
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

REASONING WITH SHAPES

by

Vahid JALILI

July, 2012

İZMİR

REASONING WITH SHAPES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Vahid JALILI

July, 2012

İZMİR

ii

iii

ACKNOWLEDGMENTS

The research presented in this Master dissertation has been performed at the

Dokuz Eylul University, Izmir, Turkey. Activities towards the completion of this

thesis span two years of research and I wish to express my deepest appreciation and

gratitude in my acknowledgments to all who have contributed and guided me

through.

In the first place in my humble acknowledgment I would like to record my

gratitude to Prof. Dr. Suleyman Sevinc which this thesis would not have been

possible without his magnanimous supervision, advice and guidance from the very

early stage of this research. My growth as a researcher was enriched and inspired by

his passion and genius ideas in science and especially in Reasoning with Shapes. One

could not wish for a better and friendlier supervisor.

I am as ever especially indebted to my beloved wife and parents for their love,

pray, encouragements and indescribable support for my ambitions and aspirations. I

simply cannot thank them enough. I also wish to thank my sister for her love and

support during my studies.

It gives me great pleasure in acknowledging the support of Prof. Dr. Yalcin Cebi

and Asst. Prof. Dr. Adil Alpkocak, also I wish to express my deep appreciation to all

faculty members, dear colleagues and administrative staff of computer department

for their support and valuable assistant in completion of my thesis.

 Vahid JALILI

iv

REASONING WITH SHAPES
ABSTRACT

Optimal logic determination between a set of shapes could be quite utile in

computer vision. Investigation of Linear transformation in a set of shapes is a

challenging topic and has wide range of applications, such as in Robotics, Aircraft

and Satellite attitude determination and tracking systems. I propose a pictorial

solution for linear transformation determination problem, in contrast to current

optimal approaches that are benefiting from numerical roots.

I make abstractions of shapes and I try to determine the linear transformation

between the set of shapes by using inexpensive Boolean logics. The nature of my

solution decreases resource requirements and the complexity of a hardware

implementation.

Keywords: Reasoning with shapes, computer vision, machine vision, shape

abstraction, procrustes analysis.

v

ŞEKİLLERLE NEDENSELLEME
ÖZ

Şekiller arasındaki en uygun mantığın belirlenmesi bilgisayarla görmede oldukça

yararlı olabilir. Şekiller kümesindeki doğrusal dönüşümün araştırılması ilgi çekici bir

konudur ve robotik, uçak ve uyduların konumunu belirleme ve izleme sistemleri gibi

geniş uygulama alanları vardır. Sayısal temellerden yararlanan şu anki optimum

yaklaşımların aksine, doğrusal dönüşümün belirlenmesi problemine resimsel bir

çözüm öneriyorum.

Ben şekilleri soyutluyorum ve az maliyetli Boolean lojiğini kullanarak şekiller

arasındaki doğrusal dönüşümü belirlemeye çalışıyorum. Benim çözümümün doğası

kaynak gereksinimini ve donanım uygulamasının karmaşıklığını azaltıyor.

Anahtar Kelimeler: Şekillerle nedenselleme, bilgisayarla görme, makine görmesi,

şekil soyutlama, procrustes analizi.

vi

CONTENTS

Page

M.SC THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGMENTS .. iii

ABSTRACT ... iv

ÖZ ... v

1CHAPTER ONE – INTRODUCTION ... 1

1.1 Real World Experiences .. 1

1.2 Wahba’s Problem ... 5

1.2.1 Markley’s Methods .. 5

1.2.2 FOAM ... 6

1.2.3 SOMA ... 7

1.2.4 SVD – Based .. 8

1.3 Procrustes Analysis .. 9

1.3.1 Translation ... 10

1.3.2 Isotropic and Anisotropic Scaling .. 11

1.3.3 Rotation .. 11

1.3.4 Match Measurement ... 12

1.4 Kabsch Algorithm .. 13

2CHAPTER TWO – NAÏVE APPROACH ... 15

2.1 Naïve Approach .. 16

2.2 Advantages and Disadvantages .. 20

2.3 Implementation ... 23

vii

3CHAPTER THREE – SEGMENTING – LEVELING APPROACH 26

3.1 Introduction ... 26

3.2 Segmentation ... 28

3.3 Segment Determination for a Landmark Point ... 32

3.3.1 Polar Coordinate System .. 32

3.3.2 Cartesian Coordinate System ... 33

3.4 Translation ... 34

3.5 Rotation .. 35

3.6 Match Measurement ... 38

3.7 Leveling ... 42

3.8 Correctness Verification .. 46

4CHAPTER FOUR - IMPLEMENTAION .. 50

5CHAPTER FIVE – CONCLUSION AND FURTHER RESEARCH 56

6REFERENCES .. 60

7APPENDIX .. 64

1

1CHAPTER ONE

INTRODUCTION

1.1 Real World Experiences

Visual information that we gather from our environment plays an undeniable vital

role with a vast range of applications in our life (even blind people visualize their

environment in their own way), in continue I will mention some scenarios of this

type that we all have experience of, but how we handle the situations is not

completely clear to scientists yet.

Scenario A

A person is trying to cross a street; he\she looks at different sides of the street and

if there is no possibility of accident regarding to speed and direction of cars

movement, then crosses the street. This is a simple case of our interaction with

environment; an algorithmic look of the scenario could be as following:

1. Determine your crossing path and minimum time (𝑇1) needed to pass
2. Determine the cars coming your direction
3. Find the closest car to you in the set of cars coming your direction
4. Estimate its speed and distance from you
5. Calculate: “how long it takes for the car to reach your path with its current

speed? (𝑇2)”

6. If 𝑇1 < 𝑇2 or for more caution 𝑇1 ≪ 𝑇2 then you can cross (if you have
checked for an acceptable number of cars, if not goto (3) to check for more cars) else
you cannot cross the street.

To fulfill each of the steps of this algorithm we need some knowledge of physics

and some special devices to determine speed and distance. But can we argue that a

child (grown enough) has the knowledge and the equipment that can cross the street

safely? Surely not, it is analyzing the information (e.g. Visual information) which we

gather from environment that helps us to conclude whether we can safely cross the

street or not.

2

Scenario B

Does the person in Figure 1.1 can touch the wall or not?

If we know the values of 𝑋, 𝑋1 and 𝑋2 we could say the person can touch the wall

if 𝑋2 = 0 or if 𝑋 = 𝑋1. Laser-based or Radar/Sonar-based distance measurement

equipment can accurately determine 𝑋, 𝑋1 and 𝑋2, but in case we don’t have access

to these tools, we can estimate the values; but even for estimation we need to

measure the distance somehow. However, in our life we can answer such questions

with no need to these tools, just by using the visual information we receive from our

eyes.

Suppose a person who is standing on top of a rock; with a level of confidence the

person knows whether he\she will survive if jumps down. This issue is a challenging

problem in robotics, although some notable approaches are available (Mondragón

(2010)) but they are costly and most of them requires special equipment and aid such

as GPS antenna and height information. Despite of us, even animals are capable of

making this estimation without using such equipment that reveals the simplicity of

this task and importance of visual information.

Figure 1.1 Distance estimation by using visual information

3

Scenario C

In crowd we can distinguish the people whom we know (e.g. our parents, wife and

children) even if there are some other people who so look like each other, but if we

are asked to draw their faces we may not be able to, unless we have some painting

skills. But in computer science, if using an algorithm and a database we can

distinguish a person; we can use the same database and another algorithm to draw the

person’s face.

Scenario D

If we are given Figure 1.2 A and we are asked to group the points in the figure, we

could easily do the task, but what if the same figure is given to a computerized

program and the same question is asked? It might be a time consuming problem

regarding to the number of points we have in the figure (note that the cardinality of

points do not affect the complexity of the problem for us), one algorithm could be:

1. Determine the distance between all close pairs.

2. Calculate the mean distance.

3. Using mean value define a threshold for distance between pairs of same

group.

4. Using the threshold determine which points are in a same group.

Although it is not clearly known yet that how we solve the problem, but with our

experiences we guess the procedure demonstrated in Figure-2-B, might be our

method to solve the problem.

Currently available approaches can solve these scenarios and many more

scenarios of this type with accuracy, but for most cases we may prefer to sacrifice

this accuracy to achieve tolerable approximate answers in less time with dependency

to least and simplest equipment.

4

Figure 1.2 To group the points in initial shape, the demonstrated Procedure could

be an option. The 5th

shape in the Procedure shows two distinct shapes where the

outline of these shapes is the border that environs the two groups of points.

In scenario A, the person may not notice the plate number of each car, or the

clothes the drivers are wearing or even the exact model or color of cars; this does not

mean that the person did not see any of these. For example, the person saw the plate

number, but plate number was not important for the action he wanted to take at the

time, hence he simply avoided it, but if he is asked to take the plate number of the

cars in same situation instead of crossing the street, he may be able to read the plate

number, and the same goes for the color and model of the cars and the clothes the

driers are wearing.

This experience uncovers the role and necessity of abstractions we make for

essential data out of full visual information we receive from our eyes. By abstracting

we reduce the level of details to come up with less data to deal with, and I will use

this advantage in my approach.

5

1.2 Wahba’s Problem

Grace Wahba in 1965 defined a problem as follows:

Given two sets of n points {𝑣1 , 𝑣2 , … , 𝑣𝑛} , and {𝑣1∗ , 𝑣2∗ , … , 𝑣𝑛∗} ,

where 𝑛 ≥ 2 , find the rotation matrix M (i.e., the orthogonal matrix

with determinant +1) which brings the first set into the best least

squares coincidence with the second. That is, find M matrix which

minimizes ∑ �𝑣𝑗∗ − 𝑀𝑣𝑗�
2𝑛

𝑗=1 (Wahba (1965))

According to Wahba, solutions for the problem are mainly used in satellite

attitude determination; in addition, some other applications in Robotics (e.g.

Bruzzone & Callegari (2010)) and Tracking systems are defined. About a decade

later Paul Davenport proposed an optimal solution for Wahba’s problem, known as

q-method, he himself did not publish his method, but the method is explained in

details in (Markley & Mortari, M. (2000)) and (Shuster & OH (1981)), and according

to (Fallon & Harrop & Sturch (1979)) NASA used this method to support HEAO

missions. Another well-known solution is QUEST (QUaternion ESTimator), also

some other solutions are proposed, such as (Shuster & Natanson (1993)), (Keat

(1977)), (Shuster (1978)), (Mortari (1997)) and (Mortari (2000)).

1.2.1 Markley’s Methods

F. Landis Markley in (Markley (1993)) presented FOAM (Fast Optimal Attitude

Matrix) and SOMA (Slower Optimal Matrix Algorithm) and in (Markley (1988)) a

Singular Value Decomposition (SVD) based solution for Wahba’s problem.

Markley rewrites Wahba’s non-negative loss function as follows:

 𝐿 (𝐴) =
1
2

 �𝑎𝑖 |𝑏𝑖 − 𝐴𝑟𝑖|2
𝑛

𝑖=1

 (1.2.1.1)

Where 𝐴 is an orthogonal matrix to minimize the above loss function, 𝑛 is the

number of observations, 𝑎𝑖 are positive weights and 𝑏𝑖 and 𝑟𝑖 are unit vectors

6

representing corresponding observations in spacecraft body frame and unit vectors

that are directions to some observed objects in reference frame, respectively.

Markley used some matrix manipulations and rewrite (1.2.1.1) as follows:

 𝐿 (𝐴) = 𝜆0 − 𝑇𝑟𝑎𝑐𝑒 (𝐴 𝐵𝑇) (1.2.1.2)

 𝜆0 = �𝑎𝑖

𝑛

𝑖=1

 (1.2.1.3)

 𝐵 = �𝑎𝑖 𝑏𝑖 𝑟𝑖𝑇
𝑛

𝑖=1

 (1.2.1.4)

1.2.2 FOAM

Markley defines an iterative solution for 𝜆 and names it as FOAM, the procedure

of his method is as following:

1. Normalize input observation and reference vectors

2. Calculate 𝜆0 (for normalized weights we have λ0 = 1, Markley also solved

 λ0 for different conditions) and 𝐵

3. Calculate the following scalars:

 det𝐵 , ‖𝐵‖2 , ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2 (1.2.2.1)

4. Compute 𝜆 as following:

 𝜆𝑖 = 𝜆 𝑖−1 −
𝜓 (𝜆 𝑖−1)
𝜓′ (𝜆 𝑖−1)

 , 𝑖 = 1 , 2 , … (1.2.2.2)

𝜓 (𝜆) = (𝜆2 − ‖𝐵‖2)2 − 8𝜆 det𝐵 − 4‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2 (1.2.2.3)

(𝜓′ 𝑖𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝜓) 𝜓′ (𝜆) = 4 𝜆 (𝜆2 − ‖𝐵‖2) − 8 det𝐵 (1.2.2.4)

5. Solve the following to obtain optimal attitude estimation:

7

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐴 =
(𝜁 + ‖𝐵‖2) 𝐵 + 𝜆 𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵𝑇 − 𝐵 𝐵𝑇𝐵

Γ
 (1.2.2.5)

 𝜁 =
1
2

 (𝜆2 − ‖𝐵‖2) (1.2.2.6)

 Γ = 𝜁 𝜆 − det𝐵 =
𝜆
2

 (𝜆2 − ‖𝐵‖2) − det𝐵 (1.2.2.7)

1.2.3 SOMA

Before I continue with Markley’s SOMA method, I rewrite matrix B using SVD

and diagonal values of Σ as follows:

𝐵 = Μ Σ Ν𝑇

𝑆1 ≥ 𝑆2 ≥ | 𝑆3 |
(1.2.3.1)

Besides, Markley’s SOMA method which is in the form of an analytical solution

for 𝑆1 , has the following steps:

1. Normalize input observation and reference vectors (Same as FOAM)

2. Calculate 𝜆0 (for normalized weights we have λ0 = 1, Markley also solved

 λ0 for different conditions in (Markley (1993))) and 𝐵 (Same as FOAM)

3. Calculate the following scalars: (Same as FOAM)

 det𝐵 , ‖𝐵‖2 , ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2 (1.2.3.2)

4. Compute 𝜆 as following:

 𝜆 = 𝑆1 + (𝑆2 + 𝑆3) (1.2.3.3)

8

𝑆2 + 𝑆3 = �
 ‖ 𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵 ‖2 − � det𝐵

𝑆1
 �
2

𝑆12
+

 2 det𝐵
𝑆1

(1.2.3.4)

 𝑆12 =
1
3

 �‖𝐵‖2 + 2𝛼 𝑐𝑜𝑠 �
1
3

 𝑐𝑜𝑠−1 �
𝛽
𝛼3

 ��� (1.2.3.5)

 𝛼 = �‖𝐵‖4 − 3 ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2 (1.2.3.6)

𝛽 = ‖𝐵‖6 −
 9
2

 (‖𝐵‖2 ‖𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝐵‖2) +
27
2

 (det𝐵)2 (1.2.3.7)

5. Optimal attitude matrix determination is same as FOAM.

1.2.4 SVD – Based

Markley proposes the following steps for his SVD – based solution for Wahba’s

problem.

1. From (1.2) calculate B

2. Calculate SVD of B. (𝐵 = 𝑈𝑆𝑉𝑇)

3. Calculate 𝑑 as following:

 𝑑 = det𝑈 × det𝑉 (1.2.4.1)

4. Compute optimal matrix A as follows:

 𝐴𝑜𝑝𝑡 = 𝑈 [𝑑𝑖𝑎𝑔 (1 , 1 ,𝑑)] 𝑉𝑇 (1.2.4.2)

5. Computed minimized loss function as follows:

 𝐿 �𝐴𝑜𝑝𝑡� = 1 − 𝑠1 − 𝑠2 − 𝑑𝑠3 (1.2.1.5)

Where 𝑠1 ≥ 𝑠2 ≥ 𝑠3 are the diagonal values of 𝑆.

9

1.3 Procrustes Analysis

In Greek mythology, a character exist named Procrustes (or the stretcher,

Prokoptas or Damastes); he was a bandit who used to suite his victims to his iron bed

by racking, hammering or amputation. His fashion forms a root in statistical shape

analysis, which is called Procrustes Analysis. In Procrustes analysis, two or more

shapes are considered as identical if after Procrustes Superimposition, which is by

applying transformations such as Translation, Uniform/Un-Uniform Scaling,

Rotating and Reflection, the shapes coincide, if they do not coincide, or better say, if

their Procrustes Distance is not zero, then their similarity is measured by the value

of Procrustes Distance.

If all transformations are checked in Procrustes superimposition, then it is called

Full Procrustes Superimposition (FPS), and when scaling is not included, it is

referred as Partial Procrustes Superimposition (PPS).

Notable solutions for Procrustes Analysis are available, of those, some methods

presented in (Gover & Dijksterhuis (2004)) and (Thomas (2006)). In reference

(Gover & Dijksterhuis (2004)) an overall of some notable previous works is

provided, here I summarized some parts of that information in a tabular format in

Table 1.1; interested readers are advised to refer to reference (Gover & Dijksterhuis

(2004)) for more details.

Table 1.1 Brief specification of some notable works regarding to Procrustes Analysis are given.O:

Orthogonal Matrix, P: Orthogonal Projection Matrix, S: Least Square, G: Group Average, I: Inner

Product

Comment Author Year Sets count O P S G I

Full Rank Matrices Green 1952 2 * *
Deficient Rank case Schonemann 1966 2 * *

Two-Sided Cliff 1966 2 * *
Pairwise Gower 1971 K * *
PINDIS Borg, Lingoes 1978 K * *

 Ten Berge, Knol 1984 K * * *
 Peay 1988 K * *
 Dijksterhuis, Gower 1991 K * * * *

10

In statistical shape analysis, Procrustes analysis for two inputs is defined as to

solve the following expression for 𝑇 that minimizes the statement:

 ‖𝑉1𝑇 − 𝑉2‖ (1.3.1)

Where 𝑉1 is the traveler, 𝑇 is the Procrustes superimposition, 𝑉2 is the iron bed

and ‖𝑋‖ means Euclidean/Frobenius norm 𝑡𝑟𝑎𝑐𝑒(𝐴′𝐴), the sum-of-squares of

elements of 𝐴. In other words, 𝑉1 is shapes 1, 𝑉2 is shape 2 and 𝑇 is the

transformation which if applied on 𝑉1 results 𝑉2 in case that the two shapes are

identical.

1.3.1 Translation

As first step of Procrustes superimposition, we start with simplest transformation

which is Translation. To be able to compare a set of shapes, all shapes must be

transformed into an identical coordinate so that the centroid of all shapes coincides,

this coordinate could be whether the center of coordinate system or any specific

coordinate. We could write the translation applied form of (1.3.1) as following:

 ‖(𝑉1 − 1𝑡1′) 𝑇 − (𝑉2 − 1𝑡2′)‖ (1.3.1.1)

We denote a matrix whose column vectors are one by 1. Since only proportional

position of origin is important for us, from (1.3.1.1) we could have the following:

 𝑡′ = 𝑡1′ 𝑇 − 𝑡2′ (1.3.1.2)

That by substituting (1.3.1.1) in (1.3.1.2) we will have:

 ‖𝑉1𝑇 − 1𝑡′ − 𝑉2‖ (1.3.1.3)

And in case the equation (1.3.1) is preceded by a weighting matrix, that is:

11

 ‖𝑊𝑉1𝑇 − 𝑉2‖ (1.3.1.4)

Where 𝑊 is the weighting matrix; the translated form of (1.3.1.4) will be:

 ‖ 𝑊 (𝑉1 − 1𝑡1′) 𝑇 − (𝑉2 − 1𝑡2′) ‖ (1.3.1.5)

Interested readers in the generalized form of (1.3.1.5) are advised to refer to

reference (Gover & Dijksterhuis (2004)) for more details.

1.3.2 Isotropic and Anisotropic Scaling

The second step of Procrustes superimposition is as simple as the first step; for the

cases that 𝑇 is not constrained by any means, an isotropic scaling factor is a scalar

which we denote by 𝑆 that is multiplied to 𝑉1 as following:

 ‖𝑆𝑉1𝑇 − 𝑉2‖ (1.3.2.1)

Note that, 𝑆 is a scalar in isotropic scaling so it can be ingested into 𝑇 , but for

anisotropic scaling, 𝑆 is a matrix that despite unlike isotropic scaling it can’t be

assimilate into 𝑇 , the order of multiplication is also important, that is:

 ‖𝑉1𝑆𝑇 − 𝑉2‖ ≠ ‖𝑉1𝑇𝑆 − 𝑉2‖ (1.3.2.2)

1.3.3 Rotation

In case that 𝑇 is not constrained by any conditions, we can solve (1.3.1) for 𝑇 as

follows:

 𝑇 =
 𝑉1′ 𝑉2
 𝑉1′ 𝑉1

 (1.3.3.1)

We can write 𝑇 in a SVD form, doing this, we can result:

12

 𝑇 = 𝑈Ʃ𝑊′ → ‖ 𝑉1𝑈Ʃ𝑊′ − 𝑉2 ‖ = ‖𝑉1𝑈Ʃ − 𝑉2𝑊‖ (1.3.3.2)

This change in format means rotating 𝑉2 to a position that matches rotated 𝑉1

along with scaling. For conditions where any restriction(s) is (are) on 𝑇 , please refer

to reference (Gover & Dijksterhuis (2004)) - Chapter 13.

1.3.4 Match Measurement

Best match for (1.3.1) maybe measured using different criteria such as Correlation

and Inner product, Least Squares Criteria and Matching of Rows and Columns .To

measure match using Least Squares, in case 𝑇 is not constrained in anyway, we can

treat 𝑉1 and 𝑉2 symmetrically by doing either given (a) or (b):

a. Two-Sided variant: Solve (1.3.4.1) for 𝑉1 and 𝑉2 where both matrices have

same number of columns. The resulting from (1.3.4.1) is trivial null solution.

 𝑆 = ‖𝑉1𝑇1 − 𝑉2𝑇2‖ (1.3.4.1)

b. We can rewrite (1.3.1) as (1.3.4.2), here the point is, (1.3.4.2) deem to be

generalization of Procrustes problem when we have no apprehension of target

matrix.

1
4

 𝑆 = �𝑉1𝑇 −
1
2

(𝑉1𝑇 + 𝑉2𝑇)� = �𝑉2𝑇 −
1
2

(𝑉1𝑇 + 𝑉2𝑇)� (1.3.4.2)

1
2

 𝑆 = ��𝑉𝑛𝑇 −
1
2

(𝑉1𝑇 + 𝑉2𝑇) �
2

𝑛=1

 (1.3.4.3)

13

1.4 Kabsch Algorithm

Wolfgang Kabsch propose an orthogonal solution for orthogonal partial

Procrustes problem in (Kabsch (1976)) and (Kabsch (1978)), by an SVD based

solution he tries to minimize the Root Mean Squared Deviation (RMSD) of two input

sets, when determinant of rotation matrix is one. Unlike some solution for Procrustes

problem that finds rotation around a single axis, Kabsch algorithm calculates

transformation to a different orthonormal basis. Although Kabsch algorithm only

calculates Rotation, but before checking for rotation, it requires a translation

operation to coincide the centroid of the inputs.

Kabsch algorithm applies on two shapes where each shape is represented by a set

of points. A sample set of points of a shape (Shape 1) is illustrated in Figure 1.3, the

set consisting of two, three and in general, 𝑑 columns presents the shape in a two

dimensional (2𝐷), three dimensional (3𝐷) and d-dimensional coordinate system

respectively. 𝑛 Is the number of points presenting the shape, more points gives more

details about the shape, which can increase the accuracy of the transformation

determination and match measurement process.

Different methods for extraction of points from shapes are available in literature,

of this landmarks are notable, triple classify of landmarks are: (I) Anatomical

Landmarks, (II) Mathematical Landmarks and (III) Pseudo Landmarks

Shape 1

(P : Point)

2 Dimensional 3 Dimensional 𝑑 Dimensional

P1 𝑋1 𝑌1 P1 𝑋1 𝑌1 𝑍1 P1 𝐷11 𝐷21 … 𝐷1𝑑

P2 𝑋2 𝑌2 P2 𝑋2 𝑌2 𝑍2 P2 𝐷21 𝐷22 … 𝐷2𝑑

P3 𝑋3 𝑌3 P3 𝑋3 𝑌3 𝑍3 P3 𝐷31 𝐷32 … 𝐷3𝑑

 … … … … … … … … …

P n 𝑋𝑛 𝑌𝑛 P n 𝑋𝑛 𝑌𝑛 𝑍𝑛 P n 𝐷𝑛1 𝐷𝑛2 … 𝐷𝑛𝑑

Figure 1.3 A sample set of Points presenting a shape (Shape 1)

14

Kabsch algorithm runs in five steps as following (𝑉 ∶ Shape 1 and 𝑊 ∶ Shape 2):

1. Translation

2. Calculate 𝐴 from the equation:

 𝐴 = 𝑉𝑇𝑊 (1.4.1)

3. Calculate the SVD of 𝐴

 𝐴 = 𝑀 Σ 𝑁𝑇 (1.4.2)

4. Calculate optimal rotation matrix 𝑅

𝑅 = 𝑁 �

 1 0 0
 0 1 0
 0 0 𝜂

� 𝑀𝑇

 𝜂 = 𝑆𝑖𝑔𝑛 (det𝐴)

(1.4.3)

15

2CHAPTER TWO

REASONING WITH SHAPES

NAÏVE APPROACH

Grace Wahba defined a problem and some novel approaches are proposed and are

widely used; the Procrustes problem is almost the same as the problem that Wahba

defined, only that in Procrustes analysis we have a more pictorial definition of the

problem than Wahba’s problem. Some novel algorithms such as Kabsch algorithm

are available for Procrustes problem that are practical and in use.

An infant has intuitive understanding of cardinality and shape of objects and could

understand whether two objects are the same but only transformed (Rotated, Scaled,

symmetrized) or the objects are different (Izard & Dehaene-Lambertz & Dehaene

(2008)). It would not be wise if we argue that a child has knowledge of the numerical

solutions instinctively; because, not even infants but all people was able to

manipulate objects even before mathematics exists; the tools and painting found

inside caves that are dated back to thousands years ago is a proof.

My goal is to solve the problem in more pictorial root with least possible

dependency on mathematics than Procrustes analysis roots. To achieve this goal, first

I redefine the problem with some tunings as follows:

1. Given the set :

 { 𝑆ℎ𝑎𝑝𝑒1 , 𝑆ℎ𝑎𝑝𝑒2 , … , 𝑆ℎ𝑎𝑝𝑒𝑛 }

a. Determine the transformation 𝑇 between any pairs as:

𝑇𝑚 = ⟨ 𝑆ℎ𝑎𝑝𝑒 𝑚 , 𝑆ℎ𝑎𝑝𝑒 𝑚+1 | 𝑚 ∈ { 1 , 2 , … ,𝑛 − 1 } ⟩

Where 𝑇 ∈ (𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ,𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 , 𝑆𝑐𝑎𝑙𝑒)∗

b. Ensure the candidates to be 𝑆ℎ𝑎𝑝𝑒 𝑛+1 by applying highly probable 𝑇s’

from { 𝑇1 , 𝑇2 , … , 𝑇𝑛 − 1 } on 𝑆ℎ𝑎𝑝𝑒 𝑛 in a descending order (i.e. The

candidates with higher probabilities comes first and candidates with lower

probabilities comes last)

16

2. (Auxiliary) Find 𝑆ℎ𝑎𝑝𝑒𝑚 in 𝑆ℎ𝑎𝑝𝑒 𝑛

Of the ideas addressing the mentioned problems, a RAW approach seemed useful

to me and I checked it in more details. Although the naïve approach that I checked

was not acceptable at first because of the lack of any advantages over previous

approaches despite of its reasonably fast and accurate results with some

optimizations that I made during programing; but it worth reviewing because it is the

base of the Segmenting–Leveling approach. In continue we will have a brief

description of the naïve approach and next we will continue with Segmenting–

Leveling approach in Chapter Three.

2.1 Naïve Approach

I use 𝑥 × 𝑦 matrices with entries { 0 , 1 } to present shapes in this naïve approach,

as illustrated in Figure 2.1 for a sample shape, the values of black cells are 1 and white cells

are 0.

Figure 2.1 Presenting a sample shape using a matrix with values { 𝟎 ,𝟏 }

As a naïve approach, in order to ascertain 𝑇 for any pair I will do a state space

search in a discreet coordinate system using a tree structure (illustrated in Figure

2.2). As an example, translation check for a single rotation angle of two very simple

shapes presented by 3 × 3 matrices is illustrated in Figure 2.3. The example in

Figure 2.3 belongs to 0 degrees rotation, for the rest of the rotations, first I will

17

rotated shape-1 then I will check for Translation as in Figure 2.3, meaning that I will

repeat the process demonstrated in Figure 2.3 for 259 times and each time using

 𝜃 degrees rotated of shape-1.

To optimize the process, only coordinates of incidences are stored and

transformations are applied on the incidences, as following for the given sample

shape (Shape – 1):

Shape - 1 X

 0 1 2

 0 X Y

Y 1 Point 1 1 0

 2 Point 2 1 1

Figure 2.2 State space search for the transformation determination between Shape-A and Shape-B is

given. “X” and “Y” are the number of columns and rows of the matrix presenting the shapes

respectively.

18

Figure 2.3 Part B. All translations that should be checked for given shapes are illustrated. The
circled areas of shapes will be compared with each other. The first number inside the
parentheses refers to translation units on X axis and second number refer to translation units on
Y axis and the percentage value is the match percentage.

19

I use the rotation matrix for applying 𝜃 degrees rotation on a shape, the rotation

matrix could be written using matrix multiplication as following:

𝑋′ = 𝑋 cos𝜃 − 𝑌 sin𝜃

𝑌′ = 𝑋 sin𝜃 + 𝑌 cos𝜃

Therefore, as an example, 90 degrees rotation of Shape-1 can be calculated as

following:

As shown above, the new coordinate for Point-2 on 𝑋 axis falls out of the matrix

that presenting the Shape-1. This is not a problem or bug, because:

a. Translation process can bring this point inside the matrix.

b. This allows us to check for partial matches. As an example, for shapes in

Figure 2.4 we may not be able to determine any transformation that maps

them to each other using the mentioned approaches, but by benefiting the

advantage of this point (i.e. allowing some sections of shape to fall out of the

valid ranges of matrix) we can determine a proper transformation. If we

compare the valid region of Shape 1 – RT (i.e. the point with coordinates ≥

0) with Shape 2, then we will have 100 % match between these two shapes.

 𝑿 𝒀 𝑿′ 𝒀′

Point 1 1 0 1 cos 90 − 0 sin 90 = 0 1 sin 90 + 0 cos 90 = 1

Point 2 1 1 1 cos 90 − 1 sin 90 = −1 1 sin 90 + 1 cos 90 = 1

 0 1 2

90 𝐷𝑒𝑔𝑟𝑒𝑒𝑠
𝑅𝑜𝑡𝑎𝑡𝑒𝑑�⎯⎯⎯⎯⎯⎯⎯�

 -1 0 1 2

0 0

1 1

2 2

20

Shape 1 Shape 2

 0 1 2 3 4 0 1 2 3 4

0 0

1 1

2 2

3 3

4 4

Shape 1 – R Shape 1 – RT

 -4 -3 -2 -1 0 1 2 3 4 -1 0 1 2 3 4

0 0

1 1

2 2

3 3

4 4

Figure 2.3 A sample of partial match between two shapes is illustrated.

Shape 1 – R: 90 Degrees rotation of Shape 1

Shape 1 – RT: Transformed (X : +3 , Y : -1) Shape 1 – R

2.2 Advantages and Disadvantages

Since this method is checking for all combinations of translation and rotation in

discreet space, we can argue that this method will definitely determine the

transformation between the input shapes, if and only if the transformation is a

combination of translation and rotation. But unfortunately this is the only

mentionable advantage of this method in contrast to some significant disadvantages.

To study the disadvantages we would consider two sample shapes presented by two

fairly small, 50 × 50 matrices (here we consider the worst case scenario, where all

cells has value = 1; in practice this may happen rarely, because such a shape means

nothing but a full black (or any other color) box that for obvious reasons has no value

21

in transformation determination procedure). With following assumptions, the details

of expenses of using the naïve approach are given in Table 2.1.

𝑟 = 360

𝑋 = (50 × 2) − 1 = 99

𝑌 = [(50 × 2) − 1] 2 = 9,801

𝐶 = 50 × 50 = 2,500

𝐹𝑜𝑟 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 �
𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑋

𝑌𝑛𝑒𝑤 = 𝑌𝑜𝑙𝑑 + 𝑌

�

Table 2.1 Expenses of the naïve approaches usage

Description Count

Search Tree
Size

Nodes 𝑟 + 𝑟𝑋 + 𝑟𝑌 ≅ 3.56 × 106

Leaves 𝑟𝑌 ≅ 3.52 × 106

Rotation

Sin 2𝑟𝐶 = 1.8 × 106

Cos 2𝑟𝐶 = 1.8 × 106

Floating Point Multiplication 4𝑟𝐶 = 3.6 × 106
Floating Point Addition /

Subtraction 2𝑟𝐶 = 1.8 × 106

Translation Integer Addition/Subtraction 2𝑟𝐶𝑌 = 1.764 × 1010

Comparing
Compare Times 𝑟𝑌 = 3.52 × 106

Two Cells Comparison 𝑟𝐶𝑌 = 8.82 × 109

It is obvious from these quite large numbers (for a quite small size matrix) that

this naïve approach is not practical at all. Despite of the method, it is the cardinality

of the cells that we deal with which results the impracticality of this method. To

decrease the number of cells I tried:

22

A. Random Figures

Instead of handling full shapes, we may abstract a random shape out of the initial

shape which has less number of points than the initial shape. Since we are decreasing

the number of points, the number of required calculations will be decreased which

results increasing running speed. The accuracy of this method is in direct relation

with the number of cells we choose randomly, that is, for more selected cells we will

have more accurate results; but by increasing the number of randomly selected cells

actually we are rolling back to the initial problem!

B. Scale – RAW

Another technique that I checked was Scale – RAW, that is, before checking for

transformation I resized the shape to get a smaller shape which has fewer cells to

handle. This technique could increase the running speed too, but the same problem as

Random Figures exists here as well.

Both mentioned techniques share a considerable problem that is, in the process of

random selection or rescaling, there is no guaranty that we select or keep some key

points of the shapes which are critical for transformation determination procedure.

As an example consider the following shapes

The only difference between these two shapes is a single cell (located on upper-

right and bottom-right corners), but we cannot guaranty that we will have these cells

in manipulated shapes (i.e. abstracted or scaled shapes). This weakness makes these

techniques unreliable for transformation determination procedure.

23

2.3 Implementation

I have implemented this naïve approach in C# .NET 4.0 and here I will explain

some major sections of the code briefly. As we discussed, shapes are presented by

matrices in this implementation and for optimization reasons, only the incidences

(the cells of matrix which has value = 1) are stored in a 𝑛 𝑏𝑦 2 matrix (𝑛 points and

 (𝑥 ,𝑦) coordinate for each point). Shapes could be input whether manually using a

GUI (Graphical User Interface) as shown in Figure 2.4 or by loading previously designed

and saved shapes.

Figure 2.4 The manual shape input interface.

A simplified code for implementation of the structure demonstrated in Figure 2.2

is as follows:

void Run_Reasoning()
 {
 while (Rotate())
 {
 X_step = -X;
 Y_step = -Y - 1;

 while (Move())
 Compare();
 }
 }

24

bool Rotate()
 {
 if (Teta < 360)
 {
 Apply_Rotation();
 return true;
 }
 else
 return false;
 }
bool Move()
 {
 Y_step++;

 if (Y_step <= Y)
 {
 Apply_Move();
 return true;
 }
 else
 {
 X_step++;

 if (X_step <= X)
 {
 Y_step = -Y;
 Apply_Move();
 return true;
 }
 else
 return false;
 }
 }

In this implementation I used neither Random figures nor Scale – Raw

optimizations. The optimization I applied in coding affects Translation check process

where significantly increased running speed and decreased the number of nodes to

check for. The optimization consists of two parts, Cropping and Out-pour control.

As I illustrated in Figure 2.5, most of the space of the matrices presenting the shapes

are empty, therefore our search for any match/partial-match between the two shapes

in Figure 2.5 in the empty regions will not give us any answers, thus cropping the

shapes and searching inside the crop will be a great advancement. Crop is a

rectangular region that whelms the shape; the upper-left and bottom-right corners of

the crop rectangles for each of the shapes in Figure 2.5 is given under the matrices.

25

Although cropping optimizes the translation process by defining a new range for

translation check, but still we will be checking for some translations which are far

from resulting proper answers. As an example, consider the translation (𝑋: 3 ,𝑌: 0),

this translation puts only the cell at coordinate (4 , 5) – bottom-left cell, inside the

crop of Shape-2 and leaves most of the cells of Shape-1 beyond the crop, therefore

this translation could not be useful for the process (because of comparing a fraction

of Shape-1 with complete shape-2). To avoid these translations, we define a

parameter named Out-pour threshold which limits the translation ranges to the

ranges those keep the percentage of Shape-1 defined by out-pour threshold inside the

crop of Shape-2. This parameter can be defined either manually of allowing the

application to determine it automatically.

Shape 1 Shape 2

𝐶𝑟𝑜𝑝 ∶ [(2 , 1) , (4 , 5)]

𝐶𝑟𝑜𝑝 ∶ [(7 , 5) , (9 , 9)]

[(𝑋11 ,𝑌11) , (𝑋12 ,𝑌12)] [(𝑋21 ,𝑌21) , (𝑋22 ,𝑌22)]

Range

Length
From to

X – Axis
Before Crop −9 9 19

After Crop 𝑋21 − 𝑋12 = 3 𝑋22 − 𝑋11 = 7 (7 – 3) + 1 = 5

Y – Axis
Before Crop −9 9 19

After Crop 𝑌21 − 𝑌12 = 0 𝑌22 − 𝑌11 = 8 (8 – 0) + 1 = 9

Figure 2.5 Cropping the Shapes avoids unnecessary search for matches; the range of translation search
before optimization is defined above and is compared with the new range for translation search with this
optimization.

26

3CHAPTER THREE

REASONING WITH SHAPES

SEGMENTING – LEVELING APPROACH

3.1 Introduction

If we are asked regarding to the people we saw while walking on a street, we may

not be able to remember anyone, but we can’t argue that we did not see people on

street. We see the entire environment within our visual range, but we only see

focused objects in details and the rest of environment unclear, hence it is reasonable

to argue that instinctively we make abstractions of our environment with a level of

details we need at moment. As another example, consider a driver driving at high

speed in a highway, the driver sees the cars in front, but he only pays attention to the

distance of the cars and their speed and avoids unnecessary details such as exact

model of the cars, plate numbers and drivers, in order to handle the situation. This

reveals the vital role of abstractions in our life; this technique is the base of my

Segmenting – Leveling approach.

Consider Figure 3.1; if we are asked to determine the transformation between the

two shapes; we can determine landmark points1

1 A shape can be described by a finite set of points, named Landmark points. Landmark points have
three different types as follows:

 (Pseudo – Landmark) of the shapes

and present them in two matrices, and then using Procrustes analysis or solutions of

Wahba’s problem we can accurately determine the transformation between the

shapes. But in some situations we may prefer to sacrifice this accuracy to achieve a

fast and cheap (from aspect of complexity) approximate answers. As for Figure 3.1,

we may accept the answer “about 45 degrees Rotation” while the accurate answer is

“33 degrees Rotation”.

i. Landmark points assigned by an expert to represent a biological object that is called Anatomical
Landmarks.

ii. Landmark points that are assigned by mathematical property is known as Mathematical
Landmarks.

iii. Pseudo Landmark is between i and ii

27

Figure 3.1 Determine the transformation between these two shapes

In Segmenting-Leveling method, like the naïve approach, I will do a state space

search using a tree structure similar to the structure given in Figure 2.2. A pair of

shapes will be considered, a transformation will be applied of one of the shapes and

that shape will be compared with the other one, the transformations which result in

best match measures, are candidate transformations. Generally:

𝐼𝑛𝑝𝑢𝑡 𝑠ℎ𝑎𝑝𝑒𝑠 ∶ 𝑆ℎ𝑎𝑝𝑒1 , 𝑆ℎ𝑎𝑝𝑒2 , … , 𝑆ℎ𝑎𝑝𝑒𝑛

𝐴𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 ∶ 𝑇 = � 𝑇1 ,𝑇2 , … ,𝑇𝑗 �

𝑖 ∈ { 1 , 2 , … ,𝑛 − 1 } , 𝑡 ∈ { 1 , 2 , … , 𝑗 }

∀ 𝑖 , 𝑡 ∶ 𝐶 𝑖 𝑡 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (𝑇𝑡 𝑆ℎ𝑎𝑝𝑒𝑖 , 𝑆ℎ𝑎𝑝𝑒𝑖+1)

∀ 𝑖, 𝑡 ∃ 𝑡′ ∈ { 1 , 2 , … , 𝑗 } ∶ 𝐶𝑖 𝑡′ ≥ 𝐶𝑖 𝑡

𝑅𝑒𝑎𝑠𝑜𝑛 𝑏𝑒𝑠𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑒𝑡 𝐶𝑖 𝑡′

In contrast to naïve approach that search a discreet space for best transformations,

Segmenting-Leveling approach runs in continues space. Hence, I will run a state

space search more than once based on required accuracy. Also unlike naïve approach

that manipulates shapes, Segmenting-Leveling approach uses abstractions of shapes.

My approach runs in levels that on each level it tries to tune the results from previous

level to find more accurate results; at each level I will run a state space search on a

space much smaller than the space of previous level (Note that, even on initial level,

28

we will have much smaller space to check than the space of naïve approach). In

continue, I will explain this method step by step with details of each step, but for

now I give a very brief visualization of this method on Figure 3.2 for determination

of rotation.

Level 1 0 45 90 135 180 225 270 315 360

Level 2

 45 67.5 90 270 292.5 315

Level 3

 67.5 78.75 90 270 281.25 292.5

Level 4

 67.5 73.12 78.75

Level 5

67.5 70.31 73.12

Figure 3.2 In this figure a brief visualization of rotation determination procedure in

Segmenting-Leveling approach for two assumptive shapes is given. This process could be

continued as many levels as required to achieve a satisfactory accurate result. Green

sections at each level are the sections which the answer is estimated to be in that range,

hence, I break that range into two identical ranges and again I continue to estimate on

which range the answer could be, and this process will be continued until a tolerable

accurate answer is found. For this example the answer: 70.31 – 73.12 (range) is a tolerable

answer and searching process stops at this point. Note that, the searching in the range 270

– 292.5 is stopped, because distance measurement process did not mark either of the

ranges as a proper range.

3.2 Segmentation

I divide the shapes presented in 2 dimensional Euclidian space into 𝑁 isometric

triangular Regions and each Region is divided into 𝑀 identical Segments, where

Regions are denoted by Euclidian unit vectors 𝑉𝑛 , 𝑛 ∈ { 1 , 2 , … , 𝑁 } , Segments

are denoted by vectors 𝑉𝑛𝑚 , 𝑚 ∈ { 1 , 2, … , 𝑀 } and an angle 𝜃 and cardinality of

landmark points inside each segment which is presented by 𝑆𝑛𝑚 . The center of

Segmentation is considered to be the center of the rectangle that environs the shape.

This process is demonstrated in Figure 3.3.

29

Figure 3.3 (A) Each figure will be divided into N isometric Regions and each Region will be divided

into M identical Segments, the Segments are denoted by V nm vectors. The angle between each pair of

vectors is denoted by θn where ∀ n ∈ { 1 , 2 , … , n } → θn−1 = θn. Cardinality of landmark points

inside each segment is denoted by Snm.

(B) As a sample segmentations vectors are shown on one of the shapes from Figure 3.1.

We have the following matrix presenting the segmentation vectors:

Each of these vectors is presented by 2 coordinates to which I add 𝑆 𝑛𝑚 as 3P

rd

dimension as following:

This process is visualized in Figure 3.4 for a hypothetical initial shape.

 1 2 … 𝑀

Region 1 𝑉11 𝑉12 … 𝑉1𝑀

Region 2 𝑉21 𝑉22 … 𝑉2𝑀

… … … … …

Region 𝑁 𝑉𝑁1 𝑉𝑁2 … 𝑉𝑁𝑀

𝑉𝑛𝑚 𝑥 𝑦 𝑆𝑛𝑚

30

Figure 3.4 Visualization of adding 𝐒𝐧𝐦 as 𝟑P

rd

 dimension to 2-Dimensional segmentation
vectors of a hypothetical initial shape is given.

Throughout my reasoning method, I only need the last dimension of each vector,

that is 𝑆𝑛𝑚 , and the order of vectors for the method’s processes, hence I rewrite the

segmentation vectors matrix as following and name it as 𝐴.

𝐴 ∶

 1 2 … 𝑀

Region 1 𝑆11 𝑆12 … 𝑆 1𝑀

Region 2 𝑆21 𝑆22 … 𝑆 2𝑀

… … … … …

Region 𝑁 𝑆𝑁1 𝑆𝑁1 … 𝑆 𝑁𝑀

The order of vectors can tell us the approximate coordinate of each vector, but

needless of knowing the exact coordinate of each vector is an advantage, because

then we don’t have to translate shapes to a specific coordinate to be able to check for

other transformations; meaning that, we can do linear transformation determination

process in place. Although we don’t need to know even the approximate coordinate

of each vector, but consider the following procedure as an example for determination

of approximate coordinate of each vector in 2-Dimmensional space:

31

𝜃 =
 360
𝑁

 , 𝑟 =
1

 𝑀

(𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑅𝑒𝑔𝑖𝑜𝑛

 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑅𝑒𝑔𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑣𝑖𝑑𝑒𝑑 𝑖𝑛𝑡𝑜 𝑀 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠)

sin𝜃 =
𝑦

 𝑟
 → 𝑦 = 𝑟 sin𝜃

cos𝜃 =
𝑥

 𝑟
 → 𝑥 = 𝑟 cos𝜃

Each shape may have Υ landmark points presented in 2 dimensional space as

following matrix, since we choose 𝑀,𝑁 as Υ ≫ 𝑀𝑁 , therefore the matrix 𝐴 will be

significantly smaller than the matrix presenting the landmark points.

 𝑥 𝑦

Landmark Point 1 𝑃 1𝑥 𝑃 1𝑦

Landmark Point 2 𝑃 2𝑥 𝑃 2𝑦

…

Landmark Point Υ 𝑃 Υx 𝑃 Υy

Segmentation process gives us a none-unique abstraction of each shape (i.e.

different shapes could have same abstractions – I will cover this point in section 3.7).

The important point is: this abstraction gives us a matrix regardless of the size of

shapes and number of landmark points (i.e. no matter if we have billions of

landmark points presenting the shape or only a few, for all sizes of shapes we have

 𝑁 × 𝑀 integers presenting the shape). With this advantage, the cost of reasoning

huge shapes will be as cheap as the cost of small shapes.

Through the rest of this chapter, we consider the shapes in 2 dimensional space for

the sake of simplifying explanation and understanding of the method, although

because we only need the (𝑑 + 1)𝑡ℎ dimension of a 𝑑 dimensional shape, the

generalization of this method for 𝑑 dimensional shapes is possible and fairly simple.

32

Figure 3.5 Different coordinate systems that might be used to coordinate landmark points are
illustrate

3.3 Segment Determination for a Landmark Point

For segmentation purpose, we should be able to determine which segment a

landmark point belongs to? The answer for this question is directly dependent to the

coordinate system (Figure 3.5) which we use to coordinate landmark points. Proper

segment detection in two coordinate systems, Polar and Cartesian, are explained

below, note that, although the segments might be presented using Spherical or

Cylindrical coordinate systems, but for the purpose of complexity, I focus on two

common coordinate systems which are Cartesian and Polar coordinate systems.

3.3.1 Polar Coordinate System

I start with Polar coordinate system because it is similar to the nature of my

segmentation. We consider Pole to be coincided with center of segmentation and

Polar Axis coincided with floor of first region. Now we can determine the segment of

a landmark point 𝑃 distinguished by a Polar angle 𝜃 and Radius (Radial Coordinate)

𝑟 as following:

� ∃ 𝑛 ∈ { 1 , 2 , … ,𝑁 } �
 360
𝑁

 (𝑛 − 1) < 𝜃 ≤
 360
𝑁

 𝑛 � (3.3.1.1)

33

� ∃ 𝑚 ∈ { 1 , 2 , … ,𝑀 } �
 1
𝑀

 (𝑚 − 1) < 𝑟 ≤
 1
𝑀

 𝑚 � (3.3.1.2)

Hence, the segment distinguished by (𝑟 ,𝜃) in polar coordinate systems belongs

to segment (𝑛, 𝑚).

3.3.2 Cartesian Coordinate System

We consider the origin of coordinate system and the 𝑋 axis to be coincided with

center of segmentation and floor of first region respectively. Since the regions and

segments are based on circular divisions, therefore it could be easier to first convert a

Cartesian coordinate to Polar coordinate and then use the ranges mentioned in Polar

coordinate system section to determine the segment which the landmark point

belongs to.

𝑃 ∶ (𝑥 ,𝑦) (3.3.2.1)

𝑅𝑎𝑑𝑖𝑢𝑠 ∶ 𝑟2 = 𝑥2 + 𝑦2 → 𝑟 = � � 𝑥2 + 𝑦2 � (3.3.2.2)

𝑅𝑒𝑚𝑖𝑛𝑑𝑒𝑟 ∶ sin𝜃 =
𝑏
𝑐

 , cos 𝜃 =
𝑎
𝑐

 , tan𝜃 =
𝑎
𝑏

 (𝑠𝑒𝑒 𝐹𝑖𝑔𝑢𝑟𝑒 4.5) (3.3.2.3)

→ 𝜃 = sin−1
𝑦
 𝑟

 ,𝜃 = cos−1
 𝑥
𝑟

 ,𝜃 = tan−1
 𝑥
𝑦

 (3.3.2.4)

→ � ∃ 𝑚 ∈ { 1 , 2 , … ,𝑀 } �
 1
𝑀

 (𝑚 − 1) < � � 𝑥2 + 𝑦2 � ≤
 1
𝑀

 𝑚 � (3.3.2.5)

Either of the followings

⎩
⎪
⎪
⎨

⎪
⎪
⎧ � ∃ 𝑛 ∈ { 1 , 2 , … ,𝑁 } �

 360
𝑁

 (𝑛 − 1) < tan−1
 𝑥
𝑦

 ≤
 360
𝑁

𝑛 �

 � ∃ 𝑛 ∈ { 1 , 2 , … ,𝑁 } �
 360
𝑁

 (𝑛 − 1) < sin−1
 𝑦
𝑟

 ≤
 360
𝑁

𝑛 �

 � ∃ 𝑛 ∈ { 1 , 2 , … ,𝑁 } �
 360
𝑁

 (𝑛 − 1) < cos−1
 𝑥
𝑟

 ≤
 360
𝑁

𝑛 �

�
(3.3.2.6)

Accordingly, the landmark point 𝑃 (𝑥,𝑦) belongs to the segment 𝑛 ,𝑚 .

34

3.4 Translation

Translation of all shapes to a common coordinate so that the centroid of all shapes

coincide, is a prerequisite for the linear transformation determination process in

previously mentioned approaches. Since I make abstraction of shapes by

segmentation and as I mentioned in Segmentation section, the nature of the

Segmenting–Leveling method makes translation operation for the reason of

mentioned approaches unnecessary for my method.

I define an auxiliary application for translation in my method, and that is for

checking the partial matches between shapes, which is an advantage of my method

over mentioned methods that can’t determine any partial matches. An example of

partial match is given in Figure 2.3.

I would define translation process between two shapes as moving the

segmentation center of one shape to coordinates pointed out by the segmentation

vectors of the other shape. Three sample cases of this process are illustrated in Figure

3.6 for two abstractions of two assumptive shapes with 𝑁 = 8 and 𝑀 = 1.

Figure 3.6 Three sample cases of translation process are illustrated. The
circled areas shows the vectors which should be compared with each
other. (-1,-1) , (0,-1) , (+1,0) are the transformation parameters.

35

To generalize the translation task, I would take the following steps:

1. Define sets 𝑇𝑥 and 𝑇𝑦 as following:

𝑇𝑥 = � �

 −1
𝑚

 , 0 ,
 1
𝑚

 � � 𝑚 = 1 , 2 , … ,𝑀 �

𝑇𝑦 = � �
 −1
𝑚

 , 0 ,
 1
𝑚

 � � 𝑚 = 1 , 2 , … ,𝑀 �
(3.4.1)

2. Define set 𝑇 as the combination of sets 𝑇𝑥 and 𝑇𝑦

3. Check for all members of 𝑇.

The last step of generalization is similar to the translation check procedure in

naïve approach except in the number of required checks. In naïve approach the

number of checks is directly related to the size of shapes that for larger shapes more

checks are required than smaller shapes, but in Segmenting–Leveling approach, the

maximum number of checks is (𝑁𝑀 + 1) (i.e. moving to all coordinates pointed

out by segmentation vectors of the other shape plus no translation) which according

to definition, is much fewer than the number of checks in naïve approach.

3.5 Rotation

Rotation is an isometric circular transformation of a rigid body around a pivot –

unlike translation that has not any fixed point – on a plane or space. Mainly two

different types of rotation are defined, Spin and Revolution (Orbital Revolution),

which Spin is a rotation with the pivot inside the mass of the rigid body and

Revolution is a rotation with pivot outside the rigid body. In geometry Revolution is

also defined as Spin + Translation, which is spinning the object around any pivot and

then translating the object so that the pivot of spinning coincides with the pivot of

requested Revolution. Rotation on a plan can be carried out using the following

matrix, known as rotation matrix.

�
 𝑥′

𝑦′
� = �

 cos 𝜃 − sin𝜃

 sin𝜃 cos 𝜃
� �

𝑥

 𝑦
�

36

Using matrix multiplication we have the following equations for determination of

new coordinates (𝑥′ , 𝑦′) of (𝑥 ,𝑦) with 𝜃 degrees rotation.

𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin𝜃

𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃

Regarding to sample rotations in Figure 3.7 we can make the following

arguments:

Section A . 90 degrees rotation swaps the position of colors one unit, for example

4 takes the position of 1 while 1 takes the position of 2 and so on, but keeps the

location of 0 unchanged. Hence we can argue that 180 degrees rotation swaps the

position of colors two unit and 270 degrees swaps the position of colors three units.

Generally we can say: any 90 𝑖 degrees of rotation, swaps the position of colors 𝑖

units. Although we can use rotation matrix to determine new position of each color

with any 𝜃 degrees rotation, but this generalization helps us to guess the new

position of each color in a much easier way. Simply this generalization is not useful

for rotation degrees other than 90 𝑖, and leaves rotation matrix as our only choice.

A
1 2 3 4 5

𝜃 = 90°�⎯⎯⎯�

𝜃 = 90°�⎯⎯⎯�

𝜃 = 90°�⎯⎯⎯�

𝜃 = 90°�⎯⎯⎯�

B

Figure 3.7 Sample rotations

37

Section B . With 72 degrees rotation slices change position one unit, as an

example, 72 degrees clockwise rotation moves:

• White slice to the position of Yellow slice,

• Yellow slice to the position of Green slice,

• Green slice to the position of Blue slice,

• Blue slice to the position of Red slice and

• Red slice to the position of White slice.

Hence we can argue (as Section A) for any 72 𝑖 degrees rotation, slices Shift

 𝑖 units.

Accordingly we may reason: If a shape is divided into 𝑖 identical slices

then (360 𝑖⁄) 𝑗 , 𝑗 ∈ { 1 , 2 , … , 𝑖 − 1 } degrees rotation is the same as 𝑗 units

shifting slices.

One of my reasons of defining Segmenting–Leveling approach is to use simplest

possible operations for reasoning with shapes, hence, although rotation matrix that I

mentioned early in this section can cover my needs for rotation determination

process, but Shift is a much simpler operation than trigonometry functions, which I

prefer to use it. But as I mentioned, we can use Shift instead of only a few number of

rotations, therefore using the definition of segmentation I would define a set of

rotations which I can use Shift to manipulate them and I restrict the rotations that my

method can determine to only the members of this set. The set is as following:

𝑅 = �
360
𝑁

 𝑖 � 𝑖 = 0 , 1 , 2 , … ,𝑁 − 1 �

𝑒.𝑔. 𝑁 = 8 ⟹ 𝑅 = { 0° , 45° , 90° , 135° ,180° ,225° ,270° ,315° }

Now I can use a Circular Shift on matrix 𝐴 (the matrix defined in section 4.2) to

rotate my figure 𝜃 ° ,𝜃 ∈ 𝑅. As an example:

38

N = 6 , M = 2

R = { 0 , 60 , 120 , 180 , 240 , 300 }

 1 2

 Rotate∶120 Degrees
=

 2 time circular shift

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

 1 2

Region 1 𝑆11 𝑆12 Region 5 𝑆51 𝑆52

Region 2 𝑆21 𝑆22 Region 6 𝑆61 𝑆62

Region 3 𝑆31 𝑆32 Region 1 𝑆11 𝑆12

Region 4 𝑆41 𝑆42 Region 2 𝑆21 𝑆22

Region 5 𝑆51 𝑆52 Region 3 𝑆31 𝑆32

Region 6 𝑆61 𝑆62 Region 4 𝑆41 𝑆42

Clockwise and counterclockwise rotations have the same procedure, but we have

to agree on one and use it throughout whole procedures, here I choose clockwise

rotations, therefore everywhere on this thesis when I mention rotation, it means

clockwise rotation.

A child can rotate an object without having any knowledge of geometrical

definition of rotation and trigonometry; therefore I tried to define a method for

rotating a shape much similar to the way a child might use than the normal methods

which are benefiting from rotation matrix and trigonometry functions. My defined

method uses Circular Shift that is much simpler and cheaper than trigonometry

functions. My proposed method can rotate a shape 𝜃 ° ,𝜃 ∈ 𝑅 using only circular

shift, but limiting rotation degrees to a finite set of angles is a significant inefficiency

and I will cover this up by making some edits on this method in Leveling section

(3.7) which enables my method to check for all rotations degrees in continues space

rather than current discreet space.

3.6 Match Measurement

I measure match ratio between two shapes where one of the shapes is RAW (i.e.

no transformation is applied on it) and the other one is the transformed shape.

39

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (𝑇𝑆ℎ𝑎𝑝𝑒𝐴 , 𝑆ℎ𝑎𝑝𝑒𝐵)

I divide match measurement task into two separate steps:

i. Count the number of segments of 𝑇𝑆ℎ𝑎𝑝𝑒𝐴 that match with corresponding

segments in 𝑆ℎ𝑎𝑝𝑒𝐵.

ii. Determine match ratio

Consider the following abstractions of two assumptive shapes:

𝑆ℎ𝑎𝑝𝑒𝐴 𝑇 𝑆ℎ𝑎𝑝𝑒𝐴 𝑆ℎ𝑎𝑝𝑒𝐵
 1 2 1 2 1 2

1 0 0

𝑇∶𝑅 (120°)
�⎯⎯⎯⎯⎯⎯�

5 46 163 1 46 163
2 0 0 6 0 0 2 0 0
3 0 0 1 0 0 3 0 0
4 1 0 2 0 0 4 0 0
5 46 163 3 0 0 5 0 0
6 0 0 4 1 0 6 0 0

To Count the matching segments, we could easily compare each row of 𝑇 𝑆ℎ𝑎𝑝𝑒𝐴

with corresponding row of 𝑆ℎ𝑎𝑝𝑒𝐵. If we do so, all rows will match except the last

rows that the 1st segment of 4th region of 𝑆ℎ𝑎𝑝𝑒𝐴 do not match with 1st segment of 6th

region of 𝑆ℎ𝑎𝑝𝑒𝐵, but the 2nd

If the difference between two shapes is a member of set 𝑇𝑅 (combination of

Translation (𝑇) and Rotation (𝑅)) then with this method of comparing two shapes,

we might be able to determine a match, but if the difference between these shapes is

not a member of set 𝑇𝑅 then this way of comparing two shapes would not be useful.

For example consider the abstraction of two assumptive shapes given in Figure 3.8

 segments of these regions match. Hence we could say

11 segments out of 12 segments of these abstractions are matched with the applied

transformation.

40

where the difference between two shapes is 115 degrees rotation that is not a member

of 𝑅:

 𝑅 = { 0 ,15 ,30 ,45 ,60 ,75 ,90 , … , 345 }

Hence with no swiping (circular shift) we might be able to map 𝑆ℎ𝑎𝑝𝑒𝐴

on 𝑆ℎ𝑎𝑝𝑒𝐵 (shapes given by Figure 3.8). Although as I mentioned earlier using

leveling technique we will be able to check for rotations in a continues space with

any accuracy required at the point that could also cover 115 degrees, but as I

mentioned leveling technique tunes the results in continues space, meaning that we

should be able to estimate that the answer is about 120 degrees and then expect to

determine 115 degrees in leveling process. To address this problem I used a

threshold value while comparing the values of segments as below:

𝑖𝑓 𝑆ℎ𝑎𝑝𝑒_𝐴_𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑆ℎ𝑎𝑝𝑒_𝐵_𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖

𝑎𝑛𝑑 𝑆ℎ𝑎𝑝𝑒_𝐴_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑆ℎ𝑎𝑝𝑒_𝐵_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖

If this condition is satisfied, then the segments will be considered as identical, if

otherwise then the segments are not equal.

In my implementation (I will explain this implementation in Chapter Five) I set

this value manually and I allowed the user to change it. Through some tests, I noticed

that in some cases lower values of threshold are useful while higher values are

preferred for some other cases.

The count of identical segments alone may not be proper factor of evaluating the

similarity between two shapes. I defined a factor and named Match Ratio, also I

defined five different functions for its calculation. The functions are as follows (𝐽

(Joint segments) is the count of segments that are considered as identical, 𝐴 , 𝑇𝐴 and

𝐵 are the number of segments with values greater than 0 of 𝑆ℎ𝑎𝑝𝑒𝐴, Transformed

𝑆ℎ𝑎𝑝𝑒𝐴 and 𝑆ℎ𝑎𝑝𝑒𝐵 respectively):

41

1. Find 𝑆ℎ𝑎𝑝𝑒𝐴 in 𝑆ℎ𝑎𝑝𝑒𝐵 where 𝑆ℎ𝑎𝑝𝑒𝐴 is not allowed to lose any of its

portions.

 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =
 𝐽
𝐴

 × 100

2. Find 𝑆ℎ𝑎𝑝𝑒𝐴 in 𝑆ℎ𝑎𝑝𝑒𝐵 where 𝑆ℎ𝑎𝑝𝑒𝐴 is allowed to lose some of its

portions (e.g. Figure 2.3).

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =
 𝐽

 𝑇𝐴
 × 100

3. Find 𝑆ℎ𝑎𝑝𝑒𝐵 in 𝑆ℎ𝑎𝑝𝑒𝐴

 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =
 𝐽
𝐵

 × 100

4. Compare the two shapes where 𝑆ℎ𝑎𝑝𝑒𝐴 is not allowed to lose any of its

portions.

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =
 2 𝐽
𝐴 + 𝐵

 × 100

5. Compare the two shapes where 𝑆ℎ𝑎𝑝𝑒𝐴 is allowed to lose some of its

portions.

𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =
 2 𝐽
𝑇𝐴 + 𝐵

 × 100

These functions are used separately and they have different applications as

mentioned. In my implementation user can choose either of these to be used during

reasoning process. The combination of counting method and one of the different

functions of match ratio calculation gives a proper and reliable value for match

measurement, although in some cases I had to tune threshold value to achieve a

proper answer.

42

Figure 3.8 Cardinality of landmark points inside each segment of two assumptive shapes where
𝐧 = 𝟐𝟒 and 𝐦 could have any values because Regions (R) values (which are the sum of all
segments inside each region) are shown here.

3.7 Leveling

Leveling is a supplement of Segmenting; it repeats segmenting procedure with

different parameters until it achieves desired accurate results. Our goal is to

determine a transformation 𝑓 = 𝑇𝑅 that maps 𝑆ℎ𝑎𝑝𝑒𝐴 on 𝑆ℎ𝑎𝑝𝑒𝐵 , but as we

discussed in segmenting section for both translation and rotation we have a finite set

transformations as follows:

 𝑅 = �
360
𝑁

 𝑖 � 𝑖 = 0 , 1 , 2 , … ,𝑁 − 1 � (3.7.1)

 𝑇𝑥 = � �
 −1
𝑚

 , 0 ,
 1
𝑚

 � � 𝑚 = 1 , 2 , … ,𝑀 � (3.7.2)

 𝑇𝑦 = � �
 −1
𝑚

 , 0 ,
 1
𝑚

 � � 𝑚 = 1 , 2 , … ,𝑀 � (3.7.3)

R
01

R
02

R
03

R
04

R
05

R
06

R
07

R
08

R
09

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

T Shape A 1 19 3 37 0 80 0 5 0 0 90 0 0 0 30 0 0 10 0 0 0 60 0 5
Shape B 12 8 18 12 42 38 1 4 0 50 40 0 0 15 15 0 10 0 0 0 10 50 0 5

0
10
20
30
40
50
60
70
80
90

100
Ca

rd
in

al
ity

 o
f l

an
dm

ar
k

po
in

ts

Abstraction of two assumptive Shapes

43

 𝑇 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑥 𝑎𝑛𝑑 𝑇𝑦 (3.7.4)

As it is obvious from these sets, the accuracy of using segmentation procedure

only for once is quite dependent on segmenting parameters 𝑁 and 𝑀. But we cannot

simply increase these parameters to achieve more accurate results, because doing so

we will face a very huge search tree with a large number of segments to deal with,

which is not optimal and is not practical to determine accurate transformations such

as 𝑓 = 90.012° . Leveling technique solves this problem by running segmentation

procedure for many times but each time it tunes the results of previous run. For

leveling purpose I define:

 𝐿𝑒𝑣𝑒𝑙 ∶ 𝐿 = ℕ − { 0 , 1 , 2 } (3.7.5)

I have excluded { 0 , 1 , 2 } because they would not result in proper 𝜃 for

segmentation, I would generalize the definition of 𝜃 , 𝑁 and 𝑀 as follows:

∀ 𝑙 ∈ 𝐿 ∶ 𝑁 = 2 𝑙 , 𝑀 = 2𝑙

𝜃 =
360
𝑁

 , 𝜃 𝑙 =
1
2

 𝜃 𝑙−1
(3.7.6)

As I mentioned earlier translation is not a compulsive operation and I am using it

to determine partial matches if any exists, hence if partial matches determination is

not desired we can simply set 𝑀 = 1.

I divide the leveling procedure into three phases:

Phase 1 . Initial Level

i. Choose an initial value for 𝑙 ; it is better to choose it not too large for

optimization reasons. I start with 𝑙 = 3 in my implementation.

ii. Run segmentation on both shapes with parameters regarding to 𝑙 and make

matrix 𝐴 for both shapes.

44

iii. Apply all possible transformation on 𝑆ℎ𝑎𝑝𝑒𝐴 and compare it with 𝑆ℎ𝑎𝑝𝑒𝐵.

iv. Choose Υ best transformations (i.e. the transformations which resulted best

match ratios) and pass them to next level.

Phase 2 . Non-Initial Levels

i. Increment 𝑙 one unit.

ii. Run segmentation on both shapes with parameters regarding to 𝑙 and make

matrix 𝐴 for both shapes. Incrementing 𝑙 one unit, doubles the number of

segments of each level than the previous level, in other words, we are

dividing each segment of previous level into two identical segments for

current level.

iii. For each of the transformations passed from previous level, 𝛼 , check

for 𝛼 ± 𝛽 ,𝛽 = { 0 ,1 ,2 , … , 𝜆 }. 𝜆 Defines a range to be checked for

tuning purpose and in my implementation is given manually before reasoning

process is started.

iv. Choose Υ best transformations,

• If the transformations are accurate enough then continue with next pair

starting at Phase 1

• If the transformations accuracy is not satisfactory continue to next level.

• If all pairs are processed continue to Phase 3.

Phase 3 . Use 𝛿 best transformations of each pair to reason the best

transformation of the sequence. It is likely to have a transformation that resulted in

high match measurement in one pair and a low match measurement on another pair;

hence I choose transformations which have acceptable match measures for all pairs

while they are not necessarily the best transformations of all pairs. Then I apply the

chosen transformation on the last shape, which results the best candidate to stand as

the shape after the last one in the sequence.

45

An example covering main portion of leveling procedure is given as following:

Level 1 . (Initial Level)

 𝑙 = 3 → 𝑁1 = 8 (3.7.7)

 → 𝑅1 = �
360
𝑁1

 𝑖 � 𝑖 = { 0, 1, 2, … , 7 }� (3.7.8)

𝛼1 = {𝛼11 ,𝛼12, … ,𝛼1Υ}

𝑎 𝑠𝑒𝑡 𝑜𝑓 Υ 𝑏𝑒𝑠𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝐿𝑒𝑣𝑒𝑙 1 𝑡𝑜 𝑝𝑎𝑠𝑠 𝑡𝑜 𝐿𝑒𝑣𝑒𝑙 2
(3.7.9)

Level 2 .

 𝑙 = 4 → 𝑁2 = 16 (3.7.10)

→ 𝑅2 = � 𝛼 1𝑗 ±
360
𝑁2

 𝑖 � 𝑖 = { 0 ,1 , … , 𝜆 } , 𝑗 = { 1 ,2 , … ,Υ }� (3.7.11)

 𝛼2 = {𝛼21 ,𝛼22 , … ,𝛼2Υ} (3.7.12)

Level 3 .

 𝑙 = 5 → 𝑁3 = 32 (3.7.13)

→ 𝑅3 = � 𝛼 2𝑗 ±
360
𝑁3

 𝑖 � 𝑖 = { 0 ,1 , … , 𝜆 } , 𝑗 = { 1 ,2 , … ,Υ }� (3.7.14)

I should remind that during reasoning process I don’t use any rotation angles,

instead I use shifting as I explained in Rotation section. The 𝑅 sets defined in

previous example defined using rotation angles to ease the understanding of the

46

procedure for reader, otherwise as an example, 𝑅1 and 𝑅2 are actually defined and

used as follows:

𝑅1 = � 𝑖 𝐶𝑆 � 𝑖 = { 0 , 1 , … , 7 }� , 𝐶𝑆 ∶ 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑆ℎ𝑖𝑓𝑡 (3.7.15)

 𝛼1 = { 𝛼11 ,𝛼12 , … ,𝛼1Υ } (3.7.16)

𝑅2 = � 2𝛼1𝑗 ± 𝑖 𝐶𝑆 � 𝑖 = { 0 , 1 , … , 𝜆 } , 𝑗 = { 1 , 2 , … ,Υ }� (3.7.17)

In 𝑅2 , 𝛼 is multiplied by two, because as we are dividing each segment into two

identical segments for new level, we should multiply by two a circular shift on one

level to address the same rotation for next level.

As I mentioned previously, segmentation might result in two identical abstracts

for two different shapes. This is a likely condition and is simply addressed by

leveling technique. Two shapes will have two equal abstractions in all levels (i.e.

with different segmentation parameters) if and only if the two shapes are exactly the

same, but if the shapes are not the same and segmentation resulted in identical

abstractions then we will have proper and different abstraction in one or a few levels

(i.e. by changing segmentation parameters). Because actually by running

Segmenting–Leveling method for more levels, we are taking more details of shapes

into consideration which finally will reveal the difference between two shapes by

resulting different abstractions.

3.8 Correctness Verification

Previously on this chapter I claimed that this method can determine any

transformation (any combination of Rotation and Translation) between multiple

shapes and can create the shape which suits best to stand after the last shape in the

sequence, here I will verify this assertion.

47

If the difference between two shapes is rotation and the rotation angle, 𝜃 ∈ 𝑅1

then obviously will be able to determine it, because as I explained in Rotation

section, shifting will cover it up. Our problem is when 𝜃 ∉ 𝑅1 , and I claimed that

this will be covered up by using Leveling technique. For this claim, consider the

following assumption:

 � ∃𝑖 ∈ { 1 , 2 , … ,𝑁 } �
360
𝑁

 (𝑖 − 1) < 𝜃 ≤
360
𝑁

𝑖 � (3.8.1)

By definition of segmentation, these are the boundaries of 𝑖𝑡ℎ region that I divided

it into 𝑀 segments. This assumption shows that we have only one range (region)

where 𝜃 resides in, therefore as much as we narrow down this range, we get closer

and closer to an accurate 𝜃. Also it is likely to confront some shapes which with

multiple 𝜃s they can be mapped on each other, determination of multiple 𝜃s is also

possible by Segmenting–Leveling method, because as I mentioned, at each level I

consider Υ rotation angles (see Figure 3.2)(Rotations angle is a part of a set of

transformations passed to next level).

Determination of a proper 𝑖 is quite vital, because improper 𝑖 can guide us to a

dead end by eliminates proper ranges which using leveling we might be able to

determine the accurate 𝜃. To be able to choose proper 𝑖’s the following solutions

might be handy:

1. Threshold

I used a threshold value while comparing a pair, although choosing proper values

for the threshold is a challenging problem, but since user can change it manually in

my implementation we can assume by tuning it we could achieve proper values.

Even though it is not reliable but for my current purpose I accept it with tunings.

2. Multi Initial Levels

Another solution which I suggest is to use multi initial levels, meaning that

running a full search on possible ranges (like Level 1 as I explained) for more than

48

one level, although this could be useful but it can significantly increase the

complexity of the solution.

I claimed that using leveling that narrows down the (3.8.1) range; we could have

an acceptable narrow range with 𝜃 considered to be rounded to the upper bound of

the range, for this allegation consider the following:

 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 ∶ 𝑙 ∈ ℕ− { 0 , 1 , 2 } , 𝑁 = 2𝑙 (3.8.2)

𝐿𝑒𝑣𝑒𝑙 1 ∶ 𝑙 = 3 → 𝑁 = 8

𝐿𝑒𝑣𝑒𝑙 2 ∶ 𝑙 = 4 → 𝑁 = 16

𝐿𝑒𝑣𝑒𝑙 3 ∶ 𝑙 = 5 → 𝑁 = 32

…

⟹ lim
𝑙→ ∞

2𝑙 = ∞ → 𝑁 = ∞

(3.8.3)

360
∞

 (𝑖 − 1) < 𝜃 ≤
360
∞

 𝑖 → 0 < 𝜃 ≤ 0 (3.8.4)

This shows that we can continue leveling procedure for infinitely many times and

at last we will have a range as narrow as it overlaps with 𝜃. Here are some points:

a. As we noticed, 𝑖 is not important in infinity, therefore continuing to infinity

could not be useful, although it is not practical.

b. Actually we don’t need to continue leveling procedure to infinity, the number

of levels we should run to achieve our desired accuracy can be calculated as

following:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶ 𝜀 (3.8.5)

49

𝑇ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑠 𝑛𝑎𝑟𝑟𝑜𝑤 𝑎𝑠 𝜀°

∶
360
𝑁

 𝑖 −
360
𝑁

 (𝑖 − 1) = 𝜀
(3.8.6)

360 𝑖 − 360 𝑖 + 360

𝑁
= 𝜀 →

360
𝑁

= 𝜀 (3.8.7)

 𝑁 = 2𝑙 →
360
𝜀

= 2𝑙 → 𝑙 = log2
360
𝜀

 (3.8.8)

 → 𝑙 = � log2
360
𝜀

 � (3.8.9)

Hence we can determine the rotation angles between two shapes by running finite

number of levels as calculated above, note that, the calculated 𝑙 is the maximum

number of levels we need, however it is possible to achieve accurate results even in

more early levels, this happens when 𝜃 is the border at a level or very close to the

border. I concentrate on Rotation because the main goal of transformation

determination in most of the previous works was Rotation, but however Translation

is also verifiable in this way.

50

4CHAPTER FOUR

IMPLEMENTATION

SEGMENTING – LEVELING APPROACH

In this chapter, I will explain a program that I developed to examine the

Segmenting–Leveling method using Visual Studio .NET 4.0 technology; for this

implementation, Windows Presentation Foundation (WPF) is used for interfaces and

code behind is written in C#. To ease the tracing, I limited the number of levels to

four; however the results are still acceptable.

The implementation could be recursive, but since accessing statistical data (used

for purpose of studying the performance) of each iteration is much simpler when the

implementation is not recursive, therefore I defined separate classes for each level.

Note that, non-recursive implementation would not be possible if I would not have

had restricted the number of levels to four.

The main function that runs levels between a pair has following procedures:

1. Define classes Level – 1, Level – 2, Level – 3 and Level – 4. Despite of a lot of

functions and parameters, each class has a member function named

“Start_Reasoning” that runs reasoning process at the level and a list named

“Matches” that stores best match measurements of transformation determination

process results.

2. Initialize classes with options that can be changed and tuned by user (see Figures

in Appendix for the screenshot of this section)

3. Call the “Start_Reasoing” function of Level – 1.

4. Pass best transformations resulted from Level – 1 to Level – 2 (refer to section

3.7 for details).

5. Call the “Start_Reasoning” function of Level – 2.

6. Pass best transformations resulted from Level – 2 to Level – 3.

51

7. Call the “Start_Reasoning” function of Level – 3.

8. Pass best transformations resulted from Level – 3 to Level – 4.

9. Call the “Start_Reasoning” function of Level – 4.

10. Store the best transformations resulted from Level – 4 to be used in logic

determination process between the input sequences of shapes.

Since all of the levels have same structure, therefore in continue I will explain the

structure and procedures taken in Level – 1 as a sample level. The steps are as

follows:

1. Segmentation; make matrix A (see section 3.2) for each of the shapes of given

pair. Since the initial shapes (2-Dimensional) are presented by matrices (2-

Dimensional), therefore in linear time (𝜃 (𝑥𝑦) where 𝑥 is the number of columns

and 𝑦 is the number of rows) we could read the initial shapes and create the

matrix – A – liked matrix for each of shapes.

2. Check for transformations using segmentation matrices. This procedure can be

done using a structure similar to the simplified code given in section 2.3.

3. When each transformation is applied on 𝐹𝑖𝑔𝑢𝑟𝑒𝐴 it will be compared with

𝐹𝑖𝑔𝑢𝑟𝑒𝐵 and results are stored in a list of list of arrays defined and initialized as

follows in C#:

List<List<int[]>> Matches = new List<List<int[]>>();

for (int i = 0; i < 101; i++)
{
 List<int[]> t = new List<int[]>();
 Matches.Add(t);
}

Now if we consider the match ratio (see section 3.6) is denoted by “Match_R”,

then this transformation is stored as following in “Matches”:

Matches[Match_R].Add(new int[] { Rotation_Angle, TX, TY });

52

Where 𝑇𝑋 and 𝑇𝑌 are translation parameters on 𝑋 and 𝑌 axis respectively (see

section 3.4). This method of storing checked transformations, guarantees sorted

transformations regarding to their “Match Ratio” at each step and eases the

selection of transformations with desired value of match measurement, hence the

complexity of sorting is constant and equals to 𝜃 (1) also the complexity of

fetching transformations with desired value of match measurement is constant as

well.

4. The only difference between the simplified code given in section 2.3 and

Segmenting–Leveling approaches code is the domain for each of

“Apply_Rotation” and “Apply_Move” functions, where the domain of

“Apply_Rotation” function is quite dependent to the best transformations passed

from previous level and the domain of “Apply_Move” function depends on the

pruning techniques explained in section 2.3. In creating the domain of

“Apply_Rotation” function, duplicate rotations are avoided. Rotations from a

level are passed to next level using following code (as an example here, from

Level – 1 (L1) to Level – 2 (L2)):

int n = 0; // Number of Added Transformations
for (int i = 100; i >= 0; i--)
{
 for (int j = 0; j < L1.Matches[i].Count; j++)
 {
 // R_to_C : Rotations to be Checked
 if (!L2.R_to_C.contains(L1.Matches[i][j][0]))
 {
 n++;
 if (n <= Gama)
 L2.R_to_C.Add(L1.Matches[i][j][0]);
 else
 {
 j = L1.Matches[i].Count;
 i = 0;
 }
 }
 }
}

53

R_to_C is defined in each level as following:

List<int> R_to_C = new List<int>();

And finally the domain for “Apply_Rotation” that is denoted by “R” (see section

3.7) is defined and initialized as follows:

List<int> R = new List<int>();

private void initialize_Rotations()
{
 // Note that R_to_C.count = Gama
 for (int i = 0; i < R_to_C.Count; i++)
 R.Add(R_to_C[i]);

 for (int i = 0; i < R_to_C.Count; i++)
 {
 for (int j = -Upsilon; j < 0; j++)
 {
 int t = R_to_C[i] + j;

 if (!R.Contains(t))
 R.Add(t);
 }

 for (int j = 1; j < Upsilon + 1; j++)
 {
 int t = R_to_C[i] + j;

 if (!R.Contains(t))
 R.Add(t);
 }
 }
}

The reason that rotations passed from previous level are added to R separately

and at first is that, because if we would have same match measurements for

“R_to_C[i]” and “R_to_C[i] + Upsilon” we prefer to consider the

“R_to_C[i]” rotation rather than “R_to_C[i] + Upsilon” for tunings and

reasoning process, which this will not be possible (because of the structure of the

implementation) unless we insert the “R_to_C[i]” to the beginning of the R list.

54

The R set creation process runs in constant time that is 𝜃 (𝐺𝑎𝑚𝑎 + 2 𝑈𝑝𝑠𝑖𝑙𝑜𝑛) ;

because Gama and Upsilon are values set before the process is started and are

independent of the size of input shapes.

Now that the domains for “Apply_Rotation” and “Apply_Move” functions are

defined the runtime complexity of transformation check procedure could be

calculated as following:

𝑂 ((𝛾 + 2 Υ) 𝑀2)

𝜔 (𝛾 + 2 Υ)

Please refer to section 3.4 for 𝑀 . Best case runtime (𝜔) is achievable when the

pruning techniques for Translation determination section works perfect or when

partial matches are not desired and are avoided. Worst case runtime (𝑂) is expected

when partial matches are desired and pruning techniques cannot prune even one

translation. Note that, the runtime complexity is independent of the size of input

shapes and is dependent to some parameters set by user where with the changes I

mentioned in Chapter Four, these dependencies can be reduced.

Having finished running levels, best results of transformation determination

process between each pair are determined and stored sorted regarding to their score

value in an array named “Overal_Result”. A sample of a portion of this array is given

in Table 5.1, and the generation process of this array is given below:

int[,] Overall_Results = new int[360, 3];

for (int i = 0; i < 101; i++)
{
 for (int j = 0; j < L1.Matches[i].Count; j++)
 {
 if (Overall_Results[L1.Matches[i][j][0], 0] < i)
 Overall_Results[L1.Matches[i][j][0], 0] = i;

 Overall_Results[L1.Matches[i][j][0], 1] =
 Overall_Results[L1.Matches[i][j][0], 1] + i;

 Overall_Results[L1.Matches[i][j][0], 2]++;
 }
}

55

The given code is for Level – 1 only, which the same code is used for all checked

levels as well. Using this process we determine the best match measurement

achieved by a rotation angle, the number of times we met the rotation angle in

“Matches” list and the score of that rotation angle which is the sum of all match

measures we have for that specific rotation angle.

Table 4.1 A sample of determined results of transformation between a pair

Score Rotation Best Match Occur count

4400 8 100 % 171

3257 22 95 % 85

2879 1 92 % 67

A similar procedure as the last code will be used to determine best logics between

the pairs (instead of reading from “Matches”, results from “Overall_Results” of all

pairs will be considered), and applying these logics on the last shape standing in the

input sequence, we can determine the best and all candidates to be the next standing

in the sequence.

I mainly concentrated on transformation determination process of this

implementation and I tried to program it as optimal as possible. The analysis of

runtime complexity shows a constant value regarding to the parameters set be user,

which reveal a fair complexity of algorithm and implementation. Furthermore, the

analysis of code and algorithm shows that this algorithm has an end.

In this chapter I tried to cover all major points of the implementation, although

there are many points and techniques used in this implementation both for sake of

increasing running speed and algorithm optimization which are not mentioned here.

Different types of data structures and programming techniques in addition to many

features of XAML visual effects used to illustrate results are being benefited in this

implementation. Some screenshots of the implementation are given in Appendix.

56

5CHAPTER FIVE

CONCLUSION AND FURTHER RESEARCH

The optimization I applied in coding of the naïve approach (Chapter Two) quite

depends on input shapes, meaning that, for some shapes it works well while on some

other shapes it has less effect. For the shapes that their crop size is almost the same

as matrix size or even close to it, the optimization methods would not be handy. The

other problem with this approach is the nature of its search pattern that it does not

take into consideration the match measurement at each step, better say, it does a

blind search. Consider the Figure 4.1; this chart is a part of the monitoring the

performance of this method on a sample test.

As is obvious in the Figure 4.1, at some stages this method approaches some

proper match values, but instead of tuning the parameters to get better results, it

continues to new parameters which in some stages led to worst match values.

Although finally it determines the best transformation but this transformation might

be achievable via much less transformation checks.

I have tested the implementation of naïve approach on a number of shapes; overall

average results of tests are presented in Table 4.1. This naïve approach may have

proper answers in acceptable period for transformation determination process

between a set of shapes, but since the optimization techniques are not reliable, this

technique is not trustworthy.

Table 5.1 the average results my implementation’s application on some test shapes.

 Rotations
Translation

Total Optimization
Ratio X - Axis Y - Axis

No Optimization 360 99 99 3,564,360 0%

With
Optimization

Simple Shape 360 7 14 35,280 99%

Normal Shape 360 28 34 342,720 90%

Complicated Shape 360 41 57 841,320 76%

57

In Chapter Three I proposed a solution for determination of best candidates to

stand after the last member of a sequence of shapes and I named it Segmenting–

Leveling method. Furthermore, because I am using basic aspects of shapes for

reasoning, I would also call this method “Reasoning with Shapes”. The first task for

the reasoning purpose is to find the logic of the sequence, for this I tried to compare

sequential shapes in pairs and determine the logic between them, then using these

logics, I tried to reason the logic of the set and applying the logic on the last shape I

deduced the candidate shape.

To compare two shapes, I propose to derive abstractions of shapes and manipulate

them instead of actual shapes. To make abstractions, I divide shapes into segments

and set the cardinality of landmark points inside each segment as the value of the

segment. Then I try to guess the transformation by checking for all possible

transformations for the abstraction, and using Leveling I try to tune the guessed

transformations to achieve a satisfactory accurate results.

0

20

40

60

80

100

120

M
at

ch
 V

al
ue

Search Process

Figure 5.1 Monitoring of transformation determination process in naïve approach is given, and shows
that the naïve approach runs a state space search without taking into consideration the match
measurements of each compare.

58

I verified the correctness of my proposed method; I showed that we will be able to

determine the transformations and guess the requested shape, and also I proved that

using finite and acceptable number of levels we can achieve as accurate results as we

need.

This method has numerous advantages over the naïve approach that I explained in

Chapter Two. One of the most important advantages is the abstraction technique

which this method benefits from that makes the runtime and complexity of this

method independent of the size of shapes. The other advantage is, searching in

continues space rather than discreet space that the naïve approach uses, which

enables Segmenting–Leveling method to be able to determine transformations with

any accuracy required that naïve approach is incapable of. Another advantage is

complexity, where my proposed method can do transformation determination with

much less compares and operations than the naïve approach.

My method has some advantages over the methods available in literature. One of

these advantages, as over naïve approach, is segmentation which makes the

complexity of Segmenting–Leveling method independent of the size and complexity

of input shapes. Another advantage is the complexity of operations, where the

methods in literature use some complex roots such as SVD based roots which are

costly to be used for simple operations with limited resources where my method use

Circular Shift as basic operation which is much cheaper and easier to manipulate

rather than SVD based roots. Also available methods have to deal with complex and

costly matrix manipulations such as matrix multiplications that could be time and

resource consuming when applied on huge matrices, where my proposed method is

free of this problem.

This method suffers from a proper definition for threshold value; it seemed to me

that a dynamic threshold value might be a better option than a static value that I used

here, which requires further research.

59

As I mentioned one of the main goals of my method is to use as simple and least

resources as possible, although most of the method’s procedure satisfies this

requirement, but segmentation task uses trigonometry functions to determine a

proper segment for each landmark point which is not as simple as shift operation

used for rotation determination. Since the main application of this method is in

robotics, we may be able to use robots vision system to do segmenting by changing

focus point and multi sensors similar to compound eyes of insects (in contrast to non-

compound eyes such as human eyes) to do segmenting task. This could be a great

achievement that requires further research.

60

6REFERENCES

Alsina, C. (2009). When Less is More: Visualizing Basic Inequalities. The

Mathematical Association of America publications.

Bruzzone, L., & Callegari, M. (2010). Application of the Rotation Matrix Natural

Invariants to Impedance Control of Rotational Parallel Robots. Hindawi

Publishing Corporation Advances in Mechanical Engineering.

Choi, Y. (2011). Efficient shape modeling using occupancy reasoning with

reconstruction scheduling for interactive virtual environments. VR Innovation

(ISVRI), IEEE International Symposium, 287-291.

Davenport, P. D. (1968). A Vector Approach to the Algebra of Rotations with

Applications. Tech. rep., NASA TN D-4696, Greenbelt, MD.

Devlin, K. (2000). The Language of Mathematics: Making the Invisible Visible. Holt

Paperbacks publications.

Fallon, L., & Sturch, C. R. (1979). Ground Attitude Determination and Gyro

Calibration Procedures for the HEAO Missions. Proceedings, AIAA 17th

Aerospace Sciences Meeting, New Orleans, Louisiana.

Gover, J., & Dijksterhuis, G. (2004). Procrustes Problems. OXFORD university

press.

Guo, B., & Vachharajani, N. (2007). Shape analysis with inductive recursion

synthesis. Proceedings of the 2007 PLDI conference, 42 (6), 256-265.

61

Kabsch, W. (1976). A solution of the best rotation to relate two sets of vectors. Acta

Crystallographica, 922-923.

Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two

sets of vectors, Acta Crystallographica, 827-828.

Markley, F. L., & Mortari, M. (2000). Quaternion Attitude Estimation Using Vector

Measurements, The Journal of the Astronautical Sciences, 48, 359-380.

Markley, F. L. (1988). Attitude determination using vector observations and the

singular value decomposition. The Journal of the Astronautical Sciences, 36,

245-258.

Markley, F. L. (1993). Attitude Determination Using Vector Observations: a Fast

Optimal Matrix Algorithm. The Journal of the Astronautical Sciences, 41, 261-

280.

Markley, F. L., & Mortari, M. (2000). Quaternion Attitude Estimation Using Vector

Measurements. The Journal of the Astronautical Sciences, 48, 359-380.

Mortari, D. (1996). EULER–2 and EULER–n Algorithms for Attitude Determination

from Vector Observations. Space Technology, 16, 317-321.

Mortari, D. (1997). ESOQ: A Closed–Form Solution to the Wahba Problem. Journal

of the Astronautical Sciences, 45, 195-204.

Mortari, D. (2000). Second Estimator of the Optimal Quaternion. Journal of

Guidance, Control and Dynamics, 23, 885-888.

62

Nelsen, B. (1993). Proofs without Words: Exercises in Visual Thinking. The

Mathematical Association of America publications.

Nelsen, B. (2001). Proofs Without Words II: More Exercises in Visual Thinking. The

Mathematical Association of America publications.

Nelsen, B. (2006). Math Made Visual: Creating Images for Understanding

Mathematics. The Mathematical Association of America publications.

Polster, B. (2004). Q.E.D.: Beauty in Mathematical Proof. Walker & Company

publications.

Reynolds, R. G. (1998). Quaternion parameterization and a simple algorithm for

global attitude estimation. Journal of guidance, control and dynamics. 21, 669-

671.

Schuster, M. D., & Oh, S. D. (1981). Three-Axis Attitude determination from vector

observation. Journal of guidance and control, 4, 70-77.

Schuster, M. D. (1978). Approximate Algorithms for Fast Optimal Attitude

Computation. AIAA Guidance and Control Conference, Palo Alto, California,

88-95.

Shuster, M. D., & Natanson, G. (1993). Quaternion computation from a geometric

point of view. Journal of Astronomical science, 41, 545-556.

Stark, L. (1996). Recognizing object function through reasoning about partial shape

descriptions and dynamic physical properties. IEEE Journal, 1640-1656.

63

Thomas, V. (2006). Algorithms for the Weighted Orthogonal Procrustes Problem

and other Least Squares Problems, Ph.D. Thesis, UMINF-06.10, UMEA

University.

Wahba, G. (1965). A Least Squares Estimate of Spacecraft Attitude. SIAM Review,

7, 409, Problem 65-1.

64

7APPENDIX

Main window is shown on Figure A.1; here user can set the size of the matrices

which shapes are presented by, the Outpour Threshold value for all levels and choose

either of compare types. Also user can see the results of each level presented

separately and grouped as 100% - 75%, 75% - 50%, 50% - 25% and 25% - 0%. User

can choose whether to see the results of each level or the transformations passed to

next level for tuning purpose.

Figure A.1 Main Window

User may choose whether to Load previously saved shapes by clicking on Load

button or manually add shapes by clicking on Add New Figure button. If saved

shapes are loaded, matrices sizes are read from the saved file and set and will not

changeable. While manually defining shapes, matrices sizes must be set using two

text boxes on upper-right corner of the window before clicking on Add new figure

button.

Manually adding figure form is shown on Figure A.2, user should try to draw

shapes by using the combination of Lines and Circles. Defined shapes are listed on

65

the left most of the form and by double clicking on each of them user can review the

drawn shape at any time; an example of this is given in Figure A.3.

By clicking of Levels Options button, a set of options will be shown that allows us

to set some properties for each of the levels such as the excepted range of match

ratios to be passed to next level, maximum number of transformations to pass to next

level and matching threshold value. These options are shown in Figure A.4.

Figure A 7.2 Manually defining new shape interface

66

Figure A.3 Review a defined shape

Figure A.4 The interface of setting up options for each of the levels separately

Having finished defining figures and setting the desired values for options,

clicking of Run Reasoning button runs reasoning process on the set of the defined

shapes. This process is programed as multi-thread which keeps the form responding

while running reasoning which allows us to review the figures during the reasoning

67

task being run. After the reasoning process is finished, results are ready for view. An

example is given in Figure A.5.

Figures are compared in couples, and the Couples are shown in Compared Figures

section, choosing each of them we will be able to view the results of the leveling

process of each. On Figure A.5, the compare result on level three for the selected

couple is shown. Match ratio, Rotation angle and Translation for each of the results

are displayed. Double clicking on any of the transformation, the selected

transformations will be illustrated by an animation, see Figure A.6.

Figure A.5 An example of comparing a couple of shapes

68

Figure A.6 The selected transformation is illustrated by an animation

The statistics of comparing each of the couples is also available for view by

clicking of Full statistics button. Doing so, a widow such as the one shown in Figure

A.7 will be displayed with some options of displaying statistics.

Figure A.7 View statistics of comparing each of the couples

69

Clicking on the Show Reasoning Result‘s button, the program uses the best

transformations of all pairs to determine a shape which suits best to stand after the

last shape in the sequence. The results of this task will be shown on a window such

the one in Figure A.8. It informs us which transformation of each pair is chosen and

what is the final analysis and also what are other candidates. Clicking on Illustrate

Reasoning Results button, the program draws the determined best shape, see Figure

A.9, the red shape is the best candidate and blue shapes are the figures in the

sequence. Also by clicking on Next Candidate button we could see other candidates

as well.

Figure A.8 Reasoning Results

70

Figure A.9 Illustrated reasoning results

71

TABLE OF FIGURES

Figure 1.1. Distance estimation by using visual information .. 2

Figure 1.2. To group the points in initial shape, ... 4

Figure 1.3. A sample set of Points presenting a shape .. 13

Figure 2.1. Presenting a sample shape using a matrix .. 16

Figure 2.2. State space search for the transformation determination. 17

Figure 2.3. A sample of partial match between two shapes is illustrated. 20

Figure 2.4 The manual shape input interface. ... 23

Figure 4.1 Cropping the Shapes avoids unnecessary search for matches. 25

Figure 3.1 Determine the transformation between these two shapes 27

Figure 3.2 A brief visualization of rotation determination procedure. 28

Figure 3.3 Regions and Segments ... 29

Figure 3.4 Visualization of adding a dimension to 2D segmentation vectors 30

Figure 3.5 Different coordinate systems ... 32

Figure 3.6 Three sample cases of translation process are illustrated. 34

Figure 3.7 Sample Rotations ... 36

Figure A.1 Main Window ... 64

Figure A.2 Manually defining new shape interface .. 65

Figure A.3 Review a defined shape .. 66

Figure A.4 The interface of setting up options for each of the levels separately 66

Figure A.5 An example of comparing a couple of shapes .. 67

Figure A.6 The selected transformation is illustrated by an animation 68

Figure A.7 View statistics of comparing each of the couples 68

Figure A.8 Reasoning Results ... 69

Figure A.9 Illustrated reasoning results .. 70

	CONTENTS
	1 CHAPTER ONE
	1.1 Real World Experiences
	1.2 Wahba’s Problem
	1.2.1 Markley’s Methods
	1.2.2 FOAM
	1.2.3 SOMA
	1.2.4 SVD – Based

	1.3 Procrustes Analysis
	1.3.1 Translation
	1.3.2 Isotropic and Anisotropic Scaling
	1.3.3 Rotation
	1.3.4 Match Measurement

	1.4 Kabsch Algorithm

	2 CHAPTER TWO
	2.1 Naïve Approach
	2.2 Advantages and Disadvantages
	2.3 Implementation

	3 CHAPTER THREE
	3.1 Introduction
	3.2 Segmentation
	3.3 Segment Determination for a Landmark Point
	3.3.1 Polar Coordinate System
	3.3.2 Cartesian Coordinate System

	3.4 Translation
	3.5 Rotation
	3.6 Match Measurement
	3.7 Leveling
	3.8 Correctness Verification

	4 CHAPTER FOUR
	5 CHAPTER FIVE
	6 REFERENCES
	7 APPENDIX

