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VARIABLE NEIGHBORHOOD SEARCH BASED ALGORITHMS FOR THE 

PARALLEL MACHINE CAPACITATED LOTSIZING AND SCHEDULING 

PROBLEM 

ABSTRACT 

 

In this paper, the capacitated lot-sizing and scheduling problem on parallel 

machines with eligibility constraints and sequence-dependent setup times and costs is 

addressed. The aim of this study is to find a production plan that minimizes 

production, setup and inventory holding costs while meeting the demands of 

products for each period without delay for a given planning horizon. Since this 

problem is NP-hard, various types of variable neighborhood search (VNS), variable 

neighborhood descent (VND) and reduced variable neighborhood search (RVNS) 

algorithms are used in order to analyse their performances on this problem. At first, a 

problem specific initial solution method is presented, which satisfies the demand of 

each period.  In order to generate neighborhood solutions, three types of moves are 

defined which are respectively, insert move, swap move, and fractional insert move.. 

To evaluate the effectiveness and efficiency of each solution approach, a 

computational study is made using the benchmark problem instances which are taken 

from the literature. The results indicate that VNS algorithm performs well on small 

sized instances. The performance of VND approach is somehow similar when it is 

compared with the existing solution techniques in literature, and the solution times 

are relatively shorter. Additionally, although relatively high computation times, all 

instances are improved with RVNS algorithm. 

 

Keywords: Capacitated lot sizing and scheduling problem, parallel machines, 

heuristics, variable neighborhood search, variable neighborhood descent, reduced 

variable neighborhood search. 
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PARALEL MAKİNELERDE KAPASİTELİ PARTİ BÜYÜKLÜĞÜ 

BELİRLEME VE ÇİZELGELEME PROBLEMİ İÇİN DEĞİŞKEN 

KOMŞULUK ARAMA TABANLI YÖNTEMLER 

ÖZ 

 

Bu çalışmada, farklı yetkinliklere sahip paralel makinelerde sıra bağımlı ayar 

zamanlı ve maliyetli, kapasiteli parti büyüklüğü belirleme ve çizelgeleme problemi 

ele alınmıştır. Çalışmanın amacı, belirlenen zaman süresi için talebi eksiksiz 

karşılayacak ve toplam üretim, ayar ve stok maliyetini en aza indirecek bir üretim 

planı oluşturmaktır. Problem NP-zor olduğu için, Değişken Komşuluk Arama (DKA) 

yöntemi ve onun türevleri olan Değişken Komşu İniş (DKİ) ve İndirgenmiş Değişken 

Komşuluk Arama (İDKA) yöntemleri kullanılarak her bir yöntemin performansları 

analiz edilmiştir. İlk başta, her periyodun talebini karşılamayı garanti eden, probleme 

özgü bir başlangıç çözüm yöntemi geliştirilmiştir. Komşuluk çözümlerini oluşturmak 

için, 3 farklı hareket tanımlanmıştır, bunlar sırasıyla, yerleştirme, ikili yer  değiştirme 

ve kısmi yerleştirmedir. Her bir çözüm yaklaşımının etkinliğini ve verimliliğini 

değerlendirmek amacıyla, literatürdeki mevcut problemler kullanılarak analizler 

yapılmıştır. Analizlerin sonucunda, Değişken Komşuluk Arama (DKA) yönteminin 

küçük ölçekli problemlerde iyi sonuçlar verdiği görülmüştür. Değişken Komşu İniş 

(DKİ) metodunun literatürdeki mevcut çözüm teknikleriyle benzer sonuçlar verdiği 

saptanırken, İndirgenmiş Değişken Komşuluk Arama (İDKA) yönteminin ise yüksek 

çözüm sürelerine rağmen tüm test edilen problemlerde literatürdeki sonuçların 

hepsinden iyi sonuçlar bulduğu gözlemlenmiştir. 

 

Anahtar Kelimeler: Kapasiteli parti büyüklüğü belirleme ve çizelgeleme problemi, 

paralel makineler, sezgiseller, değişken komşuluk arama, değişken komşu iniş, 

indirgenmiş değişken komşuluk arama.  
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CHAPTER ONE  

INTRODUCTION 

 

Production planning and control is a popular topic in industrial engineering that 

has been studied over many years. Production planning and control covers lots of 

subjects; like forecasting, scheduling theory and inventory management issues. 

Accordingly, lot sizing and scheduling is also examined under production planning 

and control. 

 

Firstly, lot sizing problems emerged as the Economic Order Quantity (EOQ) 

(Harris, 1913). Generally, lot sizing and scheduling problem is the determination of 

the production quantities and schedules on the production lines for providing all 

demands without any shortages. The main aim of this problem is minimizing the 

overall production, inventory, and setup costs. 

 

In the literature, lot sizing and scheduling problems mainly focus on discrete 

production. On the other hand, increase in the customer needs forces the 

manufacturers to change their production system to make-to-order. Besides, with the 

increasing importance of lean production, due to the fluctuations on customer 

demand and high setup costs, production is done in lots. Thus, lot sizing becomes an 

important issue on manufacturing systems and a tactical level of decision making 

problem in the literature. 

 

There are various lot sizing and scheduling problems studied in the literature. 

Detailed explanation related with these problems will be given in the literature 

review part of this study. Moreover, there are many practical cases of the Parallel 

Machine Capacitated Lot Sizing and Scheduling Problem in real world. For instance, 

parmeceutical, chemical, electronics, food, tile manufacturing, tire industry, injection 

molding, the alloy foundry industry and multi-layer ceramics can be given as 

industrial examples (Jans, 2009). In this thesis, parallel machine capacitated lotsizing 

and scheduling problem with sequence-dependent setups (CLSD-PM) is examined 

using three variants of Variable Neighborhood Search (VNS) algorithm.  
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The aim of this thesis is to develop VNS based algorithms to solve the CLSD-PM 

problem. The reason why VNS and its variants, Variable Neighborhood Descent 

(VND) and Reduced Variable Neighborhood Search (RVNS) are chosen is that VNS 

and its variants indicated high performance on different kinds of scheduling 

problems (Hansen & Mladenović, 2010). Besides, there is no study that uses VNS 

for CLSD-PM problem. In this thesis, furthermore, the effect of using Constraint 

Handling Techniques, which is explained in Chapter 5, can be seen. 
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CHAPTER TWO  

LITERATURE REVIEW 

 

In this chapter, a comprehensive literature review is given about the Capacitated 

Lot Sizing and Scheduling (CLSP) Problem. Firstly, the history of how CLSP has 

emerged is explained, then extensions of CLSP problems are clarified. Afterwards, 

solution approaches are explained which are presented in the literature so far. 

Finally, evaluation of a solution in lot sizing problems and neighborhood structures 

used for the CLSP problem are examined.  

 

First idea on lot sizing came up with the classical economic order quantity (EOQ) 

model (Erlenkotter, 1990). As in the research of Drexl and Kimms stated (1997), the 

assumptions for the EOQ model are a single-level production process with no 

capacity constraints, which makes the problem become single-item problem. 

Moreover, demand has a constant rate, which means that it is stationary. For the 

EOQ model, optimal solution can easily be derived (Drexl & Kimms, 1997). 

 

Since EOQ cannot cover all, other models were developed. For example, the first 

one is the Economic Lot Scheduling Problem (ELSP), which includes capacity 

restrictions (Elmagharby, 1978). Since resources are usually shared in common by 

several items, the ELSP is a single-level, multi-item problem, where the demand is 

assumed to be still occuring continuously with a constant rate. Solving the ELSP is 

NP-hard, thus, heuristic methods were utilized (Drexl & Kimms, 1997). 

 

Another different point of view from the EOQ model is that where demand is 

dynamic. The so-called Wagner-Whitin (WW) problem assumes a finite planning 

horizon which is subdivided into several discrete periods. Demand is given per 

period and may vary over time. However, capacity limits are not considered which 

means that the single-level WW problem is a single-item problem (Drexl & Kimms, 

1997). 
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Afterwards, as lot sizing problems become more complex, models include both 

dynamic and capacitated approaches (Drexl & Kimms, 1997). Moreover, scheduling 

was integrated with lot size decisions. Mainly, there are six variations of single level 

lot sizing and scheduling problem that have been studied, and are known to be NP-

hard. These six variations can be listed as below: 

 

 Economic Lot Scheduling (ELSP) in which the planning horizon is infinite, 

 Capacitated Lot Sizing (CLSP), also called the large-bucket problem, where lots 

of several part types processed in each period, then, jobs are scheduled in each 

period separately. 

 Discrete Lot Sizing and Scheduling (DLSP), also called the small-bucket 

problem, where macro periods of CLSP are subdivided into micro periods in 

which only one part type may be processed at full capacity. 

 Continuous Setup Lot Sizing Problem (CSLP), adapts DLSP, allowing at most 

one part type each period but using less than full capacity. 

 Proportional Lot Sizing and Scheduling (PLSP), allows unused capacity to 

process a second part type in a period. 

 General Lot Sizing and Scheduling (GLSP), incorporates a user-defined 

parameter to restrict the number of lots per period. 

 

Also, a general classification of lot sizing and scheduling models in the literature can 

be seen as follows: 

 

 Single Level Lot Sizing and Scheduling 

a. Economic lot scheduling problem (ELSP) 

b. The capacitated lot sizing problem (CLSP) 

c. The discrete lot sizing and scheduling problem (DLSP) 

d. The continuous setup lot sizing problem (CSLP) 

e. The proportional lot sizing and scheduling problem (PLSP) 

f. The general lot sizing and scheduling problem (GLSP) 

 Continuous Time Lot Sizing and Scheduling 

  Multi-level Lot Sizing and Scheduling 



5 

 

2.1 The Capacitated Lot Sizing Problem 

 

Capacitated lot sizing problem is an extension of WW problem to capacity 

constraints. CLSP is a multi-item problem. The objective is to minimize the sum of 

total setup and inventory holding costs. On the other hand, setup variables are 

defined as binary values. Another condition is that, production of an item can only 

take place if the machine is set up for that particular item (Drexl & Kimms, 1997).  

CLSP is a large bucket problem since several items can be produced per period. In 

reality, this time period can generally be one week. CLSP problem is NP-complete 

and therefore, only a few studies resulted in optimality (Chen & Thizy, 1990; Eppen 

& Martin, 1987; Gelders et al., 1986). 

 

However, scheduling decisions are considered in CLSP. As a result, the usual 

approach is to solve the CLSP first, and to solve a scheduling problem for each 

period separately afterwards (Drexl & Kimms, 1997). The full mathematical model 

of CLSP can be seen below. 

 

Parameters 

   = Available capacity of the machine in period t 

    Demand for product i in period t 

    Cost of carrying one unit of product i for one period 

     initial inventory for product i 

    consumption of capacity for producing one unit of product i 

    setup cost for product i 

I = number of products 

T = number of periods 

Decision Variables 

     inventory for product i at the end of period t 

     production quantity for product i in period t 

     binary variable indicating whether a setup for product i occurs in period t 
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    ∑ ∑              
 
   

 
                    (2.1) 

                                                          (2.2) 

                                              (2.3) 

∑      
 
                                     (2.4) 

    {   }                                   (2.5) 

                                          (2.6) 

Figure 2.1 MIP model of CLSP 

 

The objective function on (2.1) minimizes the overall setup and inventory holding 

costs. Constraint (2.2) is for the inventory balance. Constraint (2.3) forces that 

product i can be produced if the machine is set up for that product. Constraint (2.4) is 

for the capacity limitations. Setup variables are defined as binary in (2.5) and (2.6) is 

for non-negativity of variables. 

 

2.2 Capacitated Lot Sizing Problem (CLSP) and Its Extensions 

 

As mentioned above, the capacitated lot sizing problem provides a mathematical 

visualization for large bucket lot sizing problems where a pre-determined number of 

periods and constant demands are incurred (Quadt & Kuhn, 2008). In fact, Quadt & 

Kuhn (2008), presented various extensions of CLSP such as, back-orders, setup 

carry-over, sequencing, and parallel machines. 

 

Standard CLSP is defined in Quadt & Kuhn (2008), as follows: multiple products 

have to be produced while a deterministic, discrete demand quantity for every 

product is given. In addition, number and duration of the periods is known, too. 

Moreover, producing a product consumes machine capacity and when there is a 

change from one product to another, duration and cost for setup occurs. In addition, 

when a product unit is produced in the previous period(s), unique inventory holding 

costs are incurred. Finally, the objective is to find an optimal production plan 

minimizing setup and inventory costs as well as finding optimal lot-sizes for each 

period and for each product in order to satisfy each period’s demand in terms of each 

product. 
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One of the extensions is parallel machines. Parallel machine CLSP can be seen in 

various areas of industry in real world such as, chemical, electronics food and textile 

(Wittrock, 1988; Riane, 1998; Moursli & Pochet, 2000; Quadt & Kuhn, 2008). As 

Quadt & Kuhn (2008), explained, “using parallel machines provides that a product 

may be produced on any of the parallel machines. This increases the complexity of 

the problem since a decision has to be made on which machine to produce a product 

unit and how many machines to use in parallel for each product in each period”. 

 

Setup carry-over is another extension of the CLSP. Carrying over a setup between 

periods is given in many industries, for instance, in semiconductor industry, where 

production runs 24 hours a day and 7 days a week (Quadt & Kuhn, 2005).  Setup 

carry-over means that a machine’s setup state can be preserved between two 

consecutive periods and no extra setup is required. As it is stated in Quadt & Kuhn 

(2008), in the standard CLSP, a setup is made for each product produced per period 

(and machine), whereas, with the setup carry over, the last product per period may be 

produced without any additional setup in the following period”. In Haase’s study 

(1998), it can be denoted that solutions become significantly different when setup 

carry over is considered. Quadt & Kuhn (2008), claim that “if setup carry-over is 

accounted together with parallel machines, a lot-for-lot policy could substantially 

reduce the number of setup operations”. Carrying over a setup state makes the 

problem more complicated because “scheduling” decisions has to be carried out, 

which means, for each machine, a decision has to be made which product shall be the 

first and the last in a period. Gopalakrishnan et al. (1995), developed a model for 

CLSP problem with constant setup times and setup carryovers; however, they 

claimed that, due to the complexity of the proposed model, alternative ways should 

be developed. On the other hand, Suerie & Stadtler (2003), present a different 

mathematical model for CLSP with sequence independent setup costs and times. 

They use the idea of the standard facility location formulation, and propose new sets 

of variables and constraints to model the setup carryover.  
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While including scheduling decisions for all products, a total sequence of all 

products on each machine has to be concluded. Sequence-dependent setup costs and 

times can be found in various industries, for example, in chemical industry where 

quick changes among products with fewer setup decrease the energy costs (Quadt & 

Kuhn, 2008). 

 

Back-order means allowing a product to be produced after its dedicated demand 

period. On the other hand, back-order costs are considered for every period and very 

important because otherwise, no feasible plan would exist (Quadt & Kuhn, 2008). 

Even though back-order can be seen in real life problems, there are only a few 

researches considering shortages (Smith-Daniels, 1986; Pochet & Wolsey, 1988; 

Millar & Yang, 1994; Cheng et al., 2001; Hung & Chien, 2000; Quadt & Kuhn, 

2009).  

 

Bitran & Yanasse (1982) show that the CLSP is NP-hard even without setup 

times; no approach is provided for gathering the optimality. When setup times are 

also taken into account, CLSP problem becomes NP-complete Maes et al. (1991), 

implying that it is hard to find even a feasible solution. 

 

It is claimed that CLSP with sequence-dependent setup times show many 

similarities with the traveling salesman problem (TSP) and the vehicle routing 

problem (VRP) (Laporte 1992A, 1992B).  More specifically, Laporte  (1992A, 

1992B) noticed that  “setup cost matrix in CLSP is similar to the distance matrix in 

the TSP or VRP. However, solving the multi-period CLSP is equivalent to solving 

multiple dependent TSPs”. 

 

Haase & Kimms (2000) and Gupta & Magnusson (2005) studied CLSP with 

sequence-dependent setups. Haase & Kimms (2000) introduced a model for CLSP 

where the efficient product sequences are pre-determined. Therefore, instead of 

sequencing all produced products, which pre-determined sequences will be used in 

each period are determined. As a solution approach, they used tailor-made branch-

and-bound method. 
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In the study of Gupta & Magnusson (2005), they proposed a heuristic to the single 

machine CLSP where they introduce sequence-dependent setup costs, non-zero setup 

times and setup carryover. They took constant setup times    instead of sequence-

dependent setup times. Gupta & Magnusson (2005), explained the reason of this 

simplification as follows: “The reason of this simplification is that it is impossible to 

check if or not the problem is feasible without solving a mathematical program 

which is of similar complexity as the original lot sizing problem”. They noticed that 

there are three main things that makes the CLSP problem much harder, which are, 

tight capacity, large and sequence-dependent setup costs, and non-zero setup times. 

 

Almada-Lobo et al. (2007), presented two new linear MIP models for single 

machine CLSP with sequence dependent setup times and costs as well as considering 

setup carryover. Likewise, no backlogging is allowed, i.e., each product’s demand 

should fully satisfied for each period. In order to keep track of schedules, they 

introduced a constraint influenced by the traveling salesman problem. On the other 

hand, they claimed that their formulations are simpler than others in the literature. 

Furthermore, they proposed a five-step heuristic for finding feasible solutions.  

 

Afterwards, Almada-Lobo (2011) extended their work to the parallel machine 

case while introducing machines’ eligibility restrictions among products. They 

proposed MIP-based heuristics; in a more detailed way, they introduced an iterative 

stochastic MIP-based neighborhood structure in order to obtain better feasible 

solutions. Moreover, they divided the problem into many subMIPs and solved them 

randomly. The stochasticity of the solution algorithm arises from the idea of 

selection of the subMIPs. 

 

Recently, in the study of Xiao et al. (2013), they proposed CLSP with sequence-

dependent setup times, costs, and setup carryover on parallel machines. In addition, 

similar to the study of James and Almada-Lobo (2011), machine eligibilities were 

also introduced. Differently, they introduced machine preference constraints which 

are soft constraints and in case of any violation of these constraints, it is penalized in 

the objective function. Moreover, they allowed backlogging. In order to find good 
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quality solutions to this problem, they proposed two MIP-based fix-and-optimize 

algorithms, where the binary decision variables related with the assignment of 

machines are first fixed using the randomized least flexible machine rule and the rest 

of the decision variables are settled by an MIP solver. 

 

2.3 Solution Approaches in the Literature 

 

There are a lot of work on lot sizing and scheduling problem on a single machine 

in the literature. Mainly, the case involving sequence-dependent setup has been 

studied in various literatures (Thizy & Van Wassenhove, 1985; Dobson et al., 1987; 

Trigeiro et al., 1989; Fleischmann, 1990; Cattrysse et al., 1993; Blocher et al., 1999). 

In terms of solution methods, Blocher et al. (1999), used Branch and Bound; whereas 

Cattrysse et al. (1993), used a column generation based heuristic for a set partitioning 

formulation. 

 

Earlier work of Haase (1998), included a heuristic priority rule for the case with 

sequence-dependent setup costs and used a local search to derive appropriate values 

of parameters for use by the priority rule. Moreover, Miller et al. (1999), proposed a 

MIP formulation where backlogging is allowed and as a solution methodology, they 

used Genetic Algorithm (GA) combined with Hill Climbing (HC) technique. 

 

On the other hand, some metaheuristic methods are also used for lot sizing and 

scheduling problems. GA is used for the single level CLSP by Kohlmorgen et al., 

(1999). Moreover, a tabu search based approach is utilized by Hindi (1996). In 

addition to these, while interfering setup time criterion, Özdamar and Bozyel (2000), 

suggested a hybrid method where GA and simulated annealing (SA) are considered 

together. A hybrid TS-SA was developed by Özdamar et al., (2002). Also 

Gopalarakrishnan et al. (2001), used a hybrid GA-TS so as to solve this problem. 

Pedroso & Kubo (2005), suggested a hybrid tabu search with relax-and-fix heuristic 

for CLSP with multiple resources. Beraldi et al. (2008), introduced a rolling-horizon 

and relax-and-fix heuristic for the identical parallel machine CLSP case, where they 

guarantee that their solution mechanism will provide feasibility when data set is 
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feasible. Besides, Ferreira et al. (2009), presented relax-and-fix heuristics for solving 

a case study related with CLSP in a soft drink company in Brazil. Özdamar & Birbil 

(1998), used hybrid heuristics involving simulated annealing, genetic algorithm and 

tabu search on CLSP with parallel machines. In terms of combined lot sizing and 

scheduling on parallel machines, Kang et al. (1999), used a hybrid branch and bound 

algorithm and column generation approach. Meyr (2002), generalized the problem, 

allowing nonzero sequence-dependent setup times. He extended his previous study 

on single machine to parallel machines, using combined dual reoptimization with 

simulated annealing and threshold accepting methods. Recently, Dastidar & Nagi 

(2005), presented a MIP model where there are unrelated parallel machines with 

sequence-dependent setup criterion; the methodology used here is a two-phase 

decomposition methodology.  

 

2.4 Evaluation of a Solution in Lot Sizing Problems 

 

Various options are used in order to evaluate the solution. One common 

alternative is to evaluate the objective function. However, in a genetic algorithm, it is 

possible to obtain an infeasible solution after applying the genetic operators, and for 

tabu search and simulated annealing, a move can also lead to an infeasible neighbor. 

A main issue is how to treat those infeasibilities (Jans & Degraeve, 2008). One 

option is to ignore all infeasible solutions or attach an infinite cost to them (Kimms, 

1999). Another example can be attaching a backlog cost for demand which cannot be 

met in time (Barbarosoğlu & Özdamar, 2000; Özdamar & Barbarosoğlu, 2000) or a 

penalty cost in case of capacity violation (Özdamar & Birbil, 1998; Gopalakrishnan 

et al., 2001); or a high cost for the initial inventory (Meyr, 2000). Another treatment 

option might be using some repair operators for infeasible solutions (Özdamar & 

Birbil, 1998). Moreover, in order to penalize infeasible solutions, many constraint 

handling techniques can be utilized which are explained in Chapter 5. 
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2.5 Definition of the Neighborhood in Lot Sizing Problems 

 

The definition of the neighborhood can vary according to the solution technique 

or the solution representation. (Jans & Degraeve, 2008). If there are both integer and 

continuous variables used in the representation, moves can be defined among each 

variable, i.e., a move can be carried out within setups and production quantities as 

well (Gopalarakrishnan et al., 2001). Neighborhood schemes can be defined either 

moving fractionally or completely the production amount of a product (Özdamar & 

Birbil, 1998; Özdamar & Barbarosoğlu, 2000; Özdamar et al., 2002). Changing the 

setup state of a product in a period is the most widely used neighborhood definition 

(Kuik & Salomon, 1990; Hindi, 1996; Kuik et al., 1993; Salomon et al., 1993). In 

addition to the usual swap and insert moves; Almada-Lobo & James (2010), 

introduced a different type of move, called fractional insert move. Fractional insert 

move means splitting a lot randomly into two lots, where the total quantity produced 

is the same as the original quantity. One part will be inserted to another location 

whereas the remaining part will be left in the same position. 
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CHAPTER THREE  

 PROBLEM DEFINITION 

 

In this chapter, the full mathematical model used in this study is presented. 

Parallel machine capacitated lotsizing and scheduling problem with sequence-

dependent setups (CLSD-PM) has been formulated previously in James & Almada-

Lobo, (2011). The problem considers a planning interval with t=1,…,T periods and 

i,j=1,…N products processed on m=1,…,M machines. The parameters and decision 

variables of the problem can be listed as follows: 

 

Parameters 

    = demand of product i in period t 

     = setup time incurred when a setup occurs from product i to j on machine m 

     = setup cost incurred when a setup occurs from product i to j on machine m 

   = unit inventory holding cost for product i from one period to the next 

    = the processing time of one unit of product i on machine m 

    = the capacity of machine m available in period t 

     = upper bound on the production quantity of product i in period t to machine m 

    = product i’s capability of machine m 

Decision Variables 

     = quantity of product i produced in period t on machine m 

    = inventory level of product i at the end of period t 

     = an auxiliary variable that assigns product i on machine m in period t 

      = 1 if a setup occurs from product i to j on machine m in period t 

     = 1 if the machine m is set up for product i at the beginning of period t 
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3.1 Mathematical Formulation of the Parallel Machine Capacitated Lotsizing 

and Scheduling Problem with Sequence-dependent Setups (CLSD-PM) 

 

   ∑ ∑ ∑ ∑             ∑ ∑                                                                            (3.1) 

        ∑                                                                                         [ ]    [ ]             (3.2)               

     

                                                                                                      [ ]                       (3.3) 

∑          ∑ ∑                       [ ]    [ ]                                         (3.4) 

          (∑            )                [ ]    [ ]   [ ]                                 (3.5) 

         ∑             ∑                        [ ]    [ ]   [ ]                  (3.6)          

∑                         [ ]    [ ]                                      (3.7) 

                                  

  [ ]    [ ]   [ ]  { }    [ ]                                                                               (3.8) 

∑                                                   [ ]    [ ]                                            (3.9) 

                (          )  {   }                                                 (3.10) 

 

Figure 3.1 MIP model for CLSD-PM 

 

Objective function (3.1) minimizes overall inventory and setup costs. Constraint 

(3.2) is for production and inventory balance and constraint (3.3) indicates that initial 

inventory level is zero. On the other hand, constraint (3.4) controls that production 

and setup times do not exceed the available capacity. Constraint (3.5) forces that 

whenever a product is produced, a setup should be made. In other words, if 

∑              , meaning that either there is no setup occurred from product j to 

product i or the machine is not set up for product i, then product i cannot be produced 

on that machine, forcing the quantity produced     = 0. In addition, constraint (3.6) 

is for setup carryover for two consecutive periods. In fact, constraint (3.6) provides 

that flow in equals to flow out, i.e., if there is an input setup and no output setup for 

product i on period t on machine m, it means that this setup was the last one to be 

performed on the machine m in period t and accordingly, the machine is configured 

for product i at the beginning of the next period (t+1), forcing          to be 1. On 

the other hand, if there is an output setup and no input one, it means that the machine 
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is configured for product i at the beginning of period t,           . Constraint (3.7) 

ensures that each machine should be set up for one product at the beginning of each 

time period. Constraint (3.8) eliminates disconnected subtours. In other words, this 

constraint works whenever a subtour occurs in a period, forcing the respective 

machine to be set up at the beginning of that period to one of the products that are 

part of the subtour. In order to achieve a feasible solution, only a single connected 

component is linked to Y’s. Constraint (3.8) provides this by using auxiliary variable 

     that value the machine state through any sequence.     indicates sequence 

number in which product i is produced on machine m in period t. Constraint (3.8) 

provides sequencing which is also a similar modeling in the traveling salesman 

problem proposed in the study of Nemhauser & Wolsey (1988). 

 

Constraints (3.2)-(3.7) and (3.10) allow not disjoint cycles. However, due to the 

traingle inequality     +            , the inflow of every product is at most 1 and 

such a scenario will not occur in an optimal solution. Constraints (3.6), (3.7), and 

(3.8) determine the sequence of the products on machine m in period t and keep track 

of the machine configuration state by recording the product that a machine is ready 

to process. Constraint (3.9) indicates each machine’s ability to produce that product 

and constraint (3.10) is for nonnegativity and integrality of the decision variables. 

 

The variability of machine capacities within periods may be due to the nature of 

the real system where slight changes in the capacities are reflected to the 

mathematical model of the problem. Moreover, all unit production costs are same for 

each product, which is 1, the reason might be that the cost of running the machine 

does not depend on the product type produced. On the other hand, the reason why 

there is an upper bound on the production quantity of each product i in period t to 

machine m might be the shortage of the raw materials used for product i. 

Furthermore, this model does not consider backlogging, i.e., all demands should be 

satisfied for each period t. It can also be deduced that shortage cost of a product i is 

very high when it is compared to setup and inventory holding costs of that product. 

Moreover, another constraint that makes this problem harder is machine eligibility 

restriction proposed in Constraint (3.9). More specifically, each product can be 
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produced on at least one machine, however there may be more than one eligible 

machine that can produce that product, as well. 
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CHAPTER FOUR 

VARIABLE NEIGHBORHOOD SEARCH 

 

In Chapter 4, a detailed explanation of Variable Neighborhood Search (VNS) 

algorithm and its variants are given. Moreover, a comprehensive literature study 

about VNS, in addition to the various variants of VNS, covering the hybrid 

approaches and applications of this algorithm in real life are presented in this 

chapter. 

 

VNS, proposed by Mladenović & Hansen (1997), is a metaheuristic used for 

solving combinatorial and global optimization problems. Moreover, in VNS, 

neighborhoods change is in a systematic manner in order to escape from local 

minima. Many variants of VNS, for example, variable neighborhood descent (VND), 

reduced VNS (RVNS), basic VNS (BVNS), general VNS (GVNS), and  skewed VNS 

(SVNS) have been developed so far. 

 

4.1 Basic Schemes of Variable Neighborhood Search (VNS) 

 

A finite set of pre-selected neighborhood structures are defined as       

          and        is the set of solutions in the     neighborhood of x. An 

optimal solution        (or global minimum) is a feasible solution where a minimum 

is reached.      is a local minimum with respect to   , if there is no solution 

       
      such that           . Metaheuristics (based on local search 

procedures) try to continue the search by other means after finding the first local 

minimum (Mladenović & Hansen, 1997). VNS is based on the following three 

simple facts: 

 

“Fact 1: A local minimum w.r.t one neighborhood structure is not necessary so with 

another;” 

“Fact 2: A global minimum is a local minimum w.r.t all possible neighborhood 

structures”. 
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“Fact 3: For many problems local minima w.r.t one or several    are relatively 

close to each other”. 

 

Hansen et al. (2010), indicated in their study that “the last observation is 

empirical, implying that a local optimum usually give some idea about the global 

optimum. For example, several variables having the same value in both”. However, 

which variables have the same value is not clear. As a result, neighborhood of the 

local optimum is in an ordered way, till a better local minimum is kept (Hansen et al., 

2010). 

 

VNS can be classified into three different ways: (i) deterministic; (ii) stochastic; 

(iii) both deterministic and stochastic. 

 

4.2 Variable Neighborhood Descent (VND) 

 

Variable Neighborhood Descent (VND) method is obtained if change of 

neighborhoods is performed in a deterministic way. Firstly, an initial solution x is 

taken, the best (minimum of     ) within the neighborhood     is found, and if there 

is no further improvement on that neighborhood, the heuristic continues with the next 

neighborhood until        . Furthermore, VND is a steepest descent heuristic 

where best improvement local search is used (Hansen & Mladenović, 2005). In other 

words, at each step, the neighborhood is explored entirely. In fact, since searching 

the whole neighborhood can be time consuming in some cases, maybe first 

improvement (first descent heuristic) can also be used in the local search phase. Steps 

of best improvement and first improvement can be identified in the figures below. 

 

                 

                                                            

       (1) and (2): 

                              

                                                       

Figure 4.1 Best Improvement Local Search 
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       (1), (2) and (3): 

                                 

                                               

                             

                                     

                                                         

Figure 4.2 First Improvement Local Search 

 

The steps of VND is as follows, 

 

                                                                

             

                                              

                                  

                               (     
   )   

                                                                   

                                      

Figure 4.3 Steps of Variable Neighborhood Descent (VND) 

 

Mainly in most cases as a local search a single or sometimes two neighborhoods 

are used, i.e.,         . It is indicated in the research of Hansen et al. (2010), that 

the last solution should be a local minimum w.r.t all      neighborhoods, and the 

possibility of reaching the global minimum is higher than using a single 

neighborhood structure. 

 

4.3 Reduced Variable Neighborhood Search (RVNS) 

 

In reduced VNS (RVNS) method, random points are selected from the       

neighborhood without being followed by descent. In a more detailed manner, starting 

with an initial solution x, a random solution is chosen from the first neighborhood, if 

this random solution made any improvement, the search continues with that solution 

and continues to iterate until no improvement is found on that neighborhood, 

Figure 4.2 First Improvement Local Search 

Figure 4.3 Steps of Variable Neighborhood Descent (VND) 
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otherwise a jump is made to the next neighborhood. The algorithm continues until 

       .  

 

Basic steps of RVNS can be examined below. 

                                                          

                      

                                                            

                              

                                                                   

            

                                               

                                                                         

  (         )  

                                                                             

                                                         

Figure 4.4 Steps of Reduced Variable Neighborhood Search (RVNS) 

 

As it is asserted in Hansen et al. (2010), “RVNS is useful for very large instances 

for which local search is costly. It is observed that the best value for the parameter 

      is often 2. In addition, the maximum number of iterations between two 

improvements is usually used as stopping condition”.  

 

4.4 Basic Variable Neighborhood Search (BVNS) 

 

Basic VNS method includes both deterministic and stochastic changes of 

neighborhood. Firstly, neighborhood structures used in the BVNS algorithm are 

defined as                   . Afterwards, starting with an initial solution, 

randomly a solution    is taken from the first neighborhood       of x and a descent 

   is done with the local search. This leads to a new local minimum    . 

 

At that moment, three alternatives can be encountered:  

 

(i)        ,i.e. when no improvement is achieved after local search, then a move to 

the next neighborhood is carried out, which means that            ; 

Figure 4.4 Steps of Reduced Variable Neighborhood Search (RVNS) 



21 

 

(ii)       but            , i.e., another local optimum has been found, which is 

not better than the previous incumbent solution; similar to the previous case, the 

procedure is iterated using the next neighborhood           . 

 

(iii)       but            : i.e., another local optimum, better than the 

incumbent has been found; in this case the search restart with the new incumbent 

solution     at the first neighborhood       until a stopping criteria, e.g. a maximum 

time or maximum number of iterations or maximum number of iterations from the 

last improvement is met. Steps of Basic VNS can be seen as follows. 

 

                                                                              

                                                            

                              

                                                                   

            

                                          
 

   

                                                                         

  (         )  

                                                                             

                                            

                                                                   

                     

                                                         

Figure 4.5 Steps of Basic Variable Neighborhood Search (BVNS) 

 

As Hansen et al. (2010), claimed in their work, “often successive neighborhoods 

   will be nested. Observe that point    is generated at random in Shaking in order to 

avoid cycling, which might occur if any deterministic rule was used. However, some 

difficulties can be encountered while solving large instances using basic VNS”. 

  

Basic VNS has several extensions. In the move or not, even if the solution is 

worse than the incumbent, that solution can be accepted with some probability. Also 

in the Local Search phase, First Improvement or Best Improvement can be used. 

 

Figure 4.5 Steps of Basic Variable Neighborhood Search (BVNS) 
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4.5 General Variable Neighborhood Search (GVNS) 

 

General VNS is a variate of the Basic VNS where in the local search phase, VND 

is used (Mladenović et al., 2008). 

 

                                                                              

                                                            

                              

                                                                   

            

                                          
 

   

                                                                          

 (         )  

                                                                               

                                            

                                                                    

                     

                                                         

Figure 4.6 Steps of General Variable Neighborhood Search (GVNS) 

 

4.6 Skewed Variable Neighborhood Search (SVNS) 

 

As it is emphasized on Fact 3 of VNS in Section 4.1, local minima with respect to 

one or more neighborhoods are close to each other (Hansen et al., 2010). Therefore, 

schemes VNS should be adjusted so as to explore valleys more entirely which are far 

away from the incumbent solution. This approach is denoted as Skewed VNS 

(SVNS). 

 

Different than BVNS, in SVNS there is a function          that measures the 

distance between the incumbent solution x and the local optimum found     used 

together with the parameter α. The parameter α stands for accepting solutions that are 

far from x when        is larger than      but not too much (otherwise one will 

always leave x). A remarkable value of α should be determined experimentally. 

Moreover, in order not to move frequently from a solution x to a solution that is not 

Figure 4.6 Steps of General Variable Neighborhood Search (GVNS) 
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so far away, a large value for α can be taken when          is small (Hansen et al., 

2010)  

 

4.7 Variable Neighborhood Decomposition Search (VNDS) 

 

When solving very large instances VNS can sometimes be very weak. Therefore, 

another variant is emerged, called Variable Neighborhood Decomposition Search 

(VNDS) method proposed by Hansen & Mladenović (2001), which divides the basic 

VNS into a two-level VNS scheme based upon decomposition of the problem 

(Hansen et al., 2010). 

 

4.8 Hybrid Approaches with Variable Neighborhood Search  

 

On the other hand, hybrid approaches, i.e., a combination of metaheuristics and 

VNS is used as a powerful mechanism in the literature. For example, Tabu Search 

(TS) and VNS can be hybridized. One alternative is to use TS within VNS another 

alternative is to use VNS within TS (Hansen et al., 2010). Moreover, GRASP and 

VNS combination is also used for many problems, where VNS mainly used in the 

second phase of GRASP (Hansen et al., 2010). On the other hand, Particle Swarm 

Optimization is combined with VNS in a case study for parallel machine scheduling  

problem (Chen et al., 2013). Behnamian et al. (2009), introduced the use of VNS 

with Ant Colony Optimization again on parallel machine scheduling problem. 

Besides, Liu & Zhou (2013), proposed a hybrid algorithm for the restrictive single-

machine earliness/tardiness problem where harmony search is combined with VNS. 

Another combination of VNS with Fix&Optimize Heuristic is stated in the work of 

Seeanner et al. (2013). A combination of VND with iterated local search (ILS) is 

proposed by Martins et al. (2012), for the routing and wavelength assignment 

problem. Furthermore, Shifting Bottleneck procedure is also used with the 

combination of VNS (Reiter et al., 2013). A hybrid VNS and Simulated Annealing 

(SA) algorithm is presented by Abbasi et al. (2011), in a study where the three 

parameters of Weibull distribution is estimated. 
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4.9 Applications of Variable Neighborhood Search in Industry 

 

In the literature it can be found that there are many applications of VNS and its 

hybrids, on various different areas. These areas can be listed as follows: 

 “ industrial applications”, 

  “design problems in communication”, 

  “location problems”, 

  “data mining”, 

  “graph problems”, 

  “knapsack and packing problems”, 

  “mixed integer problems”, 

  “time tabling”, 

  “scheduling”, 

  “vehicle routing problems”, 

  “problems in biosciences and chemistry”, 

  “continuous optimization and other optimization problems” (Hansen et al., 

2010).  
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CHAPTER FIVE  

CONSTRAINT HANDLING TECHNIQUES 

 

In this chapter, a comprehensive study about constraint handling techniques 

including its definition, aim of use and its classification are presented.  

 

As Deb (2000), formerly defined in his study,  the origin of the constraint 

handling techniques is as follows, “Many real-life optimization problems have 

inequality and/or equality constraints and therefore denoted as constrained 

optimization problems. While trying to solve these type of optimization problems 

using evolutionary algorithms or classical optimization tools, penalty function 

techniques become popular since they are simple and easy to implement. 

Unfortunately, the success level of penalty functions are not satisfactory at all time 

since finding appropriate parameters is difficult”. 

 

 Furthermore, the reason why constraint handling techniques emerged is that in 

most cases, the optimal solution can be found on the boundaries of the feasible 

region. Therefore, limiting the search within the feasible solutions’ region only or 

imposing very severe penalties for infeasible solutions makes it difficult to 

understand the optimum solution path as shown in the research of (Smith & Tate, 

1993; Anderson & Ferris, 1994; Coit et al., 1995;  Michalewicz, 1995). Contrarily, if 

the penalty is not severe enough, then search region will be too large and much of the 

search time will be used to explore regions far from the feasible region (Smith & 

Tate, 1993). In other words, if the penalty is too high and the optimum solution is 

close to the boundary of the feasible region, the search region will be restricted 

within the feasible region in the very beginning of the search process, accordingly, 

returning back towards the boundary with the infeasible region will be discarded and 

the possibility of exploration of the infeasible region will be less (Coello, 2002). 

 

For example, Deb (2000), generated a constraint handling method emphasizing 

the superiority of feasible solutions. The algorithm lies on the idea of the following 

three conditions: 
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1. “Any feasible solution is preferred to any infeasible solution.” 

2. “Among two feasible solutions, the one having better objective function value 

is preferred.” 

3. “Among two infeasible solutions, the one having smaller constraint violation 

is preferred.” 

 

The most important difference of Deb’s (2000), research is that, there is no 

penalty paramater. According to the three aspects mentioned above, careful pair-wise 

comparisons are made and a direction to the feasible region is achieved. 

 

On the other hand, Takahama & Sakai (2005, 2006, 2010), introduced another 

constraint handling approach called the ε-constrained method. In the ε-constrained 

method, the relaxation of the constraints is controlled by using the ε parameter. Also, 

this method has a lexicographical ordering mechanism in which the minimization of 

the sum of constraint violation comes prior to the minimization of the objective 

function of a given problem. In other words, solution having a total violation smaller 

than ε are labeled as feasible when a pair-wise comparison is made. 

 

As it is mentioned in Coello’s study (2002), the most common approach for 

handling constraints is to use penalties. It is explained that the relationship between 

an infeasible solution and the feasible region of the search space plays a significant 

role in penalizing such a solution. There are three main alternatives to identify this 

relationship. 

 

1. A solution might be penalized just for being infeasible regardless of its 

amount of constraint violation 

2. The amount of its infeasibility can be measured and used to determine its 

corresponding penalty, or 

3. The effort of ‘repairing’ the solution (i.e., the cost of making it feasible) 

might be taken into account. 
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In order to explain a general penalty function, at first, assume that an optimization 

problem is given as, 

 

         

                                      (5.1) 

 

where x is a vector of decision variables, the constraints “x   A” are relatively 

easy to satisfy, and the constraints “x   B” are more difficult to satisfy when they are 

compared to the constraints “x   A”. 

 

The problem can be reformulated as follows: 

 

                                     (5.2) 

             

 

“Where d(x, B) is a metric function describing the distance of the solution vector x 

from the region B, and p(.) is a monotonically non-decreasing penalty function such 

that p(0) = 0. If the exterior penalty function, p(.), grows quickly enough outside of 

B, the optimal solution of (5.1) will also be optimal for (5.2). Furthermore, any 

optimal solution of (5.2) will provide an upper bound on the optimum for (5.1), and 

this bound will in general be tighter than that obtained by simply optimizing      

over A” (Smith & Tate, 1993). 

 

There are six types of penalty functions defined in Coello’s research (2002), 

which can be listed as follows, 

 

 Static Penalty 

 Dynamic Penalty 

 Annealing Penalty 

 Adaptive Penalty 

 Co-evolutionary Penalty 

 Death Penalty 
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5.1 Static Penalties 

 

Static penalties imply that the penalty remain constant during the whole search 

process. In other words, disregarding of violation amount, a constant penalty is 

applied. On the other hand, penalty function can also be designed as metric based 

depending on the number of constraints violated. 

 

 This penalty function is based only on the number of constraints violated, and is 

generally less valuable than another approach where some distance metric from the 

feasible region is considered as generating the penalty function (Goldberg, 1989; 

Richardson et al., 1989). Moreover, another approach incurred by Homaifar, Lai & 

Qi (1994), has a user defined violation level mechanism and penalty coefficients for 

each level is selected accordingly, in a more detailed way, when violation level l 

increases, penalty coefficient rises, as well. The weakness of this method is in the 

number of parameters: for m constraints the method requires m(2l+1) parameters in 

total. 

 

Besides, there is another approach, where a solution’s fitness value is not 

computed if it is infeasible. Moreover, all infeasible solutions deserve the same 

penalty value even if its violation amounts vary from each other, it only deals with 

the number of violated constraints (Michaleawitz, 1995). 

 

Hoffmeister and Sprave (1996) introduced also a penalty function where 

infeasible solutions are always worse than the feasible ones, however, the reverse can 

be true in some cases. 

 

5.2 Dynamic Penalties 

 

Different than static penalty functions, in dynamic penalties, current iteration 

number is considered as another criteria for the penalty functions. In fact, annealing 

penalties and adaptive penalties are dynamic penalties, too (Coello, 2002). 
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Furthermore, with dynamic penalty functions, in the beginning of the search, 

solutions with high infeasibility are not ignored, however, the penalty will increase 

when there is a move to a solution that lies on the feasible region during the search 

phase. In other words, the basic idea of using a dynamic approach is to incorporate a 

dynamic aspect which (generally) raises the level of the penalty while the search 

continues. 

 

For example, Joines & Houck (1994) generated an approach where there are too 

many user defined constants like C, α, and β. Thus, the solution is very sensitive 

depending on the values of C, α, and β. Michaleawitz (1995), indicated that these 

parameters produce premature convergence most of the time in other examples. 

 

On the other hand, Kazarlis & Petridis (1998) proposed another approach, 

Varying Fitness Function Technique (abbreviated as VFF), where again various 

parameters are used and also, these parameters did not have a standard, i.e., they can 

vary depending on the problem type. 

 

5.3 Annealing Penalties 

 

In most of the annealing penalties, the idea of simulated annealing is used as a 

base. For example, Michalewicz & Attia (1994) considered a method where the 

penalty coefficients are changed once in many generations (after the algorithm has 

been trapped in a local optima). Only active constraints are considered at each 

iteration, and the penalty is increased over time (i.e., the temperature decreases over 

time) so that infeasible individuals have more severe penalties at the end of the 

search phase. 

 

Similar to the other dynamic approaches, Michalewicz & Attia’s approach (1994) 

has a disadvantage in that solution quality can have huge changes when parameters 

change, i.e. it is too much sensitive to the values of its parameters, also, choosing an 

appropriate cooling schedule is difficult (Coello, 2002). 
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Joines & Houck’s approach (1994) is also based on simulated annealing, however, 

has an exponential term and this exponential part would sometimes become invalid 

due to the numerical range of the computer. On the other hand, Joines and Houck’s 

approach is easier to implement since it does not distinguish between linear and non 

linear constraints and its authors leave to the evolutionary algorithm (EA) itself the 

task of generating feasible solutions from an initial set of random values (Coello, 

2002). 

 

On the other hand, Carlson (1995), introduced a different method where two 

parameters have an influence on the penalty, the first one measures a constraint’s 

violation amount, whereas the second one is a function of the running time of the 

algorithm. However, in this method, these parameters were obtained empirically and 

work well for some engineering problems. 

 

5.4 Adaptive Penalties 

 

In adaptive penalties, search duration and distance from feasiblity is considered 

together (Smith & Tate, 1993; Tate & Smith, 1995). Since neighborhood generation 

operators used in this study may result in infeasible solutions, NFT approach is used 

to handle the violation of constraints. 

  

In the works of Smith & Tate (1993), and Tate & Smith (1995), which were 

enhanced by the work of Coit et al. (1995), length of search and severity levels of 

constraints are used in their penalty function. In this penalty function, a near-feasible 

threshold (NFT) is computed for each constraint. The NFT is defined as a threshold 

distance from feasible region. With the penalty function, the algorithm is encouraged 

to explore within the feasible region and the NFT-neighborhood of the feasible 

region. In a more detailed way, the search that is surpassed the threshold is 

discouraged more severely (Smith & Tate, 1993; Tate & Smith, 1995). The 

formulation is below: 

 

                               ∑ (
  

    
)
 

 
                  (5.3) 

dynamic part of NFT 
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As it is stated in equation (5.3),         denotes the unpenalized value of the best 

solution yet found, and          denotes the value of the best feasible solution yet 

found. The         and          terms serve several purposes. On the other hand,    

denotes the violation amount of constraint i, where there are m constraints in total.  

First, they provide adaptive scaling of the penalty based on the results of the search. 

Second, they combine it with the      term to provide a search specific and 

constraint specific penalty (Smith & Tate, 1993; Tate & Smith, 1995). 

 

The general form of NFT is: 

    
    

   
                     (5.4) 

 

 According to the proposed equation (5.4),      is an upper bound of NFT.   is a 

dynamic search parameter which is used to update NFT considering the whole search 

period.   can also be defined as a function of the search, for example, a function of 

the generation number (t), i.e.,           (Baeck et al., 1995). When λ becomes 

positive, then NFT would be monotonically decreasing function and accordingly a 

larger penalty occurs. As a result, when λ increases, NFT decreases faster as the 

search continues. 

 

Gen & Cheng (2000), enhanced NFT by adding a more severe penalty for 

infeasible solutions. Moreover, as noted in Gen & Cheng (2000), the adaptive term 

may lead to zero or over-penalty. For instance, if          and         are identical, 

the penalty would be zero, resulting in unpenalized infeasible solutions.   For this 

reason, only the dynamic part of the penalty function, denoted in equation 5.3, with 

NFT treshold is used. 

 

5.5 Co-evolutionary Penalties 

 

Coello (2000), introduced a penalty function where objective function for the 

given set of variable values are encoded in a chromosome. Main drawback of this 

method is that four parameters needed to be defined. Also, the values of these 
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parameters should be carefully determined because a little change of these values 

have a huge effect on the penalty function (Coello, 2002). 

 

5.6 Death Penalties 

 

Death penalty means rejecting infeasible solutions. Rejection of infeasible 

solutions is computationally easy since level of violation is not considered. 

Furthermore, when a constraint violation occurred for a solution, a zero fitness value 

is assigned to that solution. However, when there is no initial feasible solution, no 

further improvement can be made and accordingly the evolutionary process will 

stuck because all solutions have the same fitness value, zero (Coello, 2002). 

 

As a result, in this study two techniques of constraint handling were utilized. 

Firstly, if a solution is infeasible, then it is penalized by using NFT. Secondly, the 

superiority of feasible solutions is used when making a selection between two 

solutions during the search phase. 
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CHAPTER SIX  

PROPOSED ALGORITHMS 

 

 In this chapter, algorithms that are used in this study are explained. More 

specifically, initial solution generation, objective function calculation, and moves 

used are clarified by using various examples. 

 

6.1 Initial Solution Generation 

 

Firstly, products are selected in a random order. Starting from the last period, a 

randomly chosen product’s whole demand on that period is placed to one of the 

capable machines. In addition, while assigning the selected product’s whole demand 

on that period, the machine with the minimum usage is chosen among the capable 

ones. On the other hand, when a product’s whole demand cannot be produced on the 

selected machine on that period, i.e., when there is not enough capacity on the 

chosen machine for that period, then a part of the demand is assigned to that machine 

until its capacity is full and the remaining demand of that product is assigned to the 

previous period on the same machine since setup carryover is allowed among 

periods. Furthermore, when a part of the demand assigned to the previous period, it 

will have an additional effect on the objective function in terms of inventory holding 

cost. The initial solution algorithm stops when all products’ demands are assigned to 

the machines. In order to visualize the initial solution generation method, a small 

example is provided with the following data presented in Table 6.1-6.4. 

 

Table 6.1 Demand matrix 

 Demand in period 

Product Period 1 Period 2 

1 2 2 

2 2 1 

3 1 3 

4 3 4 

5 2 2 
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Table 6.2 Capability matrix 

 Capability of Machines 

Product Machine 1 Machine 2 

1 1 1 

2 1 1 

3 0 1 

4 1 1 

5 0 1 

 

Table 6.3 Setup matrix 

 Setup time to product 

Product 1 2 3 4 5 

1 0 1 2 1 1 

2 2 0 1 2 2 

3 2 1 0 2 2 

4 1 2 1 0 1 

5 2 1 2 1 0 

 

Table 6.4 Machine capacities by period 

 Capacity in Period 

Machine Period 1 Period 2 

1 10 10 

2 10 10 

 

Assume that each product’s production time is 1 unit and assume that firstly 

product 5 is chosen randomly. Since it can only be produced on machine 2, it is 

placed as it can be seen in Figure 6.1.  

 

 

 Figure 6.1 Schedules for both machines (after product 5 is assigned)  

 1   2     3    4     5    6   7    8     9   10 1   2    3    4     5   6    7    8    9     10 

1    2     3    4     5    6   7    8     9   10 1    2     3    4     5    6   7    8     9   10 
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Then, product 1 is chosen randomly. By looking at the capability matrix, product 

1 can be produced on both machines. Considering the machine usages, machine with 

the minimum current usage is chosen.  

 

Afterwards, product 3 can only be produced on the second machine. Then, 

product 2 has two alternatives. Since machine 1 has less usage, it is assigned to 

machine 1. Finally, product 4 is assigned to machine 1 since it has the minimum 

usage. Product 4 cannot be fully produced on period 2 therefore, the remaining part 

is assigned to period 1. 

 

Current schedules of both machines are as follows: 

 

Figure 6.2 Schedules for both machines (after all products are assigned for period 2) 

 

Assume that product 1 is chosen. Since it can be produced on both machines, it is 

assigned to machine 2. Then, product 4 has also two alternatives. Since the usage of 

machine 1 is less, it is assigned to machine 1. Product 5 can be produced only on 

machine 2. Afterwards, product 3 is assigned to machine 1 due to the machine 

capability. Finally, product 2 is assigned to machine 1 because it has the minimum 

usage.  

 

The final schedule for both machines is as follows: 

 

Figure 6.3 Final schedules for both machines 

1    2     3    4     5    6   7    8     9   10 1    2     3    4     5    6   7    8     9   10 

1    2     3    4     5    6   7    8     9   10 1    2     3    4     5    6   7    8     9   10 
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Since all products’ demands are assigned, the algorithm stops. Feasibility is not a 

must criteria to be met because constraint handling techniques are utilized. The 

pseudocode for the initial solution generation can be examined in Figure 6.4 below. 

 

INITIALIZE:         

WHILE    { 

Choose randomly a product i from the set for products I that has a positive demand 

    on period t 

// Find a capable machine 

IF there is only a single capable machine for product i, i.e., 

 ∑              Assigned_machine: m, where       

ELSEIF (if there is more than one capable machine for product i, ∑             ) 

Assigned_machine: find m where m has (                )) for all 

            

ENDIF 

// Capacity Check 

IF                            

   Assign whole demand     to that period t 

ELSEIF 

// Calculate the maximum quantity as assignable quantity that can be assigned to 

that period 

                                            

// If there is not enough capacity on the previous period t-1 on the same machine, 

calculate the capacity violation amount  

IF                        

Calculate violation amount for that (machine-period) pair 

ELSEIF 

Assign calculated assignable quantity to that period 

// Calculate the remaining quantity 

                                             

// Assign this remaining quantity to the previous period t-1 on the same 

machine 

  

ENDIF  

ENDIF 

} // Repeat until all products’ demands are assigned for period t (      ) 

ENDWHILE 

Figure 6.4 Pseudocode for the initial solution generation 
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6.2 Objective Function Calculation 

 

Objective function calculation is somehow different than the regular calculation 

where in the regular calculation only setup costs and inventory holding costs are 

incurred. However since NFT is used, which is defined in Section 5.4, infeasible 

solutions are also accepted with some violation amount. In other words, a near-

feasible threshold (NFT) is computed for each violating constraint (Smith & Tate, 

1993; Tate & Smith 1995). During the construction of the initial solution, when there 

is no capacity limitation, then the whole demand is produced. In other words, since in 

the initial solution generation phase, the assignment of the lots is started from the last 

period, there will not be any tardiness, i.e., whole demand would be satisfied. Thus, 

only capacity violation amount is calculated as the total violation for the initial 

solution. 

 

However, the situation differs for the solutions generated after infeasible moves. 

The whole demand might not be satisfied since there is no limitation for the moves. 

For example, when two products are swapped from different periods, there is no 

guarantee that the demand for one product or even both products would definitely be 

satisfied. Therefore, in addition to the capacity violation amount, unsatisfied demand 

amount and excess of the upper bound production levels of each product on each 

machine should also be included in the calculation of total violation amount, after a 

move is made.  

 

6.3 Moves 

 

Three different types of moves have been defined previously by Almada-Lobo &  

James (2010), for the single machine case. However, in this study, those three moves 

are applied for the parallel multi machine case. These moves can be explained as 

follows. 
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6.3.1 Insert Move 

 

In the insert move, randomly a whole product lot is taken and inserted randomly 

before another product. Different from the single machine case explained in Almada-

Lobo & James (2010), this move can be done within that machine and among 

multiple machines while considering machine’s ability of producing that product. In 

a more detailed way, selected product can only be inserted to another machine if it 

can be produced on there. On the other hand, since constraint handling is applied, an 

insert move can be done, although capacity of the machines and upper bound 

production quantity are exceeded. 

 

An example the sample data presented in Table 6.5-6.8 is given. Assume that each 

product’s production time is 1 unit. 

 

Table 6.5 Demand matrix 

 Demand in period 

Product Period 1 Period 2 

1 2 2 

2 2 1 

3 1 3 

4 3 3 

5 2 2 

 

Table 6.6 Capability matrix 

 Capability of Machines 

Product Machine 1 Machine 2 

1 1 1 

2 1 1 

3 0 1 

4 1 1 

5 0 1 
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Table 6.7 Setup matrix 

 Setup time to product 

Product 1 2 3 4 5 

1 0 1 2 1 1 

2 2 0 1 2 2 

3 2 1 0 2 2 

4 1 2 1 0 1 

5 2 1 2 1 0 

 

Table 6.8 Machine capacities by period 

 Capacity in Period 

Machine Period 1 Period 2 

1 10 10 

2 10 10 

 

Assume that, initial sequence is given in Figure 6.5 below. 

 

Figure 6.5 Initial schedule 

 

An insert move of product 2 on machine 1 on period 2 can be done as follows.  

 

 

Figure 6.6 Schedule obtained after an insert move 

 1    2     3    4     5    6    7    8    9   10 1    2     3    4     5    6   7    8     9   10 

1    2     3    4     5    6   7    8     9  10 1    2     3    4     5    6   7    8     9    10 

1    2     3    4     5    6   7    8     9   10 1    2     3    4     5    6   7    8     9   10 

1    2     3    4     5    6   7    8     9   10 1    2     3    4     5    6   7    8     9   10 
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As it can be seen in Figure 6.6 above, even if it results in an infeasible solution in 

terms of the excess capacity of 1 unit on period 2 on machine 2, whole lot of product 

2 on machine 1 is inserted on machine 1 after product 5. The following pseudocode, 

proposed in Figure 6.9, indicates the flow of a single insert move.  

 

                 
          

      
        

   

                                          
                           

  

                                            
  

                                  
                     

 

                                      
                       

 

 

Figure 6.7 Pseudocode for setup updates used in this study 

 

                                  ,                   ,                 
,             

) 

                        

                                                                                

                     

                                                                         

 

Figure 6.8 Pseudocode for the update of all variables  

  

 In Figure 6.7, necessary calculations related with the setups are made. On the 

other hand, using the updated setups, other updates such as usages and sequences are 

done in Figure 6.8. Additionally,             and            functions are used in 

other moves as well. 

  

 

 

 

 

 

 

Figure 6.8 Pseudocode for the update of all variables 
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          { 

SELECT randomly a period         ,where         [ ] for the origin 

SELECT randomly another period       , where       [ ] for the destination 

SELECT randomly an origin machine        , where         [ ] 

SELECT randomly a destination machine      , where       [ ] 

SELECT randomly a product         from the sequence                 
, where         [ ]. 

IF destination machine       is capable of producing product         , i.e.,               
  : 

SELECT randomly a destination_index from the sequence             
. 

destination_index is a random place where a fraction of the demand 

                        
 of product         that is currently produced on          at period 

       , will be placed before. Currently, the product on the destination_index is 

denoted as      . 

ELSEIF // If destination machine       is not capable of producing product        ; repeat 

the following step until there is a product         that can be produced on the destination 

machine       is found. 

WHILE               
  , i.e., destination machine is not capable 

 of producting product        : 

SELECT randomly another product         from the sequence                 
 from the 

origin machine          where         [ ], which destination machine is capable of, 

i.e.,                
    

ENDIF 

//update setups, current capacity usages and sequences of machines after insert 

                 
          

      
        

   

                                  ,                   ,                 
,             

) 

} 

Figure 6.9 Pseudocode for the insert move used in this study 

 

In the insert move, insertion is done only capability condition is satisfied. 

Moreover, insertion within the same machine is also allowed. An insert move can 

also lead to infeasible solutions in terms of capacity constraints. However it is not an 

important criteria because violation amount will be penalized in the objective 

function.  



42 

 

6.3.2 Swap Move 

 

In the swap move, randomly two product lots are selected and swapped without 

considering any violation. The only criteria that must be checked before swapping is 

whether that machine(s) is capable of producing the selected product or not. 

 

Figure 6.10 Initial schedule 

 

A swap move can be done as follows.  

 

Figure 6.11 Schedule obtained after a swap move 

 

After a random single swap move of product 1 on machine 1 on the first period 

and product 4 on machine 2 on the first period, final sequence can be seen as in 

Figure 6.11 above. The pseudocode of the one single swap move can be visualized in 

Figure 6.12. 

 

 

 

 

 1    2     3    4     5    6    7    8    9   10 1    2     3    4     5    6   7    8     9   10 

1    2     3    4     5    6   7    8     9  10 1    2     3    4     5    6   7    8     9    10 
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        { 

Starting with an initial production sequence on machine m for period t, which is denoted as  

      for all t and for all m, where     [ ] and     [ ]. 

SELECT randomly a period         ,where         [ ] for the origin 

SELECT randomly another period       , where       [ ] for the destination 

SELECT randomly an origin machine        , where         [ ] 

SELECT randomly a destination machine      , where       [ ] 

SELECT randomly an origin index origin_index where product         from the sequence 

                
is currently produced and has a current production lot                         

, 

and SELECT randomly a destination_index from the sequence             
, where the lot 

                  
, will be swapped with the lot                         

. Currently, the product on 

the destination_index is denoted as      . 

IF destination machine       is capable of producing product         , i.e.,               
   

and origin machine         is capable of producing product      , i.e.,               
  : 

ELSEIF // If destination machine       is not capable of producing product        ; or if 

origin machine         is not capable of producing product       

. WHILE               
   or               

    

SELECT randomly another product         from the sequence                 
 

from the origin machine         and another product       from the 

sequence             
. 

ENDWHILE 

ENDIF 

//update current capacity usages and sequences of machines after the lot is inserted 

                 
          

      
        

   

                                  ,                   ,                 
,             

)   

 } 

Figure 6.12 Pseudocode for the swap move used in this study 

 

Similar to insert move, swap move considers only capability constraint. A swap 

move can be made after capability is satisfied for both products. On the other hand, 

similar to insert move, two product lots can be swapped within the same machine. 

Due to the use of constraint violation techniques, even if a swap move results in 

Figure 6.12 Pseudocode for the swap move used in this study 



44 

 

infeasible solutions in terms of capacity, demand satisfaction, or upper bound 

production quantity, it would not be prohibited.  

 

6.3.3 Fractional Insert Move 

 

This move is similar to the insert move, however it allows the option of splitting a 

lot into two lots, where the total quantity produced is the same as the original lot. 

One of these new lots is left in the same position as the original lot, while second part 

is inserted randomly into a new location. On the other hand, capacity violation is not 

permitted in fractional insert move.  If there is enough capacity, then all of the lot 

will be moved; if not then only the amount that can fit in the period will be moved.  

All locations within the period are tested as the capacity available in the period will 

vary depending on the position the new lot is inserted into and the lots surrounding it 

because of the sequence dependency of the setup times. 

 

Figure 6.13 Initial schedule 

An example of fractional insert move is as follows. 

 

Figure 6.14 Schedule obtained after a fractional insert move 

 

 1    2     3    4     5    6    7    8    9   10 1    2     3    4     5    6   7    8     9   10 

1    2     3    4     5    6   7    8     9  10 1    2     3    4     5    6   7    8     9    10 
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As it can be observed in Figure 6.14, product 4 on machine 2 on the first period is 

splitted into two parts. One part is inserted before product 1 on machine 1 on period 

1. 

 

                     { 

Starting with an initial production sequence on machine m for period t, which is denoted as  

      for all t and for all m, where     [ ] and     [ ]. 

SELECT randomly a period         ,where         [ ] for the origin 

SELECT randomly another period       , where       [ ] for the destination 

SELECT randomly an origin machine        , where         [ ] 

SELECT randomly a destination machine      , where       [ ] 

//If there is no free space on the destination machine      , search  

WHILE                                            

SELECT randomly another destination machine      . 

ENDWHILE 

SELECT randomly a product         from the sequence                 
, where         [ ]. 

IF destination machine       is capable of producing product         , i.e.,               
  : 

SELECT randomly a destination_index from the sequence             
. 

destination_index is a random place where a fraction of the demand 

                        
 of product         that is currently produced on          at period 

       , will be placed before. Currently, the product on the destination_index is 

denoted as      . 

ELSEIF // If destination machine       is not capable of producing product        ; repeat 

the following step until there is a product         that can be produced on the destination 

machine       is found. 

WHILE               
   

SELECT randomly another product         from the sequence                 
 from 

the origin machine          where         [ ], which destination machine is capable 

of, i.e.,                
    

ENDWHILE 

ENDIF 
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// Calculate the current space,                        , on the destination machine       at 

period       after required setups are carried out. 

                                                                        

// Check if there is enough capacity that fraction of lot                         
 can be inserted 

to machine       on period      .  

IF                                                 

// Check if the whole lot                         
 can be inserted to machine       on 

period      . 

IF                                                                        

//update current capacity usages and sequences of machines 

ELSEIF // Calculate the fraction of lot that can be inserted to machine       on 

period      . 

                               
                                               

//update current capacity usages and sequences of machines 

                 
          

      
        

   

                                  , 

                  ,                 
,             

) 

ENDIF 

ENDIF 

} 

Figure 6. 15 Pseudocode for the fractional insert move used in this study 

 

Different than insert and swap moves, in fractional insert move, the lot is 

transferred after the capacity check is carried out. The reason is that if there is no 

capacity limitation, then the whole lot will be transferred and fractional insert move 

will behave the same as the insert move. On the other hand, in the Local Search 

Phase of VNS algorithms, only either insert or swap move can search the whole 

solution space entirely within their neighborhoods, i.e., they can be used in Best 

Improvement Algorithm or Steepest Descent Heuristic, which is defined in Section 

4.2. However, fractional insert move does not work as a move for Steepest Descent 

Heuristic, i.e., not all possible fractional insert moves are considered in the tested 

algorithms since the trasferred quantity of lot would change in every iteration, and 

accordingly there will be infinitely many possible moves. Thus, only a single random 

Figure 6.15 Pseudocode for the fractional insert move used in this study  
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move is carried out at each iteration when fractional insert move is used and 

fractional insert move is used only in the Shaking Phase. To sum up          , 

        and                      moves, proposed in Figure 6.9, 6.12 and 6.15 

are only used in the Shaking Phase, i.e., when there is only a random single move. 

When whole neighborhood is explored entirely in insert and swap neighborhood 

schemes, then Insert Best Improvement (    or Swap Best Improvement (    are used 

which will be explained in Section 7.2.   
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CHAPTER SEVEN  

 COMPUTATIONAL STUDY 

 

In this chapter, the algorithms and their results are presented and compared with 

the benchmark results found in the literature so far. 

 

7.1 Problem Instances Tested 

 

Benchmark problem instances used in this study were generated by James & 

Almada-Lobo (2011). Firstly, they started to generate mid-sized problem instance 

with 15 products, 10 periods and 80% capacity utilization. Afterwards, they used 

various perturbations based on the change in number of machines, number of 

products, number of periods, capacity utilization per period, cost of setup per unit of 

time, balance of products across the machines, and possible product-machine 

allocations. Problem type can be represented as follows: 

 

M-N-T-Cut-CutVar-θ-MProb-MBal. 

 

Where M denotes the number of machines; N denotes the number of products; T 

denotes the number of periods; Cut denotes the capacity utilization per period. 

CutVar controls the maximum total allowed variation from Cut, so the actual 

capacity utilization can vary. However, in this thesis, benchmark instances have no 

capacity variation. θ indicates the cost of setup per unit of time, MProb represents 

the total number of possible product-machine allocations, i.e., when MProb 

increases, the problem becomes harder to solve. Lastly, MBal indicates the balance 

of products across the machines (James & Almada-Lobo, 2011). 

 

For each combination, 10 instances were generated. The variation of parameters 

which may give an idea of the difficulty level of the benchmark instances can be 

observed as follows: 

 

M: number of machines from 2  3 
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N: number of products from 15  20 

T: number of periods from 5  10 

Cut: capacity utilization per period 0.6   0.8 

θ: cost of setup per unit of time 50   100 

MProb: total number of possible product-machine allocations 60  80 

MBal: balence of products across the machines 10   20 

 

7.2 Algorithms Tested 

 

The types of moves which were described previously in Section 6.3, are used in 

the VNS, VND and reduced VNS algorithms proposed. 

 

In VNS, which is defined formerly in Section 4.1, two neighborhood structures 

are used, i.e.,                   . Fractional insert move is used only in the 

Shaking Phase, however, in the Local Search Phase, insert move and swap move are 

used respectively. Moreover, in the Local Search Phase, whole neighborhood is 

explored, i.e., Best Improvement Local Search  is used, which is previously defined 

in Section 4.2. For the stopping condition, maximum number of 3000 iterations is 

chosen. 

 

Similar to VNS, in VND algorithm, the number of neighborhood structure is again 

two. Furthermore, binary combinations of swap move and insert move are used. For 

example, in one case, first neighborhood is swap move, second neighborhood is 

insert move, and in the other case the first neighborhood is insert move and second 

neighborhood is swap move. Likewise, the whole neighborhood is searched entirely 

and the best neighbor of        (     
   ) is found. 

 

In reduced VNS (RVNS), pair-wise combinations of three moves are used. Two 

techniques of constraint handling are utilized for all of the algorithms tested. Firstly, 

if a solution is infeasible, then it is penalized by using NFT (Smith & Tate, 1993; 

Tate & Smith, 1995). Secondly, the superiority of feasible solutions is used when 

making a selection between two solutions during the search phase. 
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7.2.1 Variable Neighborhood Search (VNS) 

 

Insert Best Improvement and Swap Best Improvement heuristics are explained, 

which are used both in VNS and VND algorithms proposed in this study. Insert Best 

Improvement and Swap Best Improvement heuristics are the variants of Best 

Improvement Local Search which is explained previously in Section 4.1. With the 

Insert Best Improvement heuristic, all possible insertions are carried out. The only 

constraint is the capability of machines. Similarly, Swap Best Improvement heuristic 

makes all possible swap moves as long as the capability constraint is satisfied. In 

VNS and VND algorithms, the search space within insert and swap neighborhoods is 

explored entirely. The general framework for the entire search of insert and swap 

moves, which are Insert Best Improvement and Swap Best Improvement heuristics, 

are explained in the following figures. 

 

Insert Best Improvement (     

FOR              

 FOR                   

  FOR                                 

   FOR                 

    FOR                   (        
)     

    IF               
   // Insert the whole lot                         

 

          

                 
          

      
        

   

                                  , 

                  ,                 
,             

) 

//Calculate the objective function and find the best 

ENDFOR 

ENDFOR 

ENDFOR 

ENDFOR 

ENDFOR 

ENDFOR 

                    
                             

 

 
Figure 7.1 Pseudocode for Best Improvement for Insert Move 
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 Swap Best Improvement (     

 FOR              

 FOR                   

  FOR                                 

   FOR                 

    FOR                  (        
) 

IF               
                      

   

// Swap lots                         
  and                    

 

           

                 
          

      
        

   

                                  , 

                  ,                 
,             

) 

ENDIF 

ENDFOR 

ENDFOR 

ENDFOR 

ENDFOR 

  ENDFOR 

                                             

 

 

In the comparison function defined in Figure 7.3, two solutions are compared 

using Superiority of Feasible Solutions and NFT. According to the Superiority of 

Feasible Solutions, when both solutions are feasible, then the solution with the 

minimum objective value is updated as the new incumbent solution and algorithm 

continues to explore within the same neighborhood (Deb, 2000). On the other hand, 

when the incumbent solution is feasible and the new solution is infeasible, then, a 

move to the next neighborhood is carried out. If the incumbent solution is infeasible 

and the new solution is feasible, then, the new solution will be as the incumbent 

solution and since an improvement is made, algorithm continues with the same 

neighborhood. Lastly, if both solutions are infeasible, then the solution with the least 

violation amount is chosen as the new incumbent solution.  

 

 

  

Figure 7.2 Pseudocode for Best Improvement for Swap Move 
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IF                                                    

   IF             <         

                 

   ELSE 

   // update             and       

                          

            

   END 

 ELSEIF                                                  

                 

            ELSEIF                                                  

 // update            ,      , and                     

                      ,              

                                           

ELSEIF                                                 

//Calculate NFT for both solutions 

     ∑(
  

    

)
  

   

 

IF                  

// update            ,      , and                     

                        ,              

                                           

ELSEIF 

               

  ENDIF 

ENDIF 

                      

Figure 7.3 Pseudocode for comparison function 

 

In the comparison function defined in Figure 7.3, two solutions are compared 

using Superiority of Feasible Solutions and NFT. According to the Superiority of 

Feasible Solutions, when both solutions are feasible, then the solution with the 

minimum objective value is updated as the new incumbent solution and algorithm 

continues to explore within the same neighborhood (Deb, 2000). On the other hand, 

when the incumbent solution is feasible and the new solution is infeasible, then, a 

Figure 7.3 Pseudocode for comparison function 
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move to the next neighborhood is carried out. If the incumbent solution is infeasible 

and the new solution is feasible, then, the new solution will be as the incumbent 

solution and since an improvement is made, algorithm continues with the same 

neighborhood. Lastly, if both solutions are infeasible, then the solution with the least 

violation amount is chosen as the new incumbent solution.  

 

 

VNS(                            

        

                             

                      , 

                                       

WHILE            

     

// Shaking Phase, 

                                                                            

                                            

                          

WHILE        

// Local Search Phase, 

IF       

                                                                                   

ELSEIF  

                                                                      

ENDIF 

//compare                , use Superiority of Feasible Solutions and NFT 

                                                                                                 

IF improvement = 0 

       

ELSEIF 

     

ENDIF 

ENDWHILE 

ENDWHILE 

 

 

Figure 7.4 Pseudocode for VNS Algorithm used in this study (kmax=2, N1=insert move ,N2=swap 

move) 
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On the other hand, in Figure 7.4, the pseudocode of the VNS algorithm used in 

this study is presented where.                and              . 

 

In VNS algorithm, there are both Shaking Phase and Local Search Phases. VNS 

algorithm used in this study works as follows: Firstly, initial parameters       

                                , and                                        are found 

from the initial solution. Afterwards, a this fractional insert move is made for 

diversification. After a single fractional insert move, local search phase starts where 

an entire search is made within the 1
st
 neighborhood,                , using Insert 

Best Improvement method, which is described in Section 4.2. Local minimum, 

denoted as          , among all solutions of the Insert Best Improvement is found and 

compared with the             value using comparison function described in Figure 

7.3.. If there is improvement, then,            ,       and                     are 

updated and the neighborhood turns to be the first neighborhood, i.e.,    . When 

there is no improvement, then a move to the second neighborhood is made. When 

there is no improvement on the second neighborhood, the algorithm stops, takes 

     , and continues with the next iteration. More specifically, the proposed VNS 

algorithm continues taking       as the new incumbent solution until a 

predetermined maximum CPU time is reached. 

 

Other VNS algorithms used in this study has the same Shaking Phase.  However, 

in the Local Search Phase, swap and insert moves are used, which are presented on 

Figure 7.1 and 7.2, respectively, i.e., either                             .   or the 

reverse. The reason why fractional insert move is not used in the Local Search Phase 

is that, the trasferred quanitity of lot would change in each step, and accordingly 

there will be infinite possible moves when the entire search space would be explored. 

Thus, fractional insert move is used only in the Shaking Phase of the proposed VNS 

algorithms. 
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7.2.2 Variable Neighborhood Descent (VND) 

 

Pseudocode of VND algorithm used in this study can be observed in Figure 7.5 in 

detail. 

 

VND (             ) 

                                       ,                                            

WHILE        

IF       

                                                                          

ELSEIF 

                                                                                      

ENDIF 

                                                                                                 

IF improvement = 0 

       

ELSEIF 

     

ENDIF 

ENDWHILE 

Figure 7.5 Pseudocode for VND Algorithm used in this study          
 
              

             

 

The main difference of VND and VNS is that, VND does not have a Shaking 

Phase.   

 

VND works as follows: Firstly, initial best parameters;                 

                      , and                                        are found from the 

initial solution. 

 

Then, an entire search is made whitin the first neighborhood,              , using 

Swap Best Improvement method, proposed in Figure 7.2. The minimum objective 

function value, denoted as        , among all solutions of the Swap Best 

Improvement is found and compared with the             value using comparison 

Figure 7.5 Pseudocode for VND Algorithm used in this study (kmax=2, N1=swap move, N2=insert 

move) 
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function described in Figure 7.3. If there is improvement, then,            ,        

and                     are updated. Afterwards, Swap Best Improvement continues 

with the new incumbent solution      . If no improvement occurs, then, algorithm 

continues with the next neighborhood               .                         

takes the incumbent solution        as the input and explores the entire search region. 

The minimum in this neighborhood is found and compared with the             value 

again with the comparison function. Likewise, if, there is an improvement ,            , 

      and                     are updated and algorithm returns to the first 

neighborhood               again. If no improvement is achieved on the second 

neighborhood also, then, the algorithm stops. 

 

In this study, two different VND algorithms are tested. In the first one    

                        , and in the second one is                   

         . The only difference between the two VND variants is the sequence of 

the neighborhoods. 

 

7.2.3 Reduced Variable Neighborhood Search (RVNS) 

 

The pseudocode of RVNS heuristic used in this study can be seen in Figure 7.6. 

Different from VNS, RVNS consists of Shaking Phase only.   

 

As it can be seen from Figure 7.6, starting with the initial solution, let       

                                , and                                        be the best 

so far values. 

 

Starting from the first neighborhood, a fractional insert move is made, and the 

results are compared with the incumbent solution using comparison function 

described in Figure 7.3. When there is an improvement, then the search continues 

within the first neighborhood scheme, otherwise, a move to the next neighborhood is 

done. Furthermore, the algorithm starts from the first neighborhood and repeats all 

these steps, taking the best so far solution,       obtained from the last iteration as 

the input, until the maximum number of iterations is achieved. 
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RVNS (                                 

                                      ,               

                                       

WHILE                        

     

// Shaking 

WHILE           

IF       

                                                                                                 

ELSE 

                                                                                   

ENDIF 

//compare                , use Superiority of Feasible Solutions and NFT 

                                                                                                  

IF improvement = 0 

       

ELSE 

       

ENDIF 

ENDWHILE 

                       

ENDWHILE 

 

   

 

In this study, six different RVNS algorithms are used. The reason is that, there are 

three types of moves defined in Section 6.3, pair-wise combinations of three moves 

are used, i.e.,       . Figure 7.6 represents only one RVNS with neighborhoods 

                                           .  

 

 

 

 

 

Figure 7.6 Pseudocode for RVNS Algorithm used in this study (kmax=2, N1=fractional insert move, 

N2=swap move) 
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7.3 Computational Study 

 

All benchmark instances are tested on the proposed algorithms. The average % 

deviations from the lower bounds and average computation times for each 10 

different instance type are calculated and compared with the results of James & 

Almada-Lobo (2011). The NFT parameters used in this study are,     : 0.001 and 

 : 0.4.  All computational experiments were performed on a Intel(R) Core(TM) i-5 

2430M CPU:  2.40 GHz with 4GB RAM and algorithms were coded in MATLAB 

R2010A. 

 

For each 10 different instance combination, the average % deviation from lower 

bound is calculated with the following formula, 

 

[∑
                             

           

  
   ]

  
⁄                                                                 (7.2) 

7.3.1 Experimental Results for Variable Neighborhood Search (VNS) 

 

In the proposed VNS algorithms mentioned before, fractional insert move is used 

only in the Shaking Phase. Insert and swap neighborhood schemes are used in the 

Local Search Phase. Also, both VNS algorithms are set to run to 3600 seconds time 

limit so as to use the same time limit with the compared benchmark instances. 

 

As it can be seen in Table 7.1, both VNS algorithms performs well on various 

problems. Also, when the differences of average deviations between each proposed 

VNS algorithm and current best known solutions are compared, it can be deduced 

that the performance of both VNS algorithms are good. A negative value on Table 

7.2 and 7.3 indicate an improved dataset. Another deduction is that when total 

number of possible product-machine allocations, MProb, is at low level, then the 

neighborhood combination of    : insert move    : swap has a better solution quality 

compared to the other neighborhood pair. 
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Table 7.1 Average % deviations from lower bound of the proposed VNS algorithm (Compared with 

the benchmark results) 

Problem Type Average % deviations from lower bound 

 

VNS 

                 

              

VNS 

               

                

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-

80-20 
1.36 1.52 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-

50-80-20 
2.55 2.59 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-

100-60-20 
8.11 7.08 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-

100-80-10 
6.27 4.94 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-

100-80-20 
6.17 6.59 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-

100-80-20 
7.60 6.86 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-

80-20 
9.33 6.74 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-

100-60-20 
4.51 4.28 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-

50-80-20 
13.02 12.97 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-

100-60-20 
8.02 9.40 8.00 9.31 9.78 
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Table 7.2 Differencens of average % deviations from lower bound of the proposed VNS algorithms 

Problem Type Difference of Average % deviations from lower bound 

 

VNS

                                 

and Best So Far 

VNS

                                 

and Best So Far 

Data2-15-5-0.8-

0.0-50-80-20 
-0.11 

0.05 

Data2-15-10-0.8-

0.0-50-80-20 
-0.05 

-0.01 

Data2-15-10-0.8-

0.0-100-60-20 
1.01 

-0.02 

Data2-15-10-0.8-

0.0-100-80-10 
1.21 

-0.12 

Data2-15-10-0.8-

0.0-100-80-20 
0.16 

0.58 

Data2-20-10-0.8-

0.0-100-80-20 
0.62 

-0.12 

Data3-15-5-0.8-

0.0-50-80-20 
2.70 

0.11 

Data3-15-10-0.6-

0.0-100-60-20 
0.14 

-0.09 

Data3-15-10-0.8-

0.0-50-80-20 
0.16 

0.11 

Data3-15-10-0.8-

0.0-100-60-20 
0.02 

1.40 

 

 

7.3.2 Experimental Results for Variable Neighborhood Descent (VND) 

 

Following tables indicate the average % deviations from lower bound and average 

CPU time in seconds for the two VND algorithms tested on the benchmark instances. 

 

According to the Table 7.3, it can be seen that various instance types were 

improved. The differences among percentage deviations from lower bound can be 

seen in Table 7.4. On the other hand, Table 7.5 indicates that the computation time of 
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both VND algorithms are approximately 18 minutes, which implies that VND 

algorithm works somehow efficient for small to mid-size problems.  

 

Table 7.3 Average % deviations from lower bound of the proposed VND algorithm (Compared with 

the benchmark results) 

 

 

 

 

 

Problem Type Average % deviations from lower bound 

                  

              

VND 

               

                

VND 

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0- 50-

80-20 
2.01 1.71 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-

80-20 
2.71 2.52 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-

60-20 
6.96 7.07 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-

80-10 
5.12 5.09 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-

80-20 
6.11 6.38 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-

80-20 
6.74 6.88 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-

80-20 
7.58 7.49 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-

60-20 
5.21 5.17 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-

80-20 
14.38 14.42 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-

60-20 
9.14 9.26 8.00 9.31 9.78 
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Table 7.4 Differencens of average % deviations from lower bound of the proposed VND algorithms 

Problem Type Difference of Average % deviations from lower bound 

 
VND                                 

and Best So Far 

VND                                 

and Best So Far 

Data2-15-5-0.8-

0.0-50-80-20 
0.54 0.24 

Data2-15-10-

0.8-0.0-50-80-20 
0.11 -0.08 

Data2-15-10-

0.8-0.0-100-60-

20 

-0.14 -0.03 

Data2-15-10-

0.8-0.0-100-80-

10 

0.06 0.03 

Data2-15-10-

0.8-0.0-100-80-

20 

0.10 0.37 

Data2-20-10-

0.8-0.0-100-80-

20 

-0.24 -0.10 

Data3-15-5-0.8-

0.0-50-80-20 
0.95 0.86 

Data3-15-10-

0.6-0.0-100-60-

20 

0.84 0.80 

Data3-15-10-

0.8-0.0-50-80-20 
1.52 1.56 

Data3-15-10-

0.8-0.0-100-60-

20 

1.14 1.26 
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Table 7.5 Average Computation Times of the proposed VND algorithm (Compared with the 

benchmark results) 

Problem Type Average time in seconds 

 

VND 

                 

              

VND 

               

                

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-

50-80-20 
634.8 594.4 323.7 969.2 74.1 

Data2-15-10-0.8-0.0-

50-80-20 
727.4 779.2 527.1 1173.7 244.4 

Data2-15-10-0.8-0.0-

100-60-20 
708.2 726.1 1371.2 851.1 559.8 

Data2-15-10-0.8-0.0-

100-80-10 
1294.4 1343.8 3756.1 1909.3 2524.1 

Data2-15-10-0.8-0.0-

100-80-20 
945.2 1053.0 322.2 1170.0 198.1 

Data2-20-10-0.8-0.0-

100-80-20 
1174.2 1328.9 1254.5 930.4 626.7 

Data3-15-5-0.8-0.0-

50-80-20 
1584.3 1272.1 7623.0 1427.5 941.3 

Data3-15-10-0.6-0.0-

100-60-20 
1149.2 1076.5 3023.8 1266.9 417.0 

Data3-15-10-0.8-0.0-

50-80-20 
1545.7 1293.5 2910.9 1220.9 950.9 

Data3-15-10-0.8-0.0-

100-60-20 
1617.9 1337.8 960.3 1035.0 239.1 

Average 1138.13 1080.53 2207.3 1195.4 677.5 

 

 

7.3.3 Experimental Results for Reduced Variable Neighborhood Search (RVNS) 

 

 

Since there are ten different combinations of the benchmark instances, randomly a 

single benchmark instance is tested on each RVNS algorithm in order to see when 

best so far value converges. The figures in the appendix are the convergence plots of 

selected four instances having different characteristics. Six different RVNS 

algorithms were tested. The convergence points of randomly selected ten instances 

from different combinations are summarized in tables 7.6-11, where each table 
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indicates the iteration numbers when convergence started over the tested RVNS 

algorithm. 

 

Table 7.6 Randomly Selected Instances and their iteration numbers  where convergence starts tested 

algorithm: RVNS (N1: insert, N2:swap) 

Randomly Selected Instance  

RVNS (N1: insert, N2:swap) 

Iteration Number where best so far value 

started to converge (after 3000 iterations) 

Data2-15-5-0.8-0.0-50-80-20-1 2567 

Data2-15-10-0.8-0.0-50-80-20-3 2572 

Data2-15-10-0.8-0.0-100-60-20-4 2603 

Data2-15-10-0.8-0.0-100-80-10-8 2311 

Data2-15-10-0.8-0.0-100-80-20-6 2652 

Data2-20-10-0.8-0.0-100-80-20-8 2189 

Data3-15-5-0.8-0.0-50-80-20-7 2783 

Data3-15-10-0.6-0.0-100-60-20-1 2451 

Data3-15-10-0.8-0.0-50-80-20-5 2664 

Data3-15-10-0.8-0.0-100-60-20-3 2660 

 

 

Table 7.7 Randomly Selected Instances and their iteration numbers  where convergence starts Tested 

Algorithm: RVNS (N1: swap, N2:insert) 

Randomly Selected Instance  

RVNS (N1: swap, N2:insert) 

Iteration Number where best so far value started 

to converge (after 3000 iterations) 

Data2-15-5-0.8-0.0-50-80-20-1 2711 

Data2-15-10-0.8-0.0-50-80-20-3 2579 

Data2-15-10-0.8-0.0-100-60-20-4 2703 

Data2-15-10-0.8-0.0-100-80-10-8 2643 

Data2-15-10-0.8-0.0-100-80-20-6 2589 

Data2-20-10-0.8-0.0-100-80-20-8 2244 

Data3-15-5-0.8-0.0-50-80-20-7 2688 

Data3-15-10-0.6-0.0-100-60-20-1 2430 

Data3-15-10-0.8-0.0-50-80-20-5 2219 

Data3-15-10-0.8-0.0-100-60-20-3 2827 
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Table 7.8 Randomly Selected Instances and their iteration numbers  where convergence starts Tested 

Algorithm: RVNS (N1: fractional insert, N2:insert) 

Randomly Selected Instance  

RVNS (N1:fractional insert, N2:insert) 

Iteration Number where best so far value started 

to converge (after 3000 iterations) 

Data2-15-5-0.8-0.0-50-80-20-1 2696 

Data2-15-10-0.8-0.0-50-80-20-3 2727 

Data2-15-10-0.8-0.0-100-60-20-4 2203 

Data2-15-10-0.8-0.0-100-80-10-8 2651 

Data2-15-10-0.8-0.0-100-80-20-6 2538 

Data2-20-10-0.8-0.0-100-80-20-8 2478 

Data3-15-5-0.8-0.0-50-80-20-7 2430 

Data3-15-10-0.6-0.0-100-60-20-1 2666 

Data3-15-10-0.8-0.0-50-80-20-5 2649 

Data3-15-10-0.8-0.0-100-60-20-3 2488 

 

Table 7.9 Randomly Selected Instances and their iteration numbers  where convergence starts Tested 

Algorithm: RVNS (N1: fractional insert, N2:swap) 

Randomly Selected Instance  

RVNS (N1:fractional insert, N2:swap) 

Iteration Number where best so far value started 

to converge (after 3000 iterations) 

Data2-15-5-0.8-0.0-50-80-20-1 2508 

Data2-15-10-0.8-0.0-50-80-20-3 2733 

Data2-15-10-0.8-0.0-100-60-20-4 2234 

Data2-15-10-0.8-0.0-100-80-10-8 2251 

Data2-15-10-0.8-0.0-100-80-20-6 2586 

Data2-20-10-0.8-0.0-100-80-20-8 2392 

Data3-15-5-0.8-0.0-50-80-20-7 2794 

Data3-15-10-0.6-0.0-100-60-20-1 2613 

Data3-15-10-0.8-0.0-50-80-20-5 2648 

Data3-15-10-0.8-0.0-100-60-20-3 2861 
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Table 7.10 Randomly Selected Instances and their iteration numbers  where convergence starts Tested 

Algorithm: RVNS (N1: insert, N2:fractional insert) 

Randomly Selected Instance  

RVNS (N1: insert, N2: fractional insert) 

Iteration Number where best so far value started 

to converge (after 3000 iterations) 

Data2-15-5-0.8-0.0-50-80-20-1 2869 

Data2-15-10-0.8-0.0-50-80-20-3 2723 

Data2-15-10-0.8-0.0-100-60-20-4 2645 

Data2-15-10-0.8-0.0-100-80-10-8 2633 

Data2-15-10-0.8-0.0-100-80-20-6 2714 

Data2-20-10-0.8-0.0-100-80-20-8 2451 

Data3-15-5-0.8-0.0-50-80-20-7 2807 

Data3-15-10-0.6-0.0-100-60-20-1 2711 

Data3-15-10-0.8-0.0-50-80-20-5 2648 

Data3-15-10-0.8-0.0-100-60-20-3 2607 

 

 

Table 7.11 Randomly Selected Instances and their iteration numbers  where convergence starts Tested 

Algorithm: RVNS (N1: swap, N2:fractional insert) 

Randomly Selected Instance  

RVNS (N1:swap, N2: fractional insert) 

Iteration Number where best so far value started 

to converge (after 3000 iterations) 

Data2-15-5-0.8-0.0-50-80-20-1 2631 

Data2-15-10-0.8-0.0-50-80-20-3 2538 

Data2-15-10-0.8-0.0-100-60-20-4 2340 

Data2-15-10-0.8-0.0-100-80-10-8 2407 

Data2-15-10-0.8-0.0-100-80-20-6 2594 

Data2-20-10-0.8-0.0-100-80-20-8 2373 

Data3-15-5-0.8-0.0-50-80-20-7 2299 

Data3-15-10-0.6-0.0-100-60-20-1 2643 

Data3-15-10-0.8-0.0-50-80-20-5 2254 

Data3-15-10-0.8-0.0-100-60-20-3 2386 

 

 

As it can be deduced from the convergence plots, which can be seen in 

Appendices, and convergence tables (Table 7.6-11), the solution converges 

approximately after 2500 iterations. In fact, in some cases, the convergence point is 

closer to 2900 iterations, however, for those instances, only slight changes in the best 
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so far value is detected after 2500 iterations. It can also be understood from the plots, 

fractional insert move results in more fluctuations on the solution. 

 

By looking at the convergence plots, it can also be claimed that, starting with a 

good initial solution will have no major effect on the convergence point. In other 

words, even a good initial solution is used, the proposed RVNS algorithms converge 

nearly on the same iteration number and best so far values are close to each other. It 

can be concluded that the effect of a good initial solution might be not so clearly seen 

here, due to the excessively high computational time, i.e., approximately 8 hours for 

each instance. Only effect of starting with a good initial solution that can be seen 

from the plots is that, in some of the above convergence plots, there is a jump within 

the first 20-25 iterations. The reason might possibly be that the initial solution is 

infeasible. However, when feasible solutions were achieved, the best so far value 

would decline due to the Superiority of Feasible Solutions (Deb, 2000). The 

following tables show the average % deviations from the lower bound compared to 

the best so far solutions in the literature, when six RVNS algorithms were tested. 

 

Table 7.12 Average % deviations of RVNS (N1: insert, N2:swap) 

Problem Type Average % deviations from lower bound 

 

RVNS 

                    

              

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-80-20 1.62 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-80-20 2.38 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-60-20 7.26 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-80-10 5.14 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-80-20 7.18 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-80-20 6.89 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-80-20 6.59 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-60-20 4.33 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-80-20 12.81 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-60-20 10.14 8.00 9.31 9.78 
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Table 7.13 Average % deviations of RVNS (N1: swap, N2:insert) 

Problem Type Average % deviations from lower bound 

 

RVNS 

               

                 

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-80-20 1.66 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-80-20 2.63 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-60-20 6.93 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-80-10 6.15 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-80-20 6.33 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-80-20 6.50 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-80-20 8.94 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-60-20 5.44 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-80-20 12.91 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-60-20 11.75 8.00 9.31 9.78 

 

 

Table 7.14 Average % deviations of RVNS (N1: insert, N2:fractional insert) 

Problem Type Average % deviations from lower bound 

 

RVNS 

                    

               

             

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-80-20 1.57 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-80-20 2.64 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-60-20 6.92 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-80-10 5.10 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-80-20 5.88 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-80-20 6.90 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-80-20 8.42 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-60-20 9.69 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-80-20 17.24 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-60-20 11.49 8.00 9.31 9.78 
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Table 7.15 Average % deviations of RVNS (N1: swap, N2:fractional insert) 

Problem Type Average % deviations from lower bound 

 

RVNS 

                  

               

             

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-80-20 1.51 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-80-20 2.45 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-60-20 7.08 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-80-10 5.03 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-80-20 6.34 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-80-20 6.91 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-80-20 7.23 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-60-20 4.36 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-80-20 13.14 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-60-20 9.20 8.00 9.31 9.78 

 

 

Table 7.16 Average % deviations of RVNS (N1: fractional insert, N2:swap) 

Problem Type Average % deviations from lower bound 

 

RVNS 

                          , 

               

 

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-80-20 1.43 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-80-20 2.51 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-60-20 7.12 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-80-10 5.08 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-80-20 5.86 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-80-20 6.84 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-80-20 8.26 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-60-20 4.81 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-80-20 13.40 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-60-20 7.96 8.00 9.31 9.78 
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Table 7.17 Average % deviations of RVNS (N1: fractional insert, N2:insert) 

Problem Type Average % deviations from lower bound 

 

RVNS 

               

            , 

                   

 

XPHRF INSRF FOHRF9 

Data2-15-5-0.8-0.0-50-80-20 1.45 1.49 1.47 2.03 

Data2-15-10-0.8-0.0-50-80-20 2.56 2.60 2.92 3.06 

Data2-15-10-0.8-0.0-100-60-20 7.04 7.10 8.24 7.84 

Data2-15-10-0.8-0.0-100-80-10 5.12 5.90 5.06 5.19 

Data2-15-10-0.8-0.0-100-80-20 6.01 6.02 6.01 7.13 

Data2-20-10-0.8-0.0-100-80-20 6.85 6.98 8.03 7.68 

Data3-15-5-0.8-0.0-50-80-20 7.14 10.78 6.93 6.63 

Data3-15-10-0.6-0.0-100-60-20 5.07 4.37 5.13 4.64 

Data3-15-10-0.8-0.0-50-80-20 12.91 12.86 14.29 14.31 

Data3-15-10-0.8-0.0-100-60-20 8.14 8.00 9.31 9.78 

 

From Table 7.12-17, all instances were improved in one of the tested RVNS 

algorithms. All results of the tested RVNS algorithms can be seen as a summary in 

Table 7.18. 

 

It can be claimed that, neighborhoods of N1: insert move, N2: swap move results 

well on 3 machine case. Also, neighborhoods of N1: fractional insert move, N2: insert 

move show little improvement. However, the gap of the average % deviations 

between the lower bounds and best so far values of RVNS is still large. One reason 

might be due to the complexity of the problem. In more detail, in single machine 

benchmark results of James & Almada-Lobo (2011), the average % deviations are 

not greater than 3%, however, when number of machines increases, solving the 

problem is getting much more difficult. Another reason might be the tightness of the 

lower bound. James & Almada-Lobo (2011), stated that, their proposed lower bound 

procedure might not appropriate for the multi machine problem instances. 
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Table 7.18 Summary of average % deviations of all tested RVNS Algorithms 

 Average % deviations from lower bound 

Problem 

Type 

RVNS 

                    

              

RVNS 

               

                 

RVNS 

                    

               

             

RVNS 

                  

               

             

RVNS 

               

            , 

                 

 

RVNS 

               

          ve 

                   

 

Dataset1 1.62 1.66 1.57 1.51 1.43 1.45 

Dataset2 2.38 2.63 2.64 2.45 2.51 2.56 

Dataset3 7.26 6.93 6.92 7.08 7.12 7.04 

Dataset4 5.14 6.15 5.10 5.03 5.08 5.12 

Dataset5 7.18 6.33 5.88 6.34 5.86 6.01 

Dataset6 6.89 6.50 6.90 6.91 6.84 6.85 

Dataset7 6.59 8.94 8.42 7.23 8.26 7.14 

Dataset8 4.33 5.44 9.69 4.36 4.81 5.07 

Dataset9 12.81 12.91 17.24 13.14 13.40 12.91 

Dataset 

10 
10.14 11.75 11.49 9.20 7.96 8.14 

 

 

Even though all benchmark instances were improved with one of the RVNS 

methods presented, the computational time is almost 8 hours for 3000 iterations. 

However, the differences of average deviations from best so far values, which can be 

seen in Table 7.19, are satisfactory. 
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Table 7.19 Summary of differences of average % deviations of all tested RVNS Algorithms from best 

so far lower bounds 

 Differences of average % deviations from lower bound (Best So Far values) 

Problem 

Type 

RVNS 

                    

              

RVNS 

               

                 

RVNS 

                    

               

             

RVNS 

                 

               

             

RVNS 

               

             

                 

 

RVNS 

               

          ve 

                   

 

Dataset1 0.15 0.19 0.10 0.04 -0.04 -0.02 

Dataset2 -0.22 0.03 0.04 -0.15 -0.09 -0.04 

Dataset3 0.16 -0.17 -0.18 -0.02 0.02 -0.06 

Dataset4 0.08 1.09 0.04 -0.03 0.02 0.06 

Dataset5 1.17 0.32 -0.13 0.33 -0.15 0.00 

Dataset6 -0.09 -0.48 -0.08 -0.07 -0.14 -0.13 

Dataset7 -0.04 2.31 1.79 0.60 1.63 0.51 

Dataset8 -0.04 1.07 5.32 -0.01 0.44 0.70 

Dataset9 -0.05 0.05 4.38 0.28 0.54 0.05 

Dataset10 2.14 3.75 3.49 1.20 -0.04 0.14 
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CHAPTER EIGHT 

CONCLUSION 

 

In this study, a different type of the Capacitated Lot Sizing and Scheduling 

Problem (CLSP) is tested over different VNS variants. Different than the classical 

single machine case, there are parallel machines with different production 

capabilities. On the other hand, sequence-dependent setup times, costs and setup 

carryover are considered. Moreover, each machine has different capacities varying 

from period to period. These above criteria makes the problem more complex. 

 

In the literature, 100 benchmark instances have been generated which are 

classified into 10 different combinations and have different characteristics and the 

overall best known solutions are presented in the paper of James & Almada-Lobo, 

(2011). 

 

In order to improve the overall best known solutions in the literature, variants of 

VNS are utilized. As neighborhood strategies, three types of moves are used. In fact, 

these moves were previously used for the single machine case by Almada-Lobo & 

James, (2010). However, in this study, these moves have been adapted to the parallel 

machine case. 

 

Another difference of this study is the use of Constraint Handling Techniques. In 

order to give a chance to the infeasible solutions, violation of some constraints like 

capacity violation, demand satisfaction, and violation on the upper bound production 

quantity are penalized by Near Feasible Threshold (Smith & Tate, 1993; Tate & 

Smith, 1995). Also, Superiority of Feasible Solutions is used (Deb, 2000). 

 

For the VNS, fractional insert move is used only in the Shaking Phase and the 

remaining two moves are used respectively in the Local Search Phase. Maximum 

computational time is used as the terminating condition, which is 3600 seconds. As a 

result, both VNS algorithms work well almost for every problem instance. On the 

other hand, when total number of possible product-machine allocations, MProb, is at 
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low level, then the neighborhood combination of    : insert move    : swap move 

has a better solution quality compared to the other neighborhood pair. 

 

Another variant of VNS, VND is also used as a tested heuristic. Two different 

VND algorithms have been tested over the 100 benchmark problems. Since the entire 

search space within a neighborhood will be made in VND, the neighborhood 

structure is the pairwise combinations of insert and swap moves. Moreover, it is clear 

that both VND algorithms works relatively well since the differences from average 

deviations are quite satisfactory. One advantage of the VND algorithm is its 

efficiency in terms of the computation time. The computation time of both VND 

algorithms are approximately 18 minutes, which is quite reasonable.  

   

Lastly, six pairwise combinations of RVNS algorithm have also been tested. In 

this case, maximum number of 3000 iterations is used as the terminating criteria, 

which took almost 8 hours for each instance. Also, average convergence points are 

determined for each combination of the test problems. RVNS variants resulted best 

and nearly all overall best known solutions were improved. However, the weakness 

of the RVNS is the high computation time. As a result, the efficiency of the heuristic 

is low. Similar to all algorithms tested, an increase in the number of products results 

in low % deviation from the lower bound. 

 

For the future work, algorithms presented in this study can be applied to the 

various lot sizing and scheduling problems in the literature. 
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