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Q-BERNSTEIN POLYNOMIALS ON THE INTERVAL [a,b]

ABSTRACT

We first define a new one parameter family of q-Bernstein polynomial on an

arbitrary interval. It reduces to the classical Bernstein polynomial on any interval

when q = 1. This polynomial also inherits some geometric properties of the classical

Bernstein polynomial on any interval. However, the convergence of q-Bernstein

polynomial on an arbitrary interval is very different from that of classical Bernstein

polynomial on any interval. The uniform convergence of this polynomial for a given

f in C[a,b] depends on parameters a, b and q. We then consider the limit function of

the generalized q-Bernstein polynomial on any interval and show that when q is fixed

on the interval 0 and 1 , the limit of this polynomial is f (x) as n tends to infinity if and

only if f (x) is linear. Moreover we find the degree of approximation by modulus of

continuity. We also show that this new q-Bernstein polynomial has symmetry property

provided that f is symmetric on a closed symmetric interval.

Keywords: Generalized q-Bernstein polynomials on any closed interval, uniform

convergence, modulus of continuity.
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[a,b] ARALIĞINDA Q-BERNSTEIN POLİNOMLARI

ÖZ

İlk olarak herhangi bir kapalı aralıkta bir parametreli q-Bernstein polinom ailesini

tanımladık. Parametreyi q = 1 olarak seçtiğimizde, bu polinom herhangi bir kapalı

aralıkta tanımlı klasik Bernstein polinomuna dönüşür. Ayrıca bu polinom herhangi

bir kapalı aralıkta tanımlı klasik Bernstein polinomunun bazı geometrik özelliklerine

de sahiptir. Ancak, herhangi bir kapalı aralıkta tanımlı q-Bernstein polinomunun

yakınsaklığı klasik Bernstein polinomununkinden oldukça farklıdır. a,b kapalı aralığın-

da tanımlı sürekli fonksiyon için bu polinomun düzgün yakınsaklığı a, b ve q

parametrelerine bağlıdır. Sonra n sonsuza giderken bu fonksiyonunun limitini inceledik

ve q parametresini 0 ve 1 arasında sabitlediğimizde, bu fonksiyonun limiti f (x) ancak

ve ancak f (x) doğrusal fonksiyon olduğunda sağladığını gösterdik. Ayrıca, simetrik

kapalı bir aralıkta tanımlı f fonksiyonun simetrik olması koşulu altında genelleştirilmiş

q-Bernstein polinomunun ilginç bir simetri özelliğine sahip olduğunu ispatladık .

Anahtar kelimeler: a,b kapalı aralığında genelleştirilmiş q-Bernstein polinomları,

düzgün yakınsaklık, süreklilik modülü.
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CHAPTER ONE

INTRODUCTION

Among many proofs of the Weierstrass Approximation Theorem, probably the one

given by S. N. Bersntein in 1912 is the most well-known. He introduced the following

polynomials, so called Bernstein polynomials

Bn( f ; x) =

n∑
k=0

f (k/n)
(
n
k

)
xk(1− x)n−k, (1.1)

where f (x) is a function on the interval [0,1] and n is a positive integer. These

polynomials have many remarkable properties. Since they are particularly useful for

both approximation and curves and surfaces design, their analytic properties have been

studied extensively for several decades. The books by Lorentz (1986) and Farin

(2002) are the most comprehensive guide for these purposes.

We now briefly describe some of these properties. Firstly, it is easily verified that

the operators Bn f is a linear monotone operators on [0,1] for n = 1,2, . . .. Thus,

we can apply Bohman-Korovkin theorem (see, Cheney (1984)) which states that for

a linear monotone operator Ln, the convergence of Ln f → f for f (x) = 1, x, x2 is

sufficient for the operator Ln to have the uniform convergence property Ln f → f for

all f ∈ C[a,b]. This justifies the uniform convergence of Bn f to f for all f in C[0,1].

Similarly, derivatives of the Bernstein polynomial B(k)
n ( f ; x) converges uniformly to

f (k)(x) on [0,1]. Yet there is another property due to Voronovskaya, that is if f is

bounded on [0,1] and f ′′(x) exists for some x ∈ [0,1], then

lim
n→∞

n(Bn( f ; x)− f (x)) =
x(1− x)

2
f ′′(x), (1.2)

which gives asymptotic error estimates for the Bernstein polynomials. In other words,

the convergence by Bernstein polynomial is very slow, like the sequence 1/n.

These polynomials are also variation diminishing, which yields some shape

preserving properties. Namely, the number of sign changes in Bn( f ; x) is bounded by

that of f (x). Furthermore, when a function f is monotone, Bernstein polynomials of f

are monotone and it also yields a convex function whenever f is convex. Schoenberg
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(1959) proved that if f (x) is a convex function then the Bernstein polynomials are

monotonic in the sense that

Bn( f ; x) ≥ Bn+1( f ; x) ≥ f (x), x ∈ [0,1]. (1.3)

The converse of this result showed by Kosmak (1960). That is, if Bn( f ; x)≥ Bn+1( f ; x)

for all n ∈ N, then f (x) is convex.

Due to their benefit in geometric modelling, Bernstein-Bézier techniques are

fundamental in Computer Aided Geometric Design (CAGD). Bézier curves independently

discovered by P. de Casteljau at Citröen and by P. Bézier at Renault. A Bézier curve is

defined by

P(t) =

n∑
j=0

p jBn
j(t), t ∈ [0,1] (1.4)

where Bn
j(t) =

(
n
j

)
t j(1− t)n− j is Bernstein basis and p0, p1, . . . , pn are control points

in R2 or R3. As the curve lies in the convex hull of its control points, the points

can be graphically displayed and used to manipulate the curve intuitively. Affine

transformations such as translation and rotation can be applied on the curve by

applying the respective transform on the control points of the curve.

The de Casteljau algorithm is recursive method to evaluate polynomials in Bernstein

form or Bézier curves. The algorithm can also be used to split a single Bézier curves at

an arbitrary parameter value. It has an elegant geometric interpretation. This algorithm

is so fundamental that it is used both subdivision and in blossoming. Furthermore, in

1970’s it is generalized to generate B-spline curves, so called de Boor algorithm.

Blossoms or polar forms simplify the construction of polynomial and piecewise

polynomial curves and surfaces and lead to new surface representations and algorithms.

The blossom bases on symmetric multiaffine mapping. A map T : R→ R is affine if it

preserves affine combinations, that is

T

 n∑
j=1

a jt j

 =

n∑
j=1

a jT (t j), ∀a j, t j ∈ R with
n∑

j=1

a j = 1. (1.5)

A map p :Rn→R is multiaffine, symmetric and diagonal is called polar form(blossom).

Every polynomial P :R→R of degree 6 n has a unique n-variate polar form or blossom
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p. This polar form p is n-affine, symmetric and diagonal, see Goldman (2003). We

will explain this technique in more detail in Chapter 2.2 .

In view of development of q-Calculus , Phillips (1997) proposed a generalization of

the Bernstein polynomials, based on the q-integers. While for q = 1 these polynomials

reduce to classical Bernstein polynomials. However, for q , 1 they exhibit interesting

properties. The convergence of q-Bernstein polynomials on [0,1] was first studied

by Phillips (1997). He showed that the convergence properties of these polynomials

are different from classical Bernstein polynomials on [0,1]. In particular, taking a

sequence q = qn with qn→ 1 such that [n]→∞ as n→∞, and using Bohman-Korovkin

theorem he showed that Bn( f ;q, x) converges uniformly to f for all f ∈ C[0,1]. Then,

this convergence property is examined for fixed real q, 0 < q < 1 and for q ≥ 1. Oruç

& Tuncer (2002) proved for a fixed q, 0 < q < 1, the uniform convergence holds if

and only if f is linear on [0,1]. In addition, if q ≥ 1, then Bn f → f as n→ ∞ for

polynomial f . Furthermore, Il’inskii & Ostrovska (2002) studied the convergence of

the limiting function B∞( f ;q, x).

1.1 The q-Calculus

Since our subsequent work invokes q-integers, q-binomial coefficients and q-series

we begin here with a brief review of the q-calculus. For a more comprehensive

discussion of the q-calculus, see Kac & Cheung (2002).

For any real fixed number q, the q-integer [r] is defined as

[r] =

 (1−qr)/(1−q), q , 1,

r, q = 1.
(1.6)

Note that [r] is a continuous function of q. We next define [r]!, where r is a nonnegative

integer, as

[r]! =

 [r][r−1] . . . [1], r ≥ 1,

1, r = 0,
(1.7)

and call [r]! a q-factorial. Later we shall also need the q-binomial coefficient
[

n
r

]
which

is defined as
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[
n
r

]
=

[n]!
[n− r]![r]!

=
[n] · [n−1] · · · [n− r + 1]

[r] · [r−1] · · · [1]
(1.8)

for n ≥ r ≥ 1, and has the value 1 when r = 0 and the value zero otherwise. Note that

we use
[

n
r

]
q

to emphasize its dependence on q, whenever needed.

The q-binomial coefficients can be computed recursively by the q-Pascal identities[
n
r

]
= qr

[
n−1

r

]
+

[
n−1
r−1

]
(1.9)

or [
n
r

]
=

[
n−1

r

]
+ qn−r

[
n−1
r−1

]
. (1.10)

Note that
[

n
r

]
is a polynomial in q of degree r(n−r), whose coefficients may be regarded

as the generating functions for restricted partitions of integers, see Andrews (1976).

1.2 The q-Bernstein Polynomials on the Interval [0,1]

Phillips (1997) proposed the following generalization of the Bernstein polynomials,

based on the q-integers. For each positive integer n,

Bn( f ;q, x) =

n∑
k=0

fk

[
n
k

]
xk

n−k−1∏
j=0

(1−q jx), x ∈ [0,1], (1.11)

where an empty product denotes 1, the parameter q ∈ R+ is fixed and fk = f ([k]/[n]).

These polynomials possess the following properties:

i) When q = 1, it reduces to the classical Bernstein polynomial, Bn( f ; x).

ii) It satisfies the end point interpolation conditions

Bn( f ;q,0) = f (0), Bn( f ;q,1) = f (1). (1.12)
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iii) Bn( f ;q, x) is a monotone linear operator if 0 < q 6 1 that is

if f (x) ≥ g(x), then Bn( f ;q, x) ≥ Bn(g;q, x).

iv) It reproduces linear functions

Bn(ax + b;q, x) = ax + b, a,b ∈ R. (1.13)

v) The q-Bernstein polynomial may be expressed in terms of q-differences as

Bn( f ;q, x) =

n∑
k=0

[
n
k

]
∆k

q f0 xk, (1.14)

where

∆k
q f j = ∆k−1

q f j+1−qk−1∆k−1
q f j, k ≥ 1, (1.15)

with ∆0
q f j = f j = f ([ j]/[n]). When q = 1 the q-differences become ordinary

forward differences with equidistant step size h = 1/n. Furthermore, given a

polynomial f (x) of degree at most m, ∆k
q f0 vanishes for all k > m. Therefore

Bn( f ;q, x) is a polynomial of degree min(m,n).

We can deduce easily from q-difference form (1.14) that

Bn(1;q, x) = 1, Bn(t;q, x) = x, Bn(t2;q, x) = x2 +
x(1− x)

[n]
. (1.16)

vi) It is shown in Phillips (1996) that (1.11) may be evaluated by the following de

Casteljau type algorithm:

Given : f [0]
0 , f [0]

1 , . . . , f [0]
n

Compute : f [m]
r = (qr −qm−1x) f [m−1]

r + x f [m−1]
r+1

 m = 1, . . . ,n

r = 0, . . . ,n−m.
(1.17)

We see that when q = 1, it reduces the classical de Casteljau type algorithm and

has a nice geometric interpretation subdivision, see Goldman (2003).

vii) If the parameter is taken as q = qn → 1 from below as n→ ∞ then Bn( f ;q, x)

converges uniformly to f , see Phillips (1997).
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viii) The degree of approximation interms of modulus of continuity, see its definition

in chapter (3.3), is given in Oruç (1998) as

‖ Bn( f ;q, x)− f (x) ‖6
3
2
ω(1/[n]1/2), 0 < q 6 1. (1.18)

Here ‖ . ‖ denotes the maximum norm on [0,1].

The geometric properties are shown in Goodman, et.al. (1999), Oruç (1998) and Oruç

& Phillips (2003):

ix) If f (x) is convex on [0,1] then Bn( f ;q, x) is also convex for 0 < q 6 1.

Furthermore, if 0 < q1 6 q2 6 1, then Bn( f ;q2, x) 6 Bn( f ;q1, x), see Goodman,

et.al. (1999).

x) The approximation to a convex function f by q-Bernstein polynomials is

one-sided, from above f . Namely,

Bn−1( f ;q, x) ≥ Bn( f ;q, x) ≥ f (x), n = 2,3, . . . , and 0 < q 6 1. (1.19)

The convergence of Bn( f ;q, x) very much depends on the parameter q. The first

investigation of convergence with q > 1 is given in Tuncer (2001). Then the limiting

Bn( f ;q, x) has been studied by Il’inskii & Ostrovska (2002).

xi) When 0 < q < 1 is fixed, lim
n→∞

Bn( f ;q, x) = f (x) if and only if f (x) is linear.
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CHAPTER TWO

Q-BERSNTEIN BASES ON [a,b]

After the introduction of q-Bernstein polynomials on [0,1] by Phillips (1997), the

paper by Simeonov, et.al. (2012) extended the q-Bernstein basis polynomials over

arbitrary intervals. The main purpose of the latter work was to develop q-blossoming

and subdivision techniques to generate q-Bézier curves.

In this chapter we will investigate q-Bernstein bases on arbitrary intervals, introduced

by Simeonov, et.al. (2012) . Then, we verify that the basis function form partition

of unity. Finally, we will give a brief summary of q-blossoming and subdivision

techniques for q-Bézier curves.

2.1 q-Identities for q-Bernstein Bases over Arbitrary Intervals

We begin by explaining the notation to be used. Simeonov, et.al. (2012) defined

the following q-Bernstein basis functions:

Bn
k(t; [a,b];q) =

[
n
k

]∏k−1
j=0(t−aq j)

∏n−k−1
j=0 (b−q jt)∏n−1

j=0(b−aq j)
, k = 0, . . . ,n, t ∈ [a,b]. (2.1)

In the above notation, values of q for which b− aq j = 0 for some 1 6 j 6 n− 1 are

excluded. Note that when a = 0 and b = 1, the formula (2.1) reduces to

Bn
k(t;q) =

[
n
k

]
tk

n−k−1∏
j=0

(1−q jt), (2.2)

the q-Bernstein basis functions on the interval [0,1]. The limit of (2.1) as q→ 1 gives

the classical Bernstein basis functions over the interval [a,b],

Bn
k(t; [a,b];1) =

(
n
k

)
(t−a)k(b− t)n−k

(b−a)n . (2.3)

7



The q-Bernstein basis functions on [a,b] satisfy the recurrence relations

Bn
k(t; [a,b];q) =

(
b− tqn−k−1

b−aqn−1

)
Bn−1

k (t; [a,b];q)

+ qn−k
(

t−aqk−1

b−aqn−1

)
Bn−1

k−1(t; [a,b];q) (2.4)

and

Bn
k(t; [a,b];q) = qk

(
b− tqn−k−1

b−aqn−1

)
Bn−1

k (t; [a,b];q)

+

(
t−aqk−1

b−aqn−1

)
Bn−1

k−1(t; [a,b];q) (2.5)

These recurrence relation can be verified using q-Pascal identities (1.9), (1.10)

respectively. Cubic bases functions B3
k(t; [a,b];q) for k = 0,1,2,3 and various values

of a, b and q are depicted below.

B0
3

B3
3

B2
3

B1
3

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1 Cubic q-Bernstein bases on [−1,1] for q = 3

B0
3

B3
3

B1
3

B2
3

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2 Cubic q-Bernstein bases on [−1,1] for q = 1/3
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B0
3

B1
3

B2
3

B3
3

0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

1

2

Figure 2.3 Cubic q-Bernstein bases on [0,3] for q = 3

B0
3

B1
3

B2
3

B3
3

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4 Cubic q-Bernstein bases on [0,3] for q = 1/3

Notice that we lost an important feature of the classical Bernstein basis and the q-

Bernstein basis, the nonnegativity.

Proposition 2.1.1. The basis functions Bn
k(t; [a,b];q) ≥ 0 for k = 0,1,2, . . . ,n and

t ∈ [a,b] if 0 6 a < b and 0 < q 6 1.

Proof. This is straightforward from the definition (2.1).

Another property is that although the classical Bernstein basis function has just

multiple zeros at the endpoints of the interval, this new basis Bn
k posseses n distinct

real zeros on R.

Although partition of unity property is used many times in Simeonov, et.al. (2012),

its proof is not given. We now give its proof by induction.

9



It is clear that for n = 0, we have

B0
0(t; [a,b];q) = 1.

Suppose that for n ≥ 1,
n∑

k=0

Bn
k(t; [a,b];q) = 1. (2.6)

On using the recurrence relation (2.4), we get

n+1∑
k=0

Bn+1
k (t; [a,b];q) =

n+1∑
k=0

(
b− tqn−k

b−aqn

)
Bn

k(t; [a,b];q)

(2.7)

+

n+1∑
k=0

qn−k+1
(
t−aqk−1

b−aqn

)
Bn

k−1(t; [a,b];q).

Note that Bn
k(t; [a,b];q) and Bn

k−1(t; [a,b];q) are not defined for k = n + 1, k = 0,

respectively. We may rewrite the last equation as

n+1∑
k=0

Bn+1
k (t; [a,b];q) =

n∑
k=0

(
b− tqn−k

b−aqn

)
Bn

k(t; [a,b];q)

(2.8)

+

n+1∑
k=1

qn−k+1
(
t−aqk−1

b−aqn

)
Bn

k−1(t; [a,b];q).

Then shifting the index of the second summation, we obtain

n∑
k=0

Bn+1
k (t; [a,b];q) =

n∑
k=0

[(
b− tqn−k

b−aqn

)
+ qn−k

(
t−aqk

b−aqn

)]
Bn

k(t; [a,b];q)

=

n∑
k=0

Bn
k(t; [a,b];q) = 1. (2.9)

10



2.2 Subdivision and q-Blossoming

Blossom is first introduced by Ramshaw (1989) . Blossoming is an effective

technique for deriving change of basis algorithms and analyzing the properties of

Bézier curves and Bernstein bases. Degree elevation, Subdivision, Conversion from

monomial to Bézier form are easily derived from blossoming. It is extended to q-

blossom by Simeonov, et.al. (2012). The q-blossom form of a polynomial P(t) of

degree n is the unique symmetric multiaffine function p(u1, . . . ,un;q) that reduces to

P(t) along the q-diagonal. That is, p(u1, . . . ,un;q) is the unique multivariate polynomial

satisfying the following three axioms:

1. Symmetry:

p(u1, . . . ,un;q) = p(uσ(1), . . . ,uσ(n);q) (2.10)

for every permutation σ of the set {1, . . . ,n}.

2. Multiaffine:

p(u1, . . . , (1−α)uk +αvk, . . . ,un;q) = (1−α)p(u1, . . . ,uk, . . . ,un;q)

+ αp(u1, . . . ,vk, . . . ,un;q) (2.11)

3. q-Diagonal:

p(t,qt, . . . ,qn−1t;q) = P(t). (2.12)

When q = 1, we have classical blossoms.
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2.2.1 q-Blossom of Cubic Polynomials

Let us consider the monomials 1, t, t2, and t3 as cubic polynomials. The q-blossom

of these monomials p(u1,u2,u3;q) are given below respectively:

p(u1,u2,u3;q) = 1,

p(u1,u2,u3;q) =
u1 + u2 + u3

1 + q + q2 , (2.13)

p(u1,u2,u3;q) =
u1u2 + u2u3 + u3u1

q(1 + q + q2)
,

p(u1,u2,u3;q) =
u1u2u3

q3 .

Each of these functions above p(u1,u2,u3;q) satisfy q-blossoming axioms. Thus, we

can obtain q-blossom of any cubic polynomial P(t) = at3 + bt2 + ct + d as

p(u1,u2,u3;q) = a
u1u2u3

q3 + b
u1u2 + u2u3 + u3u1

q(1 + q + q2)
+ c

u1 + u2 + u3

1 + q + q2 + d. (2.14)

Moreover we can apply a similar technique to find q-blossom polynomials of any

degree n by using q-blossoming of monomials tr, for r = 0, . . . ,n.

Splitting a Bézier curve into smaller pieces is useful as a divide and conquer strategy

for intersection algorithms. The process of splitting a Bézier curve into two or more

Bézier curves that represents the exactly same curve is called subdivision. The de

Casteljau algorithm, q = 1 in (1.17), is a subdivision algorithm. This algorithm was

extended to q-Bézier curves by Simeonov, et.al. (2012). The convergence of recursive

subdivision for q-Bezier curve was investigated. The following result concerning the

rate of approximation by subdivision of q-Bézier curve was obatined in their work.

Theorem 2.2.1. Let P(t) be a q-Bézier curve defined on [a,b]. Then the control

polygons generated by q-Bézier subdivision converge to the q-Bézier curve P(t)

uniformly on the interval [a,b] at the rate of 2−N , where N is the number of iterations.
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CHAPTER THREE

CONVERGENCE OF Q-BERNSTEIN POLYNOMIAL ON [a,b]

In this chapter, we define a new one parameter family of q-Bernstein polynomials

Bn( f ; [a,b];q, x), based on the bases functions Bn
k(t; [a,b];q) given in Simeonov, et.al.

(2012). We discuss convergence properties and find the degree of approximation

by modulus of continuity for Bn( f ; [a,b];q, x). In addition, it is shown that if f is

symmetric on the interval [−a,a], the corresponding q-Bernstein polynomials satisfy

the property

Bn( f ; [−a,a];q, x) = Bn( f ; [−a,a];1/q,−x).

3.1 The q-Bernstein Polynomials over an Arbitrary Interval

Definition 3.1.1. Given a function f (x) with x ∈ [a,b] and a fixed real number q, we

define q-Bernstein polynomial by

Bn( f ; [a,b];q, x) =

n∑
r=0

fr

[
n
r

]∏r−1
s=0(x−aqs)

∏n−r−1
s=0 (b−qsx)∏n−1

s=0(b−aqs)
, (3.1)

for each n ∈ Z+, where fr denotes the value of the function f at

x = (a + (b−a)
[r]
[n]

), for r = 0,1,2, . . . ,n.

Here an empty product in (3.1) denotes 1. When we put q=1 in (3.1), we obtain the

classical Bernstein polynomials on the interval [a,b],

Bn( f ; [a,b];1, x) =

n∑
r=0

f
(
a + (b−a)

r
n

)(n
r

)
(x−a)r(b− x)n−r

(b−a)n . (3.2)

We can also see easily from (3.1) that Bn( f ; [a,b];q, x) interpolates endpoints:

Bn( f ; [a,b];q,a) = f (a) and Bn( f ; [a,b];q,b) = f (b) (3.3)
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as in for the classical Bernstein polynomials. It is clear that Bn f is a linear operator

Bn(λ f +µg) = λBn f +µBng (3.4)

for all functions f and g defined on C[a,b], and all real λ and µ. We can also see that

Bn f is a monotone operator on C[a,b] if 0 < q 6 1 and 0 6 a < b.

Note that cubic q-Bernstein bases are symmetric in the sense that

Bn
k(t; [−a,a];q) = Bn

n−k(−t; [−a,a];1/q) (3.5)

as shown in the figures below.

B2
3

B0
3

B1
3

B3
3

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1 Cubic q-Bernstein bases on [−1,1] for q = 10.

B2
3

B0
3

B1
3

B3
3

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2 Cubic q-Bernstein bases on [−1,1] for q = 1/10.

Then from this observation, we have the following proposition.
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Proposition 3.1.2. If f (x) is symmetric on [−a,a], then

Bn( f ; [−a,a];q, x) = Bn( f ; [−a,a];1/q,−x). (3.6)

Proof. Assume that f (x) is symmetric on [−a,a] such that f (x) = f (−x). Firstly,

let us manipulate the basis functions

Bn
n−r([−a,a];1/q,−x) =

[
n

n− r

]
1/q

∏n−r−1
s=0 (−x + a/qs)

∏r−1
s=0(a + x/qs)∏n−1

s=0(a + a/qs)

(3.7)

= qr2−nr
[

n
n− r

]
q

∏n−r−1
s=0 (a− xqs)

∏r−1
s=0(x + aqs)∏n−1

s=0(a + aqs)
qnr−r2

= Bn
r ([−a,a];q, x).

Then, using definition (3.1), we get

Bn( f ; [−a,a];1/q,−x) =

n∑
r=0

fn−rBn
n−r([−a,a];1/q,−x), (3.8)

where fn−r = f (−a + 2a [n−r]1/q
[n]1/q

).

Since
[n− r]1/q

[n]1/q
= qr [n− r]q

[n]q
=

[n]q− [r]q

[n]q
(3.9)

and by assumption, we obtain

Bn( f ; [−a,a];1/q,−x) =

n∑
r=0

f (−a + 2a
[r]q

[n]q
)Bn

r ([−a,a];q, x)

=

n∑
r=0

frBn
r ([−a,a];q, x) (3.10)

= Bn( f ; [−a,a];q, x)

which completes the proof.

The following figure shows behaviour of Bn( f ; [−1,1];q, x) while approximating

f (x) = x2.
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Figure 3.3 q-Bernstein polynomials of x2 on [−1,1] for q = 2 and n = 2,3,4.

3.2 q-de Casteljau type Algorithm and q-Differences

We now give two algorithms based on Phillips (1996) and Goldman (2003), for

evaluating the q-Bernstein polynomials over arbitrary intervals. When a = 0 and b = 1

these algorithms reduce to de Casteljau type algorithm (1.17).

Algorithms 3.2.1 These algorithms start with the value of q and the values of f at

the n + 1 points a + (b− a) [r]
[n] , 0 6 r 6 n, and computes Bn( f ; [a,b];q, x) = f [n]

0 , which

is the final point generated by the algorithms. Notice that intermediate points are not

affine combinations of the preceding points in the first algorithm, but this affinity holds

in the second q-de Casteljau type algorithm. According to Simeonov, et.al. (2012),

there are n! number such algorithm whose final points are exactly the same f [n]
0 .

Algorithm 1:

Given : q, f (a), f (a +
(b−a)

[n]
), . . . , f (b)

Compute : f [m]
r =

(bqr −qm−1x) f [m−1]
r + (x−aqr) f [m−1]

r+1

b−aqm−1

 m = 1, . . . ,n

r = 0, . . . ,n−m.

(3.11)
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Algorithm 2:

Given : q, f (a), f (a +
(b−a)

[n]
), . . . , f (b)

Compute : f [m]
r =

(
b−qn−m−rx
b−aqn−m

)
f [m−1]
r +

(
1−

b−qn−m−rx
b−aqn−m

)
f [m−1]
r+1

 m = 1, . . . ,n

r = 0, . . . ,n−m.

(3.12)

The following theorem justifies the Algorithm 1.

Theorem 3.2.1. For 0 6 m 6 n and 0 6 r 6 n−m, we have

f [m]
r =

m∑
s=0

fr+s

[
m
s

]∏s−1
j=0(x−aq j+r)

∏m−s−1
j=0 (bqr −q jx)∏m−1

j=0 (b−aq j)
(3.13)

and , in particular

f [n]
0 = Bn( f ; [a,b];q, x).

Proof. We use induction on m. The result holds for m = 0 and 0 6 r 6 n, since

f [0]
r = f (a+ (b−a) [r]

[n] ). We assume (3.13) holds for some m such that 0 6m 6 n, and for

all r such that 0 6 r 6 n−m. Then for 0 6 r 6 n−m−1, it follows from the algorithm

(3.11) that

f [m+1]
r =

(bqr −qmx) f [m]
r + (x−aqr) f [m]

r+1

b−aqm . (3.14)

On using (3.13), we have

f [m+1]
r = (bqr −qmx)

m∑
s=0

fr+s

[
m
s

]∏s−1
j=0(x−aq j+r)

∏m−s−1
j=0 (bqr −q jx)∏m

j=0(b−aq j)

+ (x−aqr)
m∑

s=0

fr+s+1

[
m
s

]∏s−1
j=0(x−aq j+r+1)

∏m−s−1
j=0 (bqr+1−q jx)∏m

j=0(b−aq j)
. (3.15)

The coefficient of fr+m+1 on the right of the above equation is

(x−aqr)
∏m−1

j=0 (x−aq j+r+1)∏m
j=0(b−aq j)

=

∏m
j=0(x−aq j+r)∏m

j=0(b−aq j)
, (3.16)
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and the coefficient of fr is

(bqr −qmx)
∏m−1

j=0 (bqr −q jx)∏m
j=0(b−aq j)

=

∏m
j=0(bqr −q jx)∏m

j=0(b−aq j)
. (3.17)

For 1 ≤ s ≤ m, shifting the index in f [m+1]
r yields the coefficients of fr+s as

(bqr −qmx)
m∑

s=1

[
m
s

]∏s−1
j=0(x−aq j+r)

∏m−s−1
j=0 (bqr −q jx)∏m

j=0(b−aq j)

+(x−aqr)
m∑

s=1

[
m

s−1

]∏s−2
j=0(x−aq j+r+1)

∏m−s
j=0 (bqr+1−q jx)∏m

j=0(b−aq j)
. (3.18)

We see that
m−s∏
j=0

(bqr+1−q jx) = (bqr+1− x)qm−s
m−s−1∏

j=0

(bqr −q jx) (3.19)

and

(x−aqr)
s−2∏
j=0

(x−aq j+r+1) =

s−1∏
j=0

(x−aq j+r). (3.20)

Substituting the last equations into (3.18) and using q-Pascal’s identities (1.9), (1.10)

simplifies the expression (3.18) to

m∑
s=1

[
m+1

s

]∏s−1
j=0(x−aq j+r)

∏m−s
j=0 (bqr −q jx)∏m

j=0(b−aq j)
. (3.21)

Therefore, the coefficient of fr+s, for 1 6 s 6 m, in (3.15) is

[
m+1

s

]∏s−1
j=0(x−aq j+r)

∏m−s
j=0 (bqr −q jx)∏m

j=0(b−aq j)
, (3.22)

and it also holds for s = 0 and s = m + 1. Consequently, we obtain
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f [m+1]
r =

m+1∑
s=0

fr+s
[

m+1
s

]∏s−1
j=0(x−aq j+r)

∏m−s
j=0 (bqr −q jx)∏m

j=0(b−aq j)
, (3.23)

which completes the proof by induction.

Similarly, in Algorithm (3.11), as we see in (3.13), each intermediate point f [m]
r has

a form that resembles that of the final number f [n]
0 = Bn( f ; [a,b];q, x). We now show

that each f [m]
r can also be expressed in terms of q-differences.

Theorem 3.2.2. For 0 6 m 6 n and 0 6 r 6 n−m, we have

f [m]
r =

m∑
t=0

q(m−t)r∆t
q fr

[
m
t

] t−1∏
s=0

(
x−aqs+r

b−aqs

)
. (3.24)

Proof. We use induction on m. It is true for m = 0 and 0 6 r 6 n, because

f [0]
r = f (a+ (b−a) [r]

[n] ). We assume (3.13) holds for some m such that 0 6m 6 n, and for

all r such that 06 r 6 n−m. Then for 06 r 6 n−m−1, it follows from the algorithm that

f [m+1]
r =

(bqr −qmx) f [m]
r + (x−aqr) f [m]

r+1

(b−aqm)
. (3.25)

On using (3.13), we obtain

f [m+1]
r =

1
(b−aqm)

(bqr −qmx)
m∑

t=0

q(m−t)r∆t
q fr

[
m
t

] t−1∏
s=0

(
x−aqs+r

b−aqs

)
(3.26)

+
1

(b−aqm)

(x−aqr)
m∑

t=0

q(m−t)(r+1)
[
m
t

]
∆t

q fr+1

t−1∏
s=0

(
x−aqs+r+1

b−aqs

) .
Then we use

∆t+1
q fr = ∆t

q fr+1−qt∆t
q fr, (3.27)

in the last equation and rearrange the terms to get
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f [m+1]
r =

1
(b−aqm)

 m∑
t=0

[
bqr −aqt+r+m)

]
q(m−t)r

[
m
t

]
∆t

q fr
t−1∏
s=0

(
x−aqs+r

b−aqs

)

+
1

(b−aqm)

 m∑
t=0

q(m−t)r+(m−t)
[
m
t

]
∆t+1

q fr

∏t
s=0(x−aqs+r)∏t−1

s=0(b−aqs)

 . (3.28)

We may write this as

f [m+1]
r = q(m+1)r∆0

q fr

+
1

(b−aqm)

 m∑
t=1

(b−aqm+t)q(m−t+1)r
[
m
t

]
∆t

q fr
t−1∏
s=0

(
x−aqs+r

b−aqs

)

+
1

(b−aqm)

m−1∑
t=0

q(m−t)r+(m−t)
[
m
t

]
∆t+1

q fr

∏t
s=0(x−aqs+r)∏t−1

s=0(b−aqs)

 (3.29)

+
1

(b−aqm)

∆m+1
q fr

∏m
s=0(x−aqs+r)∏m−1
s=0 (b−aqs)

 .
Shifting the index of the second summation and using q-Pascal identitities (1.9) and

(1.10) we find the coefficient ∆t
q fr as

[
m + 1

t

]
q(m−t+1)r

t−1∏
s=0

(
x−aqs+r

b−aqs

)
. (3.30)

Therefore

f [m+1]
r =

m+1∑
t=0

q(m−t+1)r
[
m + 1

t

]
∆t

q fr
t−1∏
s=0

(
x−aqs+r

b−aqs

)
(3.31)

and the induction is complete.
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Consequently, for r = 0 in the above equation (3.24), we may express the generalized

q-Bernstein polynomial defined by (3.1) in terms of q-differences.

Corollary 3.2.3.

Bn( f ; [a,b];q, x) =

n∑
r=0

∆r
q f0

[
n
r

] r−1∏
s=0

(
x−aqs

b−aqs

)
. (3.32)

Next we investigate the divided differences at xi = a+ (b−a) [i]
[n] for i = 0,1, . . . ,n, to

express Bn f interms of divided difference so as to find the eigenvalues of the operator

Bn f : C[a,b]→C[a,b]. First we have

f [xi, xi+1] =
f (xi+1)− f (xi)

(b−a)
[n] qi

=
∆q f (xi)
(b−a)

[n] qi
. (3.33)

Then second-order divided difference becomes,

f [xi, xi+1, xi+2] =

∆q f (xi+1)−q∆q f (xi)(
b−a
[n]

)2
q2i+1[2]

 (3.34)

which is equivalent to

f [xi, xi+1, xi+2] =
∆2

q f (xi)(
b−a
[n]

)2
q2i+1[2]

. (3.35)

We now state the following proposition similar to Phillips (2003), which shows the

relation between q-differences and divided differences on [a,b].

Proposition 3.2.4. For all i, k ≥ 0, we have

f [xi, xi+1, . . . , xi+k] =
∆k

q f (xi)(
b−a
[n]

)k
qk(2i+k−1)/2[k]!

, (3.36)

where xi = a + (b−a) [i]
[n] .

Proof. The proof given for xi = [i] in Phillips (2003) may be easily adapted for the

values xi = a + (b−a) [i]
[n] .

What follows now using (3.2.4), we can rewrite the generalized q-Bersntein polynomials

on an arbitrary interval in terms of divided difference.
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Proposition 3.2.5.

Bn( f ; [a,b];q, x) =

n∑
r=0

(
1−

1
[n]

)
· · ·

(
1−

[r−1]
[n]

)
(b−a)r∏r−1

s=0(b−aqs)
(3.37)

f [x0, . . . , xr]
r−1∏
s=0

(x−aqs).

Proof. We use (3.36) to rearrange. We get

∆r
q f (x0) = f [x0, x1, . . . , xr]

(
b−a
[n]

)r

qr(r−1)/2[r]!. (3.38)

Substituiting this expression into (3.32), gives

Bn( f ; [a,b];q, x) =

n∑
r=0

[
n
r

]
[r]!

(
b−a
[n]

)r

qr(r−1)/2 (3.39)

f [x0, . . . , xr]
r−1∏
s=0

(
x−aqs

b−aqs

)
.

We have

[n]![r]!
[n− r]![r]![n]r =

[n][n−1] . . . [n− r + 1]
[n]r

=
1
q

(
1−

1
[n]

)
. . .

1
qr−1

(
1−

[r−1]
[n]

)
(3.40)

=
1

qr(r−1)/2

{(
1−

1
[n]

)
. . .

(
1−

[r−1]
[n]

)}
, r = 1,2, . . . ,n.

Substituiting the last expresion in (3.39) gives,

Bn( f ; [a,b];q, x) =

n∑
r=0

(
1−

1
[n]

)
· · ·

(
1−

[r−1]
[n]

)
(b−a)r∏r−1

s=0(b−aqs)
(3.41)

f [x0, x1, . . . , xr]
r−1∏
s=0

(x−aqs).
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Because rth order divided differences annihilates all polynomials of degree less than

r, it follows that Bn( f ; [a,b];q, x) is a polynomial of degree min(n,m) when f (x) ∈ Pm.

The values λ0 = 1, λ1 = 1 are eigenvalues corresponding to the eigenfunctions f (x) = 1,

f (x) = x respectively . Furthermore

λr =

(
1−

1
[n]

)
· · ·

(
1−

[r−1]
[n]

)
(b−a)r∏r−1

s=0(b−aqs)
, r = 2,3,4, . . . ,n (3.42)

are the eigenvalues of the operator Bn f . So far no explicit formula of eigenfunctions

neither for q-Bernstein polynomials nor for classical ones is known.

3.3 Modulus of Continuity and Convergence

We will discuss the uniform convergence of generalized q-Bernstein operator on

[a,b]. Since it is a monotone linear operator for 0< q6 1 and 06 a< b, we can employ

the Bohman-Korovkin Theorem (see, Cheney (1984)) which states that for a linear

monotone operator Ln, the convergence of Ln f → f for f (x) = 1, x, x2 is sufficient for

the operator Ln to have the uniform convergence property Ln f → f , for all f ∈C[a,b].

Firstly, we need to evaluate Bn( f ; [a,b];q, x) for f = 1, t, t2. We can see from (3.1)

and (2.9) that

Bn(1; [a,b];q, x) =

n∑
r=0

[
n
r

]∏r−1
s=0(x−aqs)

∏n−r−1
s=0 (b−qsx)∏n−1

s=0(b−aqs)

(3.43)

=

n∑
r=0

Bn
r (x; [a,b];q) = 1.

For f (t) = t, and x ∈ [a,b], consider
∑n

r=0 frBn
r (x; [a,b];q) where fr = f (aqr[n−r]+b[r]

[n] ),
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then

Bn(t; [a,b];q, x) =

n∑
r=0

(
aqr[n− r] + b[r]

[n]

)
Bn

r (x; [a,b];q)

(3.44)

=

n∑
r=0

aqr [n− r]
[n]

Bn
r (x; [a,b];q) +

n∑
r=0

b
[r]
[n]

Bn
r (x; [a,b];q).

From the identities

[n− r]
[n]

[
n
r

]
=

[
n−1

r

]
and

[r]
[n]

[
n
r

]
=

[
n−1
r−1

]
, (3.45)

we may write (3.44) as

Bn(t; [a,b];q, x) = a
n−1∑
r=0

qr
[
n−1

r

]∏r−1
j=0(x−aq j)

∏n−r−1
j=0 (b−q jx)∏n−1

j=0(b−aq j)

(3.46)

+ b
n∑

r=1

[
n−1
r−1

]∏r−1
j=0(x−aq j)

∏n−r−1
j=0 (b−q jx)∏n−1

j=0(b−aq j)
.

Shifting the indices we get

Bn(t; [a,b];q, x) = a
n−1∑
r=0

qr(b− xqn−r−1)
(b−aqn−1)

Bn−1
r (x; [a,b];q)

(3.47)

+ b
n∑

r=0

(x−aqr)
[
n−1

r

]∏r−1
j=0(x−aq j)

∏n−r−2
j=0 (b−q jx)∏n−1

j=0(b−aq j)
.

Rearranging the last expression gives

Bn(t; [a,b];q, x) =

n−1∑
r=0

(
aqr(b− xqn−r−1) + b(x−aqr)

(b−aqn−1)

)
Bn−1

r (x; [a,b];q)

= x
n−1∑
r=0

Bn−1
r (x; [a,b];q) = x. (3.48)
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A shorter way to establish the last identity is to use the difference form. Since ∆0
q f0 = a,

∆q f0 = b−a
[n] and ∆r

q f0 = 0 for r ≥ 2, we find that

Bn(t; [a,b];q, x) = x. (3.49)

Finally, for f (t) = t2, we compute

f0 = a2, and ∆q f0 =

(
a +

(b−a)
[n]

)2

−a2. (3.50)

Using (3.27), we have

∆2
q f0 =

(
a + [2]

(b−a)
[n]

)2

− [2]
(
a +

(b−a)
[n]

)2

+ a2q. (3.51)

Thus, from (3.32)

Bn(t2; [a,b];q, x) = a2 +

(
(b−a)

[n]
+ 2a

)
(x−a) +

(
[n]−1

[n]

)
(b−a)(x−a)(x−aq)

(b−aq)

=

(
1−

1
[n]

)(
b−a

b−aq

)
x2 +

b + a
b−aq

(
(b−a)

[n]
+ a(1−q)

)
x

(3.52)

−
ab

b−aq

(
(b−a)

[n]
+ a(1−q)

)
.

For a fixed value of q with 0 < q < 1,

[n]→
1

1−q
as n→∞. (3.53)

Therefore Bn(t2; [a,b];q, x) does not converge to x2, but

Bn(t2; [a,b];q, x)→
(b−a)q
(b−aq)

x2 +
b(b + a)(1−q)

(b−aq)
x−

ab2(1−q)
(b−aq)

, as n→∞. (3.54)

Thus, this explains the limitations of Theorem (3.3.1). We now state a theorem, similar

to given by Phillips (1997).
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Theorem 3.3.1. Let (qn) be a sequence such that 0< qn < 1 and qn→ 1 as n→∞.

Then,

Bn( f ; [a,b];q, x)→ f (x), ∀ f ∈C[a,b] and 0 6 a < b, (3.55)

where Bn( f ; [a,b];q, x) is defined by (3.1) with q = qn.

Proof. This becomes a consequence of the Bohman-Korovkin Theorem.

Next we will consider convergence of generalized q-Bernstein polynomials as q→ 0.

As q→ 0 we have

f0

[
n
0

]
(b− x) . . . (b− xqn−1)
(b−a) . . . (b−aqn−1)

= f (a)
(b− x)
(b−a)

,

f1

[
n
1

]
(x−a)(b− x) . . . (b− xqn−2)

(b−a) . . . (b−aqn−1)
= f (b)

(x−a)(b− x)bn−2

(b−a)bn−1 ,

... (3.56)

fn−1

[
n

n−1

]
(x−a) . . . (x−aqn−2)(b− x)

(b−a) . . . (b−aqn−1)
= f (b)

(x−a)xn−2(b− x)
(b−a)bn−1 ,

fn

[
n
n

]
(x−a) . . . (x−aqn−1)
(b−a) . . . (b−aqn−1)

= f (b)
(x−a)xn−1

(b−a)bn−1 .

After some algebraic manipulations, we obtain that

Bn( f ; [a,b];0, x) = f (a)
(b− x)
(b−a)

+ f (b)
(x−a)xn−1

(b−a)bn−1

(3.57)

+ f (b)
[
(x−a)(b− x)
(b−a)bn−1

(
(x + b)n−bn− xn

bx

)]
.

Phillips (1997) gave an upper bound for the error f (x)− Bn( f ;q, x) in terms of the

modulus of continuity. We will prove a similar result for the generalized q-Bernstein

polynomials Bn( f ; [a,b];q, x). Let us recall the modulus of continuity.
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Definition 3.3.2. The modulus of continuity ω(δ) of a function f on [a,b] is defined by

ω(δ) = sup
|x−y|6δ
x,y∈[a,b]

| f (x)− f (y)|, δ ≥ 0. (3.58)

The modulus of continuity has the following properties:

(i) Monotonicity: if 0 < δ1 6 δ2, then ω(δ1) 6 ω(δ2),

(ii) Subadditivity: ω(δ1 +δ2) 6 ω(δ1) +ω(δ2),

(iii) if λ > 0, then ω(λδ) 6 (1 +λ)ω(δ),

(iv) f is uniformly continuous on [a,b] if and only if limδ→0ω(δ) = 0.

The proofs can be found in Rivlin (1969).

Theorem 3.3.3. If f is bounded on [a,b], then for 0 < q 6 1 and 0 6 a < b,

‖ f (x)−Bn( f ; [a,b];q, x)‖ 6

1 +
(b−a)

2

{
b−a((1−q)[n]−1)

(b−aq)

}1/2ω (
1/[n]1/2

)
,

(3.59)

where ‖.‖ denotes the maximum norm.

Proof. We adapt the result in Rivlin (1969) as follows. We have

‖ f (t)−Bn( f ; [a,b];q, t)‖ = ‖

n∑
r=0

( f (t)− fr)Bn
r (t; [a,b],q)‖

6
n∑

r=0

‖ f (t)− fr‖Bn
r (t; [a,b],q) (3.60)

6
n∑

r=0

ω

(
|t− (a + (b−a)

[r]
[n]

)|
)

Bn
r (t; [a,b],q)

From property of the modulus of continuity (iii) , we have

27



ω

(
|t− (a + (b−a)

[r]
[n]

)|
)

= ω

(
[n]1/2|t− (a + (b−a)

[r]
[n]

)|
1

[n]1/2

)
(3.61)

6

(
1 + [n]1/2|t− (a + (b−a)

[r]
[n]

)|
)
ω

(
1

[n]1/2

)
,

so that

‖ f (t)−Bn( f ; [a,b];q, t)‖ 6
n∑

r=0

(
1 + [n]1/2|t− (a + (b−a)

[r]
[n]

)|
)
ω

(
1

[n]1/2

)
Bn

r (t; [a,b],q)

(3.62)

6 ω

(
1

[n]1/2

)1 + [n]1/2
n∑

r=0

|t− (a + (b−a)
[r]
[n]

)|Bn
r (t; [a,b],q)

 .

Applying Cauchy-Schwartz inequality on the last summation gives

n∑
r=0

‖t− (a + (b−a)
[r]
[n]

)‖Bn
r (t; [a,b],q) 6

 n∑
r=0

(
t− (a + (b−a)

[r]
[n]

)
)2

Bn
r (t; [a,b],q)

1/2

(3.63)

6

 n∑
r=0

(
t2−2t(a + (b−a)

[r]
[n]

) + (a + (b−a)
[r]
[n]

)2
)

Bn
r (t; [a,b],q)

1/2

.

On using (3.48) and (3.52), we get{(
(1−

1
[n]

)(
b−a
b−aq

)−1
)
t2 +

b + a
b−aq

(
(b−a)

[n]
+ a(1−q)

)
t−

ab
b−aq

(
(b−a)

[n]
+ a(1−q)

)}1/2

(3.64)

6

{
(b−a)2

4(b−aq)

(
b−a
[n]

+ a(1−q)
)}1/2

and thus, from (3.62),

‖ f (x)−Bn( f ; [a,b];q, x)‖ 6

1 +
(b−a)

2

{
b−a((1−q)[n]−1)

(b−aq)

}1/2ω (
1/[n]1/2

)
.
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We now investigate the limits of Bn( f ; [a,b];q, x) as n→∞ for a fixed real q such

that 0 < q < 1. For each r = 0,1,2, . . ., we have

lim
n→∞

(
a + (b−a)

[r]
[n]

)
= a + (b−a)(1−qr), (3.65)

lim
n→∞

Bn
r ([a,b];q, x) =

1
(1−q)r[r]!

r−1∏
s=0

(x−aqs)
∞∏

s=0

(
b− xqs

b−aqs

)
(3.66)

:= B∞r ([a,b];q, x).

Notice that B∞r ([a,b];q, x)≥ 0, for all x ∈ [a,b] and each q ∈ (0,1), and 06 a< b. The

function B∞r is not a polynomial but a transcendantal function. Moreover it satisfies

the partition of unity for |ab | < 1, |x| < b and |q| < 1. To show this property, we first

give the following identity, which appears in the study of hypergeometric functions, is

due to Cauchy, see Andrews (1976).

Theorem 3.3.4. If |q| < 1 ,|t| < 1, then

1 +

∞∑
n=1

(1−α)(1−αq) . . . (1−αqn−1)
(1−q) . . . (1−qn)

tn =

∞∏
n=0

(
1−αtqn

1− tqn

)
. (3.67)

In q-calculus, it is also sensible to use the following Pochhammer symbol:

(α;q)n = (1−α)(1−αq) · · · (1−αqn−1),

(3.68)

(α;q)∞ =

∞∏
k=0

(1−αqk).

We have

∞∑
r=0

B∞r ([a,b];q, x) =

∞∑
r=0

1
(1−qr)[r]!

r−1∏
s=0

(x−aqs)
∞∏

s=0

(b− xqs)
(b−aqs)

(3.69)

=

∞∏
s=0

(b− xqs)
(b−aqs)

1 +

∞∑
r=1

(x−a)(x−aq) . . . (x−aqr−1)
(1−qr)[r]!

 .
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Since |ab | < 1, |x| < b and |q| < 1, using Cauchy identity (3.3.4) and Pochhammer

symbol (3.68)

∞∑
r=0

B∞r ([a,b];q, x) =

∞∏
s=0

(1− xqs

b )

(1− aqs

b )

1 +

∞∑
r=1

(x−a)(x−aq) . . . (x−aqr−1)
(1−q) . . . (1−qr)



=
( x

b ;q)∞
(a

b ;q)∞

1 +

∞∑
r=1

(1− a
x )(1− aq

x ) . . . (1− aqr−1

x )
(1−q) . . . (1−qr)

xr

 . (3.70)

We consider the expression

1 +

∞∑
r=1

(1− a
x )(1− aq

x ) . . . (1− aqr−1

x )
(1−q) . . . (1−qr)

xr. (3.71)

Replacing α by a
b , and t by x

b in the Cauchy identity (3.67) gives

1 +

∞∑
r=1

(1− a
x )(1− aq

x ) . . . (1− aqr−1

x )( x
b )r

(1−q) . . . (1−qr)
=

∞∑
r=0

(a
x ;q)r( x

b )r

(q;q)r

(3.72)

=
(a

b ;q)∞
( x

b ;q)∞
.

Then, substituting the last expression in (3.70) yields

∞∑
r=0

B∞r ([a,b];q, x) =
( x

b ;q)∞
(a

b ;q)∞

(a
b ;q)∞

( x
b ;q)∞

= 1. (3.73)

In what follows, we define the limits of the q-Bernstein polynomial on [a,b] as n→∞

by

B∞( f ; [a,b];q, x) =


∑∞

r=0 f (a + (b−a)(1−qr))B∞r ([a,b];q, x), if x ∈ [a,b) ,

f (b), if x = b.

(3.74)
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The convergence of this new generalized q-Bernstein polynomial on [a,b] is

very different from classical Bernstein polynomial on [a,b] but immitates that of q-

Bernstein polynomial on [0,1] under certain conditions.

Theorem 3.3.5. Let 0 < q < 1 be a fixed real number and 0 6 a < b. Then

lim
n→∞

Bn( f ; [a,b];q, x) = f (x), for all f ∈C[a,b] (3.75)

if and only if f (x) = a0 + a1x, where a0 and a1 are constants.

Proof. We will adapt the proof given in Il’inskii & Ostrovska (2002).

Suppose that f (t) = a0 + a1t. Since Bn( f ; [a,b];q, x) is linear, we have

Bn(a0 + a1t; [a,b];q, x) = a0 + a1t, ∀q > 0 and n = 1,2,3, . . . . (3.76)

and so

B∞( f ; [a,b];q, x) = lim
n→∞

Bn( f ; [a,b];q, x) = f (x). (3.77)

Conversly assume that B∞( f ; [a,b];q, x) = f (x) for all f ∈ C[a,b] and all x. Let us

consider the function

g(x) = f (x)− ( f (b)− f (a))
( x−a
b−a

)
. (3.78)

It is easily seen that g(a) = g(b) and B∞(g; [a,b];q, x) = g(x). We will prove

g(a) = g(b) = g(x) for all x ∈ [a,b]. Let M = max
x∈[a,b]

g(x) and M > g(b). Then

M = g(z) for some z ∈ (a,b) and g(a + (1− qr)(b− a)) < M for r sufficiently large. On

using positivity of B∞r ([a,b];q, x) and the fact that
∑∞

r=0 B∞r ([a,b];q, x) = 1, we get

M = g(z) =

∞∑
r=0

g(a + (1−qr)(b−a))B∞r ([a,b];q, x) (3.79)

<

∞∑
r=0

MB∞r ([a,b];q, x) = M.
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This contradiction implies that g(x) 6 g(b), ∀x ∈ [a,b]. Similarly, let N = min
x∈[a,b]

g(x)

and N < g(b). Then N = g(z) for some z ∈ (a,b) and g(a + (1− qr)(b− a)) > N for r

sufficiently large. So,

N = g(z) =

∞∑
r=0

g(a + (1−qr)(b−a))B∞r ([a,b];q, x) (3.80)

>

∞∑
r=0

NB∞r ([a,b];q, x) = N.

which shows g(x) ≥ g(b) for each x ∈ [a,b]. Hence g(x) = c for some c ∈ R.

Consequently,

g(x) = f (x)− ( f (b)− f (a))
( x−a
b−a

)
,

(3.81)

f (x) = g(x) +
( f (b)− f (a))

(b−a)
x−

( f (b)− f (a))a
(b−a)

= a0 + a1x
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CHAPTER FOUR

CONCLUSION

After many studies of q-Bernstein polynomial on [0,1] introduced by Phillips

(1997), Simeonov, et.al. (2012) extended q-Bernstein basis polynomial over an

arbitrary interval to generate q-Bézier curves using subdivision and blossoming

techniques. Based on this recent work, we have defined generalized q-Bernstein

polynomial Bn( f ; [a,b];q, x) on an arbitary interval. Setting q = 1 reduces to the

classical Bernstein polynomial on [a,b]. The polynomial Bn( f ; [a,b];q, x) exhibits

interesting properties. One of them is the convergence property. When (qn) is

a sequence such that 0 < qn < 1 and qn → 1 as n → ∞, it is shown that

Bn( f ; [a,b];q, x) uniformly converges to f for all f ∈ C[a,b], with q = qn. Then we

investigate the convergence of the limit function B∞( f ; [a,b];q, x), that is

lim
n→∞

Bn( f ; [a,b];q, x) = f (x), for all f ∈C[a,b] (4.1)

if and only if f (x) is linear function, where 0 < q < 1 is a fixed real number and

0 6 a < b. We find the degree approximation by modulus of continuity for this

polynomial. Moreover if f is symmetric on [−a,a], then q-Bernstein polynomial

satisfies

Bn( f ; [−a,a];q, x) = Bn( f ; [−a,a];1/q,−x).

Further convergence properties as well as geometric properties will be investigated in

future work.
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