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BAYESIAN AGGREGATION METHODS FOR

ANALYTIC HIERARCHY PROCESS AND ANALYTIC NETWORK

PROCESS IN GROUP DECISION MAKING

ABSTRACT

The problems whose objective is to search the best alternative or to rank the

alternatives in terms of a number of conflicting criteria are the multi-criteria decision

making (MCDM) problems. As the interdisciplinary teams, composed of different

scientists developed in different sectors, group decision making in MCDM problems

gains more importance and necessity. The increasing complexity of the group

decision problems requires the use of more flexible approaches.

The Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP)

are widely used approaches for solving complex MCDM problems. The AHP group

decision making (AHP-GDM) method decomposes a complex MCDM problem into

a system of hierarchies and selects the best alternative in terms of some criteria by

making pairwise comparisons. The extension of AHP-GDM to the case of

dependence and feedback is called the ANP group decision making (ANP-GDM).

In order to aggregate the individual’s group judgements in a group setting “the

aggregation of individual judgements (AIJ)” and “the aggregation of individual

priorities (AIP)” methods are used. However these classical methods have some

assumptions such as: the pairwise comparison matrices of decision makers are

complete and consistent. In real life problems, it is hard to satisfy these assumptions

due to the complexity of the problem or inexperience of the decision makers.

This research proposes Bayesian aggregation procedures for AHP-GDM and

ANP-GDM which do not require intermediate filters for the decision makers’ initial

judgements. The weights of the decision makers are inversely proportional to their

consistency levels. The proposed procedures are extended to the analysis of
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incomplete pairwise comparison matrices where they provide more robust manner

than classical methods in terms of the priorities and have lower values of the mean

square errors. The methodology has been illustrated with case studies and compared

with the conventional aggregation method.

Keywords: Group decisions and negotiations, Multi-criteria decision making

(MCDM), Analytic Hierarchy Process (AHP), Analytic Network Process (ANP),

Bayesian prioritization procedure (BPP).
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COK KRİTERLİ KARAR PROBLEMLERİNİN ÇÖZÜMÜNDE BAYESCİ

ÖNCELİKLENDİRME METODUNA DAYALI ANALİTİK HİYERARŞİ

SÜRECİ VE ANALİTİK SERİM SÜRECİ

ÖZ

Karar vericinin mevcut alternatifler arasından birbiriyle çelişen kriterler

doğrultusunda bir seçim, sıralama ya da değerlendirme yaptığı problemlere Çok

Kriterli Karar Verme (ÇKKV) problemleri denir. Günümüzün koşulları gereği

değişik sektörlerde bir grup bilim adamı ve/veya araştırmacıdan oluşan disiplinler

arası ekiplerin hızla çoğalması, ÇKKV problemlerinin grup kararı ile çözümünün

önemini ve gerekliliğini arttırmaktadır. Grup kararı gerektiren problemlerin

karmaşıklığı arttıkça problemi çözmek için daha esnek yöntemlere ihtiyaç

duyulmaktadır.

Analitik Hiyerarşi Süreci (AHS) ve Analitik Serim Süreci (ASS), karmaşık

ÇKKV problemlerinin grup kararıyla çözümü gereken durumlarda sıklıkla kullanılan

yöntemlerdir. AHS ile grup kararı verme (AHS-GKV) yöntemi, ÇKKV problemini

hiyerarşiler sistemine dönüştürerek belirlenen kriterlere göre alternatiflerin ikili

karşılaştırmasını yapar ve sonunda en iyi alternatifi seçer. ASS-GKV yöntemi ise

AHS-GKV yönteminin bağımlılık ve geri bildirim yapılarının olduğu durumlar için

genelleştirilmiş halidir.

Literatürde grup AHS kararlarının birleştirilmesi için kullanılan klasik yöntemler

mevcuttur. Bunlar “Bireysel kararların birleştirilmesi (BKB) ve bireysel önceliklerin

birleştirilmesi (BÖB)” metotlarıdır. Bu klasik yöntemlerin birtakım yetersizlikleri

bulunmaktadır. Literatürde bu tür yetersizlikleri gidermeye yönelik metodolojik

yenilikler yer almaktadır.

Eksikliklerden birisi bu klasik yöntemlerin bazı varsayımlarından ve

gerekliliklerinden kaynaklanmaktadır. Klasik metotlar karşılaştırma matrislerinin
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eksiksiz olduğunu varsayar ve tutarlı olmasını şart koşar. Halbuki gerçek hayatta bu

koşulların sağlanması genellikle mümkün olmamaktadır.

Bu çalışmada, AHS-GKV ve ASS-GKV yöntemleri için Bayesci önceliklendirme

yöntemi önerilmektedir. Önerilen yöntem, bireysel kararların ön elemesini

gerektirmemektedir. Önerilen yöntem eksik veya tutarsız cevapları olduğu

durumlarda da kullanılabilmekte ve bu problemli durumlarda klasik yöntemlere göre

daha tutarlı ağırlıklar ve daha düşük hata kareler ortalaması vermektedir. Yöntem,

örnek olgu çalışmaları ile desteklenerek; AHS-GKV ve ASS-GKV yöntemlerinde

grup kararlarının birleştirilmesinde kullanılan klasik metotlarla karşılaştırılmaktadır.

Anahtar Sözcükler: Grup kararları ve uzlaşma, Çok Kriterli Karar Verme

(ÇKKV), Analitik Hiyerarşi Süreci (AHS), Analitik Serim Süreci (ASS), Bayesci

önceliklendirme yöntemi.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

To be a person is to be a decision maker (Saaty, 2001). No matter who, how old or

how educated a person is; he or she always has to decide about something. The

process in which a decision maker selects, ranks or evaluates the alternatives

depending on at least one objective can be defined as decision making process.

According to this definition, decision making process is composed of a decision

maker or decision makers, alternatives, criteria and the results of the decision

process.

Decision theory is an interdisciplinary area of study which is studied by many

practitioners and researchers in all branches of science, engineering and in all human

social activities. In classical decision models, an optimal solution is selected from a

set of alternatives according to a certain objective function. However, the decision

problems in real life have conflicting objectives. As a result, the goal of decision-

making process becomes finding some satisfactory solutions rather than selecting a

single optimal solution. In order to handle such kind of decision making problems,

the methodologies for solving multiple criteria decision-making (MCDM) problems

have been emerged. Since 1960’s many theories and methods have been developed

in order to search for an optimal decision or solution.

1.2 Multi-Criteria Decision Making (MCDM)

The problems whose objective is to search the best alternative or to rank the

alternatives in terms of a number of conflicting criteria are called multi-criteria

decision making (MCDM) problems. It is hard to solve such kind of problems.

Generally, no optimal solution exists for these problems, i.e. none of the alternatives

can be concluded as the best one in terms of each criterion. An alternative can be the
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best one in terms of one criterion, where it can be worse in terms of the other criteria.

MCDM methodologies have been developed for more than fifty years;

nevertheless, those methodologies appear to be quite diversified due to many

changes in decision concepts. The MCDM techniques can be categorized into

multiobjective decision making (MODM) and multiattribute decision making

(MADM).

In the MODM, an alternatives set is defined with a set of constraints to be

satisfied, which result in a large set of decision choices for the decision maker. As a

result, the MODM models study decision problems with continuous solution spaces

(Levy, 2005). It assumes that the problem can be modeled as a mathematical

programming model. That is why it sometimes is referred as multiple objective

mathematical programming (MOMP). These problems are often formulated and then

solved as linear, integer, or nonlinear mathematical programming problems.

However, most of the real world MCDM problems cannot be solved by MODM

models.

On the other hand, MADM is applied to a discrete set of explicit alternatives

(finite and usually small) (Levy, 2005). In MADM problems, the highest objective is

usually a broadly defined goal which may be broken down into a hierarchy of criteria

or objectives, with the lower levels becoming more detailed and measurable, but

more conflicting. Performance indicators (also referred as criteria or attributes)

measure the degree of which these objectives are achieved.

MADM does not try to compute an optimal solution but tries to determine via

various ranking procedures (Brito et al., 2007). The aim here is to evaluate and rank

performance of a finite set of alternatives in terms of a number of decision criteria.

The problem is how to rank the alternatives when all decision criteria are considered

simultaneously.
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The most widely used methods, such as the SAW (Simple Additive Weighting)

method (Fishburn, 1967), the WPM (Weighted Product Model) method (Bridgman,

1922; Miller, 1969), the ELECTRE (Elimination Et Choix Traduisant la Realite)

method (Benayoun et al., 1966), the TOPSIS (Technique for Order Preference by

Similarity to Ideal Solution) method (Hwang & Yoon, 1980), the PROMETHEE

(Preference Ranking Organization methods for Enrichment Evaluations) methods

(Brans et al. 1984, 1985), the VIKOR (Vlse Kriterijumska Optimizacija

Kompromisno Resenje) method (Opricovic, 1998), the Analytic Hierarchy Process

(AHP) (Saaty, 1980), and the Analytic Network Process (ANP) (Saaty, 1996) are

described in the following chapter.

Out of those methods, the Analytic Hierarchy Process (AHP) and the Analytic

Network Process (ANP), proposed by Thomas L. Saaty (1980, 1996) are widely used

descriptive approaches in multi-criteria group decision making. They both allow

multiple actors, criteria and scenarios to be involved in the analysis. However, the

conventional procedures used in group decisions for these methods have some

limitations. They assume the pairwise comparison matrices containing the decision

makers’ judgements are complete and accurate. However, especially for large

problems (including large numbers of clusters and elements) there might be

incomplete matrices including empty positions due to various reasons. Some

methodological developments have been aroused in the literature in order to

overcome the limitations of classical aggregation methods in group judgements. For

example, aggregation methods with linear programming (Mikhailov, 2004) and

Bayesian approach (Altuzarra et al., 2007) have been proposed in order to make a

decision even when comparisons are missing, for example when a stakeholder does

not feel to have the expertise to judge a particular comparison (Ishizaka & Labib,

2011).

1.3 Objective of the Dissertation

Bayesian approaches allow the treatment of missing data or incomplete

information using data augmentation techniques (Tanner and Wong, 1987). The

integration of high-dimensional functions was the major limitation towards the wide
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application of Bayesian analysis before Markov Chain Monte Carlo (MCMC)

methods have been introduced. Up to time, the Bayesian analyses have not been

widely used in the AHP literature. Alho and Kangas (1997) provided a Bayesian

extension of their regression formulation of the AHP. Basak (1998) used MCMC

methods to calculate the posterior distributions of judgements and estimated the

vector of priorities and the most likely rankings. Altuzarra et al. (2007) provided a

Bayesian prioritization procedure (BPP) for AHP group decision making.

In this dissertation, our aim is to apply the Bayesian prioritization approach for the

AHP in a multi-criteria complex group decision problem and then to extend the

Bayesian prioritization approach to a more general approach to decisions, which is a

generalization of hierarchies to networks with dependence and feedback, the ANP.

This method also can be extended to the case of incomplete and inconsistent

pairwise comparison matrices, which are the common problems in complex decision

making problems. The methodology is illustrated by the analysis of two case studies

and compared with one of the conventional prioritization procedures.

The Bayesian method could also be applied for any other MCDM approaches

applied in group decision making (GDM), such as ELECTRE, TOPSIS etc., but they

are not presented in this dissertation since other methods are out of our scope.

The remainder of this dissertation is as follows: In the following chapter, the most

widely used MCDM methods are briefly described and some comparisons will be

given. In the third chapter, theoretical background of the AHP-GDM is briefly given

and the Bayesian prioritization procedure (BPP) based AHP is presented. A real life

example illustrates the methodology and the main results of this chapter are given

with the concluding remarks. In chapter four, the theoretical background of the ANP-

GDM is briefly given and the proposed methodology, Bayesian prioritization

procedure (BPP) based ANP is presented. The proposed methodology is illustrated

using a practical case study and the main results of the chapter are given with the

concluding remarks. In the final chapter, the conclusions which include total results
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and future research directions are provided. Each chapter is organized to include its

own literature review, statistical model, formulas, a complex group decision

problem, the simulated dataset, the statistical results and the conclusions.

In this dissertation, Microsoft Office Excel 2007 and R, which is a free software

environment for statistical computing and graphics, are used for all of the

calculations and the graphics.
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CHAPTER TWO

MULTI-CRITERIA DECISION MAKING METHODS

2.1 Introduction

Multi-criteria decision making analysis aims to search the best alternative or to

rank the alternatives in terms of a number of conflicting criteria. It is usually hard to

solve such kind of problems and no optimal solution exists for these problems, i.e.

none of the alternatives can be concluded as the best one in terms of each criterion.

One of the alternatives can be the best in terms of one criterion, where it can be

worse in terms of the other criteria (Yaralıoğlu, 2010).

MCDM methodologies have been developed for more than fifty years;

nevertheless, those methodologies appear to be quite diversified due to many

changes in decision concepts. The MCDM techniques can be classified as:

multiobjective decision making (MODM) and multiattribute decision making

(MADM).

The processes involved in the multiple criteria decision making can be

characterized as making preferenced decisions through evaluation, prioritization or

selection of alternatives in the presence of multiple, usually conflicting criteria.

A wide variety of MCDM techniques have been developed. The most widely used

methods are: the SAW (or WSM), the WPM, the ELECTRE, the TOPSIS, the

PROMETHEE, the VIKOR, the AHP, and the ANP methods (Yaralıoğlu, 2010).

Independent of the method being used, the multi-criteria decision making process

usually involves a numerical analysis of the alternatives that can be classified into

four main steps (Trianthaphyllou, 2000). These steps typically comprise:
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(i) Determination of the relevant criteria,

(ii) Assignment of numerical measures to the alternative’s performance and

relative importance of the criteria,

(iii) Aggregation process and finally

(iv) Determination of ranking for each alternative on the basis of numerical values

obtained from the previous steps.

Regarding this issue, Chen and Hwang (1991) provided a taxonomy of the

MCDM methods suitable for application under certain conditions, as described in the

Figure 2.1.

Figure 2.1 A taxonomy of MCDM methods.

We are dealing with the decision problems whose attributes could be identified

and in which the alternatives could be attained a cardinal score out of those

Multi-Attribute
Decision
Making

No Information

Type of Information
From the Decision
Maker

Information
on the Attiributes

Salient Feature
Of Information

Standard
Level

Ordinal

Cardinal

Major Classes of Methods

Dominance
Maximin
Maximax

Conjunctive Method
(Satisfying Method)

Disjunctive Method

Elimination by Aspect
Lexicographic Semi Order
Lexicographic Method

Weighted Sum Model
Weighted Product Model
Analytic Hierarchy
Process
ELECTRE
TOPSIS
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predefined attributes. The methods used in these types of decision problems are

given in the bottom of the figure.

Basically, these methods work with the same fundamental tool: the decision

matrix. Table 2.1 shows a decision matrix used in a situation involving three

alternatives and five different criteria. In a decision matrix, the aij is the performance

of alternative i according to criterion j. The problem of MCDM is how to rank

alternatives when all the decision criteria are to be considered simultaneously. In

principle, once the aggregated scores are determined, the ranking order of

alternatives can be automatically decided (Trianthaphyllou, 2000).

Table 2.1 Decision matrix.

Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Alternative 1 a11 a12 a33 a14 a15

Alternative 2 a12 a22 a23 a24 a25

Alternative 3 a13 a32 a33 a34 a35

Methods like the members of ELECTRE family only provide the sorting of the

alternatives (in this case, a dominance principles based ranking). Others methods also

provide performance measurements for all alternatives according every criterion and

alternatives sorting based on these performances.

2.2 Multi-Criteria Decision Making Methods

In this section, some commonly used MCDM methods representing different

evaluation principles will be briefly reviewed. These evaluation principles consist of

the selection of an alternative which has the largest utility value (SAW and WPM),

the arrangement of a set of overall preference rankings which best satisfy a given

concordance measure (ELECTRE), the selection of an alternative which has the

maximum value of linear preference function (PROMETHEE), the selection of an

alternative which has the largest relative closeness to the ideal solution (TOPSIS,

VIKOR), and prioritization of the alternatives by making paired comparisons in

terms of each alternative (AHP and ANP).
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2.2.1 The Simple Additive Weighted Method (SAW)

This method is also known as Weighted Sum Method (WSM) (Fishburn, 1967)

and is probably the most commonly used MCDM approach, particularly in dealing

with a single dimensional problem. This approach is based on the hypothesis that in

any decision problem, there exists a real utility function defined by the set of feasible

actions, which the decision maker wishes to evaluate.

The method is characterized by the additive utility assumption, referring to the

total value of each alternative being equal to the sum of the products of the criteria

ratings and their weight from the respective alternatives. To determine the best

alternatives among a discrete number of alternatives, the steps are as follows:

(i) The weights of each attribute are determined.

(ii) Each alternative is given a score in terms of each criteria

(iii)The total value of each alternative is calculated by taking the sum of the

products of the criteria ratings and their weight from the respective

alternatives.

The simplicity of this method makes it widely used by practitioners. However

there are some limitations:

(i) It can be used only in single dimensional problems.

(ii) It requires that the attribute values and the corresponding weight must both be

numerical and comparable.

(iii)The attributes are preferentially independent, meaning that the contribution of

an individual attribute to the global score is independent of another attribute’s

values.
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2.2.2 The Weighted Product Method (WPM)

The WPM (Bridgman, 1922; Miller, 1969) method is similar to WSM but it uses

multiplicative model instead of additive and could be used both in single and multi-

dimensional decision problems.

The basic steps of this method can be given as follows:

(i) The weights of each attribute are determined.

(ii) Each alternative is given a score in terms of each criterion which must be

greater than 1.

(iii) The total value of each alternative is calculated by taking the products of the

alternatives’ criteria ratings where the weights of the corresponding criteria

are their exponents.

One of the advantages of applying this method is its structure which eliminates

any unit of measurement by employing the relative value in terms of the ratio of the

respective criteria to the ideal value instead of the actual value. Last two limitations

are the same as WSM method.

2.2.3 The ELECTRE Method

The basic concept of the ELECTRE (Elimination and Choice Translating Reality)

(Benayoun et al., 1966) method is how to deal with outranking relation by using

pairwise comparisons among alternatives under each of the criteria separately. It

compares two alternatives at a time and selects one over the other if one alternative is

better in most criteria and not acceptably worse in the remaining criteria. An

alternative is dominated if there is another alternative that outranks it at least in one

criterion and equals it in the remaining criteria.

The ELECTRE method consists of a pairwise comparison of alternatives based on

the degree to which evaluation of the alternatives and preference weight confirms or
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contradicts the pairwise dominance relationship between the alternatives. The

decision maker may declare that s/he has a strong, weak, indifference or even be

unable to express his or her preference between two compared alternatives.

The steps of this method can be written as:

(i) Calculate the normalized decision matrix.

(ii) Calculate the weighted normalized decision matrix.

(iii) Determine the concordance and discordance set.

(iv) Calculate the concordance matrix.

(v) Calculate the discordance matrix.

(vi) Determine the concordance and discordance dominance matrix.

(vii) Determine the aggregate dominance matrix.

(viii) Eliminate the less favorable alternatives. The best alternative is the one that

dominates all the other alternatives in this manner.

First the normalized decision matrix is calculated and then a partial preference

ordering of the alternative can be derived from the aggregate dominance matrix. The

best alternative is the one that dominates all the other alternatives.

2.2.4 The TOPSIS Method

Hwang and Yoon in 1980 first developed a Technique for Order Performance by

Similarity to Ideal Solution (TOPSIS) as an alternative to the laborious ELECTRE

method. The logic and basic principle behind this concept are that the most preferred

alternative is not only the shortest Euclidean distance from the ‘ideal’ solution, but

also the farthest from the undesirable solution (nadir point), across all criteria

simultaneously.

The assumption of this method is that each attribute involved in decision making

takes either monotonically increasing or monotonically decreasing utility. The

method is simple and comprehensible. The method is able to measure the relative

performance of the decision alternatives with a high computational efficiency, due to
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a minimum numerical calculation. Furthermore, the TOPSIS method delivers

performance ratings and the weights of the criteria in the form of crisp values that

facilitate a comparison of the available alternatives.

The steps of TOPSIS can be described as follows:

(i) Calculating the normalized and weighted normalized decision matrix.

(ii) Determining the ideal and negative ideal solution for each criterion.

(iii) Calculating the separation measures.

(iv) Calculating the relative closeness of an alternative to the ideal solution.

The ranking of the alternatives can be obtained by ordering the performance index

in descending order. The larger the performance index, the more preferred the

alternative is.

2.2.5 The PROMETHEE Method

The PROMETHEE (Preference Ranking Organization Methods for Enrichment

Evaluations) method is developed by Brans et al. (1984, 1985) for solving multi-

criteria problems. PROMETHEE methods belong to the outranking methods

consisting in enriching the dominance order. They include five phases:

(i) Composing the evaluation matrix which presents the performance of each

alternative in relation to each criterion.

(ii) Comparing the alternatives pairwisely with respect to every single criterion.

(Here, the results are expressed by the preference functions, which are

calculated for each pair of options and can range from 0 to 1. 0 means that

there is no difference between the pair of options, 1 indicates a big

difference).

(iii) Assigning a preference function.

(iv) Estimating the outranking degree of the options.

(v) Determining weights to criteria and choosing a preference function by

decision makers.
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Various PROMETHEE tools and modules (such as PROMETHEE-I for partial

ranking, PROMETHEE-II for complete ranking and GAIA plane for visualisation)

have been developed so far.

2.2.6 The VIKOR Method

The VIKOR method (Vlse Kriterijumska Optimizacija Kompromisno Resenje)

was proposed by Opricovic (1998), which is a multi-attribute decision making

method for complex system based on ideal point method. VIKOR method uses linear

normalization and it proposes a compromise solution with an advantage rate.

(i) The compromise ranking algorithm VIKOR has the following steps:

(ii) Representation of Normalized Decision Matrix.

(iii) Determination of Ideal and Negative-Ideal Solutions.

(iv) Calculation of Utility Measure and Regret Measure.

(v) Computation of VIKOR Index.

The alternative having smallest VIKOR value is determined to be the best

solution. This method is a distance-based method like the TOPSIS method.

2.2.7 The AHP and the ANP Methods

The AHP (Saaty, 1980) method simplifies the problem of constructing hierarchic

structures which comprise a goal, criteria, and alternatives. It assumes that the factors

presented in the hierarchical structure are independent. However, many decision

problems involve the interaction and dependence of higher-level elements in a

hierarchy on lower-level elements and dependence of elements within a level

therefore cannot be structured hierarchically (Saaty, 1999).

In the case of dependence and feedback, the ANP (Saaty, 1996) is used instead of

the AHP. It is the generalized version of the AHP. It allows interactions and

feedback within and between clusters. It generalizes on the supermatrix approach

proposed by Saaty (1980). With the ANP, one constructs feedback networks, then
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makes judgments or performs measurements on pairs of elements with respect to a

controlling element to derive relative absolute scales that are then synthesized

throughout the structure to select the best alternative. The criteria are pairwise

compared with respect to the goal, the subcriteria with respect to their parent

criterion, and the alternatives of choice with respect to the last level of subcriteria

above them (the covering criteria). Each set of comparisons yields an absolute scale

of priorities. An absolute scale is a special instance of a ratio scale with a constant

multiplier equal to one.

In the ANP, not only does the importance of the criteria determine the importance

of the alternatives as in a hierarchy, but also the importance of the alternatives

themselves determines the importance of the criteria (Saaty, 2005). These two

methods both derive ratio scale priorities for elements and clusters of elements by

making pairwise comparisons of elements on a common criterion or property.

In our study, our focus is the AHP and its generalized form, the ANP. The main

reason why we are focusing on these two approaches and more detailed information

about these two methods will be given in the following sections. Our aim is to search

for the limitations of these two methods and search for some statistical configuration

and treatment for them.

2.3 Comparative Studies of the MCDM Methods

In this part, three comparative studies for the mentioned methods are given. These

studies are the ones which deal with many methods at a time for one certain problem.

Santana (1996) conducted a comparative study on the methods AHP, ELECTRE

and TOPSIS for choosing a new automobile plant in the Brazilian state of Santa

Catarina. The alternatives were the cities of Joinville, Blumenau and Imbituba; the

criteria were the conditions of infrastructure, transportation facilities, local labour

capability, basis industries potential and installed capacity expansion potential. In

order to apply the ELECTRE and TOPSIS methods, experts from Regional

Development Banks were consulted and for every criterion weights were obtained as
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0.20, 0.25, 0.20, 0.25 and 0.10. Those experts have also provided the values showed

on Table 2.2.

According to a concordance principle the ELECTRE method concludes that the

alternative Joinville dominates the others. But, it does not make any other

consideration regarding the other alternatives. Here, the only definitive conclusion is

that the option Joinville is the most attractive one.

For the TOPSIS method the location to be selected is the one with the lower

distance to the ideal solution (A+) and, simultaneously, the bigger distance to

undesirable solution (A–). In Table 2.2 it can be observed that:

A+ = [2, 5, 5, 3, 5]

A– = [1, 3, 2, 1, 3]

Table 2.2 Decision matrix for ELECTRE and TOPSIS.

Infrastructure Transportation
Labour

capability

Basis

industries

Capacity

expansion

Joinville 2 3 5 3 3

Blumenau 2 3 4 2 3

Imbituba 1 5 2 1 5

The alternative that provides the higher prioritization coefficient must be selected.

The prioritization coefficient is the ratio of the distance to the ideal solution to the

sum of two distances (distance to the ideal solution + distance to the undesirable

solution).

Table 2.3 verifies that, according to TOPSIS, Joinville will be the most attractive

location, because it assures the lower distance to ideal solution and, simultaneously,

the bigger distance to the undesirable solution. Blumenau will be the second choice

given the set of criteria.
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Table 2.3 Prioritization of alternatives according to TOPSIS.

Distance to ideal solution
Distance to ideal solution+

Distance to undesirable solution

Prioritization

coefficient

Joinville 0.70 1.40 0.67

Blumenau 1.05 1.05 0.50

Imbituba 1.40 0.70 0.33

In the AHP utilization, there is a single expert. The criteria (infrastructure,

transportation facilities, local labour capability, basis industries potential, installed

capacity expansion potential) have obtained the following weights: 0.14, 0.34, 0.14,

0.34 and 0.04. The consistency index from the judgments among the criteria was

0.0386 and since it is less than 0.10, it is accepted as consistent. This way the

prioritization of the alternatives was configured as shown in Table 2.4, i.e., again

Joinville will be the most attractive location. However, this time followed by

Imbituba.

Table 2.4 Prioritization of alternatives according to AHP.

Global Priority

Joinville 0.39

Blumenau 0.27

Imbituba 0.34

Santana (1996) had considered that “by the fact of the AHP assure the consistency

analysis of the judgments, the Saaty’s model means, a priori, more robust than the

others two”. The TOPSIS was considered the simplest of the studied methods.

Zanakis et al. (1998) also made a comparative study in which they compared the

performances of five methods: ELECTRE, TOPSIS, WPM, SAW, and four versions

of AHP (original vs. geometric scale and right eigenvector vs. mean transformation

solution). They took the SAW method as the basis to compare the other methods,

because of its simplicity and acceptability. According to their results, all versions of

the AHP method behave similarly and closer to SAW than the other methods.

ELECTRE is the least similar to SAW (except for closer matching the top-ranked
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alternative), followed by WPM. TOPSIS behaves closer to AHP and differently from

ELECTRE and WPM, except for problems with few criteria.

Chu et al. (2007) made another comparison study for three methods: TOPSIS,

VIKOR and SAW. According to their results, TOPSIS and SAW had identical

rankings overall, but TOPSIS had better distinguishing capability. TOPSIS and

VIKOR had almost the same success setting priorities by weight. However, VIKOR

produced different rankings than those from TOPSIS and SAW. They also concluded

that choosing appropriate strategies with VIKOR is easy.

Brans et al. (1986) also showed that PROMETHEE is more stable than

ELECTRE. Macharis et al. (2004) made a comparison between PROMETHEE and

AHP, which showed PROMETHEE has some strength of various approaches. A

number of papers combined PROMETHEE with AHP. The final ranking of

alternatives in this integration was done by PROMETHEE and the importance of

criteria was determined by AHP.

We have conducted a literature comparison study and searched ISI Web of

Knowledge, which is an academic citation indexing and searching service. It is

combined with web linking and provided by Thomson Reuters. The following

figures are obtained through its database. The figures present the frequency of

published items on the left side and the frequency of citations on the right since year

2000 for the methods AHP-ANP, TOPSIS, ELECTRE, PROMETHEE and VIKOR

respectively. We should think the AHP and the ANP methods as the same method

here. Because if there is no dependence structure in the problem, the practitioner

would use the AHP; whereas if there exist a dependence or feedback structure

between the clusters he would then use the ANP, which is the general case of the

AHP. The Figures 2.2-2.6 indicate that the AHP-ANP methods have been attracting

popularity throughout the years.
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Figure 2.2 Published items and citations of the AHP and ANP since 2000.

Figure 2.3 Published items and citations of the TOPSIS method since 2000.

Figure 2.4 Published items and citations of the ELECTRE method since 2000.
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Figure 2.5 Published items and citations of the PROMETHEE method since 2000.

Figure 2.6 Published items and citations of the VIKOR method since 2000.

It is not argued that the AHP-ANP methods are the best MCDM methods but it is

obvious that they are the most popular ones. The authors might have cited the

methods

(i) positively because of their superiorities,

(ii) negatively because of their limitations or

(iii) they might just have used the method for their purpose.

Whatever the reason is, the AHP together with the ANP methods have more than

5000 citations for each of the last two years (2010 and 2011).
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In our study, our focus is the AHP and its generalized form, the ANP. The main

reason why we are focusing on these two approaches is that the AHP is one of the

most widely used MADM tool in the literature. The superiority of these two methods

is that the consistency of the decision makers can be calculated. These methods

capture all kinds of comparisons which makes them a more comprehensive approach

than others. Moreover, the ANP is a powerful approach since it is the only method

that can capture dependencies and the feedback in the problem, if exist.
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CHAPTER THREE

BAYESIAN PRIORITIZATION PROCEDURE BASED ANALYTIC

HIERARCHY PROCESS

3.1 Introduction

The Analytic Hierarchy Process (AHP) proposed by Thomas L. Saaty (1980) is a

widely used descriptive approach in multi-criteria decision making. It deals with

problems which involve consideration of multiple criteria simultaneously. It allows

multiple actors, criteria and scenarios to be involved in the analysis. It has been

extensively applied in complex decision-making problems of choice, prioritization

and evaluation. Its ability to synthesize both tangible and intangible characteristics,

to accommodate both shared and individual values and monitor the consistency with

which a decision-maker makes his judgements made the AHP a widely used multiple

criteria decision making (MCDM) tool (Dyer & Forman, 1992).

The AHP simplifies the problem of constructing hierarchic structures which

comprise a goal, criteria, and alternatives. It assumes that the factors presented in the

hierarchical structure are independent. The AHP has particular applications in

individual and group decision making. According to many researchers AHP is an

effective and flexible tool for structuring and solving complex group decision

problems (Altuzarra et al., 2007; Ramanathan & Ganesh, 1994; Dyer & Forman,

1992).

There are different methods to accommodate the judgements of decision makers

in a group setting. Saaty (1989) suggests one of two methods to proceed:

(i) Decision makers make each paired comparison individually.

(ii) The group is required to achieve consensus on each paired comparison.

If individual’s paired comparison ratio judgments are gathered, the literature

describes different methods for the prioritization and synthesis procedures (Saaty,
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1989; Crawford & Williams, 1985; Aguarón & Moreno-Jiménez, 2000). The two

conventional procedures to obtain group priorities are “the aggregation of individual

judgements (AIJ)” and “the aggregation of individual priorities (AIP)”.

Based on individual judgements, a new judgement matrix is constructed for the

group as a whole in AIJ procedure and the priorities are computed from the new

matrix. If the individuals are experts, they may not wish to combine their judgements

but only their final outcomes obtained by each from their own network (Saaty, 2008).

In that case, the AIP method can be used, and the total priorities are obtained on the

basis of individual priorities using an aggregation procedure. Synthesis of the model

can be done using any of the aggregation procedures. The weighted geometric mean

method is the most commonly used technique for both (Saaty, 1983).

One of the limitations of these conventional procedures is that they assume the

pairwise comparison matrices containing the decision makers’ judgements are

complete and accurate. However, especially for large problems (including large

numbers of attributes and alternatives) there might be incomplete matrices including

empty positions. According to Kim and Ahn (1997), the reasons to the incomplete

information are as follows:

(i) A decision might be made under time pressure and lack of data,

(ii) Many of the attributes might be intangible or non-monetary because they

reflect social and environmental impacts,

(iii) Decision maker might have limited attention and information processing

capabilities,

(iv) All participants might not have equal expertise about the problem domain in

group settings.

Methodological developments have been emerged in the literature in order to

overcome the limitations of classical aggregation methods in group judgements. For

instance, Mikhailov (2004) proposed aggregation methods with linear programming

and Altuzarra et al. (2007) proposed a Bayesian approach in order to make a decision



23

even when comparisons are missing, for example when a stakeholder does not feel to

have the expertise to judge a particular comparison (Ishizaka & Labib, 2010).

Bayesian approaches allow the treatment of missing data or incomplete

information using data augmentation techniques (Tanner & Wong, 1987). The

integration of high-dimensional functions was the major limitation towards the wide

application of Bayesian analysis before Markov Chain Monte Carlo (MCMC)

methods have been introduced.

There are very few references to Bayesian analysis in the AHP literature. Alho

and Kangas (1997) provided a Bayesian extension of their regression formulation of

the AHP. Basak (1998) used MCMC methods to calculate the posterior distributions

of judgements and estimated the vector of priorities and the most likely rankings.

Altuzarra et al. (2007) provided a Bayesian prioritization procedure (BPP) for AHP

group decision making that does not require filters for the initial judgements of the

decision makers. Contrary to the conventional prioritization methods applied in

AHP-GDM (Saaty, 1989; Ramanathan & Ganesh, 1994; Forman & Peniwati, 1998)

this technique does not require intermediate filters for decision makers’ initial

judgements. This approach provides more efficient and robust estimates than the

classical prioritization methods applied in AHP-GDM.

In this chapter, we aim at providing an effective and practical group decision

mechanism to prioritize the alternatives. We propose using BPP based AHP-group

decision making (GDM) for complex multi-criteria decision problems, which allows

a group of people to participate in the analysis. This approach provides flexibility to

the group of participants, when expressing their judgements, and to the AHP

practitioner, who may not be professional, by treating incomplete or inconsistent

judgements properly. This technique can be used alone or with any other decision

support systems.

This chapter is organized as follows: Section 3.2 gives the relevant theoretical

background of the AHP-GDM approach and the Bayesian prioritization procedure
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for the AHP-GDM. In Section 3.3, an illustrative example is provided to show how

the proposed method can be implemented in an information security risk assessment

problem. The main results of the illustrative example are also given here. Finally,

Section 3.4 summarizes the conclusions obtained from this study.

3.2 The AHP Group Decision Making (AHP-GDM)

The AHP was developed by Saaty (1980) in order to deal with problems which

involve consideration of multiple criteria simultaneously. It has been extensively

applied in complex decision-making problems of choice, prioritization and

evaluation. Its ability to synthesize both tangible and intangible characteristics, to

accommodate both shared and individual values and monitor the consistency with

which a decision-maker makes his judgements made the AHP a widely used multiple

criteria decision making (MCDM) tool (Dyer & Forman, 1992). The AHP has

particular applications in individual and group decision making (Basak & Saaty,

1993). According to many researchers AHP is an effective and flexible tool for

structuring and solving complex group decision situations (Altuzarra et al., 2007;

Ramanathan & Ganesh, 1994; Dyer & Forman, 1992).

3.2.1 Steps of the AHP Analysis

The AHP comprises of four stages: modeling, valuation, prioritization and

synthesis. In the modeling stage, a hierarchy which describes the problem is

constructed. As presented in Figure 3.1, the overall goal or mission is placed at the

top of the hierarchy. The main attributes, criteria and subcriteria are placed in the

subsequent levels below. Finally, the alternatives are placed at the bottom of the

hierarchy.

A hierarchy does not have to be complete, i.e., an element in a given level does

not have to function as an attribute or a criterion for all the elements in the level

below (Saaty, 1990). Similarly, there can be a hierarchy which does not have any

alternatives layer. According to the type of the problem the model given in Figure

3.1 can be developed.
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Goal

Alternatives

Criteria

Hierarchy

Figure 3.1 The AHP structure.

The Analytic Hierarchy Process (AHP) derives relative scales using decision

makers’ judgments or data from a standard scale, and performs the subsequent

arithmetic operation on those scales. The judgments are given in the form of paired

comparisons. Decision makers compare all the criteria with regard to goal and then

all the alternatives with respect to each criterion in the evaluation stage. Their

preferences are included as pairwise comparison matrices in the analysis and they are

based on the fundamental scale (given in Table 3.1), proposed by Saaty (1980).

Table 3.1 The fundamental scale for pairwise comparisons.

Intensity of Importance Definition
1 Equal Importance
2 Weak
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong
8 Very, very strong
9 Extreme importance

The hierarchy allows decision makers to focus on their judgments separately on

each of several criteria one by one by making them take a pair of elements and
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compare them on that single criterion without any concern for other criteria or other

elements.

The pairwise comparisons comprise a set of matrices called “pairwise comparison

matrices”. There are 2/)1( nn judgments required to develop the set of matrices.

Reciprocals are automatically assigned in each pair-wise comparison.

After all the pairwise comparisons are done, the consistency is determined by

using the eigenvalue, ,max to calculate the consistency index, ,CI as follows:

,
1

max





n

nCI 

where n is the matrix size.

Judgment consistency can be checked by taking the consistency ratio  CR of

,CI with the appropriate value in Table 3.2. The CR is acceptable, if it does not

exceed 0.10. If it is more, the judgment matrix is inconsistent. To obtain a consistent

matrix, judgments should be reviewed and improved.

Table 3.2 Average random consistency.

Size of matrix 1 2 3 4 5 6 7 8 9 10
Random

consistency 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

In the prioritization stage, the local priorities are derived by calculating the

eigenvalues of the comparison matrix of each element. Then the sum is taken over all

weighted eigenvector entries corresponding to those in the next lower level of the

hierarchy and global priorities are derived using the hierarchic composition principle.

In the last stage, the global priorities for each alternative are synthesized in order to

get their total priorities.
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3.2.2 Incomplete Pairwise Comparison Matrices

Most MCDM methods are based on the assumption that complete information

about the model parameters (scores, attribute weights) are elicited as ‘exact’ point

estimates (Salo & Hämäläinen, 2010).

However, in real life decision makers sometimes might provide only incomplete

or inconsistent information. The reasons for the incomplete or inconsistent

information in the AHP pairwise comparison matrices can be summarized as follows:

(i) Decision makers might have limited attention or limited time so they might

skip some questions or might provide inconsistent answers.

(ii) Decision makers might have limited experience or information about the

subject so they might hesitate to give exact answers.

(iii) Decision makers might have limited knowledge about the AHP assumptions

or requirements.

(iv) As the number of elements increase in the model, it becomes a hard task to

provide complete and consistent answers

The practitioner may also prefer to ignore the inconsistent or opposing

judgements while keeping the consistent or homogeneous ones in order to increase

the consistency or consensus among decision makers.

As a consequence, all of the decision makers may not express the 2/)1( nn

possible judgements in the reciprocal pairwise comparison matrix or may express

inconsistent judgements. There are some methods proposed to overcome this

problem (see Salo and Hämäläinen (2010) for more information).

3.2.3 Inconsistency in Pairwise Comparison Matrices

Compared to other MCDM methods, one of the superior characteristics of AHP is

that it allows for the quantitative assessment of the decision makers’ inconsistency

when they are eliciting their judgements.
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Escobar et al. (2004) discusses about inconsistency in group decision making and

mentions that less attention has been given to this topic. In a group setting, the

inconsistency of the group is smaller than the largest individual inconsistency, i.e., if

judgement matrices given by each decision-maker have an acceptable inconsistency,

then so has their aggregated complex judgement matrix (Escobar et al., 2004). The

opposite condition does not hold so one has to be careful calculating the consistency

index. The two most commonly used procedures in the AHP literature are the

Consistency Ratio (Saaty, 1980) and the Geometric Consistency Index (Crawford &

Williams, 1985; Aguarón et al., 2003).

Alho et al. (1996) provides a regression formulation of the AHP which allows the

statistical decomposition of the variation in the judgements into three parts: The

amount of variation between individuals, the inconsistency of the judgments and the

residual error. They indicate that there is considerable variation in the judgements of

various experts, and also considerable internal inconsistencies in individual

judgements. Their results show that the expert judgements must be used with caution

in the decision-making process.

3.3 Bayesian prioritization procedure (BPP) for AHP-GDM

Before the introduction of Markov Chain Monte Carlo (MCMC) methods, the

integration of high-dimensional functions has been the major limitation towards the

wide application of Bayesian analysis. Nowadays Bayesian approaches are widely

used in the treatment of missing data or incomplete information.

One of the limited Bayesian studies in the AHP literature is the Bayesian

prioritization procedure (BPP) by Altuzarra et al. (2007). They provided a for AHP

group decision making that does not require filters for the initial judgements of the

decision makers. This procedure is based on the prior assumption of the existence of

consensus among the decision makers. Unlike the AIJ and the AIP methods, this

process uses weightings that are inversely proportional to the decision makers’ levels

of inconsistency and is more efficient when compared to them. This method also can

be extended to the case of incomplete pairwise comparison matrices, which is a
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common problem in complex decision making problems. For such cases, Altuzarra et

al. (2007) showed that BPP performs much more robust manner than the

conventional methods, especially with regard to consistency.

3.3.1 Statistical model for complete and consistent judgements

Assuming a single criterion, and a set of n alternatives, },...,{ 1 nAA , let

2},,...,{ 1  rDD rD be a group of r decision makers, each express individual

pairwise comparisons with regard to the criterion considered, resulting in r

reciprocal judgement matrices, }...,1,{ )( rkk R . Their preferences are based on the

fundamental scale proposed by Saaty (1980). )( )()( k
ij

k rR is a positive square

matrix  nn which validates:
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be the group’s unnormalized and normalized priorities for the alternatives,

respectively.
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As traditionally employed in stochastic AHP (Crawford & Williams, 1985; Alho

& Kangas, 1997), a multiplicative model with log-normal errors is applied in the

Bayesian analysis of the model. If the decision makers express all possible

judgements, the model will be:

,,...,1,,...,1,,)()( rknjie
v
vr k

ijG
j

G
ik

ij  with   .,0~ 2)()( jiLNe kk
ij 

Taking the logarithms and eliminating the reciprocal judgements, a regression

model with normal errors is obtained given by:
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Here, nA is established as the benchmark alternative ).00(  nn v In matrix

notation, model can be written as:
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With a constant non-informative distribution as the prior distribution for the vector

of log-priorities, Gμ , the posterior distribution of Gμ for complete and precise

information is given by:
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For the conventional procedure, AIP, the most commonly used method to

aggregate group judgements is the geometric mean method. It can be presented as:
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The other conventional procedure, AIJ, is not mentioned in this study since

Altuzarra et al. (2007) showed that it gives almost the same results with the AIP

method. Further information and theorems can also be found in their study.

3.3.2 Statistical model for incomplete or inconsistent judgements

Assuming the same conditions in the previous section, the model can be written

as:

)()( kGk εXμy 

with
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In the matrix form it can be expressed as:
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Here,

,)'1,...,1,1(r1 kt is the number of judgements issued by each decision maker,

,kD rttt  ...1 is the total number of judgements by all decision makers, and

 denotes the Kronecker product.

With a constant non-informative distribution as the prior distribution for the

vector of log-priorities  Gμ , the posterior distribution of Gμ for incomplete and

precise information is given by:
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3.4 A Real World Example

In this section, both the AIP and the BPP methods are applied in AHP-GDM

analysis of the same example and the results are compared.

3.4.1 Introduction

Information security risk management is a recurrent process of identification,

assessment and prioritization of risks, where risk could be defined as a possibility

that a threat exploits a particular vulnerability in an asset and causes damage or loss

to the asset. Risk management has two primary activities, risk assessment and risk

control. Risk assessment is a very important decision mechanism which identifies the

information security assets that are vulnerable to threats, calculates the quantitative

or qualitative value of risk (or expected loss), and prioritizes risk incidents.

In an organization, in the past, a single manager was used to be the responsible

staff to protect information systems where, nowadays, a group of managers could

take the responsibility of this task or participate in the risk analysis process. As risk

analysis becomes a cross-functional decision making process, researchers seek ways

to develop new risk analysis methods which allow a group of people to participate.

Although risk is well defined and practical for decision making, it is often difficult

to calculate a priori (Sommestad et al., 2010). Due to the difficulty in adapting

complex risk analysis tools in today’s information systems, researchers have

proposed new techniques which are capable of analyzing information security risk

properly. A number of quantitative and qualitative risk analysis methods have been

developed.

The quantitative approaches use mathematical and statistical tools to represent risk

as a function of the probability of a threat and the expected loss due to the

vulnerability of the organization to this threat (Bodin et al., 2008; Feng & Li, 2011).

Due to the shortage of reliable data on incidents (probabilities and impacts),

quantitative approaches may not yield reliable results. Consequently, security or risk
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management professionals mostly prefer qualitative methods rather than quantitative

ones. In qualitative methods, estimated risk is calculated using only the estimated

potential loss instead of the probability data. These approaches depend on the ideas

of the analyst so they are subjective and might yield inconsistent results (Karabacak

& Soğukpınar, 2005).

There is not a single risk evaluation method which is best under all circumstances

and for all purposes. Some researchers claimed that neither of the quantitative and

qualitative approaches could properly model the assessment process alone.

Alternatively, some of them developed comprehensive approaches combining both

the quantitative and the qualitative approaches (Bodin et al., 2008; Feng & Li, 2011;

Zhao et al., 2009).

The Analytic Hierarchy Process (AHP) is one of the most widely used multi-

criteria decision technique which can combine qualitative and quantitative factors for

prioritizing, ranking and evaluating alternatives. It allows multiple actors, criteria and

scenarios to be involved in the analysis. So it can be used to evaluate and prioritize

the risk incidents with a group of experts.

Previously, AHP analysis was used as support for an organization’s information

security system to evaluate the weights of risk factors by Guan et al. (2003); to

determine the optimal allocation of a budget by Bodin et al. (2005); to evaluate the

weighting factors needed to combine risk measures by Bodin et al. (2008); to obtain

the indices’ weights with respect to the final goal of the security evaluation by

Cuihua & Jiajun (2009); to select information security policy by Syamsuddin and

Hwang (2010); and to establish e-commerce information security evaluation by

Huang (2011). Xinlan et al. (2010) proposed calculating a relative risk value with

AHP-GDM instead of calculating the actual value of the risk. They mentioned that

the loss could be measured by the value of assets; and probability of risk could be

described in an equation with the danger degree of threat and vulnerability as its two

variables.
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The AHP method is operable and efficient as it prioritizes and orders risk

incidents, which could also satisfy the aim of risk management. However, there

might be some complexities when using AHP-GDM for information security risk

evaluation. For instance, in AHP-GDM, it is assumed that the pairwise comparison

matrices containing the judgements expressed by decision makers are complete and

accurate.

For the specified problem, decision makers might provide only incomplete

information or sometimes inconsistent answers due to following situations:

(i) Some of the experts may have limited expertise about the risk

management problem domain or the AHP analysis.

(ii) Decision makers participated in the analysis would prefer to concentrate

on the risk assessment itself rather than the AHP tool being implemented

in the risk analysis.

(iii)They may have difficulties in making pairwise comparisons efficiently as

the  number of assets, threats and vulnerabilities increase.

Altuzarra et al. (2007) proposed a Bayesian prioritization approach for AHP-

GDM which can naturally be extended to the case of incomplete pairwise

comparison matrices. Contrary to the conventional prioritization methods applied in

AHP-GDM (Saaty, 1989; Ramanathan & Ganesh, 1994; Forman & Peniwati, 1998),

this technique does not require intermediate filters for decision makers’ initial

judgements. This approach provides more efficient and robust estimates than the

classical prioritization methods applied in AHP-GDM in terms of the mean square

error (MSE).

We aim at providing an effective and practical group decision mechanism to

prioritize the risk incidents. We propose using BPP based AHP-GDM for

information security risk evaluation, which allows a group of people to participate in

the analysis. This approach provides flexibility to the group of participants, when

expressing their judgements, and to the risk analysts, who may not be professional
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AHP practitioners, by treating incomplete or inconsistent judgements properly. Other

advantages of this technique can be listed as follows: it can easily be adapted to any

information security standard by updating the groups of assets, threats and

vulnerabilities, and can be used alone or with any other information security risk

analysis methods as a support.

3.4.2 Application

Let us consider the group decision analysis situation on information security risk

assessment taken from Xinlan et al. (2010). They defined 3 criteria, which are

assumed to have same weights; confidentiality, integrity and availability, and 3 key

factors conducting the security risk assessment:

• Assets  5},,...,{ 1 mAA m ,

• Threats  6},,...,{ 1 sTT s ,

• Vulnerabilities  6},,...,{ 1 hVV h

based on GB/T20984: Risk Assessment Specification for Information Security. The

criteria and factors we used can be seen in Table 3.3.

Table 3.3 List of assets, threats and vulnerabilities.

Assets Threats Vulnerabilities

A1-Service
A2-Data
A3-Software
A4-Hardware
A5-People

T1-Physical environment influences
T2-Hardware & software breakdowns
T3-Malicious code
T4-Ultra vires
T5-Cyber attacks
T6-Management problems

V1-Physical damages
V2-Network vulnerabilities
V3-Operating systems vulnerabilities
V4-Application systems vulnerabilities
V5-Application middleware vulnerabilities
V6-Problems in technique and
organization management

We previously have noted that the AHP-GDM analysis could contain some

complexities for this problem. Here, there are 3 criteria, 5 assets, 6 threats and 6

vulnerabilities in the model which make 180 comparisons for each decision maker,
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and expressing complete and consistent judgements for 180 different comparisons is

quite difficult.

Consequently, we aimed to solve this problem with the AHP-GDM based on BPP

in order to show that it would present a more practical and flexible way of

information security risk assessment. It would also provide more efficient results for

risk analysis even with incomplete pairwise comparison matrices.

In this study, there are three AHP models to be analyzed. The first AHP model

given in Figure 3.2 is established for calculating the priorities of assets ( maa ,...,1 ),

with respect to the attributes: confidentiality, integrity and availability. The

importance of these three factors might be different for each organization so we

assumed that all three factors have the same importance in this study. The overall

goal is placed at the top of the hierarchy. The attributes are placed in the second

layer, and the assets are in the third layer, which is the “alternatives” layer.

Priorities of
Assets

Integrity AvailabilityConfidentiality

A5A1

Figure 3.2 AHP decision tree for asset prioritization.

The second and the third AHP models are constructed in order to calculate the

danger degree of threats ( stt ,...,1 ) and vulnerabilities ( hvv ,...,1 ) in terms of each asset

respectively. Figure 3.3 shows the decision tree for the danger of threats model. A

similar model is prepared for the vulnerabilities.

Since we assumed that the attributes in the first AHP model are equal, we did not

require any comparisons for them. So, for each AHP models, we had 3 , 5 and 5

different set of pairwise comparisons to be completed by each decision makers
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respectively. We assumed that there is a cross-functional team composed of 5

decision makers from various departments, who are not forced to give complete

answers to the pairwise comparison matrices.

Danger Degree of
Threats

A5A1

T6T1 T2

Figure 3.3 AHP decision tree for danger degree of threat prioritization.

In order to illustrate this case, we simulated data based on the fundamental scale

proposed by Saaty (1980) for each set of pairwise comparison matrices that are

presented in Tables 3.4-3.6.

Table 3.4 Simulated pairwise comparisons of 5 assets in terms of 3 attributes.

pairs 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

Confidentiality

D1 1/4 2 5 2 7 9 5 2 1 1/3

D2
1/3 4 7 3 5 8 5 1 NA 1/2

D3
1/2 3 7 5 9 9 4 3 3 2

D4 2 5 9 2 7 6 2 1 1 1/4

D5
1/2 3 6 1/3 9 5 5 1/3 2 1/3

ocij≥8 8 15 9 8

Integrity

D1 1/3 2 5 2 7 9 5 2 1 1/3

D2 1/4 3 9 2 7 6 2 1 1 1/4

D3 1/2 3 7 5 9 9 4 3 3 1/3

D4 1/3 3 6 1/3 9 5 5 2 2 1/3

D5 1/2 4 7 3 5 8 5 1/3 NA 2
ocij≥8 15 9 8

Availability

D1 1/4 2 5 2 7 7 5 2 1 1/3

D2 1/4 3 6 2 7 6 2 1 1 1/4

D3 1/2 4 7 5 9 7 3 3 3 1/3

D4 1/2 3 8 4 9 5 3 8 2 1/3

D5 1/3 4 7 3 1 8 4 3 2 3
ocij≥8 9 8 9
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Table 3.5 Simulated pairwise comparisons of 6 threats in terms of 5 assets.

pairs 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6

jT
of

1A

D1 1/5 1/3 1/3 1/7 2 3 3 1/4 5 2 1/3 7 1/4 3 9
D2 1/4 1/3 1/2 1/5 1 3 3 1/2 6 1 1/4 3 1/3 3 9
D3 1/5 NA 1/5 1/5 1 5 6 1/3 5 1 1/4 4 1/2 3 1
D4 1/4 1/2 1/2 NA 2 2 3 3 7 1 1/7 1/2 1/5 2 7
D5 1/5 3 1/2 1/3 1/2 3 4 1/3 4 1 1/3 5 1/6 2 7

jT
of

2A

D1 1/4 1/7 1/9 1/9 1/2 1/3 1/5 1/4 3 1/2 1/3 2 1 5 9
D2 1/3 1/6 1/9 1/9 1/2 1/2 1/3 1/5 1 1/2 1/3 2 1/2 5 7
D3 1/3 1/7 1/8 1/8 1 1/3 1/3 1/5 2 1 1/4 3 1/2 6 8
D4 1/5 1/8 1 1/7 2 1/2 1/4 1/3 1 1/3 1/5 1 1 1/3 7
D5 1/2 NA 1/7 1/9 1/2 1/2 2 1/4 3 4 1/5 2 1/2 4 9

jT
of

3A

D1 1/9 1/7 1/2 1/5 1/2 2 6 3 9 4 2 6 1/2 1 3
D2 1/7 1/7 1 1/4 1/3 1 7 4 9 5 3 3 1/2 1 2
D3 1/5 2 1/2 1/5 NA 4 5 3 7 3 5 3 1 2 3
D4 1/9 1/5 1/3 1/8 1/2 1/2 8 2 8 7 2 5 1/3 1 3
D5 1/6 1/6 3 1/7 1/2 3 6 3 9 6 3 1/3 1 2 1

jT
of

4A

D1 1/4 3 6 3 1/4 9 7 5 2 2 1/2 1/7 1/4 1/9 1/6
D2 1/5 4 7 2 1/2 9 9 4 2 1 1/3 1/5 1/4 1/9 1/3
D3 1/5 2 5 2 1/3 7 8 6 3 3 NA 1/6 1/3 1/7 2
D4 1/4 3 6 4 1/2 1 8 1/2 3 2 1/4 1/7 1/3 1/9 1/7
D5 1/6 1/2 6 3 1/3 7 9 5 2 3 1/3 2 1/4 1/7 1/5

jT
of

5A

D1 5 4 1/2 5 1/3 1 1/8 1 1/9 1/5 1 1/9 1/2 1/4 1/9
D2 4 4 1 6 1/3 1 1/7 2 1/9 1/3 2 1/7 6 1/2 1/8
D3 4 6 1/2 7 1/4 1/2 1/5 1/2 1/6 1/4 3 1/9 7 1/3 1/7
D4 8 5 1/3 5 1/2 1/2 1/9 2 1/8 1/8 2 1/8 4 1 1/7
D5 1 7 1 4 1/3 2 1/8 1 1/7 1 3 1/9 8 1/3 1/9

In Table 3.4, the simulated pairwise comparisons for the first AHP model are

given, where 5 assets are compared by 5 decision makers in terms of

confidentiality, integrity and availability attributes. In the first model, 2D did not

compare 3A with 5A , and 5D did not compare 3A with 5A in the second one, which

resulted in incomplete judgement situations.
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Table 3.6 Simulated pairwise comparisons of 6 vulnerabilities in terms of 5 assets.

pairs 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6

kV
of

1A

D1 1/4 1/3 1/9 1/8 5 1 1/3 1/2 3 1/4 1/2 2 2 8 4
D2 1/4 1/3 1/9 1/6 3 1 1/7 2 2 1/3 1/2 3 3 8 5
D3 1/3 3 1/8 1/5 5 1/2 1/5 1/2 4 1/4 1 1 1 9 6
D4 1/3 1/2 1/7 1/7 5 1/2 1/4 2 3 1/8 1/5 1/2 2 5 3
D5 1/5 1/4 1/7 1/8 3 2 1/8 1 1/3 1/3 1/3 4 3 1 5

kV
of

2A

D1 1 1/2 1/9 1/8 1/2 1 1/3 1/2 1/2 1/2 1/2 1/2 2 4 3
D2 1/2 1/3 1/9 1/7 1/2 1 1/3 1/2 1/2 1/5 1/2 1/2 3 4 3
D3 1/2 1/3 1/8 1/8 NA 1/2 1/5 1/2 1/3 NA 1 1 1 5 4
D4 1 1/2 1/9 1/9 3 1/2 1/4 1/3 1/4 3 1/5 1/2 2 3 3
D5 2 1/4 1/9 1/9 1/2 2 1/8 1 1 1/3 1/3 1/8 3 1/3 2

kV
of

3A

D1 1/4 1/6 1/8 1/4 1/2 1/4 1/7 1/3 1/2 1 2 3 2 4 1
D2 1/2 1/7 1/9 1/5 1/3 1/4 1/7 1/2 1/2 1/2 3 3 3 4 2
D3 NA 1/9 1/8 1/3 1/2 1/3 1/6 1/4 1 NA 1 4 4 5 3
D4 1/3 1/7 1/9 NA 1/5 4 1/8 1/3 1/2 1/2 2 1/5 3 6 3
D5 3 1/6 1/7 1/4 1/3 1/4 1/6 1/2 4 1/3 3 1/3 3 2 2

kV
of

4A

D1 5 2 3 8 1/2 1 2 1 1/5 2 1 1/2 1 1/7 1/8
D2 4 2 5 6 1/2 1/2 2 2 1/5 3 3 1/2 1 1/9 1/9
D3 3 3 3 8 1 1 3 1 1/4 1 2 1/3 2 1/6 1/8
D4 8 1 5 7 1/3 1/2 1 3 3 3 3 1/4 1/2 1/8 1/6
D5 1 NA 5 9 1/3 1/3 1 2 1/2 4 1/3 1 1 1/9 1/9

kV
of

5A

D1 2 1/3 2 1/2 1/6 1/5 1/4 1 1/9 2 5 1/2 3 1/3 1/9
D2 2 1/3 2 2 1/7 1/4 1/5 2 1/8 3 4 1/3 3 1/4 1/8
D3 4 3 4 1 1/8 1/3 1/4 2 1/8 2 6 1/2 4 1/5 1/7
D4 3 1/2 1 1/2 1/6 1 1/2 1 1/7 1 3 1 5 1/3 1/9
D5 3 1/2 1/2 1/2 1/7 1 NA NA 1/9 2 7 1/3 1 4 1/8

The opening coefficients  ijoc reflect the variability of judgements expressed by

decision makers, and are calculated by: njikrMinrMax k
ijk

k
ijk  1,5,...,1, .

In this study we omitted the most inconsistent judgements which cause ijoc to be

large. In Table 3.4, the ijoc line is presented to illustrate the omitting procedure, but

the same procedure is applied for each matrix.
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Table 3.5 and 3.6 gives the simulated pairwise comparisons for the second and

third AHP models, where 6 threats and 6 vulnerabilities are compared by 5

decision makers in terms of 5 different assets respectively.

In Tables 3.4-3.6, the incomplete judgements are written as “NA” and the

judgements which are selected to be omitted are given in bold. It can be concluded

that five decision makers have a consensus in general, where 1D and 2D are the

most consistent ones and 5D is the most inconsistent one. Some decision makers,

especially 3D and 5D preferred not to express some of the pairwise comparisons.

Looking at the ijoc line, it can also be noted that 4D and 5D seem to pay less

attention compared to others since the omitted judgements mostly belong to them.

It is assumed that consensus exists among the decision makers with regard to the

priorities for each alternative. The degree of inconsistency for each decision maker

 2)(k is assumed to be known and below the threshold. We used the inconsistency

levels )43102720243004301270(2)( .,.,.,.,.k  extracted from the first AHP model.

3.4.3 Statistical Results for the Example

Both the AIP method and the BPP have been applied for aggregating judgements

in group AHP analysis respectively. After omitting the judgements given in bold, the

methods are repeated and are named as AIP* and BPP*. Tables 3.7-3.9 show the

priorities of assets, threats and vulnerabilities with the mean square errors (MSE).

The MSE values for each method are calculated by:


 


r

k
k

n

ji

r

k

k
ij tMSE

11 1

)(

for each method.
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Table 3.7 Group priorities for assets estimated by each method.

iA

of Con.

A1 A2 A3 A4 A5

AIP 0.263 0.489 0.083 0.057 0.108
Bayesian 0.263 0.496 0.081 0.055 0.106

AIP* 0.332 0.418 0.079 0.068 0.104
Bayesian* 0.305 0.448 0.078 0.061 0.108

iA

of

Int.

A1 A2 A3 A4 A5

AIP 0.241 0.511 0.091 0.052 0.105
Bayesian 0.239 0.506 0.090 0.051 0.114

AIP* 0.274 0.480 0.090 0.048 0.108
Bayesian* 0.263 0.484 0.088 0.048 0.118

iA

of

Ava.

A1 A2 A3 A4 A5

AIP 0.272 0.467 0.114 0.050 0.098
Bayesian 0.257 0.480 0.104 0.050 0.110

AIP* 0.271 0.467 0.100 0.049 0.112
Bayesian* 0.256 0.479 0.094 0.050 0.120

For different AHP models, each method gives similar weights and almost the

same ranking but the Bayesian estimates reflect more robust results since the

priorities  iw does not change too much after omitting the inconsistent judgements.

Out of the assets, “data” is the most important one, which is followed by

“service”. The order for the priorities of assets in terms of the main criteria is:

.43512 AAAAA  The priorities of threats and vulnerabilities change for each

asset. For example, 2T (hardware and software breakdowns) is the most dangerous

threat for ,1A 3A and, 4A (service, software and hardware respectively), where it is

the least dangerous threat for 5A (people).
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Table 3.8 Group priorities for threats estimated by each method.

jT
of

1A

T1 T2 T3 T4 T5 T6

AIP 0.082 0.309 0.120 0.180 0.234 0.076
Bayesian 0.072 0.293 0.121 0.159 0.297 0.058

AIP* 0.084 0.278 0.146 0.229 0.177 0.085
Bayesian* 0.074 0.275 0.141 0.182 0.268 0.059

jT
of

2A

T1 T2 T3 T4 T5 T6

AIP 0.041 0.110 0.158 0.305 0.314 0.072
Bayesian 0.037 0.098 0.155 0.287 0.359 0.065

AIP* 0.040 0.099 0.211 0.316 0.260 0.075
Bayesian* 0.036 0.092 0.185 0.305 0.319 0.063

jT
of

3A

T1 T2 T3 T4 T5 T6

AIP 0.048 0.427 0.244 0.073 0.136 0.072
Bayesian 0.046 0.422 0.259 0.070 0.135 0.069

AIP* 0.050 0.473 0.201 0.103 0.108 0.065
Bayesian* 0.047 0.457 0.227 0.085 0.116 0.068

jT
of

4A

T1 T2 T3 T4 T5 T6

AIP 0.142 0.411 0.062 0.034 0.108 0.243
Bayesian 0.144 0.412 0.054 0.033 0.101 0.257

AIP* 0.154 0.395 0.040 0.040 0.127 0.243
Bayesian* 0.148 0.397 0.040 0.034 0.108 0.273

jT
of

5A

T1 T2 T3 T4 T5 T6

AIP 0.187 0.047 0.057 0.226 0.042 0.442
Bayesian 0.190 0.047 0.057 0.222 0.042 0.442

AIP* 0.203 0.044 0.070 0.189 0.059 0.435
Bayesian* 0.197 0.044 0.064 0.212 0.047 0.437

Table 3.10 shows the mean square errors ( MSE ) of different prioritization

methods for each of the AHP models, in which the value of assets and then the

danger degree of threats and vulnerabilities are evaluated. WMSE is the weighted

average of MSE ’s, which could be calculated as:

mMSEwWMSE
i

m

i i 


1
,
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Table 3.9 Group priorities for vulnerabilities estimated by each method.

kV
of

1A

V1 V2 V3 V4 V5 V6

AIP 0.059 0.129 0.107 0.432 0.225 0.049
Bayesian 0.056 0.131 0.111 0.443 0.213 0.045

AIP* 0.056 0.128 0.147 0.469 0.137 0.062
Bayesian* 0.054 0.131 0.139 0.465 0.160 0.051

kV
of

2A

V1 V2 V3 V4 V5 V6

AIP 0.054 0.103 0.129 0.365 0.221 0.129
Bayesian 0.051 0.101 0.122 0.378 0.221 0.127

AIP* 0.054 0.099 0.156 0.354 0.240 0.097
Bayesian* 0.051 0.098 0.139 0.369 0.234 0.108

kV
of

3A

V1 V2 V3 V4 V5 V6

AIP 0.044 0.077 0.294 0.337 0.149 0.100
Bayesian 0.041 0.073 0.292 0.353 0.144 0.097

AIP* 0.036 0.092 0.368 0.254 0.141 0.109
Bayesian* 0.035 0.082 0.337 0.311 0.135 0.100

kV
of

4A

V1 V2 V3 V4 V5 V6

AIP 0.276 0.114 0.128 0.060 0.080 0.342
Bayesian 0.273 0.100 0.131 0.056 0.062 0.377

AIP* 0.277 0.115 0.117 0.056 0.094 0.342
Bayesian* 0.273 0.100 0.123 0.054 0.069 0.381

kV
of

5A

V1 V2 V3 V4 V5 V6

AIP 0.114 0.071 0.216 0.155 0.080 0.364
Bayesian 0.105 0.060 0.211 0.126 0.059 0.440

AIP* 0.113 0.076 0.228 0.119 0.131 0.333
Bayesian* 0.105 0.064 0.220 0.112 0.082 0.418

where iw is the weight of the attribute and iMSE is the MSE of the group when

comparing the alternatives in terms of the thi attribute. Among four approaches,

BPP* generally provided the minimum WMSE , and conventional approaches did not

provide lower values of WMSE than BPP*. Consequently, BPP* results are selected

for further implementation of risk evaluation.
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Table 3.10 MSE values for each method.

AIP BPP AIP* BPP*

Ai

Con. 0.391 0.392 0.281 0.235
Int. 0.348 0.351 0.183 0.188

Ava. 0.348 0.352 0.265 0.281
WMSE 0.362 0.365 0.243 0.235

Tj

A1 0.578 0.414 0.510 0.317
A2 0.450 0.402 0.321 0.199
A3 0.382 0.379 0.312 0.222
A4 0.431 0.435 0.286 0.211
A5 0.293 0.293 0.330 0.266

WMSE 0.466 0.394 0.377 0.245

Vk

A1 0.486 0.478 0.301 0.190
A2 0.740 0.736 0.661 0.602
A3 0.510 0.514 0.513 0.396
A4 0.388 0.340 0.371 0.245
A5 0.516 0.452 0.645 0.378

WMSE 0.604 0.593 0.568 0.461

Table 3.11 reflects the final value of all risk incidents which is

  21

ikijiijk vtaR  ,

and the danger degree of threats for each asset which is:

hRR h

k ijkij  


1
,

can be drawn from Table 3.11 for the remaining cases.

The danger degree order of all assets  iR , which could be determined by

maximum, minimum or average value of ijR for each asset. Here we followed the

mathematical concept and theorems of Altuzarra et al. (2007).
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Table 3.11 Risk values of ijkR , ijR and iR calculated by BPP*.

V1 V2 V3 V4 V5 V6 Rij Ri

A1

T1 0.125 0.154 0.220 0.215 0.175 0.162 0.175
T2 0.173 0.214 0.305 0.299 0.242 0.225 0.243 0.243(max)
T3 0.147 0.181 0.258 0.253 0.205 0.190 0.206 0.166(min)
T4 0.156 0.193 0.275 0.269 0.219 0.203 0.219 0.208(aver)
T5 0.172 0.212 0.303 0.297 0.241 0.223 0.241
T6 0.118 0.146 0.208 0.204 0.165 0.153 0.166

A2

T1 0.139 0.164 0.178 0.228 0.203 0.168 0.180
T2 0.175 0.206 0.225 0.287 0.256 0.211 0.227 0.310
T3 0.209 0.246 0.268 0.342 0.305 0.252 0.270 0.180
T4 0.237 0.278 0.304 0.388 0.346 0.285 0.306 0.250
T5 0.240 0.282 0.307 0.392 0.350 0.288 0.310
T6 0.160 0.188 0.205 0.262 0.234 0.193 0.207

A3

T1 0.063 0.078 0.079 0.107 0.082 0.062 0.078
T2 0.111 0.138 0.140 0.189 0.145 0.109 0.139 0.139
T3 0.093 0.116 0.117 0.159 0.122 0.091 0.116 0.078
T4 0.073 0.091 0.092 0.124 0.095 0.072 0.091 0.101
T5 0.079 0.098 0.099 0.134 0.103 0.077 0.098
T6 0.069 0.086 0.087 0.118 0.090 0.068 0.086

A4

T1 0.111 0.086 0.091 0.074 0.079 0.121 0.093
T2 0.142 0.110 0.116 0.094 0.101 0.154 0.120 0.120
T3 0.080 0.062 0.066 0.053 0.057 0.087 0.067 0.065
T4 0.077 0.060 0.063 0.051 0.055 0.084 0.065 0.090
T5 0.102 0.080 0.084 0.068 0.073 0.111 0.086
T6 0.129 0.101 0.106 0.086 0.092 0.140 0.109

A5

T1 0.125 0.110 0.150 0.127 0.117 0.176 0.134
T2 0.086 0.076 0.103 0.087 0.081 0.121 0.092 0.164
T3 0.094 0.083 0.113 0.096 0.088 0.133 0.101 0.092
T4 0.127 0.112 0.153 0.129 0.119 0.179 0.137 0.120
T5 0.087 0.077 0.105 0.088 0.082 0.123 0.093
T6 0.152 0.134 0.183 0.155 0.143 0.215 0.164
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According to Table 3.11, the risk incidents can be ordered as:

,... 444434445255244254 RRRRRR  with the highest value, 392.0 and the

lowest, .051.0

It can be concluded that risk incidents associated with 2A and 1A have higher

values, where the ones associated with 4A have lower values.

For 2A , the danger degree of jT in descending order is:

,162345 TTTTTT  which means that the “cyber attacks” and “ultra vires”

are the most dangerous threat for “data”. For 3A , the order is:

,164532 TTTTTT  which means that the “hardware and software

breakdowns” and “malicious code” are the most dangerous threats for “software”.

Similar conclusions

For the whole system, the danger degree order of assets can also derived by

comparing the maximum, minimum or average value of ijR for each asset.

Consequently, the danger degree order of iA is: ,43512 AAAAA  which

means that the assets need to take precautionary measure could be ranked in this

order. The outputs given in this table could support the company efficiently when

making the information security management decisions.

In order to be fair in comparison, pairs of plots are provided to show the

performance of AIP vs. BPP and AIP* vs. BPP*. As an example, Figures 3.4-3.6

demonstrates the MSE and weighted MSE (WMSE) values for the results of three

AHP models given in Table 3.10. The blue lines represent the output of the Bayesian

method where the red ones are the classical method.
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Figure 3.4 MSE values of the first model, comparing the assets in terms of 3 criteria.
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Figure 3.5 MSE values of the second model, comparing 6 threats in terms of 5 assets.
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Figure 3.6 MSE values of the third model, comparing 6 vulnerabilities in terms of assets.

The results of each AHP model show that the Bayesian method has smaller MSE

and WMSE values than the conventional method, especially after omitting the

inconsistent judgements. It can be concluded that the performance of the Bayesian

method is higher when the aggregating the group’s judgements and estimating the

priorities of the alternatives.

3.5 Conclusions

In this chapter, the case study was about the information security risk assessment

problem. Risk assessment requires the use of more flexible approaches to measure

information security risk. The AHP-GDM offers a technical support for risk analysis

by obtaining the judgements of managers and systematically calculating the relative

risk values.

The AHP-GDM is a powerful technique that is easy to understand and simple to

operate. It is a flexible and practical tool for any organization to prioritize the risk

incidents recurrently. However, there might be some complexities to use the AHP-

GDM in risk evaluation. For example, decision makers participated in the analysis

may have limited expertise about the problem domain or the AHP analysis. Also,
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they may have difficulties to make pairwise comparisons efficiently because of the

large number of assets, threats and vulnerabilities which could result in incomplete or

inconsistent judgements.

Considering the problems mentioned above, we propose using BPP based AHP

for information security risk assessment. It is assumed that consensus exists among

the decision makers with regard to the priorities for each element in this decision

system. The multiplicative model with log-normal errors is applied to the problem

and the Bayesian analysis is used. This is a process of weighted aggregation of

individual priorities and the weights are inversely proportional to the decision

makers’ levels of inconsistency. We compared the method with the conventional

approaches used in the AHP-GDM.

The results show that the proposed methodology is more efficient than the

conventional prioritization based AHP approaches. It can treat incomplete or

inconsistent judgements properly. It provides managers a flexible way to express

their judgements, without forcing them to give complete and consistent judgements

and letting them completely focus on the risk management itself. Moreover, it serves

the practitioner since the judgements of decision makers directly enter the analysis

without any reducing or filtering process.

Any organization can easily adapt this method to their information security

system by updating all the elements in the illustrative model, i.e., list of most

valuable information assets, threats and vulnerabilities. This technique could be used

alone or with any other information security risk analysis methods as a support; and

can easily be adapted to any information security standard.

In this study, we applied BPP based AHP to prioritize and order risk incidents

which could satisfy the aim of risk management. This approach can also be used for

many multiple criteria group decision making problems such as project selection,

facility location selection, supplier selection or evaluation, diagnosis and treatment
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selection for disease management, financial decision making and crisis forecasting,

and evacuation selection for emergency management.

Our study is based on the model from a non-informative Bayesian standpoint,

where the variances of error terms represented by the inconsistency levels of decision

makers are assumed to be known. In the future, this approach can be extended by

taking the variances of error terms as additional parameters, or by implementing an

informative Bayesian model in which a good estimate of prior distribution for the

vector of log-priorities is used.

Our study has some limitations that need to be addressed. This study is based on

two assumptions. The first assumption is that there is a consensus among the

decision makers. Gargallo et al. (2007) proposed a Bayesian estimation procedure to

determine the priorities where a prior consensus among them is not required.

Altuzarra et al. (2010) proposed some procedures to search for consensus between

the actors involved in the decision making process. The second assumption is that

there is no interaction or dependence between the elements in the decision system.

In the next chapter, the situation where the independence assumption is not

satisfied is covered.
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CHAPTER FOUR

BAYESIAN PRIORITIZATION PROCEDURE BASED ANALYTIC

NETWORK PROCESS FOR GROUP DECISION MAKING

4.1 Introduction

The Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP),

proposed by Thomas L. Saaty (1980, 1996) are widely used descriptive approaches

in multi-criteria decision making. They both allow multiple actors, criteria and

scenarios to be involved in the analysis.

The AHP simplifies the problem of constructing hierarchic structures which

comprise a goal, criteria, and alternatives. It assumes that the factors presented in the

hierarchical structure are independent. However, many decision problems involve the

interaction and dependence of higher-level elements in a hierarchy on lower-level

elements and dependence of elements within a level therefore cannot be structured

hierarchically (Saaty, 1999).

The ANP extends the AHP to the case of dependence and feedback. It allows

interactions and feedback within and between clusters. It generalizes on the

supermatrix approach proposed by Saaty (1980). In the ANP, not only does the

importance of the criteria determine the importance of the alternatives as in a

hierarchy, but also the importance of the alternatives themselves determines the

importance of the criteria (Saaty, 2005). These two methods both derive ratio scale

priorities for elements and clusters of elements by making pairwise comparisons of

elements on a common criterion or property.

ANP can solve real-world multi-criteria problems based on the following

motivations:

 ANP has a systematic approach to set priorities and trade off among goals

and criteria (Mishra et al., 2002).
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 Criteria weights or priorities established by ANP are based on the use of a

ratio scale by human judgment instead of arbitrary scales (Saaty, 1999);

 ANP can measure all tangible and intangible criteria in the model (Saaty,

2000).

 ANP is a relatively simple, intuitive approach that can be accepted by

managers and other decision-makers (Presley & Meade, 1999).

 ANP can easily be used to solve multicriteria decision problems involving

multiactors or group decision making with multiactors (Karabacak &

Soğukpınar).

 ANP enables a better communication, leading to a clearer understanding

and consensus among actors so that they will commit to the selected

alternative more likely (Torkkeli & Tuominen, 2002).

 As a general form of AHP, ANP allows for more complex

interrelationships among the decision levels and attributes (Raisinghani,

2001).

 ANP incorporates dependences and feedback using a multilevel (or

hierarchical) decision network which can adequately model dependence

(or interdependence) relations among components, represent and analyze

interactions, and synthesize their mutual effects by a single logical

procedure (Sarkis & Sundarraj, 2002).

In this chapter, our aim is to extend the Bayesian prioritization procedure (BPP) to

a more general approach to decisions, which is a generalization of hierarchies to

networks with dependence and feedback, the ANP. Bayesian prioritization approach

is used for deriving the ratio scale priorities and building the supermatrix. This

method also can be extended to the case of incomplete pairwise comparison matrices,

which is a common problem in complex decision making problems. The

methodology is illustrated by the analysis of a case study and compared with one of

the conventional prioritization procedures.



55

The remainder of this chapter is as follows: the theoretical background of the

ANP-GDM is briefly given in Section 4.2. Section 4.3 presents the Bayesian

prioritization procedure (BPP) based ANP. Section 4.4 illustrates the proposed

methodology using a practical case study. Finally, Section 4.5 summarizes the main

results of this chapter and offers concluding remarks.

4.2 ANP Group Decision Making (ANP-GDM)

The ANP is an effective tool for structuring and solving complex group decision

problems and provides accurate results according to many researchers (Tohumcu and

Karasakal, 2010; Ho et al., 2010). The ANP provides a way to elicit judgments of

decision maker(s) and uses measurements to obtain the ratio scale priorities for the

distribution of influence among the factors and groups of factors in the decision

process.

Goal

Alternatives

Criteria

C1

C3

C2 C4

Hierarchy Network

Feedback

Figure 4.1. Hierarchy and Network structures.

The ANP is a network system, which is composed of clusters and their elements

(nodes). It involves interactions and feedback within clusters (inner dependence) and

between clusters (outer dependence). A sample network is given in Fig. 4.1. Arc

from cluster 4C to 2C indicates outer dependence of the elements in 2C on the

elements of 4C . Elements in 2C affect elements in 4C . Loop in the cluster 4C
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indicates inner dependence of the elements in that cluster. Elements affect other

elements of the same cluster.

4.2.1 Pairwise Comparisons in the ANP

When making pairwise comparisons in an ANP model the questions are

formulated in terms of dominance or influence: “Given a parent element, which of

two elements being compared with respect to it has greater influence (is more

dominant) with respect to that parent element?” Or, “which is influenced more with

respect to that parent element?” You want to avoid changing perspective. For

example, in comparing A to B with respect to a criterion, you ask whether the

criterion influences A or B more.  Then if for the next comparison involving A and C

you ask whether A or C influences the criterion more, this would be a change in

perspective that would undermine the whole exercise.  You must keep in mind

whether the influence is flowing from the parent element to the elements being

compared, or the other way around.

Use one of the following two questions throughout an application:

1. Given a parent element and comparing elements A and B under it, which element

has greater influence on the parent element?

2. Given a parent element and comparing elements A and B, which element is

influenced more by the parent element?

In the ANP-GDM, each decision maker makes paired comparisons on the clusters,

elements, and alternatives based on the fundamental scale proposed by Saaty (1980)

which previously were given in Table 3.1. The ANP allows decision makers to focus

their judgments separately on each of several elements one by one by making the

decision makers take a pair of elements and compare them on that single element

without any concern for other criteria or other elements.
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The pairwise comparisons comprise a set of matrices called “pairwise comparison

matrices”. There are 2/)1( nn judgments required to develop each set of

comparison matrices. Reciprocals are automatically assigned in each pair-wise

comparison.

After all the pairwise comparisons are done, the consistency is determined by

using the eigenvalue, ,max to calculate the consistency index, ,CI as follows:

1
max





n

nCI 

where n is the matrix size.

Judgment consistency can be checked by taking the consistency ratio  CR of

,CI with the appropriate value in Table 3.2

The CR is acceptable, if it does not exceed 0.10. If it is more, the judgment matrix

is inconsistent. To obtain a consistent matrix, judgments should be reviewed and

improved.

4.2.2 The Supermatrix: Construction and Calculation

In the prioritization stage, the local priorities are derived by calculating the

eigenvalues of the comparison matrix of each element. The obtained priorities are

entered in the appropriate columns of a matrix, which is called the “supermatrix”.

The entries in the supermatrix represent the influence priority of an element at the

left of the matrix on an element at the top of the matrix. If the element of a cluster

has no influence on an element in another cluster, then the corresponding entry is

zero.
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The columns of the supermatrix are normalized such that they sum up to 1 and the

“weighted supermatrix” is obtained. The weighted supermatrix has to be column

stochastic (Saaty, 1996), i.e., its columns must sum to one.

In order to capture the overall influence, the weighted supermatrix is raised to a

limiting power to converge into a stable supermatrix, which is called the “limit

supermatrix”. This matrix shows the global priorities of the elements with respect to

the goal.

4.2.3 Methods for Aggregating Group Judgements

According to Saaty (1989), after the model for the problem is established, there

are two methods to accommodate the judgements of decision makers in a group

setting. One of the alternatives is that decision makers make each paired comparison

individually, or the group is required to achieve consensus on each paired

comparison.

If individual’s paired comparison ratio judgments are gathered, the literature

describes different methods for the prioritization and synthesis procedures (Saaty,

1989; Crawford & Williams, 1985; Aguarón & Moreno-Jiménez, 2000). The two

conventional procedures to obtain group priorities are “the aggregation of individual

judgements (AIJ)” and “the aggregation of individual priorities (AIP)”. Based on

individual judgements, a new judgement matrix is constructed for the group as a

whole in AIJ procedure and the priorities are computed from the new matrix. If the

individuals are experts, they may not wish to combine their judgements but only their

final outcomes obtained by each from their own network (Saaty, 2008). In that case

the AIP method can be used, in which the total priorities are obtained on the basis of

individual priorities using an aggregation procedure. Synthesis of the model can be

done using any of the aggregation procedures. The weighted geometric mean method

is the most commonly used technique for both (Saaty, 1983).
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One of the limitations of these conventional procedures is that they assume the

pairwise comparison matrices containing the decision makers’ judgements are

complete and accurate. However, especially for large problems (including large

numbers of clusters and elements) there might be incomplete matrices including

empty positions which would result in wrong conclusions

4.2.4 Incomplete and inconsistent judgements

For the ANP- GDM problems, the incomplete information and the inconsistency

problems could occur more frequently than the other MCDM problems such as the

AHP-GDM. The reasons can be summarized as follows:

(i) The ANP has a complex network model with dependence and feedback so

it is harder for a decision maker to completely understand the model.

(ii) Because of the network structure, the number of pairwise comparisons is

large so it becomes hard for decision makers to provide complete and

inconsistent answers.

The practitioner may also prefer to ignore the inconsistent or opposing

judgements while keeping the consistent or homogeneous ones in order to increase

the consistency or consensus among decision makers.

4.3 Bayesian prioritization procedure (BPP) for ANP-GDM

Methodological developments have been aroused in the literature in order to

overcome the limitations of classical aggregation methods in group judgements.

Aggregation methods with linear programming (Mikhailov, 2004) and Bayesian

approach (Altuzarra et al., 2007) have been proposed in order to make a decision

even when comparisons are missing, for example when a stakeholder does not feel to

have the expertise to judge a particular comparison (Ishizaka & Labib, 2010).
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Bayesian approaches allow the treatment of missing data or incomplete

information using data augmentation techniques (Tanner & Wong, 1987). The

integration of high-dimensional functions was the major limitation towards the wide

application of Bayesian analysis before Markov Chain Monte Carlo (MCMC)

methods have been introduced. As have been mentioned in the previous chapter,

there are very few references to Bayesian analysis in the AHP literature. And up to

now, we have not reached any paper which is dealing with Bayesian methods for the

ANP. As a consequence, our study can be considered as a pioneering one.

4.3.1 Statistical model  for complete and consistent judgements

In this paper, we adopt the BPP to ANP-GDM by using the theorems which are

previously provided by Altuzarra et.al. (2007). Assume a network composed of m

clusters, },...,{ 1 mCC and T sets of paired comparisons required for the network at

total, ).,...,1( Tt  Let 2},,...,{ 1  rDMDM rDM be a group of r decision

makers, who will answer the generic questions by making individual pairwise

comparisons. The questions are in the form of: given a control criterion

(subcriterion), a component (element) of the network and given a pair of components

(elements), how much more does a given member of the pair influence that

component (element) with respect to the control criterion (subcriterion) than the

other member? Their preferences are based on the fundamental scale proposed by

Saaty (1980).

Assuming that there are tn number of elements tti niTtE ,...,1),,...,1(,  to be

compared in each comparison set, the paired judgements )(k
tijr represent the

preference of the decision maker, kDM , when a comparison between tiE and tjE is

required for set t .

As a result of different pairwise comparisons, there are  rT  sets of reciprocal

judgement matrices:

},...,1,...,1,{ )( Ttrkk
t R .
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Here )( )()( k
tij

k
t rR is a positive square matrix  tt nn  which validates:

,1)( )( k
tiir 0)(1)( )()(  k

tji
k

tij rr for Ttnji t ,...1,...,1,  .

Each judgement matrix will have its associated priority vector. These priority

vectors compose the supermatrix. For each set of comparisons, let

0},,...,{ 1 G
ti

G
tn

G
t vvv

and

 


n

j
G
ti

G
ti

G
ti

G
tn

G
t vvwww

11 },,...,{

be the group’s unnormalized and normalized priorities for the elements, respectively.

As previously employed in stochastic AHP (Crawford & Williams, 1985;  Alho &

Kangas, 1997), a multiplicative model with log-normal errors is applied in the

Bayesian analysis of the model. If the decision makers express all possible

judgements, the model will be:

,,...,1,,...,1,,...,1,,)()( Ttrknjie
v
v

r t
k

tijG
tj

G
tik

tij 

with

  .,,0~ 2)()( jiLNe kk
tij 

Taking the logarithms and eliminating the reciprocal judgements, a regression

model with normal errors is obtained:
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,,...,1,,...,1,,...,1,1,...,1,)()( Ttrknjniy tt
k

tij
G
tj

G
ti

k
tij  

and

 2)()( ,0~ kk
tij N 

Here, for each set,
ttnE is established as the benchmark alternative:

.00 
tt tntn v

In matrix notation, model can be written as:

)()( k
t

G
tt

k
t εμXy 

with

 
tt s

k
s

k
t N Iε 2)()( ,0~  ,

where

2)1(  ttt nns is the total number of judgements by all decision makers in set ,t

,)',...,,( )(
1

)(
13

)(
12

)( k
ntn

k
t

k
t

k
t yyy y rk ,...,1 ;

)',...,,( 121
G
tn

G
t

G
t

G
t  μ ,

)',...,,( 11312
)( k

ntn
k
t

k
t

k
t  ε

and
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)()1( tpqnst x
tt
X

with

(i) 1tpix , 1tpjx and ,0tpx if ji, 1,...,1  tn and

)1()1(
2

2



 ji

in
p t with tnji 1 ,

(ii) 1tpix and ,0tpx if 1,...,1,  tni  and )()1(
2

2
ini

in
p t

t 


 .

With a constant non-informative distribution as the prior distribution for the

vector of log-priorities, G
tμ , the posterior distribution of G

tμ for complete and precise

information is given by:

 BtBtt
G
t Σμyμ ˆ,ˆN~| 1-n t

,

where






 r

k
k

r

k
k

t
k

tB

1
)(

1
)()( ˆ

ˆ


 μ
μ ,

   


















 



ttt

ttt

ttt

tt
r

k
k

Bt

nnn

nnn
nnn

2...11
............
1...21
1...12

ˆ 11

1
)( X'XΣ  ,

2)()( 1 kk   and )',...,,( )'()'2()'1( r
tttt yyyy  .

For the conventional procedure, AIP, the most commonly used procedure to

aggregate group judgements is the geometric mean method. It can be presented as:
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 


r

k
k

tAIP r 1
)(ˆ1ˆ μμ ,

where

)ˆˆ(ˆ 11
)( (k)

tn
(k)
t

k
t T

μ,...,μ μ with (k)
tn

(k)
ti

(k)
ti t

yyμ ..ˆ  .

For both methods, the priorities of the group, which will constitute the columns of

the supermatrix can then be computed as

   .ˆexpˆexpˆ 5

1 


j
G
tj

G
ti

G
tiw μμ

4.3.2 Statistical model  for incomplete or inconsistent judgements

BPP can be extended to the case of incomplete information, where it performs a

more robust manner compared to the conventional methods in terms of variability. In

such case, the matrix notation could be expressed as:

)()( k
t

G
tt

k
t εμXy 

with

 
tktk s

k
s

k
t N Iε 2)()( ,0~  , rk ,...,1 , Tt ,...,1 ;

and in the matrix form it can be expressed as:

  t
G
ttt t

εμI1Xy 1nr  

with

 Dε ,0~
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where tks is the number of judgements issued by k th decision maker ( kDM ) in t th

set of comparisons,

)',...,,(
)'()'2()'1( r

tttt yyyy  ,

),...,,(
)()2()1( r

tttt diag XXXX  ,

)',...,,(
)'()'2()'1( r

tttt εεεε  ,

)'1,...,1,1(r1 ,

),...,( 2)(2)1(
1 trt s

r
sdiag IID  ,

trtt sss  ...1 is the total number of judgements in set t by all decision makers

and

 denotes the Kronecker product.

With a constant non-informative distribution as the prior distribution for the

vector of log-priorities  G
tμ , the posterior distribution of G

tμ for incomplete and

precise information is given by:

 BtBtt
G
t Σμyμ ˆ,ˆN~| 1-n t

,

where
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The estimator of G
tμ obtained by means of the AIP procedure is given by:
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4.4 A Real World Example

In this section, both the AIP method and the proposed BPP methods are applied in

ANP-GDM analysis of the same example and the results are compared.

4.4.1 Introduction

Let us consider the group decision analysis problem on diagnosis with dependent

symptoms taken from (Saaty & Vargas, 1998). They defined a medical diagnosis

problem with dependent symptoms, which makes determining the disease from

which they originate difficult. The treatment is based on the diagnoses which in turn

depend on how well physicians can isolate the relationships between symptoms and

diseases. The patient has 7 symptoms (anemia, low platelet counts, blood clots,

elevated PTT reflecting clotting abnormalities, abnormal liver tests reflecting

inflammation, elevated ANA and ACA titers reflecting the presence of abnormal

antibodies against the patient's own cellular component) and 4 possible diagnoses

(SLE, TTP, HELLP, ACA). They are given with the 2 alternative treatments in Table

4.1.
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Table 4.1 List of symptoms, diseases and treatments.

Symptoms Diseases Treatments
S1- Anemia

S2- Low platelet

S3- AB Liver

S4- Blood clots

S5- APTT-H

S6- ANA-H

S7- ACA-H

D1- Lupus

D2- TTP

D3- HELLP

D4- ACA

T1-Terminate

T2-Not terminate

4.4.2 Application

For the same scenario, we assume a case study where five physicians needed to

decide whether or not to terminate the pregnancy as part of the therapy for the

patient.

We note that the application of the ANP-GDM analysis could contain some

complexities for this problem. First of all, it is a very hard task to make a decision

about a human’s life. The physicians participated in the analysis might have a limited

experience on the relationships of some symptoms or combinations of symptoms and

diseases. They might hesitate to answer all of the questions in the analysis

completely for some reasons. So they might express incomplete judgements. They

also might not have sufficient information about the ANP analysis and its

requirements or they might have limited attention which may result in inconsistent

situations. Moreover, expressing complete and consistent judgements is difficult with

a large number of clusters and elements. In this model, there are 7 dependent

symptoms, 4 probable diseases and 2 alternative treatments that were given in Table

4.1.

Consequently, we aimed to solve this problem with the proposed method in order

to investigate if it would provide a more efficient and flexible way of diagnostic

analysis and treatment selection even with incomplete pairwise comparison matrices.
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Symptoms
S1 • • • S7

Diseases
D1 • • • D4

Treatments
T1 T2

Figure 4.2. The ANP diseases-treatments network.

The network model to solve this problem is given in Figure 4.2. For each decision

maker ( kDM ), the supermatrix corresponding to this network is given by:
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
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The problem can be solved in two parts if we reduce the supermatrix )(kW to a

simpler supermatrix, that is:


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In the first part of the analysis, the supermatrix )(kQ is obtained and in the second

part, the composite priorities of the alternatives are calculated. We essentially deal

with the first part of the analysis which includes the dependence structure.

Here, )(
12

kW corresponds to the likelihoods of the diseases producing the symptom

observed, )(
21

kW corresponds to the likelihoods of the symptoms associated with a

given disease, and )(
22

kW corresponds to the strengths of the relationships among
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symptoms. 1 and 2 give the weights of the clusters of diseases and symptoms,

respectively. In this study they are assumed to be equal ).5.0( 21 

In order to obtain the columns of )(
22

)(
21

)(
12 ,, kkk WWW , (Saaty & Vargas, 1998)

mentioned that the physicians have to answer the following questions respectively to

obtain the required pairwise comparison matrices:

(i) Given a symptom and two diseases, which disease is more likely to exhibit

this symptom, and how much more likely is it?

(ii) Given a disease and two symptoms, which symptom is more characteristic

of the disease, and how strongly is it?

(iii)Given a symptom, which of the symptoms is more likely to be associated

with or occur jointly with the given symptom and how much more likely is

it?

We assume that there is a group of physicians, who are not forced to give

complete answers to the pairwise comparison matrices. In order to illustrate this case,

we simulated data based on the fundamental scale proposed by Saaty (1990) for each

set of paired comparisons. Table 4.2 presents the simulated data, where 5physicians,

i.e. decision makers ( kDM ) compared 4 diseases in terms of 7 symptoms by

answering the first question above. 4DM did not compare 1S with 6S , and 2S with

6S in the first set of comparisons. 5DM did not compare 1S with 7S , and 4S with

7S in the second set which resulted in incomplete judgement situations. Similar

situations can be noticed for the remaining sets of comparisons.
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Table 4.2 Simulated pairwise comparisons of 7 symptoms in terms of 4 diseases.

Si–Sj of D1 1-2 1-4 1-5 1-6 1-7 2-4 2-5 2-6 2-7 4-5 4-6 4-7 5-6 5-7 6-7
DM1

2 3 1/3 1 1 1/2 1/9 1/3 1/5 1/7 1/4 1/7 1/2 5 5

DM2
6 5 1/5 3 1/2 2 1/7 1 1 1/9 1/2 1/9 1/3 9 9

DM3
3 1/2 1/4 5 1/4 1 1/8 1 1 1/9 1/2 1/9 1/4 9 9

DM4
5 4 1/3 NA 7 1 1/9 NA 1/2 1/6 1/3 1/9 1 9 9

DM5
1/2 5 1/5 2 2 1/2 1/9 1/5 1 1/5 3 1/9 1/2 4 4

octij≥7 12 10 28 12

Si–Sj of D2 1-2 1-4 1-5 1-7 2-4 2-5 2-7 4-5 4-7 5-7
DM1

1/2 5 5 5 9 5 8 1/2 1/2 2

DM2
1/2 7 7 9 7 9 8 2 2 1/3

DM3
1/5 6 4 5 9 6 7 1 1/3 1

DM4
1/3 3 3 1 9 3 1 5 1 1

DM5
1/5 5 1 NA 9 9 9 2 NA 3

octij≥7 7 9 9 10 9

Si–Sj of D3 1-2 1-3 1-5 2-3 2-5 3-5
DM1

1/2 1/2 3 1 5 5

DM2
2 1 7 1 8 7

DM3
1 2 5 2 2 3

DM4
1/2 4 7 2 9 5

DM5
4 1/2 1 1/2 3 5

octij≥7 8 8 7

Si–Sj of D4 1-2 1-4 1-5 1-7 2-4 2-5 2-7 4-5 4-7 5-7
DM1

1/2 1/3 1/3 1/4 1/2 1/3 1 2 2 3

DM2
1/2 1/5 1/5 1/4 1/4 1 1/3 1 1/2 1/2

DM3
1/5 1/5 1/5 1/4 1/4 1 1/3 1 1 1/3

DM4
1 1/2 NA 1/2 3 NA 1/2 2 1/5 1/2

DM5
3 1/4 3 1/3 1/2 1/2 1 3 2 1

octij≥7 15 12 10 9
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Table 4.3 Simulated pairwise comparisons of 4 diseases in terms of 7 symptoms.

Di–Dj of S1 1-2 1-3 1-4 2-3 2-4 3-4 Di–Dj of S2 1-2 1-3 1-4 2-3 2-4 3-4
DM1

1/6 1/7 1/6 1 1 1 DM1
1/2 1/2 3 1 5 5

DM2
1/7 1/9 1/8 1/2 1/2 2 DM2 2 1 7 1 8 7

DM3
1/5 1/5 1/7 1 2 3 DM3 1 2 5 2 2 3

DM4
1/5 1/5 1 1/2 1 2 DM4 1/2 4 7 2 9 5

DM5
1/4 1/2 1/5 NA 5 1/2 DM5 4 1/2 1 1/2 3 5

octij≥7 8 10 octij≥7 8 8 7

Di–Dj of S4 1-2 1-3 1-4 2-3 2-4 3-4 Di–Dj of S5 1-2 1-3 1-4 2-3 2-4 3-4
DM1

3 1 1/3 1 1/7 1/4 DM1
3 5 1/4 1 1/9 1/8

DM2
5 4 1 1/2 1/5 1/6 DM2

7 3 1/2 1/2 1/8 1/9

DM3
4 3 3 1/2 1/8 1/3 DM3

5 6 1/3 2 NA NA

DM4
NA 3 1/2 1/3 1/6 3 DM4

5 5 3 1 1/9 1/7

DM5
1 1/3 1/2 1/2 1/4 5 DM5

4 3 1/3 1/3 1 2

octij≥7 12 9 30 octij≥7 9 9 18

Di–Dj of S6 1-2 1-3 1-4 2-3 2-4 3-4 Di–Dj of S7 1-2 1-3 1-4 2-3 2-4 3-4
DM1

9 9 5 1 1 1 DM1
1 3 1/6 1 1/9 1/8

DM2
7 7 7 1 1/2 1/2 DM2

NA 4 NA 2 1/8 1/5

DM3
5 6 9 2 2 4 DM3

NA 5 0 1 1/9 NA

DM4
7 9 5 1/2 1 1 DM4

1 3 NA 1/2 1/8 1/5

DM5
1 5 1 1/3 1/3 1/4 DM5

3 5 1/8 1 1/8 1/5

octij≥7 9 9 16 octij≥7

Table 4.3 presents the simulated data, where 5 physicians compared related

symptoms in terms of 4 diseases by answering the second question. Table 4.4

presents the simulated data, where 5 physicians compared related symptoms in terms

of 6 symptoms by answering the third question. Diseases are not compared for 3S

since that symptom is only related with one disease, and symptoms are not compared

for 1S since that symptom is not related with others. There are 16 comparison sets at

total.
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Table 4.4 Simulated pairwise comparisons of 7 symptoms in terms of 7 symptoms.

Si–Sj of S2 3-6 Si–Sj of S4 2-5 2-6 2-7 5-6 5-7 6-7
DM1 1/2 DM1

1/4 7 1/4 8 1 1/8

DM2
1 DM2

1/3 1/2 1/4 6 1/2 1/5

DM3
1 DM3

1/2 3 1/5 4 2 1/4

DM4
1/3 DM4

1 4 1/2 7 4 1/9

DM5
1/3 DM5

1/4 2 1/5 NA 1 2

octij≥7 octij≥7 14 8 18

Si–Sj of S3 1-2 Si–Sj of S5 2-4 2-6 2-7 4-6 4-7 6-7
DM1 1/4 DM1

1/4 3 1/4 9 1 1/9

DM2
1/2 DM2

1/2 5 1/2 9 5 1/2

DM3
1/5 DM3

1/7 3 1/5 9 5 1/5

DM4
1/2 DM4

1/3 2 2 7 1 1/4

DM5
1/6 DM5

1 1 1/7 7 1 1/4

octij≥7 octij≥7 7 14

Si–Sj of S6 1-2 1-4 1-7 2-4 2-7 4-7
DM1 1 1 2 1 2 1/2

DM2
4 5 4 3 2 2

DM3
3 7 9 5 3 3

DM4
1 1/3 9 1 3 5

DM5
2 NA 2 2 3 4

octij≥7 21 8

Si–Sj of S7 1-2 1-4 1-5 1-6 2-4 2-5 2-6 4-5 4-6 5-6
DM1 1 1/5 1/4 1 1/5 1/9 1/2 1/2 3 2

DM2
3 1 1/2 3 1/9 1/8 1/4 1 NA 7

DM3
3 1 1/4 4 1/7 1/7 1/3 1 5 3

DM4 7 1 1/2 1/3 1/9 1/8 1/4 3 1 1/2

DM5
2 1/5 1/4 2 1/9 1 1/5 3 4 2

octij≥7 7 12 9 14

Applying the model and the equations given in Section 4, simulated data is used

to construct the columns of )(
21

)(
12 , kk WW and )(

22
kW respectively.
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The opening coefficients ( tijoc ) reflect the variability of judgements expressed by

decision makers, and are calculated by:

16,...,1,1,5,...,1,  tnjikrMinrMax t
k

tijk
k

tijk .

In this study we omitted the most inconsistent judgements which cause tijoc to be

large. In Tables 4.2-4.4, the tijoc lines are presented to illustrate the omitting

procedure.

In Tables 4.2-4.4, the incomplete judgements are written as “NA” and the

judgements which are selected to be omitted are given in bold. It can be concluded

that five decision makers have a consensus in general, where 1DM and 2DM are the

most consistent ones and 4DM and 5DM are the most inconsistent ones. Looking at

the tijoc line, it can also be concluded that 4DM and 5DM seem to pay less attention

while expressing their judgements compared to others so the omitted judgements

mostly belong to them.

It is assumed that consensus exists among the decision makers with regard to the

priorities for each alternative. The degree of inconsistency for each decision maker is

assumed to be known, ),36.0,20.0,14.0,06.0,03.0(2)( k and below the threshold.

4.4.3 Statistical Results for the Example

Both the AIP method and the BPP have been applied for aggregating judgements

in group ANP analysis respectively. After omitting the inconsistent judgements given

in bold, the methods are applied again and are named as AIP* and BPP*.  Tables 4.5-

4.8 show the supermatrices obtained using the AIP, BPP, AIP* and BPP* methods

for the group priorities respectively.
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Table 4.5 AIP-Q block of the supermatrix.

D1 D2 D3 D4 S1 S2 S3 S4 S5 S6 S7

D1 0.000 0.000 0.000 0.000 0.032 0.160 0.000 0.140 0.159 0.317 0.092

D2
0.000 0.000 0.000 0.000 0.156 0.157 0.000 0.054 0.038 0.056 0.033

D3
0.000 0.000 0.000 0.000 0.162 0.148 0.500 0.125 0.043 0.058 0.088

D4
0.000 0.000 0.000 0.000 0.151 0.035 0.000 0.181 0.261 0.070 0.288

S1
0.185 0.267 0.319 0.095 0.500 0.000 0.145 0.000 0.000 0.215 0.075

S2
0.060 0.510 0.314 0.134 0.000 0.000 0.355 0.072 0.073 0.145 0.025

Q= S3
0.000 0.000 0.296 0.000 0.000 0.279 0.000 0.000 0.000 0.000 0.000

S4
0.069 0.071 0.000 0.310 0.000 0.000 0.000 0.000 0.246 0.089 0.185

S5
0.095 0.068 0.071 0.210 0.000 0.000 0.000 0.201 0.000 0.000 0.150

S6
0.484 0.000 0.000 0.000 0.000 0.221 0.000 0.038 0.032 0.000 0.065

S7
0.107 0.085 0.000 0.251 0.000 0.000 0.000 0.190 0.150 0.052 0.000

Table 4.6 BPP-Q  block of the supermatrix.

D1 D2 D3 D4 S1 S2 S3 S4 S5 S6 S7

D1 0.000 0.000 0.000 0.000 0.028 0.150 0.000 0.141 0.149 0.334 0.080

D2
0.000 0.000 0.000 0.000 0.149 0.165 0.000 0.049 0.036 0.052 0.032

D3
0.000 0.000 0.000 0.000 0.184 0.153 0.500 0.089 0.041 0.053 0.063

D4
0.000 0.000 0.000 0.000 0.140 0.033 0.000 0.222 0.274 0.062 0.326

S1
0.181 0.285 0.299 0.083 0.500 0.000 0.145 0.000 0.000 0.212 0.071

S2
0.058 0.506 0.329 0.135 0.000 0.000 0.355 0.068 0.071 0.141 0.025

Q= S3
0.000 0.000 0.306 0.000 0.000 0.279 0.000 0.000 0.000 0.000 0.000

S4
0.061 0.065 0.000 0.310 0.000 0.000 0.000 0.000 0.250 0.089 0.177

S5
0.083 0.068 0.066 0.227 0.000 0.000 0.000 0.198 0.000 0.000 0.165

S6
0.505 0.000 0.000 0.000 0.000 0.221 0.000 0.032 0.029 0.000 0.063

S7
0.113 0.077 0.000 0.245 0.000 0.000 0.000 0.203 0.150 0.059 0.000
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Table 4.7 AIP*-Q block of the supermatrix.

D1 D2 D3 D4 S1 S2 S3 S4 S5 S6 S7

D1 0.000 0.000 0.000 0.000 0.030 0.145 0.000 0.121 0.138 0.298 0.092

D2
0.000 0.000 0.000 0.000 0.147 0.215 0.000 0.042 0.026 0.051 0.033

D3
0.000 0.000 0.000 0.000 0.185 0.102 0.500 0.112 0.041 0.070 0.088

D4
0.000 0.000 0.000 0.000 0.139 0.039 0.000 0.226 0.295 0.083 0.288

S1
0.201 0.323 0.289 0.076 0.500 0.000 0.145 0.000 0.000 0.222 0.062

S2
0.068 0.453 0.429 0.178 0.000 0.000 0.355 0.087 0.101 0.154 0.036

Q= S3
0.000 0.000 0.203 0.000 0.000 0.279 0.000 0.000 0.000 0.000 0.000

S4
0.070 0.064 0.000 0.260 0.000 0.000 0.000 0.000 0.209 0.067 0.182

S5
0.197 0.088 0.079 0.224 0.000 0.000 0.000 0.140 0.000 0.000 0.161

S6
0.342 0.000 0.000 0.000 0.000 0.221 0.000 0.050 0.061 0.000 0.059

S7
0.122 0.072 0.000 0.262 0.000 0.000 0.000 0.224 0.130 0.058 0.000

Table 4.8 BPP*-Q block of the supermatrix.

D1 D2 D3 D4 S1 S2 S3 S4 S5 S6 S7

D1 0.000 0.000 0.000 0.000 0.027 0.142 0.000 0.122 0.134 0.326 0.080

D2
0.000 0.000 0.000 0.000 0.149 0.193 0.000 0.038 0.029 0.052 0.032

D3
0.000 0.000 0.000 0.000 0.187 0.132 0.500 0.081 0.037 0.057 0.063

D4
0.000 0.000 0.000 0.000 0.138 0.035 0.000 0.260 0.300 0.066 0.327

S1
0.194 0.320 0.283 0.073 0.500 0.000 0.145 0.000 0.000 0.217 0.061

S2
0.065 0.470 0.385 0.155 0.000 0.000 0.355 0.087 0.086 0.147 0.032

Q= S3
0.000 0.000 0.263 0.000 0.000 0.279 0.000 0.000 0.000 0.000 0.000

S4
0.064 0.062 0.000 0.287 0.000 0.000 0.000 0.000 0.224 0.078 0.174

S5
0.133 0.081 0.069 0.210 0.000 0.000 0.000 0.151 0.000 0.000 0.179

S6
0.417 0.000 0.000 0.000 0.000 0.221 0.000 0.043 0.036 0.000 0.053

S7
0.128 0.067 0.000 0.275 0.000 0.000 0.000 0.220 0.155 0.059 0.000

Raising these matrices to powers, limiting priorities for each are obtained and then

normalized. The limiting and normalized priorities are given in Table 4.9. For

different sets, each method gives similar weights and almost same ranking but the

Bayesian estimates reflect more robust results since the priorities ( tiw ) does not

change too much after omitting the inconsistent judgements.



76

Table 4.9 Limiting and normalized priorities for AIP, AIP*, BPP, BPP*.

Limiting priorities Normalized priorities
wAIP wBPP wAIP* wBPP* wAIP wBPP wAIP* wBPP*

D1
0.074 0.075 0.075 0.069 D1

0.225 0.220 0.224 0.207

D2
0.063 0.064 0.075 0.066 D2

0.193 0.188 0.226 0.197

D3
0.105 0.110 0.110 0.103 D3

0.321 0.323 0.329 0.310

D4
0.085 0.092 0.099 0.095 D4

0.260 0.269 0.296 0.286

S1
0.203 0.206 0.216 0.198 S1

0.311 0.302 0.324 0.297

S2
0.125 0.131 0.153 0.136 S2

0.192 0.193 0.230 0.205

S3
0.066 0.070 0.065 0.065 S3

0.101 0.103 0.098 0.098

S4
0.068 0.071 0.068 0.067 S4

0.104 0.104 0.102 0.101

S5
0.059 0.063 0.073 0.064 S5

0.091 0.093 0.109 0.096

S6
0.072 0.075 0.071 0.068 S6

0.110 0.110 0.107 0.102

S7
0.060 0.064 0.069 0.068 S7

0.092 0.094 0.104 0.102

Table 4.10 shows the individual and group mean square errors ( tMSE ) of

different prioritization methods for each set of comparisons. The tMSE is calculated

for each method with the following formula:


 


r

k
tk

n

ji

r

k

k
tijt sMSE

11 1

)( .

Here, the comparison sets which include only 1 comparison are not included since

all methods would give the same MSE values for them.

In order to be fair in comparisons, pairs of plots are provided to show the

performance of AIP vs. BPP and AIP* vs. BPP*. For the most consistent decision

makers  1DM and 2DM the BPP estimates provide smaller tMSE values than the

AIP method.
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Table 4.10 Individual and group MSE values for AIP, BPP, AIP*, BPP*.

AIP BPP AIP* BPP* AIP BPP AIP* BPP*
DM1 DM2

Si–Sj of D1 0.533 0.485 0.719 0.524 0.704 0.663 1.091 0.873
Si–Sj of D2 0.477 0.412 0.326 0.318 0.625 0.603 0.596 0.546
Si–Sj of D3 0.467 0.403 0.610 0.421 0.460 0.457 0.755 0.568
Si–Sj of D4 0.567 0.514 0.453 0.426 0.559 0.526 0.532 0.465
Di–Dj of S1 0.186 0.174 0.213 0.177 0.587 0.482 0.506 0.468
Di–Dj of S2 0.467 0.403 0.61 0.421 0.460 0.457 0.755 0.568
Di–Dj of S4 0.711 0.482 0.542 0.383 0.847 0.599 0.781 0.607
Di–Dj of S5 0.443 0.384 0.426 0.348 0.363 0.349 0.235 0.283
Di–Dj of S6 0.302 0.221 0.449 0.264 0.357 0.328 0.431 0.339
Di–Dj of S7 0.844 0.631 0.844 0.631 1.085 0.901 1.085 0.901
Si–Sj of S4 0.628 0.533 0.873 0.766 0.651 0.670 0.493 0.426
Si–Sj of S5 0.447 0.413 0.941 0.541 0.696 0.700 0.779 0.698
Si–Sj of S6 0.746 0.679 0.748 0.638 0.582 0.582 0.525 0.544
Si–Sj of S7 0.586 0.526 0.456 0.429 0.608 0.59 0.737 0.666

DM3 DM4

Si–Sj of D1 0.725 0.725 1.018 0.829 0.729 0.677 0.857 0.601
Si–Sj of D2 0.489 0.470 0.537 0.522 0.912 0.975 0.432 0.447
Si–Sj of D3 0.507 0.564 0.483 0.535 0.747 0.743 0.488 0.410
Si–Sj of D4 0.666 0.621 0.597 0.536 0.992 1.028 0.567 0.545
Di–Dj of S1 0.524 0.47 0.475 0.462 0.733 0.712 0.292 0.309
Di–Dj of S2 0.507 0.564 0.483 0.535 0.747 0.743 0.488 0.410
Di–Dj of S4 0.848 0.743 0.553 0.337 0.864 0.987 0.515 0.397
Di–Dj of S5 0.583 0.550 0.654 0.564 0.524 0.560 0.278 0.212
Di–Dj of S6 0.848 0.81 0.827 0.61 0.369 0.33 0.428 0.333
Di–Dj of S7 1.085 0.885 1.085 0.885 0.690 0.574 0.690 0.574
Si–Sj of S4 0.460 0.493 0.613 0.557 0.803 0.800 0.676 0.580
Si–Sj of S5 0.664 0.641 1.051 0.795 0.624 0.648 0.513 0.200
Si–Sj of S6 0.797 0.844 0.747 0.796 1.006 1.047 0.868 0.795
Si–Sj of S7 0.579 0.561 0.655 0.598 0.870 0.918 0.834 0.847

DM5 Group
Si–Sj of D1 0.834 0.846 0.972 0.745 0.506 0.475 0.887 0.532
Si–Sj of D2 0.812 0.812 0.751 0.712 0.462 0.465 0.288 0.264
Si–Sj of D3 0.957 0.976 0.996 0.741 0.432 0.439 0.452 0.287
Si–Sj of D4 0.833 0.906 0.489 0.454 0.533 0.540 0.281 0.235
Di–Dj of S1 0.893 0.980 0.746 0.803 0.384 0.370 0.215 0.216
Di–Dj of S2 0.957 0.976 0.996 0.741 0.432 0.439 0.452 0.287
Di–Dj of S4 1.047 1.294 0.585 0.629 0.757 0.751 0.375 0.235
Di–Dj of S5 1.374 1.420 0.408 0.465 0.582 0.600 0.168 0.143
Di–Dj of S6 1.206 1.291 0.788 0.918 0.506 0.517 0.346 0.260
Di–Dj of S7 0.859 0.691 0.859 0.691 0.820 0.531 0.820 0.531
Si–Sj of S4 1.085 1.172 0.612 0.567 0.549 0.571 0.455 0.356
Si–Sj of S5 0.811 0.839 0.922 0.732 0.434 0.439 0.755 0.406
Si–Sj of S6 0.525 0.539 0.653 0.588 0.574 0.590 0.507 0.463
Si–Sj of S7 0.778 0.808 0.629 0.642 0.485 0.490 0.398 0.384



78

Figures 4.3-4.20 point out that for the consistent decision makers the Bayesian

methods provide smaller tMSE values. As the inconsistency increases, the BPP

method and the AIP method provide same values. Nevertheless, for any decision

maker, if the inconsistent judgements are deleted, the BPP* provides smaller tMSE

values than the AIP* method. As an example, Figures 4.3-4.5 give the results for

1DM and indicate that Bayesian method has smaller tMSE values than the

conventional method, especially after omitting the inconsistent judgements.

On the other hand, for the most inconsistent decision maker  5DM , Figures 4.15-

4.17 point out that the difference between BPP and AIP methods is not significant

(see Table 4.10) where BPP* still provides smaller tMSE values than the AIP*

method. Figures 4.18-4.20 are the results of the group as a whole and the similar

conclusions are obtained for the group.

The omission of these judgements raises the consistency levels of decision makers

and also increases the degree of consensus among all of the decision makers for

every comparison set. After omitting the inconsistent judgements, the Bayesian

estimates generally have the lower levels of individual tMSE values and best reflect

the opinions of the group, as shown by the smaller tMSE (see Table 4.10). The

results show that the proposed methodology is more efficient than the conventional

approach especially after omitting the inconsistent judgements.

In the second part of the analysis, )(
31

kW is obtained where five physicians compare

two alternatives for four different diseases answering the question: “which

alternative treatment would be most appropriate given the disease in question?”.

Since there are only two alternatives to compare, each doctor has to give only one

pairwise comparison for every disease. We simulate data assuming that physicians

give complete answers and the variability is small ( 7tijoc ). Consequently, there are

no judgements to be omitted. We applied the AIP method and BPP for this part of the

analysis. Since there is only one entry in the comparison matrices, both methods
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provided nearly the same results in terms of the priorities and the level of

consistencies.
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Figure 4.3 MSE values of DM1 , comparing the related symptoms in terms of 4 diseases.
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Figure 4.4 MSE values of DM1 , comparing the related diseases in terms of 6 symptoms.
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Figure 4.5 MSE values of DM1 , comparing the related symptoms in terms of 4 symptoms.
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Figure 4.9 MSE values of DM3 , comparing the related symptoms in terms of 4 diseases.
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Figure 4.10 MSE values of DM3 , comparing the related diseases in terms of 6 symptoms.
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Figure 4.11 MSE values of DM3 , comparing the related symptoms in terms of 4 symptoms.
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Figure 4.12 MSE values of DM4, comparing the related symptoms in terms of 4 diseases.
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Figure 4.13 MSE values of DM4, comparing the related diseases in terms of 6 symptoms.
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Figure 4.14 MSE values of DM4 , comparing the related symptoms in terms of 4 symptoms.
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Figure 4.15 MSE values of DM5 , comparing the related symptoms in terms of 4 diseases.
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Figure 4.16 MSE values of DM5 , comparing the related diseases in terms of 6 symptoms.



86

0.
4

0.
8

1.
2

Si - Sj of Sk

M
S

E
 o

f D
M

5

S4 S5 S6 S7

AIP
BPP 0.

4
0.

8
1.

2

Si - Sj of Sk

M
S

E
 o

f D
M

5

S4 S5 S6 S7

AIP*
BPP*

Figure 4.17 MSE values of DM5 , comparing the related symptoms in terms of 4 symptoms.
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Figure 4.18 MSE values of the group , comparing the related symptoms in terms of 4 diseases.
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Figure 4.19 MSE values of the group, comparing the related diseases in terms of 6 symptoms.
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Figure 4.20 MSE values of the group,  comparing the related symptoms in terms of 4 symptoms.
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Table 4.11 gives the final result, the priorities of the two alternatives. For the AIP

method, omitting the inconsistent judgements resulted in a change of

-0.076=0.739-0.663w-w *AIPAIP  in the first alternative’s weight, where the

change is only 0.008=0.684-0.692w-w *BPPBPP  for the Bayesian method. The

absolute change in the BPP is less than 1/9 of the AIP method. It can be concluded

that the Bayesian method performs more robust manner in the overall priorities.

Table 4.11 Alternatives’ priorities.

wAIP wBPP wAIP* wBPP*

A1 0.663 0.692 0.739 0.684
A2 0.337 0.308 0.261 0.316

4.5. Conclusions

The ANP-GDM is a widely used technique in multiple criteria group decision

making problems. When applying the ANP in a group decision, some problems

might occur: The formation of pairwise comparison matrices becomes a complex

task for the decision makers as the number of elements in the analysis increase. Also,

decision makers participated in the analysis may have limited expertise about the

problem domain or the ANP analysis. The practitioner may also prefer to ignore the

inconsistent or opposing judgements while keeping the consistent or homogeneous

ones in order to increase the consistency or consensus among decision makers. These

situations could result in incomplete or inconsistent judgements, which may give

wrong results.

Considering the problems mentioned above, we proposed a Bayesian

prioritization procedure for the ANP-group decision making which can be extended

to the case of incomplete pairwise comparison matrices. The multiplicative model

with log-normal errors is applied to the problem and the Bayesian analysis is used.

This is a process of weighted aggregation of individual priorities and the weights are

inversely proportional to the decision makers’ levels of inconsistency.
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We illustrated this methodology with a case study and compared it with the

conventional technique, the AIP.

With regard to variability, the results show that the proposed methodology

generally performs more robust and efficient manner than the conventional approach

especially after omitting the incomplete judgements in the pairwise comparison

matrices.

In this research, the proposed methodology is illustrated with a medical diagnosis

problem which is a very common problem in healthcare. We selected this example

since there is a wide application potential of the ANP in healthcare problems.

The proposed procedure can be used to deal with many problems like: financial

crisis management, risk management, selecting projects that offer return on

investment, education, resource planning, common clinical problems, sustainable

forest management, customer requirement management, requirement prioritization,

measuring potential ethnic conflict, selecting the power units for appropriate price

allocation in a competitive power environment, location selection and etc.

In the previous chapter, the limitations of the proposed Bayesian aggregation

procedure were addressed. In this chapter we have removed the independence

assumption by applying the ANP-GDM analysis.

Other than that, our study is based on the model from a non-informative Bayesian

standpoint, where the variances of error terms represented by the inconsistency levels

of decision makers are assumed to be known. In the future, this approach can be

extended by taking the variances of error terms as additional parameters, or by

implementing an informative Bayesian model in which a good estimate of prior

distribution for the vector of log-priorities is used.
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CHAPTER FIVE

CONCLUSIONS

The problems whose objective is to search the best alternative or to rank the

alternatives in terms of a number of conflicting criteria are the multi-criteria decision

making problems. It is hard to solve such kind of problems. Generally, no optimal

solution exists for these problems, i.e. none of the alternatives can be concluded as

the best one in terms of each criteria. An alternative can be the best one in terms of

one criteria, where it can be worse in terms of the other criteria. A wide variety of

Multiple criteria decision making (MCDM) techniques have been developed.

The Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP)

are powerful techniques widely used in multiple criteria group decision making

problems. They are flexible and practical tools for both the researchers and the

practitioners. However, there might be some complexities when applying the AHP

and the ANP in complex group decision making problems:

(i) The formation of pairwise comparison matrices becomes a complex task

for the decision makers as the number of elements in the analysis

increase,

(ii) Decision makers participated in the analysis may have limited expertise

about the problem domain or the AHP-ANP analysis and their

requirements,

(iii) The practitioner may also prefer to ignore the inconsistent or opposing

judgements while keeping the consistent or homogeneous ones in order to

increase the consistency or consensus among decision makers.

These three situations could result in incomplete or inconsistent judgements,

which may give wrong results.



91

In order to overcome the problems and the complex situations mentioned above,

we proposed Bayesian prioritization procedure (BPP) for the AHP and the ANP

group decision making analyses which can also be extended to the case of

incomplete pairwise comparison matrices.

In this research, it is assumed that consensus exists among the decision makers

with regard to the priorities for each element in this decision system. For both the

AHP and the ANP, the multiplicative model with log-normal errors is applied to the

problem and the Bayesian analysis is used for both techniques respectively. What we

do in these approaches is obtaining the weighted aggregation of individual priorities

where the weights are inversely proportional to the decision makers’ levels of

inconsistency. We compared the Bayesian methods with the conventional approach,

AIP, used in the AHP-ANP group decision analysis, with one case study for each.

The superiorities and the advantages of the proposed methodology can be

summarized as follows: First of all, it provides decision makers a flexible and

comfortable way to express their judgements, without forcing them to give complete

and consistent judgements and letting them completely focus on their area of interest.

Because in the proposed method, there is no assumption or requirement that the

pairwise comparison matrices must be complete and each decision makers’

judgements must be consistent. The proposed methodology can treat incomplete or

inconsistent judgements properly.

Second, it serves the practitioner since the judgements of decision makers directly

enter the analysis without any reducing or filtering process. The practitioner does not

have to make any further tests or any rearrangements for the pairwise comparison

matrices. The proposed method can be used directly whether the individuals’

pairwise comparison matrices in the AHP or the ANP group decision making

analyses are complete or incomplete; consistent or inconsistent.

Third, the proposed method automatically gives weights to each of the decision

makers, which are inversely proportional to the decision makers’ levels of
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inconsistency. So the consistent decision makers have a higher effect in the final

decision.

Fourth, when the inconsistent judgements are omitted, the change in the priorities

of the alternatives is smaller when the proposed method is applied instead of the

conventional method. This result indicates that the BPP method generally performs

more robust manner in terms of the weights of the alternatives than the conventional

approach.

Finally, with regard to the variability, the proposed method calculates the final

priorities with smaller MSE values. So it can be concluded that the proposed

methodology aggregate the individuals’ judgements more effectively than the

conventional method, especially after omitting the inconsistent judgements in the

pairwise comparison matrices.

In this study, we first applied BPP based AHP to prioritize and order information

security risk incidents which could satisfy the aim of risk management and then

applied BPP based ANP for diagnosis and best treatment selection. These approaches

can also be used for many multiple criteria group decision making problems such as

project selection, facility location selection, supplier selection or evaluation,

diagnosis and treatment selection for disease management, financial decision making

and crisis forecasting, and evacuation selection for emergency management.

For any kind of MCDM problems, BPP based AHP or BPP based ANP

techniques could be used alone or with any other decision support tools.

In each chapter the limitations of our studies were given in detail. To sum up, it is

assumed that (i) there is a consensus among the decision makers with regard to the

priorities for each element in this decision system, (ii) both of the case studies are

based on the model from a non-informative Bayesian standpoint, which can be

extended to an informative Bayesian model.



93

This research only captures the AHP and the ANP out of many multi-criteria

decision making (MCDM) approaches. In the future, the Bayesian prioritization

process could also be applied to any other MCDM approaches such as TOPSIS,

VIKOR, etc. as a remedy for the incomplete and/or inconsistent judgement

situations. This could help us to achieve more general conclusions in terms of the

affects of Bayesian methods in MCDM analysis.
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