morphism t(C) — t(D) by restriction.

If t; and 1, are preradicals, then the preradicals 71T, and T; : T can be defined as

follows:

T172(C) =T1(72(C)) and (71 :72)(C)/71(C) = 12(C/71(C)).

A preradical 7 is said to be idempotent if 1(t(C)) = t(C), and is called a radical if

T: 1T =1, that is, T(C/7(C)) = 0 for every object C of C.

To a preradical T the following two classes of objects in C are defined:

T = {C € Obj(C) | ©(C) =C},  F = {C € Obj(C) | 7(C) =0}

T is called a pretorsion class which is closed under quotient objects and coproducts,
and ¥ is called pretorsion free class which is closed under subobjects and products

(see, for example, Stenstrom (1975, Chap. VI, Proposition 1.2)).
Any preradical 7T is a functor preserves monomorphisms. In general this functor
need not be exact.

Proposition 2.8.1. (see, for example, Stenstrom (1975, Chap. VI, Proposition 1.7))

The following are equivalent for a preradical T for the category C:

(i) 7 is a left exact functor;
(ii) if D C C, then (D) =t(C)ND;

(iii) T is idempotent and ‘I; is closed under subobjects.

If these equivalent conditions are satisfied, then 7T is called a hereditary preradical.

Torsion theories for abelian categories were introduced in Dickson (1966, p. 224):
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Definition 2.8.2. A torsion theory for the category C is a pair (7, F) of classes of

objects in C such that

(i) Hom(T,F)=0foralT € T,F € 7.
(ii) If Homo(C,F)=0forall F € F,thenC € 7.

(iii) If Hom(7,C) =0forall T € 7, thenC € F.
T is called a torsion class and its objects are torsion objects, while F is called a torsion

free class and its objects are torsion free objects.

Proposition 2.8.3. (Stenstrom, 1975, Chap. VI, Proposition 2.1) The following

properties of a class ‘T of objects in the category C are equivalent:

(i) T is a torsion class for some torsion theory;

(ii) T is closed under quotient objects, coproducts and extensions.

Proposition 2.8.4. (Stenstrom, 1975, Chap. VI, Proposition 2.2) The following

properties of a class F of objects in the category C are equivalent:

(i) F is a torsion free class for some torsion theory,
(ii) F is closed under subobjects, products and extensions.

Proposition 2.8.5. (Stenstrom, 1975, Chap. VI, Proposition 2.3) There is a bijective

correspondence between torsion theories and idempotent radicals in C.

A torsion theory (7, F) for the category C is called hereditary if ‘T is hereditary,

that is, 7 is closed under subobjects.

Proposition 2.8.6. (Stenstrom, 1975, Chap. VI, Proposition 3.1) There is a bijective

correspondence between hereditary torsion theories and left exact radicals.

Proposition 2.8.7. (Stenstrom, 1975, Chap. VI, Proposition 3.2) Let C have injective
envelopes. A torsion theory (T, F) for C is hereditary if and only if F is closed under

injective envelopes.
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2.9 Cotorsion Theories

This section contains some definitions and elementary properties of cotorsion
theories (or cotorsion pairs). The notion of cotorsion groups has been introduced in
Harrison (1959) and independently in Nunke (1959) and Fuchs (1960). The concept
of cotorsion theory were introduced by Salce (1979) in the category of abelian groups;
however, the definition can be extended to abelian categories. Actually, the definition
of cotorsion theory is analogous of the definition of torsion theory, replacing the functor
Hom by Ext. Cotorsion theories have been used to study covers and envelopes (see
Enochs & Jenda (2000, Chap. 7)), particularly in the proof of the flat cover conjecture

which has been open for nearly twenty years (see Bican et al. (2001)).

Throughout this section, the letter 4 will denote an abelian category, and all classes

considered are closed under isomorphisms.

Given a class ¥ of objects of 4, L (respectively F l) is defined as the class of
objects C such that Ext4(C,F) = 0 (resp. Ext4(F,C) =0) forall F € F. - F and ¥+

are called orthogonal classes of F.

Definition 2.9.1. Let (7, C) be a pair of classes in 4. A class D is said to generate the
pair (F,C)if D= F (and so D C F1) and a class G is said to cogenerate (F,C) if
G+ = C(andso G C*0).

A pair (F, C) of classes of objects in 4 is called a cotorsion theory (or a cotorsion

pair)if Fr=Cand -C=7F.

The following examples of cotorsion theories can be found, for example, in Enochs

& Jenda (2000, §7.1).

Example 2.9.2. The pairs (R-“Mod, Inj) and (Proj,R-Mod) are cotorsion theories
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where Inj and Proj denote the classes of injective and projective modules respectively.
The cotorsion theory (R-Mod, Inj) is cogenerated by the set of modules R/I where [
is a left ideal of R (because, an R-module E is injective if and only if Exth(R/I,E) = 0

for all left ideals / of R), and it is generated by the class of injective modules.

Note that if (F,C) is a cotorsion theory, then ¥ and C are both closed under
extensions and direct summands, and if the category A has projective (respectively
injective) objects, then F (resp. C) contains all the projective (resp. injective) objects.
Also, ¥ is closed under arbitrary direct sums and C is closed under arbitrary direct
products. If the pair (F, () is generated by a set X (not just a class), then (F,C) is

generated by the object H M, and if (F,C) is cogenerated by a set X (not just a
Mex

class), then (F, C) is cogenerated by the object @ M.
Mex

An abelian group G is called cotorsion if Ext(T, G) = 0 for every torsion free group
T'; see, for example, Fuchs (1970, §54). This notion has been generalized to modules:
An R-module M is said to be cotorsion if Exth(F,M) = 0 for all flat modules F; see,

for example, Enochs & Jenda (2000, Definition 5.3.22).

Example 2.9.3. (Enochs & Jenda, 2000, Lemma 7.1.4) Let # be the class of all flat
modules. Then 7+ = ( is the class of cotorsion modules. In this case, (7, C) will be

a cotorsion theory; it is called flat cotorsion theory.

Definition 2.9.4. A pair (7,C) of classes of objects in 4 is said to have enough

injectives if for every object M in 4 there is an exact sequence
0—M-—C—F—0

withC € Cand F € ¥, and (¥, C) is said to have enough projectives if for every object

M there is an exact sequence

0O0—C—F—M-—70
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with F € F and C € C.

Remark 2.9.5. Eklof and Trlifaj proved that every cotorsion theory cogenerated by a
set of modules has enough projectives and injectives (Eklof & Trlifaj, 2001, Theorem
10). Moreover, the flat cover conjecture of Enochs (that is, every module has a flat
cover) (Enochs, 1981) is equivalent to the conjecture that the flat cotorsion theory
(F, C) of R-modules has enough projectives. Indeed, if (F, C) has enough projectives,

then for every R-module M there is an exact sequence

withC € Cand F € . So, for every flat module F’, we obtain that

Homg(F',F) — Homg(F',M) — 0

is exact since Exth(F’,C) = 0 (as C is cotorsion). This means that ¢ : F — M is a
flat precover (see the next section for the definition of a cover), and it is known that
the existence of flat precovers implies the existence of flat covers (by Enochs (1981,
Theorem 3.1)). Therefore, Enochs proved the flat cover conjecture by proving that

(F,C) is cogenerated by a set.

2.10 Covers and Envelopes

In this section, we give some needed properties of covers and envelopes for a given
class of objects in an abelian category. See Section 1.3 for the definitions and the
motivation for the study of covers and envelopes. Throughout this section the letter 4

will denote an abelian category, and # will denote a class of objects in 4.

The proofs of the following elementary properties of #-covers and ¥ -envelopes
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can be found, for example, in Xu (1996, §1.2) for module categories, but the same
argument of the proofs carry over to abelian categories. Suppose that ¥ is closed
under isomorphisms, direct summands and under finite direct sums.

If an ¥ -cover exists, then it is unique up to isomorphism:

Proposition 2.10.1. If @1 : F{ — M and @, : F, — M are two different F -covers of

an object M, then F1 = F>.

Also, F-covers are direct summands of ¥ -precovers:

Proposition 2.10.2. Suppose that an object M admits an F -cover, and that ¢ : F —
M is an F-precover. Then F = F\ & K for subobjects F| and K of F such that the

restriction Q |p,: F1 — M is an F -cover of M and K C Ker(o).

We have the dual results for ¥ -envelopes, that is, if an ¥ -envelope exists then it is

unique up to isomorphism, and ¥ -envelopes are direct summand of ¥ -preenvelopes.

The following two results are known as Wakamutsu’s Lemmas (see, for example,

Xu (1996)).

Proposition 2.10.3. (Xu, 1996, Lemma 2.1.1) Let ¢ : F — M be an F -cover of an

object M. If the class F is closed under extensions, then Ker(@) € F=.

Dually we have

Proposition 2.10.4. (Xu, 1996, Lemma 2.1.2) Let @ : M — F be an F -envelope of an

object M. If the class F is closed under extensions, then Coker(@) € + .



CHAPTER THREE
RAD-SUPPLEMENTED MODULES

In this chapter, we investigate some properties of Rad-supplemented modules and
in general t-supplemented modules where 7 is a radical for R-M od. In Section 3.5, we
answer one of our main questions that when are all left R-modules Rad-supplemented.
We investigate some further properties of T-supplemented modules in Section 3.3.
For some rings R, we also determine when all left R-modules are T-supplemented in
Section 3.4. We describe Rad-supplemented modules over Dedekind domains using
the structure of supplemented modules over Dedekind domains which was completely
determined in Zoschinger (1974) (see Section 3.6). See Wisbauer (1991, §41) and the
recent monograph Clark et al. (2006) for the results (and the definitions) related to

(weak) supplements and (weakly) supplemented modules.

Throughout this chapter we shall follow the terminology and notation as in Clark
et al. (2006, §10) and Al-Takhman et al. (2006), since we will mainly refer to these for
T-supplemented modules and Rad-supplemented modules. Unless otherwise stated, T

will be a radical for R-M od.

3.1 t-reduced and t-coatomic Modules

Let 1 be a preradical for R-M od and let M be a module. By taking T instead of Rad
in the definitions of reduced and coatomic module definitions in Zoschinger (1974, p.

47), we define the following:

(i) M is said to be a t-forsion module if T(M) = M, that is, M is in the pretorsion

class 7.

(i1) M is said to be a T-reduced module if it has no nonzero T-torsion submodule,

61
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that is, for every submodule U of M, ©(U) = U implies U = 0 or equivalently,

T(U) # U for every nonzero submodule U of M.

(iii) M is said to be a T-coatomic module if it has no nonzero T-torsion factor
module, that is, for every submodule U of M, ©(M/U) = M /U implies U = M

or equivalently, ©(M/U) # M /U for every proper submodule U of M.

For © = Rad, a Rad-torsion module will be called a radical module, a Rad-reduced
module will be called a reduced module and a Rad-coatomic module will be called
a coatomic module following the terminology in Zoschinger (1974). Coatomic
modules appear in the theory of supplemented, semiperfect, and perfect modules. See

Zoschinger (1974, Lemma 1.5) for some properties of reduced and coatomic modules.

Remark 3.1.1. See Golan (1986, pp. 29,63) for the definitions and properties
of T-dense submodules of a module and T-cotorsionfree modules for a hereditary
idempotent preradical T on R-Mod: A submodule N of a module M is said to be
t-dense in M if M/N is t-torsion, that is, ©(M/N) = M /N, and a module M is said
to be T-cotorsionfree if it has no proper T-dense submodules. Our definition of
T-coatomic module coincides with T-cotorsionfree module, but in our case, T need not
be idempotent or hereditary; in particular, Rad is not hereditary. The properties for
T-cotorsionfree modules given in Golan (1986) hold under this hereditary assumption.
For example, arbitary direct sum of tT-cotorsionfree modules is T-cotorsionfree when
T is a hereditary idempotent preradical, but in our case, for just an (idempotent)

preradical T, arbitrary direct sum of T-coatomic modules need not be T-coatomic.

By the results in Stenstrom (1975, Chap. VI, §2), the properties of t-torsion and

T-reduced modules in the following Proposition 3.1.2 are obtained.

Proposition 3.1.2. Let T be a preradical for R-Mod.

(i) The class of t-torsion modules is closed under quotients and direct sums.
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Moreover, if T is a radical, then the class of t-torsion modules is closed under

extensions.
(ii) Every factor module of a t-coatomic module is T-coatomic.

(iii) The class of t-reduced (respectively T-coatomic) modules is closed under

extensions, that is, if

0 A B C 0 (3.1.1)

is a short exact sequence of modules such that A and C are T-reduced (resp.
T-coatomic), then B is also t-reduced (resp. T-coatomic).

Proof. (i) Let M be a t-torsion module, that is, ©(M) = M. Then for every
submodule K C M, we have M /K = (1(M) +K)/K C t(M/K) by Proposition
2.4.3-(i). Thus ©(M)/K = t(M/K) since 1(M/K) C M /K is always true. Now,
for a family (M;); of t-torsion modules (for some index set I) we have, by

Proposition 2.4.1, that
(@) - @won) - @
il i€l il
Moreover, if T is a radical and
0—A—B—C—0
is a short exact sequence such that A and C = B/A are T-torsion modules, then

B/A=1(B/A) =1(B)/A

where the last equality holds by Proposition 2.4.3-(ii) (since A = t(A) C 1(B)).

This implies that ©(B) = B.

(ii) Let M be a t-coatomic module and let U C M. Suppose that t[(M/U)/(K/U)| =
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(M/U)/(K/U) for submodules U C K C M. Since (M/U)/(K/U) = M/K,
we obtain that ©(M/K) = M /K, and so M = K (since M is T-coatomic). Thus

M/U=K/U.

(ii1) To prove this, in the above short exact sequence (3.1.1) we can assume, without
loss of generality, that A C B, C = B/A, the map A — B is the inclusion
homomorphism and the map B — C = B/A is the canonical epimorphism. Let
U be a submodule of B. Suppose firstly that A and C = B/A are t-reduced, and
T©(U) = U. Then by Proposition 2.4.2-(iii), (U +A)/A =1((U +A)/A). Since
B/A = C is t-reduced, we obtain that (U +A)/A =0, and so U C A. Therefore
since A is t-reduced, U = 0 as required. Now suppose that A and C = B/A are

t-coatomic, and T(B/U) = B/U. Then by Proposition 2.4.2,

t(B/U)/((U+A)/U)] = (B/U)/((U +A)/U).

We have the following natural isomorphisms:

(B/A)/((U+A)/A)=B/(U+A)= (B/U)/((U+A)/U).

So we also have t[(B/A)/((U+A)/A)] = (B/A)/((U+A)/A). Since B/A =C

is T-coatomic, (U +A)/A = B/A and so U + A = B. Then we have

AJ(UNA) X (U+A)/U=B/U  and  1(B/U)=B/U.

Thent(A/(UNA)) =A/(UNA) which implies that U NA = A as A is T-coatomic.

Thus A C U, and so U +A = B implies that U = B as required. 0

Proposition 3.1.3. Let T be a radical for R-Mod. If a module M is T-coatomic, then
(M) < M.
Proof. Suppose T(M) + L = M for some submodule L C M. Since M/L = (t(M) +

L)/L C t(M/L), we obtain that M/L = t(M/L). This gives L = M since M is
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T-coatomic. Hence 1(M) < M. O

3.2 The Largest t-torsion Submodule P;(M)

In this section, we define the largest T-torsion submodule P(M) of a module M,

and give some properties of it which will be used frequently in this chapter.

By P;(M) we denote the sum of all T-torsion submodules of M, that is,
P(M)=Y{UCM|t(U)=U}.

Note that for T = Rad, P;(M) will be denoted by just P(M).

Remark 3.2.1. It can be seen immediately that a module M is T-reduced if and only if

M is P-torsion free, that is, P;(M) = 0.

Remark 3.2.2. For a ring R, P(gR) will be the sum of all left ideals I of R such that
Rad/ = I. In this thesis, by P(R) we will mean P(grR). Now, define P(Rg) to be the
sum of all right ideals I of R such that Rad/ = I. Thus, the question has been raised
whether P(gR) = P(Rg) or not. For example, J(gR) = J(Rg) and so the notation J(R)

is used for the Jacobson radical of R.

The following theorem contains some useful elementary properties of Pr(M):

Theorem 3.2.3. Let T be a preradical for R-M od and let M be an R-module.

(i) Py is an idempotent preradical.
(ii) If M C N for a module N, then Pr(M) C t(N). In particular, Py (M) C ©(M).

(iii) T(Pr(M)) = P(M), that is, P(M) is a t-torsion module, and so P;(M) is the

largest t-torsion submodule of M (by its definition).
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(iv) If P(M) CV for a submodule V of M, then Py(M) C t(V).
(v) Pe(1(M)) = Pi(M)

(vi) The pretorsion class of Py equals the pretorsion class of T and the pretorsion free

class of Py contains the pretorsion free class of T:

Ip, = I and Fr. 2 Fr.

T

(vii) Moreover, if T is a radical, then the factor module M /P;(M) is t-reduced, that

is, P.(M/P:(M)) = 0, and so P; is an idempotent radical.

Proof. (i) Clearly, P;(M) C M for every R-module M. Let f: M — N be a
homomorphism of R-modules. If U is a T-torsion submodule of M, then f(U) is

a T-torsion submodule of N by Proposition 2.4.2-(i1). So

fP(M)) = fFQRUCM|(U)=U})
= Y{f(U)|UCMU)=U}
C Y{VEN[ (V) =V}=P(N).

This shows that P is a preradical. To show that P; is idempotent, we only need to
show that P;(M) C P;(P:(M)). For every submodule U of M such that t(U) = U,

we clearly have U C P;(M), and so U C P;(P;(M)). Thus

P(M) = Y {U € M| T(U) = U} C Px(Pe(M)).

(ii) For every submodule U of M such that ©(U) = U, since U C N also, we have

U =1(U) C t(N) by Proposition 2.4.1-(i). Thus

P(M)=Y{UCM|t(U)=U}C1(N).
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(iii) Clearly, ©(P;(M)) C P;(M). Conversely, we have
Pr(M) = Pr(Pi(M)) C t(Pr(M))

by parts (i) and (ii).

(iv) If Pr(M) CV, then T(P;(M)) C t(V). Since T(P;(M)) = P(M) by part (iii), the

result follows.

(v) Since ©(M) C M, we already have P(t(M)) C P;(M). Conversely, by part (ii),
P:(M) Ct(M) and so Pr(P;(M)) C P;(t(M)). By part (i), P:(P;(M)) = P;(M).
Thus P(M) C P(t(M)).

(vi) Let N be any module. If ©(N) = N, then by definition of P, we obtain N C
P (N) C N, and so P;(N) = N. Conversely, if P;(N) = N, then by part (ii),
N=P;(N) C1(N) CN,sot(N)=N.Now if t(N) =0, then by part (ii), P;(N) C

T(N) =0, and thus P;(N) = 0 as desired.

(vii) Suppose U/P(M) = t(U/P:(M)), where U is a submodule of M such that
P:(M) CU. Then P;(M) C t(U) by part (iv). So

U/P(M) =1(U/P(M)) =t(U)/P(M)

by Proposition 2.4.3-(ii) which implies U = t(U ), and so by definition of P;(M),
we obtain U C P;(M). Thus U = P(M), that is, U /P;(M) = 0. This means that

M /P (M) is t-reduced, and so P(M/P(M)) = 0. O

Remark 3.2.4. In general, given any class A of modules, a preradical © is defined by

setting for every module N,

™(N)=Y.{Imf|f:A— NinRMod, A € A}.

A

and if A is a pretorsion class, then T is an idempotent preradical (see, for example,
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Clark et al. (2006, 6.5)). In our case, the preradical P; is equal to T2 when the pretorsion
class A is equal to the pretorsion class of T (i.e., A = 7). See also Stenstrom (1975,
Chap. VI, §1); P; is the largest idempotent preradical that is smaller than T and see
Stenstrom (1975, Chap. VI, Exercise 4) for the parts (iii), (v) of Theorem 3.2.3. Since
P; is an idempotent radical when T is a radical, it gives a torsion theory for R-M od with

torsion class Zp, = 7; and torsion free class ¥p..

Proposition 3.2.5. For a preradical 7, the class of T-reduced modules is closed under

submodules, direct products and direct sums.

Proof. Let M be a t-reduced module and let U C M. Then P;(U) C P;(M) =0, that is,

U is t-reduced. For a family (N;);e; of T-reduced modules,

P, (HNl) C[[P(N:)=0  (by Proposition 2.4.1-(iv)),
i i

that is, the product is T-reduced. Finally, since the direct sum is a submodule of the

direct product the result follows immediately. [

3.3 t-supplemented Modules

Throughout the rest of this chapter, T denotes a radical on R-Mod. See
Al-Takhman et al. (2006) and Clark et al. (2006, §10) for properties of T-supplements
and T-supplemented modules. In this section we give some further properties of

T-supplemented modules.

A module M is called ®t-projective if for any submodules U,V of M such that M =
U +V, there exists a homomorphism f : M — M with Im f C U and Im(1 — f) C V.
See Wisbauer (1991, 41.14) for details.

The following proposition contains some properties from Al-Takhman et al. (2006)
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that we shall use frequently:

Proposition 3.3.1. (Al-Takhman et al., 2006, 2.2, 2.3, 2.6) Let M be a t-supplemented

module. Then

(i) Every factor module and every direct summand of M is T-supplemented.
(ii) M/T(M) is a semisimple module.
(iii) If N is a T-supplemented module, then M + N is t-supplemented.

(iv) If M is mt-projective, then M is amply T-supplemented.

For a submodule V' of a module M, it is known that the property

RadV =V NRadM

holds if V is a supplement in M (Wisbauer, 1991, 41.1) and moreover if V is coclosed
in M (Clark et al., 2006, 3.7). We show that this property also holds when V is a

Rad-supplement in M. In general:

Theorem 3.3.2. IfV is a T-supplement in a module M, then ©(V) =V Nt(M).

Proof. ©(V) CV N1t(M) always holds. To show the converse we only require to show
that (VN1(M))/t(V) = 0. Since V is a t-supplement in M, there exists a submodule

U C M such that U +V =M and UNV = 1(V) by Proposition 1.1.1-(ii). Then

M/UNV) =@/ UnV)e(V/UnV))=U/tV)®V/(V))

Since 7 is a radical, we obtain

©M/1(V)) =tU/tV))ot(V/1(V)) =t(U/1(V)) @0 =1(U/(V)).
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Since t©(V) C ©(M), we have, by Proposition 2.4.3, that

UM)/t(V) =tM/2(V)) =t(U/t(V)), and

(VatM)/uV) = (V/e(V))n(wM)/t(V)) = (V/(V))nt(U/t(V))
c (V/r(v)nU/uv))

= (UNV)/a(V) =1(V)/x(V) =0. O

Corollary 3.3.3. IfV is a Rad-supplement in a module M, then RadV =V NRadM.

We shall also give other proofs of this result after giving some needed properties.

Proposition 3.3.4. Let M be a module and let V be a Rad-supplement in M. For

K CM, if K CRadM, then KNV C RadV.

Proof. Assume that V is a Rad-supplement of a submodule U C M in M. Now suppose
on the contrary that KNV ¢ Rad V. Then there exists a maximal submodule 7 C V such
that KNV ¢ T. So there exists anm € (KNV)\T. Since T is a maximal submodule of
V. T+Rm=V. ThusM =U+V =U+T + Rm. Since Rm C K C RadM, we obtain
Rm < M as Rm is a finitely generated submodule of RadM. So M = (U+T)+Rm
implies that U +7 = M. Then by modular law V =VNM =VN(U+T)=(VNU)+
T =T since VNU CRadV C T. This contradicts with 7" being a maximal submodule

of V. L]

Second proof of Corollary 3.3.3. For a submodule V C M, RadV C V NRadM always
holds. Conversely, let x € V NRadM. Then Rx CV and Rx C RadM. Then by

Proposition 3.3.4, we obtain Rx = RxNV C RadV. So x € RadV as required. 0

The formula RadV =V NRadM holds for all submodules V C M only in the case
RadM = 0.

Proposition 3.3.5. Let M be a module. Then the following are equivalent:
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(i) RadV =V NRadM for every submodule V C M,

(ii) RadM = 0.
Proof. (i) = (ii): Let x € RadM and let V = Rx. Then V C Rad M and, by hypothesis,
RadV =V NRadM = V. Butsince V = Rx is cyclic (and so finitely generated), V C
RadV implies that V < V. Thus Rx =V =0, and so x = 0 which shows that Rad M = 0.
(ii) = (i): Let V be a submodule of M. Then RadV C V NRadM always holds.

Since RadM =0, RadV = 0=V NRadM. U]

Corollary 3.3.6. Let M be a module. Every submodule of M is a Rad-supplement
(coneat) in M if and only if M is semisimple.

Proof. (<) It is obvious, since every submodule of a semisimple module is a direct
summand, and so a Rad-supplement in M. Indeed, if V is a direct summand of M, then
there exists a submodule U C M such that U &V = M. This means that U +V =M
and UNV =0 C RadV, that is, V is a Rad-supplement of U in M.

(=) Let V be a submodule of M. Since V is a Rad-supplement in M, there exists a
submodule U of M such that V+U = M and VN U C RadV. We also have RadV =
V NRadM (by Corollary 3.3.3). Since RadM = 0 by Proposition 3.3.5, RadV =0
already. Thus VNU C RadV = 0 implies that V is a direct summand of M, that is, M

is semisimple. O

Corollary 3.3.7. For a module M, if RadM # 0, then M has a submodule Vyy such that
W is not a Rad-supplement in M and Rad V) # Vo NRadM, and so there exists x € Vy

such that for the cyclic submodule Rx of Vy, Rx < M but Rx < V).

For further insight into the property RadV =V NRad M when V is a Rad-supplement
of a submodule U of M in M, we give another proof that goes through the relation

between maximal submodules of M that contains U and maximal submodules of V.

Proposition 3.3.8. Let V be a submodule of a module M and let T be a maximal

submodule of V. Then the following are equivalent:
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(i) There exists a maximal submodule L of M such that LNV =T.

(ii) V /T is not small in M /T, that is, the inclusion T CV is not cosmall in M.
Proof. (i) = (ii): T=LNV C L implies T C L. Since T is a maximal submodule
of V, there exists an x € V\ T. Then x ¢ L because if x € L, then we would have
x € LNV =T, contradicting x ¢ T. Thus L+ Rx = M since L is a maximal submodule

of M. Since Rx CV asxeV,weobtain L+V =M. Thensince T CV and T C L,

M/T =(L+V)/T =(L/T)+(V/T)

and L/T # M /T because L # M as L is maximal submodule of M. This shows that
V/T is not small in M/T.

(ii) = (i): Since V/T is not small in M/T, (V/T)+ (L/T) = M/T for some
submodule L C M such that T C L # M. Since V /T is simple as T is a maximal
submodule of V, (V/T)N(L/T) is either 0 or V/T. If (V/T)N(L/T) =V /T, then
V/T CL/T and M/T = (V/T)+ (L/T) =L/T, contradicting L # M. Thus

(VAL)/T=(V/T)N(L/T) =0,

and so we have VNL =T. Since (V/T)N(L/T) =0, we obtain M/T = (V/T) @
(L/T). Hence

M/L=(M/T)/(L/T)=V/T
is simple which implies that L is maximal in M. [

Proposition 3.3.9. Let M be a module and V be a Rad-supplement submodule of M.
If T is a maximal submodule of V, then there exists a maximal submodule L of M such

that LNV =T.

Proof. Suppose T is a maximal submodule of V. Then V /T is simple. Since V is
a Rad-supplement in M, there exists a submodule U C M such that U +V = M and

UNV CRadV.LetL=U+T.ThensinceT CV,L+V=U+T)+V=U+V =M.
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Since T is maximal in V and RadV is the intersection of all maximal submodules of

V,wehave UNV CRadV C T. Thus
LNV=U+T)NnV=UNV)+T=T.

Now we have L # M because if L =M, thenV =M NV = LNV =T contradicting T

is maximal in V. Thus
M/T =(L+V)/T = (L/T)+(V/T)

where L/T # M/T. This shows that V /T is not small in M /T. Now use Proposition

3.3.8 to end the proof. O

Indeed, the above proofs show the following:

Proposition 3.3.10. Let M be a module and U,V be submodules of M such that V is
a Rad-supplement of U in M. For every maximal submodule T of V, the submodule

U~+T is maximal in M.

This gives another proof of Corollary 3.3.3:

Third proof of Corollary 3.3.3. For a submodule V C M, RadV C VN RadM always
holds. Suppose V is a Rad-supplement of a submodule U of M in M, thatis, U4V =M
and U NV C RadV. Using the previous proposition, since the radical of a module is

the intersection of all its maximal submodules, we obtain:

VNRadM C VN[ {U+T |T maximalinV}
=( VN (U+T)|T maximal in V'}

=(M{T | T maximal in V} = RadV
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Note that in the second equality we have used the following: when 7" is a maximal

submodule of V, then since UNV C RadV C T CV, we have

VvNnU+T)=UNV)+T=T. O

Proposition 3.3.11. Let K,L,M be modules such that K C L C M.

(i) If K is a T-supplement in M, then it is a T-supplement in L.
(ii) If K Ct(L) and L/K is a t-supplement in M /K, then L is a T-supplement in M.

(iii) If K is a t-supplement in L and L is a T-supplement in M, then K is a

T-supplement in M.

Proof. (1) Since K is a T-supplement in M, there exists a submodule U C M such
that U+ K=Mand UNK Ct(K). SoL=LNM=LN(U+K)=LNU+K

and (LNU)NK =UNK C 1(K).

(ii) Since L/K is a t-supplement in M /K, there exists a submodule U C M with
K CU such that U/K+L/K =M/K and (U/K)N(L/K) C T(L/K). So we

obtain U +L = M and

(UNL)/K =(U/K)N(L/K) S t(L/K) =T(L)/K

where the last equality holds by Proposition 2.4.3 since K C t(L). Hence UNL C

t(L), and so L is a T-supplement (of U) in M.

(i11) Recall that T-Suppl is the class of all short exact sequences

of modules such that Im f is a T-supplement in B. By Proposition 1.1.1, the
class T-Suppl is the proper class injectively generated by all modules M such

that ©(M) = 0. By the definition of proper classes, the composition of two
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T-Suppl-monomorphisms is an T-Suppl-monomorphism (see Section 2.3). If K
is a T-supplement in L and L is a T-supplement in M, then the inclusions K — L
and L <— M are T-Suppl-monomorphisms and so their composition K < M is

also an T-Suppl-monomorphism, that is, K is a T-supplement in M. U

Proposition 3.3.12. Let M be a module and let N,K be submodules of M such that

M =N—+K. If K is T-supplemented, then K contains a t-supplement of N in M.

Proof. Since K 1s T-supplemented, the submodule NN K of K has a T-supplement in K,
that is, there exists a submodule L C K such that (NNK)+L =K and (NNK)NL C
©(L). Then M =N+K=N+(NNK)+L=N+Land NNL= (NNK)NL Ct(L).

Hence L is a T-supplement of N in M. [

Proposition 3.3.13.

(i) Every t-torsion module is T-supplemented.

(ii) The module Py(M) is t-supplemented for every module M.

Proof. (i) Let M be a t-torsion module, that is, T(M) = M. Then each submodule
U of M has a t-supplement M in M, thatis, U+ M =M and UNM =U CM =

©(M).

(ii) Since, by Theorem 3.2.3-(iii), Pr(M) is a t-torsion submodule of M, the result

follows by (1).
]

Theorem 3.3.14. If a module M is t-reduced and 7t-supplemented, then M is

t-coatomic, RadM = t(M) and M is weakly supplemented.

Proof. Let U be a proper submodule of M. Since M is T-supplemented, there exists a
submodule V C M suchthatU +V =M and UNV C 1(V). Sowe have t(V /(UNV)) =
t(V)/(UNV) (by Proposition 2.4.3). We also have T(V) # V since M is T-reduced, and

sot(V)/(UNV) #V/(UNV). Therefore, using the fact that M/U = (U +V)/U =
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V/(UNV) we obtain

wM/U)=1(V/UNV))=1(V)/UnNV)#V/UNV),

or equivalently, T(M/U) # M /U, that is, M is t-coatomic. By Proposition 3.1.3,
T(M) < M and thus T©(M) C RadM. By Proposition 3.3.1, M/t(M) is semisimple
since M is t-supplemented. Then Rad(M/t(M)) = 0, and so RadM C t(M). Hence
RadM = t(M). Since RadM = t(M) < M and M is a semilocal module (that is,
M/RadM = M /t(M) is semisimple), we obtain that M is weakly supplemented by
Lomp (1999, Theorem 2.7). [

Theorem 3.3.15. If M is a t-supplemented module, then RadM C t©(M), and

Rad(M/P:(M)) = ©(M/P:(M)) = ©(M)/P(M).

Proof. By Proposition 3.3.1, M /t(M) is semisimple and so Rad(M /t(M)) = 0 which
gives RadM C t(M). The module M/P;(M) is t-supplemented as a factor module
of the t-supplemented module M. Since M/P;(M) is t-reduced, Rad(M/P(M)) =
T©(M/Py(M)) by Theorem 3.3.14. Finally, since P;(M) C t(M) (by Theorem 3.2.3-(ii)),
(M /Py(M)) =t(M)/P:(M) (by Proposition 2.4.3). O

Proposition 3.3.16. The following are equivalent for a module M and a submodule

K C P(M):

(i) M is t-supplemented;
(ii)) M /K is t-supplemented;

(iii) M /P (M) is T-supplemented.
Proof. Since every factor module of a T-supplemented module is T-supplemented,

(i) = (ii) = (iii) are clear. To prove (iii) = (i), take a submodule U C M. By
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hypothesis, there exists a submodule V C M with P;(M) C V such that

(U + P(M)) /P (M)] + [V /P(M)] = M/ P:(M)

and

(UNV+P(M))/P(M) = [(U+P(M))/P:(M)]N[V/Pr(M)]

C (V/P(M)) =o(V)/Pr(M).

Note that the last equality holds by Theorem 3.2.3-(iv). So we have U +V = M and

UNV C1(V), that is, V is a t-supplement of U in M. O

Corollary 3.3.17. The following are equivalent for a ring R:

(i) every R-module is T-supplemented;
(ii) every free R-module is T-supplemented;

(iii) every T-reduced R-module is t-supplemented.
Proof. (i) = (ii) and (i) = (iii) are clear. (ii) = (i) follows since every module is
an epimorphic image of a free R-module and being T-supplemented is preserved under
passage factor modules. To prove (iii) = (i) take an R-module M. Since M/P(M)
is t-reduced, we obtain that M /P;(M) is T-supplemented by the hypothesis. So M is

T-supplemented by Proposition 3.3.16. 0

Proposition 3.3.18. IV is a T-supplement in a module M and V' is t-coatomic, then V

is a supplement in M.
Proof. Since V is a T-supplement in M, there exists U C M such that U +V = M and
UNV C1t(V). Since V is T-coatomic, we have by Proposition 3.1.3 that ©(V) < V.

Then UNV C1(V) <V, and thus V is a supplement in M. O

Proposition 3.3.19. If M is a t-reduced module that is totally t-supplemented, then M

is totally supplemented.
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Proof. Since being t-reduced is inherited by submodules, it is enough to prove that M
is supplemented. Let U C M and V be a t-supplement of U in M. Then U +V =M
and UNV C t(V). By hypothesis, V is T-supplemented and t-reduced. So by Theorem
3.3.14, V is t-coatomic. Then t(V) < V by Proposition 3.1.3. Therefore UNV <V,

and so V is a supplement of U in M. Hence M is supplemented. 0

Clearly supplemented modules are Rad-supplemented, thus we obtain the following

result:

Corollary 3.3.20. If M is a reduced module, then M is totally Rad-supplemented if and

only if M is totally supplemented.

3.4 When are all Left R-modules t-supplemented?

In this section we shall characterize the rings all of whose (left) modules are
T-supplemented for some particular radicals T including Rad. We start to this section

with some basic definitions.

See Section 2.5 for projective covers and perfect rings.

An epimorphism f : N — M is said to be a T-cover if Ker f C t(N). If moreover
N is projective, then f is called a projective T-cover. A ring R is called left T-perfect

(t-semiperfect) if every (finitely generated) left R-module has a projective T-cover.

These rings are studied in Azumaya (1992) and Xue (1996) for the radical T = Rad,

and in Nakahara (1983) for a larger class of preradicals.

The relation between T-cover and T-supplements is the following:
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Proposition 3.4.1. (by Al-Takhman et al. (2006, 2.14)) For a module M and a

submodule U C M, the following are equivalent:

(i) M /U has a projective t-cover;

(ii) U has a t-supplement V which has a projective T-cover.

It is clear from the definitions and Proposition 3.4.1 that if R is a left T-(semi)perfect
ring then every (finitely generated) left R-module is T-supplemented. But the converse

need not be true, for example when T = Rad; see Example 3.5.3.

Lemma 3.4.2. If R is a ring that is a T-reduced left R-module and if the free left
R-module F = RWY) is t-supplemented, then ©(R) is left T-nilpotent.
Proof. Since P;(R) = 0 and P;(F) = (P(R))™) =0, F is t-reduced. Then F is

T-coatomic by Theorem 3.3.14, and so by Proposition 3.1.3
T(R)F = (1(R))N) =1(F) < F.

Therefore T(R) is left T-nilpotent by Anderson & Fuller (1992, Lemma 28.3). [

Theorem 3.4.3. If R is a ring that is a t-reduced left R-module, then the free left
R-module F = RW) is t-supplemented if and only if R is left perfect and ©(R) = J(R).

Proof. Suppose F = R

is T-supplemented. Then R is T-supplemented as a direct
summand of F. Since R is also T-reduced by hypothesis, we obtain T(R) = J(R)
by Theorem 3.3.14. By Lemma 3.4.2, J(R) = t(R) is left T-nilpotent. Since R is
t-supplemented, R/J(R) = R/t(R) is semisimple by Proposition 3.3.1. Hence R is left
perfect by Theorem 2.5.3. Conversely suppose R is left perfect and ©(R) = J(R). Let
UCF = R Since R is left perfect, every left R-module, and in particular, F' /U has
a projective cover. Then by 2.5.2-(1), U has a supplement V in the free module F such

that V is a direct summand of F'. Since F is free, its direct summand V is projective. So

(V) =1(R)V by properties of radicals. Since V is a supplement of U in M, U +V =M
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and UNV < V. SoUNV CRad(V). Since R is a left perfect ring, it is a semilocal
ring (see Theorem 2.5.3), and so Rad(V) = J(R)V (by Proposition 2.5.2-(iii)). Thus

UNV CRad(V)=J(R)V =1t(R)V =1(V). Hence V is a t-supplement of U in M. [

Remark 3.4.4. Note that the above proof for the converse implication works for every
free left R-module F, not necessarily countably generated. Moreover, since every
factor module of a T-supplemented module is T-supplemented and every module is

isomorphic to a factor module of a free module, we have:

Corollary 3.4.5. If R is a ring that is a T-reduced left R-module, then every (free) left

R-module is t-supplemented if and only if R is left perfect and T(R) = J(R).

It is easy to see that a radical T on R-modules is also a radical on R/P;(R)-modules
since every R/P;(R)-module can be considered as an R-module (with annihilator
containing P;(R)). We shall use this fact in the proof of the following theorem:
Theorem 3.4.6. For a ring R with P;(R) C J(R), the following are equivalent:

(i) every left R-module is T-supplemented;
(ii) every free left R-module is t-supplemented;
(iii) the free left R-module F = RM) js T-supplemented;

(iv) the quotient ring R/P(R) is left perfect and T1(R) = J(R).
Proof. (i) < (ii) follows by Corollary 3.3.17. (ii) = (iii) is clear.
(iii) = (iv): Since F is t-supplemented, so is its factor module F = F /Py (F) =
(R/P(R))™). The R-module F can be considered as an R/P;(R)-module and T can be
considered also as a radical on R/P;(R)-modules. By Theorem 3.4.3, since R/P;(R) is

t-reduced, we obtain that the quotient ring R/P;(R) is left perfect and

UYR/Pi(R)) = J(R/Pr(R)).
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Then by Proposition 2.4.3, ©(R/P:(R)) = T(R)/P;(R) (since P;(R) C T(R) by Theorem
3.2.3-(ii)), and J(R/P;(R)) = J(R)/P:(R) since P;(R) C J(R) by hypothesis. Hence
©(R) =J(R).

(iv) = (ii): By properties of radicals, since P;(R) C T(R) = J(R) by hypothesis, we

obtain for the left perfect quotient ring S = R/P:(R) that:

US) = 1(R/P(R)) = 1(R)/Pe(R) = J(R)/Px(R) = J(R/Px(R)) = J (S).

By Corollary 3.4.5, every free S-module is T-supplemented, where we consider T also
as a radical on S-modules. Let F be a free R-module. Then F = R() for some
index set I. By Proposition 3.3.16, it is enough to prove that F = F /P(F) = §U)

is T-supplemented. But this holds since F can be considered as a free S-module. [

3.5 When are all Left R-modules Rad-supplemented?

Using the results of the previous sections for T = Rad, we obtain the following
characterization of the rings R over which every R-module is Rad-supplemented. Of
course, more work still remains to understand P(R) and the condition that R/P(R) is

left perfect.

Theorem 3.5.1. For a ring R, the following are equivalent.

(i) every left R-module is Rad-supplemented;

(ii) every reduced left R-module is Rad-supplemented;
(iii) every reduced left R-module is supplemented;
(iv) the free left R-module RM) g Rad-supplemented;

(v) R/P(R) is left perfect.
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Proof. (i) < (iv) < (v) is obtained by Theorem 3.4.6 since P(R) C Rad(R) = J(R).
(i) < (ii) follows by Corollary 3.3.17. (iii) = (ii) holds since supplemented modules
are Rad-supplemented. To prove (ii) = (iii) , take any reduced left R-module M. Then
every submodule of M is also reduced, and so Rad-supplemented by hypothesis (ii).
So M is areduced module that is totally Rad-supplemented. Thus, by Corollary 3.3.20,

M is totally supplemented, and so supplemented. [

A preradical T for R“Mod is said to be normal if ©(P) # P for every nonzero

projective module P.

Proposition 3.5.2. (Nakahara, 1983, Theorem 1.5) Let T be a normal radical for

R-Mod. Then R is left t-perfect if and only if T = Rad and R is left perfect.

The following is an example of a ring R that is not left perfect (and so not left
Rad-perfect by Proposition 3.5.2 since Rad is normal by, for example, Kasch (1982,

Theorem 9.6.3)) but where all R-modules are Rad-supplemented.

Example 3.5.3. Let & be a field. In the polynomial ring k[xj,x7,...] with countably
many indeterminates x, (n € N), consider the ideal I = (x%,x% —xl,x% —X2,...)
generated by x7 and x2 41 — X for every n € N. In the quotient ring R = k[x,x2,...]/1,
the maximal ideal M = (x1,x,...)/I of R generated by all X, = x, +1, n € N, is the
unique maximal ideal of R. This is because, if K is any maximal ideal of R, then
)_c% =0 € K and so x| € K since K is a prime ideal. Now )_c% =Xx; € Kandsox; € K. By
induction, we obtain )_c% =X,—1 € K and so X, € K for all n € N. Therefore K = M, as
desired. Since X, = )_C%_,’_l for every n € N, we obtain M = M?. So RadM = M, and thus
P(R) =M. Since the ring R/P(R) = R/M is a field (and so perfect), every R-module is
Rad-supplemented (by Theorem 3.5.1). By Anderson & Fuller (1992, Lemma 28.3),
M = J(R) is not (left) T-nilpotent (since J(R)M = M?> = M), and so R is not a (left)

perfect ring (by Theorem 2.5.3).
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In Biiytikagitk & Lomp (2008), it is proved that the class of rings that are
Rad-supplemented lies properly between the classes of semilocal rings and semiperfect

rings.

Recall that a ring R is said to be a left duo ring if every left ideal of R is a two-sided

ideal.

We shall characterize the left duo rings R that are Rad-supplemented left R-modules,

firstly, by proving the following lemma:

Lemma 3.5.4. If R is a left duo ring and I, A, B are left ideals of R such that A+B =R
and ANB =TIANIB, then ANB =I1(ANB).

Proof. Clearly I(ANB) CANB. Conversely letx € ANB=1ANIB. Since A+ B =R,
we have a+b =1 for some a € A and b € B. Then x =xa+xb and x =) ;cps;a; =

Yictib; where I, I" are finite index sets, a; € A, b; € B and s;,1; € 1. Now we have,
xb = Z siaib € I(AB) and xa = Z tibja € I(BA).
iel iel”

Since R is a left duo ring, ABC ANB and BA C ANB. So,
x=xa+xb € I(BA)+1(AB) CI(ANB),

and thus ANB C I(ANB). O

Theorem 3.5.5. If R is a left duo ring such that P(R) =0, then R is a Rad-supplemented

left R-module if and only if R is semiperfect.

Proof. 1If R i1s semiperfect, then R is a supplemented, and so a Rad-supplemented, left
R-module. Conversely, suppose R is a Rad-supplemented left R-module. Then R is
semilocal and R is an amply Rad-supplemented left R-module by Proposition 3.3.1.
Let A’ be a left ideal of R. Since R is an amply Rad-supplemented left R-module,

A’ has a Rad-supplement B in R, and B has a Rad-supplement A C A’ in R. So R =
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A'+B=A+B,ANBCA'NB CRadB and ANB C RadA. Thus ANB = (RadA)N
(RadB). Let J =J(R). Then ANB =JANJB =J(ANB) by Lemma 3.5.4. Since R is
a semilocal ring, Rad(ANB) = J(ANB). Then AN B is a radical submodule of R, and
so ANB C P(R) = 0. This gives that R = A @ B. Therefore JB C J < R implies that
Rad(B) = JB < B since B is a direct summand of R. Hence B is a supplement of A’
in R. This shows that R is a supplemented left R-module, and thus R is semiperfect by

Proposition 2.5.2-(i1). ]

Theorem 3.5.6. For a left duo ring R, the following are equivalent:

(i) R/P(R) is semiperfect;
(ii) the left R-module R is Rad-supplemented;
(iii) every finitely generated free left R-module is Rad-supplemented;

(iv) every finitely generated left R-module is Rad-supplemented.
Proof. (ii) = (iii) follows by Proposition 3.3.1. (iii) = (iv) holds since every finitely
generated module is an epimorphic image of a finitely generated free module and
Rad-supplemented modules are closed under epimorphic images.

(iv) = (if) is clear.

(i) = (ii): Since the quotient ring S = R/P(R) is semiperfect, R/P(R) is a
Rad-supplemented left S-module, and so a Rad-supplemented left R-module. Then
the left R-module R is Rad-supplemented by Proposition 3.3.16.

(ii) = (i): The factor module R/P(R) is also a Rad-supplemented left R-module.
So the ring S = R/P(R) is a Rad-supplemented left S-module with P(S) = 0, and so
S = R/P(R) is semiperfect by Theorem 3.5.5. ]

Remark 3.5.7. Note that all implications except (ii) = (i) of Theorem 3.5.6 hold
for each ring R, while the implication (if) = (i) raises the question whether a

Rad-supplemented ring R with P(R) = 0 is necessarily semiperfect.
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3.6 Rad-supplemented Modules over Dedekind Domains

Most of the results which will be given in this section can be found in Ozdemir

(2007, Chap. 6), but we give the proofs here for completeness.

Following the terminology in abelian groups, an R-module M over a Dedekind

domain is said to be bounded if rM = 0 for some nonzero r € R.

The structure of supplemented modules over Dedekind domains is completely

determined in Zoschinger (1974):

Theorem 3.6.1. (Zoschinger, 1974, Theorems 2.4. and 3.1) Let R be a Dedekind

domain with quotient field K # R. Let M be an R-module.

(i) Suppose R is a local Dedekind domain, that is, a discrete valuation ring (DVR)
with the unique prime element p. Then M is supplemented if and only if M = R* &
K? @ (K/R) @ B for some R-module B, where a, b, ¢ are nonnegative integers

and p"B = 0 for some integer n > (.

(ii) Suppose R is non local. Then M is supplemented if and only if M is torsion and
every primary component of M is a direct sum of an artinian submodule and a

bounded submodule.

Part (i) of the above theorem for Rad-supplemented modules is obtained as follows:

Theorem 3.6.2. Let R be a DVR with quotient field K # R, and p be the unique prime
element. Then M is Rad-supplemented if and only if M = R & K ¢ (K/ R)(J ) ® B for
some R-module B, where a is a nonnegative integer, 1, J are arbitrary index sets and

p"'B = 0 for some integer n > 0.

Proof. (=) If M, is the divisible part of M, then there exists a reduced submodule

M, of M such that M = M| & M. Since M> is also Rad-supplemented, it is coatomic
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by Theorem 3.3.14. Then by Zoschinger (1974, Lemma 2.1), M, = R* & B, for some
nonnegative integer a and a bounded module B. Since M| is divisible, M| = K ) g
(K /R)(J ) for some index sets  and J (see Kaplansky (1952, Theorem 7)).

(<) The module N = K) @ (K/R)V) is divisible, and so RadN = N. Then N is
Rad-supplemented by Proposition 3.3.13. By Theorem 3.6.1, the module R* ® B is
supplemented, and hence Rad-supplemented. Therefore the direct sum R* & K D) g

(K/R)Y) & B is Rad-supplemented. O

For the structure of coatomic modules over commutative Noetherian rings see
Zoschinger (1980); the Noetherian assumption in the following proposition is needed
to have that every submodule of a coatomic module over a commutative Noetherian

ring is coatomic (Zoschinger, 1980, Lemma 1.1).

Proposition 3.6.3. Let R be a commutative noetherian ring and M be a reduced

R-module. Then M is Rad-supplemented if and only if M is supplemented.

Proof. Suppose M is Rad-supplemented. Then M is coatomic by Theorem 3.3.14, and
so every submodule of M is coatomic since R is a commutative noetherian ring. Let U
be a submodule of M and V be a Rad-supplement of U in M. Then V is coatomic, and

soUNV CRadV < V. Thus V is a supplement of U in M. The converse is clear. []

Since the structure of supplemented modules over Dedekind domains is known by
Theorem 3.6.1-(i1), it is enough to characterize Rad-supplemented modules in terms of
supplemented modules. Note that, for an R-module M, where R is a Dedekind domain,

P(M) equals the divisible part of M.

Theorem 3.6.4. Let R be a Dedekind domain and M be an R-module. Then M is
Rad-supplemented if and only if M /P(M) is (Rad)supplemented.
Proof. Since R is a Dedekind domain, M has a decomposition as M = P(M) & N for

some reduced submodule N of M. If M is Rad-supplemented, then N = M /P(M) is
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also Rad-supplemented. Since N is reduced, N is supplemented by Proposition 3.6.3.
Conversely, suppose N = M /P(M) is Rad-supplemented. By Proposition 3.3.13-(ii),
the submodule P(M) is already Rad-supplemented. Therefore M = P(M) @ N is

Rad-supplemented as a sum of two Rad-supplemented modules. 0

These characterizations can be used to provide examples of Rad-supplemented

modules which are not supplemented:

Example 3.6.5. Let R be a Dedekind domain with quotient field K # R. The R-module
M=KD s Rad-supplemented for every index set I. If R is a local Dedekind domain
(i.e. aDVR), then M is supplemented only when / is finite. If R is a non-local Dedekind

domain, then M is not supplemented for every index set /, since M is not torsion.



CHAPTER FOUR
ENOCHS’ NEAT HOMOMORPHISMS AND MAX-INJECTIVE MODULES

In this chapter, we deal with neat homomorphisms of Enochs which we call E-neat
homomorphisms and max-injective modules. For some properties of left C-rings,
see Section 4.1. In Section 4.2, we are interested in max-injective modules. We
observe that they are nothing but A eat-coinjective modules. See Section 4.3, for
E-neat homomorphisms; we collect some useful properties of them taken from Bowe
(1972). In Section 4.4, we investigate the homomorphisms which we call Z-neat
homomorphisms, due to Zoschinger; in fact, we deal with the question that when
E-neat and Z-neat homomorphisms coincide. Zdschinger has showed their equivalence
for abelian groups and we prove they are equivalent over Dedekind domains. In Section
4.5, we consider E-neat homomorphisms which are epimorphism, and we show that
E-neat epimorphisms do not define a proper class. In Section 4.6, we are interested in
Z-coneat homomorphisms of Zdschinger which were introduced by dualizing E-neat
homomorphisms. We also study the class of all short exact sequences defined by

coclosed submodules.

4.1 C-rings of Renault

This section contains some properties of left C-rings of Renault (1964). See Section
1.2 for the definition of a left C-ring. For further details, see, for example, Mermut

(2004, §3.3).

A commutative Noetherian ring in which every nonzero prime ideal is maximal is a
C-ring (see Mermut (2004, Proposition 3.3.6)). So, in particular, a Dedekind domain is

also a C-ring. And moreover, Stenstrom shows that if R is a commutative Noetherian

88
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ring in which every nonzero prime ideal is maximal (and thus R is a C-ring), then
Compl = N eat (Stenstrom, 1967b, Corollary to Proposition 8). Generalov gives a

characterization of this equality in terms of the ring R.

See also Mermut (2004, Theorem 3.3.2) for a proof of the following result:

Proposition 4.1.1. (Generalov, 1978, Theorem 5) A ring R is a left C-ring if and only
if Compl = N eat.

Proposition 4.1.2. (Renault, 1964, Proposition 1.2) A ring R is a left C-ring if and

only if for every essential proper left ideal of R, Soc(R/I) # 0.

Proposition 4.1.3. (Mermut, 2004, Proposition 3.3.9) A commutative domain R is a

C-ring if and only if every nonzero torsion module has a simple submodule.

4.2 Max-injective Modules are Injective only for C-rings

In this section, we deal with max-injective modules, and we give a proof of the
result that all max-injective R-modules are injective over a left C-ring R with our
interest in the proper classes A eat and Compl; it is indeed already given in Smith

(1981).
Of course, all injective R-modules are max-injective for every ring R, but the
converse is not always true as the following example shows:

Example 4.2.1. (Crivei, 1998, Example 16) Let R = F[[X,Y]] be the ring of formal
power series on the set of commuting indeterminates X,Y over a field F. Then R is a

max-injective R-module which is not injective.

Note the following useful diagram lemma:
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Lemma 4.2.2. (see, for example, Fuchs & Salce (2001, Lemma 1.8.4)) Suppose

0 A B C 0
S
0 A B Ci 0

is a commutative diagram of modules with exact rows. Then B can be lifted to a
homomorphism C; — B if and only if o can be extended to a map By — A, that
is, there exists B : Cy — B such that gB = B if and only if there exists & : By — A

such that a.f) = o

0 A B—2sC 0
> A
o e [T
0 Aq By C 0

The following result has been given in Crivei (1998); we give its elementary proof

here for completeness:

Proposition 4.2.3. (Crivei, 1998, Theorem 2) For a module M, the following are

equivalent:

(i) M is max-injective;
(ii) Exth(S,M) = 0 for every simple module S;
(iii) Exth(S,M) = 0 for every semisimple module S;

(iv) M is injective with respect to every short exact sequence ending with a simple

module, that is,

(v) every simple module S is projective with respect to the following short exact

sequence.

0——=M—~E(M)—°>E(M)/M—>0, (4.2.1)
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where i is the inclusion monomorphism and G is the natural epimorphism.

Proof. (i) = (ii): Let

be a short exact sequence with § simple. We can assume that M C B and f is the
inclusion monomorphism. We show that this sequence splits. Since R projective, we
have the following commutative diagram with exact rows for S = R/P, where P is a

maximal left ideal of R:

0 M- B S 0
AN AN
al B Ih @ Tls
| w | -
0 P——R S 0

Here h : R — B exists since R is projective (i.e. gh = 1506), and o0 = h|p. By
hypothesis, since M is max-injective, there is a homomorphism E : R — M such that
Bi = a, and so by Lemma 4.2.2, there is also a homomorphism & : S — B such that
g0, = lg, that is, the first row splits. Hence Ext}g(S ,M) =0.

(ii) = (iv) : Let

0 A B S 0

be a short exact sequence with S simple. For every homomorphism f: A — M, we

obtain the following pushout diagram:

0—>A—>B—>S5——=0
o |
fl B | o IIS
2 v ¥ Y
O——>M——>B/—§>S——>O

By hypothesis, the second row splits, and so there is a homomorphism o : S — B such
that goo = 1g. Thus by Lemma 4.2.2, f can also be extended to B : B — M, that is,
Bla = f. Hence M is injective with respect to the first row as required.

(iv) = (i) : Let f : P — M be a homomorphism, where P is a maximal ideal of R.
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We have the following diagram with exact row:

Since R/P is simple, f can be extended to g by hypothesis. Hence M is max-injective.
(ii) = (iii) : Let S be a semisimple module. Then § = @Si for simple submodules

icl
S; of S. Thus,

Exth(S, M) = Ext} <@ S;, M) = [TExtg(Si, M) =0,

icl i€l

where the isomorphism follows by, for example, Rotman (2009, Proposition 7.21) and
the last equality by hypothesis.

(iii) = (ii) : Clear since a simple module is semisimple.

(ii) < (v) : For every simple module S, Exts(S, M) = 0 if and only if the induced

sequence
0——Homg(S, M)——Homg(S, E(M))—Homg(S, E(M)/M)—0

is exact by the long exact Hom — Ext sequence, because E(M) is an injective module.

This means that S is projective with respect to the short exact sequence (4.2.1). [

The following result has been observed by Engin Biiyiikasik, for the proper class
projectively generated by simple modules. It holds in general for every projectively

generated proper class as has been shown in Sklyarenko (1978, Proposition9.5).

Proposition 4.2.4. A module M is N eat-coinjective if and only if Exth(S,M) = 0 for
every simple modules S.

Proof. (=) Let
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be a short exact sequence from Ext}g(S,M ), where S is simple. Since E starts with M
and M is N eat-coinjective by hypothesis, E € Aleat. Now since A eat is projectively
generated by simples, [E splits.

(<) Let

E :0 M B C 0

be a short exact sequence starting with a module M, and f : § — C be homomorphism

where S is a simple module. Then we have the following pullback diagram:

By hypothesis, the second row splits, that is, there is a homomorphism 8 : B — M
(as M a direct summand) such that Bg = 13;. Thus by Lemma 4.2.2, there is also a
homomorphism o : § — B such that hoe = f. This means § is projective w.r.t the first

row. Thus E € N eat, and so M is A eat-coinjective. ]

Thus max-injective modules are nothing but just A eat-coinjective modules (by
Propositions 4.2.3 and 4.2.4). Note that, a module M is A eat-coinjective if and
only if M is neat in every module containing M. Also note that a module M is

N eat-coinjective if and only if M is neat in its injective envelope E(M).

By Proposition 4.2.3, a module M is max-injective if and only if M is injective
with respect to every short exact sequence ending with a simple module. Instead of
simple modules, semi-artinian modules can be taken. To prove (i) implies (ii) in the
following theorem, Crivei have used Loewy series of C; a homomorphism y: A — M
was extended to B by transfinite induction since B/A = C is a Loewy module (by

Proposition 2.2.4, as C is semi-artinian).

Theorem 4.2.5. (Crivei, 1998, Theorem 6) The following are equivalent for a module
M:



94
(i) M is max-injective;

(ii) M is injective with respect to every short exact sequence of modules

where C is a semi-artinian module.

Remark 4.2.6. The following connection between max-injective modules and torsion
theories was given in Crivei (2000). Let tp = (7, F ) be the Dickson torsion theory for
R-M od; the torsion class 7 consists of semi-artinian modules and the torsion free class
F consists of all modules with zero socle (see Example 2.4.11). The corresponding
Gabriel filter F(R) consists of all left ideals of R such that R/I is a left semi-artinian
module (see Definition 2.4.7). A module M is Tp-injective if any homomorphism from
any left ideal € F(R) to M can be extended to R or equivalently, if M is injective with
respect to every short exact sequence of modules 0 — A — B — C — 0, where C
is Tp-torsion. Thus, by Theorem 4.2.5, a module M is max-injective if and only if it is

Tp-injective.

We know by Proposition 4.1.1 that if R is a left C-ring, then Compl = N eat, and so
AN eat-coinjectives (i.e. max-injectives) are Compl-coinjectives which are known to be

just injectives. So, our goal on this section is to prove the converse.

Lemma 4.2.7. Let A be a submodule of a module B.

(i) If Soc(B/A) =0, then B/A is N eat-coprojective and so A is neat in B.

(ii) Equivalently, if A is not neat in B, then Soc(B/A) # 0.

Proof. Clear since A ear is the proper class projectively generated by all simple
modules and there is no nonzero homomorphism from a simple module to B/A when

Soc(B/A) =0. O
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The following result is needed for the proof of Lemma 4.2.9:

Proposition 4.2.8. (Mermut, 2004, Corollary 3.2.5) For a short exact sequence

of modules, where A is a submodule of B and iy is the inclusion map, the following are

equivalent:

(i) E € Neat =n~'({R/P|P is a maximal left ideal of R});

(ii) For every maximal left ideal P of R, and for every b € B, if Pb C A, then there

exists a € A such that P(b—a) = 0.

Lemma 4.2.9. Let A be a submodule of a module B. If A is essential and neat in B,
then Soc(B/A) = 0.

Proof. Suppose on the contrary that Soc(B/A) # 0. Then there exists a simple
subdmodule S = R(b+A) = R/P of B/A where b € B\ A and P is a maximal left
ideal of R such that P = {r € R | rb € A}. So Pb C A, then by the characterization of
neat submodules in Proposition 4.2.8, there exists a € A such that P(b —a) = 0. Since
b&A,b—a¢ A also. But then for the element b —a € B\ A, we obtain a contradiction

with A being essential in B, because

0=P(b—a)=[R(b—a)]NA#0.

Note that the first equality follows since {r e R|r(b—a) =0} ={reR|rb€ A} =P

since a € A. O]

So, by Lemmas 4.2.7 and 4.2.9, we obtain:

Corollary 4.2.10. For an essential submodule A of a module B, we have A is neat in B

if and only if Soc(B/A) = 0.
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Corollary 4.2.11. Let A be a submodule of a module B. Let K be a complement of A in
B and let A’ be a complement of K in B such that A’ contains A. Then we already know
that A is essential in A’ and A’ is closed (and so neat) in B. In this case, the following

are equivalent:

(i) Ais neat in B;
(ii) A is neatin A’;
(iii) Soc(A’/A) = 0.

Theorem 4.2.12. If all N eat-coinjective modules are injective, then for every module
A that is not injective, E(A)/A is semi-artinian, and so Soc(E(A)/A) is essential in
E(A)/A.

Proof. Let AC U G E(A). In this case, the injective envelope of the submodule U
is also E(A). If U is neat in E(U) = E(A), then U will be Aleat-coinjective. But
then by our hypothesis U will be injective, and so we will have U = E(U) = E(A),
contradicting U # E(A). So we must have that U is not neat in E(A). But then
by Corollary 4.2.10, Soc(E(A)/U) # 0. Hence Soc[(E(A)/A)/(U/A)] # 0 since
(E(A)/A)/(UJ/A) = E(A)/U. This proves that every nonzero homomorphic image
of E(A)/A has a nonzero socle. Thus E(A)/A is semi-artinian and so every nonzero
homomorphic image of E(A)/A has essential socle. In particular, Soc(E(A)/A) is
essential in E(A)/A. O

Corollary 4.2.13. If all N eat-coinjective modules are injective, then for every module

A that is not injective, if A G B C E(A), then Soc(B/A) # 0.

Proof. By Theorem 4.2.12,

Soc(B/A) = (B/A) N Soc(E(A)/A) 0

since Soc(E(A)/A) is essential in E(A)/A and B/A # 0 as B # A by hypothesis. [
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Theorem 4.2.14. If all N eat-coinjective modules are injective, then R is a left
C-ring, that is, for every module B and for every essential proper submodule A of
B, Soc(B/A) # 0.

Proof. Let A be an essential proper submodule of a module B. Then we can assume
that A ;Cé B C E(A). In this case, A # E(A), that is, A is not injective and Corollary
4.2.13 gives Soc(B/A) # 0. O

Whitehead test modules for projectivity and injectivity have been studied in Trlifaj
(1996): A module N is said to be a Whitehead test module for projectivity (shortly a
p-test module) if for every module M, Ext}e (M,N) = 0 implies M is projective. Dually,
i-test modules are defined; a module N is said to be a Whitehead test module for
injectivity (shortly an i-test module) if for every module M, Exth(N,M) = 0 implies
M is injective.

Remark 4.2.15. Note that for R = Z, the question “Is Z a p-test Z-module?” or
equivalently, the question “Is there a Whitehead group G (that is, Ext(G,Z) = 0) which
is not free?” is the well-known Whitehead problem. Eklof and Shelah have given a full
answer to this problem (Eklof & Shelah, 1994): It was proved that for any uncountable
cardinal A, if there is a A-free Whitehead group of cardinality A (that is, every subgroup
of cardinality < A is free) which is not free, then there are many Whitehead groups of

cardinality A which are not free.

J. Trlifaj showed the existence of i-test modules for an arbitrary ring, and p-test

modules for a left perfect ring.

Proposition 4.2.16. (Trlifaj, 1996, Proposition 1.2) Let R be a ring. Let ‘E be the set

of all proper essential left ideals of R. Put M = EDR/I. Then M is an i-test module.
IeE
Proposition 4.2.17. (Trlifaj, 1996, Proposition 1.4) Let R be a left perfect ring. Denote

by M the class of all maximal left ideals of R. Put N = @ R/I. Then N is a p-test

IeMm
module.
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We collect some characterizations of C-rings in the following theorem:

Theorem 4.2.18. For a ring R, the following are equivalent:

(i) Ris aleft C-ring;
(ii) Compl = N eat;
(iii) All max-injective (i.e. N eat-coinjective) R-modules are injective;

(iv) S+ = Inj, where S and Inj denote the classes of all (semi)simple R-modules
and injective R-modules respectively;

(v) EB R/P is an i-test module, where the direct sum is over all maximal left ideals
PCR

of R.

Proof. (i) < (ii) is by Proposition 4.1.1, and (iii) < (iv) follows by Proposition 4.2.3.
(i) = (iii) follows by arguments given just before Lemma 4.2.7. (iii) = (i) is Theorem
4.2.14.

By Proposition 4.2.3, Ext}e(S,M) = 0 for every simple module S if and only if
Exth(T,M) = 0 for every semisimple module 7. So, {all simple modules}* =

{all semisimple modules}.  (iv) = (v) : Suppose that Ext} @ R/PM| =0
PCR

for a module M. Then we have by, for example, Rotman (2009, Propdsition 7.21) that

[T Extk(R/P.M)=Exty | €D R/P,M | =0,
PCR PCR

max. max.

and so Exth(R/P, M) = 0 for every left maximal ideal P of R, that is, M € S where §
is the class of all simple R-modules. Thus M is injective by hypothesis (iv).
(v) = (iv) : Inj C S is clear since for an injective module M, Exth(S, M) = 0

for every module S. Conversely, let M € S+, that is, Ext}e(S , M) = 0 for every simple
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module S. Since for every simple module S, S = R/P for a maximal left ideal P of R,

we obtain, by Rotman (2009, Proposition 7.21), that

Exty | € R/PM | = [] Extz(R/P,M)=0.

PCR PCR
Thus, by hypothesis (v), M is an injective module. [

Proposition 4.2.19. Any direct product of max-injective modules is max-injective.

Proof. Since N eat is a projectively generated proper class, it is []-closed by
Proposition 2.3.8, and so any product of Al eat-coinjective (i.e. max-injective) modules
is also A eat-coinjective by Proposition 2.3.9. This result can also be proved using the
standard argument to prove that direct product of injectives is injective.

Second proof . If {M;}ic; is a family of max-injective modules, then
Extg | S, []Mi | = []Extx(S, M) =0
icl icl

for every simple module S, that is, [[;c; M; is max-injective. Here the isomorphism
follows by, for example, Rotman (2009, Proposition 7.22) and the last equality by
Proposition 4.2.3. O

Note that if R is a left C-ring, then every direct product of closed (=complement)
submodules is closed (see Proposition 4.3.6). But, we do not know if the converse

holds.

4.3 E-neat Homomorphisms

In this section, the definition due to Enochs (1971) and Bowe (1972) of neat

homomorphisms (we call E-neat homomorphisms) and some properties of them will
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be given.

Definition 4.3.1. A homomorphism f : M — N is called E-neat if given any proper
submodule H of a module G and any homomorphism ¢ : H — M, the homomorphism
¢ has a proper extension in G whenever fG has a proper extension in G, that is, a

commutative diagram

H—G ——G 4.3.1)
GJ/ AN

T
M 7 N

with H ?C: G’ C G, always guarantees the existence of a commutative diagram

H—G'—G 4.3.2)
G\L s

y
M / N

with H G G” C G.

A submodule T of N is called E-neat if the canonical monomorphismi: 7 — N

is E-neat (see Bowe (1972)).

Example 4.3.2. (i) A is a neat subgroup of an abelian group B (i.e., pA = AN pB
for every prime number p) if and only if the monomorphismi: A < B is E-neat

(Enochs & Jenda, 2000, Example 4.3.8).

(1) For a commutative domain, if a homomorphism ¢ : T — M is torsion free cover,

then @ is E-neat (Enochs & Jenda, 2000, Proposition 4.3.9).

The following equivalent conditions for E-neat homomorphisms (especially (iv))

are very useful:

Theorem 4.3.3. (by Bowe (1972, Theorem 1.2)) The following are equivalent for a

homomorphism f : M — N:
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(i) fis an E-neat;
(ii) In Definition 4.3.1, it suffices to take G = R and H a left ideal of R;

(iii) In Definition 4.3.1, it suffices to take G a monomorphism and G as an essential

extension of H;

(iv) There are no proper extensions of f in the injective envelope E(M) of M.

We shall frequently use the last equivalent condition in the previous theorem for
E-neat homomorphisms. Note that this is a natural concept; by Zorn’s lemma, for a
given homomorphism f : A — B, there exists a maximal extension f: A—»Bin
the injective envelope E(A) of A for some A such that A CA C E(A), and that fis an

E-neat homomorphism:

and f is E-neat. The following result can be found in Bowe (1972, §1), without
proof, as an example of E-neat homomorphisms; the E-neat monomorphisms are just

Compl-monomorphisms:

Lemma 4.3.4. For a submodule M of a module N, the inclusion monomorphism i :
M — N is E-neat if and only if M has no proper essential extensions in N, that is, M

is a closed submodule (=complement submodule) of N.

Proof. (=) Suppose that the monomorphism i : M < N is E-neat and that M is not

closed in N, that is, M has a proper essential extension N’ in N (i.e. M <IN’ C N and
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M # N'). Now embed N’ into the injective envelope E(M) of M (since M < N'):

MC; N/

Ve
l p
Ve
L, a

E(M)

We can assume that N’ C E(M) and o is the inclusion monomorphism. So we have the

commutative diagram:
1Ml |
Sy
ML =N

Since i : M — N is E-neat, there exists a commutative diagram:

MC7> N//C_> E(M)

v
1 /
Ml/¢

with M G N’ C E(M), that is, §[yy = 1y. Let y = i¢) : N’ — N. Thus  is a proper
extension of 7 in the injective envelope of M. This contradicts with the fact that i is an
E-neat monomorphism (see Theorem 4.3.3-(iv)). Hence M is closed in N.

(<) Conversely, suppose that M is closed in N and that i : M — N is not E-neat.
Then by Theorem 4.3.3, there is a proper extension 6 : M’ —; N for some M’ 2 M of

i :M — N in the injective envelope E(M) of M:

i A\
M——N

Since M <E(M), we have M < M’, and so 6 must be a monomorphism. Because, if

Kerc # 0, then M NKerc # 0 since M <IM’. But M NKerc = Keri = 0 since 6 = i.
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Now identifying 6(M") with M’, we obtain M C M' = 6(M’) C N. Since M is closed
in N and M <M’, we must have M = M’. But this contradicts the fact that M’ ; M.

Hence i: M — N is E-neat. O]

Remark 4.3.5. Let R be a left C-ring. Then a submodule A C B is neat in B if and only
if it is closed in B, and so we infer from the previous result that A is neat in B if and

only if it is E-neat.

Since a monomorphism is E-neat if and only if it is a closed monomorphism

(=Compl-monomorphism), we have:

Proposition 4.3.6. Let R be a left C-ring. If {fi : Ei — Fi}ica is a family of
Compl-monomorphisms (i.e. closed monomorphisms), then f = H fi: HEi — HE
icA icA i€A

is also Compl-monomorphism. So, if every f; is an inclusion monomorphism and E; is

a closed submodule of F; for every i € A, then [1;c4 E; is a closed submodule of [;ca Fi.

Proof. Since over a left C-ring, Neat = Compl (by Proposition 4.1.1) and A eat is a
projectively generated proper class, it is [ [-closed by Proposition 2.3.8. So every direct

product of closed (=complement) submodules is closed. 0

The following theorem give a characterization for the direct product of E-neat
homomorphisms for the Singular Torsion Theory (=Goldie torsion theory) for R-M od

with R nonsingular; see Example 2.4.12):

Theorem 4.3.7. Bowe (1972, Theorem 2.4) Let (I, Fi) be the Singular Theory for
R-Mod with Z(gR) = 0 (i.e. R € Fg). Then the following are equivalent:
(i) For all nonzero proper essential left ideals I of R, R/I contains a simple

submodule (i.e. Soc(R/I) # 0) [that is, R is a left C-ring];

(ii) every nonzero module E € ‘I contains a simple submodule;
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(iii) f = Hfi : HE,- — HE is an E-neat homomorphism for every family { f; :
€A icA icA
E; — F;}ica of E-neat homomorphisms of modules.

Remark 4.3.8. (see Bowe (1972, Theorem 2.5)) Let (Ip, Fp) be the Dickson Torsion
Theory for R-“Mod. Then if Z(gR) = 0, Soc(gR) = 0 and the equivalent conditions of
Theorem 4.3.7 are satisfied, then the Singular Torsion Theory and the Dickson Torsion

Theory coincide. Indeed,
(i) If Ris a left C-ring such that Z(gR) = 0, then I C 7Tp.

(i1) If Socg R = 0, then every simple R-module is in Zg.

(iii) If R is a left C-ring such that Z(gxR) = 0 and Socg R = 0, then 7 = ‘Ip.

The following result has been given in Bowe (1972) without proof:

Proposition 4.3.9. (Bowe, 1972, Remark 1 after Theorem 1.2)

(i) If f:M — N and g : N — G are E-neat homomorphisms, then gf is a E-neat

homomorphism.

(ii) If f : M — N is a E-neat homomorphism and N is injective, then M is also
injective.

Proof. (i) Suppose we have the following commutative diagram for modules H ;

K' CK:
H" " K’ K
Gl \L'c

Since g is E-neat and gfc has a proper extension in K, we obtain that fc has
a proper extension, that is, there is a module K” ; H and a homomorphism
¢ : K” — N such that 0|y = fo. Now since f is E-neat, there is a module
K" 2 H and a homomorphism @ : K"" — M such that ¢|y = . This means ¢

has a proper extension in K, that is, gf is E-neat.
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(i) Since N is injective, we have the following commutative diagram:

M= E(M)

|
s f
N

Now suppose that M is not injective, then M # E(M). But, this means that f has
a proper extension fin the injective envelope E(M) of M. This contradicts with

f being E-neat. Hence M is injective. [

Recall that a ring R is said to be left hereditary if every left ideal of R is projective.

The following theorem characterizes left hereditary rings in terms of E-neat
homomorphisms:
Theorem 4.3.10. (Bowe, 1972, Theorem 2.1) For a ring R, the following are
equivalent:

(i) R is left hereditary.

(ii) Quotients of injective R-modules are injective.

(iii) If f is a E-neat homomorphism and f = ip is the natural decomposition of f

with p an epimorphism and i a monomorphism, then p and i are E-neat.

(iv) If f is a E-neat homomorphism and f = hg, where h and g are epimorphisms,

then h and g are E-neat.

Proposition 4.3.11. If f: E — F and g : F — G are homomorphisms and gf is
E-neat, then f is also E-neat.

Proof. Suppose we have the following diagram for modules H ; K CK:

H(_> I</(_> K

| e
(¢} T N
N

E7>FT>G
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We must show that ¢ has a proper extension in K. Since gfc = (g7)|y and gf is E-neat,
there is a module K” 2 H and a homomorphism ¢ : K” — E such that ¢|y = o, that

is, ¢ is a proper extension of ¢ in K:

H(? K//C_> K.

/
7/
"lm»
E4f>F

4.4 Z-neat Homomorphisms

In this section, we firstly give an equivalent definition of E-neat homomorphisms
considered by Zoschinger. Also, by considering the first two equivalent conditions
of Theorem 4.4.2 given by Zoschinger for abelian groups, we define Z-neat
homomorphisms of R-modules using the second condition (ii). We show that E-neat
homomorphisms and Z-neat homomorphisms coincide over Dedekind domains as in

the case of abelian groups given by Zdschinger.

Zoschinger (1978) gives an equivalent definition for E-neat homomorphisms as

follows (without proof):

Proposition 4.4.1. (Zoschinger, 1978, p. 307) f : A — A is a E-neat homomorphism
if and only if for every decomposition f = Bo where o is an essential monomorphism,

o is an isomorphism.
Proof. (=) Let f = Ba where a.: A — B is an essential monomorphism and 3 : B —
A’ is a homomorphism. Since o is a monomorphism, identifying al(A) = A, we obtain

A = o(A) <B. So there is a monomorphism g : B— E(A) such that gow = i where
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i:A— E(A) is inclusion:
A——B

l .
l s
} g

E(A)
So we can use that B C E(A) and g is the inclusion monomorphism. Thus f has an

extension f in the injective envelope E(A) of A:

E(A)

d

B

AN
~ B
o N
AN
N

A7

A/

Since f is E-neat, this extension cannot be proper, that is, & must be an isomorphism.
(«=) Conversely, to show that f is E-neat, suppose that there is an extension f3 of f
in E(A), that is, suppose we have the following commutative diagram where A C B C

E(A) and o is the inclusion monomorphism:

Since A JE(A), we obtain A < B, and so by hypothesis f = fo implies that a is an

isomorphism. Hence f has no proper extension in E(A) which implies f is E-neat. []

Zoschinger has given the following theorem which gives a characterization of
E-neat homomorphisms for abelian groups in Zdschinger (1978) without proof. He
has explained us how to prove. In the following proof for abelian groups, we should

also use the characterization of E-neat epimorphisms of modules over any ring given
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in Corollary 4.4.5: For a submodule K of a module A, the natural epimorphism
f:A— A/K is E-neat if and only if A/K <E(A)/K. Moreover, we shall use the
following result for abelian groups in the proof of the following theore: For abelian
groups A C B, A is a neat subgroup of B if and only if A is a closed subgroup of B if

and only if the inclusion monomorphism i : A — B is E-neat.

Theorem 4.4.2. (Zéschinger, 1978, Satz 2.3*) Let A and A’ be abelian groups. For a

homomorphism f : A — A’ the following are equivalent:

(i) fis E-neat.
(ii) Im f is closed in A’ and Ker f C RadA.
(iii) f~Y(pA") = pA for all prime numbers p.

(iv) If the following diagram is a pushout diagram of abelian groups and o. is an

essential monomorphism, then o is also an essential monomorphism:

A—2>B

1T

A/ > B/
a/

Proof. Let f =ip:A —> A/K ZImf < A’ where K =Kerf, p: A — A/K is the
natural epimorphism and i : Im f < A’ is the inclusion monomorphism.

(i) = (i) : Since R = Z is hereditary, we obtain by Theorem 4.3.10 that i and p are
E-neat. Since the monomorphism i is E-neat, Imi = Im f is closed in A’ by Lemma
4.3.4. Now we have by Corollary 4.4.5 that A/K <E(A)/K, and so Soc(E(A)/K) C

A/K. To show that K C RadA = ﬂ pA, we shall show that K C pA for all prime
p prime

numbers p. Let x € K. Since K C E(A) and E(A) is divisible, for every prime number
p, there exists y € E(A) such that x = py. So, p(y+K) =x+K =0in E(A)/K. Thus
y+K € Soc(E(A)/K) CA/K, thatis, y € A, and so x = py € pA.

(ii) = (i) : By Proposition 4.3.9, it suffices to show that the homomorphisms i and
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p are E-neat. Since Imi = Imf is closed in A’, i : Im f < A’ is E-neat by Lemma
4.3.4. To show the the epimorphism p : A —> A/K, where K = Ker f, is E-neat we
shall show that A/K <E(A)/K by Corollary 4.4.5. Let 0 # x+ K € E(A)/K with
x € E(A). If x € A, then we are done, so assume that x ¢ A. Since A JE(A) there
exists an integer n such that 0 # nx € A, and so n(x+K) € A/K. If n(x+K) #0
in E(A)/K, then we are done. Suppose that n(x+ K) =0 in E(A)/K. In this case,
we can assume that n is the order of the element x + K in the abelian group E(A)/K.
Since x # A, we have n > 1. Firstly, if n = p is a prime number, then px € K. So,

px € pA since K C RadA = ﬂ gA by hypothesis. Then px = pa for some a € A,

¢ prime

and so p(x —a) = 0. Thus x —a € Soc(E(A)), and so x —a € A since Soc(E(A)) CA
as A<<E(A). This shows that x € A, contradicting x ¢ A. Secondly, suppose that n is
not prime. Then there exists a prime number p and m € Z™ such that n = pm where
1 <m < n.Lety=mx. Theny ¢ K since m(x+ K) # 0 as n is the order of x+ K. So,
0#y+K€eE(A)/K withy € E(A). If y € A, then 0 # m(x+ K) € A/K and we are
done. Supposey ¢ A. Then0#y+K € E(A)/K withy € E(A) and py = pmx=nx € K.
Now as in the first case in the previous arguments, we obtain that y € A which is a
contradiction.

(i) = (i) : Since Im f = f(A) is closed in A’, it is a neat subgroup of A’, that
is, pf(A) = f(A) N pA’ for every prime number p. Let p be a prime number. Then
f(pA) = pf(A) C pA’, and so pA C f~!(pA’). Conversely, take any element x €
f~'(pA’). Then f(x) € pA’, and since x € A already, we obtain f(x) € f(A) N pA’ =

pf(A). So, f(x) = pf(a) for some a € A or equivalently, f(x— pa) = 0, that is,

x—pa € Ker f CRadA = ﬂ gA
q prime
by hypothesis. Thus x — pa € pA, and so x = p(a+d’) for some @’ € A. This implies
x € pA, and thus pA = f~1(pA’) .

(iii) = (ii) : We show that Im f = f(A) is a neat subgroup of A’. Let p be a prime
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number. Of course, pf(A) C f(A)NpA’. For the converse, let f(a) = pa’ € f(A) N pA’
for some a € A and @’ € A’. Then a € f~'(pA’) = pA by hypothesis. So a = pa for
some a € A. Thus f(a) = pf(a) € pf(A) as required. For every prime number p,
Ker f = f~1(0) C f~'(pA’) = pA by hypothesis. Thus Ker f C (), pime PA C RadA.

(i) < (iv) : It follows by Theorem 4.4.4 proved below. O

Remark 4.4.3. In the pushout diagram of Theorem 4.4.2-(iv), it is always true that if o
is an essential monomorphism, then o is an essential monomorphism by, for example,

Anderson & Fuller (1992, §5, Exercise 15).

Because of the equivalent conditions (i) and (iv) for abelian groups in the previous
theorem, we define Z-neat homomorphisms of modules; see Section 1.2 for the

definition of Z-neat homomorphisms.

Zoschinger has explained us how to prove the equivalence of the conditions (i) and

(iv) in the previous theorem for an arbitrary ring:

Theorem 4.4.4. The following are equivalent for a homomorphism f: A — A’:

(i) f:A— A is E-neat;

(ii) If
A E(A)

fl J{f’
A/ S B/
a/

is a pushout diagram of f and the inclusion monomorphism o, then o is an

essential monomorphism;

(ii) If

A—2>B

fl lf’

A/ > Bl
o
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is a pushout diagram of f and o where O, is an essential monomorphism, then o/

is also an essential monomorphism.
Proof. (i) = (i) : Suppose that the pushout diagram in (ii) is given with o an essential
monomorphism. Of course, o is monic by the properties of pushout. We show that
o is essential. Without loss of generality, we can assume that A’ C B’ and o/ is an
inclusion monomorphism, and so f(a) = f’(a) for all a € A. Now suppose on the
contrary that A’ £ B'. Then there exists a nonzero complement C’ of A’ in B’, and so
A’@®C’ < B'. By pushout of f and o we have the following commutative diagram with

exact rows, where Y is an isomorphism:

0—>A—%EA)—2-E(A)JA—>0.
I |
f L f! A

/ Y ¥
0—>A-—>p - -1 =B /A ——0

Here g and h are natural epimorphisms and y(x+A) = f’(x) + A’ for every x € E(A).
Lety 1 (A'®C'/A") =U/A where ACU C E(A). Since (A’®C") /A’ = C" #0,U /A #
0 as y is an isomorphism, and so A ; U. Since, for every u € U, f'(u) +A" = y(u+
A) e (A@(C') /A" we obtain f/(U) C A’ @ C'. Thus we have found a proper extension
no of f in E(A), where 6: U — A’ ® ' is the restriction of f’ to U defined by

o(u) = f'(u) foreveryu € U,and t: A’ &C" — A’ is the projection onto A’:

HA/@C/
-
/
A 7 A

This contradicts with f being E-neat. Hence o must be essential.
(ii) = (iii) : Consider the pushout diagram given in (iii) with o an essential

monomorphism. Without loss of generality, assume A C B and o is the inclusion
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monomorphism. Clearly o is monic by the properties of pushout. Since A < B we
can also assume B C E(A). Take a pushout of B and f’, that is, obtain the second
square (2) in the following diagram. This gives us the following pushout diagram of f

and Po since the squares (1) and (2) are pushout diagrams:

AL BC_B> E(A).
|

fi (1) lf’ @
¥

A/TB/__B/_>C/

Thus, by hypothesis (ii), B’o is an essential monomorphism, and so o’ is also essential.

(iii) = (i) : Suppose that f = o where o is an essential monomorphism:

By pushout we have the following commutative diagram with exact rows:

o

0 A B C 0.
O S

fi oyl
/B e Ve
OHA/_&/>B/__>C*>O

Since [ exists, there exists y: C — B’ that makes the indicated triangle commutative
by Lemma 4.2.2. That means the second row splits, that is, o'(A’) is a direct summand
of B'. But by hypothesis o is essential since o is essential. So o(A”) = B’ must hold.

Thus o is an isomorphism. [

Corollary 4.4.5. For a module A and a submodule K, the natural epimorphism f :
A — A/K is E-neat if and only A/K JE(A) /K.
Proof. The result follows immediately from Theorem 4.4.4 by taking the following

pushout diagram where o and o are inclusion monomorphisms, and f’ is the natural
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epimorphism:

]

Proposition 4.4.6. (Generalov, 1983, Proposition 4) Let R be a ring that can be

embedded in a module S such that RadS = R. Then:

(i) For every module A, there exists a module B such that Rad B = A.

(ii) If, in addition, the module S/R is semisimple, then an essential extension B of A

such that B/A is a semisimple module can be taken as B in (i).

Lemma 4.4.7. For an abelian group A, there exists an abelian group B O A such that

RadB = A, A<B, and B/A is semisimple.

Proof. For the submodule S := Z Z% C Q of the Z-module Q of rational numbers,
p prime

we have S/Z = Soc(Q/Z) is a semisimple Z-module and Rad S = Z (see, for example,
Mermut (2004, Lemma 4.6.2)). Thus the result follows by Proposition 4.4.6. []

Recall that a ring R is said to be a left quasi-duo ring if each maximal ideal is a

two-sided ideal.

Proposition 4.4.8. (Generalov, 1983, Lemma 3) Let R be a left quasi-duo ring. Then
for every module M,

RadM = () PM,
P C gR

max.

where the intersection is over all maximal left ideals of R.

Lemma 4.4.9. (by Generalov (1983, Theorem 7, Proposition 4)) Let R be a
commutative domain of which every maximal ideal is invertible and K be the field
of fractions of R. Let S C K be the submodule of the R-module K such that S/R =

Soc(K /R). Then:
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(i) RadS = R and S/R is a semisimple R-module,

(ii) For a free R-module F := @Rfor some index set A, take the R-module A :=
AEA
@ S. Then RadA = F and A/RadA is a semisimple R-module.
AEA

Proof. The proof in Mermut (2004, Lemma 5.4.1) for Dedekind domains works also

in this lemma.

(i) Since S/R = Soc(K/R), it is clearly semisimple. So Rad(S/R) = 0. Hence
RadS$S C R. Let P be a maximal ideal of R. Then P is an invertible ideal by
hypothesis, that is, for the submodule P ' CK, PP! =R. Hence P! is a
homogenous semisimple R-module with each simple submodule isomorphic to
R/P. So, the quotient P~! /R is also semisimple. Thus P~' /R C Soc(K/R) =

S/R which implies that P~! C S. So R = PP~! C PS. Then, by Proposition 4.4.8,

RadS= () PSR,
P C gR

max.

and thus RadS = R.

(i) RadA =@ pRadS =P AR =F and A/RadA = @, A (S/R) is semisimple.
]

Lemma 4.4.10. Let A and B be submodules of a module. If A<(A+ B) and B is

semisimple, then B C A.

Proof. Let B = @Si, where S; is a simple submodule of B for all i € I (where [ is
some indexing seite)l. Let S C B be one of the §;’s, say S = Rx for some 0 # x € S. Since
A<(A+B) and x =0+x € A+ B, there is 0 # r € R such that 0 # rx € A, and so
0 # rx € SNA. This implies that SN A = S since S is simple, that is, S C A. Thus every

simple submodule S of B belongs to A. Hence B C A. [
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Lemma 4.4.11. Let R be a commutative domain of which every maximal ideal is
invertible. Let K C A be R-modules with RadA = 0. If the natural epimorphism
f:A— A/K is E-neat, then K = 0.

Proof. By Lemma 4.4.9, there exists an R-module S such that RadS = R and S/R
is semisimple. So by Proposition 4.4.6, there exists an R-module B D K such that
RadB = K with K <B, and B/K is semisimple. Then we can embed B into the injective

envelope E(A) of A:

lf S] B
%/
E(A)

So we can assume that K C B C E(A). Now, by Corollary 4.4.5, A/K <E(A)/K,
and so A/K <(A+B)/K = (A/K) + (B/K) since A+ B C E(A). The module B/K
is semisimple by hypothesis, and so we obtain B/K C A/K by Lemma 4.4.10. Thus

B CA,and K =RadB C RadA =0, thatis, K = 0. O

Corollary 4.4.12. Let R be a commutative domain of which every maximal ideal is
invertible. If f : A — A’ is an E-neat epimorphism and RadA = 0, then Ker f = 0 and

so [ is an isomorphism.

Proposition 4.4.13. If R is a left C-ring and if all maximal left ideals of R are

projective, then R is a left hereditary ring.

Proof. Since every maximal left ideal of R is projective, it follows by Crivei (1998,
Theorem 10) that every factor module of a max-injective module is max-injective.
Since R is aleft C-ring, by Theorem 4.2.14, every max-injective module is injective.
Thus, every factor module of an injective module is injective. Hence R is left hereditary

by Theorem 4.3.10. U

Recall that a ring R is an N-domain if and only if R is a commutative domain whose

all maximal ideals are projective (and so all maximal ideals are invertible and finitely
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generated). So, if R is an N-domain and a C-ring, then R is a commutative hereditary

domain, that is, a Dedekind domain (by Proposition 4.4.13).

Theorem 4.4.14. Let R be Dedekind domain. For R-modules K C A, the natural
epimorphism f : A — A/K is E-neat if and only if K C RadA.
Proof. (<) Suppose that for A C B C E(A), there exists a homomorphism % : B —
A/K that extends f:

E(A

.
]

Then h(a) = f(a) = a+ K for every a € A, and A <B since A <E(A). Therefore

)

N
\\h

AN

N
—~A/K

f

h(K) = 0, and so we obtain the following diagram:

A/K—>B/K

Ve
Ve
IA/Kl L

A/K

such that /(b + K) = h(b) for every b € B. This diagram is also commutative: for
every a € A, W'(a+K) = h(a) = f(a) = a+K = 14/x(a+K). This means that the
diagram splits, and so A/K is a direct summand of B/K. Then there is a submodule
C with K C C C B such that (A/K) ® (C/K) =B/K. SoA+C =B and ANC =K.
Since K C RadA by hypothesis, we obtain that A is a Rad-supplement of C in B or
equivalently, A is a coneat submodule of B. Then A is also a neat submodule of B
by Mermut (2004, Theorem 5.4.6). So A is closed in B by Proposition 4.1.1 since the
Dedekind domain is is a C-ring. But then A <B implies that A = B. Thus f:A — A/K
has no proper extension in the injective envelope of A. Hence f is E-neat by Theorem
4.3.3.

(=) Conversely, suppose that f : A — A/K is an E-neat homomorphism. We have
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the following commutative diagram:

A A/K
‘| ¢\
A/(RadA) (A/K)/(Rad(A/K))

where ¢ and p are natural epimorphisms, and ¢ = P, where

o:A/RadA — (A/RadA)/((RadA +K)/RadA)

is the natural epimorphism and

B:(A/RadA)/((RadA + K)/RadA) —» (A/K)/(Rad(A/K))

is defined by

(a+RadA) + [(RadA+K)/RadA] — (a+ K) +Rad(A/K).

Thus ¢(a +RadA) = (a+ K) +Rad(A/K) for every a € A. Since f is E-neat (by
hypothesis) and p is E-neat (by “(<=)” of this theorem), we obtain ¢c = pf is E-neat
by Proposition 4.3.9. Since R is left hereditary and ¢ and ¢ are epimorphisms, ¢ is
E-neat by Theorem 4.3.10. So « is E-neat by Proposition 4.3.11 since ¢ = Ba is
E-neat. Now since the natural epimorphism o is E-neat and Rad(A/RadA) = 0, we
obtain by Lemma 4.4.11 that (Rad+K)/RadA = 0, that is, RadA + K = RadA. Thus

K C RadA as required. [

Corollary 4.4.15. Let R be a Dedekind domain. For every R-module A, the natural

epimorphism f : A — A/RadA is E-neat.

Corollary 4.4.16. Let R be a Dedekind domain. An epimorphism f : A — B of

modules is E-neat if and only if Ker f C RadA.
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Now we give the main result of this section which generalizes the equivalence of (i)

and (i1) in Theorem 4.4.2 for abelian groups to Dedekind domains:

Theorem 4.4.17. Let R be a Dedekind domain. Then a homomorphism f : A — A’
of R-modules is E-neat if and only if it is Z-neat, that is, Im f is closed in A" and

Ker f C RadA.

Proof. We have f = ip where p: A — A/Ker f = Im f is the natural epimorphism
and i : Im f — A’ is the inclusion monomorphism.
(=) Suppose that f : A — A’ is E-neat. Since R is hereditary, both of p and i
are E-neat by Theorem 4.3.10. Thus Imi = Im f is closed in A’ by Lemma 4.3.4
since the monomorphism i is E-neat, and Ker f C RadA by Corollary 4.4.16 since
the epimorphism p is E-neat.

(<) Conversely, suppose that f : A —> A’ is Z-neat. Then since Im f is closed
in A’ the monomorphism i is E-neat by Lemma 4.3.4, and since Ker f C RadA the
epimorphism p is E-neat by Corollary 4.4.16. Hence the composition f = ip is also

E-neat by Proposition 4.3.9-(1). [l

4.5 The Class of E-neat Epimorphisms

In this section, we deal with properties of E-neat homomorphisms which are
epimorphisms. By showing that a splitting epimorphism is not always E-neat, we show
that the class of all short exact sequences of modules defined by E-neat epimorphisms

does not form a proper class.

Theorem 4.5.1. A splitting epimorphism f : M — N is E-neat if and only if Ker f
is injective. That is, for modules A and B, the splitting (projection) epimorphism f :

A@ B — Ais E-neat if and only if Ker f = B is injective.

Proof. (=) Suppose that f is E-neat. Consider the injective envelope E (B) of B. Since
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B <E(B), we have an essential monomorphism

o0:A®B—AGE(B) CE(A)®E(B) CE(A®B).

Indeed, A+ B CA+E(B) and fora € ANE(B),RaNnBCANB =0, and so BJE(B)
implies Ra = 0, that is, a = 0. Clearly, A@® B JA® E(B). Thus we obtain the following

commutative diagram:

where G is a projection. In the above diagram, co((a,b)) = 6((a,b)) = a = f((a,D)),
that is, 6|sep = f. But since f is E-neat, it cannot have a proper extension in the
injective envelope of A @ B by Theorem 4.3.3. Then AGB =A@ E(B), and so B =
E(B). Hence B = Ker f is injective.

(<)LetM =A@B, thatis, M=A+Band ANB=0. Then E(M) =E(A®B) =
E(A) @ B since B = Ker f is injective by hypothesis. By Theorem 4.3.3-(iv) it suffices
to show that f does not have a proper extension in E(M). Suppose on the contrary
that f has an extension g : C — A in E(M) where M C C C E(M). Then we have the

following commutative diagram, where i : A < A & B is the inclusion monomorphism:
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Since ji: A < C splits, there exists a submodule K of C such that C = A@ K. Therefore,
M=A®B—C=AdK, and so B= (A®B)/A C C/A. Since B is injective by
hypothesis, (A @ B)/A is a direct summand in C/A, and so C/A = (A®B)/A® (L/A)
for a submodule L of C withA C L. Thus C = (A®B)+Land (A®&B)NL=A. So we

have the following commutative diagram:

with g = e. Since A is a direct summand of C, it is also a direct summand of L. So,
L=Aa@U forsome U CL. ThenC=(A®&B)+L=(A®B)+(A®U)=A®BaU.
So we have M = A® B C C C E(M). Since M JE(M), we have M <C. But, then we
must have U = 0 since M = A @ B is a direct summand of C = (A® B) @ U. Hence

C = M as required. [

Theorem 4.5.1 shows that the class EA eat only contains splitting short exact
sequences which starts with an injective module. So it does not contain all splitting
short exact sequences if there modules that are not injective (that is, if the ring R is not
semisimple). Now let us check whether EA eat satisfies the other conditions for being

a proper class (P1, P3, P4 in Section 2.3):

Theorem 4.5.2. The class EN eat satisfies the conditions P1 and P3 for every ring R,
and P4-(ii) for left hereditary rings, but it does not satisfy the conditions P2 unless the
ring R is semisimple. As a result, the class EN eat forms a proper class if and only if
R is a semisimple ring.

Proof. P1. Let
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be short exact sequences of modules that are isomorphic, that is, we have the following

commutative diagram:

with some isomorphism y : B — B’, where 14 : A — A and 1¢ : C — C are identity
maps. Assume that E € EAN ear, that is, g : B— C is an E-neat epimorphism. We shall
to show that E' € A eat, that is, g’ : B — C is an E-neat epimorphism. Suppose we

have a commutative diagram for modules H ;Cé G CG:

HCHG/C—>G
0 1 ?
o N\
¥ , C
B

Since  is an isomorphism, the homomorphism ¢ = y~!c : H — B exists. Now
since g'y : B— C is E-neat, there is a submodule G” 2 H of G and a homomorphism

Y: G — B such that y|y = @:

H(_>G//(_>G
-

¢ 7y

J/%/Y |

B—y>B ——C

v Y

Since there is yy: G” — B’ such that (W) |z= W(Y |#) = Yo = o, we obtain g’ is
E-neat.

P2. By Theorem 4.5.1, the splitting short exact sequences which do not start with an
injective module are not in £Aeat. So P2 holds if and only if every left R-module
is injective, that is, if and only if R is a semisimple ring (see, for example, Sharpe &
Véamos (1972, Proposition 3.7)).

P3. (i) Let f: A — B and g : B— C be EN eat-monomorphisms, that is, the row
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containing f and the column containing g in the following diagram are in the class
EAN eat. We shall show that g f is an EA eat-monomorphism. Consider the following
commutative diagram, where we assume that A C B C C, and f and g are inclusion

monomorphisms, and the other maps are naturally defined:

0 A B B/A 0 4.5.1)
ui . 5
0—A—Soc—toc/a—s0
Y ¢
c/B—<% c/B
0 0

According to the diagram, the epimorphisms o and 'y are E-neat, and we must show that

the epimorphism 4 is E-neat. Suppose we have a commutative diagram for modules

H;G/QG:
H——~G" G
J/ # J{\m
c T N
N
C—; C/A o C/B

Since (@71) |g= @(t |z) = (ph)o and @h : C — C/B is E-neat, there is a submodule

G" 2Hof Gand ¢ : G" — C so that 0|y = ©:

H( G//( G

#+
Gl //
Iz/ 0

C—-C/A
This means that & : C — C/A is E-neat.

(ii) Let . : A — B and B : B — C be ENeat-epimorphisms. Then o
and B are E-neat, and so Pa is E-neat by Proposition 4.3.9-(i), that is, Pa is

EAN eat-epimorphism.
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P4. (ii) Let R be a left hereditary ring, and let « : A — B and B : B —> C be
epimorphisms. If Bot is an EA eat-epimorphism, that is, if Po is E-neat, then B is

an E-neat by Theorem 4.3.10 (since o and 3 are epimorphisms).

As a result, if R is semisimple, then EAN eat = Splitg. Indeed, if R is semisimple,
then every left R-module is injective. So, every short exact sequence in EAN ear is

splitting. Now, every splitting short exact sequence is in EA eat by Theorem 4.5.1.

Conversely, if EA eat forms a proper class, then P2 of being a proper class holds,

and so R is semisimple. 0

Let f:A — B and g : B — C be monomorphisms and gf be an
EAN eat-monomorphism. To show that EA eat satisfies P4-(i), we must show that
f is an EA eat-monomorphism. Consider the commutative diagram (4.5.1). So we
must show that o : B— B/A is E-neat when i : C — C/A is E-neat. But this is not

satisfied, for example, for abelian groups as the following example shows:

Example 4.5.3. Let Zs) be the localization of the prime ideal (5) = 5Z of Z. Then

Z(5) consists of all rational numbers with denominators relatively prime to 5, that is,
a
Zs) = {Z | a,b € Zand (b,5) = 1}.

Obviously, we have Z C Zsy € Q. We shall show that the epimorphism o: Q — Q/Z
is E-neat, but the epimorphism B : Zs) — Zs)/7Z is not E-neat. Since Q is injective,
RadQ = @Q, and so Keraw = Z C Rad Q. This means o is E-neat by Proposition 4.4.14.

Since Zs) is g-divisible for every prime g # 5, we obtain

Rad(Z(5)) = ﬂ qZ(5) = SZ(S).

q prime

Then Ker = Z ¢ 5Zs) = Rad(Zs)) since, for example, 3 € Z\ 5Zs). Indeed, if
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3 € 5Zs), then 3 = 5(f) for some a,b € Z with b relatively prime to 5. But, then

a= 35—b € Z which is impossible. Hence B is not E-neat, again by Proposition 4.4.14.

4.6 Z-coneat Homomorphisms and the Proper Class Coclosed

Our interest in this section is coneat homomorphisms of Zdschinger which have
been studied in Zoschinger (1978) (we call them Z-coneat homomorphisms) and
the class of coclosed monomorphisms. We also study coclosed monomorphisms of
modules and we show that the class of all short exact sequences defined by is coclosed
submodules forms a proper class, denoted by Coclosed. The properties needed to

prove this found in Clark et al. (2006) and Zdschinger (2006).

See Section 1.2 for the definition of E-neat homomorphisms and its dual definition

of Z-coneat homomorphisms considered by Zdschinger for abelian groups:

Dual to Theorem 4.4.2 for E-neat homomorphisms, the following theorem was
given by Zoschinger (1978) for Z-coneat homomorphisms of abelian groups. Note

that for an abelian group A and an integer n, A[n] = {a € A | na = 0}.

Theorem 4.6.1. (Zoschinger, 1978, Satz 2.3) For a homomorphism g : C' — C of

abelian groups, the following are equivalent:

(i) gis Z-coneat;
(ii) Kerg is coclosed in C' and SocC C Img;
(iii) g(C'[p]) = C|p] for all prime p;

(iv) If the diagram below is a pullback diagram and B is a small epimorphism, then

B’ is also a small epimorphism.
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Now we show that Coclosed forms a proper class.

The following proposition contains some properties of coclosed submodules, which

will be used in this section, from Clark et al. (2006):

Proposition 4.6.2. (Clark et al., 2006, 3.7) Let K C L C M be submodules. Then:

(i) If L““~M, then L/ K—“~M /K.

(ii) If K—“>M, then K—““~L and the converse is true if L—“>M.

For completeness note the following lemma from Zoschinger (2006) with its proof:

Lemma 4.6.3. (Zoschinger, 2006, Lemma A.4) Let U CV C M be submodules. If
UM and V /UM /U, then V—>M.

Proof. Assume that V /X < M/X where X C V for some submodule X of M with
X C V. We shall show that X = V. Firstly, let us show that U /(U NX) < M /(U NX).
Assume that U/(UNX)+W/(UNX) =M/(UNX) for a submodule W of M with
UNX DO W. Clearly, we have U +W = M. To show that W = M, we shall show that

V/(U+WNX)<M/(U+WnNX). Suppose that

V/U+WNX)+Z/(U+WNX)=M/(U+WNX)

for a submodule Z of M with (U +W NX) C Z. Clearly, Clearly we have V +Z = M.
Since U C Z, by modular law, we have Z=ZNM =ZN(U+W) =U + (ZNW). Then

V4+U+(ZNW)=Z+V =M,andsoV + (ZNW) =M since U C V. Thus,

M/X=V/X+[(ZNnW)+X]/X.
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Since V /X < M /X by hypothesis, we obtain M/X = [(ZNW)+X]/X, and so (ZN

W)+ X = M. Now, by modular law, we have

W=WnM=Wn((ZNW)+X)=(ZNW)+(WnX),

and so W C Zsince WNX C Zalready. SoM =U +W =U+Z = Zsince U C Z. This

shows that V/(U+WNX)+Z/(U+WNX)=M/(U+WnNX).But then we have

(V/U)/[(U+WNX) U2V /([U+WNX) <M/(U+WNX) = (M/U)/[(U+WnX)/U].

SoV/U = (U+WnNX)/U since V/U—~M /U by hypothesis. This clearly implies

V =U+ W nNX. Then, by modular law,

X=XNV=XNU+WnX))=XNU)+(WnX),

and so X CWsince UNX CW. SinceU CVand U+W =M, we have V+W =
M. SoM/X =V /X +W/X. This implies that W/X = M /X since V/X < M/X (by
assumption) or equivalently, W = M which shows that U /(UNX) < M/(UNX). Now
since U>M (by hypothesis), we obtain U = U NX, and so U C. Hence X =V since

X/U CV/U andV/X < M/X. Indeed, since

V/U)/(XJU)=V/X <M/X=(M/U)/(X/U)

we obtain V /U = X /U (since V /U~"~M /U by hypothesis). O

Theorem 4.6.4. The class Coclosed, that is, the class of all short exact sequences

of modules such that Im . is coclosed in B forms a proper class.

Proof. Let K C A C B and C be submodules.
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P1. Suppose we have the following commutative diagram of modules and module

homomorphisms:

J

0 A B C 0

with some isomorphism y : B— B’, where 14 : A — A and 1¢ : C — C are identity
maps. We can assume that A C B” and f” is an inclusion monomorphism. We shall show
that, if A~““~B, then A~"“~B’. If there is a submodule K C A such that A/K < B'/K,
then we have ' (A)/K <y~ !(B')/K. Since y ' (B') =Band y ' (A) = A as yis an
isomorphism, we obtain A/K < B/K, and so A = K since A—~—~B. Hence A"~B'.
P2. Coclosed contains all splitting short exact sequences, since every direct summand
is coclosed. Indeed, let A & B = M for submodules A, B of a module M. Let us show

that A~““~M . Suppose that there is a submodule K C A such that A/K < M /K. Since

(A/K)N((B+K)/K)=[AN(B+K)]/K = (K +ANB)/K =0,

we obtain M/K = (A/K) @ (B+K)/K. Since A/K < M/K by hypothesis, we have
A/K =0orA =K. Hence A“~M.
P3. (i) Let f:A — B and g : B — C be Coclosed-monomorphisms. We can
assume that B C C and g is an inclusion monomorphism. Since A—“~B and
B—“~C, we obtain A~“~C by Proposition 4.6.2-(ii). This means that gf is a
Coclosed-monomorphism.

(ii) Let K C A C B and assume that the natural epimorphisms o : B — B/K and
B:B/K— B/A=(B/K)/(A/K) be Coclosed-epimorphisms. We shall show that fo

is a Coclosed-epimorphism, that is, A~—““~B by the following commutative diagram
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where f, g and h are inclusion monomorphisms, and o and [ are natural epimorphisms:

0— K¢ A A/K —=0
1z g h
0 K¢ B—*~B/K 0
Box B
B/A~—B/A
0 0

Then according to the diagram, we have K~~=B and A/K“~~B/K . We shall show
that A~““~B. This follows by Lemma 4.6.3.

P4. (i) Let f: A — B and g : B— C be monomorphisms and let gf be a
Coclosed-monomorphism. We shall show that f is a Coclosed-monomorphism. We
can assume that A C B C C. We have A—"“~C and we shall show that A~““~B. This

result follows by Proposition 4.6.2-(ii).

(ii) Let A C B C C. For the natural epimorphisms, o.: C — C/A and B: C/A —
C/B = (C/A)/(B/A), assume that Ba is a Coclosed-epimorphism. We shall show
that B is a Coclosed-epimorphism. We have B—“~C and we shall show that
B/A“““~C/A. This result follows by Proposition 4.6.2-(i). O



CHAPTER FIVE
TORSION FREE AND COMPONENTWISE FLAT COVERS OF QUIVERS

In this chapter, we study in the category of representations by modules of a quiver
0, denoted by (Q,R-Mod), which is a Grothendieck category with enough injectives
and projectives. In Section 5.1 we give some preliminary notions and explain the

category (Q,R-Mod).

In Enochs et al. (2004a), it was proved that for the existence of F-covers and
FL-envelopes in the general setting of a Grothendieck category (not necessarily
with enough projectives), it suffices to show that the class # satisfies some standard
conditions. In this way, we prove the existence of “componentwise” flat covers in
(Q,R-Mod) for every ring R and any quiver Q in Section 5.3. We also prove the
existence of torsion free covers in (Q,R-Mod) for a wide class of quivers in Section
5.2. In the last section, we compare the “categorical” flat covers and “componentwise”

flat covers giving some examples.

Throughout this chapter, all torsion theories considered for R-Mod will be
hereditary, and faithful (i.e., R will be torsion free). Also, we will consider the

following two properties during this chapter:

(A) Any direct sum of torsion free injective R-modules is injective.

(B) For every vertex v of a quiver Q, the set {¢(a) | s(a) = v} is finite.

5.1 The Category (Q,R-Mod)

The notions of quiver and linear representation of a quiver were introduced in

Gabriel (1972a). The classical representation theory of quivers involved finite quivers

129
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(i.e., a quiver with finitely many vertices and edges) and assumed that the ring was an
algebraically closed field with the assumption that all vector spaces involved were finite
dimensional. But recently, representations by modules over more general quivers have
been studied (see Enochs & Herzog (1999), Enochs et al. (2002), Enochs et al. (2003a),
Enochs et al. (2004b), Enochs & Estrada (2005a), Enochs et al. (2007), Enochs et al.
(2009)).

See Section 1.3 for the definition of quivers and some related notions that needed in

this chapter:

Example 5.1.1. The following is an example of a quiver whose vertices are v, vy, Vv

and whose arrows are o, 3,9, Y:

A tree 1s a quiver Q having a vertex v such that for every vertex w of Q, there exists

a unique path p : v — w. Such a vertex is unique and it is called the root of the tree.

For a given quiver Q, the (left) path space (or the path tree associated to (), denoted
by P(Q), is the quiver whose vertices are the paths p of Q and whose arrows are
the pairs (p,ap) : p — ap, where a is an arrow of Q such that ap is defined (i.e.
s(a) =t(p)). For every vertex v of Q, denote by P(Q), the subtree of P(Q) containing

all paths of Q starting at v.

Example 5.1.2. Let Q be the quiver in Example 5.1.1. Then the left path spaces of Q

are the following:
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oo ,
(o, d0t)
o — Yo 5
(Voﬂ/ (OC,’Y(X) (V]ﬁ/
) P(Q),, = Vv
P(Q)y, = Vo ; PQw = & : :
(v0.B) (”k«
(B,3B)
B2 5B !
(B:vB)
B

Recall that a representation by modules of a given quiver Q is defined as a functor
X :Q — R-Mod. Such a representation is determined by giving a module X (v) for
every vertex v of Q and a homomorphism X (a) : X(v;) — X(v2) for each arrow a :

Vi —> V2 of Q

A morphism 1 between two representations X and Y is a natural transformation, so
it will be a family of homomorphisms 1, : X (v) — Y (v) such that Y (a)n,, =1,,X (a)

for each arrow a : vi — v, of Q, that is, the following diagram commutes:

X)) 2L x (1)

nvl \L \anz

V() YO

Thus the representations of a quiver Q by modules over a ring R form a category,

denoted by (Q,R-Mod).

Remark 5.1.3. Actually, our category (Q,R-Mod) is a special case of the functor
category Fun(I, C) where I = Q and C = R“Mod (see Section 2.7 page 46). So,
by Stenstrom (1975, Chap. IV, Proposition 7.1), we infer that (Q,R-Mod) is an

abelian category, and from the arguments given in the proof we notice that kernels,



132

cokernels and products are constructed “componentwise”. From this we deduce that
colimits and limits are computed “componentwise” as well. In particular, this tells us
that intersections (which are a special case of pullbacks) and sums are also computed

componentwise.

Therefore, 1 will be a monomorphisms (respectively, epimorphism, isomorphism)
whenever 1, is a monomorphism (resp. epimorphism, isomorphism) of modules for all
v € V. In particular, if n,’s are just inclusions, then X is said to be a subfunctor of ¥ or,
by using our terminology, a subrepresentation of Y. Similarly, quotient representations

are also defined componentwise.

Example 5.1.4. Let Q be the quiver in Example 5.1.1. Then a representation of Q is

given as follows: X = X(vo) %’, X(v1) %’, X(v2)
80 81

is a representation of Q, where X (vg),X (v1),X(v2) are modules and fy,go, f1,g1 are

homomorphisms.

Definition 5.1.5. For a given quiver Q and a ring R, the path ring of Q over R,
denoted by RQ, is the free left R-module whose base are all paths of Q, and where

the multiplication is the obvious composition between two paths:

qp ift(p) =s(q)
0 ift(p) #s(q)

q-pP=

The product of basis elements is then extended to arbitrary elements of RQ. In other

words, there is a direct sum decomposition

RO =RQyHRO ®...BRQ, & ...

of the free left R-module RQ, where, for each n > 0, RQ,, is the submodule of RO
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generated by the set O, of all paths of length n.

Aring R is said to be a ring with enough idempotents if there exists a family {eq }aea
of pairwise orthogonal idempotents eq € R (that is, eq # eg for o0 # [ and e2 = ey for

all o, B € R) such that

R =P euR = PReq.

ocA acA

R is said to be a ring with local units if for every finite set S C R, there exists an

idempotent e € R such that S C eRe.

By Wisbauer (1991, Chap.10, §49), we have a ring R with enough idempotents is a

ring with local units.

Remark 5.1.6. RQ is a ring with enough idempotents,. Indeed, the set of vertices of
Q is a family of orthogonal idempotents (since v-w = 0 for v # w, and v?> = v for all

v,w € V) such that

RQ = EPvRQO = P ROv.

veV vev

So, RQ is a ring with local units. Indeed, consider the sets

A={s(pi): Y ripi€S} and  B={t(p;):} s;p; €S}

where py is a path of Q for each k and ry,s;y € R. Then e = Z v is the required
vEAUB
idempotent.

Note that RQ has an identity element if and only if the set of vertices V of Q is finite

(see, for example, Assem et al. (2006, chap. II, Lemma 1.4)). In this case,
1RQ =VI+Vvy+--vy,

where v{,v,...v, are distinct vertices of Q.
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Remark 5.1.7. It is known that the categories (Q, R-M od) and RQ-M od, the category
of unital RQ-modules or equivalently, the category of left RQ-modules goM such that
ROM = M, are equivalent; see, for example, Estrada (2003, Chap. 2) for details.
Indeed, given a representation X of Q, we have an R-module @,y X (v), and the action

of apath p=vg — v{ — --- — v, is the composition of homomorphisms

PXxv) — X(vo) — X(v1) — -+ — X(va) — EPX()
veV veV

where the first homomorphism is the projection homomorphism and the last is the
inclusion homomorphism. Thus, by this action, any representation X of Q can be given
an RQ-module structure. Conversely, let M be an RQ-module. Then we can construct
a representation X of Q so that X(v) = vM for all v € V, and for each arrow a : v — w
of Q, X(a) : vM — wM is just scalar multiplication by a (that is, for each vin € vM,
X(a)(vm) = avm = am = wam € wM). For this equality, where Q is finite and R is
an algebraically closed field with all vector spaces involved are finite dimensional, see
also Assem et al. (2006, Chap. III.1) or Auslander et al. (1995, Chap. III, Theorem
1.5).

Example 5.1.8. Let Q be a quiver consisting of a single point but no arrows. The
defining basis of the path ring RQ is {v}, where v is the identity of the path ring RQ.
Thus RQ = R, where the isomorphism being induced by the R-linear map such that
vi— 1. So, (Q,R-Mod) = RO-Mod = R-Mod. This means that a representation of Q

is just an R-module.

Example 5.1.9. Let Q be the quiver consisting of a single point and a single loop:

V.Da

Q
Il

Then the defining basis of the path ring RQ (i.e. the paths of Q) is {v,a, al,.. .}, where
v is the identity of RQ. Thus RQ = R[x|, where R[x| is a ring of polynomials with

coefficients in R and where the isomorphism being induced by the R-linear map such
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that v— 1 and a — x. So, (Q,R-“Mod) = R[x]-Mod.

Note that RQ is a projective generator of RQ-M od (see Wisbauer (1991, Chap. 10,
§49.1)). So, it follows that (Q,R-Mod) is a Grothendieck category with a projective
generator, and thus with enough projectives by, for example, Stenstrém (1975, Chap.
IV, §6, Example (3)). Moreover, for the explicit presentation of the method to construct
a family of projective generators for the category (Q,R-Mod), see Enochs et al.
(2004b) or Estrada (2003, Chap. 2). Also, (Q,R-Mod) has enough injectives (see
Stenstrom (1975, Chap. X, Corollary 4.3)).

Remark 5.1.10. For a given quiver Q, one can define a family of projective generators
from an adjoint situation as it is shown in Mitchell (1972). The family {S,(R) | v € V}
is a family of projective generators for the category of representations (Q,R-Mod)
where for each v € V the functor S, : R-Mod — (Q,R-“Mod) is defined in Mitchell
(1972, §28) as follows:

For an R-module M, the representation S, (M) is defined for all w € V by

where Q(v,w) is the set of all paths of Q such that s(p) = v and #(p) = w, and for each

arrow a : wi — wp of Q,

SM)a): P M— P M

q€Q(v,w1) pEQ(V,W2)

is given by (m‘l)Q(‘&Wl) — (up)pGQ(v,WQ)’ where

0 ifpéaQ(v,w),

up h—
my if p € aQ(v,w1)
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and aQ(v,w1) ={aq | ¢ € Q(v,w1)}. In other words,

@, 1
SMa@= @ M= P M-~ P m
q€Q(v,wi) peaQ(viwr) peQ(viw2)
Then S, is a left adjoint functor of the evaluation functor T, : (Q,R-“Mod) — R-Mod
given by T,(X) = X (v) for every representation X in (Q,R-Mod); see, for example,

Enochs et al. (2004b, Propositions 3.1 and 3.2). That is, for every v € V, we have
Homg (S, (M), X) = Homg(M, T,(X)).

Since (Q,R-Mod) has coproducts, we obtain by Definition 2.7.8 that @SV(R) is a

veV
generator for (Q,R-Mod).

Example 5.1.11. Consider the quiver

Cc

N

oy b (274 a LA1%

Q
Il

Then Q(v,w1) = {b}, Q(v,w2) = {ab,c} and aQ(v,w;) = {ab}. For a module M,
we have S,(M)(w1) = Mp, Sy,(M)(w2) = Ma, ® M., and S,(M)(a) = 1p,, ®0, where

M, =M, =M_,, = M. In other words,
Sy(M)(a) : M — M & M is given by m — (m,0).

Proposition 5.1.12. The category (Q,R-Mod) is locally finitely presented.

Proof. We shall show that for every finitely generated module M, S,(M) is a finitely
generated representation in (Q,R-Mod) for every v € V. Let ¥ ;;Y; be a direct union
of subrepresentations of Y. Since S, is a left adjoint functor of the restriction functor

T,, we have

Homg(S,(M),)_Y;) = Homg(M,)_Yi(v)).

i i
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Since ) ;Y; is computed componentwise and M is finitely generated module, we obtain

Homp (M, Y (1)) 2 Tim Home(M, (1))  lim Homo(S,(M). 1)

Thus by Proposition 2.7.13, S, (M) is finitely generated. So, {S,(R) | v € V} is a family
of finitely generated projective generators, and so finitely presented generators (by

2.7.15). Hence (Q,R-Mod) is a locally finitely presented category. O

5.2 Torsion Free Covers in (Q, R-M od) Relative to a Torsion Theory

By injective representations of a quiver Q, we mean injective objects in the category

(Q,R-Mod).

Throughout this section, Q will be a source injective representation quiver , that is,
for every ring R every injective representation X in (Q,R-M od) is characterized by the
following conditions (call shortly STRQ):

(i) X(v) is an injective R-module, for every vertex v of Q.

(i) For every vertex v, the morphism

N %

X(v) — ([)1_ X (t(a))

induced by X(v) — X(t(a)) is a splitting epimorphism, where the product is

over all arrows a in Q with s(a) = v; see Enochs et al. (2009, Definition 2.2).

Remark 5.2.1. (Enochs et al., 2009, Proposition 2.1) For each quiver Q, if X €

(Q,R-Mod) is injective, then the above conditions (i) and (ii) of SIRQ always hold.

Now let us give some examples of source injective representation quivers:

(1) Each quiver with a finite number of vertices and without oriented cycles is a
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source injective representation quiver.

(i) The infinite line quivers:

Aw = ° ° o,
A” = ° ° ° ,
AZ = ° °

are source injective representation quivers.

(ii1) Infinite barren trees are source injective representation quivers: Recall thatif T is
a tree with the root v, we can divide the set of vertices into “states” in such a way
that the first state is {v}, the second is the set of sons of v (that is, the vertices
w such that there is an arrow from v to w), the third is given by the sons of the
vertices in the second state, and so on. We say that T is barren if the number
of vertices n; of the /'th state of T is finite for every i € N, and the sequence
of positive natural numbers ny,ny,... stabilizes, that is, there exists r € N such
that n,, ; = n, for all j € N (see Enochs et al. (2009, Corollaries 5.4-5.5)). For

example, the tree

e >0 — > ---

/
I

is barren.

(iv) The quiver with two vertices and infinitely many arrows between these two

vertices is a source injective representation quiver, but does not satisfy the

property (B) (at page 129): e e

Once we have given some examples of source injective representation quivers, now
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let us give an example that is not a source injective representation quiver:

Example 5.2.2. The n-loop, that is a loop with n vertices, is not a source injective
representation quiver. To see this, let v; be a vertex and a; : v; — v;11 be an arrow of
the quiver for all i = 1,2,...,n, where v,.1 = vi. Now consider the representation
X defined as follows: X(v;) = E X --- x E (n times) and X(a;)(x1,...x,) =
(Xn,X1,---,%,—1), where E is an injective R-module and x; € E for all i = 1,...n.
Then it is clear that X satisfies the conditions (i) and (ii) of SIRQ. But, X is not an
injective representation since it is not a divisible RQ-module. This is because, there is
element (a,ap,—1---ai+aja,---az+---+an—1ap—2---an) — lrg of RQ which is not

zero divisor such that
[(ananil al _|_a1an...a2_|_..._|_an71an72...an) — lRQ] m:O

for every element m = (my,...,m,) where m; € X(v;) = E x --- X E for all i =

1,2,...,n. Indeed, if m; = (mil,m%,...,m?), where mlj € E,foralli,j=1,...,n, then

(anan_l ...al) .m+(a1an...a2) .m+...+(an_1an_2...an) m =
X(an)X(apn—1)---X(ar)m +---+X(ap—1)X (an—2) - -- X (an)m, =
X(an)"'X<a2>(mrlnm%7'"7m1£71) +"'+X(an*1)"'X(al)(m27mrll>"'am2—l) =

(ml,...,m}),0,...,0)+---4(0,...,0,(m?,...,m")) = (my,...,m,) =m

See Remark 5.1.7 for the action of a path used in this example.

Now let (7, F ) be a torsion theory for R-M od. Then we can define a torsion theory

(Zev, Few) for (Q,R-Mod), by defining the torsion class such that

Tw=1{X € (Q,RMod) | X(v) € T forallv e V}.
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This is because 7., is closed under quotient representations, direct sums and extensions

(as so is 7) (see, for example, Stenstrom (1975, VI, Proposition 2.1)).

Remark 5.2.3. Since the torsion class 7, is closed under subrepresentations, our

torsion theory (Z.,, o) is hereditary.

Proposition 5.2.4. Let X € (Q,R-Mod). Then X € Fo,, if and only if X (v) € F for all

vev.

Proof. (=) LetX € ¥.,. Then for every M € 7, we have

Homg(M,T,(X)) = Homg(S,(M),X) =0

since S, (M) € 7., (as T is closed under direct sums). Thus X (v) = 7,(X) € ¥ for all
veV.

(<) Suppose that X (v) € F forallve V. LetA € 1. If y: A — X is a morphism
of representations, then we have module homomorphisms 7, : A(v) — X(v) for all
v € V. Since A(v) € 7, then Homg(A(v),X(v)) =0 and so y, =0 for all v € V. Thus

v=0, that is, Homg (A, X) = 0. This means that X € 7. O

Theorem 5.2.5. Any representation of F.,, can be embedded in a torsion free and
injective representation.

Proof. Let X € ¥, be any representation of Q. Since (Q,R-Mod) has enough
injectives and (Zg,, Few) is hereditary, then 7, is closed under injective envelopes (see
Dickson (1966, Theorem 2.9)). Thus X can be embedded in its torsion free injective

envelope. [

Lemma 5.2.6. Let X, X',Y and Z be representations of Q.
(i) If X has an F.,-precover and Z C X, then Z also has an ¥.,,-precover.
(ii) If X is injective, then ¥ : X' — X is an Fe,,-precover of X if and only if for every

morphism ¢ : Y — X withY € F.,, andY injective, there exists f : Y — X' such

that Wf = §.
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Proof. (i) Let ¥ : X’ — X be an ¥,-precover. Consider the morphism Y :
v 1(Z) — Z. Theny~!(Z) € ¥, since ., is closed under subrepresentations.
Now for every morphism ¢ : Y — Z with ¥ € ¥, there is a morphism
f:Y — X’ such that yf = ¢. Therefore, f(Y) C y~'(Z) and so ¢ can be

factored through y;.

(i) The condition is clearly necessary. Let ¢; : Y1 — X be a morphism with Y] €
Few- Then by Theorem 5.2.5, Y can be embedded in a representation Y € ¥,
which is injective. Now since X is injective, there is a morphism ¢ : ¥ — X
such that ¢ |y, = ¢;. So, by hypothesis, there exists a morphism f : ¥ — X’ such

that yf = ¢. It follows that (Wf) |y,= ¢ |y,= 1. O

Lemma 5.2.7. Let E be a module and let {E;}ics be a direct family of submodules of

E. If @Ei is injective, then ZE,- is injective.
i€l icl

Proof. Define homomorphisms @ : @E,— — ZE,- by
i i
o((ei e, .- €i,)) = e +eip+ - +ei,,

and y : ZEi — @Ei by
i i

m? ey
J/

\ll(ekl +6k2+~~-+ekm) = (O,...,O,ekl +ek2—1—-~-—1—ek (), 0).
ek,
The second homomorphism is well-defined since 7 is a directed set. Indeed, since
{E;}ics is a direct family of submodules, for every i, € I, there exists a k € I with
k > i,j such that E; C Ey and E; C E}, and so there exists a ¢ > ki such that Ej, C E;

foralli=1,2,...,m. This implies that ey, + ey, +--- + ¢y, € E;. Therefore, we have

(pllf(ekl +€k2+"‘+€km) :(P(Oa---a07€k1 +ek2+"'+ekm70a"-70) = €[ +€k2+"'+€km.
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So, @y = 1y ;. Thus, ¥ is a monomorphisms, and so } ; E; is a direct summand of @;E;

(since ;E; is injective by hypothesis). Hence ZE,- is also injective. 0

1

Lemma 5.2.8. Let E € (Q,R-Mod) and let {E;}ic; be a direct family of injective
subrepresentations of E such that E; € ¥, for all i € I. If R satisfies (A) and if Q
satisfies (B), then ZE,- € Few and it is injective.

Proof. Since eachleEIi is an injective representation such that E; € ¥, then E;(v) is an

injective module such that E;(v) € #, forallve V and i € I. So, @E,-(v) is also an
i

injective module by hypothesis. Then by Lemma 5.2.7, ZE,‘(V) is also injective. Then
the representation ZE,- satisfies the condition (i) of SIRQ. Now taking the union of
i
the splitting epimorphisms E;(v) — H Ei(t(a)), we obtain the following splitting
s(a)=v

epimorphism:

<2Ez> ) — Y [1 Et@)= ] (ZE,) (t(a))

i s(a)=v s(a)=v \i€l

where the isomorphism follows since the product is finite by hypothesis (as Q satisfies
(B)). This means ZE,- is also satisfies (ii). Thus it is an injective representation since Q
i

is a source injective representation quiver. Finally, since E;(v) € F then ZEi(V) cF
i

for all v e V, and so ZE,- € Few- O
i

Proposition 5.2.9. Let Q be any quiver satisfying (B). Then R satisfies (A) if and only
if any direct sum of injective representations of ¥, is injective.

Proof. (=) The proof is the same as the proof of Lemma 5.2.8 by taking @E,- instead

icl
of ZE,’.
icl
(<) The proof is immediate by considering the quiver Q = -v which trivially

satisfies (B). This is because (Q,R-Mod) = R-M od in this case. O

Note that, in the previous proposition, which will be useful in the proof of the
following theorem, we cannot omit the assumption that Q satisfies (B) as the following

example shows:
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Example 5.2.10. Consider the following quiver Q that has infinitely many arrows

starting at vy,

which, of course, does not satisfy (B) for the vertex vo. For the ring of integers, R = Z,
consider the category (Q,Z-M od). Then the indecomposable injective and torsion free

representations of (Q, Z-M od) (with respect to the usual torsion theory) are as follows:

/O /Q /0
Eo=Q—0, E =Q——=0, E=Q—Q
\0 5\o \0

that is, for all i € N, the representation E; has a module QQ at the vertices vy and v;, and
zero otherwise. Therefore, the direct sum of the representations of E; for i > 1will be

as follows:

If we show that @ E; is not an injective representation of (Q,Z-Mod), then we will
i>1
see that the statement of Proposition 5.2.9 does not hold for this Q (since R = 7Z satisfies

(A)). Now suppose on the contrary that @E,- is injective. Then, by Remark 5.2.1, we
i>1
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have (ii) of SIRQ, that is,

EBEi(VO)=<€BEi> (vo) — I (@E) (@)= ] DEi(t(a)

i>1 i>1 s(a)=vg \i>1 s(a)=vg i>1

N 5 QVisa splitting epimorphism.

is a splitting epimorphism or equivalently, Q!
However, this is impossible since Q(N) has a countable basis, but QN does not have it

since QN is uncountable.

Recall that a representation of a quiver Q is said to be finitely generated if it is

finitely generated as an object of the category of representations of Q.

Theorem 5.2.11. Let Q be any quiver satisfying (B). If R satisfies (A), then
every injective representation of ¥, is the direct sum of indecomposable injective

representations of Fey.

Proof. Following the proof of Stenstrom (1975, Proposition 4.5) we argue as follows.
Let E € 7., be an injective representation of Q. Consider all independent families
(E;)ier of indecomposable torsion free and injective subrepresentations of E. Then by
Zorn’s lemma, there is a maximal such family (E;);c;. Since @ciE; € Feyy and it is
injective (by Proposition 5.2.9), we can write E = (@E,) @ E'. To show that E' =0
it is enough to show that every injective representati(l)n with 0 # E’ € ¥, contains a
nonzero indecomposable direct summand. Consider the set of all subrepresentations

of E" such that
2={E"CE'|E" € %, is injective s.t. C £ E” where 0 £C C E' is f.g.}

(In fact, we can take such a nonzero finitely generated representation C, since

(Q,R-Mod) is locally finitely generated). Now take E = ) E” where Q is a chain
E"eQ
of £. Then by Lemma 5.2.8, E € %, and it is injective. Clearly C ¢ E since

C is finitely generated (indeed, if C C E then C C E” for some E” € Q which is
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impossible). This shows that E € ¥ and in fact it is an upper bound of Q. Then by
Zorn’s lemma X has a maximal element, say E”. Now we have E' = E” ©& D where
0 # D is an indecomposable representation. For if D = D' @& D” with D’ # 0 and
D" #0, then (E"+D')N(E"+D")=E", and so either CZ E" +D' or CZ E" + D"
which contradicts the maximality of E” in £. Hence, every nonzero E’ contains an

indecomposable direct summand, which completes the proof. [

Proposition 5.2.12. Let Q be any quiver satisfying (B). If R satisfies (A), then
(Q,R-Mod) admits F,-precovers.

Proof. Since the category (Q,R-M od) has enough injectives, it suffices to show that
any injective representation X has an %, -precover (by Lemma 5.2.6-(i)), and so we can
take an injective representation Y € %, (by Lemma 5.2.6-(ii)). Let {E, | u € A} denote
the set of representatives of indecomposable injective representations of #,,. Let H, =

Homg(E,,X) and then define X' = EBE;(,H“). So there is a morphism y : X' — X
HEA
such that y | E,€ Hy. Thus every morphism ¢ : ¥ — X with an injective representation

Y € ., factors through the canonical map y: X’ — X, since Y = EB E, (by Theorem

ueN
5.2.11) where A’ C A. O

To prove that (Q,R-Mod) admits F,,-covers, we first need the following results.

See Theorem 2.4.8 for the Gabriel filter F(R).

Lemma 5.2.13. (by Teply (1969, Proposition 2.1)) Let F € F. If R satisfies (A), then
we have F / U F; € F for a chain {F;}ick of submodules of F with F /F; € F.

i€k
Proof. Suppose on the contrary that F'/ UE- ¢ F . Then there exists I € F(R) such that
Ix C UFi’ where x € F \ UF,-. Since Fl (R) has a cofinal subset of finitely generated
left idciaals (by Theorem 2.6.2), there exists a finitely generated left ideal J C I such
that J € F(R). So, Jx C UE- and this implies that Jx C F; for some k € K (since J is

1
finitely generated and {F;},cx is a chain of submodules). But this contradicts with the

fact that F /F € . O
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We also need the following lemmas by the same methods of proofs given in, for
example, Xu (1996, Lemmas 1.3.6-1.3.7) for the usual torsion theory for R-M od over

commutative domains.

Lemma 5.2.14. Let Q be any quiver satisfying (B) and let R satisfy (A). If v : X' — X
is an Fop-precover of the representation X, then we can derive an ¥.,-precover ¢ :

Y — X such that there is no non-trivial subrepresentation S C ker(0) withY /S € Fey.

Proof. Let ¥ be a set of all subrepresentations S C X’ such that S C ker(y) and
X'/S € Fep. Then the union of any chain of elements of X, say T = US, belongs
to X. Indeed, since X'/S € ¥, for every S € X, then X'(v)/S(v) € F. So, by Lemma
5.2.13,X'(v)/T(v) € F for every vertex v of Q. This means that X'/T € ¥,,. Clearly
T C ker(y). Let T’ be a maximal element of £ by Zorn’s lemma. Thus if we take
Y = X'/T’, then the induced map ¢ : Y — X is the desired torsion free precovering
of X; for if there exists a morphism ¢ : Y/ — X with Y’ € ., then there is a
morphism f’ : Y' — X’ such that yf’ = ¢’ (since y is a precovering). Now, taking
the morphism f =6’ : Y — Y (where 6 : X' — X’ /T’ is the natural morphism) we

obtain 0f = (00) " = yf' = ¢/ as desired. Diagrammatically,

/
fl f /Y
/ q)/
e
XV ==X
v

(here ¢ is the induced map X'/T' — X'/ker(y) = Im(y) C X). Moreover, if
there is a subrepresentation L/T’ C Y = X’/T’ such that L/T’ C ker(¢) and X'/L =
(X'/T"/(L/T") € Few, then L C ker(y) (since Wy(L) = 0c(L) = ¢(L/T") = 0). But

then L € ¥, and so L = T since T’ is maximal in X. O]

The cardinality of a representation M of a quiver Q is defined as |M| = | @M (v)].
veV
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Lemma 5.2.15. Let Q be any quiver satisfying (B) and let R satisfy (A). If ¢ : Y — X

is an Fey-precovering of X with no non-trivial subrepresentation S C Y such that S C

ker(0) and Y /S € Fey, then this Fey-precover is actually an Fe,-cover of X.

Proof. Let f:Y — Y be a morphism such that ¢ = ¢ f, that is, the diagram

e
YT)X

is commutative. We will show that f is an automorphism. Since ker f C ker(¢) and
Y/kerf € Foy (as Y /ker f ZIm f CY and ¥, is closed under subrepresentations),
ker f = 0 by hypothesis, that is, f is one-to-one. Now it remains to show that f is
onto. Let A be a set such that Y C A and |Y| < |A|. Let X be a set of pairs (Yp, o) such
that ¢g : Yo —> X is an #.,-precovering of X without non-trivial subrepresentations
S Cker(¢p) with Yp/S € Fe, and Yy C A as a subset. X # 0, since (Y,¢) € X. Partially
order X by setting (¥p,00) C (Y1,01) if and only if ¥y C Y} and ¢; |y,= ¢o. Now,
for every chain {(Yy,0q)}acw of X, let Y* = Ugew Yy and define ¢* : Y* — X by
o*(x) = q)B(x) if x € ¥g. Then (Y*,0*) € X. In fact, Y* € F,, and Y* C A is clear, and
if there is ¢' : F — X with F € %, then there exists ¢’ : F — Yp, for every B € W,
such that ¢gg’ = ¢’. So, taking f' = ig’ : F — Y* (where i : Y3 — Y'* is inclusion),

we obtain, for every x € F,
(0" f")(x) = (¢"ig") (x) = (0"8") (x) = 9pg’ (x) = ¢ (x).

Thus ¢* : Y* — X is an %.,-precovering of X. Beside, if there is a subrepresentation

S C ker(¢*) with Y*/S € ¥, then

U (Ya+5)/S=Y*/S € Fer, and 50 Yo /(SNYy) = (Yo +5)/S € Fen-

oW

Moreover, SNYy, C ker(dg) since SNYy, C Yy implies that ¢ (SNYy) = 0*(SNYy) =0.
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Thus SNYy = 0 for all @ € W (since (Yy,0q) € X), and so S = 0.

Now let (Y*,0*) be a maximal element of ¥ which exists by Zorn’s lemma. Consider

the commutative diagram which exists since ¢ is a ¥, -precovering and Y* € 7,,,:

Y*

e

Since ker(f1) C ker(¢*) and Y*/ker(f1) € Few, ker(f1) = 0, that is, fj is one-to-one.
We will show that fj is onto. Suppose on the contrary that f; is not onto, that is,
fi¥x) S Y. Then f1,(Y*(v)) & Y(v) for some vertices v € V\ V' of Q (note that,
fiw : Y*(w) — Y (w) is onto for the remain vertices w € V' of Q). Let B C A such that
|B| = Y (v) — fiv(Y*(v))| and such that Y*(v) N B = 0. Such a B is available because
|A| > |Y|=|Y*| > |Y*(v)| (where the equality holds since Y CY* and f1 : Y* — Y
is one-to-one). Let ¥j = Y*(v)UB and let g" : ¥y — Y (v) be the bijection such that
g" ly+(w= fiv and g"(B) =Y (v) — f1,(Y*(v)) for all v € V\ V'. Then Y can be made
uniquely into an R-module so that g¥ becomes an R-isomorphism. So we can define a
representation Yp such that Yo(v) =Yy if ve V\ V' and Yo(v) =Y*(v) if v € V'; and for

each arrow a : vi —> vy of Q, if vi,vy € V\ V' then:

Y(a) V2

Vi -1
Yo(a) : Yo(vi) — Yo(na) = Y(;}l L>Y(v1) Y (v7) a Y(;)z

and if vi,vp € V', then Yy(a) =Y*(a) : Y*(vi) — Y*(v2) . So there is an isomorphism
g = (gv)vev : Yo — Y of representations, where g, = g" if ve V\ V' and g, = f1,
if v € V/ (note that, if v € V' then f;, will be an isomorphism). We see that Y* C ¥
as representations. Consider the pair (¥p,¢g). Then since g is an isomorphism and

¢0:Y — X is an ¥.,-precovering of X, ¢g : Yo — X is also an #,,,-precovering of X.
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Moreover, if S C ker(¢g) with Yy/S € Fe, then g(S) C ker(¢) and

Y/8(S) = 8(Y0)/&(S) = Yo/S € Few-

So, by hypothesis, g(S) = 0 and so S = 0. This shows that (Yp,0g) € X. Finally,
0g ly==¢fi = 0%, and so (Yo,0g) = (Y*,0*). But this is a contradiction since (Y*,¢*)
is maximal in X. Thus B =0, and so |Y (v) — f1,(Y*(v))| = |B| = 0. Hence fj, is onto
for every vertex v of Q, that is, f] is onto. So fj is an isomorphism. Now, we have
¢* =0f1 =0(ff1). So, ff1 is an isomorphism by the same argument. Hence f is onto

as desired. O]

Theorem 5.2.16. Let Q be any quiver satisfying (B) and let R satisfy (A). Then every
representation in (Q,R-Mod) has a unique, up to isomorphism, Fe,-cover.

Proof. The existence part of the proof follows by Proposition 5.2.12 and and Lemmas

5.2.14 and 5.2.15, and the uniqueness part follows by Proposition 2.10.1. 0

Example 5.2.17. Let R satisfy (A). Consider the quiver Q = e — o. For every module
M, if we take the torsion free cover y : T — M of M (this is possible in R-Mod, see

Corollary 2.6.4), then

T Kerw%T
| b
M 0O—M

is an ¥.,,-cover of the representation 0 — M. In fact, if there is a morphism

T\ =T

| b

0—M

where T) — T» € ¥y, then there exists f : T, —> T such that yf = P since y is
torsion free precover, and so taking g = fo : 71 — Ker vy (it is well-defined since for

every x € T,y fo(x) = Ba(x) = 0) we see that it is an 7,,,-precover. And if there is
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an endomorphism f = (g, f) : T — T such that yf = W, then f is an automorphism
(since Y is a torsion free cover), and so g is a monomorphism. To show that g is
epic, take any y € Kery. Then y = f(x) for some x € T (since f is epic). Since
y(x) = yf(x) =0, x € Kery and thus y = f(x) = g(x) implies that g is epic. Hence f

is an automorphism, that is, Y is an ¥,,-cover.

Remark 5.2.18. In Dunkum (2009), the question was raised whether the category

(A, R-M od) admits torsion free covers, where
AP=e— 06— ..

By Theorem 5.2.16, if R satisfies (A), then the category (Aw,R-Mod) admits torsion

free covers (since the quiver A satisfies (B)).

5.3 Componentwise Flat Covers in (Q, R-Mod)

In Rump (2010), flat covers are shown to exist in locally finitely presented
Grothendieck categories. Then the category (Q,R-Mod) admits flat covers for every
quiver Q since it is a locally finitely presented Grothendieck category. This is because
(Q,R-Mod) has a family of finitely generated projective generators, and thus, by
Proposition 2.7.15, (Q,R-Mod) has a family of finitely presented generators. Here
by “flat” we mean categorical flat representations of Q defined as liLnPi where each P;

is a projective representation of Q; see Enochs et al. (2004b).
Now we will define flat representations componentwise which are different from
categorical flat representations.

Definition 5.3.1. Let Q be any quiver and let M be a representation of Q. We call M

componentwise flat if M(v) is a flat R-module for all v € V.
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This definition is not the categorical definition of flat representations, but it is
the correct one when we consider (Q,R-Mod) as the category of presheaves over a
topological space. From now on, by .%,,, we denote the class of all componentwise flat

representations.

Also, let us define pure subrepresentations componentwise.

Definition 5.3.2. Let M be a representation of Q. We call a subrepresentation P C M

componentwise pure if P(v) C M(v) is pure submodule for all v € V.

An element x of a representation X of a quiver Q is defined to be an element of X (v)

forsomeveV.

In the proof of the following lemma, we can consider the representation generated
by an element “x”. Let M be a representation of Q and letx € M (so x € M(v) for some

v € V). Since S, is a left adjoint of 7, (see Remark 5.1.10), we have
Homg(R,M(v)) = Homg(S,(R),M)

for all v € V. So we have a unique morphism @ : S,(R) — M that corresponds
to the homomorphism @, : R — M(v) given by @,(1) = x. Thus Im(@) is the

subrepresentation of M generated by x.

Lemma 5.3.3. Let X be an infinite cardinal such that X > sup{|R|,|V|,|E|}. Let M
be a representation of Q. Then for every x € M, there exists a componentwise pure

subrepresentation P of M such that | P |< X and x € P.

Proof. Let x € M(v) with v € V. Then consider the subrepresentation M® C M

generated by x. Then |[M°| < X since

Sy R)YwW)| =1 D RI <|VI-|E|-IN|]-[R| < X Ro = X.
Q(vw)
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Since |[M°(v)| < X for all v € V, we can apply Xu (1996, Lemma 2.5.2), so there exist
pure submodules M'(v) of M(v) such that |[M!(v)| < X and M(v) C M'(v), v € V.
Now consider the subrepresentation M? of M generated by M'(v) such that M'(v) C
M?(v) forall v € V. Then |M?| = [P M*(v)| = V|- |M*(v)| < X since [M?(v)| < X as
IM'(v)| < X forallv€ V. So appl;fr‘l/g Xu (1996, Lemma 2.5.2) again, there exist pure
submodules M?3(v) of M(v) such that |M?3(v)| < X and M?(v) C M3(v) forall v € V.
Now consider the subrepresentation M* of M generated by M?>(v) such that M3 (v) C
M*(v). Then |M*| < X. So proceed by induction to find a chain of subrepresentations
of M: M° C M' C M? C --- such that |[M"| < X for every n € N. Therefore, by
taking P = |J,,.o,M" we obtain a pure subrepresentation P of M which satisfies the
hypothesis of the lemma. Indeed, P is a componentwise pure subrepresentation of M,
because for every v € V, the set {n € N: M"(v) is pure in M(v)} is cofinal, and the

set {n € N : M" is a subrepresentation of M} is also cofinal. Finally, it is clear that

|P| < Rp- X = X, and x € P since x € M°(v). O

Let 4 be an abelian category. Recall that the pair (%, %) of classes in 4 is
cogenerated by a set if there exists a set T C .% such that 7+ = .#* (see Definition

2.9.1 or, for example, Enochs & Jenda (2000, Chap.7)).

Theorem 5.3.4. The pair (F ey, F s

o) s cogenerated by a set.

Proof. Let F € ., and take any element xy € F. Then by Lemma 5.3.3, there exists
a componentwise pure subrepresentation Fy C F such that xo € Fy and |Fp| < X for a
suitable cardinal number. Since a pure submodule of a flat module is flat, Fy € %,
and so F /Fy € %, (see Proposition 2.3.6). Then take any element x; € F /Fy and find
a componentwise pure (and so componentwise flat) subrepresentation Fy /Fy C F/Fy
such thatx; € Fj /Fy and |F; /Fy| < X. Since Fy, F1/Fy € Z.\, we have F| € %, and so
F/F| € %.,,. Now take x, € F /F} and, since .7, is closed under direct limits, proceed
by transfinite induction to find, when o is a successor ordinal, subrepresentations Fo, C

F such that Fy/Fy—1 € F¢ (and so Fy, € %) and that |Fy/Fy—1| < X. When o is
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a limit ordinal, define Fy, = Uy Fo. SO Fy € Fey and |Fy| < X for every ®. Now
there exists an ordinal A such that F' is a direct union of the continuous chain {Fy |
o < A} where by construction Fy, Fy11/Fy € Fey and |Fy| < X, |Fot1/Fo| < X. Thus
if we choose a set T of representatives of all componentwise flat representations with
cardinality less than or equal to X, then by Eklof & Trlifaj (2001, Lemma 1), we see
that the pair (%, %) is cogenerated by T (note that Eklof & Trlifaj (2001, Lemma
1) is for R-M od, but the same arguments of the proof carry over general Grothendieck
categories; indeed, the proof needs only embeddability of each module into an injective

one, so the lemma holds in any Grothendieck category). [

To show that the category (Q,R-Mod) admits .Z,,-covers and .7 -envelopes we

cw”

shall use the following theorem.

Theorem 5.3.5. (Enochs et al., 2004a, Theorem 2.6) Let % be a class of objects
of a Grothendieck category C which is closed under direct sums, extensions and
well ordered direct limits and such that the generator of C is in .F. If (F,F71) is

yL

cogenerated by a set, then every object M in C has an .7 -cover and an -envelope.

Theorem 5.3.6. For every quiver Q, any representation of Q has an %.,,-cover and an

F - -envelope.

Proof. 1t is clear that .%,,, is closed under direct sums, extensions and well ordered

direct limits (as so is the class of all flat modules). Moreover, S, (R)(w) = EB R

o(vw)
is a projective (and so flat) module for all w € V. Thus S,(R) € %, and so the

projective generator @SV(R) of (Q,R-Mod) is in %,,. Now, apply Theorem 5.3.5

veV
with Theorem 5.3.4 to get the result. [

Over Priifer domains, a module is flat if and only if it is torsion free (see Rotman

(1979) for the details). Combining this fact with the previous result, we have that:
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Theorem 5.3.7. Let R be a Priifer domain. Then every representation in (Q,R-Mod)

has an F,,-cover agreeing with its F,,-cover.

Remark 5.3.8. In Example 5.2.10, since Q does not satisfy (B) we cannot use Theorem
5.2.16 to determine whether (Q,Z-M od) admits ¥,-covers. However, since R = Z is

a Priifer domain, (Q,Z-M od) admits ¥,,-covers by Theorem 5.3.7.

5.4 Comparison of Categorical and Componentwise Flat Covers

In this section, we will provide some examples on the different kinds of covers have

been studied throughout the chapter.

The categorical flat representations are characterized (for rooted quivers) in Enochs
et al. (2004b, Theorem 3.7) as follows: a representation F of a quiver Q is flat if and

only if F(v) is a flat module and the morphism

D Fls(a) — F)

t(a)=v

is a pure monomorphism for every vertex v € V. In this case, as we pointed out at the
beginning of Section 5.3, it is known that (Q,R-Mod) admits categorical flat covers
for every quiver Q. Moreover, we have proved in Theorem 5.3.6 that (Q, R-M od) also
admits .%,,,-covers (=componentwise flat covers). In this section, we will give some
examples of categorical flat covers and of .%,,,-covers showing that these two kinds of

covers do not coincide in general.

Since every module has a flat cover (Bican et al., 2001), every module has a

cotorsion envelope by Xu (1996, Theorem 3.4.6).

Example 5.4.1. Let Q be the quiver ¢ —> o. Let us take any module M and the flat

cover @ : F — M of it. Then:
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(1)
- > F

¢

OS<—0O

HM

is a flat cover of the representation 0 — M. To see this, let

F—>F

| b

0—M

be a morphism, where o is a pure monomorphism and Fj, F, are flat modules. Then
F,/F is also a flat module. Since ¢ is a flat cover, there exists 6 : F, — F such that
@0 = P. It is clear that @do. = Ba = 0, and so there exists a unique & : F] — Ker@
such that dow = ih, where i : Ker¢¢ — F is inclusion. From the short exact sequence

0— F — F, — F»,/F} — 0, we obtain
Homg (F>,Ker@) — Homg(Fj,Kerg) — 0,

since Exth(F>/Fi,Ker@) = 0 by Wakamutsu’s lemma (see Proposition 2.10.3). So
there is z : F, — Ker @ such that zoo = h. Now if we consider 6 — z : F, — F, then
clearly (8 —z) =P and (8 —z)aa = 0.

(i1) If we take the flat cover f : G — Ker @ of Ker ¢ then

. F

¢

o=<—20

HM

is an .%,,-cover of the representation 0 — M. In fact, if

F—2-F

| b

0—M



156

is a morphism where F; — F, € .%,,, then clearly there exists & : F;, — F such that
©h = B, since @ is a flat cover. Since @ha = fo. = 0, the map ho : F| — Ker@ is
well-defined. Then there exists 4’ : F; — G such that fh’ = ha since f is a flat cover,
and so ha = th'. This shows that {0,} is an .%,-precover. To see that it is a cover,

suppose there is an endomorphism

such that 0g = 0 and @g’ = @. Then clearly g’ is an automorphism since @ is a flat
cover. Now we show that g is also an automorphism. Since @g’i = @i = 0, there exists
v : Ker@ — Ker @ where i : Ker¢ — F an inclusion monomorphism (see Definition
2.7.4). Actually, y is an automorphism (see the comment of g being an automorphism

in Example 5.2.17), and so from the commutative diagram

G—f>Ker(p

gi v
G—f>Ker(p

we obtain that g is also an automorphism (by using the fact that f is a cover).

Remark 5.4.2. Note that in the previous example 0 — F cannot be an .%,,,-precover
of 0 — M. Because by (ii), G — F is an .%_,,-cover of 0 — M with G # 0 and it
is known that covers are direct summand of precovers (see Proposition 2.10.2). So, if

0 — F were an .%,,-precover of 0 — M, then we would have
(0—>F):(G—>F)€B(H1 —)Hz):(G@Hl —>F@H2)

for some representation Hy — Hp of Q. This implies that 0 = G & H; which

contradicts the fact that G # 0.
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Remark 5.4.3. Comparing with Example 5.2.17; Ker¢p — F is a torsion free cover
but not an .%,,-cover of 0 — M (unless Ker ¢ is a flat module). Because the class of

torsion free modules is closed under submodules, but the class of flat modules is not.

Example 5.4.4. Let Q be the quiver ¢ —> o. Let us take any module M and the flat

cover @ : F — M of it. Then,

is both a (categorical) flat cover and an .%,,,-cover of the representation M M.
In fact, if there is a morphism

F—>F

Vi l l\Vz
id

M——M
where Fi,F, are flat modules and 4 is a pure monomorphism, then clearly there is
f: F, — F such that @ f = y; (since @ is a flat cover). Taking fh: F; — F, we see
that @ fh = WYoh = y;. This means that F 4. F isaflat precover, and clearly it is a
flat cover (since idF is a pure monomorphism). Since we have not used the fact that &

is pure, then F i, F is also an .%,,,-cover of M i M.

Example 5.4.5. Let Q be the quiver ¢ —> ¢ — e and let M be a module. Let us take
the flat cover @ : F — M of M. Then:

(i) If we take the cotorsion envelope i : FF — C of F, then C will be a flat module
by Xu (1996, Theorem 3.4.2)). Therefore, we have a (categorical) flat representation
F=F—> C L C x F where k) is a canonical inclusion (since C x F is flat, and

k1 and i are pure monomorphisms). We show that

i k
F F—>C—>CxF
(pl J/(P io itppz
i M—0—M
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is a flat cover of the representation M of Q, where p; : C x F — F is a projection. In
fact, if there is a morphism

2P B F3

.

M—0——M
with Fy,F>,F3 flat modules and o, 3 pure monomorphisms, then clearly there exists
f + Fi — F such that ¢f = #; since F' is a flat cover of M. From the short exact

sequence 0 — Fj — F» — F»/F; — 0, we obtain that
Homg(F>,C) — Homg(F;,C) — 0

is exact, since Ext}g(Fz/Fl,C) =0 (as F»/F; is flat and C is cotorsion). Here F>/F)
is flat because o is a pure monomorphism. So, there exists g : F; — C such that
ga.=if. Now, since F is a flat cover of M, there exists T, : F3 — F such that QT, = 13.

Moreover, from the short exact sequence
0—F —F —>F3/F2%0 (5.4.1)

we obtain that

HOI’nR<F3,C) — HOI’nR(Fz,C) —0

is exact. Then there exists T; : F3 — C such that T{f = g. Since @1, = 135 = 0,
there exists a unique y: F» — Ker@ such that Y= 1,f. Similarly, if we take Ker
instead of C, by (5.4.1), there exists z : F3 — Ker @ such that z§ = y. Therefore, by
defining h : F3 — C X F such that h(x) = (71(x), (T2 — 2)(x)) for all x € F3, we see
that @prh = @(T — z) = 13, and moreover hB = (T;B, (12 —z)B) = (g,0) = k1g . Thus
¢ :F — M is a flat precover. To see that it is a cover, lets = {f,g,h} : F — F be
an endomorphism such that @s = @. It is clear that f and g are automorphisms. For

h:CxF — CxF,weseth;; =mhe; (i,j=1,2) where T, is a projection and e, is



159

an injection. We can write 4 in a matrix form as

hir hiz
ha1 h2

Since hk| = k1g, we have hj; = g and hy; =0, and since @ is a cover, ¢ = @hy; implies
that /75 is an automorphism. Hence 4 is an automorphism and so is s, that is, @ is a flat
cover of M.

(i1) If we take the flat cover f : G — Ker @ of Ker @, then it is immediate that

F-2-G—1>F

¢ Ol ¢
OOO

M—0—M

is an .Z,,-cover of the representation M — 0 — M. In fact,

G—>F

|

0—M

is an .%,,-cover of the representation 0 — M (by Example 5.4.1-(ii)), and
F——0
o]

M—0

is an .%,,-cover of the representation M — 0.



CHAPTER SIX
CONCLUSIONS

In the first part of this thesis, we focused on Rad-supplemented modules and in
general T-supplemented modules, where T is a radical for R-M od. Our main result is
that every left R-module is Rad-supplemented if and only if R/P(R) is a left perfect
ring, where P(R) consists of all left ideals I of R such that Rad/ = 1. We devote
the second part to neat homomorphisms of Enochs and max-injective modules. We
prove that every max-injective R-module is injective if and only if the ring R is a left
C-ring, with our interest in the proper class Compl and N eat. In the last part of the
thesis, we deal with the category of representations by modules of a quiver, denoted by
(Q,R-“Mod). We show the existence of torsion free covers, relative to a torsion theory,
for a wide class of quivers under some conditions, in (Q,R-Mod). We also prove the

existence of componentwise flat covers in (Q,R-M od) for any ring R and any quiver

0.
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R-module or module

R-Mod, Mod-R

Ab =7Z-Mod

I

Homg (M, N)

Exth(C,A)

Ker f
Coker f
Imf
E(M)
SocM
RadM
Z(M)
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NOTATION

an associative ring with unit unless otherwise stated
the ring of polynomials with indeterminate x

the ring of integers, the set of all positive integers
the field of rational numbers

a left R-module

the categories of left R-modules, right R-modules
the categeory of abelian groups (Z-modules)
isomorphic

submodule, maximal submodule

small (=superfluous) submodule

essential submodule

cosmall inclusion in M

coclosed submodule

the tensor product of the right R-module M and the left
R-module N

all R-module homomorphisms from M to N

the equivalence classes of short exact sequences of R-modules
starting with A and ending with C

the kernel of the homomorphism f

the cokernel of the homomorphism f

the image of the homomorphism f

the injective envelope (hull) of a module M

the socle of the R-module M

the radical of the R-module M

the singular submodule of the R-module M



JacR or J(R)
Anng(X)

Anng(x)

Pr(M)

(7, %)

F(R)

Obj(C)
FrtF

the character module, that is, the right R-module
Homgz(M,Q/7Z) where M is a left R-module

the Jacobson radical of the ring R

(0:X) = {r € R[rX = 0} = the left annihilator of a subset X
of a left R-module M

(0:x) ={r € R|rx = 0} = the left annihilator of an element x
of a left R-module M

a preradical for the category R-M od

the largest T-torsion submodule of the R-module M, that is,
(M) =Y{U CM|[(U) =U}

a torsion theory with the torsion class 7 and the torsion free
class F

a Gabriel filter of left ideals of the ring R

the class of objects of the category C

the right orthogonal class, the left orthogonal
class of objects of an abelian category A4, that is,
Ft = {C € 0bj(4) | Exth(F,.C) = 0,YF € ¥},
LF ={Cc0obj(Aa)|Exty(C,F)=0,VF € F}

a cotorsion theory (or cotorsion pair) in an abelian category,
thatis, Ft =Cand+*C=F

a proper class of R-modules

the proper class of R-modules projectively generated by a
class M of R-modules

the proper class of R-modules injectively generated by a class
M of R-modules

the proper class of R-modules flatly generated by a class M

of right R-modules
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Abs R
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N eaty,

Purep
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Suppl

N eat
Co-Neat

Coclosed

EN eat

Inj
Proj

Da

iel

M
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Q= (V,E)

a
V—Ww

the smallest proper class of R-modules consisting of only
splitting short exact sequences of R-modules

the largest proper class of R-modules consisting of all short
exact sequences of R-modules (absolute purity)

the proper class of pure-exact sequences of abelian groups
the proper class of neat-exact sequences of abelian groups
the proper class of pure-exact sequences of R-modules
(Cohn’s purity)

the proper class of R-modules determined by complement
submodules

the proper class of R-modules determined by supplement
submodules

the proper class of R-modules determined by neat submodules
the proper class of R-modules determined by coneat
submodules

the proper class of R-modules determined by coclosed
submodules

the class of all short exact sequences of R-modules defined by
E-neat epimorphisms

the class of all injective modules

the class of all projective modules

coproduct (or direct sum) in a preadditive category
product in a preadditive category

a quiver with the set of vertices V and the set of arrows E
an arrow of a quiver with starting vertex s(a) = v and terminal

vertex t(a) =w
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X(v) a module assigned to the vertex v of Q in a representation X
of O
(Q,R-Mod) the category of representations by modules of Q over R

the property (A) (A): for a torsion theory for R-Mod, a direct sum of torsion
free injective modules is injective
the property (B) (B): {f(a) | a € E and s(a) = v} < oo, for every vertex v of a

quiver Q = (V,E)

SIRQ the conditions for being a source injective representation
quiver
RO the path ring of Q, that is, a free left R-module whose base

are the paths of Q (it may not have an identity element). It is
a ring with enough idempotents and it has an identity element

if and only if the set of vertices of Q is finite.

RO-Mod the category of unital RQ-modules (i.e. goM such that
ROM = M)

O(v,w) the set of all paths of Q starting at v and ending at w

Sy the Mitchell’s functor S, : R-Mod — (Q,R-Mod), defined
as Sy(M)(w) = EB M; for each arrow a : w; — wp,

peQ(v.w)
Sv(M)(a) : @ M — EB M given by (my), —
q€Q(vw1) peQ(v,w2)

(up)p, where u, = my if p € aQ(v,w;) and u, = 0 otherwise
T, the restriction functor T, : (Q,RMod) — R-Mod,
T,(X) = X(v) for each v € V, and for each morphism
N:X —Yin (Q,RMod), T,(m) =1, : X(v) — Y (v)
Hom((A,B) the set of all morphisms from A to B in the category C
Homg(X,Y) the set of all morphisms between the representations X and Y
in the category (Q,R-Mod)
Ext,(C,A) the equivalence classes of short exact sequences in an abelian

category ( starting with A and ending with C



177

ker f the kernel of a morphism f : A — B in an abelian category;
it 1s a monomorphism ker f : Ker f — A, where Ker f is a
subobject of A

coker f the cokernel of a morphism f : A — B in an abelian category;

it is an epimorphism coker f : B — Coker f, where Coker f

lim colimit or direct limit
—

lim limit or inverse limit
H

1X| cardinality of a set X
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(A)-the property considered during the
thesis, 129

(B)-the property considered during the
thesis, 129

abelian category, 48
adjoint functor, 46
annihilator
— of a module, 39
— of an element, 39
arrow

—of a quiver, 16

barren tree, 138
bilinear map, 46

bounded module, 85

cardinality of a representation, 146
category, 44
abelian —, 48
co-complete —, 51
complete —, 51
Grothendieck —, 52
locally finitely generated —, 21
locally finitely presented —, 21
locally small —, 54
opposite —, 45
preadditive —, 46
small —, 46

subcomplete —, 54
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character functor, 30
closed
—1in a module, 26
— submodule, 26
— under extensions, 50
@-closed proper class, 34
[I-closed proper class, 34
co-complete category, 51
co-cone, 51
coatomic
— module, 62
T-coatomic module, 62
coatomic module, 6
coclosed submodule, 14
cofinal
— subset, 43
having — subset of finitely generated
ideals, 43
cogenerated pair of classes, 57
cogenerator
— object, 50
a pair cogenerated by a set, 152
Cohn’s purity, 31
coinjective with respect to a proper class
(P-coinjective), 29
cokernel, 47
colimit, 51

compatible, 50
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complement torsion free —, 9
—1in a module, 25 C-ring, 10
— of a submodule in a module, 25

Dickson torsion theory, 40

— submodule of dule, 26 ) . .
submoduie o 4 modute direct family of subobjects, 52

have a — in a module, 25 .
direct sum, 48

complete category, 51 .
P goLy direct summand, 24

composition of paths, 17 )
direct system, 52

, 51 i
cone directed set, 51

t
conea divisible part of a module, 8

_ hism, 2 i
monomorphism duo ring, 6, 83

— submodule, 2, 5

Co-Neat proper class, 32 E-neat homomorphism, 12

) E-
Z-coneat homomorphism, 13 neat

continuous direct system of subobjects, 52 ~ submodule, 100

. . . E-neat
continuous directed union, 52

coproduct, 48 — homomorphism, 100

S . envelope
coprojective with respect to a proper class

O-\_
(P-coprojective), 29 Z -envelope, 15

cosmall inclusion, 14 injective —, 15

cotorsion epimorphism
— group, 58 — in a category, 47
— module, 58 equivalent —, 47
— pair, 57 small —, 4
— theory, 57 superfluous —, 4
cover equivalent of short exact sequences, 49

L. essential
injective —, 16

projective , 15, 41 — monomorphism, 26

T-cover, 78 — object, 53

— submodule (<), 26



exact
— functor, 49
— sequence, 49

short — sequence, 49

faithful functor, 45
faithful torsion theory, 40
finite type
torsion theory of —, 44
finitely generated
— representation, 144
finitely generated object, 21, 53
finitely presented object, 21, 54
flat
— cotorsion theory, 58
— cover conjecture, 16, 59
— module, 29
— object, 22
— representation for rooted quivers,
154
— with respect to a proper class
(P-flat), 29
categorical — object, 22
categorical — representation, 150
componentwise —, 22
componentwise — representation, 150
componentwise flat representation, 22
v (M), the proper class flatly

generated by a class M of
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modules, 30
full functor, 45
fully invariant submodule, 37
functor, 45
— full, 45
adjoint —, 46
contravariant —, 45

faithful —, 45

Gabriel filter, 39
generated pair of classes, 57
generator

— object, 50

a family of —, 50
Goldie torsion theory, 41
graded module, 19
graded ring, 19

Grothendieck category, 52

hereditary
— preradical in abelian categories, 55
— torsion theory in abelian categories,
56
hereditary preradical, 3

hereditary ring, 105

i-test module, 97
idempotent
orthogonal —, 133

ring with enough —, 133
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idempotent preradical, 55 large submodule, 26
identity morphism, 45 limit, 51
image, 48 colimit, 51
injective direct —, 52
—cover, 16 inductive —, 51
— envelope, 15 inverse —, 52
— envelope of an object, 53 projective —, 51
— object, 50 local unit, 133

— with respect to a proper class locally finitely generated category, 21
(P-injective), 29 locally finitely presented category, 21
category having enough —, 50 locally small category, 54
17 1(M), the proper class injectively Loewy length, 27
generated by a class M of Loewy module, 27
modules, 30 Loewy series, 27

pair of classes having enough —, 58 o

m-injective module, 10
T-injective, 40 '

max ring, 41

w.r.t a torsion theory, 94 L
max-injective module, 10

Whitehead test module for injectivity, ) o
maximally injective module, 10

11,97
module

injective envelope of an object, 53
T-supplemented —, 5

intersection of subobjects, 52

amply T-supplemented —, 5
inverse system, 52

bounded —, 85

isomorphism in a category, 45 )
coatomic —, 6, 62

K-element, 14 flat —, 29
K-exact sequence, 14 generalized supplemented —, 6
kernel, 47 graded —, 19

Loewy —, 27

A-free group, 97

large monomorphism, 26 m-injective - 10



max-injective —, 10
nonsingular —, 40
T-projective —, 68
Rad-supplemented —, 5
radical —, 6, 62
reduced —, 6, 62
semi-artinian —, 26
singular —, 40
supplemented —, 25
T-coatomic —, 62
T-cotorsionfree —, 62
T-injective —, 40
T-reduced —, 61
T-torsion —, 61
torsion —, 38
torsion free —, 38
totally T-supplemented —, 5
weakly injective —, 14
Whitehead test — for injectivity, 11
Z-graded —, 19
monomorphism
—in a category, 47
equivalent —, 47
essential —, 26
inclusion —, 29

large —, 26

N-domain, 32, 115

natural equivalence, 46

natural transformation, 17, 45, 131
neat

— high extension, 4

— monomorphism, 2

— subgroup of an abelian group, 2

— submodule, 2

E-neat homomorphism, 12

N eat proper class, 32

normal preradical, 82
orthogonal class, 57

p-test module, 97
path
—of a quiver, 17
—ring of a quiver, 132
— space, 130
—tree, 130
action of a —, 134
trivial —, 17
perfect
t-perfect ring, 78
perfect ring, 15, 41
Priifer domain, 34
preadditive category, 46
precover
torsion free —, 9
preenvelope
Z -preenvelope, 15

preradical
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—in abelian category, 54
hereditary —, 3
idempotent —, 55
left exact —, 3
normal —, 82
presheaf, 22
pretorsion class of objects, 55
pretorsion free class of objects, 55
product, 48
projective
—cover, 15, 41
— generators for (Q,R-Mod), 135
— object, 50
— T-cover, 78
— with respect to a proper class
(P-projective), 29
category having enough —, 50
pair of classes having enough —, 58
T-projective module, 68
7~ (M), the proper class projectively
generated by a class M of
modules, 29
Whitehead  test module  for
projectivity, 97
proper class, 28
Co-Neat —, 32
N eat —, 32
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coinjective with respect to a
(P-coinjective), 29

coprojective with respect to a —
(P-coprojective), 29

@-closed —, 34

flat with respect to a — (P-flat), 29

1= 1(M), the — flatly generated by a
class M of modules, 30

injective with respect to a —
(P-injective), 29

1" 1(M), the — injectively generated
by a class M of modules, 30

P-epimorphism, 28

‘P-monomorphism, 28

‘P-proper, 28

P-proper short exact sequence, 28

P-submodule, 29

[I-closed —, 34

projective with respect to a -
(P-projective), 29

7= (M), the — projectively generated
by a class M of modules, 29

T-Suppl—, 5

the largest —, 31

the smallest —, 31

pure

— exact sequence of objects, 21

— high extension, 4



— subgroup of an abelian group, 31

— submodule, 31

componentwise — representation, 151
Purity

Theory of—, 21

quasi-duo ring, 113
quiver, 16

finite —, 130
quotient object, 47

quotient representation, 132

Rad-supplement, 5
Rad-supplemented module, 5
radical

—in an abelian category, 55

left exact — in abelian categories, 55
radical module, 6, 62
RD-submodule, 9, 33
reduced

—module, 62

— subgroup, 8

T-reduced module, 61
reduced module, 6
relatively divisible, 33
relatively divisible submodule, 9
representation of a quiver, 17, 131
ring

— with local units, 133

C-ring, 10

duo —, 6, 83
graded —, 19

hereditary —, 105

max —, 41
N-domain, 32
path —, 132

perfect —, 15, 41
Priifer domain, 34
quasi-duo —, 113
semi-artinian —, 11
semihereditary —, 34
semilocal —, 41
semiperfect —, 41
T-perfect —, 78
T-semiperfect —, 78

root of a tree, 130

semi-artinian module, 26
semi-artinian ring, 11
semihereditary ring, 34
semilocal ring, 41
semiperfect

T-semiperfect ring, 78
semiperfect ring, 41
singular

— element, 40

— module, 40

— submodule, 40

nonsingular module, 40
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Singular torsion theory, 41

SIRQ, 137

small (<), 4

small category, 46

small epimorphism, 4

source injective representation quiver, 137

stable torsion theory, 40

subcomplete category, 54

subrepresentation, 132

sum of subobjects, 52

superfluous (<), 4

superfluous epimorphism, 4

supplement
T-supplemented module, 5
—in a module, 4, 26
— of a submodule in a module, 25
— submodule of a module, 26
amply T-supplemented module, 5
generalized supplemented module, 6
have a t-supplement, 5
have a —in a module, 25
have ample T-supplements, 5
Rad-supplement submodule, 5
Rad-supplemented module, 5
supplemented module, 25
T-supplement submodule, 5
totally T-supplemented module, 5

weak supplement, 61
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weakly supplemented module, 61

T-cotorsionfree module, 62
T-dense submodule, 62
T-injective module, 40
T-nilpotent subset, 42

torsion

—class, 38

— class of objects, 56

— free covers relative to a torsion
theory, 43

—module, 38

— object, 56

— theory cogenerated by a class of
modules, 38

— theory for R-Mod, 38

— theory generated by a class of
modules, 38

— theory in abelian categories, 56

— theory of finite type, 44

Dickson — theory, 40

faithful — theory, 40

Goldie — theory, 41

hereditary — theory in abelian
categories, 56

Singular — theory, 41

stable — theory, 40

T-torsion module, 3, 61

torsion free
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—class, 38

— class of objects, 56

—cover, 9

— module, 38

— object, 56

— precover, 9

T-torsion free module, 3
tree, 130

barren —, 138

vertex
— of a quiver, 16
ending —, 16
initial —, 16
starting —, 16

terminal —, 16

Wakamutsu’s Lemma, 60
weak supplement, 61
weakly injective module, 14
weakly supplemented module, 61
Whitehead
— group, 97
— problem, 97
— test module for injectivity, 11, 97
— test module for projectivity, 97

A-free group, 97

zero object, 47

Z-neat homomorphism, 13



