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REASONING WITH SHAPES 
ABSTRACT 

 

Optimal logic determination between a set of shapes could be quite utile in 

computer vision. Investigation of Linear transformation in a set of shapes is a 

challenging topic and has wide range of applications, such as in Robotics, Aircraft 

and Satellite attitude determination and tracking systems. I propose a pictorial 

solution for linear transformation determination problem, in contrast to current 

optimal approaches that are benefiting from numerical roots.  

I make abstractions of shapes and I try to determine the linear transformation 

between the set of shapes by using inexpensive Boolean logics. The nature of my 

solution decreases resource requirements and the complexity of a hardware 

implementation. 

 

Keywords: Reasoning with shapes, computer vision, machine vision, shape 

abstraction, procrustes analysis. 
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ŞEKİLLERLE NEDENSELLEME 
ÖZ 

 

Şekiller arasındaki en uygun mantığın belirlenmesi bilgisayarla görmede oldukça 

yararlı olabilir. Şekiller kümesindeki doğrusal dönüşümün araştırılması ilgi çekici bir 

konudur ve robotik, uçak ve uyduların konumunu belirleme ve izleme sistemleri gibi 

geniş uygulama alanları vardır. Sayısal temellerden yararlanan şu anki optimum 

yaklaşımların aksine, doğrusal dönüşümün belirlenmesi problemine resimsel bir 

çözüm öneriyorum.  

Ben şekilleri soyutluyorum ve az maliyetli Boolean lojiğini kullanarak şekiller 

arasındaki doğrusal dönüşümü belirlemeye çalışıyorum. Benim çözümümün doğası 

kaynak gereksinimini ve donanım uygulamasının karmaşıklığını azaltıyor.  

 

Anahtar Kelimeler: Şekillerle nedenselleme, bilgisayarla görme, makine görmesi, 

şekil soyutlama, procrustes analizi. 
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1CHAPTER ONE 

INTRODUCTION 

 

1.1 Real World Experiences 

Visual information that we gather from our environment plays an undeniable vital 

role with a vast range of applications in our life (even blind people visualize their 

environment in their own way), in continue I will mention some scenarios of this 

type that we all have experience of, but how we handle the situations is not 

completely clear to scientists yet.  

Scenario A 

A person is trying to cross a street; he\she looks at different sides of the street and 

if there is no possibility of accident regarding to speed and direction of cars 

movement, then crosses the street. This is a simple case of our interaction with 

environment; an algorithmic look of the scenario could be as following: 

1. Determine your crossing path and minimum time (𝑇1) needed to pass 
2. Determine the cars coming your direction 
3. Find the closest car to you in the set of cars coming your direction 
4. Estimate its speed and distance from you 
5. Calculate: “how long it takes for the car to reach your path with its current 

speed? (𝑇2)” 

6. If  𝑇1 <  𝑇2  or for more caution  𝑇1 ≪  𝑇2  then you can cross (if you have 
checked for an acceptable number of cars, if not goto (3) to check for more cars) else 
you cannot cross the street. 

To fulfill each of the steps of this algorithm we need some knowledge of physics 

and some special devices to determine speed and distance. But can we argue that a 

child (grown enough) has the knowledge and the equipment that can cross the street 

safely? Surely not, it is analyzing the information (e.g. Visual information) which we 

gather from environment that helps us to conclude whether we can safely cross the 

street or not.  
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Scenario B 

Does the person in Figure 1.1 can touch the wall or not?  

If we know the values of 𝑋, 𝑋1 and 𝑋2 we could say the person can touch the wall 

if  𝑋2 = 0 or if 𝑋 =  𝑋1. Laser-based or Radar/Sonar-based distance measurement 

equipment can accurately determine  𝑋, 𝑋1 and 𝑋2, but in case we don’t have access 

to these tools, we can estimate the values; but even for estimation we need to 

measure the distance somehow. However, in our life we can answer such questions 

with no need to these tools, just by using the visual information we receive from our 

eyes.  

 

Suppose a person who is standing on top of a rock; with a level of confidence the 

person knows whether he\she will survive if jumps down. This issue is a challenging 

problem in robotics, although some notable approaches are available (Mondragón 

(2010)) but they are costly and most of them requires special equipment and aid such 

as GPS antenna and height information. Despite of us, even animals are capable of 

making this estimation without using such equipment that reveals the simplicity of 

this task and importance of visual information. 

 

 

Figure  1.1 Distance estimation by using visual information 
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Scenario C 

In crowd we can distinguish the people whom we know (e.g. our parents, wife and 

children) even if there are some other people who so look like each other, but if we 

are asked to draw their faces we may not be able to, unless we have some painting 

skills. But in computer science, if using an algorithm and a database we can 

distinguish a person; we can use the same database and another algorithm to draw the 

person’s face.  

 

Scenario D 

If we are given Figure 1.2 A and we are asked to group the points in the figure, we 

could easily do the task, but what if the same figure is given to a computerized 

program and the same question is asked? It might be a time consuming problem 

regarding to the number of points we have in the figure (note that the cardinality of 

points do not affect the complexity of the problem for us), one algorithm could be:  

1. Determine the distance between all close pairs. 

2. Calculate the mean distance. 

3. Using mean value define a threshold for distance between pairs of same 

group. 

4. Using the threshold determine which points are in a same group. 

Although it is not clearly known yet that how we solve the problem, but with our 

experiences we guess the procedure demonstrated in Figure-2-B, might be our 

method to solve the problem. 

 

Currently available approaches can solve these scenarios and many more 

scenarios of this type with accuracy, but for most cases we may prefer to sacrifice 

this accuracy to achieve tolerable approximate answers in less time with dependency 

to least and simplest equipment.  
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Figure  1.2 To group the points in initial shape, the demonstrated Procedure could 

be an option. The 5th 

 

shape in the Procedure shows two distinct shapes where the 

outline of these shapes is the border that environs the two groups of points.  

In scenario A, the person may not notice the plate number of each car, or the 

clothes the drivers are wearing or even the exact model or color of cars; this does not 

mean that the person did not see any of these. For example, the person saw the plate 

number, but plate number was not important for the action he wanted to take at the 

time, hence he simply avoided it, but if he is asked to take the plate number of the 

cars in same situation instead of crossing the street, he may be able to read the plate 

number, and the same goes for the color and model of the cars and the clothes the 

driers are wearing.  

 

This experience uncovers the role and necessity of abstractions we make for 

essential data out of full visual information we receive from our eyes. By abstracting 

we reduce the level of details to come up with less data to deal with, and I will use 

this advantage in my approach.  
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1.2 Wahba’s Problem 

Grace Wahba in 1965 defined a problem as follows:  

Given two sets of n points  {𝑣1 , 𝑣2 , … , 𝑣𝑛} , and  {𝑣1∗ , 𝑣2∗ , … , 𝑣𝑛∗} , 

where  𝑛 ≥ 2 , find the rotation matrix M (i.e., the orthogonal matrix 

with determinant +1) which brings the first set into the best least 

squares coincidence with the second. That is, find M matrix which 

minimizes  ∑ �𝑣𝑗∗ − 𝑀𝑣𝑗�
2𝑛

𝑗=1  (Wahba (1965)) 

According to Wahba, solutions for the problem are mainly used in satellite 

attitude determination; in addition, some other applications in Robotics (e.g. 

Bruzzone & Callegari (2010)) and Tracking systems are defined. About a decade 

later Paul Davenport proposed an optimal solution for Wahba’s problem, known as 

q-method, he himself did not publish his method, but the method is explained in 

details in (Markley & Mortari, M. (2000)) and (Shuster & OH (1981)), and according 

to (Fallon & Harrop & Sturch (1979)) NASA used this method to support HEAO 

missions. Another well-known solution is QUEST (QUaternion ESTimator), also 

some other solutions are proposed, such as (Shuster & Natanson (1993)), (Keat 

(1977)), (Shuster (1978)), (Mortari (1997)) and (Mortari (2000)). 

 

1.2.1 Markley’s Methods 
 

F. Landis Markley in (Markley (1993)) presented FOAM (Fast Optimal Attitude 

Matrix) and SOMA (Slower Optimal Matrix Algorithm) and in (Markley (1988)) a 

Singular Value Decomposition (SVD) based solution for Wahba’s problem. 

Markley rewrites Wahba’s non-negative loss function as follows:  

 𝐿 ( 𝐴 ) =  
1
2

 �𝑎𝑖 |𝑏𝑖 − 𝐴𝑟𝑖|2
𝑛

𝑖=1

 (1.2.1.1) 

Where  𝐴   is an orthogonal matrix to minimize the above loss function, 𝑛 is the 

number of observations,  𝑎𝑖 are positive weights and  𝑏𝑖  and  𝑟𝑖  are unit vectors 



6 
 

 
 

representing corresponding observations in spacecraft body frame and unit vectors 

that are directions to some observed objects in reference frame, respectively. 

Markley used some matrix manipulations and rewrite (1.2.1.1) as follows: 

 𝐿 ( 𝐴 ) =  𝜆0 − 𝑇𝑟𝑎𝑐𝑒 ( 𝐴 𝐵𝑇 ) (1.2.1.2) 

 𝜆0 =  �𝑎𝑖

𝑛

𝑖=1

 (1.2.1.3) 

 𝐵 =  �𝑎𝑖 𝑏𝑖 𝑟𝑖𝑇
𝑛

𝑖=1

 (1.2.1.4) 

1.2.2 FOAM 

Markley defines an iterative solution for 𝜆 and names it as FOAM, the procedure 

of his method is as following: 

1. Normalize input observation and reference vectors 

2. Calculate  𝜆0 (for normalized weights we have λ0 = 1, Markley also solved 

 λ0   for different conditions) and 𝐵 

3. Calculate the following scalars: 

 det𝐵  , ‖𝐵‖2  ,     ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡  𝐵‖2 (1.2.2.1) 

4. Compute  𝜆 as following:  

 𝜆𝑖 =  𝜆 𝑖−1 −  
𝜓  ( 𝜆 𝑖−1  )
𝜓′ ( 𝜆 𝑖−1  )

  ,        𝑖 = 1 , 2 , …  (1.2.2.2) 

𝜓 ( 𝜆 ) =  ( 𝜆2 −  ‖𝐵‖2 )2  −  8𝜆  det𝐵 − 4‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡  𝐵‖2 (1.2.2.3) 

( 𝜓′ 𝑖𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝜓 )           𝜓′ ( 𝜆 ) = 4 𝜆 (𝜆2 −  ‖𝐵‖2) − 8 det𝐵 (1.2.2.4) 

5. Solve the following to obtain optimal attitude estimation: 
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𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐴 =  
(𝜁 + ‖𝐵‖2) 𝐵 +  𝜆 𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵𝑇  − 𝐵 𝐵𝑇𝐵

Γ
 (1.2.2.5) 

 𝜁 =  
1
2

 (𝜆2 −  ‖𝐵‖2) (1.2.2.6) 

 Γ =  𝜁 𝜆 − det𝐵 =  
𝜆
2

 (𝜆2 −  ‖𝐵‖2) − det𝐵 (1.2.2.7) 

1.2.3 SOMA 

Before I continue with Markley’s SOMA method, I rewrite matrix B using SVD 

and diagonal values of  Σ as follows: 

 
𝐵 =  Μ Σ Ν𝑇 

𝑆1 ≥  𝑆2 ≥  | 𝑆3 | 
(1.2.3.1) 

Besides, Markley’s SOMA method which is in the form of an analytical solution 

for 𝑆1 , has the following steps:  

1. Normalize input observation and reference vectors (Same as FOAM) 

2. Calculate  𝜆0 (for normalized weights we have λ0 = 1, Markley also solved 

 λ0   for different conditions in (Markley (1993))) and 𝐵 (Same as FOAM) 

3. Calculate the following scalars: (Same as FOAM) 

 det𝐵  , ‖𝐵‖2  ,     ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡  𝐵‖2 (1.2.3.2) 

4. Compute  𝜆 as following:  

 𝜆 =  𝑆1 + ( 𝑆2 +  𝑆3 ) (1.2.3.3) 
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𝑆2 +  𝑆3 =  �   
     ‖  𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵  ‖2 −  �  det𝐵

𝑆1
 �
2

    

𝑆12
+ 

  2 det𝐵  
𝑆1

    
(1.2.3.4) 

 𝑆12 =  
1
3

 �‖𝐵‖2 + 2𝛼 𝑐𝑜𝑠 �  
1
3

  𝑐𝑜𝑠−1 � 
𝛽
𝛼3

 ��� (1.2.3.5) 

 𝛼 =  �‖𝐵‖4 − 3 ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2 (1.2.3.6) 

𝛽 =  ‖𝐵‖6 −  
 9 
2

 (‖𝐵‖2   ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2) +  
27
2

 (det𝐵)2 (1.2.3.7) 

5. Optimal attitude matrix determination is same as FOAM. 

 

1.2.4 SVD – Based 

Markley proposes the following steps for his SVD – based solution for Wahba’s 

problem. 

1. From (1.2) calculate B 

2. Calculate SVD of B. ( 𝐵 = 𝑈𝑆𝑉𝑇 ) 

3. Calculate  𝑑 as following: 

 𝑑 = det𝑈  × det𝑉 (1.2.4.1) 

4. Compute optimal matrix A as follows:  

 𝐴𝑜𝑝𝑡 =  𝑈 [ 𝑑𝑖𝑎𝑔 (1 , 1 ,𝑑 ) ]  𝑉𝑇 (1.2.4.2) 

5. Computed minimized loss function as follows: 

 𝐿 �𝐴𝑜𝑝𝑡� = 1 −  𝑠1 −  𝑠2 − 𝑑𝑠3 (1.2.1.5) 

Where  𝑠1 ≥  𝑠2 ≥  𝑠3   are the diagonal values of 𝑆. 
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1.3 Procrustes Analysis 

In Greek mythology, a character exist named Procrustes (or the stretcher, 

Prokoptas or Damastes); he was a bandit who used to suite his victims to his iron bed 

by racking, hammering or amputation. His fashion forms a root in statistical shape 

analysis, which is called Procrustes Analysis. In Procrustes analysis, two or more 

shapes are considered as identical if after Procrustes Superimposition, which is by 

applying transformations such as Translation, Uniform/Un-Uniform Scaling, 

Rotating and Reflection, the shapes coincide, if they do not coincide, or better say, if 

their Procrustes Distance is not zero, then their similarity is measured by the value 

of Procrustes Distance.   

If all transformations are checked in Procrustes superimposition, then it is called 

Full Procrustes Superimposition (FPS), and when scaling is not included, it is 

referred as Partial Procrustes Superimposition (PPS). 

Notable solutions for Procrustes Analysis are available, of those, some methods 

presented in (Gover & Dijksterhuis (2004)) and (Thomas (2006)). In reference 

(Gover & Dijksterhuis (2004)) an overall of some notable previous works is 

provided, here I summarized some parts of that information in a tabular format in 

Table 1.1; interested readers are advised to refer to reference (Gover & Dijksterhuis 

(2004)) for more details.  

 

Table  1.1 Brief specification of some notable works regarding to Procrustes Analysis are given.O: 

Orthogonal Matrix, P: Orthogonal Projection Matrix, S: Least Square, G: Group Average, I: Inner 

Product 

Comment Author Year Sets count O P S G I 

Full Rank Matrices Green 1952 2 *  *   
Deficient Rank case Schonemann 1966 2 *  *   

Two-Sided Cliff 1966 2  *   * 
Pairwise Gower 1971 K *  *   
PINDIS Borg, Lingoes 1978 K  * *   

 Ten Berge, Knol 1984 K  * *  * 
 Peay 1988 K  *  *  
 Dijksterhuis, Gower 1991 K * * * *  
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In statistical shape analysis, Procrustes analysis for two inputs is defined as to 

solve the following expression for  𝑇  that minimizes the statement:  

 ‖𝑉1𝑇 −  𝑉2‖ (1.3.1) 

Where 𝑉1 is the traveler,  𝑇  is the Procrustes superimposition, 𝑉2 is the iron bed 

and  ‖𝑋‖ means Euclidean/Frobenius norm  𝑡𝑟𝑎𝑐𝑒( 𝐴′𝐴 ), the sum-of-squares of 

elements of 𝐴. In other words, 𝑉1 is shapes 1, 𝑉2 is shape 2 and  𝑇  is the 

transformation which if applied on  𝑉1  results  𝑉2  in case that the two shapes are 

identical. 

 

1.3.1 Translation 

As first step of Procrustes superimposition, we start with simplest transformation 

which is Translation. To be able to compare a set of shapes, all shapes must be 

transformed into an identical coordinate so that the centroid of all shapes coincides, 

this coordinate could be whether the center of coordinate system or any specific 

coordinate. We could write the translation applied form of (1.3.1) as following: 

 ‖(𝑉1 − 1𝑡1′) 𝑇 −  (𝑉2 − 1𝑡2′ )‖ (1.3.1.1) 

We denote a matrix whose column vectors are one by 1. Since only proportional 

position of origin is important for us, from (1.3.1.1) we could have the following: 

 𝑡′ =  𝑡1′  𝑇 −  𝑡2′  (1.3.1.2) 

That by substituting (1.3.1.1) in (1.3.1.2) we will have: 

 ‖𝑉1𝑇 − 1𝑡′ − 𝑉2‖ (1.3.1.3) 

And in case the equation (1.3.1) is preceded by a weighting matrix, that is: 
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 ‖𝑊𝑉1𝑇 − 𝑉2‖ (1.3.1.4) 

Where 𝑊 is the weighting matrix; the translated form of (1.3.1.4) will be: 

 ‖ 𝑊 (𝑉1 −  1𝑡1′  ) 𝑇 −  (𝑉2 − 1𝑡2′  ) ‖ (1.3.1.5) 

Interested readers in the generalized form of (1.3.1.5) are advised to refer to 

reference (Gover & Dijksterhuis (2004)) for more details. 

 

1.3.2 Isotropic and Anisotropic Scaling 

The second step of Procrustes superimposition is as simple as the first step; for the 

cases that 𝑇 is not constrained by any means, an isotropic scaling factor is a scalar 

which we denote by 𝑆 that is multiplied to 𝑉1  as following: 

 ‖𝑆𝑉1𝑇 − 𝑉2‖ (1.3.2.1) 

Note that, 𝑆 is a scalar in isotropic scaling so it can be ingested into  𝑇 , but for 

anisotropic scaling,  𝑆 is a matrix that despite unlike isotropic scaling it can’t be 

assimilate into  𝑇 , the order of multiplication is also important, that is: 

 ‖𝑉1𝑆𝑇 −  𝑉2‖  ≠  ‖𝑉1𝑇𝑆 −  𝑉2‖ (1.3.2.2) 

 

1.3.3 Rotation 

In case that  𝑇 is not constrained by any conditions, we can solve (1.3.1) for  𝑇 as 

follows:  

 𝑇 =  
  𝑉1′ 𝑉2  
  𝑉1′ 𝑉1  

 (1.3.3.1) 

We can write  𝑇 in a SVD form, doing this, we can result: 
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 𝑇 = 𝑈Ʃ𝑊′ →   ‖ 𝑉1𝑈Ʃ𝑊′ − 𝑉2 ‖ =  ‖𝑉1𝑈Ʃ − 𝑉2𝑊‖ (1.3.3.2) 

This change in format means rotating  𝑉2  to a position that matches rotated 𝑉1 

along with scaling. For conditions where any restriction(s) is (are) on 𝑇 , please refer 

to reference (Gover & Dijksterhuis (2004)) - Chapter 13.  

 

1.3.4 Match Measurement  

Best match for (1.3.1) maybe measured using different criteria such as Correlation 

and Inner product, Least Squares Criteria and Matching of Rows and Columns .To 

measure match using Least Squares, in case 𝑇 is not constrained in anyway, we can 

treat 𝑉1 and 𝑉2 symmetrically by doing either given (a) or (b): 

a. Two-Sided variant: Solve (1.3.4.1) for 𝑉1 and  𝑉2 where both matrices have 

same number of columns. The resulting from (1.3.4.1) is trivial null solution. 

 𝑆 =  ‖𝑉1𝑇1 −  𝑉2𝑇2‖ (1.3.4.1) 

b. We can rewrite (1.3.1) as (1.3.4.2), here the point is, (1.3.4.2) deem to be 

generalization of Procrustes problem when we have no apprehension of target 

matrix. 

1
4

 𝑆 =  �𝑉1𝑇 −  
1
2

(𝑉1𝑇 +  𝑉2𝑇)� =  �𝑉2𝑇 −  
1
2

(𝑉1𝑇 + 𝑉2𝑇)� (1.3.4.2) 

 
1
2

 𝑆 =  ��𝑉𝑛𝑇 −  
1
2

(𝑉1𝑇 + 𝑉2𝑇) �
2

𝑛=1

 (1.3.4.3) 
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1.4 Kabsch Algorithm 

Wolfgang Kabsch propose an orthogonal solution for orthogonal partial 

Procrustes problem in (Kabsch (1976)) and (Kabsch (1978)), by an SVD based 

solution he tries to minimize the Root Mean Squared Deviation (RMSD) of two input 

sets, when determinant of rotation matrix is one. Unlike some solution for Procrustes 

problem that finds rotation around a single axis, Kabsch algorithm calculates 

transformation to a different orthonormal basis. Although Kabsch algorithm only 

calculates Rotation, but before checking for rotation, it requires a translation 

operation to coincide the centroid of the inputs.  

Kabsch algorithm applies on two shapes where each shape is represented by a set 

of points. A sample set of points of a shape (Shape 1) is illustrated in Figure 1.3, the 

set consisting of two, three and in general, 𝑑 columns presents the shape in a two 

dimensional (2𝐷), three dimensional (3𝐷) and d-dimensional coordinate system 

respectively. 𝑛 Is the number of points presenting the shape, more points gives more 

details about the shape, which can increase the accuracy of the transformation 

determination and match measurement process. 

Different methods for extraction of points from shapes are available in literature, 

of this landmarks are notable, triple classify of landmarks are: (I) Anatomical 

Landmarks, (II) Mathematical Landmarks and (III) Pseudo Landmarks 

Shape 1 

(P : Point) 

2 Dimensional  3 Dimensional  𝑑 Dimensional 

P1 𝑋1 𝑌1  P1 𝑋1 𝑌1 𝑍1  P1 𝐷11 𝐷21 … 𝐷1𝑑 

P2 𝑋2 𝑌2  P2 𝑋2 𝑌2 𝑍2  P2 𝐷21 𝐷22 … 𝐷2𝑑 

P3 𝑋3 𝑌3  P3 𝑋3 𝑌3 𝑍3  P3 𝐷31 𝐷32 … 𝐷3𝑑 

 … …   … … …   … … … … 

P n 𝑋𝑛 𝑌𝑛  P n 𝑋𝑛 𝑌𝑛 𝑍𝑛  P n 𝐷𝑛1 𝐷𝑛2 … 𝐷𝑛𝑑 

Figure  1.3 A sample set of Points presenting a shape (Shape 1) 
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Kabsch algorithm runs in five steps as following (𝑉 ∶ Shape 1 and 𝑊 ∶ Shape 2): 

1. Translation 

2. Calculate 𝐴 from the equation: 

 𝐴 =  𝑉𝑇𝑊 (1.4.1) 

3. Calculate the SVD of  𝐴  

 𝐴 = 𝑀 Σ 𝑁𝑇 (1.4.2) 

4. Calculate optimal rotation matrix 𝑅 

 
𝑅 =  𝑁 �

  1 0 0  
  0 1 0  
  0 0 𝜂  

�  𝑀𝑇     

 

 𝜂 = 𝑆𝑖𝑔𝑛 ( det𝐴 ) 

(1.4.3) 
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2CHAPTER TWO 

REASONING WITH SHAPES 

NAÏVE APPROACH 

 

Grace Wahba defined a problem and some novel approaches are proposed and are 

widely used; the Procrustes problem is almost the same as the problem that Wahba 

defined, only that in Procrustes analysis we have a more pictorial definition of the 

problem than Wahba’s problem. Some novel algorithms such as Kabsch algorithm 

are available for Procrustes problem that are practical and in use.  

An infant has intuitive understanding of cardinality and shape of objects and could 

understand whether two objects are the same but only transformed (Rotated, Scaled, 

symmetrized) or the objects are different (Izard & Dehaene-Lambertz & Dehaene 

(2008)). It would not be wise if we argue that a child has knowledge of the numerical 

solutions instinctively; because, not even infants but all people was able to 

manipulate objects even before mathematics exists; the tools and painting found 

inside caves that are dated back to thousands years ago is a proof. 

My goal is to solve the problem in more pictorial root with least possible 

dependency on mathematics than Procrustes analysis roots. To achieve this goal, first 

I redefine the problem with some tunings as follows:  

1. Given the set : 

                            { 𝑆ℎ𝑎𝑝𝑒1 , 𝑆ℎ𝑎𝑝𝑒2 , …   , 𝑆ℎ𝑎𝑝𝑒𝑛 } 

a. Determine the transformation 𝑇 between any pairs as:  

𝑇𝑚 =  ⟨  𝑆ℎ𝑎𝑝𝑒 𝑚 ,   𝑆ℎ𝑎𝑝𝑒 𝑚+1  | 𝑚 ∈ { 1 , 2 , … ,𝑛 − 1 } ⟩ 

Where 𝑇 ∈  ( 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ,𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 , 𝑆𝑐𝑎𝑙𝑒 )∗ 

b. Ensure the candidates to be  𝑆ℎ𝑎𝑝𝑒 𝑛+1  by applying highly probable  𝑇s’ 

from { 𝑇1 , 𝑇2  , … , 𝑇𝑛 − 1 } on  𝑆ℎ𝑎𝑝𝑒 𝑛   in a descending order (i.e. The 

candidates with higher probabilities comes first and  candidates with lower 

probabilities comes last) 
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2. (Auxiliary) Find  𝑆ℎ𝑎𝑝𝑒𝑚  in  𝑆ℎ𝑎𝑝𝑒 𝑛  

Of the ideas addressing the mentioned problems, a RAW approach seemed useful 

to me and I checked it in more details. Although the naïve approach that I checked 

was not acceptable at first because of the lack of any advantages over previous 

approaches despite of its reasonably fast and accurate results with some 

optimizations that I made during programing; but it worth reviewing because it is the 

base of the Segmenting–Leveling approach. In continue we will have a brief 

description of the naïve approach and next we will continue with Segmenting– 

Leveling approach in Chapter Three.  

 

2.1 Naïve Approach 

I use 𝑥 × 𝑦 matrices with entries { 0 , 1 } to present shapes in this naïve approach, 

as illustrated in Figure 2.1 for a sample shape, the values of black cells are 1 and white cells 

are 0.  

 

Figure  2.1 Presenting a sample shape using a matrix with values { 𝟎 ,𝟏 } 

 

As a naïve approach, in order to ascertain 𝑇 for any pair I will do a state space 

search in a discreet coordinate system using a tree structure (illustrated in Figure 

2.2). As an example, translation check for a single rotation angle of two very simple 

shapes presented by  3 × 3  matrices is illustrated in Figure 2.3. The example in 

Figure 2.3 belongs to 0 degrees rotation, for the rest of the rotations, first I will 
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rotated shape-1 then I will check for Translation as in Figure 2.3, meaning that I will 

repeat the process demonstrated in Figure 2.3 for 259 times and each time using 

 𝜃 degrees rotated of shape-1.  

 

To optimize the process, only coordinates of incidences are stored and 

transformations are applied on the incidences, as following for the given sample 

shape (Shape – 1): 

 

 

 

 

 

 

 

 

Shape - 1  X      

  0 1 2     

 0      X Y 

Y 1     Point 1 1 0 

 2     Point 2 1 1 

Figure  2.2 State space search for the transformation determination between Shape-A and Shape-B is 

given. “X” and “Y” are the number of columns and rows of the matrix presenting the shapes 

respectively. 
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Figure  2.3 Part B.  All translations that should be checked for given shapes are illustrated. The 
circled areas of shapes will be compared with each other. The first number inside the 
parentheses refers to translation units on X axis and second number refer to translation units on 
Y axis and the percentage value is the match percentage. 
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I use the rotation matrix for applying 𝜃 degrees rotation on a shape, the rotation 

matrix could be written using matrix multiplication as following: 

𝑋′ = 𝑋 cos𝜃 − 𝑌 sin𝜃 

𝑌′ = 𝑋 sin𝜃 + 𝑌 cos𝜃 

Therefore, as an example,  90 degrees rotation of Shape-1 can be calculated as 

following:  

 

 

 

 

  

 

 

 

As shown above, the new coordinate for Point-2 on  𝑋 axis falls out of the matrix 

that presenting the Shape-1. This is not a problem or bug, because:  

a. Translation process can bring this point inside the matrix. 

b. This allows us to check for partial matches. As an example, for shapes in 

Figure 2.4 we may not be able to determine any transformation that maps 

them to each other using the mentioned approaches, but by benefiting the 

advantage of this point (i.e. allowing some sections of shape to fall out of the 

valid ranges of matrix) we can determine a proper transformation. If we 

compare the valid region of Shape 1 – RT (i.e. the point with coordinates ≥

0 ) with Shape 2, then we will have  100 %  match between these two shapes.  

 

 𝑿 𝒀 𝑿′ 𝒀′ 

Point 1 1 0 1 cos 90 − 0 sin 90 = 0 1 sin 90 + 0 cos 90 = 1 

Point 2 1 1 1 cos 90 − 1 sin 90 =  −1 1 sin 90 + 1 cos 90 = 1 

 0 1 2 

90 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 
𝑅𝑜𝑡𝑎𝑡𝑒𝑑�⎯⎯⎯⎯⎯⎯⎯� 

 -1 0 1 2 

0    0     

1    1     

2    2     



20 
 

 
 

Shape 1       Shape 2 

 0 1 2 3 4        0 1 2 3 4 

0            0      

1            1      

2            2      

3            3      

4            4      

                  

Shape 1 – R  Shape 1 – RT 

 -4 -3 -2 -1 0 1 2 3 4   -1 0 1 2 3 4 

0           0       

1           1       

2           2       

3           3       

4           4       

                  
Figure  2.3 A sample of partial match between two shapes is illustrated.  

Shape 1 – R: 90 Degrees rotation of Shape 1  

Shape 1 – RT: Transformed (X : +3 , Y : -1) Shape 1 – R 

 

 

2.2 Advantages and Disadvantages 

Since this method is checking for all combinations of translation and rotation in 

discreet space, we can argue that this method will definitely determine the 

transformation between the input shapes, if and only if the transformation is a 

combination of translation and rotation. But unfortunately this is the only 

mentionable advantage of this method in contrast to some significant disadvantages. 

To study the disadvantages we would consider two sample shapes presented by two 

fairly small, 50 × 50  matrices (here we consider the worst case scenario, where all 

cells has value = 1; in practice this may happen rarely, because such a shape means 

nothing but a full black (or any other color) box that for obvious reasons has no value 
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in transformation determination procedure). With following assumptions, the details 

of expenses of using the naïve approach are given in Table 2.1. 

𝑟 = 360 

𝑋 = ( 50 × 2 ) − 1 = 99 

𝑌 =  [ ( 50 × 2 ) − 1 ] 2 =  9,801 

𝐶 = 50 × 50 = 2,500 

 

𝐹𝑜𝑟 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛  �
𝑋𝑛𝑒𝑤 =  𝑋𝑜𝑙𝑑 + 𝑋

 
𝑌𝑛𝑒𝑤 =  𝑌𝑜𝑙𝑑 + 𝑌

� 

 

Table  2.1 Expenses of the naïve approaches usage 

Description Count 

Search Tree 
Size 

Nodes 𝑟 + 𝑟𝑋 + 𝑟𝑌 ≅ 3.56 ×  106 

Leaves 𝑟𝑌 ≅ 3.52 × 106 

Rotation  

Sin 2𝑟𝐶 = 1.8 × 106 

Cos 2𝑟𝐶 = 1.8 × 106 

Floating Point Multiplication 4𝑟𝐶 = 3.6 × 106 
Floating Point Addition / 

Subtraction 2𝑟𝐶 = 1.8 × 106 

Translation  Integer Addition/Subtraction 2𝑟𝐶𝑌 =  1.764 × 1010 

Comparing  
Compare Times 𝑟𝑌 = 3.52 × 106 

Two Cells Comparison 𝑟𝐶𝑌 =  8.82 × 109 
 

 

It is obvious from these quite large numbers (for a quite small size matrix) that 

this naïve approach is not practical at all. Despite of the method, it is the cardinality 

of the cells that we deal with which results the impracticality of this method. To 

decrease the number of cells I tried:  
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A. Random Figures 

Instead of handling full shapes, we may abstract a random shape out of the initial 

shape which has less number of points than the initial shape. Since we are decreasing 

the number of points, the number of required calculations will be decreased which 

results increasing running speed. The accuracy of this method is in direct relation 

with the number of cells we choose randomly, that is, for more selected cells we will 

have more accurate results; but by increasing the number of randomly selected cells 

actually we are rolling back to the initial problem! 

 

B. Scale – RAW  

Another technique that I checked was Scale – RAW, that is, before checking for 

transformation I resized the shape to get a smaller shape which has fewer cells to 

handle. This technique could increase the running speed too, but the same problem as 

Random Figures exists here as well.  

 

Both mentioned techniques share a considerable problem that is, in the process of 

random selection or rescaling, there is no guaranty that we select or keep some key 

points of the shapes which are critical for transformation determination procedure. 

As an example consider the following shapes 

 

           

           

           

           

           

 

The only difference between these two shapes is a single cell (located on upper-

right and bottom-right corners), but we cannot guaranty that we will have these cells 

in manipulated shapes (i.e. abstracted or scaled shapes). This weakness makes these 

techniques unreliable for transformation determination procedure. 
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2.3 Implementation  

I have implemented this naïve approach in C# .NET 4.0 and here I will explain 

some major sections of the code briefly. As we discussed, shapes are presented by 

matrices in this implementation and for optimization reasons, only the incidences 

(the cells of matrix which has value = 1) are stored in a  𝑛 𝑏𝑦 2  matrix (𝑛 points and 

 (𝑥 ,𝑦)  coordinate for each point). Shapes could be input whether manually using a 

GUI (Graphical User Interface) as shown in Figure 2.4 or by loading previously designed 

and saved shapes.  

 

Figure  2.4 The manual shape input interface. 

 

A simplified code for implementation of the structure demonstrated in Figure 2.2 

is as follows: 

void Run_Reasoning() 
        { 
            while (Rotate()) 
            { 
                X_step = -X; 
                Y_step = -Y - 1; 
 
                while (Move()) 
                    Compare(); 
            } 
        } 
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bool Rotate() 
        { 
            if (Teta < 360) 
            { 
                Apply_Rotation(); 
                return true; 
            } 
            else 
                return false; 
        } 
bool Move() 
        { 
            Y_step++; 
 
            if (Y_step <= Y) 
            { 
                Apply_Move(); 
                return true; 
            } 
            else 
            { 
                X_step++; 
 
                if (X_step <= X) 
                { 
                    Y_step = -Y; 
                    Apply_Move(); 
                    return true; 
                } 
                else 
                    return false; 
            } 
        } 
 

 

In this implementation I used neither Random figures nor Scale – Raw 

optimizations. The optimization I applied in coding affects Translation check process 

where significantly increased running speed and decreased the number of nodes to 

check for. The optimization consists of two parts, Cropping and Out-pour control. 

As I illustrated in Figure 2.5, most of the space of the matrices presenting the shapes 

are empty, therefore our search for any match/partial-match between the two shapes 

in Figure 2.5 in the empty regions will not give us any answers, thus cropping the 

shapes and searching inside the crop will be a great advancement. Crop is a 

rectangular region that whelms the shape; the upper-left and bottom-right corners of 

the crop rectangles for each of the shapes in Figure 2.5 is given under the matrices. 
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Although cropping optimizes the translation process by defining a new range for 

translation check, but still we will be checking for some translations which are far 

from resulting proper answers. As an example, consider the translation  (𝑋: 3 ,𝑌: 0), 

this translation puts only the cell at coordinate  (4 , 5) – bottom-left cell, inside the 

crop of Shape-2 and leaves most of the cells of Shape-1 beyond the crop, therefore 

this translation could not be useful for the process (because of comparing a fraction 

of Shape-1 with complete shape-2). To avoid these translations, we define a 

parameter named Out-pour threshold which limits the translation ranges to the 

ranges those keep the percentage of Shape-1 defined by out-pour threshold inside the 

crop of Shape-2. This parameter can be defined either manually of allowing the 

application to determine it automatically.  

 

Shape 1      Shape 2 

                     
                     
                     
                     
                     
                     
                     
                     
                     
                     

𝐶𝑟𝑜𝑝 ∶  [(2 , 1) , ( 4 , 5 )] 

 

𝐶𝑟𝑜𝑝 ∶  [( 7 , 5 ) , ( 9 , 9 )] 

[(𝑋11 ,𝑌11) , (𝑋12 ,𝑌12)] [(𝑋21 ,𝑌21) , (𝑋22 ,𝑌22)] 

 
Range 

Length 
From to 

X – Axis 
Before Crop −9 9 19 

After Crop 𝑋21 −  𝑋12 = 3 𝑋22 −  𝑋11 = 7 (7 –  3)  +  1 =  5 

Y – Axis 
Before Crop −9 9 19 

After Crop 𝑌21 −  𝑌12 = 0 𝑌22 −  𝑌11 = 8 (8 –  0)  + 1 =  9 

Figure  2.5 Cropping the Shapes avoids unnecessary search for matches; the range of translation search 
before optimization is defined above and is compared with the new range for translation search with this 
optimization.   
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3CHAPTER THREE 

REASONING WITH SHAPES 

SEGMENTING – LEVELING APPROACH 

 

3.1 Introduction 

If we are asked regarding to the people we saw while walking on a street, we may 

not be able to remember anyone, but we can’t argue that we did not see people on 

street. We see the entire environment within our visual range, but we only see 

focused objects in details and the rest of environment unclear, hence it is reasonable 

to argue that instinctively we make abstractions of our environment with a level of 

details we need at moment. As another example, consider a driver driving at high 

speed in a highway, the driver sees the cars in front, but he only pays attention to the 

distance of the cars and their speed and avoids unnecessary details such as exact 

model of the cars, plate numbers and drivers, in order to handle the situation. This 

reveals the vital role of abstractions in our life; this technique is the base of my 

Segmenting – Leveling approach.  

 

Consider Figure 3.1; if we are asked to determine the transformation between the 

two shapes; we can determine landmark points1

                                                           
1 A shape can be described by a finite set of points, named Landmark points. Landmark points have 
three different types as follows: 

 (Pseudo – Landmark) of the shapes 

and present them in two matrices, and then using Procrustes analysis or solutions of 

Wahba’s problem we can accurately determine the transformation between the 

shapes. But in some situations we may prefer to sacrifice this accuracy to achieve a 

fast and cheap (from aspect of complexity) approximate answers. As for Figure 3.1, 

we may accept the answer “about 45 degrees Rotation” while the accurate answer is 

“33 degrees Rotation”. 

i. Landmark points assigned by an expert to represent a biological object that is called Anatomical 
Landmarks. 

ii. Landmark points that are assigned by mathematical property is known as Mathematical 
Landmarks. 

iii. Pseudo Landmark is between i and ii  
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Figure  3.1 Determine the transformation between these two shapes 

 

In Segmenting-Leveling method, like the naïve approach, I will do a state space 

search using a tree structure similar to the structure given in Figure 2.2. A pair of 

shapes will be considered, a transformation will be applied of one of the shapes and 

that shape will be compared with the other one, the transformations which result in 

best match measures, are candidate transformations. Generally:  

𝐼𝑛𝑝𝑢𝑡 𝑠ℎ𝑎𝑝𝑒𝑠 ∶  𝑆ℎ𝑎𝑝𝑒1 , 𝑆ℎ𝑎𝑝𝑒2 , …  , 𝑆ℎ𝑎𝑝𝑒𝑛  

𝐴𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 ∶  𝑇 =  � 𝑇1  ,𝑇2  , … ,𝑇𝑗  �   

𝑖 ∈ {  1  , 2  , …  ,𝑛 − 1  }  , 𝑡 ∈ {  1  , 2  , …  , 𝑗  } 

∀ 𝑖 , 𝑡  ∶   𝐶 𝑖 𝑡  =  𝐶𝑜𝑚𝑝𝑎𝑟𝑒 ( 𝑇𝑡 𝑆ℎ𝑎𝑝𝑒𝑖 , 𝑆ℎ𝑎𝑝𝑒𝑖+1 ) 

∀ 𝑖, 𝑡  ∃ 𝑡′ ∈ { 1  , 2  , …  , 𝑗 }   ∶   𝐶𝑖 𝑡′ ≥   𝐶𝑖 𝑡 

𝑅𝑒𝑎𝑠𝑜𝑛 𝑏𝑒𝑠𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑒𝑡 𝐶𝑖 𝑡′ 

In contrast to naïve approach that search a discreet space for best transformations, 

Segmenting-Leveling approach runs in continues space. Hence, I will run a state 

space search more than once based on required accuracy. Also unlike naïve approach 

that manipulates shapes, Segmenting-Leveling approach uses abstractions of shapes. 

My approach runs in levels that on each level it tries to tune the results from previous 

level to find more accurate results; at each level I will run a state space search on a 

space much smaller than the space of previous level (Note that, even on initial level, 
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we will have much smaller space to check than the space of naïve approach). In 

continue, I will explain this method step by step with details of each step, but for 

now I give a very brief visualization of this method on Figure 3.2 for determination 

of rotation.  

Level 1 0 45 90 135 180 225 270 315 360 
                  

                   

Level 2 
                  

 45 67.5 90     270 292.5 315  
                  

                   

Level 3 

                  

  67.5 78.75 90   270 281.25 292.5   
                  

                   

Level 4 
                  

 67.5 73.12 78.75            
                  

                   

Level 5 
                  

67.5 70.31 73.12             
                  

                   

Figure  3.2 In this figure a brief visualization of rotation determination procedure in 

Segmenting-Leveling approach for two assumptive shapes is given. This process could be 

continued as many levels as required to achieve a satisfactory accurate result. Green 

sections at each level are the sections which the answer is estimated to be in that range, 

hence, I break that range into two identical ranges and again I continue to estimate on 

which range the answer could be, and this process will be continued until a tolerable 

accurate answer is found. For this example the answer: 70.31 – 73.12 (range) is a tolerable 

answer and searching process stops at this point. Note that, the searching in the range 270 

– 292.5 is stopped, because distance measurement process did not mark either of the 

ranges as a proper range. 

3.2 Segmentation 

I divide the shapes presented in 2 dimensional Euclidian space into  𝑁  isometric 

triangular Regions and each Region is divided into 𝑀 identical Segments, where 

Regions are denoted by Euclidian unit vectors   𝑉𝑛 , 𝑛 ∈ { 1 , 2  , … , 𝑁 }  , Segments 

are denoted by vectors   𝑉𝑛𝑚 ,   𝑚 ∈ { 1 , 2, … , 𝑀 }  and an angle  𝜃 and cardinality of 

landmark points inside each segment which is presented by  𝑆𝑛𝑚 . The center of 

Segmentation is considered to be the center of the rectangle that environs the shape. 

This process is demonstrated in Figure 3.3.  
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Figure  3.3 (A) Each figure will be divided into   N isometric Regions and each Region will be divided 

into  M identical Segments, the Segments are denoted by  V nm vectors. The angle between each pair of 

vectors is denoted by  θn where  ∀ n ∈  { 1 , 2 , … , n } → θn−1 =  θn. Cardinality of landmark points 

inside each segment is denoted by  Snm. 

(B) As a sample segmentations vectors are shown on one of the shapes from Figure 3.1. 

 

We have the following matrix presenting the segmentation vectors: 

  

 

 

 

 

Each of these vectors is presented by 2  coordinates to which I add  𝑆 𝑛𝑚   as  3P

rd

  

 

dimension as following: 

 

This process is visualized in Figure 3.4 for a hypothetical initial shape. 

 1 2 … 𝑀 

Region 1 𝑉11 𝑉12 … 𝑉1𝑀 

Region 2 𝑉21 𝑉22 … 𝑉2𝑀 

… … … … … 

Region 𝑁 𝑉𝑁1 𝑉𝑁2 … 𝑉𝑁𝑀 

𝑉𝑛𝑚 𝑥 𝑦 𝑆𝑛𝑚 
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Figure  3.4 Visualization of adding 𝐒𝐧𝐦 as 𝟑P

rd

 

 dimension to 2-Dimensional segmentation 
vectors of a hypothetical initial shape is given. 

Throughout my reasoning method, I only need the last dimension of each vector, 

that is  𝑆𝑛𝑚  , and the order of vectors for the method’s processes, hence I rewrite the 

segmentation vectors matrix as following and name it as  𝐴. 

 

𝐴 ∶ 

 1 2 … 𝑀 

Region 1 𝑆11 𝑆12 … 𝑆 1𝑀 

Region 2 𝑆21 𝑆22 … 𝑆 2𝑀 

… … … … … 

Region 𝑁 𝑆𝑁1 𝑆𝑁1 … 𝑆 𝑁𝑀 

 

The order of vectors can tell us the approximate coordinate of each vector, but 

needless of knowing the exact coordinate of each vector is an advantage, because 

then we don’t have to translate shapes to a specific coordinate to be able to check for 

other transformations; meaning that, we can do linear transformation determination 

process in place. Although we don’t need to know even the approximate coordinate 

of each vector, but consider the following procedure as an example for determination 

of approximate coordinate of each vector in 2-Dimmensional space: 
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𝜃 =  
  360  
𝑁

   ,     𝑟 =  
1

 𝑀 
  

(𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑅𝑒𝑔𝑖𝑜𝑛 

 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑅𝑒𝑔𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑣𝑖𝑑𝑒𝑑 𝑖𝑛𝑡𝑜 𝑀 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ) 

sin𝜃 =  
𝑦

  𝑟   
 →   𝑦 = 𝑟 sin𝜃  

cos𝜃 =
𝑥

  𝑟  
  →   𝑥 = 𝑟 cos𝜃  

Each shape may have Υ  landmark points presented in  2  dimensional space as 

following matrix, since we choose 𝑀,𝑁 as  Υ ≫ 𝑀𝑁 , therefore the matrix 𝐴 will be 

significantly smaller than the matrix presenting the landmark points.  

 𝑥 𝑦 

Landmark Point 1 𝑃 1𝑥 𝑃 1𝑦 

Landmark Point 2 𝑃 2𝑥 𝑃 2𝑦 

…   

Landmark Point  Υ 𝑃 Υx 𝑃 Υy 

 

Segmentation process gives us a none-unique abstraction of each shape (i.e. 

different shapes could have same abstractions – I will cover this point in section 3.7). 

The important point is: this abstraction gives us a matrix regardless of the size of 

shapes and number of landmark points (i.e. no matter if we have billions of 

landmark points presenting the shape or only a few, for all sizes of shapes we have 

  𝑁 × 𝑀  integers presenting the shape). With this advantage, the cost of reasoning 

huge shapes will be as cheap as the cost of small shapes. 

Through the rest of this chapter, we consider the shapes in 2 dimensional space for 

the sake of simplifying explanation and understanding of the method, although 

because we only need the (𝑑 + 1)𝑡ℎ dimension of a 𝑑 dimensional shape, the 

generalization of this method for 𝑑 dimensional shapes is possible and fairly simple. 
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Figure  3.5 Different coordinate systems that might be used to coordinate landmark points are 
illustrate 

 

3.3 Segment Determination for a Landmark Point 

For segmentation purpose, we should be able to determine which segment a 

landmark point belongs to? The answer for this question is directly dependent to the 

coordinate system (Figure 3.5) which we use to coordinate landmark points. Proper 

segment detection in two coordinate systems, Polar and Cartesian, are explained 

below, note that, although the segments might be presented using Spherical or 

Cylindrical coordinate systems, but for the purpose of complexity, I focus on two 

common coordinate systems which are Cartesian and Polar coordinate systems. 

 

3.3.1 Polar Coordinate System 
 

I start with Polar coordinate system because it is similar to the nature of my 

segmentation. We consider Pole to be coincided with center of segmentation and 

Polar Axis coincided with floor of first region. Now we can determine the segment of 

a landmark point 𝑃 distinguished by a Polar angle 𝜃 and Radius (Radial Coordinate) 

𝑟 as following:  

 

�  ∃ 𝑛 ∈  { 1 , 2 , … ,𝑁 }  �  
  360  
𝑁

 (𝑛 − 1)   <  𝜃 ≤    
  360  
𝑁

 𝑛   � (3.3.1.1) 
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�  ∃ 𝑚 ∈  {  1 , 2 , … ,𝑀 }  �  
  1  
𝑀

 (𝑚 − 1)  <  𝑟 ≤   
  1  
𝑀

 𝑚  � (3.3.1.2) 

 

Hence, the segment distinguished by  ( 𝑟 ,𝜃 ) in polar coordinate systems belongs 

to segment  ( 𝑛, 𝑚 ). 

 

3.3.2 Cartesian Coordinate System 
 

We consider the origin of coordinate system and the 𝑋 axis to be coincided with 

center of segmentation and floor of first region respectively. Since the regions and 

segments are based on circular divisions, therefore it could be easier to first convert a 

Cartesian coordinate to Polar coordinate and then use the ranges mentioned in Polar 

coordinate system section to determine the segment which the landmark point 

belongs to.  

𝑃 ∶  ( 𝑥 ,𝑦 ) (3.3.2.1) 

𝑅𝑎𝑑𝑖𝑢𝑠 ∶ 𝑟2 =  𝑥2 +  𝑦2 → 𝑟 =  �  � 𝑥2 +  𝑦2   � (3.3.2.2) 

𝑅𝑒𝑚𝑖𝑛𝑑𝑒𝑟 ∶  sin𝜃 =
𝑏
𝑐

   ,   cos 𝜃 =
𝑎
𝑐

  ,   tan𝜃 =
𝑎
𝑏

  (𝑠𝑒𝑒 𝐹𝑖𝑔𝑢𝑟𝑒 4.5)  (3.3.2.3) 

→    𝜃 =  sin−1  
𝑦
 𝑟 

       ,𝜃 =  cos−1  
 𝑥 
𝑟

       ,𝜃 =  tan−1  
 𝑥
𝑦

 (3.3.2.4) 

→     �  ∃ 𝑚 ∈  {  1 , 2 , … ,𝑀 }  �  
  1  
𝑀

 (𝑚 − 1)  <  �  � 𝑥2 +  𝑦2   �  ≤   
  1  
𝑀

 𝑚  � (3.3.2.5) 

Either of the followings 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧   �  ∃ 𝑛 ∈  { 1 , 2 , … ,𝑁 } � 

  360  
𝑁

 (𝑛 − 1)  <   tan−1  
 𝑥
𝑦

   ≤   
  360  
𝑁

𝑛   �

   �  ∃ 𝑛 ∈  { 1 , 2 , … ,𝑁 } � 
  360  
𝑁

 (𝑛 − 1)  <   sin−1  
 𝑦
𝑟

   ≤   
  360  
𝑁

𝑛   �

   �  ∃ 𝑛 ∈  { 1 , 2 , … ,𝑁 } � 
  360  
𝑁

 (𝑛 − 1)  <   cos−1  
 𝑥
𝑟

   ≤   
  360  
𝑁

𝑛   �

� 
(3.3.2.6) 

Accordingly, the landmark point  𝑃 (𝑥,𝑦) belongs to the segment  𝑛 ,𝑚 .  
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3.4 Translation 

Translation of all shapes to a common coordinate so that the centroid of all shapes 

coincide, is a prerequisite for the linear transformation determination process in 

previously mentioned approaches. Since I make abstraction of shapes by 

segmentation and as I mentioned in Segmentation section, the nature of the 

Segmenting–Leveling method makes translation operation for the reason of 

mentioned approaches unnecessary for my method.  

I define an auxiliary application for translation in my method, and that is for 

checking the partial matches between shapes, which is an advantage of my method 

over mentioned methods that can’t determine any partial matches. An example of 

partial match is given in Figure 2.3.   

I would define translation process between two shapes as moving the 

segmentation center of one shape to coordinates pointed out by the segmentation 

vectors of the other shape. Three sample cases of this process are illustrated in Figure 

3.6 for two abstractions of two assumptive shapes with  𝑁 = 8   and  𝑀 = 1. 

 

Figure  3.6 Three sample cases of translation process are illustrated. The 
circled areas shows the vectors which should be compared with each 
other. (-1,-1) , (0,-1) , (+1,0) are the transformation parameters. 
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To generalize the translation task, I would take the following steps: 

1. Define sets 𝑇𝑥 and 𝑇𝑦 as following:  

 
𝑇𝑥 =  � �  

 −1 
𝑚

  , 0  ,
 1 
𝑚

  � �  𝑚 = 1 , 2 , … ,𝑀  � 

𝑇𝑦 =  � �  
 −1 
𝑚

  , 0  ,
 1 
𝑚

  � �  𝑚 = 1 , 2 , … ,𝑀  � 
(3.4.1) 

 

2. Define set 𝑇 as the combination of sets 𝑇𝑥 and 𝑇𝑦 

3. Check for all members of  𝑇. 

The last step of generalization is similar to the translation check procedure in 

naïve approach except in the number of required checks. In naïve approach the 

number of checks is directly related to the size of shapes that for larger shapes more 

checks are required than smaller shapes, but in Segmenting–Leveling approach, the 

maximum number of checks is  ( 𝑁𝑀 + 1 ) (i.e. moving to all coordinates pointed 

out by segmentation vectors of the other shape plus no translation) which according 

to definition, is much fewer than the number of checks in naïve approach.  

 

3.5 Rotation 

Rotation is an isometric circular transformation of a rigid body around a pivot – 

unlike translation that has not any fixed point – on a plane or space. Mainly two 

different types of rotation are defined, Spin and Revolution (Orbital Revolution), 

which Spin is a rotation with the pivot inside the mass of the rigid body and 

Revolution is a rotation with pivot outside the rigid body. In geometry Revolution is 

also defined as Spin + Translation, which is spinning the object around any pivot and 

then translating the object so that the pivot of spinning coincides with the pivot of 

requested Revolution. Rotation on a plan can be carried out using the following 

matrix, known as rotation matrix. 

�
  𝑥′ 

𝑦′
� =  �

  cos 𝜃 − sin𝜃  

  sin𝜃 cos 𝜃  
� �

𝑥

  𝑦  
� 
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Using matrix multiplication we have the following equations for determination of 

new coordinates ( 𝑥′ ,  𝑦′)  of  ( 𝑥 ,𝑦 )  with  𝜃  degrees rotation. 

𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin𝜃

𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃
 

Regarding to sample rotations in Figure 3.7 we can make the following 

arguments: 

Section A . 90 degrees rotation swaps the position of colors one unit, for example 

4 takes the position of 1 while 1 takes the position of 2 and so on, but keeps the 

location of 0 unchanged. Hence we can argue that 180 degrees rotation swaps the 

position of colors two unit and 270 degrees swaps the position of colors three units. 

Generally we can say: any 90 𝑖  degrees of rotation, swaps the position of colors 𝑖 

units. Although we can use rotation matrix to determine new position of each color 

with any  𝜃  degrees rotation, but this generalization helps us to guess the new 

position of each color in a much easier way. Simply this generalization is not useful 

for rotation degrees other than 90 𝑖, and leaves rotation matrix as our only choice. 

 

A         
1  2  3  4  5 
   

    
𝜃 = 90°�⎯⎯⎯� 

   
    

𝜃 = 90°�⎯⎯⎯� 

   
    

𝜃 = 90°�⎯⎯⎯� 

   
    

𝜃 = 90°�⎯⎯⎯� 

   

               

               
 

  

B

 

Figure  3.7 Sample rotations 
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Section B . With 72 degrees rotation slices change position one unit, as an 

example, 72 degrees clockwise rotation moves: 

• White slice to the position of Yellow slice,  

• Yellow slice to the position of Green slice, 

• Green slice to the position of Blue slice, 

• Blue slice to the position of Red slice and 

• Red slice to the position of White slice. 

Hence we can argue (as Section A) for any 72 𝑖 degrees rotation, slices Shift 

 𝑖 units. 

 

Accordingly we may reason: If a shape is divided into 𝑖 identical slices 

then ( 360  𝑖⁄  ) 𝑗  ,   𝑗 ∈ {  1  , 2  , … , 𝑖 − 1  } degrees rotation is the same as 𝑗 units 

shifting slices.  

 

One of my reasons of defining Segmenting–Leveling approach is to use simplest 

possible operations for reasoning with shapes, hence, although rotation matrix that I 

mentioned early in this section can cover my needs for rotation determination 

process, but Shift is a much simpler operation than trigonometry functions, which I 

prefer to use it. But as I mentioned, we can use Shift instead of only a few number of 

rotations, therefore using the definition of segmentation I would define a set of 

rotations which I can use Shift to manipulate them and I restrict the rotations that my 

method can determine to only the members of this set. The set is as following:  

 

𝑅 =  �  
360
𝑁

 𝑖  �   𝑖 = 0 , 1 , 2 , … ,𝑁 − 1  � 

𝑒.𝑔.   𝑁 = 8   ⟹  𝑅 =  {  0°  , 45°  , 90°  , 135°  ,180°  ,225°  ,270°  ,315°  } 

 

Now I can use a Circular Shift on matrix 𝐴 (the matrix defined in section 4.2) to 

rotate my figure  𝜃 °  ,𝜃 ∈ 𝑅. As an example: 
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N = 6 , M = 2 

R =  { 0 , 60 , 120 , 180 , 240 , 300 } 

 1 2 

      Rotate∶120 Degrees
=

 2 time circular shift
   

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 
 

 1 2 

Region 1 𝑆11 𝑆12 Region 5 𝑆51 𝑆52 

Region 2 𝑆21 𝑆22 Region 6 𝑆61 𝑆62 

Region 3 𝑆31 𝑆32 Region 1 𝑆11 𝑆12 

Region 4 𝑆41 𝑆42 Region 2 𝑆21 𝑆22 

Region 5 𝑆51 𝑆52 Region 3 𝑆31 𝑆32 

Region 6 𝑆61 𝑆62 Region 4 𝑆41 𝑆42 

 

Clockwise and counterclockwise rotations have the same procedure, but we have 

to agree on one and use it throughout whole procedures, here I choose clockwise 

rotations, therefore everywhere on this thesis when I mention rotation, it means 

clockwise rotation. 

 

A child can rotate an object without having any knowledge of geometrical 

definition of rotation and trigonometry; therefore I tried to define a method for 

rotating a shape much similar to the way a child might use than the normal methods 

which are benefiting from rotation matrix and trigonometry functions. My defined 

method uses Circular Shift that is much simpler and cheaper than trigonometry 

functions. My proposed method can rotate a shape  𝜃 °  ,𝜃 ∈ 𝑅 using only circular 

shift, but limiting rotation degrees to a finite set of angles is a significant inefficiency 

and I will cover this up by making some edits on this method in Leveling section 

(3.7) which enables my method to check for all rotations degrees in continues space 

rather than current discreet space.  

 

3.6 Match Measurement  

I measure match ratio between two shapes where one of the shapes is RAW (i.e. 

no transformation is applied on it) and the other one is the transformed shape. 
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𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (  𝑇𝑆ℎ𝑎𝑝𝑒𝐴  , 𝑆ℎ𝑎𝑝𝑒𝐵  ) 

I divide match measurement task into two separate steps:  

i. Count the number of segments of 𝑇𝑆ℎ𝑎𝑝𝑒𝐴 that match with corresponding 

segments in  𝑆ℎ𝑎𝑝𝑒𝐵. 

 

ii. Determine match ratio 

 
 

Consider the following abstractions of two assumptive shapes: 

𝑆ℎ𝑎𝑝𝑒𝐴  𝑇 𝑆ℎ𝑎𝑝𝑒𝐴  𝑆ℎ𝑎𝑝𝑒𝐵 
 1 2   1 2   1 2 

1 0 0 

𝑇∶𝑅 ( 120° )
�⎯⎯⎯⎯⎯⎯� 

5 46 163  1 46 163 
2 0 0 6 0 0  2 0 0 
3 0 0 1 0 0  3 0 0 
4 1 0 2 0 0  4 0 0 
5 46 163 3 0 0  5 0 0 
6 0 0 4 1 0  6 0 0 

 

To Count the matching segments, we could easily compare each row of 𝑇 𝑆ℎ𝑎𝑝𝑒𝐴 

with corresponding row of  𝑆ℎ𝑎𝑝𝑒𝐵. If we do so, all rows will match except the last 

rows that the 1st segment of 4th region of 𝑆ℎ𝑎𝑝𝑒𝐴 do not match with 1st segment of 6th 

region of  𝑆ℎ𝑎𝑝𝑒𝐵, but the 2nd

If the difference between two shapes is a member of set 𝑇𝑅 (combination of 

Translation (𝑇) and Rotation (𝑅)) then with this method of comparing two shapes, 

we might be able to determine a match, but if the difference between these shapes is 

not a member of set 𝑇𝑅 then this way of comparing two shapes would not be useful. 

For example consider the abstraction of two assumptive shapes given in Figure 3.8 

 segments of these regions match. Hence we could say 

11 segments out of 12 segments of these abstractions are matched with the applied 

transformation. 
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where the difference between two shapes is 115 degrees rotation that is not a member 

of 𝑅: 

  𝑅 =  { 0  ,15  ,30 ,45  ,60  ,75  ,90  , … , 345 }   

Hence with no swiping (circular shift) we might be able to map 𝑆ℎ𝑎𝑝𝑒𝐴 

on  𝑆ℎ𝑎𝑝𝑒𝐵 (shapes given by Figure 3.8). Although as I mentioned earlier using 

leveling technique we will be able to check for rotations in a continues space with 

any accuracy required at the point that could also cover 115 degrees, but as I 

mentioned leveling technique tunes the results in continues space, meaning that we 

should be able to estimate that the answer is about 120 degrees and then expect to 

determine 115 degrees in leveling process. To address this problem I used a 

threshold value while comparing the values of segments as below:  

 

𝑖𝑓  𝑆ℎ𝑎𝑝𝑒_𝐴_𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑆ℎ𝑎𝑝𝑒_𝐵_𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖   

𝑎𝑛𝑑 𝑆ℎ𝑎𝑝𝑒_𝐴_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑆ℎ𝑎𝑝𝑒_𝐵_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖 

 

If this condition is satisfied, then the segments will be considered as identical, if 

otherwise then the segments are not equal. 

 

In my implementation (I will explain this implementation in Chapter Five) I set 

this value manually and I allowed the user to change it. Through some tests, I noticed 

that in some cases lower values of threshold are useful while higher values are 

preferred for some other cases.  

 

The count of identical segments alone may not be proper factor of evaluating the 

similarity between two shapes. I defined a factor and named Match Ratio, also I 

defined five different functions for its calculation. The functions are as follows ( 𝐽 

(Joint segments) is the count of segments that are considered as identical, 𝐴 , 𝑇𝐴 and 

𝐵 are the number of segments with values greater than 0 of 𝑆ℎ𝑎𝑝𝑒𝐴, Transformed 

𝑆ℎ𝑎𝑝𝑒𝐴 and 𝑆ℎ𝑎𝑝𝑒𝐵 respectively): 
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1. Find 𝑆ℎ𝑎𝑝𝑒𝐴 in 𝑆ℎ𝑎𝑝𝑒𝐵 where 𝑆ℎ𝑎𝑝𝑒𝐴 is not allowed to lose any of its 

portions.  

 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =  
  𝐽 
𝐴

 × 100 

 

2. Find 𝑆ℎ𝑎𝑝𝑒𝐴 in 𝑆ℎ𝑎𝑝𝑒𝐵 where 𝑆ℎ𝑎𝑝𝑒𝐴 is allowed to lose some of its 

portions (e.g. Figure 2.3). 

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =  
  𝐽  

  𝑇𝐴  
 × 100 

 

3. Find 𝑆ℎ𝑎𝑝𝑒𝐵 in 𝑆ℎ𝑎𝑝𝑒𝐴  

 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =  
  𝐽  
𝐵

 × 100 

 

4. Compare the two shapes where 𝑆ℎ𝑎𝑝𝑒𝐴 is not allowed to lose any of its 

portions. 

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =  
  2 𝐽  
𝐴 + 𝐵

 × 100 

 

5. Compare the two shapes where 𝑆ℎ𝑎𝑝𝑒𝐴 is allowed to lose some of its 

portions. 

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =  
  2 𝐽  
𝑇𝐴 + 𝐵

 × 100 

 

These functions are used separately and they have different applications as 

mentioned. In my implementation user can choose either of these to be used during 

reasoning process. The combination of counting method and one of the different 

functions of match ratio calculation gives a proper and reliable value for match 

measurement, although in some cases I had to tune threshold value to achieve a 

proper answer.  
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Figure  3.8 Cardinality of landmark points inside each segment of two assumptive shapes where 
𝐧 = 𝟐𝟒 and 𝐦 could have any values because Regions (R) values (which are the sum of all 
segments inside each region) are shown here. 

 

 

3.7 Leveling 

Leveling is a supplement of Segmenting; it repeats segmenting procedure with 

different parameters until it achieves desired accurate results. Our goal is to 

determine a transformation 𝑓 = 𝑇𝑅  that maps 𝑆ℎ𝑎𝑝𝑒𝐴 on 𝑆ℎ𝑎𝑝𝑒𝐵 , but as we 

discussed in segmenting section for both translation and rotation we have a finite set 

transformations as follows:  

 

 𝑅 =  �  
360
𝑁

 𝑖  �   𝑖 = 0 , 1 , 2 , … ,𝑁 − 1  � (3.7.1) 

 𝑇𝑥 =  � �  
 −1 
𝑚

  , 0  ,
 1 
𝑚

  � �  𝑚 = 1 , 2 , … ,𝑀  � (3.7.2) 

 𝑇𝑦 =  � �  
 −1 
𝑚

  , 0  ,
 1 
𝑚

  � �  𝑚 = 1 , 2 , … ,𝑀  � (3.7.3) 

R 
01 

R 
02 

R 
03 

R 
04 

R 
05 

R 
06 

R 
07 

R 
08 

R 
09 

R 
10 

R 
11 

R 
12 

R 
13 
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 𝑇 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑥 𝑎𝑛𝑑 𝑇𝑦 (3.7.4) 

As it is obvious from these sets, the accuracy of using segmentation procedure 

only for once is quite dependent on segmenting parameters 𝑁 and 𝑀. But we cannot 

simply increase these parameters to achieve more accurate results, because doing so 

we will face a very huge search tree with a large number of segments to deal with, 

which is not optimal and is not practical to determine accurate transformations such 

as  𝑓 = 90.012° . Leveling technique solves this problem by running segmentation 

procedure for many times but each time it tunes the results of previous run. For 

leveling purpose I define:  

 

 𝐿𝑒𝑣𝑒𝑙 ∶ 𝐿 =  ℕ − { 0 , 1 , 2 } (3.7.5) 

 

I have excluded { 0 , 1 , 2 } because they would not result in proper  𝜃  for 

segmentation, I would generalize the definition of  𝜃  , 𝑁 and  𝑀 as follows: 

 

 

∀ 𝑙 ∈ 𝐿 ∶   𝑁 =  2 𝑙   ,    𝑀 =  2𝑙 

𝜃 =  
360
𝑁

     ,    𝜃 𝑙 =  
1
2

 𝜃 𝑙−1 
(3.7.6) 

 

As I mentioned earlier translation is not a compulsive operation and I am using it 

to determine partial matches if any exists, hence if partial matches determination is 

not desired we can simply set  𝑀 = 1.  

I divide the leveling procedure into three phases:  

Phase 1 . Initial Level 

i. Choose an initial value for  𝑙 ; it is better to choose it not too large for 

optimization reasons. I start with 𝑙 = 3 in my implementation. 

ii. Run segmentation on both shapes with parameters regarding to 𝑙 and make 

matrix 𝐴 for both shapes. 
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iii. Apply all possible transformation on 𝑆ℎ𝑎𝑝𝑒𝐴 and compare it with 𝑆ℎ𝑎𝑝𝑒𝐵. 

iv. Choose Υ best transformations (i.e. the transformations which resulted best 

match ratios) and pass them to next level. 

 

Phase 2 . Non-Initial Levels 

i. Increment 𝑙 one unit. 

ii. Run segmentation on both shapes with parameters regarding to 𝑙 and make 

matrix 𝐴 for both shapes. Incrementing 𝑙 one unit, doubles the number of 

segments of each level than the previous level, in other words, we are 

dividing each segment of previous level into two identical segments for 

current level.  

iii. For each of the transformations passed from previous level,  𝛼 , check 

for  𝛼 ±  𝛽 ,𝛽 =  { 0  ,1  ,2  , … , 𝜆 }. 𝜆  Defines a range to be checked for 

tuning purpose and in my implementation is given manually before reasoning 

process is started.  

iv. Choose Υ best transformations,  

• If the transformations are accurate enough then continue with next pair 

starting at Phase 1 

• If the transformations accuracy is not satisfactory continue to next level. 

• If all pairs are processed continue to Phase 3. 

 

Phase 3 . Use 𝛿 best transformations of each pair to reason the best 

transformation of the sequence. It is likely to have a transformation that resulted in 

high match measurement in one pair and a low match measurement on another pair; 

hence I choose transformations which have acceptable match measures for all pairs 

while they are not necessarily the best transformations of all pairs. Then I apply the 

chosen transformation on the last shape, which results the best candidate to stand as 

the shape after the last one in the sequence.  
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An example covering main portion of leveling procedure is given as following: 

 

Level 1 . (Initial Level) 

 𝑙 = 3  →   𝑁1 = 8   (3.7.7)  

 →   𝑅1 =  �   
360
𝑁1

 𝑖   �  𝑖 =  { 0, 1, 2, … , 7 }� (3.7.8)  

 
𝛼1 =  {𝛼11 ,𝛼12, … ,𝛼1Υ} 

𝑎 𝑠𝑒𝑡 𝑜𝑓 Υ 𝑏𝑒𝑠𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝐿𝑒𝑣𝑒𝑙 1 𝑡𝑜 𝑝𝑎𝑠𝑠 𝑡𝑜 𝐿𝑒𝑣𝑒𝑙 2 
(3.7.9)  

 

Level 2 .  

 𝑙 = 4 → 𝑁2 = 16 (3.7.10)  

→   𝑅2 =  �  𝛼 1𝑗   ±   
360
𝑁2

 𝑖  �  𝑖 =  { 0  ,1 , … , 𝜆  }   , 𝑗 =  { 1  ,2  , …  ,Υ }� (3.7.11)  

 𝛼2 =  {𝛼21 ,𝛼22 , … ,𝛼2Υ} (3.7.12)  

 

 

Level 3 .  

 𝑙 = 5 →   𝑁3 = 32 (3.7.13)  

→   𝑅3 =  �  𝛼 2𝑗   ±  
360
𝑁3

 𝑖  �  𝑖 =  { 0  ,1 , … , 𝜆  }    , 𝑗 =  { 1  ,2  , …  ,Υ }� (3.7.14)  

 

I should remind that during reasoning process I don’t use any rotation angles, 

instead I use shifting as I explained in Rotation section. The 𝑅 sets defined in 

previous example defined using rotation angles to ease the understanding of the 
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procedure for reader, otherwise as an example, 𝑅1 and 𝑅2 are actually defined and 

used as follows:  

𝑅1 =  � 𝑖 𝐶𝑆 �  𝑖 =  { 0  , 1 , …  , 7 }�   ,   𝐶𝑆 ∶ 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑆ℎ𝑖𝑓𝑡 (3.7.15)  

 𝛼1 =  {  𝛼11  ,𝛼12  , …  ,𝛼1Υ  } (3.7.16)  

𝑅2 =  �  2𝛼1𝑗  ±  𝑖 𝐶𝑆  �  𝑖 =  { 0 , 1 , … , 𝜆 }   , 𝑗 =  { 1  , 2  , …  ,Υ  }� (3.7.17)  

 

In  𝑅2 , 𝛼 is multiplied by two, because as we are dividing each segment into two 

identical segments for new level, we should multiply by two a circular shift on one 

level to address the same rotation for next level.  

 

As I mentioned previously, segmentation might result in two identical abstracts 

for two different shapes. This is a likely condition and is simply addressed by 

leveling technique. Two shapes will have two equal abstractions in all levels (i.e. 

with different segmentation parameters) if and only if the two shapes are exactly the 

same, but if the shapes are not the same and segmentation resulted in identical 

abstractions then we will have proper and different abstraction in one or a few levels 

(i.e. by changing segmentation parameters). Because actually by running 

Segmenting–Leveling method for more levels, we are taking more details of shapes 

into consideration which finally will reveal the difference between two shapes by 

resulting different abstractions. 

 

3.8 Correctness Verification 

Previously on this chapter I claimed that this method can determine any 

transformation (any combination of Rotation and Translation) between multiple 

shapes and can create the shape which suits best to stand after the last shape in the 

sequence, here I will verify this assertion.  
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If the difference between two shapes is rotation and the rotation angle,  𝜃 ∈ 𝑅1 

then obviously will be able to determine it, because as I explained in Rotation 

section, shifting will cover it up. Our problem is when  𝜃 ∉  𝑅1 , and I claimed that 

this will be covered up by using Leveling technique. For this claim, consider the 

following assumption:  

 �  ∃𝑖 ∈  { 1 , 2 , … ,𝑁 }  �   
360
𝑁

 (𝑖 − 1)   <    𝜃  ≤     
360
𝑁

𝑖   � (3.8.1)  

By definition of segmentation, these are the boundaries of 𝑖𝑡ℎ region that I divided 

it into 𝑀 segments. This assumption shows that we have only one range (region) 

where 𝜃 resides in, therefore as much as we narrow down this range, we get closer 

and closer to an accurate 𝜃. Also it is likely to confront some shapes which with 

multiple 𝜃s they can be mapped on each other, determination of multiple 𝜃s is also 

possible by Segmenting–Leveling  method, because as I mentioned, at each level I 

consider Υ rotation angles (see Figure 3.2)(Rotations angle is a part of a set of 

transformations passed to next level).  

Determination of a proper 𝑖 is quite vital, because improper 𝑖 can guide us to a 

dead end by eliminates proper ranges which using leveling we might be able to 

determine the accurate 𝜃. To be able to choose proper  𝑖’s the following solutions 

might be handy:  

 

1. Threshold 

I used a threshold value while comparing a pair, although choosing proper values 

for the threshold is a challenging problem, but since user can change it manually in 

my implementation we can assume by tuning it we could achieve proper values. 

Even though it is not reliable but for my current purpose I accept it with tunings.  

 

 

2. Multi Initial Levels  

Another solution which I suggest is to use multi initial levels, meaning that 

running a full search on possible ranges (like Level 1 as I explained) for more than 
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one level, although this could be useful but it can significantly increase the 

complexity of the solution.  

 

I claimed that using leveling that narrows down the (3.8.1) range; we could have 

an acceptable narrow range with 𝜃 considered to be rounded to the upper bound of 

the range, for this allegation consider the following:  

 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 ∶ 𝑙 ∈  ℕ− { 0 , 1 , 2 }  , 𝑁 =  2𝑙 (3.8.2)  

 

𝐿𝑒𝑣𝑒𝑙 1 ∶ 𝑙 = 3 → 𝑁 = 8 

𝐿𝑒𝑣𝑒𝑙 2 ∶ 𝑙 = 4 → 𝑁 = 16 

𝐿𝑒𝑣𝑒𝑙 3 ∶ 𝑙 = 5 → 𝑁 = 32 

… 

⟹ lim
𝑙→ ∞

2𝑙 =  ∞ → 𝑁 =  ∞ 

 

(3.8.3)  

 
360
∞

 (𝑖 − 1) <  𝜃 ≤  
360
∞

 𝑖    →    0 <  𝜃 ≤ 0 (3.8.4)  

This shows that we can continue leveling procedure for infinitely many times and 

at last we will have a range as narrow as it overlaps with 𝜃. Here are some points:  

a. As we noticed, 𝑖 is not important in infinity, therefore continuing to infinity 

could not be useful, although it is not practical.  

 

b. Actually we don’t need to continue leveling procedure to infinity, the number 

of levels we should run to achieve our desired accuracy can be calculated as 

following:  

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶  𝜀 (3.8.5)  
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𝑇ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑠 𝑛𝑎𝑟𝑟𝑜𝑤 𝑎𝑠 𝜀°

∶    
360
𝑁

 𝑖 −  
360
𝑁

 (𝑖 − 1) = 𝜀 
(3.8.6)  

 
360 𝑖 − 360 𝑖 + 360

𝑁
=  𝜀 →  

360
𝑁

=  𝜀 (3.8.7)  

 𝑁 =  2𝑙 →  
360
𝜀

=  2𝑙 →   𝑙 =  log2
360
𝜀

 (3.8.8)  

 → 𝑙 =  � log2
360
𝜀

  � (3.8.9)  

Hence we can determine the rotation angles between two shapes by running finite 

number of levels as calculated above, note that, the calculated 𝑙 is the maximum 

number of levels we need, however it is possible to achieve accurate results even in 

more early levels, this happens when 𝜃 is the border at a level or very close to the 

border. I concentrate on Rotation because the main goal of transformation 

determination in most of the previous works was Rotation, but however Translation 

is also verifiable in this way.  
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4CHAPTER FOUR 

IMPLEMENTATION 

SEGMENTING – LEVELING APPROACH 

 

In this chapter, I will explain a program that I developed to examine the 

Segmenting–Leveling method using Visual Studio .NET 4.0 technology; for this 

implementation, Windows Presentation Foundation (WPF) is used for interfaces and 

code behind is written in C#. To ease the tracing, I limited the number of levels to 

four; however the results are still acceptable.  

 

The implementation could be recursive, but since accessing statistical data (used 

for purpose of studying the performance) of each iteration is much simpler when the 

implementation is not recursive, therefore I defined separate classes for each level. 

Note that, non-recursive implementation would not be possible if I would not have 

had restricted the number of levels to four. 

 

The main function that runs levels between a pair has following procedures:  

1. Define classes Level – 1, Level – 2, Level – 3 and Level – 4. Despite of a lot of 

functions and parameters, each class has a member function named 

“Start_Reasoning” that runs reasoning process at the level and a list named 

“Matches” that stores best match measurements of transformation determination 

process results.  

2. Initialize classes with options that can be changed and tuned by user (see Figures 

in Appendix for the screenshot of this section) 

3. Call the “Start_Reasoing” function of Level – 1.  

4. Pass best transformations resulted from Level – 1 to Level – 2 (refer to section 

3.7 for details). 

5. Call the “Start_Reasoning” function of Level – 2.  

6. Pass best transformations resulted from Level – 2 to Level – 3. 
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7. Call the “Start_Reasoning” function of Level – 3.  

8. Pass best transformations resulted from Level – 3 to Level – 4. 

9. Call the “Start_Reasoning” function of Level – 4.  

10. Store the best transformations resulted from Level – 4 to be used in logic 

determination process between the input sequences of shapes.  

 

Since all of the levels have same structure, therefore in continue I will explain the 

structure and procedures taken in Level – 1 as a sample level. The steps are as 

follows:  

1. Segmentation; make matrix A (see section 3.2) for each of the shapes of given 

pair. Since the initial shapes (2-Dimensional) are presented by matrices (2-

Dimensional), therefore in linear time (𝜃 (𝑥𝑦) where 𝑥 is the number of columns 

and 𝑦 is the number of rows) we could read the initial shapes and create the 

matrix – A – liked matrix for each of shapes.  

 

2. Check for transformations using segmentation matrices. This procedure can be 

done using a structure similar to the simplified code given in section 2.3.  

 

3. When each transformation is applied on 𝐹𝑖𝑔𝑢𝑟𝑒𝐴 it will be compared with 

𝐹𝑖𝑔𝑢𝑟𝑒𝐵 and results are stored in a list of list of arrays defined and initialized as 

follows in C#: 

List<List<int[]>> Matches = new List<List<int[]>>(); 
 

for (int i = 0; i < 101; i++) 
{ 
   List<int[]> t = new List<int[]>(); 
   Matches.Add(t); 
} 

 
 

Now if we consider the match ratio (see section 3.6) is denoted by “Match_R”, 

then this transformation is stored as following in “Matches”: 

 
Matches[Match_R].Add(new int[] { Rotation_Angle, TX, TY }); 
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Where 𝑇𝑋 and 𝑇𝑌 are translation parameters on 𝑋 and 𝑌 axis respectively (see 

section 3.4). This method of storing checked transformations, guarantees sorted 

transformations regarding to their “Match Ratio” at each step and eases the 

selection of transformations with desired value of match measurement, hence the 

complexity of sorting is constant and equals to 𝜃 (1) also the complexity of 

fetching transformations with desired value of match measurement is constant as 

well.  

 

4.  The only difference between the simplified code given in section 2.3 and 

Segmenting–Leveling approaches code is the domain for each of 

“Apply_Rotation” and “Apply_Move” functions, where the domain of 

“Apply_Rotation” function is quite dependent to the best transformations passed 

from previous level and the domain of “Apply_Move” function depends on the 

pruning techniques explained in section 2.3. In creating the domain of 

“Apply_Rotation” function, duplicate rotations are avoided. Rotations from a 

level are passed to next level using following code (as an example here, from 

Level – 1 (L1)  to Level – 2 (L2)):  

 

int n = 0; // Number of Added Transformations 
for (int i = 100; i >= 0; i--) 
{ 
   for (int j = 0; j < L1.Matches[i].Count; j++) 
   { 
      // R_to_C : Rotations to be Checked 
      if (!L2.R_to_C.contains(L1.Matches[i][j][0])) 
      { 
         n++; 
         if (n <= Gama) 
            L2.R_to_C.Add(L1.Matches[i][j][0]); 
         else 
         { 
            j = L1.Matches[i].Count; 
            i = 0; 
         } 
      } 
   } 
} 
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R_to_C is defined in each level as following: 

List<int> R_to_C = new List<int>(); 
 

And finally the domain for “Apply_Rotation” that is denoted by “R” (see section 

3.7) is defined and initialized as follows:  

 

List<int> R = new List<int>(); 
 
private void initialize_Rotations() 
{ 
   // Note that R_to_C.count = Gama 
   for (int i = 0; i < R_to_C.Count; i++)    
      R.Add(R_to_C[i]); 
    
 
   for (int i = 0; i < R_to_C.Count; i++) 
   { 
      for (int j = -Upsilon; j < 0; j++) 
      { 
         int t = R_to_C[i] + j; 
 
         if (!R.Contains(t)) 
            R.Add(t); 
      } 
 
      for (int j = 1; j < Upsilon + 1; j++) 
      { 
         int t = R_to_C[i] + j; 
 
         if (!R.Contains(t)) 
            R.Add(t); 
      } 
   } 
} 
 
 

The reason that rotations passed from previous level are added to R separately 

and at first is that, because if we would have same match measurements for 

“R_to_C[i]” and “R_to_C[i] + Upsilon” we prefer to consider the 

“R_to_C[i]” rotation rather than “R_to_C[i] + Upsilon” for tunings and 

reasoning process, which this will not be possible (because of the structure of the 

implementation) unless we insert the “R_to_C[i]” to the beginning of the R list. 
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The R set creation process runs in constant time that is  𝜃 (𝐺𝑎𝑚𝑎 + 2 𝑈𝑝𝑠𝑖𝑙𝑜𝑛) ; 

because Gama and Upsilon are values set before the process is started and are 

independent of the size of input shapes.  

 

Now that the domains for “Apply_Rotation” and “Apply_Move” functions are 

defined the runtime complexity of transformation check procedure could be 

calculated as following:  

𝑂 ( ( 𝛾 + 2 Υ )  𝑀2 ) 

𝜔 ( 𝛾 + 2 Υ  ) 

 

Please refer to section 3.4 for  𝑀 . Best case runtime (𝜔) is achievable when the 

pruning techniques for Translation determination section works perfect or when 

partial matches are not desired and are avoided. Worst case runtime (𝑂) is expected 

when partial matches are desired and pruning techniques cannot prune even one 

translation. Note that, the runtime complexity is independent of the size of input 

shapes and is dependent to some parameters set by user where with the changes I 

mentioned in Chapter Four, these dependencies can be reduced. 

 

Having finished running levels, best results of transformation determination 

process between each pair are determined and stored sorted regarding to their score 

value in an array named “Overal_Result”. A sample of a portion of this array is given 

in Table 5.1, and the generation process of this array is given below: 

 

int[,] Overall_Results = new int[360, 3]; 
 
for (int i = 0; i < 101; i++) 
{ 
    for (int j = 0; j < L1.Matches[i].Count; j++) 
    { 
        if (Overall_Results[L1.Matches[i][j][0], 0] < i) 
            Overall_Results[L1.Matches[i][j][0], 0] = i; 
 
        Overall_Results[L1.Matches[i][j][0], 1] =  
            Overall_Results[L1.Matches[i][j][0], 1] + i; 
 
        Overall_Results[L1.Matches[i][j][0], 2]++; 
    } 
} 
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The given code is for Level – 1 only, which the same code is used for all checked 

levels as well. Using this process we determine the best match measurement 

achieved by a rotation angle, the number of times we met the rotation angle in 

“Matches” list and the score of that rotation angle which is the sum of all match 

measures we have for that specific rotation angle. 

 

Table  4.1 A sample of determined results of transformation between a pair 

Score Rotation Best Match Occur count 

4400 8 100 % 171 

3257 22 95 % 85 

2879 1 92 % 67 
  

 

A similar procedure as the last code will be used to determine best logics between 

the pairs (instead of reading from “Matches”, results from “Overall_Results” of all 

pairs will be considered), and applying these logics on the last shape standing in the 

input sequence, we can determine the best and all candidates to be the next standing 

in the sequence.  

 

I mainly concentrated on transformation determination process of this 

implementation and I tried to program it as optimal as possible. The analysis of 

runtime complexity shows a constant value regarding to the parameters set be user, 

which reveal a fair complexity of algorithm and implementation. Furthermore, the 

analysis of code and algorithm shows that this algorithm has an end.  

 

In this chapter I tried to cover all major points of the implementation, although 

there are many points and techniques used in this implementation both for sake of 

increasing running speed and algorithm optimization which are not mentioned here. 

Different types of data structures and programming techniques in addition to many 

features of XAML visual effects used to illustrate results are being benefited in this 

implementation. Some screenshots of the implementation are given in Appendix.  
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5CHAPTER FIVE 

CONCLUSION AND FURTHER RESEARCH 

 

The optimization I applied in coding of the naïve approach (Chapter Two) quite 

depends on input shapes, meaning that, for some shapes it works well while on some 

other shapes it has less effect. For the shapes that their crop size is almost the same 

as matrix size or even close to it, the optimization methods would not be handy. The 

other problem with this approach is the nature of its search pattern that it does not 

take into consideration the match measurement at each step, better say, it does a 

blind search. Consider the Figure 4.1; this chart is a part of the monitoring the 

performance of this method on a sample test.  
 

As is obvious in the Figure 4.1, at some stages this method approaches some 

proper match values, but instead of tuning the parameters to get better results, it 

continues to new parameters which in some stages led to worst match values. 

Although finally it determines the best transformation but this transformation might 

be achievable via much less transformation checks. 

 

I have tested the implementation of naïve approach on a number of shapes; overall 

average results of tests are presented in Table 4.1. This naïve approach may have 

proper answers in acceptable period for transformation determination process 

between a set of shapes, but since the optimization techniques are not reliable, this 

technique is not trustworthy.  

 

Table  5.1 the average results my implementation’s application on some test shapes. 

 Rotations 
Translation 

Total Optimization 
Ratio X - Axis Y - Axis 

No Optimization 360 99 99 3,564,360 0% 

With 
Optimization 

Simple Shape 360 7 14 35,280 99% 

Normal Shape 360 28 34 342,720 90% 

Complicated Shape 360 41 57 841,320 76% 
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In Chapter Three I proposed a solution for determination of best candidates to 

stand after the last member of a sequence of shapes and I named it Segmenting–

Leveling method. Furthermore, because I am using basic aspects of shapes for 

reasoning, I would also call this method “Reasoning with Shapes”. The first task for 

the reasoning purpose is to find the logic of the sequence, for this I tried to compare 

sequential shapes in pairs and determine the logic between them, then using these 

logics, I tried to reason the logic of the set and applying the logic on the last shape I 

deduced the candidate shape. 

  

To compare two shapes, I propose to derive abstractions of shapes and manipulate 

them instead of actual shapes. To make abstractions, I divide shapes into segments 

and set the cardinality of landmark points inside each segment as the value of the 

segment. Then I try to guess the transformation by checking for all possible 

transformations for the abstraction, and using Leveling I try to tune the guessed 

transformations to achieve a satisfactory accurate results.  
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Figure  5.1 Monitoring of transformation determination process in naïve approach is given, and shows 
that the naïve approach runs a state space search without taking into consideration the match 
measurements of each compare. 
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I verified the correctness of my proposed method; I showed that we will be able to 

determine the transformations and guess the requested shape, and also I proved that 

using finite and acceptable number of levels we can achieve as accurate results as we 

need.  

 

This method has numerous advantages over the naïve approach that I explained in 

Chapter Two. One of the most important advantages is the abstraction technique 

which this method benefits from that makes the runtime and complexity of this 

method independent of the size of shapes. The other advantage is, searching in 

continues space rather than discreet space that the naïve approach uses, which 

enables Segmenting–Leveling method to be able to determine transformations with 

any accuracy required that naïve approach is incapable of. Another advantage is 

complexity, where my proposed method can do transformation determination with 

much less compares and operations than the naïve approach.  

 

My method has some advantages over the methods available in literature. One of 

these advantages, as over naïve approach, is segmentation which makes the 

complexity of Segmenting–Leveling method independent of the size and complexity 

of input shapes. Another advantage is the complexity of operations, where the 

methods in literature use some complex roots such as SVD based roots which are 

costly to be used for simple operations with limited resources where my method use 

Circular Shift as basic operation which is much cheaper and easier to manipulate 

rather than SVD based roots. Also available methods have to deal with complex and 

costly matrix manipulations such as matrix multiplications that could be time and 

resource consuming when applied on huge matrices, where my proposed method is 

free of this problem.  

 

This method suffers from a proper definition for threshold value; it seemed to me 

that a dynamic threshold value might be a better option than a static value that I used 

here, which requires further research. 
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As I mentioned one of the main goals of my method is to use as simple and least 

resources as possible, although most of the method’s procedure satisfies this 

requirement, but segmentation task uses trigonometry functions to determine a 

proper segment for each landmark point which is not as simple as shift operation 

used for rotation determination. Since the main application of this method is in 

robotics, we may be able to use robots vision system to do segmenting by changing 

focus point and multi sensors similar to compound eyes of insects (in contrast to non-

compound eyes such as human eyes) to do segmenting task. This could be a great 

achievement that requires further research. 
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7APPENDIX 
 

Main window is shown on Figure A.1; here user can set the size of the matrices 

which shapes are presented by, the Outpour Threshold value for all levels and choose 

either of compare types. Also user can see the results of each level presented 

separately and grouped as 100% - 75%, 75% - 50%, 50% - 25% and 25% - 0%. User 

can choose whether to see the results of each level or the transformations passed to 

next level for tuning purpose. 

 

 

Figure A.1 Main Window 

User may choose whether to Load previously saved shapes by clicking on Load 

button or manually add shapes by clicking on Add New Figure button. If saved 

shapes are loaded, matrices sizes are read from the saved file and set and will not 

changeable. While manually defining shapes, matrices sizes must be set using two 

text boxes on upper-right corner of the window before clicking on Add new figure 

button.  

 

Manually adding figure form is shown on Figure A.2, user should try to draw 

shapes by using the combination of Lines and Circles. Defined shapes are listed on 
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the left most of the form and by double clicking on each of them user can review the 

drawn shape at any time; an example of this is given in Figure A.3. 

 

By clicking of Levels Options button, a set of options will be shown that allows us 

to set some properties for each of the levels such as the excepted range of match 

ratios to be passed to next level, maximum number of transformations to pass to next 

level and matching threshold value. These options are shown in Figure A.4.  

 

 

 

Figure A 7.2 Manually defining new shape interface 
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Figure A.3 Review a defined shape 

 

 

Figure A.4 The interface of setting up options for each of the levels separately  

 

Having finished defining figures and setting the desired values for options, 

clicking of Run Reasoning button runs reasoning process on the set of the defined 

shapes. This process is programed as multi-thread which keeps the form responding 

while running reasoning which allows us to review the figures during the reasoning 
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task being run. After the reasoning process is finished, results are ready for view. An 

example is given in Figure A.5. 

 

Figures are compared in couples, and the Couples are shown in Compared Figures 

section, choosing each of them we will be able to view the results of the leveling 

process of each. On Figure A.5, the compare result on level three for the selected 

couple is shown. Match ratio, Rotation angle and Translation for each of the results 

are displayed. Double clicking on any of the transformation, the selected 

transformations will be illustrated by an animation, see Figure A.6. 

 

 

Figure A.5 An example of comparing a couple of shapes 
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Figure A.6 The selected transformation is illustrated by an animation 
 

The statistics of comparing each of the couples is also available for view by 

clicking of Full statistics button. Doing so, a widow such as the one shown in Figure 

A.7 will be displayed with some options of displaying statistics.  

 

Figure A.7 View statistics of comparing each of the couples 
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Clicking on the Show Reasoning Result‘s button, the program uses the best 

transformations of all pairs to determine a shape which suits best to stand after the 

last shape in the sequence. The results of this task will be shown on a window such 

the one in Figure A.8. It informs us which transformation of each pair is chosen and 

what is the final analysis and also what are other candidates. Clicking on Illustrate 

Reasoning Results button, the program draws the determined best shape, see Figure 

A.9, the red shape is the best candidate and blue shapes are the figures in the 

sequence. Also by clicking on Next Candidate button we could see other candidates 

as well.  

 

Figure A.8 Reasoning Results 
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Figure A.9 Illustrated reasoning results 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

 
 

 

TABLE OF FIGURES 

Figure  1.1. Distance estimation by using visual information  ........................................ 2

Figure  1.2. To group the points in initial shape,   ........................................................... 4

Figure  1.3. A sample set of Points presenting a shape   ................................................ 13

Figure  2.1. Presenting a sample shape using a matrix   ................................................ 16

Figure  2.2. State space search for the transformation determination.   ......................... 17

Figure  2.3. A sample of partial match between two shapes is illustrated.   .................. 20

Figure  2.4 The manual shape input interface.   ............................................................. 23

Figure  4.1 Cropping the Shapes avoids unnecessary search for matches.   .................. 25

Figure  3.1 Determine the transformation between these two shapes   .......................... 27

Figure  3.2 A brief visualization of rotation determination procedure.   ....................... 28

Figure  3.3 Regions and Segments   ............................................................................... 29

Figure  3.4 Visualization of adding a dimension to 2D segmentation vectors   ............ 30

Figure  3.5 Different coordinate systems   ..................................................................... 32

Figure  3.6 Three sample cases of translation process are illustrated.   ......................... 34

Figure  3.7 Sample Rotations   ....................................................................................... 36

Figure  A.1 Main Window   ........................................................................................... 64

Figure  A.2 Manually defining new shape interface   .................................................... 65

Figure  A.3 Review a defined shape   ............................................................................ 66

Figure A.4 The interface of setting up options for each of the levels separately   ........ 66

Figure  A.5 An example of comparing a couple of shapes   .......................................... 67

Figure  A.6 The selected transformation is illustrated by an animation   ...................... 68

Figure  A.7 View statistics of comparing each of the couples   ..................................... 68

Figure  A.8 Reasoning Results   ..................................................................................... 69

Figure  A.9 Illustrated reasoning results   ...................................................................... 70

 


	CONTENTS
	1 CHAPTER ONE
	1.1 Real World Experiences
	1.2 Wahba’s Problem
	1.2.1 Markley’s Methods
	1.2.2 FOAM
	1.2.3 SOMA
	1.2.4 SVD – Based

	1.3 Procrustes Analysis
	1.3.1 Translation
	1.3.2 Isotropic and Anisotropic Scaling
	1.3.3 Rotation
	1.3.4 Match Measurement 

	1.4 Kabsch Algorithm

	2 CHAPTER TWO
	2.1 Naïve Approach
	2.2 Advantages and Disadvantages
	2.3 Implementation 

	3 CHAPTER THREE
	3.1 Introduction
	3.2 Segmentation
	3.3 Segment Determination for a Landmark Point
	3.3.1 Polar Coordinate System
	3.3.2 Cartesian Coordinate System

	3.4 Translation
	3.5 Rotation
	3.6 Match Measurement 
	3.7 Leveling
	3.8 Correctness Verification

	4 CHAPTER FOUR
	5 CHAPTER FIVE
	6 REFERENCES
	7 APPENDIX

