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UNCERTAINTY ANALYSIS OF MODAL PARAMETERS OBTAINED 

FROM SYSTEM IDENTIFICATION METHODS 

ABSTRACT 

In civil engineering structures, damage prognosis depends in great extent on 

accuracy identification of modal parameters (natural frequencies, damping ratios and 

mode shapes). So, it’s extremely significant to investigate the factors affecting the 

accuracy of identified modal parameters. In order to do this, two different output-

only system identification methods, namely, Natural Excitation Technique coupled 

with Eigensystem Realization Algorithm (NExT-ERA) and Enhanced Frequency 

Domain Decomposition (EFDD) are programed in Matlab®. The 

uncertainty/variability of identified modal parameters due to uncertainty/variability 

of some input factors such as spatial sensor density, response data length and 

measurement noise level are investigated using an updated analytical model of a steel 

bridge. The experimental modal analysis applied to this calibrated model and the 

acceleration response acquired by sensors which placed on several different point of 

this model structure’s body. Similarity of calibrated finite element model to their real 

model counterpart is realized by comparing the identified dynamic characteristic of 

both the actual and analytical models. As a result of this process by changing in mass 

and stiffness matrices of finite element model, modal assurance criteria (MAC) 

values is checked to approve that the analytical model is properly updated. Finally, 

investigation of the input factors realized by simulated data from the calibrated finite 

element model. Consequently, In order to accurately identify damage in structural 

health monitoring with non-destructive testing technology, three input factors 

investigated are very important and must be given utmost attention in system 

identification process. 

Keywords: Structural health monitoring, system identification technique, 

Experimental and analytical modal analysis 
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SİSTEM TANIMLAMA YÖNTEMLERİ İLE BELİRLENMİŞ MODAL 

PARAMETRELERİN BELİRSİZLİK ANALİZİ 

ÖZ 

Son yıllarda, yapılarda yapı sağlığının gözlenmesi (structural health monitoring) 

işlemi, yapıların güvenli kullanım süresinin tahmini ve/veya katastrofik olaylardan 

sonra önemli yapılarda hasar tespitinin yapılabilmesi için önemli bir araç haline 

gelmiştir. Titreşim-tabanlı tahribatsız hasar değerlendirmesi, yapının modal 

parametrelerindeki (titreşim frekansları, mod şekilleri ve sönüm oranları) değişim 

takip edilerek yapılabilmektedir. Bu parametreler, deneysel modal analiz 

(experimental modal analysis) yöntemleriyle yapının global titreşim verileri 

kullanılarak tahmin edilebilir. İnşaat mühendisliği yapılarında deneysel modal analiz 

temelli hasar tespiti, modal parametrelerin doğru tahminine bağlıdır. Bu nedenle 

doğru tahmini etkileyen faktörlerin incelenmesi son derece önemlidir. Deneysel 

çalışmada kullanılan model köprü ST37 çelik malzemesinden yapılmış olup, 6.0 m 

açıklığa ve 2.05 m yüksekliğe sahiptir; döşemesiz ağırlığı ise yaklaşık 2425 N’dur. 

Köprü üzerinde ortamsal titreşim ve darbe testleri gerçekleştirilmiş, köprünün 

titreşimleri farklı noktalara yerleştirilmiş sekiz adet ivmeölçer yardımı ile 

kaydedilmiştir. Köprünün modal parametreleri, “doğal uyarım tekniği ve öz-sistem 

realizasyon algoritması” (Natural Excitation Tecnique with Eigensystem Realization 

Algorithm - NExT-ERA), “gelişmiş dekompozisyon ferekans tanım alanında” 

(EFDD) yöntemleri kullanılarak bulunmuştur. Deneysel yolla elde edilmiş bu 

değerler kullanılarak köprünün kalibre edilmiş sonlu elemanlar modeli oluşturulmuş 

ve bu modelden elde edilen simülasyon verileri üzerinde sensör yoğunluğu , gürültü 

miktarı ve tepki veri uzunluğu faktörlerinin modal parametrelerin tahminine etkisi 

incelenmiştir. 

Anahtar sözcükler: Yapı sağlığının gözlenmesi, Sistem tanımlama yöntemi, 

Deneysel ve analitik modal analiz 

 

 



vi 
 

CONTENTS                                                                                                         

 Page 

THESIS EXAMINATION RESULT FORM .............................................................. ii 

ACKNOWLEDGEMNTS .......................................................................................... iii 

ABSTRACT ................................................................................................................ iv 

ÖZ ................................................................................................................................ v 

 

CHAPTER ONE – INTRODUCTION .................................................................... 1 

 

1.1 General .............................................................................................................. 1 

1.2 Aim and Objectives ........................................................................................... 3 

1.3 Thesis Outline .................................................................................................... 4 

 

CHAPTER TWO – LITERATURE REVIEW  ...................................................... 5 

 

CHAPTER THREE - SYSTEM IDENTIFICATION TECHNIQUES ................ 9 

  

3.1 Introduction ....................................................................................................... 9 

3.2 Input-Output Eigensystem Realization Algorithms (ERA .............................. 11 

3.3 Output-Only system identification methods .................................................... 14 

3.3.1 Natural Excitation Technique combined with Eigensystem Realization 

Algorithm(NExT-ERA) and Multiple-Reference Natural Excitation Technique 

combined with Eigensystem Realization Algorithm (MNExT-ERA) .............. 14  

3.3.2 Enhanced Frequency Domain Decomposition ........................................ 17 

 

CHAPTER FOUR: UNCERTAINTY ANALYSIS OF MODAL 

PARAMETERS OBTAINED FROM SYSTEM IDENTIFICATION 

METHODS FOR SIMPLE SHEAR FRAME  ...................................................... 18 

 

4.1 Introduction ..................................................................................................... 18 

    4.2 Analytical Model of Tested Structure .............................................................. 19 



vii 
 

    4.3 Applied System Identification Methods and Numerical Programming     

     Algorithm .............................................................................................................. 20 

    4.4 Uncertainty Analysis of Shear Frame Model and System Identification  

    Results .................................................................................................................... 23 

4.4.1 Spatial Sensors Density  .......................................................................... 24 

4.4.2 Length of measurement response data ..................................................... 26 

4.4.3 Measurement/Sensor noise ...................................................................... 28 

 

CHAPTER FIVE –UNCERTAINTY ANALYSIS OF MODAL PARAMETERS 

OBTAINED FROM SYSTEM IDENTIFICATION METHODS FOR MODEL 

STEEL BRIDGE TESTED ON THE DEÜ STRUCTURAL MECHANICH 

LABORATORY ....................................................................................................... 30 

 

5.1 Introduction ..................................................................................................... 30 

5.2 Applied Devices and Installation .................................................................... 31 

5.3 Analytical Model of Tested Structure ............................................................. 33 

5.4 Applied System Identification Methods and Numerical   Programming  

     Algorithm .............................................................................................................. 35 

     5.5 Dynamic Tests of Bridge Model and Assessment of uncertainty of System  

     Identification Results ............................................................................................ 35 

5.5.1 Spatial Sensors Density ........................................................................... 35 

5.5.2 Response data length  .............................................................................. 38 

5.5.3 Measurement/Sensor noise  ..................................................................... 40 

 

CHAPTER SIX – CONCLUSIONS ....................................................................... 43 

 

REFERENCES ......................................................................................................... 45 

 



1 
  

CHAPTER ONE                                                                             

INTRODUCTION 

 

1.1 General 

Engineering structure’s loses their efficiency with passing time because many 

different events will happen during normal service life and usage duration such as an 

earthquake, hurricanes, explosions, progressive weakness of elements component 

increase due to fatigue failure and ambient/environmental interactions. Structures are 

designed to resist loads with considered to serviceability and the approximation of 

critical loading those structures may experience in their operating life duration. 

However, these structures may encounter with various type of loading conditions in 

their useful life. From experiences on the structures simulation model or supposition 

of some uncertain parameters, applied load to a structure can be identified. 

Generally, structure design towards an ultimate load intensity limit which is may 

happen in such a structure added by a safety factor. Designing a safest structure will 

cause structure so heavy; despite, the maximum design load may case once in the 

structure serviceability duration or never. On the other hand, extreme safety built in, 

particularly when the maximum design loads applied to the structure may not result 

in observable damage in all components of a structure and how will be the structural 

situation after that. 

It is very important to find a way to monitor structure and knowing about their 

situations in those critical affecting loads and also in the normal operating conditions, 

because they makes structures reliable. Civil structures have acquired increasing 

attention in the field of structural health monitoring to get an appropriate insight 

about damage prognosis and assess the remaining useful life of structures. 

Identifying modal parameters (natural frequencies, damping ratios and mode shapes) 

of a structure and determines the level of confidence to these parameters plays an 

important role during identifying a damage occurrences in the structure. 

Nondestructive testing methods are more beneficial than other methods, because they 

do not influence the construction’s performance. Visual inspection has been widely 

used for damage determination. This method has some considerable disabilities: (1) 

1 
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it is very difficult to detect some hidden damages inside a structure and only the 

observable damage can be detected. These hidden damages may cause sudden 

collapse of the structure, for example BAYRAM Hotel collapses suddenly after the 

Van earthquake on 23th of October 2011 (2) assessment of the structural condition 

depends on the observation of inspectors and they may result different judgments (3) 

despite the visual inspection is a very time consuming and expensive method, it is 

impossible to apply continuous monitoring of a structure. Because of these reasons 

engineers have been researching on various state-of-the-art methods to identify 

structural situations simultaneously and reliably. One of common approaches is the 

experimental determination of modal parameters. A change in modal parameters can 

be used to estimate the actual performance of the construction and eventually to 

detect local damage zones. Also, FE-methods can be used to estimate the modal 

parameters of a construction in the initial state. In order to estimate the performance 

of a structure on the basis of measured modal parameters, the inverse problem has to 

be solved and the FE-model has to be adapted to correspond to the measured data. 

Experimental or Operational Modal Analysis (EMA, OMA) method have been 

extensively used in the engineering structures to extract structural modal 

characteristic based on measurements vibration as well as identifying damage of 

structures. These modal parameters for structural damage identification and health 

monitoring are essential. EMA as a conventional method is based on the estimation 

of a set of Frequency Response Functions (FRFs) in the frequency domain and 

impulse frequency response functions (IFRFs) in the time domain relating the 

applied force and the corresponding response at several points along the structure, 

with enough high spatial and frequency resolution (He, 2008). However, it is very 

difficult to obtain FRFs or IRFs in dynamic field tests of civil structures, because in 

the field tests, in consequence, of the difficulty to excite large civil structures in a 

controlled form, only the structure dynamic response (output) can be measured. 

Furthermore, structures affected by various types of ambient excitation sources such 

as traffic, wind, variations in temperature and combinations, so it’s impossible to 

measure input signals, but it can be measured structural response of those excitation 

sources. Moreover, structures may be exposed by random type of input excitation 

amplitudes like earthquakes with stochastic magnitude. Thus, in last year’s output-
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only system identification methods have received increasing attention and obtained 

considerable advancement between research and structural industrial communities as 

a potential tool to damage prognosis at the earliest possible step and assess the 

remaining useful serviceable life of structures (Moaveni, 2007). 

1.2 Aim and Objectives 

Structural Health Monitoring (SHM) objectives to give, real time monitoring of  

multiple component of a structure during every moment of the operating life and 

diagnostic insight about the “state” of the component materials of the constructed 

elements, and of the full installation of these elements constituting the structure as a 

whole by using of EMA. Non-destructive damage identification based on 

measurement vibrations predicts the damage according to variation of dynamic 

properties of a structure. EMA method has used as a technology for structure’s 

modal parameters identification from its measured vibration data. Accuracy of 

damage quantification including damage localization and identify damage intensity 

by EMA method strongly relate to the accuracy estimation of the structural dynamic 

characteristics (Moaveni, 2006). 

The aim of the research study presented in this thesis is to evaluation of the 

accuracy and completeness of the identified modal parameters by uncertainty 

analysis of modal parameters obtained from different output-only system 

identification methods. In the first part of this thesis, some of already existing output-

only system identification methods algorithms applied to numerical programming in 

Matlab®. In the second part of this thesis, model steel bridge is exposed to 

experimental modal analysis and finite element (FE) modeling, in the analytical 

framework of SAP2000.FE model is calibrated in order to get the updating model. In 

the final part, based on experimental modal analysis and analytical modal analysis, 

the effects of the variability/uncertainty of several input factors on the 

variability/uncertainty of system identification results are investigated. 
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1.3 Thesis Outline 

This research thesis partitioned in three topics, by particular mention: 1) output-

only system identification methods programming algorithm and investigate of the 

accuracy of numerical programming 2) experiment design, installation of devices 

(e.g. Sensors, data acquisition,..) and experimental modal analysis 3) uncertainty 

analysis of the identified modal parameters  due to variability/ uncertainty of several 

input factors. 

Chapter 2 presents a review of the existing literature on the uncertainty analysis of 

identified modal parameters obtained from output-only system identification 

methods. In Chapter 3 presents, already exist three out-put only system identification 

methods algorithm used to estimate the modal parameters that covers the first topic 

of research purpose. Chapter 4 and chapter 5 covers second and third topic and 

mentioned to the applied experimental modal analysis and analytical modeling of the 

model steel bridge that subject to dynamic tests in the DEÜ Mechanical Laboratory. 

Finally, Chapter 6 summarizes the work done, highlights important research findings. 
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CHAPTER TWO  

LITERATURE REVIEW 

In the last decades, Structural Health Monitoring (SHM) has been providing 

inexpensive, real-time monitoring systems with the non-destructive testing 

evaluation. When a natural or man-made event happens, the structural monitoring 

system provides real-time information to help the quickly identification of damaged 

areas, which can lead to decreases in the damage’s (observable and unobservable 

damages) identification process duration and normal life interruption. So, structures 

have acquired increasing attention in the field of structural health monitoring to get 

an appropriate insight about damage prognosis and assess the remaining useful life of 

structures in different research field. 

Hoon Sohn, Charles R. Farrar, Francois Hemez and Jerry Czarnecki (2001), 

summarized structural health monitoring studies, in the years between 1996-

2001.The definition of SHM as damage identification and health monitoring of 

structural and mechanical systems from changes in their vibration characteristics and 

considered to this topic as global SHM researches. In some damage detection 

methods, solving the inverse problem which needs to construct an analytical model is 

preferred. Uncertainties will arise depending on fitting between real model and new 

generated analytical model. Some researchers try to avoid this dependency on the 

numerical models. Despite, the efficiency of these approaches in identifying the 

onset of damage, they can only identify the existence of damage. Another way of 

solving inverse method is using a neural network algorithm. The neural network can 

inversely relate the measured response and expected modal parameters. In this 

method both the undamaged and damaged structure measurement response data are 

needed and such data are rarely available in the common structures. As well as, one 

of the difficulties for the extend SHM systems in the field is environmental 

conditions and variation of the operational conditions of structure. Advanced damage 

identification algorithm performance will affected by environmental and operating 

conditions of structures. Finally, emphasized that the statistical models will develop 

for damage detection applications. R.D. Nayeri; S.F.Masri; and A.G. Chassiakos 

(2007), working on the application of SHM techniques to monitor structural changes 

5 
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in a retrofitted six story Long Beach Public Safety Building based on ambient 

vibration. Eigen Realization Algorithm (ERA) and the ERA with using data 

correlation (ERA/DC) are used, and then implement ERA by using the Natural 

Excitation Technique (Next) technique, to investigate modal properties of the 

structure. This study result: “1) low resolution sensor placement, which results in 

high model order reduction; and 2) the ambient excitation was so small that the 

higher modal displacements were in the noise level, hence not adequately excited. It 

was shown that these identification techniques are extremely capable to be used in 

online structural health monitoring schemes”. 

Jian-Huang Weng, Chin-Hsiung Loh, Jerome P. Lynch, Kung-Chun Lu, Pei-Yang 

Lin, Yang Wang (2008), represent a study on output-only modal identification of a 

long span (240 m), cable-stayed bridge using wireless monitoring systems. They 

used two output-only system identification methods consist of: Stochastic Subspace 

Identification (SSI) method and Frequency Domain Decomposition (FDD) method, 

to identify first ten modes of the bridge in the frequency range of 0-7 Hz. An updated 

finite element model used to assess the operational condition of structure, in order to 

do this, an analytical model of the Bridge had been extended using a Matlab based 

computer program and the identified modal frequencies and mode shapes of both 

experimental and analytical approaches are compared quite well.SSI method can 

eliminate the uncorrelated noise while preserving vibration information and FDD can 

clarify the close mode despite contaminated by noise, with priority of dominant 

mode. The first mode’s damping ratios are estimated approximately2.5% on average 

and, in the higher mode the damping ratios decreased less than 1.0%.A research 

study suggested, in order estimating accurate damping ratios. Enjoying Yu, Ertugrul 

Taciroglu and John W. Wallace (2006), investigate on finite element model-updating 

methods, in order to parameter identification of framed structures which using these 

methods. In this study, comparison of two common methods and one proposed 

methods subjected to improve the numerical difficulties when the various physical 

parameters subjected to identification, from experimental data. O. Ozcelik, J.E. Luco, 

J.P. Conte, T.L. Trombetti and J.I. Restrepo (2007), studied a simple conceptual 

mathematical model for identification of model parameters by using a wide range of 

experimental data, experimental hysteresis loops and response during periodic 
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sinusoidal and triangular excitations. Various sets of dynamic tests are performed on 

the system and validate their proposed conceptual model by comparing the identified 

result from both, analytical and experimental model. Dionysius M. Siringoringo,  

YozoFujino (2008), represent a research on the system identification of a suspension 

bridge with the total length of 1380 m, consists of 720 m center span and two 

symmetric side spans of 330 m, from ambient vibration response. Tow output-only 

system identification methods, including: the Ibrahim Time Domain (ITD) method 

and the Natural Excitation Technique (NExT) combined with the Eigensystem 

Realization Algorithm (ERA) are used to extract modal parameters of the structure 

and accuracy and efficiency of both methods compared with the results from a Finite 

Element Model. The result of this investigation approved the accuracy and reliability 

of the identified modal parameters of bridge from those used output-only system 

identification methods. Babak Moaveni, Andre R. Barbosa, Joel P.Conte, and 

François M.Hemez  (2006), provide a research on uncertainty analysis of identified 

modal parameters of the seven-story R/C building due to variability of four 

significant input factors which affected the accuracy of identified modal parameters 

that parameter’s accuracy plays an important role in accuracy of damage prognosis 

process. The Calibrated Finite Element model used to investigate effects of these 

uncertainties parameters. The measurement acceleration response of the experimental 

test data and simulated data recorded from updated analytical model exposed to three 

output-only system identification methods like as: (1) Natural Excitation Technique 

combined with the Eigensystem Realization Algorithm (NExT-ERA), (2) Data-

driven Stochastic Subspace Identification (SSI-DATA), and (3) Enhanced Frequency 

Domain Decomposition (EFDD).They show some of predicted input factors have a 

significant effect on accurate identification of modal parameters and consequently 

effected accurate identification of damage identification results. 

The purpose of this represented study covers output-only system identification 

procedure such as: NExT-ERA, Multiple NExT-ERA, ERA and EFDD methods also, 

some of these methods subjected to numerical programming. According to previous 

experience and other research work, variability/uncertainty of modal parameters due 

to variability of some important input factors such as: 1) spatial sensor density 2) 

recorded response data length 3) measurement/sensor noise level, are considered for 
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investigation by using two out-put only system identification methods consist of: 

NExT-ERA and EFDD. The propose research study first, validate in a simple shear 

frame model and then mentioned in the applied experimental modal analysis and 

analytical modeling of the steel bridge model that subject to dynamic tests in the 

DEÜ Structural Mechanic Laboratory. 
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CHAPTER THREE 

SYSTEM IDENTIFICATION TECHNIQUES 

 

3.1 Introduction 

Experimental modal analysis (EMA) has been drawing significant attention in the 

mechanical, aerospace and structural civil engineering research communities, based 

on vibration measurements to identify modal parameters such as natural frequencies, 

damping ratios and mode shapes. The traditional experimental modal analysis makes 

use of measured input excitation as well as output response. However, for large civil 

structures, structures’ excitations through the control of the amplitude of input 

excitations are a very difficult issue. It is also impossible to measure all the inputs 

under operational conditions, especially those from ambient sources.EMA has been 

extensively used in order to extract dynamic parameters of those structures and 

consequently, identifying damage in the structures based on vibration measurement 

data. These modal parameters are indispensably necessary for structural damage 

identification and health monitoring. 

The conventional EMA is based on the estimation of a set of Frequency Response 

Functions (FRFs) in the frequency domain and impulse response functions (IFRFs) 

in the time domain concerned with applied force and corresponding response at 

different points on the structure, with enough spatial sensor density with high-

frequency resolution. Practically, in the dynamic field tests of civil structures, this is 

very difficult to gain FRFs or IRFs, in consequence of the difficulty to excite those 

structures in a controlled form; consequently, only the response of the excited 

structure can be measured. Also, Structures affected by various types of ambient 

excitation sources such as traffic density, wind loads, variations in temperature and 

combinations of these environmental factors, so measurement of input signals are 

impossible but structural response (output-response) can be measured. Moreover, 

structures may be exposed by random type of input excitation amplitudes like 

earthquakes with stochastic magnitude. Thus, in last year’s output-only system 

identification methods have received increasing attention and obtained considerable 

advancement between research and structural industrial communities as a potential 

9 
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tool to identify damage at the first possible stage and assessment of remaining useful 

life of structures. These output-only system identification techniques are necessary 

and essential for developing a real-time continuous vibration-based structural health 

monitoring system for continuously monitoring a structure during its service life. 

Output-only system identification methods are in the frequency or time domains. 

The main frequency domain methods include the classical peak picking (PP), the 

frequency domain decomposition (FDD) and the enhanced frequency domain 

decomposition (EFDD) (Brincker et al., 2000, 2001).These methods are extended 

based on response cross-spectral density matrices. Moreover, the time domain 

output-only system identification methods include two and one stage methods. In the 

two-step methods, first random decrement functions and response correlation 

functions are gained as a free vibration response estimates, and then modal 

parameters are obtained in the second step by using any classical system 

identification algorithm based on free estimates of the response function (impulse 

response function).Conversely, in the one-step system identification methods like as 

the data-driven stochastic subspace identification (SSI-DATA) method, modal 

parameters can be identified by output-only measurements directly.(Van Overschee 

and De Moor, 1996) On the other hand, the development of EMA in the time domain 

can be divided into three main approaches: Natural Excitation Technique (NExT) 

based approaches, Autoregressive Moving Average (ARMA) model based 

approaches, and Stochastic Subspace Identification (SSI) based approaches (He, 

2008, Hong 2006). 

Already existing output-only system identification techniques are provided in 

following sub-sections. These methods include: (1) the Natural Excitation Technique 

(James et al., 1993) combined with ERA (NExT-ERA), and Multiple-Reference 

Natural Excitation Technique (Moaveni et al, 2005) combined with ERA (MNExT-

ERA) (2) Enhanced Frequency Domain Decomposition (EFDD).The first method 

belongs to two-step time domain system identification methods as long as in order to 

improve the reliability and accuracy of identified modal parameters using NExT-

ERA, the Multiple-reference NExT-ERA (MNExT-ERA) is applied as an extension 
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of the NExT-ERA, and the second methods are frequency domain non-parametric 

methods. 

3.2 Input-Output Eigensystem Realization Algorithms (ERA) 

State-space model applied to system analysis and design in control and systems 

research programs. In order to design controls for a dynamic system it is necessary to 

have a mathematical model that will adequately describe the system's motion. The 

process of constructing a state space representation from experimental data is called 

system realization. It is known from control theory, that a system with repeated 

eigenvalues and independent mode shapes is not identifiable by single input and 

single output. Methods which allow only one initial condition (input) at a time will 

miss repeated eigenvalues. Also, if the realized system is not of minimum order and 

matrix inversion is used for constructing an oversized state matrix, numerical errors 

may become dominant (Juang and Pappa, 1985). 

There are several methods available to compute a state-space model and many 

types of inputs that are particularly important in theory as well as in practice. The 

pulse input is frequently used to generate a sequence of the pulse response for modal 

parameter identification, including system frequencies, damping and mode shapes. 

The Markov parameters are commonly used as the basis for identifying mathematical 

models for linear dynamical systems. Markov parameters can be obtained from time-

domain experimental data. The sequence of Markov parameter is simply the pulse 

response of the system and it must be unique for a given system. From Markov 

parameters, the embedded system matrices can be extracted. 

State-space representation of a linear time invariant system of order n with finite 

dimensional in the discrete-time is given by 

x 𝑘 + 1 = Ax 𝑘 + Bu(𝑘) 

y(𝑘) = Cx(𝑘) + Du(𝑘)  (3.1) 

𝐀 ∈ ℝ𝑛×𝑛 , 𝐁 ∈ ℝ𝑛×1, 𝐂 ∈ ℝ𝑚×𝑛 , 𝐃 ∈ ℝ𝑚×1 = state space matrices 

𝐱(𝑘) ∈ ℝ𝑛  = state vector,  𝐮(𝑘) ∈ ℝ𝑙  = arbitrary input signal or load vector 
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𝐲 𝑘 ∈ ℝ𝑚 = [y1 𝑘 y2 𝑘 …  ym (𝑘)]𝑇, size of vector (m) is the number of output 

channels; shows the measured response of a system between the m measured degrees 

of freedom (DOFs) at discrete time of𝑡 = 𝑘(∆𝑡).The free vibration response of the 

system can be obtained as 

𝐲 0 = 𝐂𝐱 0 , 𝐲 1 = 𝐂𝐀𝐱 0 , 𝐲 2 = 𝐂𝐀2𝐱 0 , … , 𝐲 k = 𝐂𝐀k𝐱 0     (3.2) 

Based on the free response vector, the following two (𝑚 × 𝑠) × 𝑠 Hankel matrices 

(block data matrices) are formed 

𝐻 0 =  

𝑦(1) 𝑦(2)
𝑦(2) 𝑦(3)

⋯
𝑦(𝑠)

𝑦(𝑠 + 1)
⋮ ⋱ ⋮

𝑦(𝑠) 𝑦(𝑠 + 1) ⋯ 𝑦(2𝑠 − 1)

 

(𝑚×𝑠×𝑠)

(3.3) 

𝐻 1 =  

𝑦(2) 𝑦(3)
𝑦(3) 𝑦(4)

⋯
𝑦(𝑠 + 1)
𝑦(𝑠 + 2)

⋮ ⋱ ⋮
𝑦(𝑠 + 1) 𝑦(𝑠 + 2) ⋯ 𝑦(2𝑠)

 

(𝑚×𝑠×𝑠)

(3.4) 

 s = an integer that determines the Hankel matrix size 

The matrix 𝐻 0 Is of rank n (the order of the system) if𝑚 > 𝑛.To verify this 

point, substituting the system free vibration response (Markov parameters of the 

system) from  

Eqs.(3.2) into Eqs.(3.3) and decomposing 𝐻 0 into twomatrices 

𝑯 0 =  

𝐂𝐀𝐱 0 𝐂𝐀2𝐱 0 

𝐂𝐀2𝐱 0 𝐂𝐀3𝐱 0 
⋯

𝐂𝐀s𝐱 0 

𝐂𝐀s+1𝐱 0 
⋮ ⋱ ⋮

𝐂𝐀s𝐱 0 𝐂𝐀s+1𝐱 0 ⋯ 𝐂𝐀2s−1𝐱 0 

 = 𝒫𝒬(3.5) 

Where 𝒫 𝑎𝑛𝑑 𝒬 are 

𝒫 =  

𝐂
𝐂𝐀
⋮

𝐂𝐀s−1

 𝒬 = [𝐀𝐱 0 𝐀2𝐱 0 ⋯ 𝐀s𝐱 0 ] (3.6) 



13 
  

The block matrices 𝒫 𝑎𝑛𝑑 𝒬 are the observability and controllability matrices 

respectively. The order of the system is n, and then the minimum dimension of the 

state matrix is 𝑛×𝑛.If the system is controllable and observable, the rank of block 

matrices 𝒫 𝑎𝑛𝑑 𝒬is n.Therefore, the Hankel matrix 𝐻 0 is in rank of n. 

In the same way substituting Eq (3.2) into Eq(3.4), the Hankel matrix 𝐻 1 can be 

obtained in terms of system matrices A and C  

𝑯 1 =  

𝐂𝐀2𝐱 0 𝐂𝐀3𝐱 0 

𝐂𝐀3𝐱 0 𝐂𝐀4𝐱 0 
⋯

𝐂𝐀s+1𝐱 0 

𝐂𝐀s+2𝐱 0 
⋮ ⋱ ⋮

𝐂𝐀s+1𝐱 0 𝐂𝐀s+2𝐱 0 ⋯ 𝐂𝐀2s𝐱 0 

 = 𝒫𝐴𝒬 

𝑯 1 = 𝓟𝑨𝓠  (3.7) 

Where𝒫  and 𝒬 are as defined as Eq(3.6).There exist 𝒫†  and 𝒬†are a left inverse 

and a right inverse respectively, such that 

𝒫†𝒫 = 𝐼𝑛×𝑛       𝑎𝑛𝑑    𝒬𝒬† = 𝐼𝑛×𝑛  

                          𝒫† = [𝒫𝑇 𝒫]−1𝒫𝑇      𝑎𝑛𝑑          𝒬† = 𝒬𝑇[𝒬 𝒬𝑇]−1(3.8)   

 Therefore the state space system matrices A and C can be obtained 

𝐴 = 𝒫†𝐻 1 𝒬†  

C = 𝐸𝑚
𝑇 𝒫      (3.9) 

Where  𝐸𝑚
𝑇 = [𝐼𝑚 0] , and 𝐼𝑚  is the 𝑚 × 𝑚 unit matrix. 

A singular value decomposition of Hankel matrix 𝐻 0 is performed as 

𝐻 0 = UΣV𝑇 =  𝑈𝑛 𝑈𝑝  
Σ𝑛 0
0 Σ𝑝

  
𝑉𝑛

𝑇

𝑉𝑝
𝑇   (3.10)      

n= corresponding to the order of realized system  

p=corresponding to computational error or noise                               
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Then the matrices of  𝒫 and 𝒬 can be obtained 

𝒫 = 𝑈𝑛Σ𝑛
1/2

 ; 𝒬 = Σ𝑛
1/2

𝑉𝑛
𝑇  (3.11) 

One obvious solution for state space matrix A and C can be estimated by 

𝐴 = Σ𝑛

−
1

2𝑈𝑛
𝑇𝐻𝑠(1)𝑉𝑛Σ𝑛

−1/2
 

𝐶 = 𝐸𝑚
𝑇 𝑈𝑛Σ𝑛

1/2
                                                       (3.12) 

Modal parameters can be obtained from state-space matrices. 

𝜔𝑖 =  ln(𝜆2𝑖−1)/Δ𝑡  

                            𝜉𝑖 = −𝑐𝑜𝑠 𝑎𝑛𝑔𝑒𝑙 ln 𝜆2𝑖−1    , 𝑖 = 1,2,3, … , 𝑁(3.13) 

Φ𝑖 = 𝐶. 𝑇2𝑖−1 

Δ𝑡= sampling time and 𝑇𝑖 = 𝑖𝑡ℎ  eigenvector of matrix A. 

N= n/2,   𝜆𝑖 = 𝑖𝑡ℎ  eigenvalue of matrix A(He, 2008, Moaveni 2007). 

3.3 Output-Only System Identification Methods 

3.3.1 Natural Excitation Technique Combined with Eigensystem Realization 

Algorithm (NExT-ERA) and Multiple-Reference Natural Excitation Technique 

Combined with Eigensystem Realization Algorithm (MNExT-ERA)  

The theory behind the NExT is that the theoretical cross-correlation function 

between two response measurements made along two degrees of freedom (DOF) 

collected from an ambient excited structure has the same analytical form as the free 

vibration response of the structure. In order to analyze the randomly excited systems, 

correlation functions commonly are in used and can be expressed as summations of 

decaying sinusoids. Each of them has  a  damped  natural  frequency  and  damping  

ratio and that  is  identical  of  a corresponding  structural mode shapes (James et al. 

1993).After acquiring acceleration response from the operating structure, first an 

estimation of the output cross-correlation vector is acquired for a selected reference 
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channel. Selecting the reference channel is a significant issue, because of avoiding 

missing mode vectors due to adjacency of a reference channel to a modal node. 

Consider the differential equation of motion of an N DOF, linear time-invariant 

system 

𝑴𝒙  𝑡 + 𝑪𝒙  𝑡 + 𝑲𝒙 𝑡 = 𝑷𝒇(𝑡)   (3.14) 

With initial condition 𝒙 0 = 𝒙0 𝑎𝑛𝑑 𝒙 (0) = 𝒙0  

M, C and K = mass, damping and stiffness matrices, respectively 

𝒙 𝑡 , 𝒙  𝑡 𝑎𝑛𝑑 𝒙  𝑡 = Nodal displacement, velocity and acceleration vectors  

P = load distribution matrix; f (t) = load vector function. 

By assuming that the ambient excitation function and measured structural 

responses are stationary stochastic processes, then the equation (3.14) can be revised 

to 

𝑴𝑿  𝑡 + 𝑪𝑿  𝑡 + 𝑲𝑿 𝑡 = 𝑷𝑭(𝑡)(3.15) 

𝑿 𝑡 , 𝑿  𝑡 𝑎𝑛𝑑 𝑿  𝑡 = Displacement, velocity and acceleration stochastic vector 

processes, respectively 

F (t) = stochastic excitation vector process 

By multiplying each term of the equation (3.15) expressed at time 𝑡 = 𝑡 + 𝜏with 

the scalar reference response quantity𝑋𝑟(𝑡) and taking the mathematical expectation 

(E) yields 

𝑴𝐸 𝑋𝑟 𝑡 𝑿  𝑡 + 𝜏  + 𝑪𝐸 𝑋𝑟𝑿  𝑡 + 𝜏  + 𝑲𝐸 𝑋𝑟𝑿 𝑡 + 𝜏  = 𝑷𝐸[𝑋𝑟𝑭(𝑡 + 𝜏)](3.16) 

Under the condition that future input forces are uncorrelated with the current 

structural response in the reference channel r, equation (3.16) reduces to 

𝑴𝐸 𝑋𝑟 𝑡 𝑿  𝑡 + 𝜏  + 𝑪𝐸 𝑋𝑟𝑿  𝑡 + 𝜏  + 𝑲𝐸 𝑋𝑟𝑿 𝑡 + 𝜏  = 0   (3.17) 
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This is equivalent to the homogeneous form (Lutes and Sarkani, 1997) 

𝑴𝑹 𝑋𝑟𝑋
 𝜏 + 𝑪𝑹 𝑋𝑟𝑋

 𝜏 + 𝑲𝑹𝑋𝑟𝑋
 𝜏 = 0  (3.18) 

𝑹𝑋𝑟𝑋
 𝜏 is the cross-correlation vector between 𝑋𝑟(𝑡) and𝑿 𝑡 .It is observed that 

the above differential equation governing the cross-correlation vector function 

𝑹𝑋𝑟𝑋
 𝜏  is identical to the equation of motion (3.14) under free vibration condition. 

The multiple-reference NExT-ERA (MNExT-ERA) can be used as an extension 

of NExT-ERA, to improve the accuracy of identified dynamic characteristics of a 

structure(He et al.2006).In order to do this instead of using a single reference 

response channel as in NExT-ERA, multiple reference channels are used to obtain an 

output cross correlation matrix between an N-DOF response vector 𝑿 𝑡  and a subset 

of this response vector,𝑋𝑟 𝑡  and defined as 

𝑹𝑋𝑟𝑋 𝜏 =  𝑹𝑋1
𝑟𝑋 𝜏 𝑹𝑋2

𝑟𝑋 𝜏   …           𝑹𝑋𝑁𝑟
𝑟 𝑋(𝜏) 

𝑁×𝑁𝑟

  (3.19) 

𝑹𝑋𝑟𝑋 𝜏 = cross-correlation column vector matrixwhich each column vector 

represents the cross-correlation between a single reference response and the system 

response vector. In order to identify modal parameters by using ERA, cross- 

correlation matrix exchange to form of Hankel matrices  

𝑯𝑠 0 =  

𝑹(1) 𝑹(2)
𝑹(2) 𝑹(3)

⋯
𝑹(𝑠)

𝑹(𝑠 + 1)
⋮ ⋱ ⋮

𝑹(𝑠) 𝑹(𝑠 + 1) ⋯ 𝑹(2𝑠 − 1)

 

(𝑚×𝑠)×(𝑁𝑟×𝑠)

            (3.20) 

𝑯𝑠 1 =  

𝑹(2) 𝑹(3)
𝑹(3) 𝑹(4)

⋯
𝑹(𝑠 + 1)
𝑹(𝑠 + 2)

⋮ ⋱ ⋮
𝑹(𝑠 + 1) 𝑹(𝑠 + 2) ⋯ 𝑹(2𝑠)

 

(𝑚×𝑠)×(𝑁𝑟×𝑠)

       (3.21) 

The basic idea behind the use of multiple reference channels instead of single 

reference channel is to avoid missing modes in the NExT-ERA identification process 

due to the approximation of the reference channel to nodes of these modes. In 

MNExT-ERA, the ERA as an input-output method is applied in its multiple-input, 
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multiple-output form and the Hankel matrix form to apply ERA, exchange to block 

Hankel matrix (He, 2008, Moaveni 2007). 

3.3.2 Enhanced Frequency Domain Decomposition 

One of the frequency domain approaches is the Frequency Domain 

Decomposition (FDD).FDD is an extension of the Basic Frequency Domain 

approach and referred to as peak picking technique. In the FDD identification, the 

first step is to estimate the power spectral density (PSD) matrix. The estimate of the 

output PSD known at discrete frequencies is then decomposed by taking the singular 

value decomposition (SVD) of the matrix. Through taking the (SVD) of the spectral 

matrix, the spectral matrix is decomposed into a set of cross spectral density (CSD) 

(auto spectral density) functions, each corresponding to a single degree of freedom 

(SDOF) system. By decomposing CSD functions into single degree of freedom 

(SDOF) CSD functions, each corresponding to a single vibration mode of the 

dynamic system. By using this decomposition technique close modes can be 

identified with high accuracy even in the case of strong noise contamination of the 

signals. 

 In order to identify the natural frequency and damping ratio of a vibration mode 

through correspond SDOF of CSD function, the SDOF function turned back to the 

time domain using inverse Fourier transformation, and the frequency and damping 

ratio are estimated from the crossing times and the logarithmic decrement, 

respectively.CSD functions are estimated based on the Welch-Bartlett’s method 

using Hanning windows with 50 percent overlap. Estimated CSD matrices are 

decomposed to singular values at each discrete frequency (Brincker at al.2001).  
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CHAPTER FOUR 

UNCERTAINTY ANALYSIS OF MODAL PARAMETERS OBTAINED 

FROM SYSTEM IDENTIFICATION METHODS FOR SIMPLE SHEAR 

FRAME 

 

4.1 Introduction  

Modal properties of engineering structures will change with time due to different 

reasons and structures may encounter with various types of loading conditions in 

their useful life. When the maximum design load applied to a structure, it may case 

some observable and often unobservable damages in the structures. 

It is so important to find a way to monitor structure and knowing about their 

situations in critical affecting loads and also in the normal operating conditions, 

because they makes structures reliable. Civil structures have acquired increasing 

attention in the field of structural health monitoring to get an appropriate insight 

about damage prognosis and assess the remaining useful life of structures. 

Identifying modal parameters (e.g., natural frequencies, damping ratios and mode 

shapes) of a structure and determines the level of confidence to these parameters 

plays an important role during identifying a damage occurrences in the structure. So, 

in this research, simple shear frame subjected to finite-element modeling and 

investigation of variability of modal parameters due to variability of some input 

factors. Tow state-of-the-art system identification algorithms based on output-only 

data were used to estimate the modal parameters of the structure. The level of 

accuracy of identified modal parameters investigated as a function of 

uncertainty/variability in the following input factors: (1) spatial density of 

measurements (considered at 3 levels), (2) measurement noise (considered at 4 

levels), and (3) length of response data used in the identification process (considered 

at 4 levels).To do this, the assumption that the structure F-E model calibrated in the 

optimized way with its real modal condition, we jumped to the second step to simply 

showing the theoretical effect of these input factors on the variability of the modal 

parameters, we will discuss about the full set of research (experimental analysis and 

then analytical assessments) in the next chapter. Uncertainty analysis is performed 

18 
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based on the acceleration response of the simulated model, excited with 50 % RMS 

white noise. Analytical model generated in the analysis framework Sap2000 

(Moaveni, Barbosa, Conte, and Hemez, 2007). 

4.2 Analytical Model of Tested Structure 

Simple shear frame subjected to modeling in analysis framework Sap 2000 and 

shown in the Figure (4.1).This model composed of 8 nodes and 9 bean-column 

element. Constant damping 0.02 assigned to the model. During the analysis, model 

subjected to time history and modal analysis. The structure restricted to analysis in x-

z plane. 

 

Figure 4.1 Finite element model of shear frame 

The gravity columns are assumed to remain linear elastic during the analyses, so 

they are modeled as linear elastic elements. During the analysis, the gravity loads are 

first applied to the model quasi-statically followed by the rigid-base excitation, 

which is applied dynamically. As base acceleration records, four records are 

generated as Gaussian banded white noise processes (between 0.5Hz and 50Hz) with 

a root mean square acceleration of 0.05g, where g denotes the acceleration of gravity. 

Time-step of 1/200sec is used as time-stepping scheme. The longitudinal acceleration 
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response histories are recorded at 8 different locations. The first three longitudinal 

mode shapes together with their corresponding natural frequencies, damping ratios 

and modal participating mass ratio (on x direction)are shown in Figure (4.2). 

 

    Figure 4.2 First three longitudinal mode shapes of FE model 

4.3 Applied System Identification Methods and Numerical Programming 

Algorithm 

Two different state-of-art output-only system identification methods subjected to 

programming in Matlab, to estimate the modal parameters of the FE structural 

model. Acceleration response data acquired from 8 special joint from the model in 

order to use as an output response which shown in the Figure (4.3).The system 

identification methods used consist of: (1) Natural Excitation Technique combined 

with the Eigensystem Realization Algorithm (NExT-ERA), in the time domain and 

(2) Enhanced Frequency Domain Decomposition (EFDD), in the frequency domain. 

The acceleration responses before subjected to system identification methods, all 

acceleration response time histories exposed filtering by band-pass filter with 

frequency passing range of 0.5 Hz - 50 Hz and using high order (1024) FIR filter. 

Also, The interested modal frequency in this study is <30Hz, but the acceleration 

responses are simulated at a rate of 200 Hz and then down sampled to the rate of 175 

Hz . 
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   Figure 4.3Simulated sensors places 

In the Next-ERA identification, the basic principle behind NExT is that the 

theoretical cross- correlation function between two response channels from an 

ambient excited structure has the same analytical form as the free vibration response 

of the structure. The response cross-correlation vector is obtained for a given 

reference channel, selecting the reference channel play an important role to 

accurately identify modal parameters, because of avoiding missing mode vectors due 

to adjacency of a reference channel to a modal node. The first step is to estimate the 

cross spectral density matrix (CSD), based on Welch Bartlett’s method with 50% 

overlap of hamming window. The cross power spectral density is the distribution of 

power per unit frequency.CSD of the first channel of acceleration response is shown 

in the Figure (4.4), and then obtained CSD will back again in the time domain by 

using Inverse Fast Fourier Transform (IFFT).The cross-correlation of the first 

channel is shown in the Figure (4.5).Then cross-correlation functions are used to 

form Hankel matrices for applying ERA in the second step of the modal 

identification process. Modal parameters can be obtained from state-space matrices, 

which extracted by ERA. 
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Figure 4.4Acceleration response and CSD of the first channel 

 

         Figure 4.5 Cross-correlation of the first channel with reference channel 

In the EFDD identification, the Frequency Domain Decomposition (FDD) is an 

extension of the basic frequency domain approach also referred to as the classical 

approach where the modal parameters are estimated by simple peak picking 

technique. In this method applied, the PSD functions are estimated based on the 

Welch-Bartlett’s method using Hanning  windows. The EFDD technique estimates 

the vibration modes using singular value decomposition (SVD) of the PSD matrices 

at all discrete frequencies, for this study, singular values are shown as Figure (4.6). 
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             Figure 4.6 Singular values of the PSD matrix 

Single-degree-of-freedom (SDOF) systems are estimated, each corresponding to a 

single vibration mode of the dynamic system, and then each vibration mode’s 

corresponding SDOFs clarifying by MAC criteria. From the piece of the SDOF 

density function obtained around the peak of the PSD, the natural frequency and the 

damping ratio can be obtained. In order to do this, the estimated PSD function 

corresponding to each mode is taken back to the time domain by inverse Fourier 

transformation, and the natural frequencies and corresponding damping ratios are 

estimated from the crossing times and the logarithmic decrement of the 

corresponding SDOFs auto-correlation function, respectively. 

4.4 Uncertainty Analysis of Shear Frame Model and System Identification 

Results 

The purpose of this study is to analyze the variability/uncertainty of the modal 

parameters obtained using two system identification methods due to the variability of 

three input factors: (1) spatial density of the sensors, (2) level of measurement noise, 

and (3) length of structural response records used for system identification. Selection 

of these three factors is based on previous experience (Moaveni et al 2007).System 

identification and analytical FE analysis results are considered in the Table (4.1). 

 

 



24 
  

Table 4.1 Identified modal parameters from analytical and experimental modal analysis 

Method 

Natural Frequency 

ω[Hz] 

Damping Ratio 

ζ[%] 

 

MAC 

Mode No 1 2 3 1 2 3 1 2 3 

SAP 

Analysis 
6.46 18.38 27.14 0.02 0.02 0.02 - - - 

NExT-

ERA 
6.46 18.41 27.15 0.019 0.018 0.02 0.9999 0.9990 0.9724 

EFDD 6.68 18.32 27.29 0.017 0.02 0.01 0.9999 0.9647 0.7768 

4.4.1 Spatial Sensors Density 

An instrumentation array of 8 acceleration channels is simulated for excitation 

level using the FE model of the structure in Sap2000.This array of 8 acceleration 

channels is shown in Figure (4.3).To study the variability of modal parameters due to 

variation of the spatial density of the sensor array (i.e., number of sensors), three 

different subsets of the 8 sensor array are considered. The three configurations of 

simulated accelerometers consist of: (1) 2 accelerometers (2) 4 accelerometers, (3) 

full array of 8 accelerometers and shown in the Figure (4.7), when the other input 

factors remain fixed. For this purpose, a set of 60 (2×3×10) identification process 

runs and the mean value of the identified modal parameters results gave as a bar plot 

in Figure (4.8.a and b) to investigate variability of modal parameters. 
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Figure 4.7 Sensor densities 

 

 

a) Uncertainty/variability of natural frequencies 
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b)Uncertainty/variability of damping ratios 

Figure 4.8.a.b Uncertainty/variability of modal parameters due to variability of sensor density 

According to this figure result, in both system identification methods estimation 

of natural frequencies was not affected by the variability of sensor density but 

damping ratios affected by this input factor. 

4.4.2 Response Data Length 

In order to investigate variability of modal parameters due to variations of input 

data length, the 8 sensor array, a measured noise level, simulates as a Gaussian white 

noise with RMS 20%  and five different length of data: 5 , 20 , 40 , 80, 320,480 

(seconds), used in this study. Two identification methods used to identify modal 

parameters. A set of 120 identification process runs and Variability of the mean and 

standard deviation statistics of the identified modal parameters due to variability of 

data length input factor for these 120 identification trials is shown in Figure (4.9.a.b). 
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a)Using NExT-ERA technique 

b)Using EFDD technique 

Figure 4.9.a.b Variability of the identified modal parameters due to variability of response data length 

The effect of a data length input factor in the accuracy of modal parameters 

identification in both system identification methods summarized in the Figure 

(4.9.a.b).In order to conveniently track the results identified modal parameters 

normalized by attention to the nominal values (Table 4.1) of these parameters. In 

these figures modal parameters affected by increasing the data length of the response 
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and show that by increasing in the length of data, the variances of the identified 

modal parameters decreases and the identified parameters converge to their nominal 

value by converge to 1 value but it will be variable in the upper modes. 

4.4.3 Measurement/Sensor noise 

In order to estimate modeling errors, zero-mean Gaussian white noise commonly 

adds as measurement/sensor noise to the output acceleration response in research. To 

do this, the probability measurement/sensor noise is modeled as a zero-mean 

Gaussian white noise process that is added to all channels of simulated acceleration 

response. Five levels of measurement noise, namely 0%, 20%, 40%, 60% and 80%, 

are considered here to study the effect of measurement noise on the variability of the 

identified modal parameters. The noise level is defined as the ratio of the RMS of the 

noise process to the RMS of the acceleration response process at each channel. This 

ratio is kept constant for all channels for a given noise level. The noise process added 

to each acceleration channel is statistically independent from the noise processes 

added to the other channels. Due to the random characteristics of the added noise 

vector processes, a set of 100 (2×1×1×5×10) identification runs. Variability of the 

mean and standard deviation statistics of the identified modal parameters due to 

variability of measurement noise input factors in these 100 identification trials is 

shown in Figure (4.10.a.b). 
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a) NExT-ERA 

b) EFDD 

Figure 4.10.a.b Uncertainty of the identified modal parameters due to variability of measurement 

noise 

Identified modal parameters affect by increasing noise level and its result 

summarized in the figure (4.10.a.b).In order to conveniently track the results 

identified modal parameters normalized by their nominal values (Table 4.1).In this 

figure increasing in the noise level cased increasing of variances in all identified 

modes. 
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CHAPTER FIVE 

UNCERTAINTY ANALYSIS OF MODAL PARAMETERS OBTAINED 

FROM SYSTEM IDENTIFICATION METHODS FOR MODEL STEEL 

BRIDGE TESTED ON THE DEÜ STRUCTURAL MECHANIC 

LABORATORY 

 

5.1 Introduction 

Structural health monitoring (SHM) has become an important tool that can be 

used in the evaluation of existing structures in earthquake zone countries, damage 

assessment and strengthening of a reinforced structure. In this study, NEXT-ERA 

and EFDD methods were used for the SHM.NEXT technique based on the 

theoretical cross-correlation function between two response measurements made 

along two degrees of freedom (DOF) collected from an ambient (broad-band) excited 

structure has the same analytical form as the free vibration response of the structure 

(James et al, 1993).The cross-correlation function values has analytically same as 

free vibration response of structure. These values   are particularly suitable for the 

use in light-damping systems, by entering to the ERA method, as appropriate modal 

identification method, which results to obtain the reduced dynamic model. By using 

this model, the dynamic (modal) parameters are estimated (Juang and Pappa, 

1985).In the EFDD identification, based on the classical peak picking methods, first, 

estimate the power spectral density (PSD) matrix. Then the spectral matrix is 

decomposed into a set of cross spectral density (CSD) (auto spectral density) 

functions, each corresponding to a single degree of freedom (SDOF) system. In order 

to identifying the natural frequency and damping ratio of a vibration mode from the 

SDOF CSD function corresponding to that mode, the SDOF CSD function is taken 

back to the time domain by inverse Fourier transformation, and the frequency and 

damping ratio of the mode considered are estimated from the crossing times and the 

logarithmic decrement, respectively, of the corresponding SDOF auto-correlation 

function (Brincker at al.2001). 

The purpose of this study, investigate uncertainty/variability of identified modal 

parameters due to uncertainty/variability of three significant input factors. These 

30 
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input factors consist of spatial sensor density, measurement/ sensor noise and 

response data length. To do this, first, the modal parameters of a model steel bridge 

identified by NExT-ERA and EFDD, then the finite element model of the bridge 

which, modeled on an analysis framework of SAP2000, is subjected to calibration 

and update by attention to the identified modal parameters. In the next step three 

input factors investigate by using this calibrated FE model. 

5.2 Applied Devices and Installation  

Non slab steel bridge model with the span of 6.30 m, 2.05 m height and 2453 N 

weight, exposed to testing in the D.E.Ü. Eng. Faculty. Civil Eng. Department of 

Structural Mechanics Laboratory,  shown in Figure (5.1).Additionally, eight concrete 

blocks approximately 1275 N cumulative weight that, represents the model bridge 

deck weight, are shown. Deck weights was selected particularly high, In this way, 

fundamental vibration frequencies of the bridge have been reduced, and 

accelerometers and data-acquisition devices will work on an appropriate frequency 

range. In this study, +/- 4.0g power range, DC-100 Hz frequency band-width and 

noise ratio of 10 mg RMS, 8 numbers of capacitive accelerometers and 8-channel 

PCI-type 12-bit resolution data-acquisition card and as a data acquisition software, 

LabVIEW software, was used.  
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Figure 5.1 Different views of model steel bridge  

Bridge elements jointed to each other with bolts; however, this bolt joints so as 

not to form as classical truss elements, elements connect on the connection joints will 

be bearing moment. These details are considered in the creating of a FE model of the 

bridge. Bolts tightened with a torque wrench to 30 Nm torque. All bolts shall be 

tightened in a controlled way; it was important in terms of control of the dynamic 

properties of the bridge and allowing to follow for any changes and the determination 

of the reason, in those properties over time. 

 

Figure 5.2Positive directions of sensors in the experiments 

 

In this study, the lateral motion of the bridge studied as a basic direction of 

movement of the bridge, because of this reason, sensors placed as recording in lateral 

direction which shown in the Figure (5.2).In order to identified modal parameters of 

the model, measured data from ambient vibrations and impulse responses of bridges 

subjected to output-only system identification methods which shown in the Table 

(5.1). 
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Table 5.1Identified modal parameters using ambient vibration and impulse response  

Method 

Natural Frequency 

ω[Hz] 

Damping Ratio 

ζ[%] 

 

MAC 

Mode No 1 2 3 1 2 3 1 2 3 

SAP 

Analysis 
2.98 8.20 15.50 0.020 0.020 0.020 - - - 

NExT-ERA 2.85 8.23 15.01 0.027 0.024 0.022 0.99 0.80 0.82 

EFDD 2.65 8.29 15.56 0.083 0.003 0.0001 0.99 0.86 0.84 

5.3 Analytical Model of Tested Structure 

In order to systematically study of the uncertainty/variability analysis of modal 

parameters due to uncertainty/variability of the input factors, are needed to 

calibrated/updated Finite Element (FE) model. First, the primary model formed by 

considered to the geometry of the bridge, material and geometric properties of the 

elements that constitute the bridge. Analytical model of bridge elements is chosen as 

elastic beam-column elements. Concrete blocks used as a representing deck weight 

in the respective point of the model as a point mass source. 

The supports of analytical model modeled as fixed supports, damping ratio of the 

model is selected with attention to the experimental data analysis results and 

previously system identification studies for the steel bridge model, so,  2.0 % 

constant damping used as analytical model’s damping ratio (Salavati et 

al.2011).Mode shapes and natural frequencies corresponding to the mode shapes of 

analytical models, matched by an iterative manner with real bridge mode shapes and 

natural frequencies obtained by a system identification process with considered to 

stay within certain physical limits, changes are needed. To evaluate that mode shapes 

obtained from the analytical method with those obtained by experimental method, 
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whether or not compatible with each other, The Modal Assurance Criteria (MAC) 

can be determined; MAC value can take values ranging between 0 and 1 (Allemang 

ve Brown, 1982).The high MAC value between the two modes shows their similarity 

to each other. In order to compare the suitability of mode shapes, during the 

calibration phase (iteratively), mode shapes were found from output-only system 

identification method by using recorded acceleration response that acquired from a 

certain point of the model which, obtained from a 0.5Hz-50Hz frequency band range, 

8.0%g RMS band-limited Gaussian white noise, excited in a lateral direction. 

Calculated MAC values, between this mode shapes and mode shapes obtained from 

experimental data, other identified modal parameters and three maximum modal 

participating mass ratios are shown in Figure (5.2). 

 
 

 

Mode 1 

ω = 2.98 

ζ = 0.02 

MAC (NExT-ERA&SAP) =  0.99 

MAC (EFDD&SAP) = 0.99 

Modal Participating Mass Ratio=  

0.664 

Mode 2 

ω = 8.20 

ζ = 0.02 

MAC (NExT-ERA&SAP) =  0.80 

MAC (EFDD&SAP) =  0.86 

Modal Participating Mass Ratio= 

0.015 

Mode 3 

ω = 15.50 

ζ = 0.02 

MAC (NExT-ERA&SAP) =  0.82 

MAC (EFDD&SAP ) =  0.84 

Modal Participating Mass Ratio=  

0.123 

Figure 5.2The first three modes obtained from the calibrated finite element model 
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Modal parameters obtained from the calibrated FE model (shown in Figure (5.1)) 

shall be regarded as nominal values. The high MAC values between nominal mode 

vectors from FE model and corresponding mode vectors obtained from system 

identification methods, indicate that mode shapes are matched. 

5.4 Applied System Identification Methods and Numerical Programming 

Algorithm 

In this study, two output-only system identification methods are used to 

estimation of modal parameters. NExT-ERA as a time domain method by using 

theoretical cross- correlation function between two response channels from an 

ambient excited structure has the same analytical form as the free vibration response 

of the structure. The response cross-correlation vector is obtained for a given 

reference channel, selecting the reference channel plays a significant role to 

accurately identify modal parameters, because of avoiding missing mode vectors due 

to adjacency of a reference channel to a modal node (James et al.1993).In the EFDD 

identification, the Frequency Domain Decomposition (FDD) is an extension of the 

basic frequency domain approach also referred to as the classical approach where the 

modal parameters are estimated by simple peak picking technique (Brincker et 

al.2001). 

5.5  Dynamic Tests of Bridge Model and Assessment of uncertainty of System 

Identification Results 

5.5.1 Spatial Sensors Density 

In the structural health monitoring procedure, accurate estimation of modal 

parameters is extremely important. Depending on the estimated modal parameters, 

the undamaged or damaged conditions of structures can be evaluated. Therefore, it is 

very important investigating the factors having an influence on modal parameter 

estimation. The factors investigated in the literature consist of: sensor density, 

measurement/sensor noise, response data length, applied system identification 

techniques, amplitude of input excitation (Moaveni et al.2007).In this sensor density, 

measurement/sensor noise and response data length are investigating using two 
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different output-only system identification techniques, namely: NExT-ERA and 

EFDD. 

The calibrated FE model is used to investigate effects of spatial sensor density on 

modal parameters. The FE model is calibrated by using identified modal parameters 

obtained experimentally from a real steel bridge model. Calibrated model excited by, 

zero mean Gaussian with noise (WN) band-limited between 0.5 Hz-50 Hz, 80% 

RMS amplitude. The WN is applied to the FE model along the lateral direction. 

Three different sensor densities consisting of: 4,8,16 virtual sensors, placed on the 

deck recorded the responses from the analytical model. The simulation results are 

used with the aforementioned system identification methods. Three different sensor 

arrays used to assess the effect of sensor density are shown in the Figure (5.3). 

 

Figure 5.3 Sensor densities: (a) 4 sensors, (b) 8 sensors and (c) 16 sensors 

The mean value of the identified modal parameters for three different sensor 

configurations is shown in the Figure (5.4.a.b.c). 
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a) Natural frequencies 

 

b) Damping Ratios 
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c) MAC values 

Figure 5.4.a.b Uncertainty/variability of modal parameters due to variability of spatial sensor density 

Sensor density input factor results shows that this factor does not affect  the 

estimation accuracy of natural vibration frequencies both for NExT-ERA and EFDD. 

On the other hand, damping ratio estimated using NExT-ERA estimation for the 

second and third modes are affected by this factor. In the second mode, for all the 

sensor configuration damping estimates are higher than its nominal values (Figure 

5.2).For the third mode, it is clear that by increasing the sensor number (density 

increases), damping ratio is estimated more accurately. Damping ratios identified 

using EFDD method are affected by the sensor density factor, for the first mode in all 

sensor arrays estimated damping values are larger than its nominal value. For the 

other two modes by increasing the sensor density, damping ratios for all modes 

correctly identified.MAC values found by both of the methods are not affected 

because of similarity of identified mode shapes to their nominal counterparts. 

5.5.2 Response Data Length 

In order to investigate variability of modal parameters due to variability of input 

data length, the FE model with 16 sensor points is used. A Gaussian white noise with 
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20% g RMS amplitude is used for input excitation along lateral direction. Five 

different response data length of: 5, 20,40, 80, 320,480 (seconds) are used to 

investigate the effect of data length. 

From previous experience (Salavati et al.2011), this factor is expected to play an 

important role in the variability of the identified modal parameters. Two 

identification methods mentioned earlier are used to identify modal parameters. A set 

of 120 different identification runs have been conducted and variability in modal 

parameters is investigated suing the mean and standard deviation statistics of the 

identified modal parameters. The normalized results in terms of mean and +/- 1σ are 

shown in Figure (5.5.a.b). 

 

 

a)  NExT-ERA 
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b) EFDD 

Figure 5.5.a.b Variability of the mean and standard deviation (+/- 1σ) statistics of the identified modal 

parameters due to variability of data length input factor 

Mean and standard deviation values of the identified modal parameters 

normalized by their nominal values are summarized in Figure (5.5.a.b) in increasing 

values of response data length. It is clear from the results that identified modal 

parameters are affected by increasing the length namely increasing the data length 

results in decreasing uncertainty (lower variations). 

5.5.3 Measurement/Sensor Noise  

Measurement noise is modeled as zero-mean Gaussian white noises and is added 

to the output acceleration response. To do this, the measurement/sensor noise is 

modeled as a zero-mean Gaussian white noise process that is added to all channels of 

simulated acceleration response. Five levels of measurement noise, namely 0%, 20%, 

40%, 60% and 80%, are considered to study the effect of measurement noise on the 

variability of the identified modal parameters. The noise level is defined as the ratio 

of the RMS of the noise process to noise process added to each acceleration channel 

is made statistically independent by changing the seed number of the random number 



41 
  

generator in Matlab® from the noise processes added to the other channels. A set of 

100 (2 system identification methods ×1 sensor density ×1 response data length ×5 

noise levels×10 random seed number) identification process runs using independent 

Gaussian white noise vector processes when the other input factors remain fixed. 

Variability of the mean and standard deviation statistics of the identified modal 

parameters due to variability of measurement noise level input factor for these 100 

identifications trials are shown in Figure 5.6.a.bthe RMS of the acceleration response 

process at each channel. This ratio is kept constant for all channels for a given noise 

level. The  

 

a)NexT-ERA 
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b) EFDD 

Figure 5.6 Uncertainty/Variability of the mean and standard (+/- 1σ) deviation statistics of the 

identified modal parameters due to variability of measurement noise 

Effect of noise factor is shown in the Figure (5.6) which shows that the accuracy 

of the identified modal parameters is affected by increasing noise level. Based on the 

results presented variances of identified parameters in different level noise decrease 

by decreasing noise levels, This means that identified parameters are greatly affected 

by increasing noise level. 
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CHAPTER SIX 

CONCLUSIONS 

 

In civil engineering structures, damage prognosis and damage quantification 

(localization and intensity identification) depend in great extent on the accuracy of 

the estimated modal parameters. Modal parameter identification is affected by input 

factors relevant to the identification process. In this research study, the accuracy of 

identified modal parameters are investigated and effects of input factors such as 

spatial sensor density, data length and measurement noise level are investigated. 

Also, the effect of two different system identification methods, namely NExT-ERA 

and EFDD on the modal parameter identification are investigated. Both of the 

methods are programmed in Matlab® environment. Matlab programs are checked 

through using simulation results from a simple shear frame model. Then more 

complex real-life problem is used to realistically assess the input factors affecting the 

modal parameter estimations. In this stage of the study, a steel bridge currently 

housed in the structural mechanics laboratory of Dokuz Eylul University is used for 

experimental modal analysis. 

Based on the analysis results, for both system identification techniques spatial 

sensor density does not affect the identified natural frequencies and MAC values of 

identified three modes. Damping ratios are affected by this factor, it is observed that: 

1) In the NExT-ERA method damping ratio of the second mode in all sensor 

configuration (different sensor densities) is higher than their nominal counterparts. 

Moreover, damping ratios of the first and the third modes are approximately equal to 

their nominal values as sensor density increases; this means that damping ratio may 

be accurately identified by increasing sensor number.2) For EFDD method, 

identified first mode damping ratios are higher than their nominal values, and for the 

second and the third modes, nominal values were approximately obtained. For both 

methods, it is clear that for modes with adequate response contributions as the sensor 

density increases better estimates of damping ratios can be obtained. 

The other significant input factor that affects the accuracy of estimated modal 

parameters is response data length. The investigation of this factor in modal 

43 
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parameter identification revealed that, the variability of this factor affects the 

accuracy of estimated modal parameters of structure greatly. For both NExT-ERA 

and EFDD methods with increasing response data length, estimation variances 

decrease and identified modal parameters converge to their nominal values. Rate of 

convergence is related to the performance of system identification methods and 

selecting appropriate values used for in different identification methods, such as: 

window length in Welch-Bartlett method to estimate the power spectral density, an 

appropriate resampling frequency before structuring the Hankel matrices, band-pass 

and low-pass filters used to pre-process the raw data. 

The third important input factor affecting the accuracy of identified modal 

parameters is measurement noise level. In the identification of modal parameters 

using NExT-ERA method in increasing level of measurement noise, can be 

summarized as follows: 1) increasing noise level up to a certain level of noise (60%) 

was not affecting the accuracy of natural frequency estimations.2) Damping ratios 

significantly affected by high levels of noise, meaning that, variances progressively 

increase.3) For MAC values decreasing trends are observed, with increasing noise 

levels. For the identification of modal parameters using EFDD method, the effects of 

this input factor can be summarized as follow: 1) there was not a real clear trend in 

identified natural frequencies using EFDD.2) For the second, variances suddenly 

decrease after a certain amount of noise level (80%).For the other modes, with the 

increasing the noise level, variances increase as well.3) A decreasing trend in the 

MAC values is observed as the noise level increases. Overall it can be concluded 

that, increasing trend in variance values can clearly be seen for both identification 

techniques in all identified modal parameters with increasing noise level. Finally, it 

is possible to say that the most sensitive modal parameter to the noise level is 

damping ratio. 

In order to accurately identify damage in structural health monitoring with non-

destructive testing technology, three input factors investigated are very important and 

must be given utmost attention in system identification process. 
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