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EXPLOITING CHAOS IN SYSTEM IDENTIFICATION AND CONTROL 

 

ABSTRACT 

 

 The thesis presents three main contributions: Two methods for system 

identification and a method for robustifying a chaotification method are developed 

in the thesis. The identification methods which are based on input-output data are 

used for the identification of linear, nonlinear and chaotic plants. Both identification 

methods construct nonlinear state equations for systems to be identified by using 

white Gaussian noise or chaotic state sequences in learning state recursions. 

Nonlinear state equations and output equations in these identification methods are 

realized by artificial neural networks. Extensive computer experiments on a set of 

benchmark plants for noisy input and initial conditons show that the developed 

methods provide significantly better performances when compared to the known 

identification methods. The third contribution of the thesis is another application in 

the direction of exploiting chaos now for forcing a nonchaotic plant to chaos in a 

robust way.  

 

Keywords: Linear system identification, nonlinear system identification, chaotic 

system identification, robust chaotification 
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SİSTEM TANILAMA VE DENETİMİNDE KAOSUN KULLANIMI 

 

ÖZ 

 

 Tezde ilişkin bilimsel yazına yapılan üç ana katkı sunulmaktadır: Sistem tanılama 

için iki ve gürbüz olarak kaotik yörüngeleri izleyebilmek için bir yöntem. Sistem 

tanılama için önerilen yöntemler, giriş-çıkış verilerine dayalı olarak doğrusal, 

doğrusal olmayan ve kaotik sistemlerin tanılanması için geliştirilmiştir. 

Yöntemlerde, doğrusal olmayan durum geçişlerinin verilerden öğrenilmesinde, 

beyaz Gauss gürültüsü veya kaotik durum dizileri kullanılmıştır. Her iki system 

tanılama yönteminde, doğrusal olmayan durum denklemlerinin ve çıkış 

denklemlerinin gerçekleştirilmesinde yapay sinir ağları model olarak alınmıştır. 

Önerilen tanılama yöntemlerin başarımları bilimsel yazında iyi bilinen doğrusal, 

doğrusal olmayan ve kaotik sistemlerin tanılanmasında gürültülü giriş ve farklı 

başlangıç koşulları altında sınanmıştır. Diğer iyi bilinen tanılama yöntemleriyle 

karşılaştırıldığında her iki yöntemin daha iyi başarımı verdiği görülmüştür. Tezdeki 

üçüncü katkı da kaostan yararlanma doğrultusunda bir diğer uygulama olarak gürbüz 

olarak kaotik yörüngelerin izlenmesi için yöntem geliştirilmesidir.  

 

 

Anahtar sözcükler : Doğrusal sistem tanılama, doğrusal olmayan sistem tanılama, 

kaotik sistem tanılama, gürbüz kaotikleştirme 
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1 

CHAPTER ONE 

INTRODUCTION 

 

 A control system or said plant which is illustrated in Figure 1.1 is a system whose 

input is used to force its output usually to a desired trajectory which might be 

constant or time-varying (Nagrath & Gopal, 2005; Bolton, 2004; Distefano, 

Stubberud, & Willams, 1990; Phillips & Harbor, 2000).  

 

 

Figure 1.1 System to be controlled 

 
 The input of control systems which is called as control input is provided by a 

controller in a feedforward way shown by Figure 1.2 or in a feedback way shown by 

Figure 1.3 (Kumar, 2007; Doebelin, 1985; Bhattacharya, 2011; Ogata, 2009; Dorf, 

1992; Aström & Murray, 2008; Kuo, 1995).  

 

 

Figure 1.2 Open-loop control system 

 
 
 

 
Figure 1.3 Closed-loop control system 

 
 
 



 

2 
 

 In order to design a controller, one needs to have a model for the plant. A plant 

model may be obtained either by exploiting the physical laws which are assumed to 

govern the plant dynamics or by applying an identification method based on the 

input-output measurements (Zadeh, 1956). In earlier works (Bode, 1940; Bode 

1945; Nyquist, 1932; James, Nichols, & Philips, 1947), the identification techniques 

were restricted to Single-Input Single-Output (SISO) systems (Gevers, 2006). Then, 

Aström and Bohin introduced a system identification method based on maximum 

likelihood which is a method widely studied in mathematical statistics, including 

time-series models (Aström & Bohin, 1965; Gevers, 2006; Koopman, Rubin, & 

Leipnik, 1950; Hannan, 1960). The maximum likelihood method based on 

minimizing a parameter-dependent criterion serves to estimate the parameters of 

differential equation models which are known in statistical literature as ARMA 

(Auto-Regressive Moving Average) or ARMAX (Auto-Regressive Moving Average 

with eXogeneous inputs) (Nelles, 2001; Larsson & Massberg, 2003; Wang & 

Garnier, 2012; Anderson,1971; Hannan,1970).  

 

 Another direction in the system identification is to employ state equation model 

as the alternative to the input-output models such as ARMA and ARMAX. Ho and 

Kalman presented method on how to determine linear minimal state space model 

from impulse response data (Ho & Kalman, 1966). State space approach is a 

mathematical model of a physical system defined by a set of coupled first order 

differential equations in terms of so-called internal variables known as state 

variables together with the input and output variables. State space model is 

especially appropriate for MIMO (Multi-Input Multi-Output) systems in contrast to 

formerly used models. 

 

 

Figure 1.4 System by states, inputs and outputs 



 

3 
 

 The state space model of a LTI (Linear Time Invariant) system with r inputs and 

m outputs can be described as  

)()()( tButAx
dt

tdx
+=                                            (1.1) 

             )()()( tDutCxty +=                                             (1.2) 

with ∈A Rnxn, ∈B Rnxr, ∈C Rmxn, and ∈D Rmxr where u, y, x are the input, the 

output, and the state of the system, respectively. The problem in the LTI state space 

system identification methods is to obtain a minimal state space realization for a 

given data forming impulse response of the system (Shutter, 2000).  

 

The improvements in system identification were followed by Box and Jenkins 

approach (1970) and Akaike approach (1976). Box and Jenkins approach employed 

an initial data analysis to the identification of a model. Its drawback is: It is being 

developed for single output case (Deistler, 1994; Gevers, 2006). Between 1975 and 

1985, prediction error methods dominated in system identification field because of 

increasing computer speed and development of identification softwares (Ljung, 

1978). Thereafter, identification methods for MIMO systems were explained in 1976 

(Hazewinkel & Kalman, 1976; Clark, 1976). In the same year, the methods were 

developed for closed loop systems too (Söderström, Ljung, & Gustavsson, 1976). 

Following these studies, in the 1980s and 1990s many papers and researchs 

contributed to the developments in the area of system identification from different 

perspectives but in the two main directions, i.e. in the input-output and state space 

frameworks (Sin & Goodwin, 1980; Anderson & Gevers, 1982; Larimore, 1990; 

Juang, Phan, Horta, & Longman, 1993; Overschee, Moor, 1994; Verhaegen, 1994; 

Viberg, 1995; Chui & Maciejowski, 1996).   

 

All research papers about system identification try to find the best representation 

of systems. During this procedure, there are several methods and models in defining 

systems such as prediction error method, state-space model based methods e.g. 

subspace methods, Hammerstein, Wiener, Hammerstein-Wiener, nonlinear ARX, 

and nonlinear ARMAX model based methods. 
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Artificial neural networks which have been emerged as mathematical models 

inspired by biological nerves systems are used as nonlinear system identification 

models designed by learning algorithms applied on measurement data (Li & 

Tongwen, 1993; Chu, Shoureshi, & Tenorio, 1990; Sugimoto, Matsumoto, & Kabe, 

1992; Ljung & Sjöberg, 1992; Jovanovic, 1997; Kim & others, 2004; Fekih, Xu, & 

Chowdhury, 2007; Seyad & Cao, 2008).  

 

Although system identification is a well established discipline in control area, 

there is still a need for developing efficient and high performance system 

identification methods especially for complex systems such as chaotic ones. Herein, 

chaos can be defined as the tiniest of variations in a system may cause unpredictable 

response of that system. Chaos that is a phenomenon of nonlinear dynamical 

systems having topologic transitivity and sensitive dependence on initial conditions 

(Kellert, 1993; Chen, 1997; Chen & Shi, 2006) has several application areas from 

astronomy to engineering. Secure communication and liquid mixing are among the 

most important engineering applications of chaotic systems (Kocarev and others, 

2001; Chen, 1997; Ottino, 1989). The former one which exploits the noisy like 

spectrum of chaotic signals needs the identification of a chaotic system, i.e. the 

identification of the chaotic system model and its parameters used in the transmitter. 

The latter also exploits the chaos but for an interesting control purpose: As 

supposing the usefulness of a chaotic behavior for a plant, for instance a dc motor in 

liquid mixing, the plant under consideration which is originally not chaotic is 

chaotified to become a chaotic system (Chen & Dong, 1998; Chen, 1998; Chen, 

2001; Chen, 2003; Chen & Shi, 2006). There is a growing interest in chaotification 

because of feasibility in real world applications (Chen & Shi, 2006; Jakimoski & 

Kocarev, 2001; Kocarev and others, 2001; Schiff and others, 1994; Ditto and others, 

2000).  

 

This thesis is a work in the direction of exploiting the chaos in the identification 

of complex systems and also in the chaotification also said anti-control of originally 

non-chaotic systems. The thesis introduces two new system identification methods 

which are used for constructing nonlinear state space models employing artificial 
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neural networks by exploiting chaotic signals in learning nonlinear state recursions. 

The thesis also introduces a robust chaotification method for the systems which are 

not originally chaotic. 

 

 Chapter 2 delivers a background on system identification methods and the models 

used in these methods. Chapter 3 and Chapter 4, respectively, presents LSS-CSR 

(Learning State Space with Forced Chaotic State Recursion) and LSS-CSO 

(Learning State Space with Chaotic State Observer) system identification method for 

identifying linear, nonlinear and chaotic plants. In both chapters, the performances 

of the methods are evaluated with linear, nonlinear and nonautonomous chaotic 

plant. The performences of the methods are also evaluated under additive input 

noise and under different initial states.  

 

 Chapter 5 introduces the proposed robust chaotification method for anti-control 

of non-chaotic systems. It is shown in this chapter that the parameter region leading 

a desired chaotic behavior for the overall closed-loop system is enlarged by the 

proposed robustification method providing a better choice of controller parameters. 

The performance of the proposed robust chaotification method is tested under an 

additive input noise and the bifurcation diagram of the noisy system is given. Also 

in this chapter, a user friendly graphical user interface is presented where the user 

can change the plant and controller parameters, add input noise to the system by 

specifying the mean and standard deviation, draw the phase portraits of the system 

with noise and without noise, can observe the frequency spectrum of the system with 

noise and without noise, and see the bifurcation diagram of the system while 

changing the plant and controller parameters. Finally, in Chapter 6, the conclusion is 

given. 
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CHAPTER TWO 

BACKGROUND ON SYSTEM IDENTIFICATION 

 

This chapter gives a background on system identification, modeling, input-output 

representations, parameter estimation and anti-control (chaotification). The concepts 

presented in this chapter will be used in following chapters. 

 

2.1 What is System Identification? 

 

System identification is a process of finding a mathematical system model from 

measured data with some predetermined criteria (Chen and Chang, 2008). System 

identification is an approach for modeling a plant when physical laws are not enough 

to model the plant and input-output measurements are available only. Identification 

procedure is data driven and observations about the plant are very critical while a 

candidate model is chosen.  

  

As a summary, the system identification procedure has three main steps;  

• First; get the data,  

• Second; define candidate models,  

• Third; choose the best model. 

 

2.2 System Modeling 

 

In the analysis and design of control systems, it is necessary to have a 

mathematical model of the given plant. Such a mathematical model, called a simply 

model, must describe the system dynamics as completely as possible (Ogata, 1994). 

 

In general, an accurate model may not be obtained by applying physical laws 

only. Then, making experiments is needed on the unknown plant. A mathematical 

model involving parameters is referred to as a parametric description of the plant 

(Ogata, 1994). 



 

7 
 

 Every modeling technique does not contain an identification sub-procedure, which 

are collecting data from the plant, choosing a candidate model, estimating the 

parameters of the candidate model and validation with the real plant. For example 

finding a representative model for a plant by using physical laws is not a system 

identification task. System identification is considered a modeling approach but 

every modeling approach is not system identification. System identification 

procedure should be data driven. For example; from observation of the plant, a plant 

is said to be a LTI system by testing its time invariancy and linearity, then only 

getting the impulse response of the plant is enough for identification, but analyzing 

an electronic circuit with Kirchoff’s Laws is not system identification. To analyze a 

control system and to design a controller which generates an appropriate control 

input, it is needed a model of the plant which works very near to the real life. 

  

 Mathematical models may be developed along two routes (or a combination of 

them). One route is to split up the system, into subsystems, whose properties are well 

understood from previous experience. This basically means that we rely on laws of 

nature and other well-established relationships that have their roots in earlier 

empirical work. These subsystems are then joined mathematically and a model of the 

whole system is obtained. This route is known as modeling and does not necessarily 

involve any experimentation on the actual systems. The other route, which is system 

identification, is directly based on experimentation. Input and output signals from the 

system are recorded and subjected to data analysis in order to infer a model (Ljung, 

1987). 

 

 Modeling is a technique to introduce a mathematical model which is not too 

complex but very near to the reality. Too complex models can give better results for 

some situations but less complex models have good generalization ability and also 

working with less complex models gives us to design the system quickly with less 

computation time, and beside these benefits finding a simple model for the plant will 

cause a simple model for controller, this results a low cost controller and also system 

realizations. 
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Modeling could be generated in two ways;  

• with the help of physical laws, 

• by choosing a model, which has a global approximation property. 

 

The first procedure can be applied when the plant can be modeled with physical 

laws, but the second one is used generally for gray box or black box systems. A 

white-box model is a system where all necessary information is available. Black box 

systems are systems which can be viewed only their inputs and outputs (Hellerstein, 

Diao, Parekh, & Tilbury, 2004). A black-box model is a system of which there is no 

information available. Only the inputs are given to the system and outputs from it are 

gotten then the internal dynamics of the system are tried to find. Practically all 

systems are somewhere between the black-box and white-box models, that type of 

models are grey-box models. Gray box systems are the combinations of white box 

and black box systems (Nelles, 2001; Sjoberg and others, 1995). In the second way 

of modeling, finding an appropriate model for the plant and estimating the correct 

parameters of the proposed model is the main task of the designers. 

 

 Mathematical models can be classified in several ways, some of which are 

described below (Kapur, 1988; Ugwa, 2012).  
 

1.  Linear versus nonlinear: In mathematical models variables are used. And these 

variables are used with operators. If all operators used in a mathematical model are 

linear, then it is said that mathematical model is linear. Otherwise if at least one of 

the operators are nonlinear it is said that mathematical model is nonlinear. 

 

2.  Deterministic versus probabilistic (stochastic): In a deterministic model, 

variables are described by unique values or they are determined by parameters in the 

model. If the parameter values, inputs and initial states are known, then the future of 

the system states and also the outputs are completely determined in a unique way. On 

the other hand, in a stochastic model variables are not described by unique values. 

They are described by probability distributions. So, the future of the system states 

and outputs can be specified with certain probabilities only.  
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3.  Static versus dynamical: In a static or said algebraic model, the system outputs 

at a specific time instant depend only on the input at the same time instant. In 

contrast, the outputs of a dynamical system at a time instant can be defined with 

initial states summarizing the past/future inputs in addition to the input at the 

considered time instant. Discrete dynamic models are represented by difference 

equations and continuous time dynamical models are represented by differential 

equations. 

 

4.  Lumped parameters versus distributed parameters:  If the model is a 

homogeneous model in terms of spatial coordinates, then the parameters are lumped, 

so is the model. If the model is a heterogeneous model, then the parameters and so 

the model are distributed. Distributed dynamical models are defined with the 

variables which are functions of spatial coordinates in addition to the time variable, 

so they are represented by partial differential equations in contrast to the lumped 

parameter models defined by ordinary differential equations. 

 

One can choose a mathematical model for the plant to be identified as considering 

the above classification. During determining a mathematical model of a plant, it is 

important to choose a simple model that satisfies the specific objectives of the 

analysis and design.  Then, the designer should try to identify the system with 

minimum number of parameters yielding a simple yet sufficient model. The stages of 

a typical system identification procedure are given in Figure 2.1. 

 



 

10 
 

 

Figure 2.1 Loop of system identification (Ljung,1987) 

 

 

2.2.1 System Identification by Least Squares 

 

In mathematically formulating the identification problem, it must be used a 

function or performance index that will measure how well the model in question fits 

the experimental data. If it is chosen the performance index as to be the sum of error 

squares, then this identification method is called as the least squares method.  
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Figure 2.2 Error between real plant and mathematical model 

 

When the real plant and its model (Ogata,1994) in Figure 2.2 are considered, it is 

assumed that the plant dynamics may be given by the following pulse transfer 

function for a discrete-time LTI model: 

                             n
n

n
n

zazaza
zbzbzbbzG −−−

−−−

++++
++++

=
...............1
...............)( 2

2
1

1

2
2

1
10                         (2.1)                        

 

Where, the coefficients  naaa ..,,........., 21   and  nbbb ...,,........., 10   of the denominator 

and numerator polynomials are the parameters of the system. 

 

In the following, it is assumed that the completely known input sequence u(0), 

u(1), . . . u(N) is applied to the plant and the corresponding plant output sequence  

y(0), y(1), . . . , y(N) is observed. 

 

Then, it is determined the least squares estimates of the system parameters 

naaa ..,,........., 21  and nbbb ...,,........., 10 . From equation (2.1) the output y(k) is 

estimated on the basis of y(k-1), y(k-2), . . . y(k-n) and  u(k), u(k-1), . . . . . ., u(k-n) 

according to the following equation  

)(..)1()()(..)2()1(y 1021 nkubkubkubnkyakyakya nn −++−++−−−−−−−=
(2.2)     
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Where )(ky  is the estimated value of y(k). Error e(k) is defined as the difference 

between the actual output  y(k) and the estimate output  )(ky  

 

)()()( kykyke −=  

     

)(..)1()()(..)2()1()( 1021 nkubkubkubnkyakyakyaky nn −−−−−−−++−+−+=    

(2.3) 

 

The error e(k) depends on the measured values of y(k), y(k-1), . . . . . . , y(k-n)   and  

u(k),  u(k-1),. . . . . , u(k-n).  Equation (2.3)  can be written as follows: 

 

)()(..)1()()(..)2()1()( 1021 kenkubkubkubnkyakyakyaky nn +−++−++−−−−−−−=                    

(2.4) 

and also in a vector matrix form as: 
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One defines 
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then y(N) can be written as  

)()()()( NeNxNCNy +=                           (2.7) 

Defining performance index (cost)  as  
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Then, the problem becomes to determine x(N) such that  the parameter values of  

naaa ..,,........., 21   and  nbbb ...,,........., 10  will best fit the observed data. x(N) can be 

found by minimizing the performance index 
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[ ])()()()()()()()()()()()(
2
1 NxNCNyNxNCNCNxNyNyNyNCNx TTTTTT −++−=    

(2.9) 

To do that, one may get the following normal equations obtained in terms of the 

partial derivatives with respect to x(N),  

0)()()()()(
)(

=−=
∂
∂ NyNCNxNCNC

Nx
J TTN                           (2.10) 

                              )()()()()( NyNCNxNCNC TT =                                        (2.11) 

 

By assuming )()( NCNCT  is nonsingular, the inverse of )()( NCNCT  exists. 

Then, the optimal parameters can be found as; 

 

[ ] )()()()()( 1 NyNCNCNCNx TT −
=                              (2.12) 

 
2.2.2 System Identification Using State Space Models 

 

Suppose that the given plant is described by the discerete-time state space model 

(Haykin, 1999). 

 

 

( ) ( ) ( )( )
( ) ( )( )nxhny

nunxfnx
=

=+ ,1
                                      (2.13) 

                       

Where, the output equation and the state equation are defined by vector valued 

nonlinear functions ( )•h  and ( )••,f , respectively.  

 

One may employ two neural networks to identify the system, one for dealing with 

the state equation and the other for dealing with the output equation. Let ( )1+nx)

denote the estimate of ( )1+nx  produced by the first neural network labeled Network 

1 in Figure 2.4.  This network operates on a concatenated input consisting of the 
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external input )(nu  and the state ( )nx  to produce ( )1+nx) . The estimate ( )1+nx)  is 

subtracted from the actual state ( )1+nx  to produce the error vector: 

 ( ) )1()1(11 +−+=+ nxnxne )                                           (2.14) 

 

Where,  ( )1+nx  which is the actual state of the plant constitutes the desired output 

for Network 1. 

 

 

 

)1( +
∧

nx

 

Figure 2.3 Training Network I used for the identification of the state function 

 

The error is used to adjust the synaptic weights of the neural network in order to 

minimize the cost function based on the error vector  )1(1 +ne . 

 

The second neural network labeled as Network 2 operates on the actual state )(nx  

of the unknown plant to produce an estimate  ( )ny)   of the actual output )(ny . The 

estimate ( )ny)  is subtracted from )(ny  to produce the second error vector.  

 

)()()(2 nynyne )−=                                                (2.15) 
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Where, )(ny  plays the role of desired response for the neural network. The error 

vector )(2 ne  is used to adjust the synaptic weights of Network 2 to minimize the 

Euclidean norm of the error vector. 

    

)(ny
∧

 

Figure 2.4 Training Network II for learning the output function 

 

 

2.2.3 ARMA Model 

 

ARMA model structures are the well known linear model structures. ARMA 

models are very widely used models for plants which are to be used for 

identification, control, communication, power systems, biomedical engineering, 

signal processing areas (Wies, Pierre, & Trudnowski, 2003; Hernandez & Arkun, 

1993; Daniel & William, 1975; Perrott & Cohen, 1996; Chon & Cohen, 1997; Imer 

& Basar, 1999; Nikias & Mendel, 1993). 

  

An ARMA model consists of two parts: Auto-regressive and moving-average. 
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To include noise effects to linear system some exogenous inputs are applied to the 

linear system. Then, the system becomes ARX or ARMAX.  

 

2.3 Nonlinear Blocks 

 

2.3.1 Neural Networks 

 

Neural networks are widely used in describing the nonlinear behaviors of the 

systems. Due to their approximation capabilities, algebraic neural networks such as 

multi layer perceptron and radial basis function network are widely used in defining 

especially next outputs in terms of current outputs and inputs for system 

identification purposes. Such an identification scheme is described below. 

 

Assume an unknown plant which is only accessible through its output. Let the 

system be of a single input, single output. Let y(n) denotes the output of the system 

due to the input u(n) for varying discrete time n. Then, choosing to work with the 

NARX model, the identification model takes the form. 

 

))1(),...,(),1(),...,(()1( +−+−=+ qnunuqnynyny ϕ)                (2.17) 

 

Where, q is the order of the unknown system. At time n+1, the q past values of the 

input and the q past values of the output are all available. The model output )1( +ny)

represents an estimate of the actual output y(n+1). The estimate  )1( +ny)  is 

subtracted from y(n+1) to produce the error signal. 

 

)1()1()1( +−+=+ nynyne )                                       (2.18) 

 

Where y(n+1) plays the role of the desired response. The error e(n+1) is used to 

adjust the synaptic weights of the neural network so as to minimize the error. The 

identification model in Figure 2.5 (Haykin, 1999) is of a series parallel form because 

the actual output of the system is fed back to the input of the model. 
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)1( +ny)

 
Figure 2.5 Multi layer neural network used for identification 

 

2.3.2 Power Series 

 

Power series is the powers of a variable such as; 

 
i

i xxP =)(                                              (2.19) 

where i is from 0 to N. They are used in identification for defining static blocks. 
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2.3.3 B-Splines 

 

Splines are piecewise polynomials used to approximate unknown functions from 

data. By adding n’th order splines with breakpoints a nonlinear function can be fit. A 

first order spline is a piecewise constant function, second order spline is a piecewise 

linear function, and a third order spline is a quadratic function (Moran, Agamennoni, 

Figueroa, 2005). 

 

2.3.4 Chebyshev Polynomials 

 

Chebyshev polynomial basis functions which are given below are also used as 

defining static blocks in identification. 

 

)arccoscos()( xixH i =                                            (2.20) 

 

2.3.5 Wavelets 

 

The wavelet basis functions consist of mother wavelets. A basis function can be 

written as; 
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Where, ψ is the mother wavelet. They are especially useful for nonstationary 

measurement data.   

 

2.4 Input-Output Representations for Nonlinear Systems 

 

2.4.1 Volterra Series Representation 

 

 Volterra mapping and Volterra series representation is one of the most important 

input-output nonlinear analytic mapping of nonlinear dynamical systems.  
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 Volterra mapping is a nonlinear mapping YXV →• :)( transforming an input 

function )(•x ∈X into an output function )(•y ∈Y. Then, an operator YXVn →• :)(  

can be defined as: 

    ∫∫ ••=•
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               (2.22) 

  

Where, ),...,;( 1 nn tttK  are the Volterra kernels of the operator )(•nV . 

 

 By using the Volterra operator above, one can write the Volterra mapping from 

)(•x ∈X into )(•y ∈Y as: 
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        (2.23) 

 

 Volterra series is a representation which consists of infinite sum of Volterra 

operator. Volterra series representation is given as: 
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 If  0≡nV   for all n different than 1, then the Volterra mapping )(•V becomes 

linear (Defigueiredo & Chen, 1993). 

 

 The output of Volterra series is a sum of zeroth, first, second and higher order 

models.  

 

)]([....)]([)]([)]([ 10 nxYnxYnxYnxY n+++=                     (2.25) 

 

 The zeroth order Volterra model is a constant, 

 

00 )]([ HnxY =                                                     (2.26) 
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 When the first order Volterra model like a linear system is  considered, the output 

y1(n) is the linear convolution of the input with h1(n) which is; 
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 When the Volterra series are extended as the combination of zeroth, first and 

second order Volterra models the equation in discrete time becomes (Ogunfunmi, 

2007) as: 
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 Volterra series can give the system response when input is applied to the Volterra 

series representation if the kernels are chosen correctly.  

 

2.4.2 Hammerstein Models 

 

 Another input-output representation of nonlinear systems is Hammerstein model. 

Hammerstein model of any nonlinear system is composed of a nonlinear static block 

and a linear dynamic block (Chou, 2006). The Hammerstein model structure is 

shown in Figure 2.7, where )(•F  is the nonlinear static function which represents the 

nonlinear characteristics of the model and )(•G  is the dynamic linear function which 

represents the dynamic behaviour of the model. 

 

 

Figure 2.6 Hammerstein Model Scheme 

Hammerstein models are widely used in identification of nonlinear systems, such 

as in control systems (Kung & Womack 1984), in identification of nonlinear systems 
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(Eskinat, Johnson, & Luyben, 1991), in nonlinear data transmission channels 

(Maqusi, 1985) and in many other nonlinear system applications. 

The nonlinear static block may be modeled by an artificial neural network or a 

piecewise linear model and the linear dynamic block may be modeled with an 

autoregressive-moving average model (Alduwaish & Karim, 1997; Hatanaka & 

Uosaki, 2001; Alduwaish, Karim, & Chandrasekar, 1997; Paoletti, 2003). 

2.4.3 Wiener Models 

 

Wiener model of any nonlinear system is composed of a linear dynamic block and 

a static nonlinear block (Moran, Agamennoni, & Figueroa, 2005).  The Wiener 

model structure is shown in Figure 2.7 where the static block comes after the linear 

dynamical block as oppose to the Hammerstein model.  

 

 

Figure 2.7 Wiener Model Scheme 

 

2.4.4 Hammerstein - Wiener Models 

   

 Hammerstein-Wiener model contains Hammerstein and Wiener models together 

(Hu, 2011). 

    
Figure 2.8 Hammerstein- Wiener model scheme 
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2.4.5 Prediction Error Method 

 

Prediction error methods constitute a family of parameter estimation methods. Let 

measurements from the system input and output be denotes as u and y, respectively. 

{ })(),(),...,2(),2(),1(),1( NyNuyuyuZ N =  denote the input output pairs (Ljung, 

2002). 

 

The basic idea in prediction error method is describing the model as a predictor of 

the next output as in Equation (2.29). 

)()1(ˆ 1−=− t
m Zftty                                               (2.29) 

 

)1(ˆ −ttym  denotes the one step ahead prediction of the output and f  is an arbitrary 

function of past observed data. 

 

Then, one may parameterize the predictor in terms of parameter vector in 

Equation (2.30).  

),()(ˆ 1 θθ −= t
m Zfty                                                (2.30) 

 

Prediction error methods can handle systems that operate in closed loop. 

However, they require an explicit parametrization of the model.  

 

2.4.6 State Space Model with Subspace Method 

 

State space representations for a linear time invariant discrete time system can be 

given as follows. 

kkkk

kkkk

vDuCxy
wBuAxx

++=
++=+ ,1                                         (2.31) 

Where, u(k) and y(k) are, respectively, the input and output measurements, x(k) is the 

state sequence, w(k) and v(k) are the unmeasurable sequences representing noise 

which are assumed as zero mean white noise sequences. A is the dynamical system 

matrix, B is the input, C is the output matrix, D represents the relation between input 
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and output directly. Subspace method enables to determine a state space 

representation of a system.    

 

 

Figure 2.9 Subspace method versus classical approach (Overschee & Moor,1996 ) 

 
Figure 2.9 shows the difference between classical approach and subspace method. 

In the subspace method, Kalman state sequence can be developed from the input 

output measurements using QR-decomposition or singular value decomposition. 

Then, the system matrices can be obtained with the least squares method. The 

classical approach firstly obtains the system matrices then using Kalman filter to 

compute the states. On the other hand, the subspace method first determines a state 

sequence by using projection into the subspace, then provide system matrices.  
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2.4.7 Elman Network 

 

 Elman network which is a neural network having feedback connection is a type of 

recurrent neural network. It is suitable for dynamic system modeling. Figure 2.10 

illustrates its architecture. It consists of input, output, hidden, and context units. 

Context units memorize the previous activations of hidden units (Pham & Liu, 1991).  

 

Figure 2.10 Architecture of Elman Network (Pham & Liu, 1991) 

 

2.5 Chaos Control and Anti-Control 

Chaos is known as a dynamical behavior of a system which is sensitive to initial 

conditions and having a topological transitivity property, so that it is usually an 

undesired property for systems of practical interest. So, chaos is tried to be 

suppressed in any way, for instance by chaos control methods (Chen, 1998). 

However, in some systems including chemical reactions, biological and economic 

and in some applications such as liquid mixing and secure communication, chaos is a 

desirable property. So, anti-control (i.e. chaotification) of an originally nonchaotic 

system may be the control objective rather than suppressing the chaos (Chen, 1998; 

Wang & Chen, 2000; Wang, Chen, & Man, 2001; Lü, Zhou, Chen, & Yang, 2002). 
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CHAPTER THREE 

LEARNING STATE SPACE WITH FORCED CHAOTIC STATE 

RECURSION 

 

 This chapter presents a method for identification of a system which might be 

linear or nonlinear. The method presented named as Learning State Space with 

forced Chaotic State Recursion (LSS-CSR) is used to construct a state equation 

model of the system based on input output data. The idea behind the method is that, a 

chaotic signal and white Gaussian noise includes almost all possible state recursion 

under the force by the system input. It will be seen that usage of chaotic states in the 

identification of state equation gives a better performance compare to the other well 

known methods also to the method using white Gaussian noise in training the state 

equations.  

 

 (LSS-CSR) employs two artificial neural networks, one is for the construction of 

the state equation the other is for estimating the output equation. Four benchmark 

plants (one is linear, the other is chaotic and the other two are nonlinear) are used for 

testing the performance of the method. (LSS-CSR) is used to identify the linear and 

nonlinear plants with different input types, the chaotic one which is forced duffing 

equation, uses the input which is forcing the system. Four different inputs are applied 

to linear and nonlinear plants which are step, chaotic and sinoisoidal with two 

different frequencies. The method is also tested with different initial conditions for 

the benchmark plants. In all cases signal to error ratio and normalized mean square 

error are calculated for both evaluating training and test performances of the 

identification method. The proposed methods are also compared with the benchmark 

identification methods, Nonlinear ARX, Nonlinear ARMAX, Hammerstein Model, 

Wiener Model, Hammerstein-Wiener Model, State Space Model with Subspace 

Method, State Space Model with Prediction Error Method and Elman Network. 

Noise performance of the proposed method is evaluated at the last stage and their 

performance are also compared with the benchmark models and methods stated 

above. 
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3.1 Learning State Space with forced Chaotic State Recursion 

 

 The first method which will be called as (LSS-CSR) deals with the identification 

of a linear or nonlinear plant which is given as a black box defined with input output 

data. The aim of this method is that we need to construct the nonlinear state space 

equation which is given with the Equation (3.1). 

 

),(
),(1

kkk

kkk

uxhy
uxfx

=

=+

                                                    (3.1) 

 

 The method consists of two artificial neural network structures named State ANN 

and Output ANN. State ANN is constructed to estimate the states of the plant and 

Output ANN is used for estimating the output of the plant. The block diagram of the 

(LSS-CSR) is shown in Figure 3.1. 

 

 

∆

 

Figure 3.1 General block diagram of the proposed method  LSS-CSR 

 

 The train and test phases of the proposed method LSS-CSR is as follows. The key 

point of the method is that white gaussian noise consists of all states for a linear or 

nonlinear plant. Then the first step is to assign the states xk+1’s as with a white 

gaussian noise. Then with the known inputs uk’s and the assigned delayed states 

which are white gaussian noise train the State ANN to learn xk+1’s. After training of 

the State ANN take the State ANN fixed and train the Output ANN with the known 



 

28 
 

inputs uk’s, and the delayed state ANN outputs to learn the known outputs yk’s. We 

can summarize the method step by step as follows: 

 

• First step is assigning the states xk+1’s as with a white gaussian noise, if the 

system to be identified is chaotic then use a known chaotic system states. 

• Train the State ANN to learn xk+1’s with known inputs uk’s and the assigned 

delayed states. 

• Take the State ANN fixed and train the Output ANN with the known inputs 

uk’s, and the delayed state ANN outputs to learn the known outputs yk’s. 

 

∆

 
Figure 3.2 Artifical neural network structure of proposed method  LSS-CSR 

 

In all simulations of LSS-CSR method the State ANN  have 3 input neurons, one 

for the system input and two others for the current value of 2 state variables, and to 

have 2 output neurons each of which represents the next value of one of 2 state 

variables. The output ANN has 3 input neurons again one for the system input and 

two others for the current value of 2 state variables, and it has a single output neuron 

representing the system output. Both ANNs are trained with the gradient descent type 

back propagation with the momentum term 0.9 and with a constant learning 0.05 for 

tansig (i.e. the hyperbolic tangent sigmoid) activation function in the input and 

hidden layers, linear transfer function in the output layer. 3 hidden neurons are 
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observed to be sufficient for all of the state, and output ANNs and so the 

identification results are obtained for 3 hidden neuron ANNs in all experiments 

 

3.2 Benchmark Plants in Proposed Method 

  

 The performance of the proposed method LSS-CSR is tested with some 

benchmark plants. Plant I, Plant II, Plant III and Plant IV are stated in Table 3.1 with 

the references where the plant dynamics are borrowed. 

 
Table 3.1 Benchmark plants used for testing the proposed method LSS-CSR 

Benchmark 

Plant 
     State Equations 

Plant 

Description and 

Reference 

Plant I 

)()()(
))(1()(1.0)(5.0)1(

)(5.0)1(

21

212

21

kxkxky
kvkxkxkx

kxkx

+=
+++=+

=+
 

Second order 

plant, u(k) and 

v(k) are control 

inputs, y(k) is the 

output. 

(Narendra, 1996) 

Plant II 

[ ]
5.0)(025.0)(

))()(cos(1.0)())(sin(10)1(
+=

++=+
kxky

kukxkukxkx
 

 
 
 

First order plant, 

u(k) is the control 

input and y(k) is 

the output. 

(Narendra, 

1996) 

Plant III 1)()(
)2()1(1

)()1)2()(1()2()1()(6.9)1( 22

+=
−+−+

+−−−−−
=+

kxky
kxkx

kukxkukxkxkxkx

 

  

u(k) is the control 

input and y(k) is 

the output 

(Uykan & others, 

2000) 

Plant IV 304.0)cos(6.7 xxtx −−= &&&  

Forced Duffing 

Oscillator (Chen, 

Chen, & Öğmen, 

1997) 
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 Plant I which is a modified form of plant (Narendra,1996), is a second order linear 

state model which is having two states and the output equation is independent from 

the output. Plant II is the modified form of the plant in the literature (Narendra, 1996) 

which is a first order nonlinear state model having one state and output. Plant III is a 

modified form of the plant given in the literature ( Uykan, Güzeliş, Çelebi, & Koivo,  

2000) which is a third order nonlinear difference equation model. Plant IV is a 

modified version of the chaotic system in the literature (Chen, Chen, & Öğmen, 

1997) known as the forced duffing oscillator. 

 

 The performance of the method is compared with some benchmark models which 

are stated below with their properties: 

 

• Hammerstein Model: It uses 10 piecewise linear blocks at the nonlinear 

block, and uses a linear equation  [ ] [ ]
[ ] [ ] nzzu
zF
zBzy −=   where B representing the order 

of zeros, F representing the order of poles and n is the input delay. In the linear block 

the parameters B, F, and n are taken as 2, 3, and 1, respectively.   

 

 

 

Figure 3.3 Structure of Hammerstein model 

 

• Wiener Model: It uses 10 piecewise linear blocks at the nonlinear block, and 

uses a linear equation [ ] [ ]
[ ] [ ] nzzu
zF
zBzy −=    where B representing the order of zeros, F 

representing the order of poles and n is the input delay. In the linear block the 

parameters B, F, and n  are taken as 2, 3, and 1, respectively.   
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Figure 3.4 Structure of Wiener model 

 

 

• Hammerstein-Wiener Model: Uses 10 piecewise linear blocks at the input 

and output nonlinear blocks, and uses a linear equation   [ ] [ ]
[ ] [ ] nzzu
zF
zBzy −=  where B 

representing the order of zeros, F representing the order of poles and  n is the input 

delay. In the linear block the parameters B, F, and n are taken as 2, 3, and 1, 

respectively.   

 

 
Figure 3.5 Structure of Hammerstein-Wiener model 

 

• Nonlinear ARMAX Model: Four regressors (u(t-1), u(t-2), y(t-1), y(t-2)) and 

as a nonlinear block 10 sigmoid networks are used. 

 

)(
∧

y  
Figure 3.6 Structure of nonlinear ARMAX model 

 

• Nonlinear ARX Model: Two regressors (y(t-1), y(t-2)) and as a nonlinear 

block 10 sigmoid networks are used  
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)(
∧

y  
Figure 3.7 Structure of nonlinear ARX model 

 

 

• State Space Model with Prediction Error Method: A linear state space 

model using prediction error method is used as in the equation below with the order 

of two.  

)()()(
)()()1(

kDukCxky
kBukAxkx

+=
+=+

                                    (3.2) 

• State Space Model with Subspace Method: A linear state space model 

using subspace method is used as in the equation below with the order of two.  

 

)()()(
)()()1(

kDukCxky
kBukAxkx

+=
+=+

                                    (3.3) 

• Elman Network: The elman network which is used have a one hidden layer 

which is having 3 neurons. 
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Figure 3.8 Architecture of Elman Network (Pham & Liu, 1991) 

 
3.3 Simulation Results of the Proposed Method LSS-CSR 

 

3.3.1  Case 1: A second order linear state model   

  

 In order to test the proposed method LSS-CSR, the modified form of the 

benchmark plant in the literature is borrowed (Narendra, 1996) and given in Equation 

(3.4). 

 

)()()(
))(1()(1.0)(5.0)1(

)(5.0)1(

21

212

21

kxkxky
kvkxkxkx

kxkx

+=
+++=+

=+
                         (3.4) 

 

 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. For the State ANN there are three 

inputs (2 of them are white gaussian noise with the power of 1dBW, 1 of them is the 

input which is v(k)), 3 hidden layer neurons and 2 output neurons which are used for 

learning the states. The Output ANN has 3 input neurons which are states (2 states) 

and the plant input v(k). Like the State ANN, the Output ANN has 3 hidden neurons. 
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 The method is tested with the structure above and with 4 different types of input 

(v(k)) cases listed in Table 3.2. 

 

Table 3.2  Inputs used for testing method LSS-CSR with  plant in Equation (3.4) 

Input I v(k)=step input 

Input II v(k) = sin(k) 

Input III v(k)= sin(20k) 

Input IV v(k+1)=4v(k)(1-v(k))  ,  v(0)=0.1 (Chaotic input) 

 

 For all cases, the method performance is tested with the Mean Square Error 

(MSE) and, Signal to Error Ratio (SER) parameters. The samples of data for inputs 

and outputs are 70. Training data samples are 48, and the other 22 of them are 

reserved for test. Normalized Mean Square Error (nMSE) and Signal to Error Ratio 

(SER) parameters are calculated for both training and test data sets. Mean square 

error is divided by the output signal power to calculate the normalized mean square 

error, in order to compare the values. The initial conditions are also fixed to constant 

values x1(0), x2(0) are both equal to 0.5. The algorithm ran 100 times to calculate 

SER values to find out the best, worst and the average performances of the method 

LSS-CSR. Table 3.3 shows the performance of the proposed method LSS-CSR to the 

plant I, nMSE and SER values for both training and test phases are shown. Tables 

from 3.3 to 3.11 show the performance of the benchmark methods and proposed 

method LSS-CSR  to the plant I shown in Equation (3.4). Figures from 3.9 to 3.12 

also show the identified output results versus desired outputs according to the 

different applied inputs. Comparison of outputs for different methods versus  desired 

output  for  chaotic input with plant I is illustrated in Figure 3.13.   

    p
iy  is assumed the predicted output of the desired output y. Then the mean square 

error is calculated with the Equation 3.5 below 

∑
=

−=
n

i
i

p
i yy

n 1

2)(1(mse)error  squaremean                                       (3.5) 
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Normalized mean square errors are calculated as in Equation 3.6 

 

power signaloutput  desired
error  squaremean (nmse)error  squaremean  Normalized =            (3.6) 

 

(mse)Error  squaremean 
 signal desired of squaremean log10(SER) ratioerror   tosignal 10=             (3.7)               

 

Figure 3.9 LSS-CSR method output versus desired output for step input with plant I 

 

Figure 3.10 LSS-CSR method  output versus desired output for sin(k) input with plant I 
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Figure 3.11 LSS-CSR method output versus desired output for sin(20k) input with plant I 

 
 

 

Figure 3.12 LSS-CSR method output versus desired output for chaotic input with plant I 
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Table 3.3 Performance of the proposed method LSS-CSR with Plant I 

Table 3.4 Performance of Hammerstein model with Plant I 

Table 3.5 Performance of Wiener model with Plant I 

 

 

 

 

 

 

 

 

LSS-CSR 

INPUT  nMSE 

(training) 

SER (dB) 

(training) (Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER 

(dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.0193 14.876 17.071 18.113 0.0223 14.451 16.510 17.212 

Sin(k)  0.0340 13.842 14.721 15.002 0.0379 13.902 14.203 14.573 

Sin(20k) 0.0209 16.163 16.701 17.104 0.026 15.422 15.702 16.009 

Chaotic 

Input 

0.0180 16.313 17.503 18.675 0.0420 12.910 13.604 15.551 

 

 

 

 

 

Hammerstein  

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) (test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.0011 27.293 29.7 31.245 0.0022 25.0021 26.64 28.109 

Sin(k)  0.015 16.934 18.3 19.993 0.033 13.992 14.8 16.043 

Sin(20k) 0.1 9.345 9.85 10.450 2.78 -5.483 -4.43 -3.453 

Chaotic 

Input 

0.003 22.988 24.8 26.030 0.016 16.833 17.8 18.2042 

 

 

 

 

 

Wiener 

INPUT  nMSE 

(training) 

SER (dB) 

(training) (Min)

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 5*10-9 79.893 81.3 83.3329 0.0015 27.118 28.3 29.004 

Sin(k)  0.023 15.893 16.2 16.554 0.033 14.493 14.7 14.995 

Sin(20k) 0.07 10.942 11.3 11.539 0.13 8.2839 8.6 8.9983 

Chaotic 

Input 

0.0046 22.0453 23.35 24.593 3.66 -7.773 -5.64 -3.2958 
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Table 3.6 Performance of Hammerstein-Wiener model with Plant I 

  

Table 3.7 Performance of  Elman network with Plant I 

Table 3.8 Performance of nonlinear ARX model with Plant I 

 

 

 

 

 

 

Hammerstein–Wiener 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER 

(dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 8*10-9 78.984 80.8 82.298 0.0014 27.048 28.4 29.857 

Sin(k)  0.011 18.4893 19.44 20.002 0.035 13.984 14.58 14.779 

Sin(20k) 0.077 10.748 11.11 11.586 0.34 3.860 4.58 4.447 

Chaotic 

Input 

0.008 20.116 20.9 21.796 0.014 17.7745 18.54 19.0238 

 

 

 

 

 

ELMAN 

Network 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.02 15.6013 16.92 22.85 0.024 14.640 16.21 17.1134 

Sin(k)  0.01 16.284 17.7 19.65 0.02 15.736 16.8 18.27 

Sin(20k) 0.019 16.458 17.01 19.004 0.023 14.985 16.3 17.697 

Chaotic 

Input 

0.0418 10.151 13.79 15.8429 0.044 4.8977 13.58 15.185 

 

 

 

 

 

Nonlinear 

ARX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
convergent 

Non 
convergent

Non 
convergent

Non 
convergent 

Non 
convergent

Non 
convergent 

Non 
convergent 

Non  
convergent

Sin(k)  0.046 12.744 13.31 13.698 Non 
convergent

Non 
convergent 

Non 
convergent 

Non  
convergent

Sin(20k) 0.09 9.904 10.4 10.842 0.177 7.220 7.5 7.702 

Chaotic 

Input 

0.0234 15.839 16.31 16.696 0.057 11.995 12.39 12.893 
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Table 3.9 Performance of nonlinear ARMAX model with Plant I 

 

Table 3.10 Performance of prediction error method with Plant I  

 

 Table 3.11 Performance of subspace method with Plant I 

 

 

 

 

 

 

Nonlinear 

ARMAX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
convergent 

Non 
convergent 

Non 
convergent

Non 
convergent 

Non 
convergent

Non 
convergent 

Non 
convergent 

Non 
convergent

Sin(k)  Non 
convergent 

Non 
convergent 

Non 
convergent

Non 
convergent 

Non 
convergent

Non 
convergent 

Non 
convergent 

Non 
convergent

Sin(20k) 25.6 -15.694 -14.1 -13.685 32.34 -15.74 -15.1 -14.802 

Chaotic 

Input 

2*10-7 62.034 66.3 68.201 Non 
convergent

Non  
convergent 

Non 
convergent 

Non 
convergent

 

 

 

 

 

Prediction 

Error 

Method 

INPUT  nMSE 

(training) 

SER (dB) 

(training)  

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER 

(dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 4.10-5 41.204 43.8 44.403 0.002 26.103 26.9 27.336 

Sin(k)  0.88 0.301 0.53 0.687 1.24 -1.112 -0.9 -0.791 

Sin(20k) 0.84 0.592 0.72 0.884 1.33 -1.559 -1.23 -1.172 

Chaotic 

Input 

0.02 16.405 17 17.503 0.022 15.958 16.5 16.794 

 

 

 

 

 

Subspace 

Method 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 2.6*10-6 52.203 55.7 57.804 0.003 24.495 25.25 25.796 

Sin(k)  0.83 0.613 0.8 0.934 0.87 0.419 0.59 0.793 

Sin(20k) 0.58 1.984 2.31 2.652 1.022 -0.113 -0.095 0.091 

Chaotic 

Input 

0.019 16.849 17.22 17.558 0.045 12.994 13.5 13.894 
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Figure 3.13 Comparison of outputs for different methods versus  desired output  for   sin(20k) with 

plant I   

 
3.3.2 Case 2: A first order nonlinear state model 

 
 In order to test the proposed method LSS-CSR with a nonlinear plant which is a 

nonlinear state space equation, the dynamics of the benchmark plant in literature is 

borrowed (Narendra, 1996) which is given in Equation (3.8) 

 

[ ]
5.0)(025.0)(

))()(cos(1.0)())(sin(10)1(
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++=+
kxky

kukxkukxkx
                         (3.8) 

 

 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. To construct the State ANN there 

are three inputs (two of them are white gaussian noise with the power of 1dBW 

which represents the state of the plant, the other is the input which is u(k)), 3 hidden 

layer neurons and 2 output neuron which is used for learning the states. The Output 

ANN has 3 input neurons which of 2 are states ( taken from the output of the State 
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ANN) and the plant input u(k). Like the State ANN, the Output ANN has 3 hidden 

neurons. The Output ANN has 1 output neuron which represents the output of the 

plant. 

  

 The method is tested with the artificial neural network structure above and with 4 

different types of  input (u(k)) cases listed in Table 3.12. 

 

 

Table 3.12 Inputs used for testing method LSS-CSR with  plant in Equation (3.8) 

Input I u(k)=step input 

Input II u(k) = sin(k) 

Input III u(k)= sin(20k) 

Input IV u(k+1)=4u(k)(1-u(k))  ,  u(0)=0.1 (Chaotic input) 

 

 

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 

divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The initial condition is fixed to a constant value which 

is x1(0) is equal to 0.5. The algorithm ran 100 times to calculate SER values to find 

out the best, worst and the average performances of the method to the plant II which 

is given with the Equation (3.8). Tables from 3.13 to 3.21 show the performance of 

the benchmark methods and proposed method LSS-CSR  to the plant II. Figures from 

3.14 to 3.17 also show the identified output results versus desired outputs according 

to the different applied inputs. Comparison of outputs for different methods versus  

desired output  for  chaotic input with plant II is illustrated in Figure 3.18.    

 

 



 

42 
 

 

Figure 3.14 LSS-CSR method output versus desired output for step input with plant II 

 

Figure 3.15 LSS-CSR method output versus desired output  for sin(k) input with plant II 
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Figure 3.16 LSS-CSR method output versus desired output for sin(20k) input with plant II 

 
 
 

 

Figure 3.17 LSS-CSR method output versus desired output for chaotic input with plant II 
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Table 3.13 Performance of the proposed method LSS-CSR with Plant II 

 
Table 3.14 Performance of Hammerstein model with Plant II 
 

 
Table 3.15 Performance of Wiener model with Plant II 

 

 

 

 

 

LSS-CSR 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.067 11.002 11.670 12.122 0.078 10.590 11.030 11.442 

Sin(k)  0.077 10.831 11.100 11.603 0.084 10.338 10.751 11.210 

Sin(20k) 0.066 11.260 11.702 12.104 0.072 11.010 11.487 11.966 

Chaotic 

Input 

0.076 10.905 11.242 11.685 0.077 10.672 11.122 11.438 

 

 

 

 

 

Hammerstein 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.088 10.0221 10.54 10.774 0.105 9.0903 9.78 10.001 

Sin(k)  0.52 2.519 2.82 2.9957 1.24 -2.73 -0.94 -0.052 

Sin(20k) 0.06 11.873 12.14 12.583 0.15 7.757 8.26 8.403 

Chaotic 

Input 

0.08 10.589 10.84 10.9086 0.69 1.322 1.58 1.7128 

 

 

 

 

 

Wiener 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.063 11.790 12.00 12.205 0.084 10.396 10.75 10.884 

Sin(k)  0.038 13.956 14.18 14.446 0.208 6.665 6.81 6.942 

Sin(20k) 0.064 11.674 11.9 12.034 0.122 8.854 9.13 9.438 

Chaotic 

Input 

0.054 12.283 12.64 12.805 0.097 9.850 10.11 10.426 
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Table 3.16 Performance of Hammerstein-Wiener model with Plant II 

 
Table 3.17 Performance of  Elman network with Plant II 

 

Table 3.18 Performance of nonlinear ARX model with Plant II 

 

 

 

 

 

Hammerstein–Wiener 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER 

(dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.073 10.994 11.33 11.559 0.079 10.744 11.02 11.259 

Sin(k)  0.057 11.773 12.4 12.694 0.17 7.573 7.70 7.902 

Sin(20k) 0.072 10.954 11.4 11.778 0.115 8.785 9.39 9.505 

Chaotic 

Input 

0.055 11.998 12.59 12.874 0.53 1.992 2.75 2.995 

 

 

 

 

 

ELMAN 

Network 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.088 10.2265 10.55 10.971 0.091 10.002 10.42 10.769 

Sin(k)  0.1026 9.521 9.888 9.9555 0.1058 9.3862 9.6453 9.8197 

Sin(20k) 0.1030 9.623 9.86 10.1693 0.1232 8.7340 9.0928 9.4004 

Chaotic 

Input 

0.084 10.362 10.76 11.0676 0.1004 9.752 9.98 10.3296 

 

 

 

 

 

Nonlinear 

ARX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(k)  Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(20k) 7.7*103 -42.349 -38.89 -35.340 Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Chaotic 

Input 

Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent
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Table 3.19 Performance of nonlinear ARMAX model with Plant II 

 
Table 3.20 Performance of prediction error method with Plant II 

 

 

 

 

 

 

 

 

 
Table 3.21 Performance of subspace method with Plant II 

 

 

 

 

 

 

Nonlinear 

ARMAX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Sin(k)  11.65 -11.129 -10.66 -9.902 Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Sin(20k) Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Chaotic 

Input 

Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent

 

 

 

 

 

Prediction 

Error Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.082 9.964 10.84 10.993 0.101 9.504 9.94 10.023 

Sin(k)  0.74 1.112 1.32 1.432 2.09 -4.032 -3.2 -2.893 

Sin(20k) 1.028 -0.304 -0.12 0.003 1.18 -1.114 -0.74 -0.504 

Chaotic 

Input 

0.102 9.603 9.90 10.005 0.141 7.920 8.48 8.7732 

 

 

 

 

 

Subspace Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.081 10.703 10.9 11.003 0.113 8.945 9.46 9.603 

Sin(k)  0.77 0.794 1.115 1.203 1.118 -0.505 -0.48 -0.385 

Sin(20k) 0.95 0.159 0.203 0.293 1.004 -0.100 -0.018 0.030 

Chaotic 

Input 

0.075 10.403 11.23 11.584 0.18 6.892 7.44 7.771 
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Figure 3.18 Comparison of outputs for different methods versus desired output for  chaotic input with 

plant II 

 

3.3.3 Case 3: A third order nonlinear difference equation model 

 

 In order to test the proposed method LSS-CSR, the modified dynamics of the 

nonlinear benchmark plant in literature is borrowed (Uykan & others, 2000)  which 

is shown in Equation 3.9. This plant called plant III is more complicated than the 

plant given with the Equation 3.8 since this model has more dynamics in the state 

equation. The plant III also tested with different inputs like plant I and plant II. For 

the step and chaotic inputs Equation (3.9) is used, for sinusoidal inputs sin(k) and 

sin(20k) the plant given in Equation (3.10) is used to make the plant stable. 
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 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. For constructing the State ANN 

there are three inputs (two of them are white gaussian noise with the power of 1dBW 

representing the state of the plant, the other is the input which is u(k)), 3 hidden layer 

neurons and 2 output neuron which is used for learning the states. The Output ANN 

has 3 input neurons, two are coming from the State ANN output and the other is the 

plant input u(k). Like the State ANN, the Output ANN has 3 hidden neurons. The 

Output ANN has one output neuron representing the output. 

  

 The method is tested with the structure above and with 4 different types of input 

(u(k)) cases listed in Table 3.22. 

. 

Table 3.22 Inputs used for testing method LSS-CSR with plant III 

Input I u(k)=step input 

Input II u(k) = sin(k) 

Input III u(k)= sin(20k) 

Input IV u(k+1)=4u(k)(1-u(k))  ,  u(0)=0.1 (Chaotic input) 

 

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 

divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The initial conditions x(-2), x(-1), x(0), y(0), y(-1)   are  

chosen as 1,1.5, 2, 0.5, and 0.5 respectively.  
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 The algorithm ran 100 times to calculate SER values to find out the best, worst 

and the average performances of the method  to the plant III. Tables from 3.23 to 

3.31 show the performance of the benchmark methods and proposed method LSS-

CSR  to the plant II. Figures from 3.19 to 3.22 also show the identified output results 

versus desired outputs according to the different applied inputs. Comparison of 

outputs for different methods versus  desired output  for  chaotic input with plant II is 

illustrated in Figure 3.23.    

 

 

 

 

Figure 3.19 LSS-CSR method output versus desired output for step input with plant III 
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Figure 3.20 LSS-CSR method  output versus desired output for sin(k) input with plant III 

 

 

Figure 3.21 LSS-CSR method output versus desired output for sin(20k)input with plant III 
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Figure 3.22 LSS-CSR method output versus desired output for chaotic input with plant III 

 
 
 
Table 3.23 Performance of the proposed method LSS-CSR with Plant III 
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desired output

LSS-CSR 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.0270 14.703 15.700 16.103 0.028 14.348 15.293 15.641 

Sin(k)  0.136 8.0300 8.572 9.002 0.156 7.673 8.110 8.247 

Sin(20k) 0.144 8.040 8.388 8.709 0.149 7.672 8.205 8.483 

Chaotic 

input 

0.078 10.466 11.002 11.163 0.081 10.198 10.888 11.157 
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Table 3.24 Performance of Hammerstein model with Plant III 

 

Table 3.25 Performance of Wiener model with Plant III 

 

 

 

 

 

 

 

 

Table 3.26 Performance of Hammerstein-Wiener model with Plant III 

 
 
 
 
 
 
 
 

 

 

 

 

 

Hammerstein  

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.0097 19.493 20.16 20.592 0.029 14.993 15.36 15.704 

Sin(k)  0.112 8.994 9.49 9.743 0.951 0.003 0.217 0.702 

Sin(20k) 0.038 13.895 14.11 14.443 0.853 -0.034 0.69 1.008 

Chaotic 

Input 

0.047 12.904 13.28 13.603 0.098 9.856 10.08 10.395 

 

 

 

 

 

Wiener 

INPUT nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) (test) 

(Max) 

Step 0.004 22.9403 24.35 25.503 0.032 14.553 14.92 15.254 

Sin(k)  0.078 10.873 11.03 11.110 0.204 6.201 6.89 6.970 

Sin(20k) 0.066 11.593 11.800 11.990 0.659 1.504 1.809 2.002 

Chaotic 

Input 

0.0351 13.984 14.54 14.785 0.097 9.795 10.13 10.376 

 

 

 

 

 

Hammerstein–Wiener 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.007 20.693 21.52 22.012 0.026 15.405 15.85 15.996 

Sin(k)  0.016 17.302 17.89 18.003 0.286 5.274 5.43 5.596 

Sin(20k) 0.024 15.785 16.19 16.394 0.62 1.806 2.05 2.226 

Chaotic 

Input 

0.032 14.468 14.88 15.067 0.103 9.572 9.83 10.043 
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Table 3.27 Performance of  Elman network with Plant III 
 

 

 

 

 

 

 

 

 
Table 3.28 Performance of nonlinear ARX model with Plant III 

 
Table 3.29 Performance of nonlinear ARMAX model with Plant III 

 

 

 

 

 

 

 

 

 

ELMAN 

Network 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) (test) 

(Max) 

Step 0.025 15.643 16.05 17.0735 0.042 13.483 13.83 14.5639 

Sin(k)  0.105 7.3596 9.79 12.385 0.152 5.9402 8.18 10.362 

Sin(20k) 0.224 6.0054 6.501 7.0129 0.272 5.236 5.64 5.952 

Chaotic 

Input 

0.08 10.102 10.99 11.8677 0.1028 9.473 9.8791 10.6933 

 

 

 

 

 

Nonlinear 

ARX 

INPUT  nMSE 

(training) 

SER (dB) 

(training)

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) (test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.01 19.784 19.95 20.506 Non 
Convergent 

Non 
Convergent

Non Convergent Non 
Convergent 

Sin(k)  0.22 6.382 6.55 6.770 0.37 3.336 4.30 4.508 

Sin(20k) 0.096 9.784 10.15 10.384 Non 
Convergent 

Non 
Convergent

Non Convergent Non 
Convergent 

Chaotic 

Input 

0.137 8.404 8.63 8.732 Non 
Convergent 

Non 
Convergent

Non Convergent Non 
Convergent 

 

 

 

 

 

Nonlinear 

ARMAX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.01 19.094 19.95 20.498 Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Sin(k)  0.071 10.890 11.44 11.774 0.79 0.403 1.012 1.205 

Sin(20k) 2.032 -3.645 -3.08 -2.403 2.083 -3.676 -3.18 -2.806 

Chaotic 

Input 

8.76 -10.003 -9.43 -8.884 10.36 -10.54 -10.15 -9.709 
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Table 3.30 Performance of prediction error method with Plant III 
 

 
Table 3.31  Performance of subspace method with Plant III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction Error 

Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.01 -19.504 19.98 20.302 0.018 16.985 17.23 17.406 

Sin(k)  0.49 2.589 3.07 3.453 1.51 -1.903 -1.81 -0.040 

Sin(20k) 0.949 0.002 0.22 0.303 2.26 -3.903 -3.54 -2.705 

Chaotic 

Input 

0.088 9.905 10.52 10.813 0.105 9.604 9.76 9.895 

 

 

 

 

 

Subspace 

Method 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.017 17.306 17.69 18.003 0.022 15.903 16.5 16.781 

Sin(k)  0.63 1.403 1.94 2.004 1.181 -1.023 -0.70 -0.068 

Sin(20k) 0.91 0.302 0.40 0.443 1.18 -1.059 -0.72 -0.174 

Chaotic 

Input 

0.07 10.903 11.51 11.604 0.365 3.958 4.36 4.980 
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Figure 3.23  Comparison of outputs for different methods versus desired output for sin(k) with plant 

III   

 

3.3.4 Case 4: A chaotic system (forced duffing oscillator) 

 

 In order to test the proposed method LSS-CSR, the modified dynamics of the 

chaotic benchmark plant in the literature is borrowed which is shown in Equation 

(3.12).  This equation can also be written with two state equations in Equation (3.13). 

This is chosen in order to test the performance of the proposed method LSS-CSR 

with a chaotic plant. In cases I, II, and III nonlinear and linear plants were tested with 

chaotic inputs. Forced Duffing oscillator were chosen as a chaotic plant because of 

its forcing input, since the proposed method needs input-output data of the plant 

which is to be identified. Forced duffing oscillator states and the phase portrait is 

shown in Figures 3.24, Figure 3.25, and Figure 3.26 under the initial conditions in 

Equation (3.11). 

 

x1(0)=3 and x2(0)=4                                                   (3.11) 
304.0)cos(6.7 xxtx −−= &&&                                         (3.12)  
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Figure 3.24 Forced Duffing Oscillator state x1 

 

Figure 3.25 Forced Duffing Oscillator state x2 
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Figure 3.26 Forced Duffing Oscillator phase portrait 

 
 
 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. For constructing the State ANN 

there are three inputs (two of them are the states of a henon system and a lorenz 

system, the other is the input which is u(k)), 3 hidden layer neurons and 2 output 

neuron which are used for learning the states. The Output ANN has also 3 input 

neurons, two are coming from the State ANN output and the other is the plant input 

u(k). Like the State ANN, the Output ANN has 3 hidden neurons. Also the Output 

ANN has 1 output neuron for learning the output. In order to train the State ANN 

used modified lorenz system is given in Equation (3.14) (Lorenz, 1963; Cuomo & 

Oppenheim, 1993). 
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with the parameters σ, r, and b are 10, 56.6, 5.02, respectively. 
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 The states and the phase portrait of the used Lorenz system is given in Figure 

3.27, Figure 3.28, Figure 3.29, and Figure 3.30. under the initial conditions in 

Equation (3.15). 

 

x1(0)=1, x2(0)=0, and x3(0)=1                                              (3.15) 

 

 

Figure 3.27  Lorenz system state x1 

 

 

Figure 3.28 Lorenz system state x2 
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Figure 3.29 Lorenz system state x3 

 
 
 
 

 

Figure 3.30 Lorenz system phase portrait x1 versus x2 

 

 In order to train the State ANN used modified henon system is given in Equation 

(3.16) (Dick & Kandel; 2005). 
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1)1(3.0)(4.1)1( 2 +−+=+ kykyky                                   (3.16) 
 

The phase portrait of the henon system in Equation 3.16 is given in Figure 3.31 

under the initial conditions y(-1)=0.5 and y(0)=0.5.  

 

 

 

Figure 3.31 Henon System phase plot 

 

 Train and test performances of the proposed method and the benchmark methods 

taken from the literature are given in Table 3.32.  

 

 

 

 

 

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

y(k)

y(
k+

1)

Henon system phase plot  y(k+1)=-1.4*(y(k))2+   0.3*y(k-1)+1



 

61 
 

Table 3.32  Comparison of  train and test performances of the proposed method and the benchmark 

methods 

 

 

 

 

 

 

 

 

 

 

 

Model  nMSE 

training

SER (dB) 

(training) 

(Min) 

SER 

(dB) 

training(

Mean) 

SER 

(dB) 

training 

(Max) 

nMSE 

(test) 

SER 

(dB) 

(test) 

(Min) 

SER 

(dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

LSS-CSR   0.0073 20.912 21.330 22.603 0.0118 17.996 19.288 21.801 

Nonlinear ARX 0.028 15.102 15.53 15.721 0.0688 11.403 11.62 11.832 

Prediction Error 

Method  

0.197 6.663 7.03 7.904 2.541 -4.589 -4.05 -3.453 

Subspace Method  0.749 0.432 1.25 1.698 1.013 -0.332 -0.056 0.102 

Wiener Model 0.029 14.895 15.40 15.793 0.151 7.773 8.204 8.502 

Hammerstein  

Model 

0.0548 12.093 12.61 12.856 0.167 7.551 7.75 7.896 

Hammerstein-

Wiener Model 

0.0275 15.398 15.604 15.873 0.295 4.706 5.293 5.554 

Nonlinear 

ARMAX 

0.039 13.794 14.092 14.443 0.069 11.394 11.56 11.707 

Elman Network 0.0320 14.607 14.9446 15.254 0.0335 14.392 14.750 14.967 
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Figure 3.32 Forced Duffing Oscillator Test Result 

 

 

3.3.5 Performance of the proposed method LSS-CSR with different initial 

conditions 

 

 3.3.5.1 Test a  

 

 In order to test the proposed method LSS-CSR to different initial conditions; the 

dynamics of the benchmark plant in literature is borrowed (Narendra, 1996) given in 

Equation (3.17). 
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 The benchmark plant is executed with different initial conditions. State ANN and 

Output ANN are trained with some possible values of initial conditions. For the plant 
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above x(1) is varied between 0 and 19.99 and the State ANN and Output ANN are 

trained with 70 different initial conditions. Then the method is tested with different 

initial conditions that are not placed in the training set.   

 

 The Figure 3.33 shows the identified and desired outputs which are the responses 

of x1(k)=5 and x2(k)=0.5. Mean Square error, normalized mean square error (nMSE) 

and signal to error ratio (SER) parameters are calculated for test data sets. 

  

 

Figure 3.33 Initial condition Test Result of Proposed Method LSS-CSR with Plant I 

 

 

 The performance parameters of the test point  x1(k)=5 and x2(k)=0.5 which is 

shown in the Figure 3.33 are calculated and they are shown in Table 3.33 as follows; 

 

Table 3.33 Initial condition Performance parameters of method LSS-CSR with Plant I 

SER (dB) 25.998 

MSE 0.0530 

nMSE 0.0026 
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 The performance of the system tested for various initial conditions, 100 different 

cases for train and test data are chosen and SER values are calculated the best worst 

and the mean are listed in Table 3.34. 

 

 
Table 3.34 Initial condition SER results of method LSS-CSR with Plant I 

SER (worst) (dB) 24.103 

SER (mean)  (dB) 26.692 

SER (best)    (dB) 28.872 

 

 

 3.3.5.2 Test b 

  

 The proposed method LSS-CSR performance is tested with different initial 

conditions for a nonlinear plant which the dynamics of the benchmark plant in 

literature is borrowed (Narendra, 1996) and shown in Equation (3.18).  

 

[ ]
5.0)(025.0)(

))()(cos(1.0)())(sin(10)1(
+=

++=+
kxky

kukxkukxkx
                  (3.18) 

      

     The plant input is a unit step input. The benchmark plant is executed with 

different initial conditions. State ANN and Output ANN are trained with some 

possible values of initial conditions. For the plant above x is varied between 0 and 

89.99 and the State ANN and Output ANN are trained with 70 different initial 

conditions. Then the method is tested with different initial conditions that are not 

placed in the training set.   

 

 The Figure 3.34 shows the identified and desired outputs which are the responses 

of x(k)=5. Mean Square error, normalized mean square error (nMSE) and signal to 

error ratio (SER) parameters are calculated for test data sets. 
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Figure 3.34 Initial condition test result of the proposed method LSS-CSR with Plant II 

 

 The performance parameters of the test point x(k)=5 which is shown in the Figure 

3.34 are calculated and they are shown in Table 3.35 as follows; 

  

Table 3.35 Initial condition Performance parameters of Method LSS-CSR with Plant II 

SER (dB) 7.98 

MSE 0.044 

nMSE 0.159 

 

 The performance of the system tested for various initial conditions, 100 different 

cases for train and test data are chosen and SER values are calculated the best worst 

and the mean are listed in Table 3.36. 

 
Table 3.36 Initial condition SER results of Method LSS-CSR with Plant II 

SER (worst) (dB) 7.104 

SER (mean)  (dB) 8.066 

SER (best)    (dB) 10.317 
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 3.3.5.3 Test c 

 

 In order to test the proposed model to different initial conditions; the dynamics of 

the benchmark plant in literature is borrowed (Uykan & others, 2000) 

 

1)()(
)2()1(1
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kukxkukxkxkxkx                 (3.19) 

 

 To test the proposed model, the benchmark plant is executed with different initial 

conditions and with the step input u. State ANN and output ANN are trained with 

some possible values of initial conditions. The benchmark plant above x(0) is varied 

from 0 to 2.99. 

 

 

Figure 3.35 The identified and desired outputs at x(0)=1 

 

 The above figure shows the identified and desired outputs which are the responses 

of x(0)=1. Mean Square error, normalized mean square error (nMSE) and signal to 
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error ratio (SER) parameters are calculated for test data sets. Calculated parameters 

are listed in Table 3.37. 

 

Table 3.37 Calculated parameters of Method LSS-CSR when x(0)=1 

SER 22.674dB 

MSE 0.0112 

nMSE 0.0054 

 

 

 The performance of the system tested for various initial conditions, 100 different 

cases for train and test data are chosen and SER values are calculated the best worst 

and the mean are listed in Table 3.38. 

 

 

Table 3.38 SER results of Method LSS-CSR when x(0)=1 

 SER(worst) 20.334dB 

SER(mean) 22.651dB 

SER(best) 24.495dB 

 

 

3.3.6 Noise performance of the proposed method LSS-CSR 

 

3.3.6.1 Case 1: A second order linear state model   

 

 In order to test the proposed method LSS-CSR, the dynamics of the benchmark 

plant in literature is borrowed (Narendra, 1996) and given in Equation (3.20). 
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 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. To construct the State ANN there 

are three inputs (two of them are white gaussian noise with the power of 1dBW 

which represents the state of the plant, the other is the input which is u(k)), 3 hidden 

layer neurons and 2 output neuron which is used for learning the states. The Output 

ANN has 3 input neurons which are states ( taken from the output of the State ANN) 

and the plant input u(k). Like the State ANN, the Output ANN has 3 hidden neurons. 

The Output ANN has 1 output neuron which represents the output of the plant. 

 

 Noise performance is tested with a uniformly distributed noise between                

[-0.40 0.40]. A uniformly distributed noise is added to the plant input, and the system 

performance is tested. Figure (3.36) shows the plant input with additive noise and 

without noise. Plant input is chosen a sinusoidal input which is a sinus sin(20k). 

 

 

Figure 3.36 Plant input versus plant input with additive noise 
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Table 3.39 Noise performance results of plant I 

 

 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method – Model  nMSE

  

SER (dB) nMSE 

with noise

SER (dB)  

with noise 

LSS-CSR 0.026 15.702 0.0274 15.61 

Nonlinear ARX 0.177 7.5 0.177 7.5 

Prediction Error Method  1.33 -1.23 1.473 -1.68 

Subspace Method  1.022 -0.095 1.028 -0.122 

Wiener Model 0.130 8.6 0.159 7.98 

Hammerstein  Model 2.78 -4.430 58.45 -17.667 

Hammerstein-Wiener Model 0.34 4.58 2.032 -3.08 

Nonlinear ARMAX 32.34 -15.1 33.198 -15.21 

Elman Network 0.023 16.3 0.0281 15.50 
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Figure 3.37 Comparison of outputs for different  methods versus desired output of plant I with noise 

 
3.3.6.2 Case 2: A first order nonlinear state model   

 

 In order to test the proposed method LSS-CSR with a nonlinear plant which is a 

nonlinear state space equation, the dynamics of the benchmark plant in literature is 

borrowed (Narendra, 1996) which is given in Equation (3.21). 
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 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. To construct the State ANN there 

are three inputs (two of them are white gaussian noise with the power of 1dBW 

which represents the state of the plant, the other is the input which is u(k)), 3 hidden 

layer neurons and 2 output neuron which is used for learning the states. The Output 

ANN has 3 input neurons which are states ( taken from the output of the State ANN) 

and the plant input u(k). Like the State ANN, the Output ANN has 3 hidden neurons. 

The Output ANN has 1 output neuron which represents the output of the plant. 
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 Noise performance is tested with a uniformly distributed noise between                

[-0.25 0.25]. A uniformly distributed noise is added with the plant input, and the 

system performance is tested. Below the Figure 3.38 shows the plant input with 

additive noise and without noise. 

 

 Plant input is chosen a chaotic input which is given in Equation (3.22).  

 

))(1)((4)1( mvmvmv −=+ ,   1.0)0( =v (chaotic)                        (3.22) 

 

 

 

 

Figure 3.38 Plant input versus plant input with additive noise 
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 Table 3.40 Noise performance results of plant II 

Method – 

Model 

nMSE SER (dB)  nMSE 

with noise 

SER (dB)  

with noise 

LSS-CSR 0.077 11.122 0.084 10.704 

Nonlinear ARX Nonconvergent Nonconvergent Nonconvergent Nonconvergent

Prediction Error 

Method  
0.141 8.48 0.161 7.91 

Subspace Method  0.180 7.44 0.196 7.070 

Wiener Model 0.097 10.11 0.104 9.80 

Hammerstein  

Model 
0.69 1.58 33.022 -15.188 

Hammerstein-

Wiener Model 
0.53 2.75 141.778 -21.51 

Nonlinear 

ARMAX 
Nonconvergent Nonconvergent Nonconvergent Nonconvergent

Elman Network 0.1004 9.98 0.1043 9.81 
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Figure 3.39 Comparison of outputs for different  methods versus desired output of  plant II with noise 

 

 

 3.3.6.3 Case 3: A third order nonlinear difference equation model 

 

 In order to test the proposed method LSS-CSR, the dynamics of the nonlinear         

benchmark plant in literature is borrowed (Uykan  & others, 2000)  which is shown 

in Equation (3.23). This plant is more complicated than the plant given with the 

Equation (3.21) since this model has more dynamics in the state equation.  
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 The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. For constructing the State ANN 

there are three inputs (two of them are white gaussian noise with the power of 1dBW 

representing the state of the plant, the other is the input which is u(k)), 3 hidden layer 
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neurons and 2 output neuron which are used for learning the states. The Output ANN 

has 3 input neurons, two of them are coming from the State ANN output and the 

other is the plant input u(k). Like the State ANN, the Output ANN has 3 hidden 

neurons. 

 

 Noise performance is tested with a uniformly distributed noise between [-0.40 

0.40]. A uniformly distributed noise is added to the plant input which is a sinusoidal 

input sin(k) where k is from 0 to 70 and the system performance is tested. Below the 

figure shows the plant input with additive noise and without noise. 

 

 

 

 
Figure 3.40 Plant input versus plant input with additive noise 
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 Table 3.41 Noise performance results of plant III 

 

 

Method – Model  nMSE 

  

SER (dB)  nMSE 

with noise 

SER (dB)  

with noise 

LSS-CSR 0.156 8.110 0.164 7.84 

Nonlinear ARX 0.37 4.30 0.336 4.73 

Prediction Error 

Method  

1.51 -1.81 2.214 -3.45 

Subspace Method  1.181 -0.70 1.223 -0.87 

Wiener Model 0.204 6.89 0.235 6.27 

Hammerstein  

Model 

0.951 0.217 2.77 -4.42 

Hammerstein-

Wiener Model 

0.286 5.43 0.71 1.44 

Nonlinear ARMAX 0.79 1.012 0.823 0.842 

Elman Network 0.152 8.18 0.235 6.287 
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Figure 3.41 Comparison of outputs for different methods versus desired output of  plant III  with noise 

 

 3.3.6.4 Case 4: A chaotic system (Forced Duffing Oscillator) 

 

 In order to test the proposed method LSS-CSR under noise with a chaotic plant, 

the modified dynamics of the chaotic benchmark plant in the literature is borrowed 

which is shown in Equation 3.24. We can also write this equation with two state 

equations in Equation 3.25. This is chosen in order to test the performance of the 

proposed method with a chaotic plant. In cases I,II and III nonlinear and linear plants 

were tested with chaotic inputs. Forced Duffing oscillator were chosen as a chaotic 

plant because of its forcing input, since the proposed method needs input output data 

of the plant which is to be identified. Forced duffing oscillator states and the output 

are calculated under the initial conditions x1(0)=3 and x2(0)=4.  

 
304.0)cos(6.7 xxtx −−= &&&                                         (3.24)                        
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  The State ANN and the Output ANN are constucted with a nonlinear type of 

neural network which is a multilayer perceptron. For constructing the State ANN 

there are three inputs (two of them are the states of a henon system and a lorenz 

system, the other is the input which is u(k)), 3 hidden layer neurons and 2 output 

neuron which are used for learning the states. The Output ANN has also 3 input 

neurons, two are coming from the State ANN output and the other is the plant input 

u(k). Like the State ANN, the Output ANN has 3 hidden neurons. Also the Output 

ANN has 1 output neuron for learning the output. In order to train the State ANN 

used modified Lorenz system is given in Equation (3.26) (Lorenz, 1963; Cuomo & 

Oppenheim, 1993). 
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with the parameters σ, r, b, and initial conditions x1(0), x2(0), and x3(0) are 10, 56.6, 

5.02, 1, 0, and 1, respectively. 

 

 In order to train the State ANN, the following modified Henon system (Dick & 

Kandel, 2005) is used.  

 

1)1(3.0)(4.1)1( 2 +−+=+ kykyky                                    (3.27) 
  
The phase portrait of the Henon system in Equation (3.27) is given under the initial 

conditions y(-1)=0.5 and y(0)=0.5. 

 

 Noise performance is tested with a uniformly distributed noise between [-2 2]. A 

uniformly distributed noise is added with the plant input which is a sinusoidal input 
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sin(k) where k is from 0 to 70 and the system performance is tested. Figure 3.42 

shows the plant input with additive noise and without noise. 

 

 

 

 

 

 
Figure 3.42 Plant input versus plant input with additive noise 
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Table 3.42 Noise performance results of plant IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method – Model  nMSE

  

SER (dB) nMSE 

with noise

SER (dB)  

with noise 

LSS-CSR 0.0118 19.288 0.0145 18.338 

Nonlinear ARX 0.0688 11.62 0.0688 11.62 

Prediction Error Method  2.541 -4.05 2.781 -4.44 

Subspace Method  1.013 -0.056 1.017 -0.072 

Wiener Model 0.151 8.204 0.153 8.153 

Hammerstein  Model 0.167 7.75 0.5276 2.776 

Hammerstein-Wiener Model 0.295 5.293 47.729 -16.78 

Nonlinear ARMAX 0.069 11.56 0.07 11.456 

Elman Network 0.0335 14.750 0.0356 14.48 
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Figure 3.43  Comparison of outputs for different  methods versus desired output of plant IV with noise 
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CHAPTER FOUR 

LEARNING STATE SPACE WITH CHAOTIC STATE OBSERVER 

 

 Chapter 4 presents the identification method named as Learning State Space with 

Chaotic State Observer (LSS-CSO). LSS-CSO is designed to construct the state 

equation of the system based on input output data. This method employs a state 

observer in addition to exploiting chaotic signals and white Gaussian noise in the 

training of state equations. LSS-CSO employs three artificial neural networks which 

are designed for observing the states and estimating the output. Four benchmark 

plants (one is linear the other is chaotic and the other two are nonlinear) are used for 

testing the performance of the method. The method is used to identify the linear and 

nonlinear plants with different input types; the chaotic one which is forced duffing 

equation uses the input which is forcing the system. Four different inputs are applied 

to linear and nonlinear plants which are step, chaotic and sinoisoidal with two 

different frequencies. The method is also tested with different initial conditions for 

the benchmark plants. In all cases signal to error ratio and normalized mean square 

error are calculated for both evaluating training and test performances of the 

identification method. The proposed method is also compared with the benchmark 

identification methods, Nonlinear ARX, Nonlinear ARMAX, Hammerstein, Wiener, 

Hammerstein-Wiener, Subspace, Prediction Error Method and Elman Network. 

Noise performance of the proposed method is evaluated at the last stage and its 

performance is also compared with the benchmark methods stated above. 
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4.1 Learning State Space with Chaotic State Observer  

 

∆
kx)

 
Figure 4.1 Learning State Space with Chaotic State Observer Block Diagram 

 

 The proposed method named LSS-CSO works as follows; firstly assign xk as 

white gaussian noise (if the black-box system to be identified is chaotic then assign   

xk’s as a known chaotic systems states). Then with the known input uk and known 

output yk  train the Output ANN and Observer ANN as an Auto association network 

to learn the states xk’s. Use Observer ANN output to generate kx̂ ’s. At the last stage 

use kx̂ ’s, xk+1’s, and uk training set to design State ANN 

 

• Train Output ANN + Observer ANN together as an autoassociation network. 

Then hold this couple fixed. 

• Now use uk, yk to generate kx̂ ’s. 

• Use uk, xk, kx̂  training set to design state ANN. 
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∆kx)

 
Figure 4.2 Learning State Space with Chaotic State Observer Method Structure 

 

The State ANN architecture is taken like in the LSS-CSR method which is having 

3 input neurons, one for the system input and two others for the current value of 2 

state variables, and to have 2 output neurons each of which represents the next value 

of one of 2 state variables. And also the Output ANN is also taken same with the 

LSS-CSR method which is having 3 input neurons again one for the system input 

and two others for the current value of 2 state variables, and it has a single output 

neuron representing the system output. The observer ANN of the LSS-CSO method 

has 2 input neurons, one for the system input and the other for the system output and 

2 output neurons representing the current values of the state variables. 3 hidden 

neurons are observed to be sufficient for all of the state, observer and output ANNs 

and so the identification results are obtained for 3 hidden neuron ANNs in all 

experiments. All ANNs are trained with the gradient descent type back propagation 

with the momentum term 0.9 and with a constant learning 0.05 for tansig (i.e. the 

hyperbolic tangent sigmoid) activation function in the input and hidden layers, linear 

transfer function in the output layer. 
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4.2 Simulation Results of the Proposed Method LSS-CSO 

 

4.2.1. Test I 

 

 In order to test the proposed method LSS-CSO, the dynamics of the benchmark 

plant in the literature is borrowed (Narendra, 1996). 
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 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are estimated states, 1 of them is the input 

which is v(k)), 3 hidden layer neurons and 2 output neurons which are used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neurons which are the estimates of the states. The Output ANN 

has 3 input neurons which are states (2 states) and the plant I input v(k), has 3 

hidden neurons and 1 output neuron which represents the system output. The 

method is tested with the structure above and with 4 different types of  input (v(k)) 

cases listed in Table 4.1. 

Table 4.1 Inputs used for testing method LSS-CSO with  plant in Equation (4.1) 

Input I v(k)=step input 

Input II v(k) = sin(k) 

Input III v(k)= sin(20k) 

Input IV v(k+1)=4v(k)(1-v(k))  ,  v(0)=0.1 (Chaotic input) 

 . 

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 
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divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The both initial conditions x1(0), x2(0), are also fixed to 

constant values as 0.5.  

 

Figure 4.3 LSS-CSO method output versus desired output for step input with plant I 

 
Figure 4.4 LSS-CSO method output versus desired output for sin(k) input with plant I  
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Figure 4.5 LSS-CSO method output versus desired output for sin(20k) input with plant I 

 

 

 

 

 

Figure 4.6 LSS-CSO method  output versus desired output for chaotic input with plant I 
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Table 4.2 Performance of the proposed method LSS-CSO with Plant I 

 

 
Table 4.3 Performance of Hammerstein model with Plant I 

 

 

 

 

 

 

 

 

 
Table 4.4 Performance of Wiener model with Plant I 

 

 

 

 

 

 

 

 

 

 

LSS-CSO 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

step 0.0449 14.328 15.003 15.746 0.0380 13.015 14.197 15.0170 

Sin(k)  0.0550 13.405 14.218 15.466 0.0581 11.206 12.444 13.821 

Sin(20k) 0.0299 15.607 16.303 17.108 0.0330 14.600 15.202 16.185 

Chaotic 

input 

0.0291 16.405 16.904 17.877 0.0562 12.404 13.0258 14.006 

 

 

 

 

 

Hammerstein  

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.0011 27.293 29.7 31.245 0.0022 25.0021 26.64 28.109 

Sin(k)  0.015 16.934 18.3 19.993 0.033 13.992 14.8 16.043 

Sin(20k) 0.1 9.345 9.85 10.450 2.78 -5.483 -4.43 -3.453 

Chaotic 

Input 

0.003 22.988 24.8 26.030 0.016 16.833 17.8 18.2042 

 

 

 

 

 

Wiener 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 5*10-9 79.893 81.3 83.3329 0.0015 27.118 28.3 29.004 

Sin(k)  0.023 15.893 16.2 16.554 0.033 14.493 14.7 14.995 

Sin(20k) 0.07 10.942 11.3 11.539 0.13 8.2839 8.6 8.9983 

Chaotic 

Input 

0.0046 22.0453 23.35 24.593 3.66 -7.773 -5.64 -3.2958 
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 Table 4.5 Performance of Hammerstein-Wiener model with Plant I 

 

 

 
Table 4.6 Performance of  Elman network with Plant I 

 
Table 4.7 Performance of nonlinear ARX model with Plant I 

 

 

 

 

 

 

Hammerstein–Wiener 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 8*10-9 78.984 80.8 82.298 0.0014 27.048 28.4 29.857 

Sin(k)  0.011 18.4893 19.44 20.002 0.035 13.984 14.58 14.779 

Sin(20k) 0.077 10.748 11.11 11.586 0.34 3.860 4.58 4.447 

Chaotic 

Input 

0.008 20.116 20.9 21.796 0.014 17.7745 18.54 19.0238 

 

 

 

 

 

ELMAN 

Network 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.02 15.6013 16.92 22.85 0.024 14.640 16.21 17.1134 

Sin(k)  0.01 16.284 17.7 19.65 0.02 15.736 16.8 18.27 

Sin(20k) 0.019 16.458 17.01 19.004 0.023 14.985 16.3 17.697 

Chaotic 

Input 

0.0418 10.151 13.79 15.8429 0.044 4.8977 13.58 15.185 

 

 

 

 

 

Nonlinear 

ARX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Sin(k)  0.046 12.744 13.31 13.698 Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Sin(20k) 0.09 9.904 10.4 10.842 0.177 7.220 7.5 7.702 

Chaotic 

Input 

0.0234 15.839 16.31 16.696 0.057 11.995 12.39 12.893 
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Table 4.8 Performance of nonlinear ARMAX model with Plant I 

 

Table 4.9 Performance of prediction error method with Plant I 
 

 
 
Table 4.10 Performance of subspace method with Plant I 

 

 

 

 

 

 

 

 

Nonlinear 

ARMAX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB)  

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(k)  Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(20k) 25.6 -15.694 -14.1 -13.685 32.34 -15.743 -15.1 -14.802 

Chaotic 

Input 

2*10-7 62.034 66.3 68.201 Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

 

 

 

 

 

Prediction Error 

Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 4.10-5 41.204 43.8 44.403 0.002 26.103 26.9 27.336 

Sin(k)  0.88 0.301 0.53 0.687 1.24 -1.112 -0.9 -0.791 

Sin(20k) 0.84 0.592 0.72 0.884 1.33 -1.559 -1.23 -1.172 

Chaotic 

Input 

0.02 16.405 17 17.503 0.022 15.958 16.5 16.794 

 

 

 

 

 

Subspace Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 2.6*10-6 52.203 55.7 57.804 0.003 24.495 25.25 25.796 

Sin(k)  0.83 0.613 0.8 0.934 0.87 0.419 0.59 0.793 

Sin(20k) 0.58 1.984 2.31 2.652 1.022 -0.113 -0.095 0.091 

Chaotic 

Input 

0.019 16.849 17.22 17.558 0.045 12.994 13.5 13.894 
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Figure 4.7 Comparison of outputs for different methods versus  desired output  for sin(20k) with 

plant I 

 

4.2.2 Test II 

 

 In order to test the proposed method  LSS-CSO, the dynamics of the benchmark 

plant in literature is borrowed (Narendra, 1996).  
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 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are the estimated states, 1 of them is the input 

which is u(k)), 3 hidden layer neurons and 2 output neuron which are used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neuron which are estimates of the states. The Output ANN has 

3 input neurons which are the states and the plant input u(k), has 3 hidden neurons 
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and 1 output neuron which represents the system output. The method is tested with 

the structure above and with 4 different types of  input (u(k)) cases listed in Table 

4.11. 

Table 4.11 Inputs used for testing method LSS-CSO with  plant II in Equation (4.2) 

Input I u(k)=step input 

Input II u(k) = sin(k) 

Input III u(k)= sin(20k) 

Input IV u(k+1)=4u(k)(1-u(k))  ,  u(0)=0.1 (Chaotic input) 

  

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 

divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The initial condition x(0) is fixed to a constant value 

0.5.  

 

Figure 4.8 LSS-CSO method output versus desired output for step input with plant II 
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Figure 4.9 LSS-CSO method  output versus desired output  for sin(k) input with plant II 

 

 
Figure 4.10 LSS-CSO method  output versus desired output for sin(20k) input with plant II 
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Figure 4.11 LSS-CSO method output versus desired output for chaotic input  with plant II 

 
 
 
 
Table 4.12 Performance of the proposed method LSS-CSO with Plant II 
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LSS-CSO 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

step 0.078 12.442 12.646 12.905 0.068 11.022 11.638 11.910 

Sin(k)  0.091 11.682 11.944 12.481 0.094 10.152 10.225 10.496 

Sin(20k) 0.085 12.104 12.380 12.682 0.115 9.118 9.478 9.904 

Chaotic 
input 
 

0.070 12.705 13.188 13.506 0.086 10.275 10.609 10.974 
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Table 4.13  Performance of Hammerstein model with Plant II 

 

 

 

 

 

 

 

 

 
Table 4.14 Performance of Wiener model with Plant II 

 

 

 

 

 

 

 

 

 
 

Table 4.15 Performance of Hammerstein-Wiener model with Plant II 

 

 

 

 

 

 

 

 

Hammerstein 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.088 10.0221 10.54 10.774 0.105 9.0903 9.78 10.001 

Sin(k)  0.52 2.519 2.82 2.9957 1.24 -2.73 -0.94 -0.052 

Sin(20k) 0.06 11.873 12.14 12.583 0.15 7.757 8.26 8.403 

Chaotic 

Input 

0.08 10.589 10.84 10.9086 0.69 1.322 1.58 1.7128 

 

 

 

 

 

Wiener 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.063 11.790 12.00 12.205 0.084 10.396 10.75 10.884 

Sin(k)  0.038 13.956 14.18 14.446 0.208 6.665 6.81 6.942 

Sin(20k) 0.064 11.674 11.9 12.034 0.122 8.854 9.13 9.438 

Chaotic 

Input 

0.054 12.283 12.64 12.805 0.097 9.850 10.11 10.426 

 

 

 

 

 

Hammerstein–Wiener 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.073 10.994 11.33 11.559 0.079 10.744 11.02 11.259 

Sin(k)  0.057 11.773 12.4 12.694 0.17 7.573 7.70 7.902 

Sin(20k) 0.072 10.954 11.4 11.778 0.115 8.785 9.39 9.505 

Chaotic 

Input 

0.055 11.998 12.59 12.874 0.53 1.992 2.75 2.995 
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Table 4.16 Performance of  Elman network with Plant II 

 

 

 

 

 

 

 

 

 

Table 4.17 Performance of nonlinear ARX model with Plant II 

 

Table 4.18 Performance of nonlinear ARMAX model with Plant II 

 

 

 

 

 

 

 

 

ELMAN 

Network 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.088 10.2265 10.55 10.971 0.091 10.002 10.42 10.769 

Sin(k)  0.1026 9.521 9.888 9.9555 0.1058 9.3862 9.6453 9.8197 

Sin(20k) 0.1030 9.623 9.86 10.1693 0.1232 8.7340 9.0928 9.4004 

Chaotic 

Input 

0.084 10.362 10.76 11.0676 0.1004 9.752 9.98 10.3296 

 

 

 

 

 

Nonlinear 

ARX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE (test) SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(k)  Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(20k) 7.7*103 -42.349 -38.89 -35.340 Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Chaotic 

Input 

Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

 

 

 

 

 

Nonlinear 

ARMAX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(k)  11.65 -11.129 -10.66 -9.902 Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Sin(20k) Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent

Chaotic 

Input 

Non 
Convergent 

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Non 
Convergent
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Table 4.19 Performance of prediction error method with Plant II 

 

 
Table 4.20 Performance of subspace method with Plant II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction Error 

Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.082 9.964 10.84 10.993 0.101 9.504 9.94 10.023 

Sin(k)  0.74 1.112 1.32 1.432 2.09 -4.032 -3.2 -2.893 

Sin(20k) 1.028 -0.304 -0.12 0.003 1.18 -1.114 -0.74 -0.504 

Chaotic 

Input 

0.102 9.603 9.90 10.005 0.141 7.920 8.48 8.7732 

 

 

 

 

 

Subspace 

Method 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.081 10.703 10.9 11.003 0.113 8.945 9.46 9.603 

Sin(k)  0.77 0.794 1.115 1.203 1.118 -0.505 -0.48 -0.385 

Sin(20k) 0.95 0.159 0.203 0.293 1.004 -0.100 -0.018 0.030 

Chaotic 

Input 

0.075 10.403 11.23 11.584 0.18 6.892 7.44 7.771 
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Figure 4.12 Comparison of outputs for different methods versus desired output for chaotic input with 

plant II 

 

4.2.3 Test III 

 

 In order to test the proposed method LSS-CSO with a more complicated 

nonlinear plant, the dynamics of the benchmark modified plant in literature is 

borrowed (Uykan & others,2000) . 

  

 Four different inputs are applied to the plant III which are step, chaotic and 

sinusoidal signals with two different frequencies. For the step and chaotic inputs the 

Equation (4.3) is used, but for sinusoidal inputs Equation (4.4) is used to provide 

stability. 
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              (4.4) 

  

 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are the estimates of states, 1 of them is the 

input which is u(k)), 3 hidden layer neurons and 2 output neuron which is used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neuron which are the estimates of states. The Output ANN has 

3 input neurons which of two are the states and the plant input u(k), has 3 hidden 

neurons and 1 output neuron which represents the system output.  

  

 The method is tested with the structure above and with 4 different types of input 

(u(k)) cases  listed in Table 4.21. 

 

Table 4.21 Inputs used for testing method LSS-CSO with the plant III 

Input I u(k)=step input 

Input II u(k) = sin(k) 

Input III u(k)= sin(20k) 

Input IV u(k+1)=4u(k)(1-u(k))  ,  u(0)=0.1 (Chaotic input) 

 . 

 

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 

divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The initial condition x(-2), x(-1), and x(0) are fixed to a 

constant values 1, 1.5, and 2 respectively.  
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Figure 4.13 LSS-CSO method output versus desired output for step input with plant III 

 

 
 

 

Figure 4.14 LSS-CSO method output versus desired output  for sin(k) input with plant III 
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Figure 4.15 LSS-CSO method output versus desired output for sin(20k) input with plant III 

 
 

 

Figure 4.16 LSS-CSO method output versus desired output for chaotic input with plant III 
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Table 4.22 Performance of the proposed method LSS-CSO with Plant III 

 

 

 

 

 

 

 

 

 
Table 4.23  Performance of Hammerstein model with Plant III 

 

 

 

 

 

 

 

 

 
Table 4.24 Performance of Wiener model with Plant III 

 

 

 

 

 

 

 

 

 

 

 

 

LSS-CSO 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

step 0.0265 16.514 17.202 17.609 0.0364 14.128 14.301 14.725 

Sin(k)  0.148 9.348 9.917 10.168 0.220 8.027 8.213 8.526 

Sin(20k),   0.166 9.194 9.402 9.824 0.187 8.319 8.971 9.284 

Chaotic 
input 
 

0.0762 12.215 12.718 12.993 0.100 9.875 10.073 10.256 

 

 

 

 

 

Hammerstein 

 

 

 

 

 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) (test) 

(Max) 

Step 0.0097 19.493 20.16 20.592 0.029 14.993 15.36 15.704 

Sin(k)  0.112 8.994 9.49 9.743 0.951 0.003 0.217 0.702 

Sin(20k) 0.038 13.895 14.11 14.443 0.853 -0.034 0.69 1.008 

Chaotic 

Input 

0.047 12.904 13.28 13.603 0.098 9.856 10.08 10.395 

 

 

 

 

 

Wiener 

 
 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.004 22.9403 24.35 25.503 0.032 14.553 14.92 15.254 

Sin(k)  0.078 10.873 11.03 11.110 0.204 6.201 6.89 6.970 

Sin(20k) 0.066 11.593 11.800 11.990 0.659 1.504 1.809 2.002 

Chaotic 

Input 

0.0351 13.984 14.54 14.785 0.097 9.795 10.13 10.376 
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Table 4.25  Performance of Hammerstein-Wiener model with Plant III 

 
Table 4.26 Performance of  Elman network with Plant III 

 
Table 4.27 Performance of nonlinear ARX model with Plant III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hammerstein–Wiener 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.007 20.693 21.52 22.012 0.026 15.405 15.85 15.996 

Sin(k)  0.016 17.302 17.89 18.003 0.286 5.274 5.43 5.596 

Sin(20k) 0.024 15.785 16.19 16.394 0.62 1.806 2.05 2.226 

Chaotic 

Input 

0.032 14.468 14.88 15.067 0.103 9.572 9.83 10.043 

 

 

 

 

 

ELMAN 

Network 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.025 15.643 16.05 17.0735 0.042 13.483 13.83 14.5639 

Sin(k)  0.105 7.3596 9.79 12.385 0.152 5.9402 8.18 10.362 

Sin(20k) 0.224 6.0054 6.501 7.0129 0.272 5.236 5.64 5.952 

Chaotic 

Input 

0.08 10.102 10.99 11.8677 0.1028 9.473 9.8791 10.6933 

 

 

 

 

 

Nonlinear 

ARX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.01 19.784 19.95 20.506 Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Sin(k)  0.22 6.382 6.55 6.770 0.37 3.336 4.30 4.508 

Sin(20k) 0.096 9.784 10.15 10.384 Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 

Chaotic 

Input 

0.137 8.404 8.63 8.732 Non 
Convergent

Non 
Convergent

Non 
Convergent 

Non 
Convergent 
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Table 4.28 Performance of nonlinear ARMAX model with Plant III 

 

 

 

 

 

 

 

 

 
Table 4.29 Performance of prediction error method with Plant III 

 
Table 4.30 Performance of subspace method with Plant III 

 

 

 

 

 

 

 

 

Nonlinear 

ARMAX 

INPUT  nMSE 

(training) 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.01 19.094 19.95 20.498 Non 

Convergent

Non 

Convergent

Non 

Convergent 

Non 

Convergent

Sin(k)  0.071 10.890 11.44 11.774 0.79 0.403 1.012 1.205 

Sin(20k) 2.032 -3.645 -3.08 -2.403 2.083 -3.676 -3.18 -2.806 

Chaotic 

Input 

8.76 -10.003 -9.43 -8.884 10.36 -10.543 -10.15 -9.709 

 

 

 

 

 

Prediction Error 

Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.01 -19.504 19.98 20.302 0.018 16.985 17.23 17.406 

Sin(k)  0.49 2.589 3.07 3.453 1.51 -1.903 -1.81 -0.040 

Sin(20k) 0.949 0.002 0.22 0.303 2.26 -3.903 -3.54 -2.705 

Chaotic 

Input 

0.088 9.905 10.52 10.813 0.105 9.604 9.76 9.895 

 

 

 

 

 

Subspace Method 

INPUT  nMSE 

(training)

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER (dB) 

(test) 

(Min) 

SER (dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

Step 0.017 17.306 17.69 18.003 0.022 15.903 16.5 16.781 

Sin(k)  0.63 1.403 1.94 2.004 1.181 -1.023 -0.70 -0.068 

Sin(20k) 0.91 0.302 0.40 0.443 1.18 -1.059 -0.72 -0.174 

Chaotic 

Input 

0.07 10.903 11.51 11.604 0.365 3.958 4.36 4.980 
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Figure 4.17 Comparison of outputs   for different   methods versus desired output for sin(k) with 

plant III 

4.2.4 Test IV  

 

 In order to test the proposed method LSS-CSO, the modified dynamics of the 

chaotic benchmark plant in literature is borrowed which is shown in Equation (4.6). 

This equation can also be written with two state equations in Equation (4.7). This is 

chosen in order to test the performance of the proposed method LSS-CSO with a 

chaotic plant. In tests I, II and III nonlinear and linear plants were tested with 

chaotic inputs. Forced Duffing oscillator were chosen as a chaotic plant because of 

its forcing input, since the proposed method needs input output data of the plant 

which is to be identified. Forced duffing oscillator ran under the initial conditions in 

Equation (4.5). 

 

x1(0)=3 and x2(0)=4                                                   (4.5) 
304.0)cos(6.7 xxtx −−= &&&                                         (4.6)  
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                                     (4.7)    

 

 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are the estimates of states, 1 of them is the 

input which is u(k)), 3 hidden layer neurons and 2 output neuron which are used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neuron which are the states. The Output ANN has 3 input 

neurons which are the states and the plant input u(k), has 3 hidden neurons and 1 

output neuron which represents the system output. In order to train the Output ANN 

used modified Lorenz system is given in Equation (4.8) (Lorenz, 1963 ,Cuomo & 

Oppenheim, 1993). 

  

    

3213

31212

121

5
20

)(

bxxxx
xxxrxx

xxx

−=
−−=

−=

&

&

& σ
                                       (4.8)                         

 

with the parameters σ, r, b, and initial conditions x1(0), x2(0), and x3(0) are 10, 56.6, 

5.02, 1, 0, and 1, respectively. 

 

 In order to train the State ANN used modified henon system is given in Equation 

(4.9) (Dick & Kandel; 2005). 

 

1)1(3.0)(4.1)1( 2 +−+=+ kykyky                                   (4.9) 
 

The phase portrait of the henon system in Equation (4.9) is given in Figure 4.38 

under the initial conditions y(-1)=0.5 and y(0)=0.5.  Train and test performances of 

the proposed method and the benchmark methods taken from the literature are given 

in Table 4.31.  
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Figure 4.18 Comparison of outputs for different methods versus  desired output with plant IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 50 100 150 200 250 300

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Forced Duffing Oscillator LSS-CSR Method and LSS-CSO Method versus Hammerstein and Elman Network

 

 

LSS-CSR
Desired Output
Hammerstein
Elman Network
LSS-CSO



 

107 
 

Table 4.31 Comparison of train and test performances of the proposed method and the benchmark 
methods 

 

4.2.5 Performance of the proposed method LSS-CSO with different initial 

conditions 

 

 4.2.5.1 Test a  

 

 In order to test the proposed method LSS-CSO to different initial conditions; the 

dynamics of the benchmark plant in literature is borrowed (Narendra, 1996) given in 

Equation (4.10). 

 

)()()(
))(1()(1.0)(5.0)1(

)(5.0)1(

21

212

21

kxkxky
kvkxkxkx

kxkx

+=
+++=+

=+
                    (4.10) 

Method - Model  nMSE 

training 

SER (dB) 

(training) 

(Min) 

SER (dB) 

(training) 

(Mean) 

SER (dB) 

(training) 

(Max) 

nMSE 

(test) 

SER 

(dB) 

(test) 

(Min) 

SER 

(dB) 

(test) 

(Mean) 

SER (dB) 

(test) 

(Max) 

LSS-CSO 0.0092 19.993 20.305 21.412 0.010 19.673 19.971 20.552 

Nonlinear ARX 0.028 15.102 15.53 15.721 0.068811.403 11.62 11.832 

Prediction Error 

Method  

0.197 6.663 7.03 7.904 2.541 -4.589 -4.05 -3.453 

Subspace Method  0.749 0.432 1.25 1.698 1.013 -0.332 -0.056 0.102 

Wiener Model 0.029 14.895 15.40 15.793 0.151 7.773 8.204 8.502 

Hammerstein  

Model 

0.0548 12.093 12.61 12.856 0.167 7.551 7.75 7.896 

Hammerstein-

Wiener Model 

0.0275 15.398 15.604 15.873 0.295 4.706 5.293 5.554 

Nonlinear 

ARMAX 

0.039 13.794 14.092 14.443 0.069 11.394 11.56 11.707 

Elman Network 0.0320 14.607 14.9446 15.254 0.033514.392 14.750 14.967 
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 The plant input is a unit step input (u(k)) The benchmark plant is executed with 

different initial conditions. State ANN and Output ANN are trained with some 

possible values of initial conditions. For the plant above x(1) is varied between 0 

and 19.99 and the State ANN and Output ANN are trained with 70 different initial 

conditions. Then the method is tested with different initial conditions that are not 

placed in the training set.   

 

 The Figure 4.19 shows the identified and desired outputs which are the responses 

of x1(k)=5 and x2(k)=0.5. Mean Square error, normalized mean square error (nMSE) 

and signal to error ratio (SER) parameters are calculated for test data sets. 

 

 

  

 

Figure 4.19 Initial condition Test Result of Proposed Method LSS-CSO with Plant I 

       

 

 The performance parameters of the test point x1(k)=5 and x2(k)=0.5 which is 

shown in the Figure 4.19 are calculated and they are shown in Table 4.32 as follows; 
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Table 4.32 Initial condition Performance parameters of method LSS-CSO with Plant I 

SER (dB) 17.0138 

MSE 0.4160 

nMSE 0.0199 

 

 The performance of the system tested for various initial conditions, 100 different 

cases for train and test data are chosen and SER values are calculated the best worst 

and the mean are listed in Table 4.33. 

 

Table 4.33 Initial condition SER parameters of Method LSS-CSO with Plant I 

SER (worst) (dB) 16.788 

SER (mean)  (dB) 17.512 

SER (best)    (dB) 18.174 

 

 

 4.2.5.2 Test b 

 

 The proposed method LSS-CSO performance is tested with different initial 

conditions for a nonlinear plant which the dynamics of the benchmark plant in 

literature is borrowed (Narendra, 1996) and shown in Equation 4.11.  

 

[ ]
5.0)(025.0)(

))()(cos(1.0)())(sin(10)1(
+=

++=+
kxky

kukxkukxkx
                      (4.11) 

 

 The plant II  input is a sinusoidal input (sink) where k is from 0 to 70. The 

benchmark plant is executed with different initial conditions. State ANN and Output 

ANN are trained with some possible values of initial conditions. For the plant above 

x(0) is varied between 0 and 89.99 and the State ANN and Output ANN are trained 

with 70 different initial conditions. Then the method is tested with different initial 

conditions that are not placed in the training set.   
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 The Figure 4.20 shows the identified and desired outputs which are the responses 

of x1(k)=80. Mean Square error, normalized mean square error (nMSE) and signal to 

error ratio (SER) parameters are calculated for test data sets. 

 

 

 

Figure 4.20 Initial condition Test Result of Proposed Method LSS-CSO with Plant II 

 

 The performance parameters of the test point  x1(k)=80 which is shown in the 

Figure 4.20 are calculated and they are shown in Table 4.34 as follows. 

  

Table 4.34 Initial condition Performance parameters of Method LSS-CSO with Plant II 

SER (dB) 5.975 

MSE 0.100 

nMSE 0.255 

 

 The performance of the system tested for various initial conditions, 100 different 

cases for train and test data are chosen and SER values are calculated the best worst 

and the mean are listed in Table 4.35. 
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Table 4.35 Initial condition SER parameters of Method LSS-CSO with Plant II 

SER (worst) (dB) 5.669 

SER (mean)  (dB) 5.814 

SER (best)    (dB) 6.107 

 

 

 4.2.5.3 Test c 

 

 In order to test the proposed method LSS-CSO to different initial conditions; the 

dynamics of the benchmark plant in literature is borrowed (Uykan & others, 2000). 

 

1)()(
)2()1(1

)()1)2()(1()2()1()(6.9)1( 22

+=
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+−−−−−
=+

kxky
kxkx

kukxkukxkxkxkx                    (4.12) 

 

 To test the proposed model, the benchmark plant is executed with different initial 

conditions and with the step input u. Plant ANN and output ANN are trained with 

some possible values of initial conditions. For the benchmark plant above x1(k) is 

varied from 0 to 2.99. 
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Figure 4.21  Initial condition Test Result of Proposed Method LSS-CSO with Plant III 

 

 The above figure shows the identified and desired outputs which are the 

responses of x1(k)=1. Mean Square error, normalized mean square error (nMSE) and 

signal to error ratio (SER) parameters are calculated for test data sets and they are 

shown in Table 4.36 as follows; 

 

Table 4.36 Initial condition Performance parameters of method LSS-CSO with Plant III 

SER (dB) 20.872dB 

MSE 0.0165 

nMSE 0.0083 

 

 

 The performance of the system tested for various initial conditions, 100 different 

cases for train and test data are chosen and SER values are calculated the best worst 

and the mean are listed in Table 4.37. 
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Table 4.37 Initial condition SER parameters of Method LSS-CSO with Plant II 

SER (worst) (dB) 19.784dB 

SER (mean)  (dB) 20.772dB 

SER (best)    (dB) 21.496dB 

 

 

4.2.6 Noise Performance of the Proposed method LSS-CSO  

 

4.2.6.1 Case 1: A second order linear state model   

 

  In order to test the Proposed Method LSS-CSO, the dynamics of the 

benchmark plant in literature is borrowed (Narendra, 1996). 
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 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are estimates of the states, 1 of them is the 

input which is v(k)), 3 hidden layer neurons and 2 output neurons which are used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neurons which are states. The Output ANN has 3 input 

neurons which are states (2 states) and the plant input v(k), has 3 hidden neurons and 

1 output neuron which represents the system output.  

 

 Noise performance is tested with a uniformly distributed noise between                

[-0.40 0.40]. A uniformly distributed noise is added with the plant input, and the 

system performance is tested. Below the Figure 4.22 shows the plant input with 

additive noise and without noise. Plant I input is chosen a sinusoidal input which is a 

sinus sin(20k). 
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Figure 4.22 Plant input versus plant input with additive noise 

 

Table 4.38 Noise performance results of plant I 

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5

1

1.5

samples

in
pu

t

Plant Input versus Plant input with noise

 

 
plant input
plant input with noise

Method – Model  nMSE 

  

SER (dB) nMSE 

with noise 

SER (dB) 

with noise

LSS-CSO 0.0330 15.202 0.0333 14.796 

Nonlinear ARX 0.177 7.5 0.177 7.5 

Prediction Error 

Method  

1.33 -1.23 1.473 -1.68 

Subspace Method  1.022 -0.095 1.028 -0.122 

Wiener Model 0.130 8.6 0.159 7.98 

Hammerstein  Model 2.78 -4.430 58.45 -17.667 

Hammerstein-Wiener 

Model 

0.34 4.58 2.032 -3.08 

Nonlinear ARMAX 32.34 -15.1 33.198 -15.21 

Elman Network 0.023 16.3 0.0281 15.50 
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Figure 4.23 Comparison of outputs for different methods versus desired output of plant I with noise 

 

 

 4.2.6.2 Case 2: A first order nonlinear state model 

 

 In order to test the Proposed Method LSS-CSO, the dynamics of the benchmark 

plant in literature is borrowed (Narendra, 1996).  
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 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them is the estimates of states, 1 of them is the 

input which is v(k)), 3 hidden layer neurons and 2 output neuron which are used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 1 output neuron which is the state. The Output ANN has 3 input 
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neurons which are the states and the plant input v(k), has 3 hidden neurons and 1 

output neuron which represents the system output.  

  

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 

divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The initial condition x1(0) is fixed to a constant value 

0.5.  

 

 Noise performance is tested with a uniformly distributed noise between [-0.25 

0.25]. A uniformly distributed noise is added with the plant input, and the system 

performance is tested. Figure (4.24) shows the plant input with additive noise and 

without noise. Plant II input is chosen a chaotic input which is given in Equation 

(4.15). 

 

v(m+1)=4v(m)(1-v(m))  ,  v(0)=0.1 (Chaotic input)                      (4.15) 
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Figure 4.24 Plant input versus plant input with additive noise 

 

Table 4.39 Noise performance results of plant II 
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plant input
plant input with noise

Method – Model  nMSE 

  

SER (dB)  nMSE 

with noise 

SER (dB)  

with noise 

LSS-CSO 0.086 10.609 0.094 10.298 

Nonlinear ARX Nonconvergent Nonconvergent Nonconvergent Nonconvergent

Prediction Error 

Method  

0.141 8.48 0.161 7.91 

Subspace Method  0.180 7.44 0.196 7.070 

Wiener Model 0.097 10.11 0.104 9.80 

Hammerstein  Model 0.69 1.58 33.022 -15.188 

Hammerstein-Wiener 

Model 

0.53 2.75 141.778 -21.51 

Nonlinear ARMAX Nonconvergent Nonconvergent Nonconvergent Nonconvergent

Elman Network 0.1004 9.98 0.1043 9.81 
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Figure 4.25 Comparison of outputs for different methods versus desired output of plant II with noise 

 

 

 4.2.6.3 Case 3: A third order nonlinear difference equation model 

 

 In order to test the Proposed Method LSS-CSO, the dynamics of the benchmark 

plant in literature is borrowed (Uykan & ,2000). 
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 The State ANN, Observer ANN and the Output ANN is constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are the estimates of the state, 1 of them is the 

input which is u(k)), 3 hidden layer neurons and 2 output neurons which are used for 

learning the state. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neurons which is the state. The Output ANN has 3 input 
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neurons which are the states and the plant input u(k), has 3 hidden neurons and 1 

output neuron which represents the system output.  

  

 For all cases the method performance is tested with the mean square error (MSE) 

and, signal to error ratio (SER) parameters. The samples of data for inputs and 

outputs are 70. Training data samples are 48, and the other 22 of them are reserved 

for test. Normalized mean square error (nMSE) and signal to error ratio (SER) 

parameters are calculated for both training and test data sets. Mean square error is 

divided by the output signal power to calculate the normalized mean square error, in 

order to compare the values. The initial condition )0(1x  is fixed to a constant value 

0.5. 

 

 Noise performance is tested with a uniformly distributed noise between               

[-0.40 0.40]. A uniformly distributed noise is added with the plant input which is a 

sinusoidal input sin(k) where k is from 0 to 70 and the system performance is tested. 

Figure 4.26 shows the plant input with additive noise and without noise. 

 

 

 

Figure 4.26 Plant input versus plant input with additive noise 
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Table 4.40 Noise performance results of plant III 

 

Method – Model  nMSE 

  

SER (dB)  nMSE 

with noise 

SER (dB) 

with noise

LSS-CSO 0.220 8.213 0.196 7.102 

Nonlinear ARX 0.37 4.30 0.336 4.73 

Prediction Error 

Method  

1.51 -1.81 2.214 -3.45 

Subspace Method  1.181 -0.70 1.223 -0.87 

Wiener Model 0.204 6.89 0.235 6.27 

Hammerstein  Model 0.951 0.217 2.77 -4.42 

Hammerstein-

Wiener Model 

0.286 5.43 0.71 1.44 

Nonlinear ARMAX 0.79 1.012 0.823 0.842 

Elman Network 0.152 8.18 0.235 6.287 
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Figure 4.27 Comparison of outputs for different methods versus desired output of plant III with noise 

 

 4.2.6.4 Case 4: A chaotic system (Forced Duffing Oscillator) 

 

 In order to test the Proposed Method LSS-CSO under noise with a chaotic plant, 

the modified dynamics of the chaotic benchmark plant in the literature is borrowed 

which is shown in Equation (4.17). We can also write this equation with two state 

equations in Equation (4.18). This is chosen in order to test the performance of the 

proposed method LSS-CSO with a chaotic plant. In cases I, II, and III nonlinear and 

linear plants were tested with chaotic inputs. Forced Duffing oscillator were chosen 

as a chaotic plant because of its forcing input, since the proposed method needs 

input output data of the plant which is to be identified. Forced duffing oscillator 

states and the output are calculated under the initial conditions x1(0)=3 and x2(0)=4. 
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 The State ANN, Observer ANN and the Output ANN are constucted with a 

nonlinear type of neural network which is a multilayer perceptron. For the State 

ANN there are three inputs (2 of them are the estimates of the states, 1 of them is the 

input which is u(k)), 3 hidden layer neurons and 2 output neuron which are used for 

learning the states. The Observer ANN has 2 inputs (output and the input), 3 hidden 

neurons and 2 output neurons which are the states. The Output ANN has 3 input 

neurons which are the states and the plant input u(k), has 3 hidden neurons and 1 

output neuron which represents the system output. In order to train the Output ANN 

used modified lorenz system is given in Equation (4.19) (Lorenz, 1963; Cuomo & 

Oppenheim, 1993) 
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bxxxx
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&

&

& σ
                                (4.19)                         

  

with the parameters σ, r, b, and initial conditions x1(0), x2(0), and x3(0) are 10, 56.6, 

5.02, 1, 0, and 1, respectively. 

 

 In order to train the Output ANN used modified henon system is given in 

Equation (4.20) (Dick  & Kandel, 2005). 

1)1(3.0)(4.1)1( 2 +−+=+ kykyky                                    (4.20) 
  

The phase portrait of the henon system in Equation (4.20) is given under the 

initial conditions y(-1)=0.5 and y(0)=0.5. 

 

 Noise performance is tested with a uniformly distributed noise between                

[-2 2]. A uniformly distributed noise is added with the plant input which is a 

sinusoidal input sin(k) where k is from 0 to 70 and the system performance is tested. 

Figure (4.28) shows the plant input with additive noise and without noise. 
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Figure 4.28 Plant input versus plant input with additive noise 

 
Table 4.41 Noise performance results of plant IV 
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Plant Input with noise

Method – Model  nMSE 

  

SER (dB) nMSE 

with noise 

SER (dB)  

with noise 

LSS-CSO 0.010 19.971 0.0111 19.532 

Nonlinear ARX 0.0688 11.62 0.0688 11.62 

Prediction Error Method  2.541 -4.05 2.781 -4.44 

Subspace Method  1.013 -0.056 1.017 -0.072 

Wiener Model 0.151 8.204 0.153 8.153 

Hammerstein  Model 0.167 7.75 0.5276 2.776 

Hammerstein-Wiener Model 0.295 5.293 47.729 -16.78 

Nonlinear ARMAX 0.069 11.56 0.07 11.456 

Elman Network 0.0335 14.750 0.0356 14.48 
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Figure 4.29 Comparison of outputs for different methods versus desired output of plant IV with noise 
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CHAPTER FIVE 

ROBUST CHAOTIFICATION 

 

 Chapter 5 presents a method for robustification of a chaotic reference model 

based dynamical state feedback chaotification method which can be applied to any 

input-state linearizable (nonlinear) system including linear controllable types.  

 

 The developed robust chaotification method gives a broad chaotification area to 

the system which can change its parameters and get disturbance noise. A user 

friendly graphical user interface (GUI) is presented which is designed for all users to 

use this robust chaotification method. The GUI helps users to change the 

parameters; both controller parameters and plant parameters. Users can add 

additional noise to the plant and test whether the overall system is still in chaos. The 

maximum Lyapunov exponent and the phase portrait of the tested system is printed 

on the screen. If the tested system has a positive Lyapunov exponent (is in chaos) 

the bifurcation diagram is plotted in a cumulative way. 

 

 

5.1 Lorenz Type System and Current Result 

 

 Considering the Lorenz system defined in Equation  (5.1)  (Lorenz, 1963; Cuomo 

& Oppenheim, 1993) as the reference chaotic system. 
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Then, redefine the above Lorenz states x , y and z  as  
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and choosing the control input u  as 
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( ) 11111 +−− +−−++= nnnnn xxaxaxau σσL                 (5.3) 

 

 

The linear system given in Equation (5.1) is augmented to the following nonlinear 

system of (n+2) nd order. 
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With the above choice of the control input u, the last state equation of               

the system in Equation (5.1) becomes identical to the first Lorenz equation in 

Equation (5.2) under the change of variables in Equation (5.2). 

 

The chaotification scheme is proposed by (Şahin & Güzeliş, 2010) is given in 

Figure 5.1. Where, a part of the Lorenz system constitutes a dynamical controller 

together with the linear state feedbacks. 
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Figure 5.1 The Chaotification scheme (Şahin & Güzeliş, 2010) 

 

5.2 Chaotified DC Motor System by Lorenz Chaotic System 

 

An rf-310ta series DC motor which is easy to use and can be found easily with 

very low cost is used, so it is very easy to reproduce the experiments and observe 

how a robust chaotified DC motor runs. For simplicity, a first order simplified 

model is chosen for the permanent magnet DC motor: ubxax mm +−=&  where x  is 

the angular velocity of the motor, i.e. the rpm and u stands for the armature input 

voltage. The first order system parameters of the used rf-310ta series DC motor were 

identified as 2=ma  and 5600=mb  by measuring its response due to the step input. 

(Şahin, 2010) 

 

 
bzxyz

xzyrxy
ubxayxaxax mmmm

−=
−−=

+−=+−−−=

5
20

)(

&

&

& σσ
                  (5.5)  

 

 the control input is chosen as 
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5.3 Robust Chaotification of the System 

 

 

Figure 5.2 The chaotification of DC motor 

                                                

        

 In Figure 5.2 Lorenz chaotification process is obtained theoretically but indeed 

DC motor used is identified with a first order model and also the DC motor 

parameters will change during operation and will be effected from disturbances (e.g. 

noise, vibrations, thermal effects etc..). Since the control system is designed model 

dependent, change of plant (DC motor) parameters will change the system behavior. 

So the cascade block 
mb
1  and the feedback block ma−  will not be able to work well 

in a wide range, during the change of plant parameters. 

 

 Here, one may call this cascade block and feedback block as controller parameters 

and they should be chosen well for the chaotification of the overall system in a 

wider range so the chaotification scheme will run in a wider range of plant 

parameters. To achieve this we fixed the plant parameters in the model and changed 

the controller parameters. In every step the system is tested in chaos or not if it is in 

chaos it is marked. Chaos is tested with Lyapunov exponents with the program of 

Vasiliy Govorukhin (2004) given in Mathworks in Matlab Central. The algorithm 

employed in this m-file for determining Lyapunov exponents was proposed in 

(Wolf, Swift, Swinney, & Vastano, 1985). Then in Figure 5.3 the points, am =3.455 

and bm = 3300 are chosen as controller parameters which are the center of gravity of 

chaos points. After determining the controller parameters the system is operated 

again for searching a wider chaotification area. 
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 The chaotification area is increased with the correct choose of parameters and it is 

shown in Figure 5.4. 

 

 

Figure 5.3 Bifurcation diagram while changing controller parameters 
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Figure 5.4 Comparison of Bifurcation diagram with different controller parameters 

                                            

      

 Figure 5.5 shows the bifurcation diagram of the system for region of interest 

where the plant parameters can vary, the red part is obtained when ac=2 and 

bc=5600, the blue part is for ac=3.455, bc=3300 which are the parameters found for 

robust chaotification. 
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Figure 5.5 Comparison diagram of  Bifurcation diagram in the region of interest 

                                                                         

 The parameter robust chaotification scheme is also tested under noise to test the 

system from outer disturbances. A signal which has a constant mean and constant 

variance (both should be changed by user on GUI) is added to the plant as a noise to 

test the system under disturbance. The chaotification system and noise added 

parameter robust chaotification system is compared about chaotification ability and 

result is given in Figure 5.6. 
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Figure 5.6 Comparison diagram of  Bifurcation diagram with additive noise 

                                                                   

 

5.4 Graphical User Interface (GUI) and User Dependent Parameters 

          

 In this section a graphical user interface (GUI) is presented which is designed for 

all users to use this robust chaotification method user friendly. The GUI helps users 

to change the parameters; both controller parameters and plant parameters. Users 

can add additional noise to the plant and test whether the overall system is still in 

chaos. The maximum Lyapunov exponent and the phase portrait of the tested system 

is printed on the screen. If the tested system has a positive Lyapunov exponent (is in 

chaos) the bifurcation diagram is plotted in a cumulative way. 
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Figure 5.7 Graphical user interface of the robust chaotification method 

 

 Also the users can observe the spectrum of the overall system for the specified 

plant and controller parameters given by the user. The plant parameters vary during 

the operation and also the spectrum for the output of the system changes with the 

different choice of controller parameters. The proposed robust chaotification method 

provides a broad and powerful spectrum. The spectrum difference is shown in 

Figure 5.8 for the fixed plant parameters which are ap= 2.5 and bp =4500 with two 

different choice of controller parameters one of them is ac=2, bc=5600 and the other 

one which the proposed method gives us ac=3.455, bc=3300. 
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Figure 5.8 Spectrum with plant parameters ap= 2.5 and bp =4500 

 

 

 

Figure 5.9 Spectrum with plant parameters ap=1.5 and bp=4200 
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 The spectrum of the proposed robust chaotification method is also tested with an 

additive noise to the plant input an additive noise having a mean of 0 and standard 

deviation of 0.1 is added to the plant input and spectrum of the output is compared 

with the model which is designed with the controller parameters ac=2 and bc=5600. 

Figure 5.9 and Figure 5.10 show the spectrum difference between different choice of 

controller parameters, when the plant parameters are set to ap=1.5 and bp=4200 

which are different from the nominal operating point ap=2 and bp =5600.   

 

 

 

 

Figure 5.10 Spectrum with plant parameters ap=1.5 and bp=4200 with additive noise 
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CHAPTER SIX 

CONCLUSION 

 

 Two new system identification methods, constructing the nonlinear state space 

plant models with employing artificial neural networks based on input output data 

and a robust chaotification method are proposed in this thesis. 

 

   (LSS-CSR) method is a system identification method based on input output data. 

For the identification of a system (linear, nonlinear or chaotic) only needed data is 

the input and output of the system which is to be identified. The developed LSS-CSR 

method is designed to learn the nonlinear state space equation of the system with two 

artificial neural networks, one is for constructing the state equation the other is for 

constructing the output equation. The method uses white gaussian noise states for 

linear and nonlinear plants independent of the order. But if the plant to be identified 

is a chaotic system, then using chaotic states of well-known chaotic plants as 

candidate states is preferred to raise the performance. 

 

 (LSS-CSO) method is also a system identification method based on input output 

data. For the identification of a system (linear, nonlinear or chaotic) only needed data 

is the input and output of the system which is to be identified. The developed LSS-

CSO method is designed to learn the nonlinear state space equation of the system 

with three artificial neural networks, two of them are working as an auto association 

network which are output and observer networks. They both together try to observe 

the states. The third network is the state network which is used to construct the 

nonlinear state equation of the method. The method uses white gaussian noise states 

for linear and nonlinear plants independent of the order. But if the plant to be 

identified is a chaotic system then using chaotic states of well known chaotic plants 

as candidate states gives better performance. 

 

 Performance of both (LSS-CSR and LSS-CSO) methods are tested with four 

benchmark plants; one is a second order linear state model, one is a nonautonomous 

chaotic plant, the other two are nonlinear plants; first order nonlinear state model and 
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a third order nonlinear difference equation model. Except the chaotic one the other 

linear and nonlinear plants are driven with step, chaotic and sinusoidal inputs with 

two different frequencies. Nonautonomous chaotic one is driven with its forcing 

input. The performance of the methods are tested in training and test phases with the 

performance parameters signal to error ratio (SER) and normalized mean square 

error (nmse) under four benchmark plants given above. Also the performance of both 

methods are tested with the noise coming to the input of the plant. With the all 

possible initial states of the linear and nonlinear plants, LSS-CSR and LSS-CSO 

methods are trained and tested with a random initial state, then performances of both 

methods are given in the thesis. The performance results of both methods are 

compared with eachother and other well known models, which are Hammerstein, 

Wiener, Hammerstein-Wiener, Nonlinear ARX, Nonlinear ARMAX, State space 

Model with Prediction Error Method, State Space Model with Subspace Method and 

Elman Network. The architectures of the well known models are specified with 

having higher order nonlinearities for instance Hammerstein and Wiener models 

having 10 piecewise-linear nonlinearities in the input and output part. Hammerstein-

Wiener model having a total of 20 nonlinearities, and also Nonlinear ARX and 

Nonlinear ARMAX models having 10 sigmoid nonlinearities.    

 

 Both proposed methods can identify the benchmark plants in some cases clearly, 

in some cases generally but better than the other well known methods. The 

performance of the both proposed methods with the second order linear plant 

generally gives better training and test performances (LSS-CSR better than LSS-

CSO with 1-2dB difference) when compared with other well known methods. Only 

the Elman Network gave competitively near results with LSS-CSR method, the other 

models provide poor performances as an average with four inputs. Two methods also 

provided better results in training and test phases again with 1-2 dB better in LSS-

CSR method with two nonlinear plants which are first order nonlinear state model 

and a third order nonlinear difference equation model. With a first order nonlinear 

plant Nonlinear ARX and Nonlinear ARMAX models could not converge the plant, 

Subspace and Prediction Error methods provide very poor performances for 

sinusoidal inputs. The other well known models Hammerstein-Wiener family and 
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Elman Network gave lower performances in the average of all applied inputs. To the 

third order nonlinear difference equation both methods again were the best in 

comparison. Among other methods Elman was the first but can not reach LSS-CSR 

especially in sin20k input case. The others gave very poor performances, Nonlinear 

ARX and Nonlinear ARMAX could not converge to some input cases. Identification 

of the nonautonomous chaotic plant exhibits the performance of the proposed 

methods clearly where the other models could not settle the output of the plant. Since 

the plant to be identified is chaotic using chaotic states as candidate states boost the 

performance of the proposed methods. Adding noise to the inputs of the nonlinear, 

linear and chaotic plants did not effect the performance of the proposed methods, 

only 1 or less dB decreases shown, but with other methods in some cases drastic 

decreases in other well known methods is shown.  

 

 Linear and nonlinear plants ran with all possible states and input output pairs for 

different initial states are taken. Both methods are used to identify the plants with 

different initial states and tested with a random initial state that is not placed in the 

training set. LSS-CSR method again gave better performance than the LSS-CSO 

method but both methods can identify the systems generally.  

 

 The third contribution of the thesis which is a robust chaotification method is 

tested with a first order model of a DC motor. The proposed method shows the 

chaotic area of the system while changing the plant parameters. The method specifies 

the correct controller parameters to enlarge the chaotic area which is the bifurcation 

diagram of the system. With the correct choice of the controller parameters the 

system has a wider chaos area and the proposed model is also robust to the input 

noise. In the study a user friendly graphical user interface is also developed for the 

robust chaotification method. The user can change the controller and plant 

parameters of the system very easily, can add noise to the input of the system with 

specifiying the mean and standard deviation of the additive noise. The graphical user 

interface shows the maximum Lyapunov exponent of the system with and without 

noise, draw phase portraits of the system according to the specified inputs and 

specified noise parameters, can see the the bifurcation diagram of the system in a 
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cumulative way where the diagram marks the operating point if the Lyapunuov 

exponent of that point is a positive number. Users can also see the spectrum of the 

overall system for the operating points specified by the user. 
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