

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

VARIABLE NEIGHBORHOOD SEARCH BASED

ALGORITHMS FOR THE PARALLEL MACHINE

CAPACITATED LOTSIZING AND SCHEDULING

PROBLEM

by

Sel ÖZCAN

February, 2014

İZMİR

VARIABLE NEIGHBORHOOD SEARCH BASED

ALGORITHMS FOR THE PARALLEL MACHINE

CAPACITATED LOTSIZING AND SCHEDULING

PROBLEM

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of

Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Industrial Engineering, Industrial Engineering Program

by

Sel ÖZCAN

February, 2014

İZMİR

iii

ACKNOWLEDGEMENTS

First of all, I would like to express the deepest appreciation to my supervisor

Assoc. Prof. Şeyda A. TOPALOĞLU for her kind help and continuous support. I

also thank Assoc. Prof. M. Fatih TAŞGETİREN for his guidance and encouragement

on this study. Finally, I am very grateful to my family and friends, for their

continuous support and understanding during this challenging process. I also place

on record, my sense of gratitude to one and all who, directly or indirectly, have lent

their helping hand in this study.

Sel ÖZCAN

iv

VARIABLE NEIGHBORHOOD SEARCH BASED ALGORITHMS FOR THE

PARALLEL MACHINE CAPACITATED LOTSIZING AND SCHEDULING

PROBLEM

ABSTRACT

In this paper, the capacitated lot-sizing and scheduling problem on parallel

machines with eligibility constraints and sequence-dependent setup times and costs is

addressed. The aim of this study is to find a production plan that minimizes

production, setup and inventory holding costs while meeting the demands of

products for each period without delay for a given planning horizon. Since this

problem is NP-hard, various types of variable neighborhood search (VNS), variable

neighborhood descent (VND) and reduced variable neighborhood search (RVNS)

algorithms are used in order to analyse their performances on this problem. At first, a

problem specific initial solution method is presented, which satisfies the demand of

each period. In order to generate neighborhood solutions, three types of moves are

defined which are respectively, insert move, swap move, and fractional insert move..

To evaluate the effectiveness and efficiency of each solution approach, a

computational study is made using the benchmark problem instances which are taken

from the literature. The results indicate that VNS algorithm performs well on small

sized instances. The performance of VND approach is somehow similar when it is

compared with the existing solution techniques in literature, and the solution times

are relatively shorter. Additionally, although relatively high computation times, all

instances are improved with RVNS algorithm.

Keywords: Capacitated lot sizing and scheduling problem, parallel machines,

heuristics, variable neighborhood search, variable neighborhood descent, reduced

variable neighborhood search.

v

PARALEL MAKİNELERDE KAPASİTELİ PARTİ BÜYÜKLÜĞÜ

BELİRLEME VE ÇİZELGELEME PROBLEMİ İÇİN DEĞİŞKEN

KOMŞULUK ARAMA TABANLI YÖNTEMLER

ÖZ

Bu çalışmada, farklı yetkinliklere sahip paralel makinelerde sıra bağımlı ayar

zamanlı ve maliyetli, kapasiteli parti büyüklüğü belirleme ve çizelgeleme problemi

ele alınmıştır. Çalışmanın amacı, belirlenen zaman süresi için talebi eksiksiz

karşılayacak ve toplam üretim, ayar ve stok maliyetini en aza indirecek bir üretim

planı oluşturmaktır. Problem NP-zor olduğu için, Değişken Komşuluk Arama (DKA)

yöntemi ve onun türevleri olan Değişken Komşu İniş (DKİ) ve İndirgenmiş Değişken

Komşuluk Arama (İDKA) yöntemleri kullanılarak her bir yöntemin performansları

analiz edilmiştir. İlk başta, her periyodun talebini karşılamayı garanti eden, probleme

özgü bir başlangıç çözüm yöntemi geliştirilmiştir. Komşuluk çözümlerini oluşturmak

için, 3 farklı hareket tanımlanmıştır, bunlar sırasıyla, yerleştirme, ikili yer değiştirme

ve kısmi yerleştirmedir. Her bir çözüm yaklaşımının etkinliğini ve verimliliğini

değerlendirmek amacıyla, literatürdeki mevcut problemler kullanılarak analizler

yapılmıştır. Analizlerin sonucunda, Değişken Komşuluk Arama (DKA) yönteminin

küçük ölçekli problemlerde iyi sonuçlar verdiği görülmüştür. Değişken Komşu İniş

(DKİ) metodunun literatürdeki mevcut çözüm teknikleriyle benzer sonuçlar verdiği

saptanırken, İndirgenmiş Değişken Komşuluk Arama (İDKA) yönteminin ise yüksek

çözüm sürelerine rağmen tüm test edilen problemlerde literatürdeki sonuçların

hepsinden iyi sonuçlar bulduğu gözlemlenmiştir.

Anahtar Kelimeler: Kapasiteli parti büyüklüğü belirleme ve çizelgeleme problemi,

paralel makineler, sezgiseller, değişken komşuluk arama, değişken komşu iniş,

indirgenmiş değişken komşuluk arama.

vi

CONTENTS

 Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

CHAPTER ONE - INTRODUCTION ... 1

CHAPTER TWO - LITERATURE REVIEW .. 3

2.1 The Capacitated Lot Sizing Problem ... 5

2.2 Capacitated Lot Sizing Problem (CLSP) and Its Extensions 6

2.3 Solution Approaches in the Literature ... 10

2.4 Evaluation of a Solution in Lot Sizing Problems ... 11

2.5 Definition of the Neighborhood in Lot Sizing Problems 12

CHAPTER THREE - PROBLEM DEFINITION ... 13

3.1 Mathematical Formulation of the Parallel Machine Capacitated Lotsizing and

Scheduling Problem with Sequence-dependent Setups (CLSD-PM) 14

CHAPTER FOUR - VARIABLE NEIGHBORHOOD SEARCH 17

4.1 Basic Schemes of Variable Neighborhood Search (VNS) 17

4.2 Variable Neighborhood Descent (VND) .. 18

4.3 Reduced Variable Neighborhood Search (RVNS) ... 19

4.4 Basic Variable Neighborhood Search (BVNS) .. 20

4.5 General Variable Neighborhood Search (GVNS) .. 22

4.6 Skewed Variable Neighborhood Search (SVNS) .. 22

4.7 Variable Neighborhood Decomposition Search (VNDS) 23

4.8 Hybrid Approaches with Variable Neighborhood Search 23

vii

4.9 Applications of Variable Neighborhood Search in Industry 24

CHAPTER FIVE - CONSTRAINT HANDLING TECHNIQUES 25

5.1 Static Penalties ... 28

5.2 Dynamic Penalties .. 28

5.3 Annealing Penalties .. 29

5.4 Adaptive Penalties .. 30

5.5 Co-evolutionary Penalties .. 31

5.6 Death Penalties ... 32

CHAPTER SIX - PROPOSED ALGORITHMS ... 33

6.1 Initial Solution Generation ... 33

6.2 Objective Function Calculation.. 37

6.3 Moves ... 37

6.3.1 Insert Move ... 38

6.3.2 Swap Move ... 42

6.3.3 Fractional Insert Move .. 44

CHAPTER SEVEN - COMPUTATIONAL STUDY .. 48

7.1 Problem Instances Tested ... 48

7.2 Algorithms Tested .. 49

7.2.1 Variable Neighborhood Search (VNS) ... 50

7.2.2 Variable Neighborhood Descent (VND) ... 55

7.2.3 Reduced Variable Neighborhood Search (RVNS) 56

7.3 Computational Study .. 58

7.3.1 Experimental Results for Variable Neighborhood Search (VNS) 58

7.3.2 Experimental Results for Variable Neighborhood Descent (VND) 60

7.3.3 Experimental Results for Reduced Variable Neighborhood Search

(RVNS) .. 63

CHAPTER EIGHT - CONCLUSION .. 73

REFERENCES ... 75

viii

APPENDICES .. 87

ix

LIST OF FIGURES

 Page

Figure 2.1 MIP model of CLSP ... 6

Figure 3.1 MIP model for CLSD-PM .. 14

Figure 4.1 Best Improvement Local Search ... 18

Figure 4.2 First Improvement Local Search .. 19

Figure 4.3 Steps of Variable Neighborhood Descent (VND) 19

Figure 4.4 Steps of Reduced Variable Neighborhood Search (RVNS) 20

Figure 4.5 Steps of Basic Variable Neighborhood Search (BVNS) 21

Figure 4.6 Steps of General Variable Neighborhood Search (GVNS) 22

Figure 6.1 Schedules for both machines (after product 5 is assigned)....................... 34

Figure 6.2 Schedules for both machines (after all products are assigned for period 2)

 .. 35

Figure 6.3 Final schedules for both machines .. 35

Figure 6.4 Pseudocode for the initial solution generation.. 36

Figure 6.5 Initial schedule .. 39

Figure 6.6 Schedule obtained after an insert move .. 39

Figure 6.7 Pseudocode for setup updates used in this study 40

Figure 6.8 Pseudocode for the update of all variables ... 40

Figure 6.9 Pseudocode for the insert move used in this study 41

Figure 6.10 Initial schedule .. 42

Figure 6.11 Schedule obtained after a swap move ... 42

Figure 6.12 Pseudocode for the swap move used in this study 43

Figure 6.13 Initial schedule .. 44

Figure 6.14 Schedule obtained after a fractional insert move 44

Figure 6.15 Pseudocode for the fractional insert move used in this study 46

Figure 7.1 Pseudocode for Best Improvement for Insert Move 50

Figure 7.2 Pseudocode for Best Improvement for Swap Move 51

Figure 7.3 Pseudocode for comparison function.. 52

Figure 7.4 Pseudocode for VNS Algorithm used in this study (kmax=2, N1=insert

move ,N2=swap move) .. 53

file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027299
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027300
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027301
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027302
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027303
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027311
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027315
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027318
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027319
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027320
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027321
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027322
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027322

x

Figure 7.5 Pseudocode for VND Algorithm used in this study (kmax=2, N1=swap

move, N2=insert move) .. 55

Figure 7.6 Pseudocode for RVNS Algorithm used in this study (kmax=2,

N1=fractional insert move, N2=swap move) ... 57

file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027323
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027323
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027324
file:///C:/Users/sel.ozcan/Desktop/SELOZCAN_TEZ_Ocak.14.docx%23_Toc377027324

xi

LIST OF TABLES

 Page

Table 6.1 Demand matrix ... 33

Table 6.2 Capability matrix.. 34

Table 6.3 Setup matrix ... 34

Table 6.4 Machine capacities by period ... 34

Table 6.5 Demand matrix ... 38

Table 6.6 Capability matrix.. 38

Table 6.7 Setup matrix ... 39

Table 6.8 Machine capacities by period ... 39

Table 7.1 Average % deviations from lower bound of the proposed VNS algorithm

(Compared with the benchmark results) .. 59

Table 7.2 Differencens of average % deviations from lower bound of the proposed

VNS algorithms .. 60

Table 7.3 Average % deviations from lower bound of the proposed VND algorithm

(Compared with the benchmark results) .. 61

Table 7.4 Differencens of average % deviations from lower bound of the proposed

VND algorithms ... 62

Table 7.5 Average Computation Times of the proposed VND algorithm (Compared

with the benchmark results) ... 63

Table 7.6 Randomly Selected Instances and their iteration numbers where

convergence starts tested algorithm: RVNS (N1: insert, N2:swap) 64

Table 7.7 Randomly Selected Instances and their iteration numbers where

convergence starts Tested Algorithm: RVNS (N1: swap, N2:insert) 64

Table 7.8 Randomly Selected Instances and their iteration numbers where

convergence starts Tested Algorithm: RVNS (N1: fractional insert, N2:insert) 65

Table 7.9 Randomly Selected Instances and their iteration numbers where

convergence starts Tested Algorithm: RVNS (N1: fractional insert, N2:swap) 65

Table 7.10 Randomly Selected Instances and their iteration numbers where

convergence starts Tested Algorithm: RVNS (N1: insert, N2:fractional insert) 66

Table 7.11 Randomly Selected Instances and their iteration numbers where

convergence starts Tested Algorithm: RVNS (N1: swap, N2:fractional insert) 66

xii

Table 7.12 Average % deviations of RVNS (N1: insert, N2:swap)........................... 67

Table 7.13 Average % deviations of RVNS (N1: swap, N2:insert)........................... 68

Table 7.14 Average % deviations of RVNS (N1: insert, N2:fractional insert).......... 68

Table 7.15 Average % deviations of RVNS (N1: swap, N2:fractional insert) 69

Table 7.16 Average % deviations of RVNS (N1: fractional insert, N2:swap) 69

Table 7.17 Average % deviations of RVNS (N1: fractional insert, N2:insert).......... 70

Table 7.18 Summary of average % deviations of all tested RVNS Algorithms 71

Table 7.19 Summary of differences of average % deviations of all tested RVNS

Algorithms from best so far lower bounds ... 72

1

CHAPTER ONE

INTRODUCTION

Production planning and control is a popular topic in industrial engineering that

has been studied over many years. Production planning and control covers lots of

subjects; like forecasting, scheduling theory and inventory management issues.

Accordingly, lot sizing and scheduling is also examined under production planning

and control.

Firstly, lot sizing problems emerged as the Economic Order Quantity (EOQ)

(Harris, 1913). Generally, lot sizing and scheduling problem is the determination of

the production quantities and schedules on the production lines for providing all

demands without any shortages. The main aim of this problem is minimizing the

overall production, inventory, and setup costs.

In the literature, lot sizing and scheduling problems mainly focus on discrete

production. On the other hand, increase in the customer needs forces the

manufacturers to change their production system to make-to-order. Besides, with the

increasing importance of lean production, due to the fluctuations on customer

demand and high setup costs, production is done in lots. Thus, lot sizing becomes an

important issue on manufacturing systems and a tactical level of decision making

problem in the literature.

There are various lot sizing and scheduling problems studied in the literature.

Detailed explanation related with these problems will be given in the literature

review part of this study. Moreover, there are many practical cases of the Parallel

Machine Capacitated Lot Sizing and Scheduling Problem in real world. For instance,

parmeceutical, chemical, electronics, food, tile manufacturing, tire industry, injection

molding, the alloy foundry industry and multi-layer ceramics can be given as

industrial examples (Jans, 2009). In this thesis, parallel machine capacitated lotsizing

and scheduling problem with sequence-dependent setups (CLSD-PM) is examined

using three variants of Variable Neighborhood Search (VNS) algorithm.

2

The aim of this thesis is to develop VNS based algorithms to solve the CLSD-PM

problem. The reason why VNS and its variants, Variable Neighborhood Descent

(VND) and Reduced Variable Neighborhood Search (RVNS) are chosen is that VNS

and its variants indicated high performance on different kinds of scheduling

problems (Hansen & Mladenović, 2010). Besides, there is no study that uses VNS

for CLSD-PM problem. In this thesis, furthermore, the effect of using Constraint

Handling Techniques, which is explained in Chapter 5, can be seen.

3

CHAPTER TWO

LITERATURE REVIEW

In this chapter, a comprehensive literature review is given about the Capacitated

Lot Sizing and Scheduling (CLSP) Problem. Firstly, the history of how CLSP has

emerged is explained, then extensions of CLSP problems are clarified. Afterwards,

solution approaches are explained which are presented in the literature so far.

Finally, evaluation of a solution in lot sizing problems and neighborhood structures

used for the CLSP problem are examined.

First idea on lot sizing came up with the classical economic order quantity (EOQ)

model (Erlenkotter, 1990). As in the research of Drexl and Kimms stated (1997), the

assumptions for the EOQ model are a single-level production process with no

capacity constraints, which makes the problem become single-item problem.

Moreover, demand has a constant rate, which means that it is stationary. For the

EOQ model, optimal solution can easily be derived (Drexl & Kimms, 1997).

Since EOQ cannot cover all, other models were developed. For example, the first

one is the Economic Lot Scheduling Problem (ELSP), which includes capacity

restrictions (Elmagharby, 1978). Since resources are usually shared in common by

several items, the ELSP is a single-level, multi-item problem, where the demand is

assumed to be still occuring continuously with a constant rate. Solving the ELSP is

NP-hard, thus, heuristic methods were utilized (Drexl & Kimms, 1997).

Another different point of view from the EOQ model is that where demand is

dynamic. The so-called Wagner-Whitin (WW) problem assumes a finite planning

horizon which is subdivided into several discrete periods. Demand is given per

period and may vary over time. However, capacity limits are not considered which

means that the single-level WW problem is a single-item problem (Drexl & Kimms,

1997).

4

Afterwards, as lot sizing problems become more complex, models include both

dynamic and capacitated approaches (Drexl & Kimms, 1997). Moreover, scheduling

was integrated with lot size decisions. Mainly, there are six variations of single level

lot sizing and scheduling problem that have been studied, and are known to be NP-

hard. These six variations can be listed as below:

 Economic Lot Scheduling (ELSP) in which the planning horizon is infinite,

 Capacitated Lot Sizing (CLSP), also called the large-bucket problem, where lots

of several part types processed in each period, then, jobs are scheduled in each

period separately.

 Discrete Lot Sizing and Scheduling (DLSP), also called the small-bucket

problem, where macro periods of CLSP are subdivided into micro periods in

which only one part type may be processed at full capacity.

 Continuous Setup Lot Sizing Problem (CSLP), adapts DLSP, allowing at most

one part type each period but using less than full capacity.

 Proportional Lot Sizing and Scheduling (PLSP), allows unused capacity to

process a second part type in a period.

 General Lot Sizing and Scheduling (GLSP), incorporates a user-defined

parameter to restrict the number of lots per period.

Also, a general classification of lot sizing and scheduling models in the literature can

be seen as follows:

 Single Level Lot Sizing and Scheduling

a. Economic lot scheduling problem (ELSP)

b. The capacitated lot sizing problem (CLSP)

c. The discrete lot sizing and scheduling problem (DLSP)

d. The continuous setup lot sizing problem (CSLP)

e. The proportional lot sizing and scheduling problem (PLSP)

f. The general lot sizing and scheduling problem (GLSP)

 Continuous Time Lot Sizing and Scheduling

 Multi-level Lot Sizing and Scheduling

5

2.1 The Capacitated Lot Sizing Problem

Capacitated lot sizing problem is an extension of WW problem to capacity

constraints. CLSP is a multi-item problem. The objective is to minimize the sum of

total setup and inventory holding costs. On the other hand, setup variables are

defined as binary values. Another condition is that, production of an item can only

take place if the machine is set up for that particular item (Drexl & Kimms, 1997).

CLSP is a large bucket problem since several items can be produced per period. In

reality, this time period can generally be one week. CLSP problem is NP-complete

and therefore, only a few studies resulted in optimality (Chen & Thizy, 1990; Eppen

& Martin, 1987; Gelders et al., 1986).

However, scheduling decisions are considered in CLSP. As a result, the usual

approach is to solve the CLSP first, and to solve a scheduling problem for each

period separately afterwards (Drexl & Kimms, 1997). The full mathematical model

of CLSP can be seen below.

Parameters

 = Available capacity of the machine in period t

 Demand for product i in period t

 Cost of carrying one unit of product i for one period

 initial inventory for product i

 consumption of capacity for producing one unit of product i

 setup cost for product i

I = number of products

T = number of periods

Decision Variables

 inventory for product i at the end of period t

 production quantity for product i in period t

 binary variable indicating whether a setup for product i occurs in period t

6

 ∑ ∑

 (2.1)

 (2.2)

 (2.3)

∑

 (2.4)

 { } (2.5)

 (2.6)

Figure 2.1 MIP model of CLSP

The objective function on (2.1) minimizes the overall setup and inventory holding

costs. Constraint (2.2) is for the inventory balance. Constraint (2.3) forces that

product i can be produced if the machine is set up for that product. Constraint (2.4) is

for the capacity limitations. Setup variables are defined as binary in (2.5) and (2.6) is

for non-negativity of variables.

2.2 Capacitated Lot Sizing Problem (CLSP) and Its Extensions

As mentioned above, the capacitated lot sizing problem provides a mathematical

visualization for large bucket lot sizing problems where a pre-determined number of

periods and constant demands are incurred (Quadt & Kuhn, 2008). In fact, Quadt &

Kuhn (2008), presented various extensions of CLSP such as, back-orders, setup

carry-over, sequencing, and parallel machines.

Standard CLSP is defined in Quadt & Kuhn (2008), as follows: multiple products

have to be produced while a deterministic, discrete demand quantity for every

product is given. In addition, number and duration of the periods is known, too.

Moreover, producing a product consumes machine capacity and when there is a

change from one product to another, duration and cost for setup occurs. In addition,

when a product unit is produced in the previous period(s), unique inventory holding

costs are incurred. Finally, the objective is to find an optimal production plan

minimizing setup and inventory costs as well as finding optimal lot-sizes for each

period and for each product in order to satisfy each period’s demand in terms of each

product.

7

One of the extensions is parallel machines. Parallel machine CLSP can be seen in

various areas of industry in real world such as, chemical, electronics food and textile

(Wittrock, 1988; Riane, 1998; Moursli & Pochet, 2000; Quadt & Kuhn, 2008). As

Quadt & Kuhn (2008), explained, “using parallel machines provides that a product

may be produced on any of the parallel machines. This increases the complexity of

the problem since a decision has to be made on which machine to produce a product

unit and how many machines to use in parallel for each product in each period”.

Setup carry-over is another extension of the CLSP. Carrying over a setup between

periods is given in many industries, for instance, in semiconductor industry, where

production runs 24 hours a day and 7 days a week (Quadt & Kuhn, 2005). Setup

carry-over means that a machine’s setup state can be preserved between two

consecutive periods and no extra setup is required. As it is stated in Quadt & Kuhn

(2008), in the standard CLSP, a setup is made for each product produced per period

(and machine), whereas, with the setup carry over, the last product per period may be

produced without any additional setup in the following period”. In Haase’s study

(1998), it can be denoted that solutions become significantly different when setup

carry over is considered. Quadt & Kuhn (2008), claim that “if setup carry-over is

accounted together with parallel machines, a lot-for-lot policy could substantially

reduce the number of setup operations”. Carrying over a setup state makes the

problem more complicated because “scheduling” decisions has to be carried out,

which means, for each machine, a decision has to be made which product shall be the

first and the last in a period. Gopalakrishnan et al. (1995), developed a model for

CLSP problem with constant setup times and setup carryovers; however, they

claimed that, due to the complexity of the proposed model, alternative ways should

be developed. On the other hand, Suerie & Stadtler (2003), present a different

mathematical model for CLSP with sequence independent setup costs and times.

They use the idea of the standard facility location formulation, and propose new sets

of variables and constraints to model the setup carryover.

8

While including scheduling decisions for all products, a total sequence of all

products on each machine has to be concluded. Sequence-dependent setup costs and

times can be found in various industries, for example, in chemical industry where

quick changes among products with fewer setup decrease the energy costs (Quadt &

Kuhn, 2008).

Back-order means allowing a product to be produced after its dedicated demand

period. On the other hand, back-order costs are considered for every period and very

important because otherwise, no feasible plan would exist (Quadt & Kuhn, 2008).

Even though back-order can be seen in real life problems, there are only a few

researches considering shortages (Smith-Daniels, 1986; Pochet & Wolsey, 1988;

Millar & Yang, 1994; Cheng et al., 2001; Hung & Chien, 2000; Quadt & Kuhn,

2009).

Bitran & Yanasse (1982) show that the CLSP is NP-hard even without setup

times; no approach is provided for gathering the optimality. When setup times are

also taken into account, CLSP problem becomes NP-complete Maes et al. (1991),

implying that it is hard to find even a feasible solution.

It is claimed that CLSP with sequence-dependent setup times show many

similarities with the traveling salesman problem (TSP) and the vehicle routing

problem (VRP) (Laporte 1992A, 1992B). More specifically, Laporte (1992A,

1992B) noticed that “setup cost matrix in CLSP is similar to the distance matrix in

the TSP or VRP. However, solving the multi-period CLSP is equivalent to solving

multiple dependent TSPs”.

Haase & Kimms (2000) and Gupta & Magnusson (2005) studied CLSP with

sequence-dependent setups. Haase & Kimms (2000) introduced a model for CLSP

where the efficient product sequences are pre-determined. Therefore, instead of

sequencing all produced products, which pre-determined sequences will be used in

each period are determined. As a solution approach, they used tailor-made branch-

and-bound method.

9

In the study of Gupta & Magnusson (2005), they proposed a heuristic to the single

machine CLSP where they introduce sequence-dependent setup costs, non-zero setup

times and setup carryover. They took constant setup times instead of sequence-

dependent setup times. Gupta & Magnusson (2005), explained the reason of this

simplification as follows: “The reason of this simplification is that it is impossible to

check if or not the problem is feasible without solving a mathematical program

which is of similar complexity as the original lot sizing problem”. They noticed that

there are three main things that makes the CLSP problem much harder, which are,

tight capacity, large and sequence-dependent setup costs, and non-zero setup times.

Almada-Lobo et al. (2007), presented two new linear MIP models for single

machine CLSP with sequence dependent setup times and costs as well as considering

setup carryover. Likewise, no backlogging is allowed, i.e., each product’s demand

should fully satisfied for each period. In order to keep track of schedules, they

introduced a constraint influenced by the traveling salesman problem. On the other

hand, they claimed that their formulations are simpler than others in the literature.

Furthermore, they proposed a five-step heuristic for finding feasible solutions.

Afterwards, Almada-Lobo (2011) extended their work to the parallel machine

case while introducing machines’ eligibility restrictions among products. They

proposed MIP-based heuristics; in a more detailed way, they introduced an iterative

stochastic MIP-based neighborhood structure in order to obtain better feasible

solutions. Moreover, they divided the problem into many subMIPs and solved them

randomly. The stochasticity of the solution algorithm arises from the idea of

selection of the subMIPs.

Recently, in the study of Xiao et al. (2013), they proposed CLSP with sequence-

dependent setup times, costs, and setup carryover on parallel machines. In addition,

similar to the study of James and Almada-Lobo (2011), machine eligibilities were

also introduced. Differently, they introduced machine preference constraints which

are soft constraints and in case of any violation of these constraints, it is penalized in

the objective function. Moreover, they allowed backlogging. In order to find good

10

quality solutions to this problem, they proposed two MIP-based fix-and-optimize

algorithms, where the binary decision variables related with the assignment of

machines are first fixed using the randomized least flexible machine rule and the rest

of the decision variables are settled by an MIP solver.

2.3 Solution Approaches in the Literature

There are a lot of work on lot sizing and scheduling problem on a single machine

in the literature. Mainly, the case involving sequence-dependent setup has been

studied in various literatures (Thizy & Van Wassenhove, 1985; Dobson et al., 1987;

Trigeiro et al., 1989; Fleischmann, 1990; Cattrysse et al., 1993; Blocher et al., 1999).

In terms of solution methods, Blocher et al. (1999), used Branch and Bound; whereas

Cattrysse et al. (1993), used a column generation based heuristic for a set partitioning

formulation.

Earlier work of Haase (1998), included a heuristic priority rule for the case with

sequence-dependent setup costs and used a local search to derive appropriate values

of parameters for use by the priority rule. Moreover, Miller et al. (1999), proposed a

MIP formulation where backlogging is allowed and as a solution methodology, they

used Genetic Algorithm (GA) combined with Hill Climbing (HC) technique.

On the other hand, some metaheuristic methods are also used for lot sizing and

scheduling problems. GA is used for the single level CLSP by Kohlmorgen et al.,

(1999). Moreover, a tabu search based approach is utilized by Hindi (1996). In

addition to these, while interfering setup time criterion, Özdamar and Bozyel (2000),

suggested a hybrid method where GA and simulated annealing (SA) are considered

together. A hybrid TS-SA was developed by Özdamar et al., (2002). Also

Gopalarakrishnan et al. (2001), used a hybrid GA-TS so as to solve this problem.

Pedroso & Kubo (2005), suggested a hybrid tabu search with relax-and-fix heuristic

for CLSP with multiple resources. Beraldi et al. (2008), introduced a rolling-horizon

and relax-and-fix heuristic for the identical parallel machine CLSP case, where they

guarantee that their solution mechanism will provide feasibility when data set is

11

feasible. Besides, Ferreira et al. (2009), presented relax-and-fix heuristics for solving

a case study related with CLSP in a soft drink company in Brazil. Özdamar & Birbil

(1998), used hybrid heuristics involving simulated annealing, genetic algorithm and

tabu search on CLSP with parallel machines. In terms of combined lot sizing and

scheduling on parallel machines, Kang et al. (1999), used a hybrid branch and bound

algorithm and column generation approach. Meyr (2002), generalized the problem,

allowing nonzero sequence-dependent setup times. He extended his previous study

on single machine to parallel machines, using combined dual reoptimization with

simulated annealing and threshold accepting methods. Recently, Dastidar & Nagi

(2005), presented a MIP model where there are unrelated parallel machines with

sequence-dependent setup criterion; the methodology used here is a two-phase

decomposition methodology.

2.4 Evaluation of a Solution in Lot Sizing Problems

Various options are used in order to evaluate the solution. One common

alternative is to evaluate the objective function. However, in a genetic algorithm, it is

possible to obtain an infeasible solution after applying the genetic operators, and for

tabu search and simulated annealing, a move can also lead to an infeasible neighbor.

A main issue is how to treat those infeasibilities (Jans & Degraeve, 2008). One

option is to ignore all infeasible solutions or attach an infinite cost to them (Kimms,

1999). Another example can be attaching a backlog cost for demand which cannot be

met in time (Barbarosoğlu & Özdamar, 2000; Özdamar & Barbarosoğlu, 2000) or a

penalty cost in case of capacity violation (Özdamar & Birbil, 1998; Gopalakrishnan

et al., 2001); or a high cost for the initial inventory (Meyr, 2000). Another treatment

option might be using some repair operators for infeasible solutions (Özdamar &

Birbil, 1998). Moreover, in order to penalize infeasible solutions, many constraint

handling techniques can be utilized which are explained in Chapter 5.

12

2.5 Definition of the Neighborhood in Lot Sizing Problems

The definition of the neighborhood can vary according to the solution technique

or the solution representation. (Jans & Degraeve, 2008). If there are both integer and

continuous variables used in the representation, moves can be defined among each

variable, i.e., a move can be carried out within setups and production quantities as

well (Gopalarakrishnan et al., 2001). Neighborhood schemes can be defined either

moving fractionally or completely the production amount of a product (Özdamar &

Birbil, 1998; Özdamar & Barbarosoğlu, 2000; Özdamar et al., 2002). Changing the

setup state of a product in a period is the most widely used neighborhood definition

(Kuik & Salomon, 1990; Hindi, 1996; Kuik et al., 1993; Salomon et al., 1993). In

addition to the usual swap and insert moves; Almada-Lobo & James (2010),

introduced a different type of move, called fractional insert move. Fractional insert

move means splitting a lot randomly into two lots, where the total quantity produced

is the same as the original quantity. One part will be inserted to another location

whereas the remaining part will be left in the same position.

13

CHAPTER THREE

 PROBLEM DEFINITION

In this chapter, the full mathematical model used in this study is presented.

Parallel machine capacitated lotsizing and scheduling problem with sequence-

dependent setups (CLSD-PM) has been formulated previously in James & Almada-

Lobo, (2011). The problem considers a planning interval with t=1,…,T periods and

i,j=1,…N products processed on m=1,…,M machines. The parameters and decision

variables of the problem can be listed as follows:

Parameters

 = demand of product i in period t

 = setup time incurred when a setup occurs from product i to j on machine m

 = setup cost incurred when a setup occurs from product i to j on machine m

 = unit inventory holding cost for product i from one period to the next

 = the processing time of one unit of product i on machine m

 = the capacity of machine m available in period t

 = upper bound on the production quantity of product i in period t to machine m

 = product i’s capability of machine m

Decision Variables

 = quantity of product i produced in period t on machine m

 = inventory level of product i at the end of period t

 = an auxiliary variable that assigns product i on machine m in period t

 = 1 if a setup occurs from product i to j on machine m in period t

 = 1 if the machine m is set up for product i at the beginning of period t

14

3.1 Mathematical Formulation of the Parallel Machine Capacitated Lotsizing

and Scheduling Problem with Sequence-dependent Setups (CLSD-PM)

 ∑ ∑ ∑ ∑ ∑ ∑ (3.1)

 ∑ [] [] (3.2)

 [] (3.3)

∑ ∑ ∑ [] [] (3.4)

 (∑) [] [] [] (3.5)

 ∑ ∑ [] [] [] (3.6)

∑ [] [] (3.7)

 [] [] [] { } [] (3.8)

∑ [] [] (3.9)

 () { } (3.10)

Figure 3.1 MIP model for CLSD-PM

Objective function (3.1) minimizes overall inventory and setup costs. Constraint

(3.2) is for production and inventory balance and constraint (3.3) indicates that initial

inventory level is zero. On the other hand, constraint (3.4) controls that production

and setup times do not exceed the available capacity. Constraint (3.5) forces that

whenever a product is produced, a setup should be made. In other words, if

∑ , meaning that either there is no setup occurred from product j to

product i or the machine is not set up for product i, then product i cannot be produced

on that machine, forcing the quantity produced = 0. In addition, constraint (3.6)

is for setup carryover for two consecutive periods. In fact, constraint (3.6) provides

that flow in equals to flow out, i.e., if there is an input setup and no output setup for

product i on period t on machine m, it means that this setup was the last one to be

performed on the machine m in period t and accordingly, the machine is configured

for product i at the beginning of the next period (t+1), forcing to be 1. On

the other hand, if there is an output setup and no input one, it means that the machine

15

is configured for product i at the beginning of period t, . Constraint (3.7)

ensures that each machine should be set up for one product at the beginning of each

time period. Constraint (3.8) eliminates disconnected subtours. In other words, this

constraint works whenever a subtour occurs in a period, forcing the respective

machine to be set up at the beginning of that period to one of the products that are

part of the subtour. In order to achieve a feasible solution, only a single connected

component is linked to Y’s. Constraint (3.8) provides this by using auxiliary variable

 that value the machine state through any sequence. indicates sequence

number in which product i is produced on machine m in period t. Constraint (3.8)

provides sequencing which is also a similar modeling in the traveling salesman

problem proposed in the study of Nemhauser & Wolsey (1988).

Constraints (3.2)-(3.7) and (3.10) allow not disjoint cycles. However, due to the

traingle inequality + , the inflow of every product is at most 1 and

such a scenario will not occur in an optimal solution. Constraints (3.6), (3.7), and

(3.8) determine the sequence of the products on machine m in period t and keep track

of the machine configuration state by recording the product that a machine is ready

to process. Constraint (3.9) indicates each machine’s ability to produce that product

and constraint (3.10) is for nonnegativity and integrality of the decision variables.

The variability of machine capacities within periods may be due to the nature of

the real system where slight changes in the capacities are reflected to the

mathematical model of the problem. Moreover, all unit production costs are same for

each product, which is 1, the reason might be that the cost of running the machine

does not depend on the product type produced. On the other hand, the reason why

there is an upper bound on the production quantity of each product i in period t to

machine m might be the shortage of the raw materials used for product i.

Furthermore, this model does not consider backlogging, i.e., all demands should be

satisfied for each period t. It can also be deduced that shortage cost of a product i is

very high when it is compared to setup and inventory holding costs of that product.

Moreover, another constraint that makes this problem harder is machine eligibility

restriction proposed in Constraint (3.9). More specifically, each product can be

16

produced on at least one machine, however there may be more than one eligible

machine that can produce that product, as well.

17

CHAPTER FOUR

VARIABLE NEIGHBORHOOD SEARCH

In Chapter 4, a detailed explanation of Variable Neighborhood Search (VNS)

algorithm and its variants are given. Moreover, a comprehensive literature study

about VNS, in addition to the various variants of VNS, covering the hybrid

approaches and applications of this algorithm in real life are presented in this

chapter.

VNS, proposed by Mladenović & Hansen (1997), is a metaheuristic used for

solving combinatorial and global optimization problems. Moreover, in VNS,

neighborhoods change is in a systematic manner in order to escape from local

minima. Many variants of VNS, for example, variable neighborhood descent (VND),

reduced VNS (RVNS), basic VNS (BVNS), general VNS (GVNS), and skewed VNS

(SVNS) have been developed so far.

4.1 Basic Schemes of Variable Neighborhood Search (VNS)

A finite set of pre-selected neighborhood structures are defined as

 and is the set of solutions in the neighborhood of x. An

optimal solution (or global minimum) is a feasible solution where a minimum

is reached. is a local minimum with respect to , if there is no solution

 such that . Metaheuristics (based on local search

procedures) try to continue the search by other means after finding the first local

minimum (Mladenović & Hansen, 1997). VNS is based on the following three

simple facts:

“Fact 1: A local minimum w.r.t one neighborhood structure is not necessary so with

another;”

“Fact 2: A global minimum is a local minimum w.r.t all possible neighborhood

structures”.

18

“Fact 3: For many problems local minima w.r.t one or several are relatively

close to each other”.

Hansen et al. (2010), indicated in their study that “the last observation is

empirical, implying that a local optimum usually give some idea about the global

optimum. For example, several variables having the same value in both”. However,

which variables have the same value is not clear. As a result, neighborhood of the

local optimum is in an ordered way, till a better local minimum is kept (Hansen et al.,

2010).

VNS can be classified into three different ways: (i) deterministic; (ii) stochastic;

(iii) both deterministic and stochastic.

4.2 Variable Neighborhood Descent (VND)

Variable Neighborhood Descent (VND) method is obtained if change of

neighborhoods is performed in a deterministic way. Firstly, an initial solution x is

taken, the best (minimum of) within the neighborhood is found, and if there

is no further improvement on that neighborhood, the heuristic continues with the next

neighborhood until . Furthermore, VND is a steepest descent heuristic

where best improvement local search is used (Hansen & Mladenović, 2005). In other

words, at each step, the neighborhood is explored entirely. In fact, since searching

the whole neighborhood can be time consuming in some cases, maybe first

improvement (first descent heuristic) can also be used in the local search phase. Steps

of best improvement and first improvement can be identified in the figures below.

 (1) and (2):

Figure 4.1 Best Improvement Local Search

19

 (1), (2) and (3):

Figure 4.2 First Improvement Local Search

The steps of VND is as follows,

 (
)

Figure 4.3 Steps of Variable Neighborhood Descent (VND)

Mainly in most cases as a local search a single or sometimes two neighborhoods

are used, i.e., . It is indicated in the research of Hansen et al. (2010), that

the last solution should be a local minimum w.r.t all neighborhoods, and the

possibility of reaching the global minimum is higher than using a single

neighborhood structure.

4.3 Reduced Variable Neighborhood Search (RVNS)

In reduced VNS (RVNS) method, random points are selected from the

neighborhood without being followed by descent. In a more detailed manner, starting

with an initial solution x, a random solution is chosen from the first neighborhood, if

this random solution made any improvement, the search continues with that solution

and continues to iterate until no improvement is found on that neighborhood,

Figure 4.2 First Improvement Local Search

Figure 4.3 Steps of Variable Neighborhood Descent (VND)

20

otherwise a jump is made to the next neighborhood. The algorithm continues until

 .

Basic steps of RVNS can be examined below.

 ()

Figure 4.4 Steps of Reduced Variable Neighborhood Search (RVNS)

As it is asserted in Hansen et al. (2010), “RVNS is useful for very large instances

for which local search is costly. It is observed that the best value for the parameter

 is often 2. In addition, the maximum number of iterations between two

improvements is usually used as stopping condition”.

4.4 Basic Variable Neighborhood Search (BVNS)

Basic VNS method includes both deterministic and stochastic changes of

neighborhood. Firstly, neighborhood structures used in the BVNS algorithm are

defined as . Afterwards, starting with an initial solution,

randomly a solution is taken from the first neighborhood of x and a descent

 is done with the local search. This leads to a new local minimum .

At that moment, three alternatives can be encountered:

(i) ,i.e. when no improvement is achieved after local search, then a move to

the next neighborhood is carried out, which means that ;

Figure 4.4 Steps of Reduced Variable Neighborhood Search (RVNS)

21

(ii) but , i.e., another local optimum has been found, which is

not better than the previous incumbent solution; similar to the previous case, the

procedure is iterated using the next neighborhood .

(iii) but : i.e., another local optimum, better than the

incumbent has been found; in this case the search restart with the new incumbent

solution at the first neighborhood until a stopping criteria, e.g. a maximum

time or maximum number of iterations or maximum number of iterations from the

last improvement is met. Steps of Basic VNS can be seen as follows.

 ()

Figure 4.5 Steps of Basic Variable Neighborhood Search (BVNS)

As Hansen et al. (2010), claimed in their work, “often successive neighborhoods

 will be nested. Observe that point is generated at random in Shaking in order to

avoid cycling, which might occur if any deterministic rule was used. However, some

difficulties can be encountered while solving large instances using basic VNS”.

Basic VNS has several extensions. In the move or not, even if the solution is

worse than the incumbent, that solution can be accepted with some probability. Also

in the Local Search phase, First Improvement or Best Improvement can be used.

Figure 4.5 Steps of Basic Variable Neighborhood Search (BVNS)

22

4.5 General Variable Neighborhood Search (GVNS)

General VNS is a variate of the Basic VNS where in the local search phase, VND

is used (Mladenović et al., 2008).

 ()

Figure 4.6 Steps of General Variable Neighborhood Search (GVNS)

4.6 Skewed Variable Neighborhood Search (SVNS)

As it is emphasized on Fact 3 of VNS in Section 4.1, local minima with respect to

one or more neighborhoods are close to each other (Hansen et al., 2010). Therefore,

schemes VNS should be adjusted so as to explore valleys more entirely which are far

away from the incumbent solution. This approach is denoted as Skewed VNS

(SVNS).

Different than BVNS, in SVNS there is a function that measures the

distance between the incumbent solution x and the local optimum found used

together with the parameter α. The parameter α stands for accepting solutions that are

far from x when is larger than but not too much (otherwise one will

always leave x). A remarkable value of α should be determined experimentally.

Moreover, in order not to move frequently from a solution x to a solution that is not

Figure 4.6 Steps of General Variable Neighborhood Search (GVNS)

23

so far away, a large value for α can be taken when is small (Hansen et al.,

2010)

4.7 Variable Neighborhood Decomposition Search (VNDS)

When solving very large instances VNS can sometimes be very weak. Therefore,

another variant is emerged, called Variable Neighborhood Decomposition Search

(VNDS) method proposed by Hansen & Mladenović (2001), which divides the basic

VNS into a two-level VNS scheme based upon decomposition of the problem

(Hansen et al., 2010).

4.8 Hybrid Approaches with Variable Neighborhood Search

On the other hand, hybrid approaches, i.e., a combination of metaheuristics and

VNS is used as a powerful mechanism in the literature. For example, Tabu Search

(TS) and VNS can be hybridized. One alternative is to use TS within VNS another

alternative is to use VNS within TS (Hansen et al., 2010). Moreover, GRASP and

VNS combination is also used for many problems, where VNS mainly used in the

second phase of GRASP (Hansen et al., 2010). On the other hand, Particle Swarm

Optimization is combined with VNS in a case study for parallel machine scheduling

problem (Chen et al., 2013). Behnamian et al. (2009), introduced the use of VNS

with Ant Colony Optimization again on parallel machine scheduling problem.

Besides, Liu & Zhou (2013), proposed a hybrid algorithm for the restrictive single-

machine earliness/tardiness problem where harmony search is combined with VNS.

Another combination of VNS with Fix&Optimize Heuristic is stated in the work of

Seeanner et al. (2013). A combination of VND with iterated local search (ILS) is

proposed by Martins et al. (2012), for the routing and wavelength assignment

problem. Furthermore, Shifting Bottleneck procedure is also used with the

combination of VNS (Reiter et al., 2013). A hybrid VNS and Simulated Annealing

(SA) algorithm is presented by Abbasi et al. (2011), in a study where the three

parameters of Weibull distribution is estimated.

24

4.9 Applications of Variable Neighborhood Search in Industry

In the literature it can be found that there are many applications of VNS and its

hybrids, on various different areas. These areas can be listed as follows:

 “ industrial applications”,

 “design problems in communication”,

 “location problems”,

 “data mining”,

 “graph problems”,

 “knapsack and packing problems”,

 “mixed integer problems”,

 “time tabling”,

 “scheduling”,

 “vehicle routing problems”,

 “problems in biosciences and chemistry”,

 “continuous optimization and other optimization problems” (Hansen et al.,

2010).

25

CHAPTER FIVE

CONSTRAINT HANDLING TECHNIQUES

In this chapter, a comprehensive study about constraint handling techniques

including its definition, aim of use and its classification are presented.

As Deb (2000), formerly defined in his study, the origin of the constraint

handling techniques is as follows, “Many real-life optimization problems have

inequality and/or equality constraints and therefore denoted as constrained

optimization problems. While trying to solve these type of optimization problems

using evolutionary algorithms or classical optimization tools, penalty function

techniques become popular since they are simple and easy to implement.

Unfortunately, the success level of penalty functions are not satisfactory at all time

since finding appropriate parameters is difficult”.

 Furthermore, the reason why constraint handling techniques emerged is that in

most cases, the optimal solution can be found on the boundaries of the feasible

region. Therefore, limiting the search within the feasible solutions’ region only or

imposing very severe penalties for infeasible solutions makes it difficult to

understand the optimum solution path as shown in the research of (Smith & Tate,

1993; Anderson & Ferris, 1994; Coit et al., 1995; Michalewicz, 1995). Contrarily, if

the penalty is not severe enough, then search region will be too large and much of the

search time will be used to explore regions far from the feasible region (Smith &

Tate, 1993). In other words, if the penalty is too high and the optimum solution is

close to the boundary of the feasible region, the search region will be restricted

within the feasible region in the very beginning of the search process, accordingly,

returning back towards the boundary with the infeasible region will be discarded and

the possibility of exploration of the infeasible region will be less (Coello, 2002).

For example, Deb (2000), generated a constraint handling method emphasizing

the superiority of feasible solutions. The algorithm lies on the idea of the following

three conditions:

26

1. “Any feasible solution is preferred to any infeasible solution.”

2. “Among two feasible solutions, the one having better objective function value

is preferred.”

3. “Among two infeasible solutions, the one having smaller constraint violation

is preferred.”

The most important difference of Deb’s (2000), research is that, there is no

penalty paramater. According to the three aspects mentioned above, careful pair-wise

comparisons are made and a direction to the feasible region is achieved.

On the other hand, Takahama & Sakai (2005, 2006, 2010), introduced another

constraint handling approach called the ε-constrained method. In the ε-constrained

method, the relaxation of the constraints is controlled by using the ε parameter. Also,

this method has a lexicographical ordering mechanism in which the minimization of

the sum of constraint violation comes prior to the minimization of the objective

function of a given problem. In other words, solution having a total violation smaller

than ε are labeled as feasible when a pair-wise comparison is made.

As it is mentioned in Coello’s study (2002), the most common approach for

handling constraints is to use penalties. It is explained that the relationship between

an infeasible solution and the feasible region of the search space plays a significant

role in penalizing such a solution. There are three main alternatives to identify this

relationship.

1. A solution might be penalized just for being infeasible regardless of its

amount of constraint violation

2. The amount of its infeasibility can be measured and used to determine its

corresponding penalty, or

3. The effort of ‘repairing’ the solution (i.e., the cost of making it feasible)

might be taken into account.

27

In order to explain a general penalty function, at first, assume that an optimization

problem is given as,

 (5.1)

where x is a vector of decision variables, the constraints “x A” are relatively

easy to satisfy, and the constraints “x B” are more difficult to satisfy when they are

compared to the constraints “x A”.

The problem can be reformulated as follows:

 (5.2)

“Where d(x, B) is a metric function describing the distance of the solution vector x

from the region B, and p(.) is a monotonically non-decreasing penalty function such

that p(0) = 0. If the exterior penalty function, p(.), grows quickly enough outside of

B, the optimal solution of (5.1) will also be optimal for (5.2). Furthermore, any

optimal solution of (5.2) will provide an upper bound on the optimum for (5.1), and

this bound will in general be tighter than that obtained by simply optimizing

over A” (Smith & Tate, 1993).

There are six types of penalty functions defined in Coello’s research (2002),

which can be listed as follows,

 Static Penalty

 Dynamic Penalty

 Annealing Penalty

 Adaptive Penalty

 Co-evolutionary Penalty

 Death Penalty

28

5.1 Static Penalties

Static penalties imply that the penalty remain constant during the whole search

process. In other words, disregarding of violation amount, a constant penalty is

applied. On the other hand, penalty function can also be designed as metric based

depending on the number of constraints violated.

 This penalty function is based only on the number of constraints violated, and is

generally less valuable than another approach where some distance metric from the

feasible region is considered as generating the penalty function (Goldberg, 1989;

Richardson et al., 1989). Moreover, another approach incurred by Homaifar, Lai &

Qi (1994), has a user defined violation level mechanism and penalty coefficients for

each level is selected accordingly, in a more detailed way, when violation level l

increases, penalty coefficient rises, as well. The weakness of this method is in the

number of parameters: for m constraints the method requires m(2l+1) parameters in

total.

Besides, there is another approach, where a solution’s fitness value is not

computed if it is infeasible. Moreover, all infeasible solutions deserve the same

penalty value even if its violation amounts vary from each other, it only deals with

the number of violated constraints (Michaleawitz, 1995).

Hoffmeister and Sprave (1996) introduced also a penalty function where

infeasible solutions are always worse than the feasible ones, however, the reverse can

be true in some cases.

5.2 Dynamic Penalties

Different than static penalty functions, in dynamic penalties, current iteration

number is considered as another criteria for the penalty functions. In fact, annealing

penalties and adaptive penalties are dynamic penalties, too (Coello, 2002).

29

Furthermore, with dynamic penalty functions, in the beginning of the search,

solutions with high infeasibility are not ignored, however, the penalty will increase

when there is a move to a solution that lies on the feasible region during the search

phase. In other words, the basic idea of using a dynamic approach is to incorporate a

dynamic aspect which (generally) raises the level of the penalty while the search

continues.

For example, Joines & Houck (1994) generated an approach where there are too

many user defined constants like C, α, and β. Thus, the solution is very sensitive

depending on the values of C, α, and β. Michaleawitz (1995), indicated that these

parameters produce premature convergence most of the time in other examples.

On the other hand, Kazarlis & Petridis (1998) proposed another approach,

Varying Fitness Function Technique (abbreviated as VFF), where again various

parameters are used and also, these parameters did not have a standard, i.e., they can

vary depending on the problem type.

5.3 Annealing Penalties

In most of the annealing penalties, the idea of simulated annealing is used as a

base. For example, Michalewicz & Attia (1994) considered a method where the

penalty coefficients are changed once in many generations (after the algorithm has

been trapped in a local optima). Only active constraints are considered at each

iteration, and the penalty is increased over time (i.e., the temperature decreases over

time) so that infeasible individuals have more severe penalties at the end of the

search phase.

Similar to the other dynamic approaches, Michalewicz & Attia’s approach (1994)

has a disadvantage in that solution quality can have huge changes when parameters

change, i.e. it is too much sensitive to the values of its parameters, also, choosing an

appropriate cooling schedule is difficult (Coello, 2002).

30

Joines & Houck’s approach (1994) is also based on simulated annealing, however,

has an exponential term and this exponential part would sometimes become invalid

due to the numerical range of the computer. On the other hand, Joines and Houck’s

approach is easier to implement since it does not distinguish between linear and non

linear constraints and its authors leave to the evolutionary algorithm (EA) itself the

task of generating feasible solutions from an initial set of random values (Coello,

2002).

On the other hand, Carlson (1995), introduced a different method where two

parameters have an influence on the penalty, the first one measures a constraint’s

violation amount, whereas the second one is a function of the running time of the

algorithm. However, in this method, these parameters were obtained empirically and

work well for some engineering problems.

5.4 Adaptive Penalties

In adaptive penalties, search duration and distance from feasiblity is considered

together (Smith & Tate, 1993; Tate & Smith, 1995). Since neighborhood generation

operators used in this study may result in infeasible solutions, NFT approach is used

to handle the violation of constraints.

In the works of Smith & Tate (1993), and Tate & Smith (1995), which were

enhanced by the work of Coit et al. (1995), length of search and severity levels of

constraints are used in their penalty function. In this penalty function, a near-feasible

threshold (NFT) is computed for each constraint. The NFT is defined as a threshold

distance from feasible region. With the penalty function, the algorithm is encouraged

to explore within the feasible region and the NFT-neighborhood of the feasible

region. In a more detailed way, the search that is surpassed the threshold is

discouraged more severely (Smith & Tate, 1993; Tate & Smith, 1995). The

formulation is below:

 ∑ (

)

 (5.3)

dynamic part of NFT

31

As it is stated in equation (5.3), denotes the unpenalized value of the best

solution yet found, and denotes the value of the best feasible solution yet

found. The and terms serve several purposes. On the other hand,

denotes the violation amount of constraint i, where there are m constraints in total.

First, they provide adaptive scaling of the penalty based on the results of the search.

Second, they combine it with the term to provide a search specific and

constraint specific penalty (Smith & Tate, 1993; Tate & Smith, 1995).

The general form of NFT is:

 (5.4)

 According to the proposed equation (5.4), is an upper bound of NFT. is a

dynamic search parameter which is used to update NFT considering the whole search

period. can also be defined as a function of the search, for example, a function of

the generation number (t), i.e., (Baeck et al., 1995). When λ becomes

positive, then NFT would be monotonically decreasing function and accordingly a

larger penalty occurs. As a result, when λ increases, NFT decreases faster as the

search continues.

Gen & Cheng (2000), enhanced NFT by adding a more severe penalty for

infeasible solutions. Moreover, as noted in Gen & Cheng (2000), the adaptive term

may lead to zero or over-penalty. For instance, if and are identical,

the penalty would be zero, resulting in unpenalized infeasible solutions. For this

reason, only the dynamic part of the penalty function, denoted in equation 5.3, with

NFT treshold is used.

5.5 Co-evolutionary Penalties

Coello (2000), introduced a penalty function where objective function for the

given set of variable values are encoded in a chromosome. Main drawback of this

method is that four parameters needed to be defined. Also, the values of these

32

parameters should be carefully determined because a little change of these values

have a huge effect on the penalty function (Coello, 2002).

5.6 Death Penalties

Death penalty means rejecting infeasible solutions. Rejection of infeasible

solutions is computationally easy since level of violation is not considered.

Furthermore, when a constraint violation occurred for a solution, a zero fitness value

is assigned to that solution. However, when there is no initial feasible solution, no

further improvement can be made and accordingly the evolutionary process will

stuck because all solutions have the same fitness value, zero (Coello, 2002).

As a result, in this study two techniques of constraint handling were utilized.

Firstly, if a solution is infeasible, then it is penalized by using NFT. Secondly, the

superiority of feasible solutions is used when making a selection between two

solutions during the search phase.

33

CHAPTER SIX

PROPOSED ALGORITHMS

 In this chapter, algorithms that are used in this study are explained. More

specifically, initial solution generation, objective function calculation, and moves

used are clarified by using various examples.

6.1 Initial Solution Generation

Firstly, products are selected in a random order. Starting from the last period, a

randomly chosen product’s whole demand on that period is placed to one of the

capable machines. In addition, while assigning the selected product’s whole demand

on that period, the machine with the minimum usage is chosen among the capable

ones. On the other hand, when a product’s whole demand cannot be produced on the

selected machine on that period, i.e., when there is not enough capacity on the

chosen machine for that period, then a part of the demand is assigned to that machine

until its capacity is full and the remaining demand of that product is assigned to the

previous period on the same machine since setup carryover is allowed among

periods. Furthermore, when a part of the demand assigned to the previous period, it

will have an additional effect on the objective function in terms of inventory holding

cost. The initial solution algorithm stops when all products’ demands are assigned to

the machines. In order to visualize the initial solution generation method, a small

example is provided with the following data presented in Table 6.1-6.4.

Table 6.1 Demand matrix

 Demand in period

Product Period 1 Period 2

1 2 2

2 2 1

3 1 3

4 3 4

5 2 2

34

Table 6.2 Capability matrix

 Capability of Machines

Product Machine 1 Machine 2

1 1 1

2 1 1

3 0 1

4 1 1

5 0 1

Table 6.3 Setup matrix

 Setup time to product

Product 1 2 3 4 5

1 0 1 2 1 1

2 2 0 1 2 2

3 2 1 0 2 2

4 1 2 1 0 1

5 2 1 2 1 0

Table 6.4 Machine capacities by period

 Capacity in Period

Machine Period 1 Period 2

1 10 10

2 10 10

Assume that each product’s production time is 1 unit and assume that firstly

product 5 is chosen randomly. Since it can only be produced on machine 2, it is

placed as it can be seen in Figure 6.1.

 Figure 6.1 Schedules for both machines (after product 5 is assigned)

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

35

Then, product 1 is chosen randomly. By looking at the capability matrix, product

1 can be produced on both machines. Considering the machine usages, machine with

the minimum current usage is chosen.

Afterwards, product 3 can only be produced on the second machine. Then,

product 2 has two alternatives. Since machine 1 has less usage, it is assigned to

machine 1. Finally, product 4 is assigned to machine 1 since it has the minimum

usage. Product 4 cannot be fully produced on period 2 therefore, the remaining part

is assigned to period 1.

Current schedules of both machines are as follows:

Figure 6.2 Schedules for both machines (after all products are assigned for period 2)

Assume that product 1 is chosen. Since it can be produced on both machines, it is

assigned to machine 2. Then, product 4 has also two alternatives. Since the usage of

machine 1 is less, it is assigned to machine 1. Product 5 can be produced only on

machine 2. Afterwards, product 3 is assigned to machine 1 due to the machine

capability. Finally, product 2 is assigned to machine 1 because it has the minimum

usage.

The final schedule for both machines is as follows:

Figure 6.3 Final schedules for both machines

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

36

Since all products’ demands are assigned, the algorithm stops. Feasibility is not a

must criteria to be met because constraint handling techniques are utilized. The

pseudocode for the initial solution generation can be examined in Figure 6.4 below.

INITIALIZE:

WHILE {

Choose randomly a product i from the set for products I that has a positive demand

 on period t

// Find a capable machine

IF there is only a single capable machine for product i, i.e.,

 ∑ Assigned_machine: m, where

ELSEIF (if there is more than one capable machine for product i, ∑)

Assigned_machine: find m where m has ()) for all

ENDIF

// Capacity Check

IF

 Assign whole demand to that period t

ELSEIF

// Calculate the maximum quantity as assignable quantity that can be assigned to

that period

// If there is not enough capacity on the previous period t-1 on the same machine,

calculate the capacity violation amount

IF

Calculate violation amount for that (machine-period) pair

ELSEIF

Assign calculated assignable quantity to that period

// Calculate the remaining quantity

// Assign this remaining quantity to the previous period t-1 on the same

machine

ENDIF

ENDIF

} // Repeat until all products’ demands are assigned for period t ()

ENDWHILE

Figure 6.4 Pseudocode for the initial solution generation

37

6.2 Objective Function Calculation

Objective function calculation is somehow different than the regular calculation

where in the regular calculation only setup costs and inventory holding costs are

incurred. However since NFT is used, which is defined in Section 5.4, infeasible

solutions are also accepted with some violation amount. In other words, a near-

feasible threshold (NFT) is computed for each violating constraint (Smith & Tate,

1993; Tate & Smith 1995). During the construction of the initial solution, when there

is no capacity limitation, then the whole demand is produced. In other words, since in

the initial solution generation phase, the assignment of the lots is started from the last

period, there will not be any tardiness, i.e., whole demand would be satisfied. Thus,

only capacity violation amount is calculated as the total violation for the initial

solution.

However, the situation differs for the solutions generated after infeasible moves.

The whole demand might not be satisfied since there is no limitation for the moves.

For example, when two products are swapped from different periods, there is no

guarantee that the demand for one product or even both products would definitely be

satisfied. Therefore, in addition to the capacity violation amount, unsatisfied demand

amount and excess of the upper bound production levels of each product on each

machine should also be included in the calculation of total violation amount, after a

move is made.

6.3 Moves

Three different types of moves have been defined previously by Almada-Lobo &

James (2010), for the single machine case. However, in this study, those three moves

are applied for the parallel multi machine case. These moves can be explained as

follows.

38

6.3.1 Insert Move

In the insert move, randomly a whole product lot is taken and inserted randomly

before another product. Different from the single machine case explained in Almada-

Lobo & James (2010), this move can be done within that machine and among

multiple machines while considering machine’s ability of producing that product. In

a more detailed way, selected product can only be inserted to another machine if it

can be produced on there. On the other hand, since constraint handling is applied, an

insert move can be done, although capacity of the machines and upper bound

production quantity are exceeded.

An example the sample data presented in Table 6.5-6.8 is given. Assume that each

product’s production time is 1 unit.

Table 6.5 Demand matrix

 Demand in period

Product Period 1 Period 2

1 2 2

2 2 1

3 1 3

4 3 3

5 2 2

Table 6.6 Capability matrix

 Capability of Machines

Product Machine 1 Machine 2

1 1 1

2 1 1

3 0 1

4 1 1

5 0 1

39

Table 6.7 Setup matrix

 Setup time to product

Product 1 2 3 4 5

1 0 1 2 1 1

2 2 0 1 2 2

3 2 1 0 2 2

4 1 2 1 0 1

5 2 1 2 1 0

Table 6.8 Machine capacities by period

 Capacity in Period

Machine Period 1 Period 2

1 10 10

2 10 10

Assume that, initial sequence is given in Figure 6.5 below.

Figure 6.5 Initial schedule

An insert move of product 2 on machine 1 on period 2 can be done as follows.

Figure 6.6 Schedule obtained after an insert move

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

40

As it can be seen in Figure 6.6 above, even if it results in an infeasible solution in

terms of the excess capacity of 1 unit on period 2 on machine 2, whole lot of product

2 on machine 1 is inserted on machine 1 after product 5. The following pseudocode,

proposed in Figure 6.9, indicates the flow of a single insert move.

Figure 6.7 Pseudocode for setup updates used in this study

 , ,
,

)

Figure 6.8 Pseudocode for the update of all variables

 In Figure 6.7, necessary calculations related with the setups are made. On the

other hand, using the updated setups, other updates such as usages and sequences are

done in Figure 6.8. Additionally, and functions are used in

other moves as well.

Figure 6.8 Pseudocode for the update of all variables

41

 {

SELECT randomly a period ,where [] for the origin

SELECT randomly another period , where [] for the destination

SELECT randomly an origin machine , where []

SELECT randomly a destination machine , where []

SELECT randomly a product from the sequence
, where [].

IF destination machine is capable of producing product , i.e.,
 :

SELECT randomly a destination_index from the sequence
.

destination_index is a random place where a fraction of the demand

 of product that is currently produced on at period

 , will be placed before. Currently, the product on the destination_index is

denoted as .

ELSEIF // If destination machine is not capable of producing product ; repeat

the following step until there is a product that can be produced on the destination

machine is found.

WHILE
 , i.e., destination machine is not capable

 of producting product :

SELECT randomly another product from the sequence
 from the

origin machine where [], which destination machine is capable of,

i.e.,

ENDIF

//update setups, current capacity usages and sequences of machines after insert

 , ,
,

)

}

Figure 6.9 Pseudocode for the insert move used in this study

In the insert move, insertion is done only capability condition is satisfied.

Moreover, insertion within the same machine is also allowed. An insert move can

also lead to infeasible solutions in terms of capacity constraints. However it is not an

important criteria because violation amount will be penalized in the objective

function.

42

6.3.2 Swap Move

In the swap move, randomly two product lots are selected and swapped without

considering any violation. The only criteria that must be checked before swapping is

whether that machine(s) is capable of producing the selected product or not.

Figure 6.10 Initial schedule

A swap move can be done as follows.

Figure 6.11 Schedule obtained after a swap move

After a random single swap move of product 1 on machine 1 on the first period

and product 4 on machine 2 on the first period, final sequence can be seen as in

Figure 6.11 above. The pseudocode of the one single swap move can be visualized in

Figure 6.12.

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

43

 {

Starting with an initial production sequence on machine m for period t, which is denoted as

 for all t and for all m, where [] and [].

SELECT randomly a period ,where [] for the origin

SELECT randomly another period , where [] for the destination

SELECT randomly an origin machine , where []

SELECT randomly a destination machine , where []

SELECT randomly an origin index origin_index where product from the sequence

is currently produced and has a current production lot

,

and SELECT randomly a destination_index from the sequence
, where the lot

, will be swapped with the lot

. Currently, the product on

the destination_index is denoted as .

IF destination machine is capable of producing product , i.e.,

and origin machine is capable of producing product , i.e.,
 :

ELSEIF // If destination machine is not capable of producing product ; or if

origin machine is not capable of producing product

. WHILE
 or

SELECT randomly another product from the sequence

from the origin machine and another product from the

sequence
.

ENDWHILE

ENDIF

//update current capacity usages and sequences of machines after the lot is inserted

 , ,
,

)

 }

Figure 6.12 Pseudocode for the swap move used in this study

Similar to insert move, swap move considers only capability constraint. A swap

move can be made after capability is satisfied for both products. On the other hand,

similar to insert move, two product lots can be swapped within the same machine.

Due to the use of constraint violation techniques, even if a swap move results in

Figure 6.12 Pseudocode for the swap move used in this study

44

infeasible solutions in terms of capacity, demand satisfaction, or upper bound

production quantity, it would not be prohibited.

6.3.3 Fractional Insert Move

This move is similar to the insert move, however it allows the option of splitting a

lot into two lots, where the total quantity produced is the same as the original lot.

One of these new lots is left in the same position as the original lot, while second part

is inserted randomly into a new location. On the other hand, capacity violation is not

permitted in fractional insert move. If there is enough capacity, then all of the lot

will be moved; if not then only the amount that can fit in the period will be moved.

All locations within the period are tested as the capacity available in the period will

vary depending on the position the new lot is inserted into and the lots surrounding it

because of the sequence dependency of the setup times.

Figure 6.13 Initial schedule

An example of fractional insert move is as follows.

Figure 6.14 Schedule obtained after a fractional insert move

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

45

As it can be observed in Figure 6.14, product 4 on machine 2 on the first period is

splitted into two parts. One part is inserted before product 1 on machine 1 on period

1.

 {

Starting with an initial production sequence on machine m for period t, which is denoted as

 for all t and for all m, where [] and [].

SELECT randomly a period ,where [] for the origin

SELECT randomly another period , where [] for the destination

SELECT randomly an origin machine , where []

SELECT randomly a destination machine , where []

//If there is no free space on the destination machine , search

WHILE

SELECT randomly another destination machine .

ENDWHILE

SELECT randomly a product from the sequence
, where [].

IF destination machine is capable of producing product , i.e.,
 :

SELECT randomly a destination_index from the sequence
.

destination_index is a random place where a fraction of the demand

 of product that is currently produced on at period

 , will be placed before. Currently, the product on the destination_index is

denoted as .

ELSEIF // If destination machine is not capable of producing product ; repeat

the following step until there is a product that can be produced on the destination

machine is found.

WHILE

SELECT randomly another product from the sequence
 from

the origin machine where [], which destination machine is capable

of, i.e.,

ENDWHILE

ENDIF

46

// Calculate the current space, , on the destination machine at

period after required setups are carried out.

// Check if there is enough capacity that fraction of lot
 can be inserted

to machine on period .

IF

// Check if the whole lot
 can be inserted to machine on

period .

IF

//update current capacity usages and sequences of machines

ELSEIF // Calculate the fraction of lot that can be inserted to machine on

period .

//update current capacity usages and sequences of machines

 ,

 ,
,

)

ENDIF

ENDIF

}

Figure 6. 15 Pseudocode for the fractional insert move used in this study

Different than insert and swap moves, in fractional insert move, the lot is

transferred after the capacity check is carried out. The reason is that if there is no

capacity limitation, then the whole lot will be transferred and fractional insert move

will behave the same as the insert move. On the other hand, in the Local Search

Phase of VNS algorithms, only either insert or swap move can search the whole

solution space entirely within their neighborhoods, i.e., they can be used in Best

Improvement Algorithm or Steepest Descent Heuristic, which is defined in Section

4.2. However, fractional insert move does not work as a move for Steepest Descent

Heuristic, i.e., not all possible fractional insert moves are considered in the tested

algorithms since the trasferred quantity of lot would change in every iteration, and

accordingly there will be infinitely many possible moves. Thus, only a single random

Figure 6.15 Pseudocode for the fractional insert move used in this study

47

move is carried out at each iteration when fractional insert move is used and

fractional insert move is used only in the Shaking Phase. To sum up ,

 and moves, proposed in Figure 6.9, 6.12 and 6.15

are only used in the Shaking Phase, i.e., when there is only a random single move.

When whole neighborhood is explored entirely in insert and swap neighborhood

schemes, then Insert Best Improvement (or Swap Best Improvement (are used

which will be explained in Section 7.2.

48

CHAPTER SEVEN

 COMPUTATIONAL STUDY

In this chapter, the algorithms and their results are presented and compared with

the benchmark results found in the literature so far.

7.1 Problem Instances Tested

Benchmark problem instances used in this study were generated by James &

Almada-Lobo (2011). Firstly, they started to generate mid-sized problem instance

with 15 products, 10 periods and 80% capacity utilization. Afterwards, they used

various perturbations based on the change in number of machines, number of

products, number of periods, capacity utilization per period, cost of setup per unit of

time, balance of products across the machines, and possible product-machine

allocations. Problem type can be represented as follows:

M-N-T-Cut-CutVar-θ-MProb-MBal.

Where M denotes the number of machines; N denotes the number of products; T

denotes the number of periods; Cut denotes the capacity utilization per period.

CutVar controls the maximum total allowed variation from Cut, so the actual

capacity utilization can vary. However, in this thesis, benchmark instances have no

capacity variation. θ indicates the cost of setup per unit of time, MProb represents

the total number of possible product-machine allocations, i.e., when MProb

increases, the problem becomes harder to solve. Lastly, MBal indicates the balance

of products across the machines (James & Almada-Lobo, 2011).

For each combination, 10 instances were generated. The variation of parameters

which may give an idea of the difficulty level of the benchmark instances can be

observed as follows:

M: number of machines from 2 3

49

N: number of products from 15 20

T: number of periods from 5 10

Cut: capacity utilization per period 0.6 0.8

θ: cost of setup per unit of time 50 100

MProb: total number of possible product-machine allocations 60 80

MBal: balence of products across the machines 10 20

7.2 Algorithms Tested

The types of moves which were described previously in Section 6.3, are used in

the VNS, VND and reduced VNS algorithms proposed.

In VNS, which is defined formerly in Section 4.1, two neighborhood structures

are used, i.e., . Fractional insert move is used only in the

Shaking Phase, however, in the Local Search Phase, insert move and swap move are

used respectively. Moreover, in the Local Search Phase, whole neighborhood is

explored, i.e., Best Improvement Local Search is used, which is previously defined

in Section 4.2. For the stopping condition, maximum number of 3000 iterations is

chosen.

Similar to VNS, in VND algorithm, the number of neighborhood structure is again

two. Furthermore, binary combinations of swap move and insert move are used. For

example, in one case, first neighborhood is swap move, second neighborhood is

insert move, and in the other case the first neighborhood is insert move and second

neighborhood is swap move. Likewise, the whole neighborhood is searched entirely

and the best neighbor of (
) is found.

In reduced VNS (RVNS), pair-wise combinations of three moves are used. Two

techniques of constraint handling are utilized for all of the algorithms tested. Firstly,

if a solution is infeasible, then it is penalized by using NFT (Smith & Tate, 1993;

Tate & Smith, 1995). Secondly, the superiority of feasible solutions is used when

making a selection between two solutions during the search phase.

50

7.2.1 Variable Neighborhood Search (VNS)

Insert Best Improvement and Swap Best Improvement heuristics are explained,

which are used both in VNS and VND algorithms proposed in this study. Insert Best

Improvement and Swap Best Improvement heuristics are the variants of Best

Improvement Local Search which is explained previously in Section 4.1. With the

Insert Best Improvement heuristic, all possible insertions are carried out. The only

constraint is the capability of machines. Similarly, Swap Best Improvement heuristic

makes all possible swap moves as long as the capability constraint is satisfied. In

VNS and VND algorithms, the search space within insert and swap neighborhoods is

explored entirely. The general framework for the entire search of insert and swap

moves, which are Insert Best Improvement and Swap Best Improvement heuristics,

are explained in the following figures.

Insert Best Improvement (

FOR

 FOR

 FOR

 FOR

 FOR (
)

 IF
 // Insert the whole lot

 ,

 ,
,

)

//Calculate the objective function and find the best

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDFOR

Figure 7.1 Pseudocode for Best Improvement for Insert Move

51

 Swap Best Improvement (

 FOR

 FOR

 FOR

 FOR

 FOR (
)

IF

// Swap lots
 and

 ,

 ,
,

)

ENDIF

ENDFOR

ENDFOR

ENDFOR

ENDFOR

 ENDFOR

In the comparison function defined in Figure 7.3, two solutions are compared

using Superiority of Feasible Solutions and NFT. According to the Superiority of

Feasible Solutions, when both solutions are feasible, then the solution with the

minimum objective value is updated as the new incumbent solution and algorithm

continues to explore within the same neighborhood (Deb, 2000). On the other hand,

when the incumbent solution is feasible and the new solution is infeasible, then, a

move to the next neighborhood is carried out. If the incumbent solution is infeasible

and the new solution is feasible, then, the new solution will be as the incumbent

solution and since an improvement is made, algorithm continues with the same

neighborhood. Lastly, if both solutions are infeasible, then the solution with the least

violation amount is chosen as the new incumbent solution.

Figure 7.2 Pseudocode for Best Improvement for Swap Move

52

IF

 IF <

 ELSE

 // update and

 END

 ELSEIF

 ELSEIF

 // update , , and

 ,

ELSEIF

//Calculate NFT for both solutions

 ∑(

)

IF

// update , , and

 ,

ELSEIF

 ENDIF

ENDIF

Figure 7.3 Pseudocode for comparison function

In the comparison function defined in Figure 7.3, two solutions are compared

using Superiority of Feasible Solutions and NFT. According to the Superiority of

Feasible Solutions, when both solutions are feasible, then the solution with the

minimum objective value is updated as the new incumbent solution and algorithm

continues to explore within the same neighborhood (Deb, 2000). On the other hand,

when the incumbent solution is feasible and the new solution is infeasible, then, a

Figure 7.3 Pseudocode for comparison function

53

move to the next neighborhood is carried out. If the incumbent solution is infeasible

and the new solution is feasible, then, the new solution will be as the incumbent

solution and since an improvement is made, algorithm continues with the same

neighborhood. Lastly, if both solutions are infeasible, then the solution with the least

violation amount is chosen as the new incumbent solution.

VNS(

 ,

WHILE

// Shaking Phase,

WHILE

// Local Search Phase,

IF

ELSEIF

ENDIF

//compare , use Superiority of Feasible Solutions and NFT

IF improvement = 0

ELSEIF

ENDIF

ENDWHILE

ENDWHILE

Figure 7.4 Pseudocode for VNS Algorithm used in this study (kmax=2, N1=insert move ,N2=swap

move)

54

On the other hand, in Figure 7.4, the pseudocode of the VNS algorithm used in

this study is presented where. and .

In VNS algorithm, there are both Shaking Phase and Local Search Phases. VNS

algorithm used in this study works as follows: Firstly, initial parameters

 , and are found

from the initial solution. Afterwards, a this fractional insert move is made for

diversification. After a single fractional insert move, local search phase starts where

an entire search is made within the 1
st
 neighborhood, , using Insert

Best Improvement method, which is described in Section 4.2. Local minimum,

denoted as , among all solutions of the Insert Best Improvement is found and

compared with the value using comparison function described in Figure

7.3.. If there is improvement, then, , and are

updated and the neighborhood turns to be the first neighborhood, i.e., . When

there is no improvement, then a move to the second neighborhood is made. When

there is no improvement on the second neighborhood, the algorithm stops, takes

 , and continues with the next iteration. More specifically, the proposed VNS

algorithm continues taking as the new incumbent solution until a

predetermined maximum CPU time is reached.

Other VNS algorithms used in this study has the same Shaking Phase. However,

in the Local Search Phase, swap and insert moves are used, which are presented on

Figure 7.1 and 7.2, respectively, i.e., either . or the

reverse. The reason why fractional insert move is not used in the Local Search Phase

is that, the trasferred quanitity of lot would change in each step, and accordingly

there will be infinite possible moves when the entire search space would be explored.

Thus, fractional insert move is used only in the Shaking Phase of the proposed VNS

algorithms.

55

7.2.2 Variable Neighborhood Descent (VND)

Pseudocode of VND algorithm used in this study can be observed in Figure 7.5 in

detail.

VND ()

 ,

WHILE

IF

ELSEIF

ENDIF

IF improvement = 0

ELSEIF

ENDIF

ENDWHILE

Figure 7.5 Pseudocode for VND Algorithm used in this study

The main difference of VND and VNS is that, VND does not have a Shaking

Phase.

VND works as follows: Firstly, initial best parameters;

 , and are found from the

initial solution.

Then, an entire search is made whitin the first neighborhood, , using

Swap Best Improvement method, proposed in Figure 7.2. The minimum objective

function value, denoted as , among all solutions of the Swap Best

Improvement is found and compared with the value using comparison

Figure 7.5 Pseudocode for VND Algorithm used in this study (kmax=2, N1=swap move, N2=insert

move)

56

function described in Figure 7.3. If there is improvement, then, ,

and are updated. Afterwards, Swap Best Improvement continues

with the new incumbent solution . If no improvement occurs, then, algorithm

continues with the next neighborhood .

takes the incumbent solution as the input and explores the entire search region.

The minimum in this neighborhood is found and compared with the value

again with the comparison function. Likewise, if, there is an improvement , ,

 and are updated and algorithm returns to the first

neighborhood again. If no improvement is achieved on the second

neighborhood also, then, the algorithm stops.

In this study, two different VND algorithms are tested. In the first one

 , and in the second one is

 . The only difference between the two VND variants is the sequence of

the neighborhoods.

7.2.3 Reduced Variable Neighborhood Search (RVNS)

The pseudocode of RVNS heuristic used in this study can be seen in Figure 7.6.

Different from VNS, RVNS consists of Shaking Phase only.

As it can be seen from Figure 7.6, starting with the initial solution, let

 , and be the best

so far values.

Starting from the first neighborhood, a fractional insert move is made, and the

results are compared with the incumbent solution using comparison function

described in Figure 7.3. When there is an improvement, then the search continues

within the first neighborhood scheme, otherwise, a move to the next neighborhood is

done. Furthermore, the algorithm starts from the first neighborhood and repeats all

these steps, taking the best so far solution, obtained from the last iteration as

the input, until the maximum number of iterations is achieved.

57

RVNS (

 ,

WHILE

// Shaking

WHILE

IF

ELSE

ENDIF

//compare , use Superiority of Feasible Solutions and NFT

IF improvement = 0

ELSE

ENDIF

ENDWHILE

ENDWHILE

In this study, six different RVNS algorithms are used. The reason is that, there are

three types of moves defined in Section 6.3, pair-wise combinations of three moves

are used, i.e., . Figure 7.6 represents only one RVNS with neighborhoods

 .

Figure 7.6 Pseudocode for RVNS Algorithm used in this study (kmax=2, N1=fractional insert move,

N2=swap move)

58

7.3 Computational Study

All benchmark instances are tested on the proposed algorithms. The average %

deviations from the lower bounds and average computation times for each 10

different instance type are calculated and compared with the results of James &

Almada-Lobo (2011). The NFT parameters used in this study are, : 0.001 and

 : 0.4. All computational experiments were performed on a Intel(R) Core(TM) i-5

2430M CPU: 2.40 GHz with 4GB RAM and algorithms were coded in MATLAB

R2010A.

For each 10 different instance combination, the average % deviation from lower

bound is calculated with the following formula,

[∑

]

⁄ (7.2)

7.3.1 Experimental Results for Variable Neighborhood Search (VNS)

In the proposed VNS algorithms mentioned before, fractional insert move is used

only in the Shaking Phase. Insert and swap neighborhood schemes are used in the

Local Search Phase. Also, both VNS algorithms are set to run to 3600 seconds time

limit so as to use the same time limit with the compared benchmark instances.

As it can be seen in Table 7.1, both VNS algorithms performs well on various

problems. Also, when the differences of average deviations between each proposed

VNS algorithm and current best known solutions are compared, it can be deduced

that the performance of both VNS algorithms are good. A negative value on Table

7.2 and 7.3 indicate an improved dataset. Another deduction is that when total

number of possible product-machine allocations, MProb, is at low level, then the

neighborhood combination of : insert move : swap has a better solution quality

compared to the other neighborhood pair.

59

Table 7.1 Average % deviations from lower bound of the proposed VNS algorithm (Compared with

the benchmark results)

Problem Type Average % deviations from lower bound

VNS

VNS

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-

80-20
1.36 1.52 1.49 1.47 2.03

Data2-15-10-0.8-0.0-

50-80-20
2.55 2.59 2.60 2.92 3.06

Data2-15-10-0.8-0.0-

100-60-20
8.11 7.08 7.10 8.24 7.84

Data2-15-10-0.8-0.0-

100-80-10
6.27 4.94 5.90 5.06 5.19

Data2-15-10-0.8-0.0-

100-80-20
6.17 6.59 6.02 6.01 7.13

Data2-20-10-0.8-0.0-

100-80-20
7.60 6.86 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-

80-20
9.33 6.74 10.78 6.93 6.63

Data3-15-10-0.6-0.0-

100-60-20
4.51 4.28 4.37 5.13 4.64

Data3-15-10-0.8-0.0-

50-80-20
13.02 12.97 12.86 14.29 14.31

Data3-15-10-0.8-0.0-

100-60-20
8.02 9.40 8.00 9.31 9.78

60

Table 7.2 Differencens of average % deviations from lower bound of the proposed VNS algorithms

Problem Type Difference of Average % deviations from lower bound

VNS

and Best So Far

VNS

and Best So Far

Data2-15-5-0.8-

0.0-50-80-20
-0.11

0.05

Data2-15-10-0.8-

0.0-50-80-20
-0.05

-0.01

Data2-15-10-0.8-

0.0-100-60-20
1.01

-0.02

Data2-15-10-0.8-

0.0-100-80-10
1.21

-0.12

Data2-15-10-0.8-

0.0-100-80-20
0.16

0.58

Data2-20-10-0.8-

0.0-100-80-20
0.62

-0.12

Data3-15-5-0.8-

0.0-50-80-20
2.70

0.11

Data3-15-10-0.6-

0.0-100-60-20
0.14

-0.09

Data3-15-10-0.8-

0.0-50-80-20
0.16

0.11

Data3-15-10-0.8-

0.0-100-60-20
0.02

1.40

7.3.2 Experimental Results for Variable Neighborhood Descent (VND)

Following tables indicate the average % deviations from lower bound and average

CPU time in seconds for the two VND algorithms tested on the benchmark instances.

According to the Table 7.3, it can be seen that various instance types were

improved. The differences among percentage deviations from lower bound can be

seen in Table 7.4. On the other hand, Table 7.5 indicates that the computation time of

61

both VND algorithms are approximately 18 minutes, which implies that VND

algorithm works somehow efficient for small to mid-size problems.

Table 7.3 Average % deviations from lower bound of the proposed VND algorithm (Compared with

the benchmark results)

Problem Type Average % deviations from lower bound

VND

VND

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0- 50-

80-20
2.01 1.71 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-

80-20
2.71 2.52 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-

60-20
6.96 7.07 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-

80-10
5.12 5.09 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-

80-20
6.11 6.38 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-

80-20
6.74 6.88 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-

80-20
7.58 7.49 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-

60-20
5.21 5.17 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-

80-20
14.38 14.42 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-

60-20
9.14 9.26 8.00 9.31 9.78

62

Table 7.4 Differencens of average % deviations from lower bound of the proposed VND algorithms

Problem Type Difference of Average % deviations from lower bound

VND

and Best So Far

VND

and Best So Far

Data2-15-5-0.8-

0.0-50-80-20
0.54 0.24

Data2-15-10-

0.8-0.0-50-80-20
0.11 -0.08

Data2-15-10-

0.8-0.0-100-60-

20

-0.14 -0.03

Data2-15-10-

0.8-0.0-100-80-

10

0.06 0.03

Data2-15-10-

0.8-0.0-100-80-

20

0.10 0.37

Data2-20-10-

0.8-0.0-100-80-

20

-0.24 -0.10

Data3-15-5-0.8-

0.0-50-80-20
0.95 0.86

Data3-15-10-

0.6-0.0-100-60-

20

0.84 0.80

Data3-15-10-

0.8-0.0-50-80-20
1.52 1.56

Data3-15-10-

0.8-0.0-100-60-

20

1.14 1.26

63

Table 7.5 Average Computation Times of the proposed VND algorithm (Compared with the

benchmark results)

Problem Type Average time in seconds

VND

VND

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-

50-80-20
634.8 594.4 323.7 969.2 74.1

Data2-15-10-0.8-0.0-

50-80-20
727.4 779.2 527.1 1173.7 244.4

Data2-15-10-0.8-0.0-

100-60-20
708.2 726.1 1371.2 851.1 559.8

Data2-15-10-0.8-0.0-

100-80-10
1294.4 1343.8 3756.1 1909.3 2524.1

Data2-15-10-0.8-0.0-

100-80-20
945.2 1053.0 322.2 1170.0 198.1

Data2-20-10-0.8-0.0-

100-80-20
1174.2 1328.9 1254.5 930.4 626.7

Data3-15-5-0.8-0.0-

50-80-20
1584.3 1272.1 7623.0 1427.5 941.3

Data3-15-10-0.6-0.0-

100-60-20
1149.2 1076.5 3023.8 1266.9 417.0

Data3-15-10-0.8-0.0-

50-80-20
1545.7 1293.5 2910.9 1220.9 950.9

Data3-15-10-0.8-0.0-

100-60-20
1617.9 1337.8 960.3 1035.0 239.1

Average 1138.13 1080.53 2207.3 1195.4 677.5

7.3.3 Experimental Results for Reduced Variable Neighborhood Search (RVNS)

Since there are ten different combinations of the benchmark instances, randomly a

single benchmark instance is tested on each RVNS algorithm in order to see when

best so far value converges. The figures in the appendix are the convergence plots of

selected four instances having different characteristics. Six different RVNS

algorithms were tested. The convergence points of randomly selected ten instances

from different combinations are summarized in tables 7.6-11, where each table

64

indicates the iteration numbers when convergence started over the tested RVNS

algorithm.

Table 7.6 Randomly Selected Instances and their iteration numbers where convergence starts tested

algorithm: RVNS (N1: insert, N2:swap)

Randomly Selected Instance

RVNS (N1: insert, N2:swap)

Iteration Number where best so far value

started to converge (after 3000 iterations)

Data2-15-5-0.8-0.0-50-80-20-1 2567

Data2-15-10-0.8-0.0-50-80-20-3 2572

Data2-15-10-0.8-0.0-100-60-20-4 2603

Data2-15-10-0.8-0.0-100-80-10-8 2311

Data2-15-10-0.8-0.0-100-80-20-6 2652

Data2-20-10-0.8-0.0-100-80-20-8 2189

Data3-15-5-0.8-0.0-50-80-20-7 2783

Data3-15-10-0.6-0.0-100-60-20-1 2451

Data3-15-10-0.8-0.0-50-80-20-5 2664

Data3-15-10-0.8-0.0-100-60-20-3 2660

Table 7.7 Randomly Selected Instances and their iteration numbers where convergence starts Tested

Algorithm: RVNS (N1: swap, N2:insert)

Randomly Selected Instance

RVNS (N1: swap, N2:insert)

Iteration Number where best so far value started

to converge (after 3000 iterations)

Data2-15-5-0.8-0.0-50-80-20-1 2711

Data2-15-10-0.8-0.0-50-80-20-3 2579

Data2-15-10-0.8-0.0-100-60-20-4 2703

Data2-15-10-0.8-0.0-100-80-10-8 2643

Data2-15-10-0.8-0.0-100-80-20-6 2589

Data2-20-10-0.8-0.0-100-80-20-8 2244

Data3-15-5-0.8-0.0-50-80-20-7 2688

Data3-15-10-0.6-0.0-100-60-20-1 2430

Data3-15-10-0.8-0.0-50-80-20-5 2219

Data3-15-10-0.8-0.0-100-60-20-3 2827

65

Table 7.8 Randomly Selected Instances and their iteration numbers where convergence starts Tested

Algorithm: RVNS (N1: fractional insert, N2:insert)

Randomly Selected Instance

RVNS (N1:fractional insert, N2:insert)

Iteration Number where best so far value started

to converge (after 3000 iterations)

Data2-15-5-0.8-0.0-50-80-20-1 2696

Data2-15-10-0.8-0.0-50-80-20-3 2727

Data2-15-10-0.8-0.0-100-60-20-4 2203

Data2-15-10-0.8-0.0-100-80-10-8 2651

Data2-15-10-0.8-0.0-100-80-20-6 2538

Data2-20-10-0.8-0.0-100-80-20-8 2478

Data3-15-5-0.8-0.0-50-80-20-7 2430

Data3-15-10-0.6-0.0-100-60-20-1 2666

Data3-15-10-0.8-0.0-50-80-20-5 2649

Data3-15-10-0.8-0.0-100-60-20-3 2488

Table 7.9 Randomly Selected Instances and their iteration numbers where convergence starts Tested

Algorithm: RVNS (N1: fractional insert, N2:swap)

Randomly Selected Instance

RVNS (N1:fractional insert, N2:swap)

Iteration Number where best so far value started

to converge (after 3000 iterations)

Data2-15-5-0.8-0.0-50-80-20-1 2508

Data2-15-10-0.8-0.0-50-80-20-3 2733

Data2-15-10-0.8-0.0-100-60-20-4 2234

Data2-15-10-0.8-0.0-100-80-10-8 2251

Data2-15-10-0.8-0.0-100-80-20-6 2586

Data2-20-10-0.8-0.0-100-80-20-8 2392

Data3-15-5-0.8-0.0-50-80-20-7 2794

Data3-15-10-0.6-0.0-100-60-20-1 2613

Data3-15-10-0.8-0.0-50-80-20-5 2648

Data3-15-10-0.8-0.0-100-60-20-3 2861

66

Table 7.10 Randomly Selected Instances and their iteration numbers where convergence starts Tested

Algorithm: RVNS (N1: insert, N2:fractional insert)

Randomly Selected Instance

RVNS (N1: insert, N2: fractional insert)

Iteration Number where best so far value started

to converge (after 3000 iterations)

Data2-15-5-0.8-0.0-50-80-20-1 2869

Data2-15-10-0.8-0.0-50-80-20-3 2723

Data2-15-10-0.8-0.0-100-60-20-4 2645

Data2-15-10-0.8-0.0-100-80-10-8 2633

Data2-15-10-0.8-0.0-100-80-20-6 2714

Data2-20-10-0.8-0.0-100-80-20-8 2451

Data3-15-5-0.8-0.0-50-80-20-7 2807

Data3-15-10-0.6-0.0-100-60-20-1 2711

Data3-15-10-0.8-0.0-50-80-20-5 2648

Data3-15-10-0.8-0.0-100-60-20-3 2607

Table 7.11 Randomly Selected Instances and their iteration numbers where convergence starts Tested

Algorithm: RVNS (N1: swap, N2:fractional insert)

Randomly Selected Instance

RVNS (N1:swap, N2: fractional insert)

Iteration Number where best so far value started

to converge (after 3000 iterations)

Data2-15-5-0.8-0.0-50-80-20-1 2631

Data2-15-10-0.8-0.0-50-80-20-3 2538

Data2-15-10-0.8-0.0-100-60-20-4 2340

Data2-15-10-0.8-0.0-100-80-10-8 2407

Data2-15-10-0.8-0.0-100-80-20-6 2594

Data2-20-10-0.8-0.0-100-80-20-8 2373

Data3-15-5-0.8-0.0-50-80-20-7 2299

Data3-15-10-0.6-0.0-100-60-20-1 2643

Data3-15-10-0.8-0.0-50-80-20-5 2254

Data3-15-10-0.8-0.0-100-60-20-3 2386

As it can be deduced from the convergence plots, which can be seen in

Appendices, and convergence tables (Table 7.6-11), the solution converges

approximately after 2500 iterations. In fact, in some cases, the convergence point is

closer to 2900 iterations, however, for those instances, only slight changes in the best

67

so far value is detected after 2500 iterations. It can also be understood from the plots,

fractional insert move results in more fluctuations on the solution.

By looking at the convergence plots, it can also be claimed that, starting with a

good initial solution will have no major effect on the convergence point. In other

words, even a good initial solution is used, the proposed RVNS algorithms converge

nearly on the same iteration number and best so far values are close to each other. It

can be concluded that the effect of a good initial solution might be not so clearly seen

here, due to the excessively high computational time, i.e., approximately 8 hours for

each instance. Only effect of starting with a good initial solution that can be seen

from the plots is that, in some of the above convergence plots, there is a jump within

the first 20-25 iterations. The reason might possibly be that the initial solution is

infeasible. However, when feasible solutions were achieved, the best so far value

would decline due to the Superiority of Feasible Solutions (Deb, 2000). The

following tables show the average % deviations from the lower bound compared to

the best so far solutions in the literature, when six RVNS algorithms were tested.

Table 7.12 Average % deviations of RVNS (N1: insert, N2:swap)

Problem Type Average % deviations from lower bound

RVNS

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-80-20 1.62 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-80-20 2.38 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-60-20 7.26 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-80-10 5.14 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-80-20 7.18 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-80-20 6.89 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-80-20 6.59 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-60-20 4.33 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-80-20 12.81 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-60-20 10.14 8.00 9.31 9.78

68

Table 7.13 Average % deviations of RVNS (N1: swap, N2:insert)

Problem Type Average % deviations from lower bound

RVNS

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-80-20 1.66 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-80-20 2.63 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-60-20 6.93 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-80-10 6.15 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-80-20 6.33 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-80-20 6.50 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-80-20 8.94 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-60-20 5.44 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-80-20 12.91 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-60-20 11.75 8.00 9.31 9.78

Table 7.14 Average % deviations of RVNS (N1: insert, N2:fractional insert)

Problem Type Average % deviations from lower bound

RVNS

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-80-20 1.57 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-80-20 2.64 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-60-20 6.92 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-80-10 5.10 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-80-20 5.88 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-80-20 6.90 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-80-20 8.42 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-60-20 9.69 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-80-20 17.24 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-60-20 11.49 8.00 9.31 9.78

69

Table 7.15 Average % deviations of RVNS (N1: swap, N2:fractional insert)

Problem Type Average % deviations from lower bound

RVNS

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-80-20 1.51 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-80-20 2.45 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-60-20 7.08 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-80-10 5.03 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-80-20 6.34 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-80-20 6.91 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-80-20 7.23 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-60-20 4.36 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-80-20 13.14 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-60-20 9.20 8.00 9.31 9.78

Table 7.16 Average % deviations of RVNS (N1: fractional insert, N2:swap)

Problem Type Average % deviations from lower bound

RVNS

 ,

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-80-20 1.43 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-80-20 2.51 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-60-20 7.12 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-80-10 5.08 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-80-20 5.86 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-80-20 6.84 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-80-20 8.26 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-60-20 4.81 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-80-20 13.40 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-60-20 7.96 8.00 9.31 9.78

70

Table 7.17 Average % deviations of RVNS (N1: fractional insert, N2:insert)

Problem Type Average % deviations from lower bound

RVNS

 ,

XPHRF INSRF FOHRF9

Data2-15-5-0.8-0.0-50-80-20 1.45 1.49 1.47 2.03

Data2-15-10-0.8-0.0-50-80-20 2.56 2.60 2.92 3.06

Data2-15-10-0.8-0.0-100-60-20 7.04 7.10 8.24 7.84

Data2-15-10-0.8-0.0-100-80-10 5.12 5.90 5.06 5.19

Data2-15-10-0.8-0.0-100-80-20 6.01 6.02 6.01 7.13

Data2-20-10-0.8-0.0-100-80-20 6.85 6.98 8.03 7.68

Data3-15-5-0.8-0.0-50-80-20 7.14 10.78 6.93 6.63

Data3-15-10-0.6-0.0-100-60-20 5.07 4.37 5.13 4.64

Data3-15-10-0.8-0.0-50-80-20 12.91 12.86 14.29 14.31

Data3-15-10-0.8-0.0-100-60-20 8.14 8.00 9.31 9.78

From Table 7.12-17, all instances were improved in one of the tested RVNS

algorithms. All results of the tested RVNS algorithms can be seen as a summary in

Table 7.18.

It can be claimed that, neighborhoods of N1: insert move, N2: swap move results

well on 3 machine case. Also, neighborhoods of N1: fractional insert move, N2: insert

move show little improvement. However, the gap of the average % deviations

between the lower bounds and best so far values of RVNS is still large. One reason

might be due to the complexity of the problem. In more detail, in single machine

benchmark results of James & Almada-Lobo (2011), the average % deviations are

not greater than 3%, however, when number of machines increases, solving the

problem is getting much more difficult. Another reason might be the tightness of the

lower bound. James & Almada-Lobo (2011), stated that, their proposed lower bound

procedure might not appropriate for the multi machine problem instances.

71

Table 7.18 Summary of average % deviations of all tested RVNS Algorithms

 Average % deviations from lower bound

Problem

Type

RVNS

RVNS

RVNS

RVNS

RVNS

 ,

RVNS

 ve

Dataset1 1.62 1.66 1.57 1.51 1.43 1.45

Dataset2 2.38 2.63 2.64 2.45 2.51 2.56

Dataset3 7.26 6.93 6.92 7.08 7.12 7.04

Dataset4 5.14 6.15 5.10 5.03 5.08 5.12

Dataset5 7.18 6.33 5.88 6.34 5.86 6.01

Dataset6 6.89 6.50 6.90 6.91 6.84 6.85

Dataset7 6.59 8.94 8.42 7.23 8.26 7.14

Dataset8 4.33 5.44 9.69 4.36 4.81 5.07

Dataset9 12.81 12.91 17.24 13.14 13.40 12.91

Dataset

10
10.14 11.75 11.49 9.20 7.96 8.14

Even though all benchmark instances were improved with one of the RVNS

methods presented, the computational time is almost 8 hours for 3000 iterations.

However, the differences of average deviations from best so far values, which can be

seen in Table 7.19, are satisfactory.

72

Table 7.19 Summary of differences of average % deviations of all tested RVNS Algorithms from best

so far lower bounds

 Differences of average % deviations from lower bound (Best So Far values)

Problem

Type

RVNS

RVNS

RVNS

RVNS

RVNS

RVNS

 ve

Dataset1 0.15 0.19 0.10 0.04 -0.04 -0.02

Dataset2 -0.22 0.03 0.04 -0.15 -0.09 -0.04

Dataset3 0.16 -0.17 -0.18 -0.02 0.02 -0.06

Dataset4 0.08 1.09 0.04 -0.03 0.02 0.06

Dataset5 1.17 0.32 -0.13 0.33 -0.15 0.00

Dataset6 -0.09 -0.48 -0.08 -0.07 -0.14 -0.13

Dataset7 -0.04 2.31 1.79 0.60 1.63 0.51

Dataset8 -0.04 1.07 5.32 -0.01 0.44 0.70

Dataset9 -0.05 0.05 4.38 0.28 0.54 0.05

Dataset10 2.14 3.75 3.49 1.20 -0.04 0.14

73

CHAPTER EIGHT

CONCLUSION

In this study, a different type of the Capacitated Lot Sizing and Scheduling

Problem (CLSP) is tested over different VNS variants. Different than the classical

single machine case, there are parallel machines with different production

capabilities. On the other hand, sequence-dependent setup times, costs and setup

carryover are considered. Moreover, each machine has different capacities varying

from period to period. These above criteria makes the problem more complex.

In the literature, 100 benchmark instances have been generated which are

classified into 10 different combinations and have different characteristics and the

overall best known solutions are presented in the paper of James & Almada-Lobo,

(2011).

In order to improve the overall best known solutions in the literature, variants of

VNS are utilized. As neighborhood strategies, three types of moves are used. In fact,

these moves were previously used for the single machine case by Almada-Lobo &

James, (2010). However, in this study, these moves have been adapted to the parallel

machine case.

Another difference of this study is the use of Constraint Handling Techniques. In

order to give a chance to the infeasible solutions, violation of some constraints like

capacity violation, demand satisfaction, and violation on the upper bound production

quantity are penalized by Near Feasible Threshold (Smith & Tate, 1993; Tate &

Smith, 1995). Also, Superiority of Feasible Solutions is used (Deb, 2000).

For the VNS, fractional insert move is used only in the Shaking Phase and the

remaining two moves are used respectively in the Local Search Phase. Maximum

computational time is used as the terminating condition, which is 3600 seconds. As a

result, both VNS algorithms work well almost for every problem instance. On the

other hand, when total number of possible product-machine allocations, MProb, is at

74

low level, then the neighborhood combination of : insert move : swap move

has a better solution quality compared to the other neighborhood pair.

Another variant of VNS, VND is also used as a tested heuristic. Two different

VND algorithms have been tested over the 100 benchmark problems. Since the entire

search space within a neighborhood will be made in VND, the neighborhood

structure is the pairwise combinations of insert and swap moves. Moreover, it is clear

that both VND algorithms works relatively well since the differences from average

deviations are quite satisfactory. One advantage of the VND algorithm is its

efficiency in terms of the computation time. The computation time of both VND

algorithms are approximately 18 minutes, which is quite reasonable.

Lastly, six pairwise combinations of RVNS algorithm have also been tested. In

this case, maximum number of 3000 iterations is used as the terminating criteria,

which took almost 8 hours for each instance. Also, average convergence points are

determined for each combination of the test problems. RVNS variants resulted best

and nearly all overall best known solutions were improved. However, the weakness

of the RVNS is the high computation time. As a result, the efficiency of the heuristic

is low. Similar to all algorithms tested, an increase in the number of products results

in low % deviation from the lower bound.

For the future work, algorithms presented in this study can be applied to the

various lot sizing and scheduling problems in the literature.

75

REFERENCES

Abbasi, B., Niaki, S. T. A., Khalife, M. A. & Faize, Y. (2011). A hybrid variable

neighborhood search and simulated annealing algorithm to estimate the three

parameters of the Weibull distribution. Expert Systems with Applications, 38 (1),

700-708.

Almada-Lobo, B., Klbjan, D., Carravilla, M. A. & Oliveira, J. F. (2007). Single

machine multi-product capacitated lot sizing with sequence-dependent setups.

International Journal of Production Research, 45 (20), 4873-4894.

Almada-Lobo, B. & James, R. (2010). Neighborhood search metaheuristics for

capacitated lot sizing and sequence-dependent setups. International Journal of

Production Research, 48, 861-878.

Anderson, E. J. & Ferris, M. C. (1994). Genetic algorithms for combinatorial

optimization: the assembly line balancing problem, Journal on Computing, 6,

161-173.

Baeck, T., Fogel, D. & Michalewicz, Z. (Eds.) .(1997). Handbook of evolutionary

computation. Oxford: Oxford.

Barbarosoğlu, G. & Özdamar, L. (2000). A simulated annealing approach for the

multi-level multi-item capacitated lot sizing problem. Computers and Operations

Research, 27, 895-904.

Behnamian, J., Zandieh, M. & Fatemi Ghomi, S. M. T. (2009). Parallel-machine

scheduling problems with sequence-dependent setup times using an ACO, SA and

VNS hybrid algorithm. Expert Systems with Applications, 36 (6), 9637-44.

76

Beraldi, P., Ghiani, G., Grieco, A. & Guerriero, E. (2008). Rolling-horizon and fix-

and-relax heuristics for the parallel machine lot-sizing and scheduling problem

with sequence-dependent set-up costs. Computers and Operations Research, 35

(11), 3644-56.

Bitran, G. R. & Yanasse, H. H. (1982). Computational complexity of the capacitated

lot size problem. Manage Science, 28 (10), 1174–1186.

Blocher, J. D., Chand, S. & Sengupta, K. (1999). The changeover scheduling

problem with time and cost considerations: analytical results and a forward

algorithm. Operations Research, 47(4), 559–569.

Brüggemann, W. & Jahnke, H. (2000). The discrete lot-sizing and scheduling

problem: complexity and batch modification for batch availability. European

Journal of Operational Research, 124 (3), 511-528.

Carlson, S. E. (1995). A general method for handling constraints in genetic

algorithms. Proceedings of the Second Annual Joint Conference on Information

Science, 663-667.

Cattrysse, D., Salomon, M., Kuik, R. & Van Wassenhove, L. N. (1993). Adual ascent

and column generation heuristic for the discrete lotsizing and scheduling problem

with setup times. Management Science, 39(4), 477–486.

Chen, Y. Y., Chen-Yang, Y., Wang, L. & Chen, T. (2013). A hybrid approach based

on the variable neighborhood search and particle swarm optimization for parallel

machine scheduling problems—a case study for solar cell industry. International

Journal of Production Economics, 141(1), 66-78.

Chen, W. H. & Thizy, J. M. (1990). Analysis of relaxations for the multi-item

capacitated lot-sizing problem. Annals of Operations Research, 26, 29-72.

77

Cheng, C. H., Madan, M. S., Gupta, Y. & So, S. (2001). Solving the capacitated lot-

sizing problem with backorder consideration. Journal of Operations Research

Society, 52, 952–959.

Coello, C. C. (2000). Use of a self-adaptive penalty approach for engineering

optimization problems. Computers in Industry, 41 (2), 113-127.

Coello, C. C. (2002). Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: a survey of the state of the art. Computer Methods

in Applied Mechanics and Engineering, 191, 1245-1287.

Coit, D. & Smith, A. E. (1995). Using a neural network as a function evaluator

during GA search for reliability optimization. Intelligent Engineering Systems

Through Artificial Neural Networks, 5, 369-374.

Dastidar, G. S. & Nagi, R. (2005). Scheduling injection molding operations with

multiple resource constraints and sequence dependent setup times and costs.

Computers and Operations Research, 32, 2987-3005.

Deb, K. (2000) An efficient constraint handling method for genetic algorithms.

Computer Methods in Applied Mechanical Engineering, 186, 311-338.

Drexl, A. & Kimms, A. (1997). Lot sizing and scheduling – survey and extensions.

European Journal of Operational Research, 99, 221-235.

Dobson, G., Karmarkar, U. S. & Rummel, J. L. (1987). Batching to minimize flow

times on one machine. Management Science, 33, 784–799.

Dobson, G. (1992). The cyclic lot scheduling problem with sequence dependent

setups. Operations Research, 40 (4), 736–749.

78

Elmaghraby, S. E. (1978). The economic lot scheduling problem (ELSP): review and

extensions. Management Science, 24, 587-598.

Eppen, G. D. & Martin, R. K. (1987). Solving multi-item capacitated lot-sizing

problems using variable redefinition. Operations Research, 35, 832-848.

Erlenkotter, D. (1990). Ford Whitman Harris and the economic order quantity model.

Operations Research, 38 (6), 937-946.

Ferreira, D., Morabito, R. & Rangel, S. (2009). Solution approaches for the soft drink

integrated production lot sizing and scheduling problem. European Journal of

Operational Research, 196, 697-706.

Fleischmann, B. (1990). The discrete lot-sizing and scheduling problem. European

Journal of Operations Research, 44, 337–348.

Fleischmann, B. (1994). The discrete lot-sizing and scheduling problem with

sequence-dependent setup costs. European Journal of Operational Research,

75(2), 395–404.

Fleischmann, B. & Meyr, H. (1997). The general lotsizing and scheduling problem.

OR Spektrum, 19(1), 11–21.

Gelders, L. F., Maes, J. & van Wassenhove, L. N. (1986). A Branch and Bound

Algorithm for the multi-item single level capacitated dynamic lotsizing problem.

Lecture notes in economics and mathematical systems, 266, 92-108.

Gen, M. & Cheng, R. (2000). Genetic Algorithms and engineering optimization,

Canada: John Wiley & Sons.

Goldberg, D. (1989). Genetic Algorithms in search, optimization and machine

learning. Reading, Massachusetts: Addison-Wesley Publishing Co.

79

Gopalakrishnan, M., Miller, D. M. & Schmidt, C. P. (1995). A framework for

modeling setup carryover in the capacitated lot-sizing problem. International

Journal of Production Research, 33 (7), 1973-1988.

Gopalakrishnan, M., Ding, K., Bourjolly, J. M. & Mohan, S. (2001). A tabu-search

heuristic for the capacitated lot-sizing problem with set-up carryover.

Management Science, 47 (6), 851-863.

Gupta, D. & Magnusson, T. (2005). The capacitated lot-sizing and scheduling

problem with sequence-dependent setup costs and setup times. Computers &

Operations Research, 32(4), 727–747.

Harris, F. W. (1913). How many parts to make at once. Factory: The Magazine of

Management, 1(10), 135-136.

Haase, K. (1998). Capacitated lot-sizing with linked production quantities of

adjacent periods, Berlin: Springer.

Haase, K. & Kimms, A. (2000). Lot sizing and scheduling with sequence dependent

setup costs and times and efficient rescheduling opportunities. International

Journal of Production Economics, 66 (2), 159–169.

Hansen, P., Mladenović, N. & Perez-Britos, D. (2001). Variable neighbourhood

decomposition search. Journal of Heuristics, 7 (4), 335- 350.

Hansen, P. & Mladenović, N. (2005). Variable neighborhood search (211-238).

Berlin: Springer.

Hansen, P., Mladenović, N. & Moreno Pérez, J. A. (2010). Variable neighbourhood

search: Methods and applications, Annals of Operations Research, 175 (1) , 367-

407.

80

Hindi, K. S. (1996). Solving the CLSP by a tabu search heuristic. Journal of the

Operational Research Society, 47, 151-161.

Hoffmeister, F. & Sprave, J. (1996). Problem-independent handling of constraints by

use of metric penalty functions. Proceedings of the Fifth Annual Conference on

Evolutionary Computing. 289-294. San Diego, California.

Homaifar, A., Lai, S. H. Y. & Qi, X. (1994). Constrained optimization via genetic

algorithms. Simulation, 62 (4), 242-254.

Hung Y. F. & Chien K. L. (2000). A multi-class multi-level capacitated lot sizing

model. Journal of Opearations Research Society, 51 (11), 1309–1318.

James, J. W. R. & Almada-Lobo, B. (2011). Single and parallel machine capacitated

lotsizing and scheduling: new iterative MIP-based neighborhood search heuristics.

Computers & Operations Research, 12 (38), 1816-1825.

Jans, R. (2009). Solving lot-sizing problems on parallel identical machines using

symmetry-breaking constraints. Informs Journal on Computing, 21 (1), 123-36.

Jans, R. & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review.

International Journal of Production Research, 46 (6), 1619-43.

Joines, J. & Houck, C. (1994). On the use of non-stationary penalty functions to

solve nonlinear constrained optimization problems with GAs. Proceedings of the

first IEEE Conference on Evolutionary Computation. 579-584. Orlando, Florida.

Kang S, Malik K. & Thomas L. J. (1999). Lotsizing and scheduling on parallel

machines with sequence-dependent setup costs. Management Science, 45 (2),

273–289.

81

Kazarlis, S. & Petridis, V. (1998). Varying fitness functions in genetic algorithms:

studying the rate of increase of the dynamic penalty terms. Parallel Problem

Solving from Nature – V PPSN V, Amsterdam, Netherlands: Springer Verlag.

Kimms, A. (1999). A genetic algorithm for multi-level, multi-machine lot sizing and

scheduling. Computers & Operations Research, 26, 829-848.

Kohlmorgen, U., Schmeck, H. & Haase, K. (1999). Experiences with fine-grained

parallel genetic algorithms. Annals of Operations Research, 90, 203–219.

Kuik, R. & Salomon, M. (1990). Multi-level lot sizing problem: evaluation of a

simulated-annealing heuristic. European Journal of Operational Research, 45,

25-37.

Kuik, R., Salomon, M., van Wassenhove, L. N. & Maes, J., (1993). Linear

programming, simulated annealing and tabu search heuristics for lotsizing in

bottleneck assembly systems. IIE Transactions, 25 (1), 62-72.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and

approximate algorithms. European Journal of Operational Research, 59, 231-47.

Laporte, G. (1992). The vehicle routing problem: An overview of exact and

approximate algorithms. European Journal of Operational Research, 59, 345-58.

Liu, L. & Zhou, H. (2013). Hybridization of harmony search with variable

neighborhood search for restrictive single-machine earliness/tardiness problem.

Information Sciences, 226, 68-92.

Maes, J. & Van Wassenhove, L. N. (1991). Multilevel capacitated lotsizing

complexity and LP-based heuristics. European Journal of Operational Research,

53, 131–148.

82

Martins, A. X., Duhamel, C., Mahey, P., Saldanha, R. R. & de Souza, C. M. (2012)

Variable neighborhood descent with iterated local search for routing and

wavelength assignment. Computers and Operations Research, 39 (9), 2133-41.

Mladenović, N. & Hansen, P. (1997). Variable neighborhood search. Computers and

Operations Research, 24, 1097-1100.

Mladenović, N., Dražić, M., Kovačevic-Vujčić, V. & Čangalović, M. (2008) General

variable neighborhood search for the continuous optimization, European Journal

of Operational Research, 191 (3), 753- 770.

Meyr, H. (2000). Simultaneous lotsizing and scheduling by combining local search

with dual reoptimization. European Journal of Operational Research, 120 (2),

311–326.

Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines.

European Journal of Operational Research, 139 (2), 277–292.

Michalewicz, Z. & Attia, N. F. (1994). Evolutionary optimization of constrained

problems. Proceedings of the third annual conference on Evolutionary

Programming, 98-108. World Scientific.

Michalewicz, Z. (1995). A survey of Constraint Handling Techniques in

Evolutionary Computation Methods. Proceedings of the fourth Annual

Conference on Evolutionary Programming, 135-155.

Millar, H. H. & Yang, M. (1994). Lagrangian heuristics for the capacitated multi-

item lot-sizing problem with backordering. International Journal of Production

Economics, 34 (1), 1–15.

Miller, M. D., Chen, H. C., Matson, J. & Liu, Q. (1999). A hybrid genetic algorithm

for the single machine scheduling problem. Journal of Heuristics, 5, 437–454.

83

Moursli, O. & Pochet, Y. (2000). A Branch-and-Bound algorithm for the hybrid

flowshop. International Journal of Production Economics, 64, 113-125.

Nemhauser, G. L. & Wolsey, L. A. (1988). Integer and combinatorial optimization.

New York: Wiley.

Özdamar, L. & Birbil, S. I. (1998). Hybrid heuristics for the capacitated lot sizing

and loading problem with setup times and overtime decisions. European Journal

of Operations Research, 110, 525-547.

Özdamar, L. & Barbarosoğlu, G. (2000). A lagrangean relaxation - simulated

annealing approach to the multi-level multi-item capacitated lot sizing problem.

International Journal on Production Economics, 68, 319-331.

Özdamar, L. & Bozyel, M. A. (2000). The capacitated lot sizing problem with

overtime decisions and setup times. IIE Transactions, 32, 1043-1057.

Özdamar, L., Birbil, S. I. & Portmann, M. C. (2002). New results for the capacitated

lot sizing problem with overtime decisions and setup times. Production Planning

and Control, 13, 2-10.

Pedroso, J. P. & Kubo, M. (2005). Hybrid tabu search for lot sizing problems. Hybrid

Metaheuristics, Lecture Notes in Computer Science. 3636, Berlin: Springer.

Pochet, Y. & Wolsey, L. (1988). Lot size models with back-logging: strong

reformulations and cutting planes. Mathematical Programming, 40, 317–335.

Quadt, D. & Kuhn, H. (2005). A conceptual framework for lot-sizing and scheduling

of flexible flow lines. International Journal of Production Research, 43 (11),

2291–2308.

84

Quadt, D. & Kuhn, H. (2008). Capacitated lot-sizing with extensions: a review. 4OR,

6, 61-83.

Quadt, D. & Kuhn, H. (2009). Capacitated lot-sizing and scheduling with parallel

machines, back-orders, and setup carry-over. Naval Research Logistics, 56 (4),

366-384.

Riane, F., (1998). Scheduling hybrid flowshops: algorithms and applications, Ph.D.

Thesis. Facultes Universitaires Catholiques de Mons.

Richardson, J. T., Palmer, M. R., Liepins, G. & Hilliard, M. (1989). Some Guidelines

for Genetic Algorithms with Penalty Functions. Proceedings of the Third

International Conference on Genetic Algorithms. 191-197, George Mason

University.

Reiter, B. S., Hildebrandt, T. & Tan, Y. (2013). Effective and efficient scheduling on

dynamic job shops-combining the shifting bottleneck procedure with variable

neighborhood search. CIRP Annals-Manufacturing Technology, 62 (1), 423-426.

Salomon, M., Kuik, R. & van Wassenhove, L. N. (1993). Statistical search methods

for lotsizing problems. Annals of Operations Research, 41, 453-468.

Salomon, M, Solomon, M. M., Van Wassenhove, L. N., Dumas, Y. & Dauzere-

Peres, S. (1997). Solving the discrete lotsizing and scheduling problem with

sequence dependent set-up costs and set-up times using the travelling salesman

problem with time windows. European Journal of Operational Research, 100,

494-513.

Seeanner, F., Almada-Lobo, B. & Meyr, H. (2013). Combining the principles of

variable neighborhood decomposition search and the fix&optimize heuristic to

solve multi-level lot-sizing and scheduling problems. Computers and Operations

Research, 40 (1), 303-317.

85

Smith, A. E. & Tate, D. M. (1993). Genetic optimization using penalty function.

Proceedings of the Fifth International Conference on Genetic Algorithms. 499-

503, San Mateo, California.

Smith-Daniels V. L. & Smith-Daniels D. E. (1986). A mixed integer programming

model for lot sizing and sequencing packaging lines in the process industries. IIE

Transactions, 18, 278–285.

Suerie, C. & Stadtler, H. (2003). The capacitated lot-sizing problem with linked lot

sizes. Management Science, 49 (8), 1039-1054.

Takahama, T. & Sakai, S. (2005). Constrained optimization by applying the α

constrained method to the nonlinear simplex method with mutations. IEEE

Transactions on Evolutionary Computation, 9 (5), 437–451.

Takahama, T., Sakai, S. & Iwane, N. (2006). Solving nonlinear constrained

optimization problems by the ε constrained differential evolution. Proceedings of

the 2006 IEEE Conference on Systems, Management, and Cybernetics. 2322–

2327.

Takahama, T. & Sakai, S. (2010). Constrained optimization by the ε-constrained

differential evolution with an archieve and gradient-based mutation. IEEE

Congress on Evolutionary Computation, 1-9. Barcelona.

Tate, D. M. & Smith, A. E. (1995). Unequal area facility layout using genetic search.

IIE Transactions, 27, 465-472.

Thizy J. M. & Van Wassenhove L. N. (1985). Lagrangean relaxation for the multi-

item capacitated lot-sizing problem: a heuristic implementation. IIE Transactions,

17 (4), 308–313.

86

Trigeiro, W. W., Thomas, L. J. & McClain, J. O. (1989). Capacitated lot sizing with

setup times. Management Science, 35(3), 353–366.

Wagner, H. M. & Whitin, T. M. (1958). Dynamic version of the economic lot size

model. Management Science, 5, 89-96.

Wagner, B. J. & Davis, D. J. (2002). A search heuristic for the sequence dependent

economic lot scheduling problem. European Journal of Operational Research,

141(1), 133–146.

Wittrock, R. J. (1988). An adaptable scheduling algorithm for flexible flow lines.

Operations Research, 36 (4), 445-453.

Xiao, J., Zhang, C., Zheng, L. & Gupta, J. N. D. (2013). MIP-based fix-and-optimise

algorithms for the parallel machine capacitated lot-sizing and scheduling problem.

International Journal of Production Research,

DOI:10.1080/00207543.2013.790570.

87

APPENDICES

88

89

90

91

92

93

94

95

96

97

98

