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NUMERICAL INVESTIGATION OF ENCAPSULATED ICE THERMAL 

ENERGY STORAGE SYSTEM 

 

ABSTRACT 

 

In this study, two different numerical solution methods are applied for phase 

change problems in one-dimensional cartesian coordinates. Solidification processes 

are simulated by using enthalpy method and temperature transformation method and 

predicted results are compared with the analytical one. Temperature distributions and 

time-wise variations of interface position are represented according to the determined 

boundary conditions. With respect to the results, increasing the number of nodes 

leads to increase the accuracy of the solution of the numerical methods. Highest 

discrepancies between the numerical and analytical results are observed near the 

interface position. In terms of accuracy and solution time, comparative results 

indicate that temperature transformation method gives better approximation. 

 

The purpose of the second work is to evaluate effective thermal conductivity 

equations for inward melting problems inside spherical capsule in terms of the 

temperature difference and the spacing between the interface and the shell. Sets of 

numerical analyses have been carried out by commercial CFD software ANSYS-

FLUENT. In order to validate the method, proposed effective thermal conductivity 

equation has been implemented into numerical code used MATLAB software. The 

results of the phase change problem inside a spherical capsule are compared with the 

experimental findings. Comparative results reveal that implementation of the 

effective thermal conductivity yields reasonable results regarding to the experimental 

measurements.  

 

Keywords: Phase change, enthalpy method, temperature transformation method, 

effective thermal conductivity, natural convection  
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KAPSÜLLENMİŞ BUZ ISIL ENERJİ DEPOLAMA SİSTEMİNİN 

SAYISAL İNCELENMESİ 

 

ÖZ 

 

Bu çalışmada kartezyen koordinatlardaki bir boyutlu faz değişim problemi için iki 

farklı sayısal çözüm yöntemi kullanılarak uygulanan yöntemlerin doğruluğu 

belirlenmiştir.  Entalpi metodu ve sıcaklık dönüşüm metodu kullanılarak katılaşma 

sırasındaki faz değişim süreci analitik yöntem ile karşılaştırılmıştır. Belirlenen sınır 

koşullara göre, sıcaklığın düğüm sayısına ve katı-sıvı ara yüzey konumunun zamana 

göre değişimi gösterilmiştir. Elde edilen sonuçlara göre düğüm sayısındaki artış 

sayısal yöntemlerin doğruluğunu arttırmıştır. Karşılaştırmalı sonuçlara göre yüzdesel 

hatanın en fazla olduğu konum faz değişiminin gerçekleştiği alandır. Sayısal 

yöntemlerin karşılaştırılması ile doğruluk ve çözüm zamanı açısından sıcaklık 

dönüşüm metodu diğer yönteme göre daha doğru sonuç vermiştir. 

 

İkinci çalışmanın ana amacı küre içerisinde içe doğru erime probleminin efektif 

ısı iletim katsayısını denklemlerini elde etmektir.  Sıvı fazdaki FDM’nin doğal 

taşınım modellemesi yapmak yerine, doğal taşınım etkisini efektif ısı iletim katsayısı 

kullanılarak elde edilmiştir. Efektif ısı iletim katsayısı için elde edilen denklemler iç 

küre yüzeyi ile dış küre yüzeyi arasındaki sıcaklık farkı ve uzunluk farkı cinsinden 

elde edilmiştir. Sayısal analizler ticari CFD yazılımı olan ANSYS-FLUENT 

programı ile gerçekleştirilmiştir. Metodun doğruluğunu kontrol etmek için ısı iletim 

katsayısı denklemleri MATLAB programı kullanılarak yazılan küresel 

koordinatlardaki faz değişim problem kodu kullanılmıştır. Hesaplanan sonuçlar 

deneysel verilerle karşılaştırılmıştır. Karşılaştırılmalı sonuçlardan elde edildiği üzere 

efektif ısı iletim katsayısının uygun sonuçlar verdiği gözlemlenmiştir.  

 

Anahtar kelimeler: Faz değişimi, entalpi yöntemi, sıcaklık dönüşüm yöntemi, 

efektif ısı iletim katsayısı, doğal taşınım 
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CHAPTER ONE  

INTRODUCTION 

 

1.1 General Introduction 

 

Depending on the growing population and energy demand, the usage of fossil 

fuels is increased. Due to increasing the greenhouse emissions, utilization of different 

types of renewable energy sources such as solar, wind etc. have revealed. However 

the main problem of the application of renewable energy sources is their 

sustainability. Energy storage systems are gaining prominence as a solution for 

ensuring sustainability of renewable energy sources. Energy storage contributes 

significantly to fulfil society’s needs as environmentally harmless energy usage and 

more efficient systems. Energy storage systems have great benefits as reduced 

energy cost, energy consumption, pollutant emissions. Energy can be stored in 

different ways which is classified in following forms: mechanical, thermal, chemical 

and electrical as shown in Figure 1.1. 

 

 

 

Mechanical energy can be stored as kinetic energy, potential energy and strain 

energy in order of rotational or linear motion, elevated object and elastical materials. 

Energy Storage Methods 

Mechanical Energy Storage 

 

 

 

Chemical Energy Storage 

 

 

 

Thermal Energy Storage 

 

 

 
Electrical Energy Storage 

 

 

 Figure 1.1 A classification of energy storage methods 
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Chemical energy storage is generally used in batteries, interaction between 

compounds cause emerging energy.  Electrical energy is a force that movement of 

the electrons in an atomic structure. Electrical energy can be stored in a capacitor or 

in a magnetic field. Thermal energy is sum of the potential and kinetic energy of the 

atoms or molecules which constitutes a material. Thermal energy is stored by 

changing internal energy of the material.  

 

Energy conservation and improving utilization of the systems have a great 

importance. Thermal energy storage (TES) has a significant role in many thermal 

systems. TES systems are aimed to reduce energy demand while energy usage 

intense at that time. 

 

1.2 Thermal Energy Storage and Appliances 

 

The first prominent usage of the thermal energy storage systems is solar power 

systems.   Solar power has not permanence unlike fossil fuels. Solar power systems 

are combined with thermal energy storage to overcome the discontinuity. These 

systems are provides energy storage for later usage at low or high temperatures. For 

instance; combination of the TES systems with solar power, energy stored at the 

daytime and the energy that is stored is reused at night.   

 

Simple thermal energy storage system demonstration is shown in Figure 1.2. 

Thermal energy storage systems (TES) consist of three main parts. These are 

charging, storing and discharging. In real situations charging and storing processes 

occur at the same time.   
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Figure 1.2 Simple thermal energy storage system  

 

1.2.1 Sensible Thermal Energy Storage 

 

Sensible thermal energy storage systems use temperature differences of the 

storage area (water, air, oil, bedrock, clay, sand, soil, etc.). Sensible heat in the TES 

systems related to initial and final temperature differences of the storage area.  

 

Sensible TES materials are encountered storage operation while temperature 

changes without phase change. Total heat stored in a mass is defined as; 

 

   2 1 2 1p pQ mc T T Vc T T                           (1.1) 

 

T1 and T2 are referred as initial and final temperature of the TES materials.  

Storage capacity of the sensible TES materials is dependent the amount of ρcp.  

 

1.2.2 Latent Thermal Energy Storage 

 

Energy is stored in a material as latent heat thermal energy storage during the 

phase change processes. With this purpose, phase change materials (PCM) recover 

heat by absorbing heat or releasing heat in the ambient at the constant phase change 

temperature. Stored energy during the melting or solidification process cannot be 

evaluated because phase change process occurs at a single temperature value. 
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Meanwhile provided heat is called as latent heat, the process of the storing latent heat 

is called as latent heat thermal energy storage. Storing heat in a mass is evaluated as; 

 

Q H m h                            (1.2) 

  

Δh defines latent heat in a unit mass. Latent heat thermal energy storage has some 

advantages according to sensible heat thermal energy storage. PCM have bigger 

storage capacity in unit mass or unit volume in comparison with sensible thermal 

energy storage materials. The storage tank volume that used for latent heat thermal 

energy storage systems is smaller than sensible heat thermal energy storage to storing 

the same amount of energy. During the energy storage, the appliance of heat storage 

and recovery at constant temperature value is suitable for phase change problem. 

 

1.3 Literature Review 

 

Voller & Prakash (1987) studied two-dimensional phase change problems in 

rectangular region. They developed numerical solution of the phase change problem 

using enthalpy method (EM). In numerical solution method three different phases 

take in account. These are solid, liquid and mushy region. Mushy region is where 

phase change process occurs in the solidification problem. Dimensionless parameters 

considered and specific heat, density, thermal conductivity and viscosity taken as 

constant. That means these parameters do not change in different phase (solid, liquid 

and mushy). Researchers aimed the modelling the mushy region for phase change 

problems and they demonstrated the flow distributions and thermal isotherms for the 

phase change problems which is integrated mushy zone. 

 

Voller & Swaminathan (1991) investigated source-based method which is used 

for enthalpy calculation for solidification phase change problems. The feature of the 

source-based method is linearization of the source term.  In the source-based method 

latent heat term calculated every iteration according to liquid fraction. Also in this 

paper source-based method compared with apparent heat capacity method.  As a 
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result of this comparison source-based method gives better result with respect to 

accuracy, time of solution and number of iterations.  

 

Bilir & Ilken (2005) present numerical solution of the solidification process of the 

phase change problem. As a numerical solution enthalpy method and control volume 

approach is used in the problem. Researchers determined dimensionless total 

solidification time of the phase change materials inside spherical or cylindrical 

container. They also found correlation of the total solidification time in terms of 

Stefan number and Bi number. 

 

Cao & Faghri (1990) investigate numerical analysis of phase chance problems 

including natural convection. Temperature transformation method which is 

developed by Cao and Faghri is used as a numerical method. The most significant 

feature of the temperature transformation method (TTM) is that energy equation is 

described as a function of temperature. TTM is applicable for phase change occurs in 

a single temperature point or over a temperature range. The accuracy of the method 

is assured using exact solution of the one-dimensional melting problem. 

 

Cao & Faghri (1991) modelled two-dimensional PCM included concentric 

cylindrical containers. In this study aimed to optimization such a system with annular 

and counter-current flow. Temperature transformation method is integrated into the 

energy equation to solving phase change process. Using temperature transformation 

method solid, liquid and mushy phase is considered. Latent heat term is included in 

mushy phase and liquid phase. Mushy phase is defined as transition region and 

occurred in a small temperature range. Numerical analysis of the governing equation 

is solved by using control volume approach. Residual values of the continuity, 

momentum and energy are ensured less than 10
-5

.  As a result of temperature 

distribution for different time periods, counter flow and annular flow of the 

mathematical model is compared according to interface position. Counter-current 

flow increases energy storage capacity with respect to annular flow. 
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Bishop, Mack & Scanlan (1966) investigate natural convection of the two 

concentric spheres experimentally which has air inside. They determined different 

annulus length while changing inner sphere diameter. Different spacing ratios are 

determined to visualize the flow pattern and temperature pattern. With the 

experimental visualizations three different type of flow pattern are observed. After 

observation the flow pattern different air flow shapes occur. These are; kidney-

shaped eddy, falling vortices and crescent-eddy flow. The aim of this study, evaluate 

Nusselt number correlations depending of the spacing ratio and Grashof number. 

Obtained Nusselt number correlations are compared with the experimental data and 

results are shows proximity between -14% to +25%. 

 

Ismail, Hernandez, & Silva (2003) modelled phase change process in spherical 

capsule and numerical investigation of the solidification process is achieved. Finite 

difference approach and moving grid scheme are used to solve numerical method. 

Also they used the different capsule diameter and capsule material to determine 

effect of the capsule size on total solidification time.  But in their study, instead of 

modelling natural convection, they used constant effective thermal conductivity. 

Using effective thermal conductivity, numerical solution shows consistency with 

experimental data.  

 

Assis, Katsman, Ziskind, & Letan (2007) are studied spherical capsule melting 

time which has paraffin inside experimentally and numerically.  Spherical capsule 

have paraffin as a PCM also top of the capsule exist air to overcome volume change. 

Spherical capsule are designed as unconstrained and for comparison numerical 

solution are managed using commercial CFD software ANSYS-FLUENT.  Suitable 

time step for numerical analysis are taken 0.002 s. Melt fraction of the PCM are 

compared numerically and experimentally. 

 

1.4 Objectives, Motivation and Methodology 

 

The main objective of this study is to compare the numerical methods in terms of 

suitability and accuracy for phase change problems. Enthalpy method (EM) and 
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temperature transformation method (TTM) are determined to solve phase change 

problems. Enthalpy method is developed by Voller & Prakash (1987) to solve phase 

change problems for three phases solid, mushy and liquid. Temperature 

transformation method is improved by Cao & Faghri (1990) defining enthalpy 

function in terms of specific heat and source term.   Validation of the methods is 

explained clearly in the Chapter 2.  Comparison of the methods is identified using 

analytical solution during the phase change process. Comparisons are achieved 

according to temperature distributions and solid-liquid interface location.  Parametric 

study of the TTM is applied Bi number and Stefan number variations. 

 

The other objective of the study is evaluating the effective thermal conductivity of 

water inside the sphere. There are countless studies which deal with the numerical 

and experimental investigation of natural convection driven phase change. One of 

them is Bishop (1966) is considered concentric sphere different spacing ratio to 

evaluate the Nusselt correlations with respect to spacing ratio and Grashof number. 

Our aim is simplifying natural convection driven phase change problems. Instead of 

modelling natural convection for the liquid phase of the PCM, effective thermal 

conductivity is defined to consider the influence of convection. Different annulus 

ratios are considered for steady state natural convection in concentric spheres.  
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CHAPTER TWO  

NUMERICAL METHODS OF ONE-DIMENSIONAL  

PHASE CHANGE PROBLEMS 

 

2.1 Problem Definition of One-Dimensional Phase Change Problems 

 

In this research, our first aim is to exhibit the numerical methods of the phase 

change problems as mentioned before. While discussing the numerical methods of 

phase change problems, the advantage and disadvantage of the numerical methods 

are examined. The problem is compared as the accuracy of the solution of 

temperature and interface position and solution time. 

 

Investigating the numerical methods, we deal with one dimensional solidification 

problem. One dimensional phase change problem in cartesian coordinates is shown 

in Figure 2.1. 

 

     

 

 

The problem consist of the following assumptions, 

1. One dimensional heat conduction is considered, 

2. Constant thermo-physical properties of the PCM in the same phases, 

3. Natural convection is negligible,  

 

In Figure 2.1 one dimensional phase change model in cartesian coordinate is 

defined and phase change material is existed in a system in length of L. At the 

beginning, phase change material (PCM) is in liquid form and the temperature of the 

To < Tm 

 

 

L 

x 

Solid 

PCM 

 
Liquid 

 
s(t) 0

x L

T

x 






 

Figure 2.1 One-dimensional cartesian coordinate phase change model 
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PCM is higher than melting temperature (Ti > Tm) in the system. One surface of the 

domain (x = L) is isolated and the other surface temperature is suddenly reduced to To 

temperature which is lower than melting temperature (To < Tm). At that time, the 

solidification process (phase change process) starts in the cold surface. While time 

progressing, interface location, s(t),  of the phase change material is moving x–

direction. When interface location reaches x = L the solidification process of the 

phase change material is completed. 

 

Table 2.1 Boundary condition of the one-dimensional cartesian coordinate phase change problem 

T(x,t) = To(x,t) x = 0 t > 0 

0




x

T
 x = L t > 0 

 

Boundary condition of the one dimensional cartesian coordinates phase change 

problem is shown in Table 2.1. The first row demonstrates the temperature of the 

surface is equal to initial temperature. In the second row, with the progressing time 

temperature of the surface wall is equal to To which is lower than initial temperature, 

Ti. The last row shows that the surface of x = L is isolated and the meaning of that 

there is no heat transfer on this surface with the progressing time. 

 

The other phase change model is solidification problem of one dimensional 

spherical coordinates as shown in Figure 2.2.  

 

 

 

 

 

Tinf < Tm  

 

ro 

r 

Solid 

PCM 

Liquid 
 

s(t) 
0

0
r

T

r 






 

Figure 2.2 One-dimensional spherical coordinate phase change model 
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The problem consist of the following assumptions, 

1. One dimensional heat conduction is considered, 

2. Constant thermo-physical properties of the PCM in the same phases, 

3. Natural convection is negligible, 

 

In Figure 2.2 one dimensional phase change model in spherical coordinate is 

defined and phase change material is existed in a system in length of ro. At the 

beginning phase change material (PCM) is in liquid form and the temperature of the 

PCM is higher than melting temperature (Ti > Tm) in the system. One surface of the 

system when r=0 is isolated and the sphere is suddenly submerged into ambience 

which has heat transfer fluid of Tinf. The temperature of the heat transfer fluid is 

lower than melting temperature (Tinf < Tm). At that time, the solidification process 

(phase change process) starts in the cold surface. While time progressing, interface 

location, s(t),  of the phase change material is moving r–direction. When interface 

location reaches r=0 the solidification process of the phase change material is 

completed. 

 

Table 2.2 Boundary condition of the one-dimensional spherical coordinate phase change problem 

 inf

or r

T
k h T T

r 


  


 

r= ro t>0 

0
T

r





 r=0 t>0 

 

Boundary condition of the one dimensional phase change problem in spherical 

coordinates is shown in Table 2.2. In the first row, it demonstrates the temperature of 

the surface is equal to initial temperature with respect to radius and time. In the 

second row, with the progressing time convection heat transfer is included at r= ro. 

The temperature of the surface wall changes according to equation which is shown in 

second row Table 2.2. Convection heat transfer is equal to conduction heat transfer at 

the surface. Convection heat transfer coefficient and ambient temperature, Tinf, 

depended on the heat transfer withdrawn from surface. The last row with the 
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progressing time shows that the surface of r= 0 is isolated and the meaning of that 

there is no heat transfer on this surface. 

 

2.2 Analytical and Numerical Methods of Phase Change Problems 

 

‘Phase change problem’ or ‘moving boundary problem’ is a time dependent heat 

transfer problem including solidification or melting phenomena. Phase change 

problems have non-linear characteristics therefore analytic or semi-analytical 

solutions are obtained for only a limited number of simplified problems (Lunardini, 

1981 & Ozişik, 1993). Besides, some researches try to figure out two dimensional 

phase change problems using analytical solutions (Poots, 1962, Rathjen & Jiji, 1970). 

But these studies are accomplished for special or simple geometries. In general 

analytical solutions cannot be applied for two or three dimensional phase change 

problem geometries. Therefore solution of many phase change problems can be 

achieved by use of numerical methods. Most common use of numerical methods for 

phase change problems are temperature transformation method (TTM) and enthalpy 

method (EM). Enthalpy method comes into prominence as general approach to 

solving phase change problems. 

 

2.2.1 Analytical Method of Phase Change Problems (Two-Region Problem) 

 

Carslaw & Jaeger (1959) improve exact solution of the one dimensional phase 

change problems in semi-infinite region. In the problem two region phase change 

which consist of solid and liquid phase take in account. While calculating the two-

region phase change problem three state taken into consideration. These are 

conduction in solid phase, conduction in liquid phase and heat transfer at the 

interface location where the phase change occur.  

 

At the beginning phase change material is in liquid phase and at the uniform 

temperature of Ti. The initial temperature of the phase change material is higher than 

Tm melting temperature. Problem at the time of t=0 surface temperature where is at 

x=0 is decreased To temperature which is lower than melting temperature. While the 
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time is progressing, solidification start with the boundary surface x=0. The phase 

change solid-liquid interface location x=s(t) is moving positive x direction.  

 

 

 

In Figure 2.3 shows temperature distribution of the one dimensional solidification 

problem. Also interface movement described along x-direction. Temperature of 

Ts(x,t) and Tl(x,t) for solid and liquid phase obtained using heat conduction equation 

shown in Equation 2.1 and 2.2. 
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Phase change material assumed constant thermal properties in solid and liquid 

phase separately. Phase change interface location is defined as s(t). Besides ‘s’ and 

‘l’ terms define solid and liquid phase respectively. Problem has three unknown 

variable: solid phase temperature Ts(x,t), liquid phase temperature Tl(x,t) and solid-

liquid interface location s(t). Determining the phase change interface location, energy 

conservation equation is used to find x=s(t) location.  

x
 

0x  

 txTl ,

 

 txTs ,  

oT  

Liquid Solid 

mT  

iT

 

Interface 

 ts

 

C
o

n
st

an
t 

S
u
rf

ac
e 

T
em

p
er

at
u

re
 

Figure 2.3 Analytical solution two-region problem definition 
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L is defined as latent heat or heat of fusion. Density change for solid and liquid 

phase is neglected and interface temperature is written as additional condition as 

follows;  

 

    mls TtxTtxT  ,,       )(tsxat           (2.4) 

 

Mathematical formulation of one-dimensional phase change problem including 

boundary condition and initial condition is presented in Equation 2.5 - 2.11.  

 

Solid phase condition; 

 

   
t

txT

x

txT s

s

s








 ,1,
2

2


     tsx 0     0t        (2.5) 

 

  0, TtxTs           0x      0t        (2.6) 

 

Liquid phase condition; 
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  il TtxT ,          x      0t        (2.8) 
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  il TtxT ,          0x       0t        (2.9) 

 

Solid-liquid interface condition; 

 

    mls TtxTtxT  ,,         )(tsx         0t         (2.10) 

 

     , ,s l

s l

T x t T x t ds t
k k h

x x dt


 
  

 
    )(tsx    0t         (2.11) 

 

Temperatures of solid and liquid phase are calculated using Equation 2.12 and 

2.13.  

 

    2/1

0 2/, txAerfTtxT ss                     (2.12) 

 

    2/1
2/, txBerfcTtxT lil                   (2.13) 

 

Ts and Tl temperatures are equals at the solid-liquid interface location. Therefore 

the equation of phase change temperature is obtained with respect to initial and 

surface temperature in Equation 2.14. 

 

  m

l

s
i TBerfcTAerfT 

























2/1

0



                (2.14) 

 

where 

 

    2/1
2 tts s                         (2.15) 

 

 

A and B coefficients can be calculated using Equation 2.16 and 2.17. 
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 erf

TT
A m 0
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                    (2.17) 

 

When A and B coefficients put into the equation 2.12 and 2.13, temperature 

equations of the solid and liquid phase are found in Equation 2.18 and 2.19. 
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                 (2.18) 
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                 (2.19) 

 

λ parameters are calculated using transcendental equation shown in Equation 2.20. 

This transcendental equation is obtained using Equation 2.15, 2.18 and 2.19.  

 

 

 

   

22 1/2 /

1/2
0 0/

s l

l s m i
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        (2.20) 

 

2.2.2 Numerical Methods of Phase Change Problems 

 

In this section, we figure out the numerical methods of phase change problems 

described chapter 2.1. In the engineering application, there are different ways to 

discretizate the differential equations. These are; finite difference, finite element and 

finite volume methodology. In this study, finite volume methodology are used to 

discrete the differential equations because FVM is generally used with phase change 

problems to integrating governing equations.  
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2.2.2.1 Finite Volume Methodology 

 

Finite volume methodology is a discretazation method of the solution of 

differential equations.  The solution of the problem that expressed differential 

equations is discreted particular number of finite volume.  Finite volume or control 

volume constitutes the background of the solution method for commercial 

computational fluid dynamic software. Conservation equations are applied every 

number of discretized control volumes (Versteeg H.K., Malalasekara W.,1995).  

One dimensional heat conduction problem in cartesian and spherical coordinate 

domain is described in the following problem.  

 

  General form of one dimensional energy equation; 

 

* 1 n

n

H T
kr

t r r r

   
  

   
                      (2.21) 

 

Next step, discretization equations for cartesian, cylindrical and spherical 

coordinates are demonstrated in the following section. Equation 2.21 shows energy 

equation that for n=0 cartesian coordinate, n=1 cylindrical coordinate and n=2 

spherical coordinate. Entalpy is expressed as in Equation 2.22. 

 

*H cT s                           (2.22) 

 

where, c is specific heat, T temperature and s is a source term. When we combine 

enthalpy formulation with Equation 2.21 defined as, 

 

    1 n

n

cT s T
kr

t t r r r

    
   

    
                  (2.23) 

 

where, k is thermal conductivity. The selected solution domain is shown in Figure 

2.4. 
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Figure 2.4 demonstrate incremental control volume and grid notation. After dividing 

control volume, central point of the control volume notate as P. The neighbour 

control volume west and east called as W and E. Small letters w and e points indicate 

surface of the control volumes (Versteeg H.K., Malalasekara W.,1995).  

 

Equation 2.23 integrated along the control volume which central grid point P, 

 

 
1

e t t t t e e t t

n

n

w t t w w t

T s
cT dtd kr d dt dtd

t r r r t

  
    

     
    

               (2.24) 

 

where, differential volume for cartesian, cylindrical and spherical coordinates as 

follows, 

 

d dr            cartesian coordinate         (2.25) 

2d rdr          cylindrical coordinate        (2.26) 

24d r dr           spherical coordinate        (2.27) 

 

Equation 2.24 rearranged according to differential volume shown in Equation 

2.25, 2.26 and 2.27. 

 

   
1 1 1 1

1 1
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       (2.28) 
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Figure 2.4 Control volume and grid notation 
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1 1 1 1

1 1

o o n n n no
p P n ne w e w P WE P

e e w w

e w

cT c T r r r r T TT Ts s
k r k r

t n t n r r

                
                              

    (2.29) 

 

Equation 2.28 and 2.29 shows the rearranged discretized formulations. P, E and W 

notations shows center, east and west point of the control volume respectively. 

Superscript is shown as ‘
o
’ describes the variables at the previous time step.  

 

where, 

1 1

1

n n

e w
ew

r r
r
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                        (2.30) 

 

 Then, the last rearranged general form of the equation described Equation 2.31. 

 

n n n n o o o

e e w w ew e e w w P
P E W ew

e w e w

k r k r c r k r k r s s c T
T T T r

r r t r r t t

    
         

        
          (2.31) 

 

Equation 2.31 can be written as a matrix form and matrix coefficients aP, aE, aW 

are defined in Equation 2.32. 

 

P P E E W Wa T a T a T b                            (2.32) 

 

Equation 2.33 to 2.37 presents formulation of the coefficient matrix. Su and b term 

is calculated from Equation 2.31. Equation 2.24, 2.31 and 2.32 present the 

discretization of equation. (Patankar 1980)  
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                          (2.35) 

 p E W ua a a S                            (2.36) 
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o
oew

P ew

r s s
b c T r

t t

   
        

                                 (2.37) 

 

When the solidification front reaches ‘e’ shown in Figure 2.5, thermal properties 

of the control volumes pointed as P and E is different each other. In this case 

different thermal conductivity should be defined at the solid-liquid interface location.  

Therefore calculation of the thermal conductivity of the coefficient matrix ke and kw 

is used thermal conductivity of the neighbour control volumes.  Most common 

thermal conductivity calculation for interface location is harmonic mean developed 

by Patankar (1980).    

 

 

 

 

Figure 2.5 shows that notation of interface position for cartesian coordinate. The 

notation of e represents control volume surface and calculation of the thermal 

conductivity at that point is indicated Equation 2.38.  
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Figure 2.5 Interface position (Cartesian coordinate) 
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Figure 2.6 shows that notation of interface position for spherical coordinate. The 

notation of n represents control volume surface and calculation of the thermal 

conductivity at that point is indicated Equation 2.39.  

 

1 1

1 1 1 1 1 1

N P

n

N N n P n P
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                      (2.39) 

 

2.2.2.2 Dimensionless Form of Equations 

 

Governing equations rearranged according to dimensionless variables because 

non-dimensional equations are easy to solve on the contrary of dimensional form. 

Table 2.3 shows that dimensionless variables that used in equations and functions.  

 

Non-dimensional form of energy equation shown in Equation 2.40 
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Figure 2.6 Interface position (Spherical coordinate)  
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Table 2.3 Dimensionless variables 

 Dimensional form Dimensionless form 

Time t 
2

lt

r


   

Radius r 
o

r
R

r
  

Temperature T 
m

in m

T T

T T






 

Phase change temperature 

range 
δT 

in m

T

T T


 


 

Enthalpy H
* 

 

*

l in m

H
H

c T T



 

Thermal conductivity k 
l

k
K

k
  

Heat capacity c  
 

l

c
C

c




  

Source term s 
   in ml

s
S

c T T







 

Stefan number - 
 l in mc T T

Ste
H





 

 

Equation 2.41 shows that the dimensionless form of Equation 2.24 according to 

Table 2.3. 
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             (2.41) 

 

Dimensionless matrix form of discritized equation, 

 

P P E E W Wa a a b                              (2.42) 

Equation 2.43 to 2.47 indicates the non-dimensional form of coefficients of the 

Equation 2.42.  
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K R
a

R

 
  

 
                        (2.44) 

o ew
u

R
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                          (2.45) 

 p E W ua a a S                            (2.46) 

o
oew
P ew

R S S
b C R

 

   
        

                            (2.47) 

 

2.2.2.3 Enthalpy Method 

 

In this methodology, governing equation should be written for solid, liquid and 

mushy phases. Total enthalpy ‘H’ is the summation of sensible heat and latent heat 

shown in Equation 2.48.  

 

H h H                                  (2.48) 

 

Voller and Prakash (1987) defined a function to calculate the latent heat effect for 

solid, mushy and liquid phases. This function is written in terms of temperature 

demonstrated at Equation 2.49.  

 

 H f                            (2.49) 

 

This f(θ) function take in consideration for solid, liquid and mushy phases and this 

function presented non-dimensional form in Equation 2.50. St is Stefan number 

which is proportional of sensible heat to latent heat.  
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                 (2.50) 
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 * *

ref

T

ref p

T

H h c dT f H                       (2.51) 

 

href is the reference enthalpy, f is the solidification rate and Equation 2.51 show 

the enthalpy change in unit volume. Figure 2.7 and Equation 2.51 examined together, 

it shows that in solid phase sensible heat take in account in calculation. In mushy 

region sensible heat and latent heat considered but latent heat is calculated according 

to solidification rate. In liquid phase, all of the PCM is melted therefore sensible and 

latent heat count in calculation. 

 

Solid Phase, (T< Tm-δTm)  

 

 * 0 0
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T
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T

H T c dT                       (2.52) 

     *

p m ms
H T c T T T                        (2.53) 

Mushy Phase, (Tm-δTm <T< Tm+δTm) 

 

       * * 1p m m sm
H T c T T T H F                      (2.54) 

Tm 
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T 

liquid solid 

2δTm 

mushy 

href=0 

Figure 2.7 Enthalpy-temperature relations for phase change problem 
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Fs is the solid fraction rate, 
2

m m
s

m

T T T
F

T





 
  

 

Liquid Phase, (T > Tm+δTm) 

 

     * *

p m ml
H T c T T T H                        (2.55) 

 

Equation 2.56 shows the dimensionless total enthalpy function with respect to 

non-dimensional temperature for solid, mushy and liquid phases. 

 

 

 

   

 

1

s m m
m m

m m m s m m m m

m m
l m m

C
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            (2.56) 

 

Dimensionless temperature θ is defined in Equation 2.57. This equation gives 

temperature formulation in terms of enthalpy for solid, mushy and liquid phases 

respectively. 
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               (2.57) 

 

2.2.2.4 Temperature Transformation Method 

 

Temperature transformation method developed by Cao & Fagri (1990) using 

advantages of enthalpy method and heat capacitance method. In this method phase 

change occurs in a temperature range unlike single temperature point. Phase change 

temperature range is accepted between Tm-δTm and Tm+δTm. Non-dimensional form 

of energy equation for phase change model is described in Equation 2.40. Enthalpy 

formulations of the solid, liquid and mushy phases are indicated at Equation 2.58 to 

2.61. 



25 

 

Solid Phase, (T< Tm-δTm)  

 

 * 0 0

ref

T

s ps

T

H T c dT                       (2.58) 

     *

p m ms
H T c T T T                        (2.59) 

 

Mushy Phase, (Tm-δTm <T< Tm+δTm) 

 

       
*

*

2
p m m m mm

m

H
H T c T T T T T T

T
   




                     (2.60) 

 

Liquid Phase, (T > Tm+δTm) 

 

     * *

p m ml
H T c T T T H                        (2.61) 

 

Dimensionless form of enthalpy formulation described in Equation 2.62. 
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           (2.62) 

 

Enthalpy can be written as H=C(θ)θ+S(θ) therefore specific heat C, source term 

S, and thermal conductivity K defined as a function of dimensionless temperature in 

Equation 2.63, 2.64 and 2.65.  
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            (2.64) 
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Figure 2.8 Specific heat temperature relationships 

Figure 2.9 Source term temperature relationship 
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TTM has a significance role on calculating latent heat energy correctly. Energy 

equation described in terms of specific heat and source term. During the melting or 

solidification process, released or absorbed latent heat calculated in specific heat 

function and source term function. 

   

      1 / 2

1

sl m m

sl sl m m m m m m m

m m

K

K K K

  

        

  

 
       


 

          (2.65) 

 

Phase change assumed occurring in a temperature range and thermal conductivity 

of the phase change material varies in different phases. Thermal conductivity of the 

PCM can be written as a function dependent of the temperature shown in Equation 

2.65. 
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CHAPTER THREE  

NUMERICAL ANALYSIS OF STEADY-STATE  

NATURAL CONVECTION 

 

Since the solid/liquid interface moves during the phase change process, the 

mathematical modeling of such a system becomes harder, especially for the case in 

the presence of natural convection effects. Although the pure conduction assumption 

makes the problem reasonable to simulate, it cannot meet the real case. It is known 

that the effective thermal conductivity (keff) approach is fairly adequate method to 

simplify the natural convection driven problems into pure conduction model. But for 

the case of melting or solidification, it would not be suitable to define a constant 

value of effective thermal conductivity. Especially for the inward melting the 

temperature difference between the moving interface and the outer surface is almost 

constant during the process. Hence, the influence of natural convection gradually 

increases with increasing the spacing between the shell and interface. 

 

The main goal of the current study is to evaluate effective thermal conductivity 

inside spherical concentric capsules. In this study, we have carried out three different 

sets of numerical analyses. In the first step, the validity of the solution method of the 

steady-state analyses has been tested by commercial CFD software ANSYS-

FLUENT regarding to the experimental data of Bishop (1966) for the case of air. As 

a second step, after the validation of the solution method steady-state natural 

convection of water is simulated for various geometrical shape and thermal 

conditions. As a result of this step, the effective thermal conductivity values are 

determined.  At the last step, the correlated data is implemented into a numerical 

code (MATLAB) to simulate inward melting inside a spherical container, and the 

results are compared against the experimental measurements. Following sub-sections 

will define each problem and the related solution methods. 

 

 

 



29 

 

3.1 Effective Thermal Conductivity Evaluation 

 

Natural convection problems can be also solved using effective thermal 

conductivity by assuming heat transfer occurred as conduction-controlled.  However 

effective thermal conductivity evaluation has some restriction during the 

solidification and melting process of the phase change problems because interface 

position will move on over the time at the melting process. So, geometrical shape of 

the liquid region changes in time. In this situation different shape factors have been 

considered for the spherical geometries. For different shape factors natural 

convection effect changes so we should define variant effective thermal conductivity.  

 

Heat transfer for evaluation of the effective thermal conductivity is defined in 

Equation 3.1 depending on the shape factor. 

 

' effq S k T                         (3.1) 

 

where S′ is defined as shape factor. Shape factor for spherical coordinates is 

indicated in Equation 3.2 according to inner and outer radius of the sphere.  
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1 / 1 /i o

S
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                          (3.2)        

                

Effective thermal conductivity demonstration is defined in Equation 3.3.  

 

   1/ 1 /

4

i o

eff

r rq
k

T 





                   (3.3) 

 

Effective thermal conductivity function is demonstrated in Equation 3.4 

depending on spherical annulus ratio (L/ri) of inward melting problem. 

 

     
3 2

  i i ieff L r L ra rk b dc L                 (3.4) 
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Different numerical analyses is carried out to evaluate effective thermal 

conductivity according to the temperature differences of the inner surface and outer 

surface (ΔT) and spherical annulus ratio (L/ri).  

 

3.2 Problem Definition of Steady-State Natural Convection of Inside Spherical 

Annulus 

 

As a first step, the computational domain is modelled. As shown in the Figure 3.1, 

concentric sphere is considered to be two dimensional and axis-symmetrical. The 

inner and outer radius of the spherical annulus is indicated as ri and ro, respectively.  

The inner and outer surfaces are kept at constant temperature values as Ti and To, 

respectively.  

 

 

 

 

Different annulus ratios (L/ri) are considered to validate the air flow pattern and 

temperature distributions using ANSYS-FLUENT software. Annulus ratio (spacing 

ratio) is defined as L/ri. L is the differences of the inner and outer radius of the 

sphere.  Spacing ratio L/ri = 0.67, 1.00, 1.50 and 2.14 are determined according to 

Bishop (1966) experimental study.  

ri 

ro 

Fluid 

To 

Ti 

L = ro - ri 

ϕ = 90° 

ϕ = 0° 

ϕ = -90° 

Figure 3.1 Demonstration concentric sphere model  
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Boundary condition of the considered model is determined as constant surface 

temperature. Outer surface temperature of the spherical capsule has higher 

temperature value. In the analyses, temperature differences are determined between 

outer surface and inner surface of the spherical model. This problem is used for 

validation of the solution method using different temperature differences as 25, 61 

and 100
o
F.  

 

For the each case of analyses, thermo-physical properties of the air except the 

density are defined to be constants and are obtained at a mean temperature, Tmean = 

(To + Ti)/2. Thermo-physical properties of the air are taken in air table of Incropera, 

DeWitt, Bergman, & Lavine (2006). The properties are stated according to mean 

temperature of the inner and outer surfaces in Table 3.1.  Density of the air is 

calculated according to ideal gas law. It is identified as a function of temperature 

which is valid for the temperature range considered in this study as;   

 

ρair = 1E-05T
2
 - 0.0104T + 3.3209                (3.5) 

 

Table 3.1 Thermo-physical properties of air 

Tmean ρ cp k µ v β 

6.95
 o
C (12.5 

o
F) 1.10192 1007.71 0.02762 1.93E-05 1.77E-05 0.003146 

16.95
 o
C (30.5 

o
F) 1.06864 1008.11 0.02836 1.98E-05 1.87E-05 0.003050 

27.78
 o
C (50 

o
F) 1.03259 1008.55 0.02916 2.03E-05 1.98E-05 0.002952 

 

As a second step, the geometric model of the previous section is considered 

similarly for this section. However, water is used for as fluid instead of air between 

the two concentric spheres.  

 

Different types of annulus ratios are considered to calculate the total heat transfer 

using ANSYS-FLUENT software. Total heat transfer is used to calculate effective 

thermal conductivity for related annulus ratio and temperature differences. Annulus 

ratio (spacing ratio) is defined L/ri. L is the differences of the inner and outer radius 

of the sphere.  Annulus ratio L/ri = 0.67, 1.00, 1.50 and 2.14 are determined similarly 

according to previous study. 
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As a boundary condition, inner and outer surfaces are defined constant 

temperatures. Outer surface temperature of the spherical capsule is higher 

temperature value. In the analyses, initial temperature surface of the inner sphere is 

taken to be 0
o
C. Surface temperature of the outer sphere is determined 2

o
C, 4

o
C, 8

o
C, 

12
o
C and 24

o
C. The reason of the determining low temperature is that to investigate 

the effect of the density inversion at 4
o
C. The density value of the water becomes 

maximum at 4
o
C temperature value.       

 

Thermo-physical properties of the water are obtained using mean temperature of 

the inner and outer surfaces. According to mean temperature, thermal-physical 

properties of water are identified using Incropera at al. (2006) and these value are 

shown in Table 3.2. Density of water is defined as a function of mean temperature 

which is shown in Equation 3.6. (Seybert & Evans, 2005). 

 

ρwater = -0.007085T 
2
 + 3.925T + 456.49                     (3.6) 

 

Table 3.2 Thermo-physical properties of water 

Tmean ρ cp k µ v β 

1 
o
C 999.99133 4214.23 0.5709 1.70E-03 1.70E-06 6.5E-05 

2 
o
C 999.99725 4211.45 0.5730 1.65E-03 1.65E-06 6.2E-05 

4 
o
C 1000.0898 4205.91 0.5770 0.0015585 1.56E-06 5.5E-05 

6 
o
C 1000.0570 4200.36 0.5804 0.0014627 1.46E-06 4.9E-05 

12 
o
C 999.55913 4188.35 0.5910 0.0012062 1.21E-06 1.2E-05 

 

3.3 Solution Methods of the Model 

 

The governing equations are discretized into algebraic sets of equations with 

using Control-Volume-Approach of Patankar (1980). Power-Law scheme is 

implemented for evaluating the values at the control surfaces for each transport 

parameter. SIMPLE algorithm is used as a solution algorithm of governing 

equations. All the solution methods that used in commercial CFD software ANSYS-

FLUENT, are explained clearly in this section.   
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Considering the incompressible, two-dimensional, steady-state and laminar flow 

inside a spherical annulus, governing equations can be reduced as 

 

Continuity 

0
i

u

x





                         (3.7) 

 

Momentum 

 
2

i
i j i

j j j i

u p
u u g

x x x x
  

  
  

   
               (3.8) 

 

Energy  

 i

i i i

T
u h k

x x x


   
  

   
                   (3.9) 

 

The computational domain is considered half of sphere as axis-symmetrical 

boundary condition and divided by 150.000 control volume. Figure 3.2 indicates the 

computational domain and mesh structure. Because of the higher temperature and 

velocity gradient at surfaces of the sphere, mesh density is increased near the inner 

and outer surfaces. 
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Figure 3.2 Computational domain and mesh demonstration 
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CHAPTER FOUR  

EXPERIMENTAL STUDY 

 

4.1 Experimental Investigation Inward Melting and Solidification of Water 

 

In the evaluation of the effective thermal conductivity, the problem is reduced into 

two-dimensional, steady-state problem without phase change. Hence, the 

convenience of these simplifications is revealed regarding to the experimental 

comparisons. The main purpose of the experimental studies is the verification of the 

numerical codes which is integrated effective thermal conductivity function. 

Validation of the effective thermal conductivity evaluation is tested according to this 

experimental study.  

 

4.2 Experimental Setup 

 

In the experiments, a spherical capsule is used with an inner diameter and wall 

thickness of 55 mm and 2 mm, respectively. POLSCIENCE constant temperature 

bath is used to keep constant of the surface temperature of the spherical capsule. In 

order to obtain homogenous temperature distribution at the beginning, spherical 

capsule which have 40% ethylene-glycol water mixture is submerged into the 

constant temperature bath. Spherical capsule is filled with distilled water but top of 

the capsule is kept for air by volume %10. The space is kept for air is volume change 

during the solidification.      

 

Thermo-physical properties of the heat transfer fluid ethylene-glycol water 

mixture are obtained from ASHRAE (2001).  

 

Table 4.1 Thermo-physical properties of HTF 

Tmean ρ cp k µ v β 

12
o
C 1057.6 3485 0.419 2.57E-03 2.43E-06 0.00065 
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4.3 Measurement Method 

 

As a measurement method in the experiment is consist of three T-type 

thermocouples. One of the thermocouple is placed centre of the capsule. 

Thermocouple is fixed in the centre by the help of the sticks so during the 

solidification location of the thermocouple can not slip. During the melting of the 

water, the ice cannot move in the spherical capsule. Therefore, this kind of melting 

process is called as constrain melting. The other thermocouples are placed surface of 

the spherical capsule with the equal angle.  

 

Figure 4.2 Thermocouple locations inside sphere 

 

Thermocouples locations are demonstrated schematically in Figure 4.2. T-type 

thermocouples consist of two copper and constantan wires. T-type thermocouple is 

Water 

Thermocouples 

Air 

Computer 

Data logger 

Constant 

Temperature Bath 

Figure 4.1 Schematic view of the experimental setup  
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suitable for temperature range of -270 to 350
o
C. The accuracy of the T-type 

thermocouple is nearly ±1
o
C. During the experiment, temperature data is taken using 

Agilent 34970A data logger. This data logger has 20 two-wire ports. Experimental 

data is obtained every ten seconds. 

 

 

Figure 4.3 Experimental setup and spherical capsule demonstration 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

CHAPTER FIVE  

RESULTS AND DISCUSSION 

 

Enthalpy method (EM) and temperature transformation method (TTM) are used in 

the phase change problem solutions.  The non-dimensional values of the phase 

change problem are described in Table 5.1.  

 

Table 5.1 Non-dimensional initial values of problem 

Surface temperature, To -0.7 

Initial temperature,  Ti 0.3 

Phase change temperature, Tm 0 

Specific heat,   Csl 1 

Thermal conductivity,  Ksl 1 

Stefan number,   Ste 0.33 

 

In the validation and comparison of these methods the same non-dimensional 

parameters are taken.  

 

The difficulty of the phase change problems is having non-linear features of the 

equations. Therefore in order to evaluate temperature or enthalpy values of the 

control volume, iterative solution is needed.  In the numerical code temperature and 

enthalpy values are controlled every iteration and ensured converging 10
-13

. Also 

energy balance is assuring every time step. 

 

5.1 Validation of the Enthalpy Method 

 

The validation of enthalpy method is controlled using analytical solution of the 

one dimensional for semi-infinite phase change problem Özışık (1993). Different 

number of control volume is considered and divided by 10, 50, 500 and 5000 control 

volume. Numerical solution of the enthalpy method is evaluated MATLAB software. 

Evaluated temperature values of the each control volume compared with analytical 

solution. Table 5.2 shows the analytical solution and temperature distribution of the 

enthalpy method for different grid number. 
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Table 5.2 Temperature distribution of the enthalpy method 

Temperature Distribution (Δτ=0.0002;τ=0.01) 

X 
Analytical 

Solution 

Enthalpy Method 

Temperature 

Δx=0.1 

Temperature 

Δx=0.02 

Temperature 

Δx=0.002 

Temperature 

Δx=0.0002 

0 -0.7 -0.7 -0.7 -0.7 -0.7 

0.1 0.0872 0.0111 0.0812 0.0883 0.088 

0.2 0.2302 0.1739 0.2266 0.2302 0.2302 

0.3 0.285 0.2608 0.2833 0.2845 0.2846 

0.4 0.2979 0.2905 0.2973 0.2976 0.2977 

0.5 0.2998 0.2981 0.2997 0.2998 0.2998 

0.6 0.3 0.2997 0.3 0.3 0.3 

0.7 0.3 0.3 0.3 0.3 0.3 

1 0.3 0.3 0.3 0.3 0.3 

 

Temperature distribution of the enthalpy method calculated for Δτ = 0.0002 

dimensionless time step until τ=0.01 dimensionless time. According to Table 5.2, 

increasing grid number of the enthalpy method gives better result comparing with 

analytical solution.   

 

Table 5.3 Interface location of the enthalpy method  

Interface Location (Δτ=0.0002;τ=0.01) 

τ 
Analytical 

Solution 

Enthalpy Method 

Δx=0.1 Δx=0.02 Δx=0.002 Δx=0.0002 

0.001 0.0187 0.1 0.04 0.02 0.0186 

0.002 0.0264 0.1 0.04 0.028 0.0264 

0.003 0.0324 0.1 0.04 0.034 0.0324 

0.004 0.0374 0.1 0.04 0.038 0.0374 

0.005 0.0418 0.1 0.06 0.044 0.042 

0.006 0.0458 0.1 0.06 0.048 0.046 

0.007 0.0495 0.1 0.06 0.05 0.0496 

0.008 0.0529 0.1 0.06 0.054 0.053 

0.009 0.0561 0.1 0.06 0.056 0.0564 

0.01 0.0591 0.1 0.08 0.06 0.0594 

 

The validation of the interface position is also calculated using MATLAB 

software. Interface position of the enthalpy method is calculated for different grid 

number as 10, 50, 500 and 5000. Increasing control volume gives better result with 
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analytical solution. Dimensionless time step is taken Δτ = 0.0002 and the solution is 

calculated at τ=0.01.  

 

 

Figure 5.1 Temperature distribution of enthalpy method for τ=0.01 

 

Figure 5.1 shows that temperature distribution of at an instant time. Enthalpy 

method and analytical solution compared with respect to dimensionless length.  

 

 

Figure 5.2 Interface location of the enthalpy method for τ=0.01 
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Figure 5.2 demonstrate the interface movement of the phase change problem in 

cartesian coordinates. Also comparing interface location of the PCM with the 

analytical solution proves the accuracy of this method. After total calculating time 

τ=0.01, six percent of solidification of the phase change materials is completed.   

 

5.2 Validation of the Temperature Transformation Method 

 

The temperature transformation method developed by Faghri (1990) is calculated 

using boundary values of Table 5.1. The same number of control volume with the 

enthalpy method is used in this method. Each temperature values and interface 

location at control volumes is controlled with analytical solution. Table 5.4 indicates 

the temperature distribution of the temperature transformation method according to 

dimensionless length.     

 

Table 5.4 Temperature distribution of the temperature transformation method 

Temperature Distribution (Δτ=0.0002;τ=0.01) 

X 
Analytical 

Solution 

Temperature Transformation Method 

Temperature 

Δx=0.1 

Temperature 

Δx=0.02 

Temperature 

Δx=0.002 

Temperature 

Δx=0.0002 

0 -0.7 -0.7 -0.7 -0.7 -0.7 

0.1 0.0872 -0.1503 0.0802 0.0872 0.0877 

0.2 0.2302 0.1642 0.2374 0.23 0.23 

0.3 0.285 0.2675 0.2884 0.2845 0.2844 

0.4 0.2979 0.2931 0.2984 0.2977 0.2976 

0.5 0.2998 0.2987 0.2999 0.2998 0.2998 

0.6 0.3 0.2998 0.3 0.3 0.3 

0.7 0.3 0.3 0.3 0.3 0.3 

1 0.3 0.3 0.3 0.3 0.3 

 

Table 5.4 also shows the temperature values of the increasing grid number of the 

method. The comparison with the analytical method is demonstrated and the solution 

of the method gives better result increasing the number of grid.  
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Table 5.5 Interface location of the temperature transformation method 

Interface Location (Δτ=0.0002;τ=0.01) 

τ 
Analytical  

Solution 

Temperature Transformation Method 

Δx=0.1 Δx=0.02 Δx=0.002 Δx=0.0002 

0.001 0.0187 0.1 0.04 0.02 0.0184 

0.002 0.0264 0.1 0.06 0.028 0.0262 

0.003 0.0324 0.1 0.06 0.034 0.0322 

0.004 0.0374 0.1 0.06 0.038 0.0372 

0.005 0.0418 0.2 0.06 0.044 0.0418 

0.006 0.0458 0.2 0.08 0.048 0.0458 

0.007 0.0495 0.2 0.08 0.05 0.05 

0.008 0.0529 0.2 0.08 0.054 0.0528 

0.009 0.0561 0.2 0.08 0.058 0.056 

0.01 0.0591 0.2 0.08 0.06 0.059 

 

Table 5.5 present the interface location of the temperature transformation method. 

Analytical solution of the interface positions are calculated with respect to 

dimensionless time. Δx=0.002 and Δx=0.0002 values of the interface location are 

very close to each other. The comparison of the interface location with analytical 

solution proves the accuracy of this method. 

  

 

Figure 5.3 Temperature distribution of temperature transformation method for τ=0.01 
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The Figure 5.3 demonstrates the comparison between analytical solution and 

temperature transformation method. At the dimensionless time τ = 0.01, temperature 

distribution of this method is presented with respect to dimensionless length.  

 

 

Figure 5.4 Interface location of the temperature transformation method for τ=0.01 

 

Interface location distribution of the temperature transformation method is 

demonstrated in Figure 5.4. With respect to dimensionless time evaluated interface 

positions are compare to analytical solution. 

 

5.3 Comparison of the E.M and T.T.M with Analytical Method 

 

The comparison of the enthalpy method and temperature transformation method 

with analytical solution is to determine the suitable method for phase change 

problems. Comparison of the methods is investigated temperature accuracy, interface 

position and solution time of the MATLAB code.  

 

Figure 5.5 shows that temperature distribution of the EM, TTM and analytical 

solution according to dimensionless length. The biggest error occurs nearby the 

phase change point for phase change problem. When the figure is zoomed in nearby 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0 0.002 0.004 0.006 0.008 0.01 

In
te

r
fa

c
e
 L

o
c
a

ti
o

n
 

τ 

Analytical solution 

TTM 



44 

 

the phase change point, TTM gives more accurate results with analytical method 

according to EM.  

 

 

 

Also the comparison of the methods for interface location is indicated in Figure 

5.6. Analytical solution, EM and TTM solutions are zoomed in the figure and TTM 

is the more accurate than the other method.      
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Figure 5.5 Temperature comparisons of the methods  

Figure 5.6 Interface position comparisons of the methods 
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Another comparison for numerical errors is calculated for specified time step and 

grid distance. Dimensionless temperature of each node is determined for both EM 

and TTM. The error of the specified nodes is computed from temperature of the 

methods and analytical solution. The highest percent error is occurred at phase 

change temperature point. But comparing the numerical methods between them, 

TTM gives lower percent error at each node. 

  

Table 5.6 Comparison of the numerical methods in different grid number 

Numerical Method Comparison Δτ=0.0002;Δx=0.002; τ=0.01 

X 
Analytical 

Solution 

Enthalpy Method Temperature Transformation Method 

Temperature % Error Temperature % Error 

0 -0.7 -0.7 0 -0.7 0 

0.04 -0.2191 -0.2122 3.149247 -0.2166 1.14103 

0.06 0.002 0.0035 75 0.0008 60 

0.1 0.0872 0.0883 1.261468 0.0872 0 

0.2 0.2302 0.2302 0 0.23 0.08688 

0.3 0.285 0.2845 0.175439 0.2845 0.17544 

0.4 0.2979 0.2976 0.100705 0.2977 0.06714 

0.5 0.2998 0.2998 0 0.2998 0 

0.6 0.3 0.3 0 0.3 0 

0.7 0.3 0.3 0 0.3 0 

1 0.3 0.3 0 0.3 0 

 

The other comparison of the numerical methods is the solution time. Table 5.7 

shows two numerical methods solution time in different node number. Every 

dimensionless time step, the solution time is calculated for both TTM and EM. 

Increasing node number is caused the increment of the solution time. But comparison 

of the numerical methods at the same node number, TTM has a faster solving 

capacity.  
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Table 5.7 Comparisons of the solution time in different grid number  

Dimensionless  

Time 

Enthalpy 

Method N=10 

(s) 

Temperature 

Transformation Method 

N=10 (s) 

Enthalpy 

Method 

N=500 (s) 

Temperature 

Transformation 

Method N=500 

(s) 

0.001 0.1066 0.0924 4.1152 3.6165 

0.002 0.1071 0.0902 4.079 3.6059 

0.003 0.107 0.0898 4.2465 3.6139 

0.004 0.1071 0.0911 4.1802 3.6254 

0.005 0.1068 0.0947 4.0362 3.6036 

0.006 0.1077 0.0894 4.1422 3.6229 

0.007 0.1068 0.0889 4.0906 3.6142 

0.008 0.1073 0.0892 4.0248 3.6063 

0.009 0.1087 0.0892 4.0882 3.631 

0.01 0.1071 0.0909 4.8392 3.5978 

 

5.4 Parametric Study 

 

Comparative study described above is demonstrated the numerical solution 

method. Temperature transformation method gives the better result for phase change 

problems. In this section parametric study of the TTM is achieved according to Bi 

number change and Stefan number change. Stefan number is described as ratio of 

sensible heat of the fluid phase to latent heat,  Ste L in mc T T h   . Bi number is 

defined ratio of the surface convection resistance to diffusion resistance in the PCM, 

Bi = hL/kl. In the subsection Stefan change and Bi number change of the TTM is 

demonstrated. 

 

5.4.1 Stefan Number Variation 

 

In this part of study different Stefan number variation is considered. The thermal 

properties of the numerical analysis are described below the Figure 5.7. Ste=0.01, 

0.1, 1.00 and 3.00 values Stefan number take in account in numerical analysis. 

Increasing Stefan number, at an instant time phase change point is increasing and 

energy change of PCM is mostly occurred as sensible heat.  
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Figure 5.7 Stefan number effect upon temperature distributions (τ = 3.2e
–3

, θm = 0, θi = 0.1, θo=−0.9, 

Csl = 0.4, Ksl = 3.8) 

 

The interface position change is also indicated in Figure 5.8. The increasing 

Stefan number effects the interface position and at the same time interface movement 

of the PCM is accelerating.  

 

 

Figure 5.8 Stefan number effect upon interface position (τ = 3.2e
–3

, θm = 0, θi = 0.1, θo = −0.9, Csl = 

0.4, Ksl = 3.8) 
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5.4.2 Biot Number Variation 

 

This part of study unlike the constant surface temperature, convection heat 

transfer considered at surface for cartesian coordinate. Bi number is considered in 

different values in numerical analysis. In Figure 5.9 dimensionless temperature 

distribution is shown for different Bi number (1, 10, 20, 50 and 100). Increment of 

the Bi number is causing increasing convection heat transfer from surface so 

dimensionless surface temperature decreases approximate 0.05 to -0.35.  

 

 

Figure 5.9 Biot number effect upon temperature distributions (τ = 3.2e
–3

, Ste = 0.01, θm = 0, θi = 0.1, 

θinf = −0.9, Csl = 0.4, Ksl = 3.8) 

  

Figure 5.10 indicate the interface movement at the variable Bi number. The Bi 

number increment is causing speed up the heat transfer in the PCM. Therefore 

interface position is increasing for higher Bi number. Surface temperature for Bi=1 

doesn’t lower the phase change temperature so interface movement cannot occur.   
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Figure 5.10 Biot number effect upon interface position (τ = 3.2e
–3

, θm = 0, θi = 0.1, θo = −0.9, Csl = 

0.4, Ksl = 3.8)  

 

5.5 Validation of the Steady State Natural Convection Inside Sphere 

 

Numerical methodology is introduced with reproducing the experimental study of 

Bishop (1966). Bishop and his colleagues took into account natural convection of air 

inside spherical annulus with isothermal surfaces. In the experimental study, Bishop 

varied the spacing ratio (L/ri) to be 0.19, 0.67, 1.00, 1.50 and 2.14. The temperature 

difference (To - Ti), on the other hand, was changed between 8.33°C (15°F) to 

55.55°C (100°F). Comparative results are obtained in terms of the average Nusselt 

number and the flow patterns.  

 

Bishop suggested the following correlation for natural convection of air inside 

annulus, 

 
0.5170.270Nu 0.332Gr iL r                   (5.1) 
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On the other hand, in order to compare Nusselt number, different set of numerical 

analyses have been achieved for air and described briefly in chapter 3.2. Different 

annulus ratio and temperature differences are considered to evaluate total heat 

transfer.   Total heat transfer evaluated from numerical analyses is used to calculate 

average Nusselt number shown in Equation 5.2. 

 

  24 i

qL
Nu

k T r



                     (5.2) 

 

where q is the heat transfer from inner or outer surface of the sphere.  

 

Table 5.7 Comparison of Nusselt Number  

Annulus Ratio ΔT 

Nusselt Number 

Difference 
Eq. (5.1) Numerical Results 

(L/ri) (°C, °F) (-) (-) (%) 

0.67 

13.89,(25) 7.06 6.99 1.0 

33.89,(61) 8.64 8.38 3.1 

55.56,(100) 9.50 9.11 4.1 

1.00 

13.89,(25) 10.43 10.11 3.1 

33.89,(61) 12.77 12.05 5.6 

55.56,(100) 14.03 13.10 6.7 

1.50 

13.89,(25) 14.91 14.21 4.7 

33.89,(61) 18.26 16.95 7.2 

55.56,(100) 20.06 18.43 8.1 

2.14 

13.89,(25) 19.90 18.90 5.0 

33.89,(61) 24.37 22.50 7.8 

55.56,(100) 26.77 24.42 8.8 

 

Comparative results are represented in Table 5.7 for various spacing ratios and 

temperature differences. Increasing spacing factor or temperature tends to increase 

the surface Nusselt number. It is also clear that for higher spacing ratios or 

temperature differences, the difference between the predicted and the experimental 

data increases. In the experiments, there may be three-dimensional flow patterns or 

turbulence effects may occur especially for higher Grashof numbers, which are not 

considered in the current mathematical model. Nevertheless, the predicted results 
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have reasonable consistency with the results of reference work and the maximum 

deviation is found to be less than 9%.  

 

 

 

(a) L/ri = 2.14, ΔT = 13.89°C (25°F) 

 

 

 

(b) L/ri = 0.72, ΔT =8.33°C (15°F)  

ϕ = 90° 
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ϕ = 0° 

ϕ = -45° 
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(c) L/ri = 0.19, ΔT = 8.33°C (15°F) 

Figure 5.11 Airflow patterns 

 

Bishop indicated that three distinct flow patterns were observed namely, kidney-

shaped-eddy, crescent-eddy, and falling-vortices. In Figure 5.11, these three flow 

patterns are compared against the flow visualizations of the reference work. In Figure 

5.11(a), flow patterns are represented for L/ri = 2.14. A distortion is observed close to 

ϕ = 0° line for the experimental observations and the shape of the flow pattern looks 

like a kidney. However, the predicted flow pattern does not resemble with the 

experimental one especially for -45° < ϕ < 45°. As can be seen in Table 1, this 

discrepancy induces a deviation of 5% in terms of the surface Nusselt number. On 

the other hand, as seen in Figure 5.11(b), for L/ri = 0.72, the domain is dominated by 

a big circulation cell and the shape is similar to the crescent. The center of the 

circulation cell is observed for 0° < ϕ < 45° as in the reference work. In Figure 

5.11(c) patterns are given for L/ri = 0.19. Since the spacing is so small for this 

configuration, at the top of the annulus, 40° < ϕ < 90°, small vortices are observed, 

and this type of flow patterns is called as falling vortices. On the other hand, crescent 

type flow pattern is dominated for the rest of the domain for -90° < ϕ < 40°. 

Comparative results reveal that the numerical method that is used in the current work 

has a reasonable consistency with experimental findings.   

 

 

ϕ=90° 

ϕ=45° 

ϕ = 0° 

ϕ=-45° ϕ
=

-9
0

° 
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5.6 Evaluation of Effective Thermal Conductivity 

 

During the inward melting process, the interface will move from the outer surface 

through the center of the sphere. Here, we have calculated the effective thermal 

conductivity for several annulus ratios and temperature differences to evaluate a 

correlation that can be used in simplified numerical codes for inward melting. The 

thermal and geometric parameters that are used to evaluate effective thermal 

conductivity are listed in Table 5.8. In the analyses, the temperature of the inner 

sphere is kept constant at the phase change temperature of water, at 0°C. 

 

Table 5.8 Parameters for steady-state natural convection of water 

L/ri 0.67, 1.00, 1.50 and 2.14 

Ti – To (°C) 2, 4, 8, 12 and 24 

 

 

In Figure 5.12, for L/ri = 0.67 isotherm and streamline distributions are 

demonstrated three different surface temperature To = 2°C, 8°C and 12°C 

respectively. Surface temperature, To = 2°C density of water is increasing and 

reaches the higher degree, the cold water inside the sphere moves through the top of 

the sphere. Therefore, while velocity distribution moves upwards inner surface of the 

sphere, the movement on the outer surface tends to downwards. Consequently clock-

wise circulation takes place for this region. But two different circulation movement 

occurs for To = 8°C. While the high density hot water located outer surface of the 

sphere is moving downward of the sphere, the cold water tends to move inner sphere 

to top of the sphere.  In this region counter clock-wise circulation is formed.  The 

other velocity movement occurs clock-wise circulations because of the density 

change at 4°C. In Figure 5.12(b), Two different circulations have been formed for To 

= 8°C. The small circulation occurred inner sphere between 0° < ϕ < -90°. In Figure 

5.12(c) at the bottom of the sphere ϕ = -90° because of the higher temperature 

differences between sphere surfaces. 

 



54 

 

 

 

 

 

Increasing spacing ratios in Figure 5.13(a) and Figure 5.14(a) thermal 

stratification have been occurs through the below the computational domain (0° < ϕ 

< -90°).  For surface temperature To = 2°C, circulation moves upper side of the 

computational domain. But as shown in Figure 5.13(b,c) and Figure 5.14(b,c) 

thermal stratification occurs upper side of the computational domain (0° < ϕ < 90°) 

and circulation slide through the bottom of the concentric spheres. Consequently, 

inner circulation cell is formed below the computational domain in a narrow range. 

(a) To = 2°C 

 
(b) To = 8°C 

 

(c) To = 12°C 

 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

Figure 5.12 Temperature and velocity distribution for L/ri = 0.67 
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Increasing the surface temperature of the sphere effects the natural convection so as 

seen in Figure 5.13(c) and Figure 5.14(c), secondary circulation cell is occurred 

bottom side of the sphere. Besides for higher spacing ratios, it is clear that a jet-flow 

forms at the bottom of the inner sphere and hits on the outer surface at ϕ = -90°. 

 

 

 

  

(a) To = 2°C 

 

(b) To = 8°C 

 

(c) To = 12°C 

 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

Figure 5.13 Temperature and velocity distribution for L/ri = 1.50 
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In numerical analysis, temperature value of the inside sphere is determined 

constant and water phase change temperature 0°C. Water has biggest storage 

capacity per volume so it used as phase change material in cooling applications of 

the thermal energy storage. But mathematical simulations and engineering design is 

complicated because of the density of water has a peak value at 4°C. 

Notwithstanding the sphere annulus ratio, while surface temperature is higher than 

4°C, two different flow circulation regions are occurred. This situation effects the 

(a) To = 2°C 

 
(b) To = 8°C 

 

(c) To = 12°C 

 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

Figure 5.14 Temperature and velocity distribution for L/ri = 2.14 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 
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melting process time by increasing the effect of the heat transfer. In Figure 5.15, 

variation of the effective thermal conductivity is given in terms of temperature 

difference (ΔT) and the spacing ratio (L/ri).  

 

 

Figure 5.15 Effective thermal conductivity of water  

 

It is clear that increasing the temperature difference and spacing ratio improve the 

impact of convective forces and enhances the keff. It is also interesting that for To = 

2°C and 4°C, the effective thermal conductivity values are almost identical for all 

spacing ratios. For the advancing temperature values, on the other hand, the effect of 

spacing ratio for a particular temperature value becomes clearer. For each outer 

surface temperature value, keff is obtained as a function of spacing ratio as 3
rd

 order 

polynomial functions and the coefficients of these functions are given in Table 5.9. 

 

Table 5.9 Effective thermal conductivity (0.67 ≤ L/ri ≤ 2.14) 

      
3 2

  i i ieff L r L ra rk b dc L    

To(°C) a b C d 

2 0.77 -4.52 9.60 0.99 

4 0.81 -4.7 9.61 1.22 

8 0.0045 -1.94 8.85 0.40 

10 1.18 -7.31 16.56 -0.56 

12 1.27 -7.86 17.82 0.45 

25 3.14 -17.05 33.28 -0.70 

 
L/ri 

 

keff/k 
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5.7 Numerical and Experimental Comparisons of the Effective Thermal 

Conductivity 

  

 

Figure 5.16 Comparison of the effective thermal conductivity with experimental results 

 

As a last step, in order to test the validity of the equations that are suggested in 

Table 5.9, comparative results are given in Figure 5.16. Here, time-wise variation of 

the centre temperature of the sphere during the melting process is given together with 

the numerical results. In the numerical code, two different cases are considered. In 

the first one, the thermal conductivity of the water is kept constant during the whole 

process. It is clear that, for the constant kl case, the resultant temperature variation is 

far from being capture the experimental one. On the other hand, with the 

implementation of effective thermal conductivity of water as a function of interface 

position in to the numerical code, the variation of temperature remarkably 

approaches to the experimental measurements.  
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CHAPTER SIX  

CONCLUSIONS 

 

In conclusion, two different numerical methods of one-dimensional phase change 

problems are examined during solidification process. Process are modelled one of the 

surface are considered as constant temperature one dimensional semi-infinite 

environment.    

 

While we examined the obtained results, both of the numerical results are more 

close to the analytical solution with the increment of the grid number. Phase change 

problems show nonlinear feature so iterative solutions are needed to get better result 

in numerical solution. Comparing the numerical methods, temperature 

transformation method (TTM) gives better results according to solution time and 

accuracy of the results. Also higher percent errors obtained with analytical solutions 

are formed nearby of the phase change interface locations. The reason of the percent 

error nearby the interface location is arising latent heat effect during phase change 

process. Parametric study of this study is certified variation of Stefan number and Bi 

number. Both of the Stefan number and Bi number increment, interface movement of 

the phase change problem is accelerating.   

 

In second study proposed the usage of effective thermal conductivity of water for 

inward process of water inside spherical container. Effective thermal conductivity 

values are evaluated in terms of the annulus ratio and the temperature differences. 

The comparative results reveal that the method yields reasonable results regarding 

the experimental measurements. The evaluated effective thermal conductivity 

combined with numerical code of the phase change problems in spherical coordinates 

and compared with experimental inward melting problem. Correlation of effective 

thermal conductivity gives reasonable results with experimental data.  
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APPENDICES 

 

A. Nomenclature 

 

c  Specific heat [kJ/kgK] 

C  Dimensionless heat capacity (     
L

c c ) 

g  Gravitational acceleration [m/s
2
] 

Gr  Grashof number (  3 2  o ig L T T ) 

h  Enthalpy [kJ/kg] 

H  Total enthalpy [kJ/kg] 

k  Thermal conductivity [W/mK] 

K  Dimensionless thermal conductivity (  Lk k ) 

L  Gap of annulus [m] 

Nu  Nusselt number 

q  Rate of heat transfer [W] 

p  Pressure [Pa] 

r  Radial axis direction [m]  

R  Dimensionless radial axis (  or r ) 

S  
Dimensionless source term 

 (         
 in mL

c c T T ) 

S’
 

 Shape factor 

Ste  Stefan number (    L in mc T T H ) 

T  Temperature [°C] 

t  Time [s] 

u  Velocity [m/s] 

x  Cartesian axis direction [m] 

 

Special characters 

ε  Convergence criteria 

θ  
Dimensionless temperature 

 (      m in mT T T T ) 
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δθm  Dimensionless temperature range  

δTm  Temperature range  

ΔH  Latent heat of fusion [kJ/kg] 

ΔT  Temperature differences [K,
o
C,

o
F] 

ρ  Density [kg/m
3
] 

θ  Dimensionless temperature  

ϕ  Angular position [
o
] 

μ  Dynamic viscosity [kg/ms] 

ϑ  Kinematic viscosity [m
2
/s] 

τ  Dimensionless time (   oL
k c t r ) 

Subscripts or 

Superscripts 

  

eff  Effective 

o 
 Previous time step value  

* 
 Dimensional form 

e  East node 

w  West node 

i  Inner  

in  Initial condition 

l  Liquid phase 

m  Melting or Mushy region 

n  Description of coordinate type 

o  Outer  

s  Solid phase 
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B. Matlab Code 

 

%% IMPORT Numerical Results of Reference Work %% 

close all 

  

%% Type of the Geometry 

% N_geo = 0 Cartesian / N_geo = 1 Cylindrical / N_geo = 2 Spherical 

N_geo = 2; 

%% Thermal Boundary Conditions 

Tm = 273.15; Tin = 298.15; Tinf = 263.15; dTm = 0.01; 

h_conv = 218.7; 

%% Thermo-physical Properties 

kl = 0.567; ks = 1.88; cl = 4210; cs = 2040; ro_s = 916.8; ro_l = 999.8; 

dH = 333500; 

alfa_l = kl/ro_l/cl; 

%% Geometric Dimensions 

radius = 0.03; grow_rate = 0.95; n = 200; 

%% Time step & Maximum number of iterations 

t = 10000;  dt = 1; n_time = t/dt; max_iter = 10000; 

%% Non-Dimensional Parameters 

Csl = (ro_s*cs)/(ro_l*cl); Ksl = ks/kl; 

Ste = cl*(Tin - Tm)/dH;        

dTeta = dTm/(Tin - Tm); 

  

Teta_inf = (Tinf - Tm)/(Tin - Tm); Teta_in = (Tin - Tm)/(Tin - Tm); 

Teta_m = (Tm - Tm)/(Tin - Tm); 

  

to = alfa_l*t/(radius^2); d_to = alfa_l*dt/(radius^2); 

Biot = h_conv*radius/kl; 

%% Definition of the Matrices 

% Gometric 

Rp = zeros(1,n); Rn = zeros(1,n); Rs = zeros(1,n); 

DRn = zeros(1,n); DRs = zeros(1,n); 

  

% TDMA 

a = zeros(1,n); b = zeros(1,n); c = zeros(1,n); d = zeros(1,n); 

  

% Thermal 

C = zeros(1,n); C0 = zeros(1,n); 

K = zeros(1,n); K0 = zeros(1,n); 

Kn = zeros(1,n); Ks = zeros(1,n); 

S = zeros(1,n); S0 = zeros(1,n); 

H = zeros(1,n); H0 = zeros(1,n); 

Teta = ones(1,n)*Teta_in; Teta0 = ones(1,n)*Teta_in; 

Teta_iter = zeros(1,n); 

  

for i=1:n 

    Teta_iter(i) = 0.0; C(i) = 0.0; K(i) = 0.0; H(i) = 0.0; S(i) = 0.0; 

    C0(i) = 0.0; K0(i) = 0.0; H0(i) = 0.0; S0(i) = 0.0; 

    Kn(i) = 0.0; Ks(i) = 0.0; 

    Rp(i) = 0.0; Rn(i) = 0.0; Rs(i) = 0.0; DRn(i) = 0.0; DRs(i) = 0.0; 

end   

%% Generate Non-Uniform Structured Mesh 

[Rp, Rn, Rs, DRn, DRs] = mesh(grow_rate, n); 

%% Define Windows 

figHandle1 = figure; 
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set(figHandle1,'Name','Variation of Temperature','NumberTitle','off') 

% figHandle2 = figure; 

% set(figHandle2,'Name','Time-wise Variation of Temperature','NumberTitle','off') 

% figHandle3 = figure; 

% set(figHandle3,'Name','Variation of Error','NumberTitle','off') 

%% Draw the results of the reference work on Fig2. 

figure(figHandle1); 

xlabel('Time (s)'); 

ylabel('Surface Temperature (Celcius)'); 

y = Tinf:(Tin - Tinf)/5:Tin; 

%plot(bilir_x, bilir_y); 

%hold on 

%% SOLUTION ALGORITHM 

for k=1:n_time 

        for j=1:max_iter 

        % Evaluate Faghri Parameters 

        [C, C0, S, S0, K, K0, H, H0] = Faghri(Teta, Teta0, Ksl, Csl, Ste, dTeta, n); 

     

        % Harmonik Mean  

        [Kn, Ks] = harmonik(Rp, Rs, Rn, K, n, N_geo); 

     

        % Coefficients of Matrix 

        [an, as, ap, b] = coefficients(C, C0, Kn, Ks, Rp, Rn, Rs, DRn, DRs, Teta0, S, S0, Biot, Teta_inf, 

d_to, n, N_geo); 

     

        % TDMA 

        [Teta_iter] = tdma(-as, ap, -an, b, n); 

         

        % Check the Convergence  

        NC=0; 

         

        UR = 0.1; 

        if j > 50  

            UR = 0.05; 

        elseif j > 200  

            UR = 0.02; 

        elseif j > 300  

            UR = 0.01; 

        elseif j > 500 

            UR = 0.005; 

        elseif j > 1000 

            UR = 0.002; 

        elseif j > 3000 

            UR = 0.001; 

        elseif j > 4000 

            UR = 0.0005; 

        elseif j > 5000 

            UR = 0.0001; 

        elseif j > 8000 

            UR = 0.00001; 

        end 

         

        MaxHata = 0.0; Hata = 0.0; 

        for i=1:n 

            Hata = abs(abs(Teta(i)) - abs(Teta_iter(i)))/abs(Teta_iter(i))*100; 

            if  abs(Hata) > 10^-8 

                NC = NC + 1; 

                Teta(i) = UR*Teta_iter(i) + (1 - UR)*Teta(i); 
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                if Hata > MaxHata 

                    MaxHata = Hata; 

                end 

            end 

        end 

         

        if NC == 0 

            break 

        end 

         end 

          

     [err]=ebalance(H, H0, Rn, Rs, Biot, Teta, Teta_inf, d_to, n); 

  

Teta0 = Teta; 

  

if round(k/5)*5 == k 

    [T_boyutlu] = plot_graph(Teta, c_time, Tin, Tm, Tinf, n, figHandle1, err); 

end 

%% Print on Command Window 

c_time = d_to*k*radius^2/alfa_l; 

c_time 

  

%% Print on a File 

filename = fullfile('sphere.txt');  

fid =  fopen (filename, 'a'); 

  

fprintf(fid,'%f %f %f %f \r\n',c_time, Teta(1)*(Tin - Tm) + Tm, Teta(n)*(Tin - Tm) + Tm, err); 

fclose(fid); 

  

end 

 

 


