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Q-EULERIAN POLYNOMIALS AND B-SPLINES

ABSTRACT

We investigate the relations between q-Eulerian polynomials and B-splines with

knots both at q-integers and in geometric progression. We give q-analogue of

exponential splines and use it to derive q-Euler-Frobenius polynomials. Using q-Euler-

Frobenius polynomials the relation between q-Eulerian numbers and B-splines are

derived for both knot sequences. It is shown that B-splines with knots at q-integers and

B-splines with knots in geometric progression have same values on their knot points.

We also construct q-analogues of Marsden’s identity and these identities lead us to

q-analogue of Worpitzky identity. Finally, we derive two identities for B-splines with

knots in geometric progression which generate the symmetry property of B-splines

with knots at integers.

Keywords: Eulerian numbers, Eulerian polynomials, Euler-Frobenius polynomials,

B-splines, q-Eulerian numbers, q-Eulerian polynomials.
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Q-EULERİAN POLİNOMLARI VE B-SPLİNE FONKSİYONLARI

ÖZ

Düğümleri q-tamsayılarda ve geometrik dizide olan B-spline fonksiyonları ile q-

Eulerian polinomları arasındaki ilişkiyi inceledik. Üstel spline fonksiyonlarının q

benzerini tanımladık ve bunu Euler-Frobenius polinomlarının q benzerini türetmek

için kullandık. q-Eulerian sayıları ile B-spline fonksiyonları arasındaki bağıntıyı

her iki düğüm dizisi için q-Euler-Frobenius polinomlarını kullanarak elde ettik.

Düğümleri q-tamsayılarda olan B-spline fonksiyonu ve düğümleri geometrik dizide

olan B-spline fonksiyonlarının düğüm noktalarında aynı değerleri aldığını gösterdik.

Ayrıca Marsden özdeşliğinin q benzerlerini oluşturduk ve bu özdeşlikler Worpitzky

özdeşliğinin q benzerini bulmamızı sağladı. Son olarak, düğümleri tamsayılarda olan

B-spline fonksiyonlarının simetri özelliğini genelleyen düğümleri geometrik dizide

olan B-spline fonksiyonları için iki tane özdeşlik türettik.

Anahtar sözcükler : Eulerian sayıları, Eulerian polinomları, Euler-Frobenius polinomları,

B-spline fonksiyonları, q-Eulerian sayıları, q-Eulerian polinomları.
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CHAPTER ONE

INTRODUCTION

B-splines are first introduced in Schoenberg (1946) for equally spaced knots. In

Cury & Schoenberg (1947) B-splines for arbitrary knots are defined by applying

divided differences to truncated power functions. But calculating B-splines using

truncated power functions is numerically unstable process. A stable and efficient way

of evaluating B-splines described independently by de Boor (1972) and Cox (1972).

In He (2011) an relationship between Eulerian polynomials and B-splines is

presented. It is also shown in He (2011) that there is a relation between Eulerian

numbers and cardinal B-spline values at knot points.

There are q-analogues of Eulerian polynomials. These polynomials are constructed

by using the joint distribution of MacMahon and Eulerian statistics. For more details

see Shareshian & Wachs (2007).

Our aim is to find the relationship between q-Eulerian polynomials and B-splines.

We proceed in the following fashion. In Chapter One we give a short review of Eulerian

numbers, Eulerian polynomials, Euler-Frobenius polynomials and B-splines. Then

we give relationship between Eulerian polynomials and cardinal B-splines. Using

this relationship we also present the relation between Eulerian numbers and cardinal

B-splines. Chapter Two deals with q-analogue of Eulerian numbers and Eulerian

polynomials. We also derive a q-analogue of Worpitzky identity. In Chapter Three

we examine two special types of B-splines, B-splines with knots at q-integers and B-

splines with knots in geometric progression. The q-analogue of Worpitzky’s identity

is obtained using q-analogues of Marsden’s identity in terms of both B-splines. We

also introduce two different q-analogues of exponential spline. These q-exponential

splines lead us to a q-analogue of Euler-Frobenius polynomials. Finally, using q-Euler-

Frobenius polynomial we showed that the values B-splines with knots at q-integers and

B-splines with knots in geometric progression are same on their knots and these values
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may be expressed in terms of q-Eulerian numbers.

1.1 Eulerian Numbers

Euler first introduced

1− x
1− xeλ(1−x)

= 1+
∞

∑
n=1

n

∑
k=1

A(n,k)xk λn

n!
(1.1)

in his famous book ”Institutiones calculi differentialis” in 1755. The integers A(n,k),

k = 1,2, ...,n, on the right hand side of the above equation are known as the Eulerian

numbers. As Bernoulli numbers, Stirling numbers, Harmonic numbers and Binomial

coefficients, Eulerian numbers used in some context of enumerative combinatorics.

Another notation for Eulerian number is
〈

n

k

〉
which combinatorically gives the

number of permutations of {1,2, ...,n} having k descents in (Graham, Knuth, &

Patashrink, 1994, p. 267). A slightly different definition for Eulerian number A(n,k)

was given by (Comtet, 1974, p.241) who defines the number of permutations of length

n with k rises is related to the number of descents such that k rises implying k− 1

descents. The relation between them is A(n,k) =
〈

n

k−1

〉
. In the rest of context we

will use A(n,k).

Definition 1.1.1. A(n,k) is the number of permutations π1π2...πn of {1,2, ...,n} that

have k−1 descents, namely, k−1 places where π j−1 > π j for all j.

Definition 1.1.1 may be used to obtain a recurrence relation for Eulerian numbers.

We give this recurrence relation in the same way given in (Graham, Knuth, &

Patashrink, 1994, p. 268).

Inserting the new element n in each permutation π̃ = π1...πn−1 of {1, ...,n− 1} in

all possible ways, we have n permutations of {1, ...,n}. If we put n in position j, we

obtain the permutation π = π1...π j−1nπ j...πn−1. The number of descents in π is the

same as the descent number in π̃ if j = n or π j−1 > π j; on the other hand the number

of descents increase by 1 in π if π j−1 < π j or j = 1. Therefore π has k− 1 descents

2



Table 1.1 First values of Eulerian Numbers

n A(n,1) A(n,2) A(n,3) A(n,4) A(n,5) A(n,6) A(n,7) A(n,8)

1 1 0

2 1 1 0

3 1 4 1 0

4 1 11 11 1 0

5 1 26 66 26 1 0

6 1 57 302 302 57 1 0

7 1 120 1191 2416 1191 120 1 0

in a total of kA(n− 1,k) ways from permutations π̃ that have k− 1 descents, plus a

total of ((n−2)− (k−2)+1)A(n−1,k−1) ways from permutations π̃ that have k−2

descents. Thus the recurrence is

A(n,k) = (n− k+1)A(n−1,k−1)+ kA(n−1,k) n > 0 (1.2)

where A(0,0) = 1 and A(0,k) = 0 for k 6= 0. We will assume that A(n,k) = 0 if k < 1

and A(n,k) = 0 if k ≥ n+1.

It is well known that Eulerian numbers satisfy the following symmetry property.

See Charalambides (2002).

Proposition 1.1.2. Given a positive integer n and 1≤ k ≤ n,

A(n,k) = A(n,n− k+1). (1.3)

Proof. We will show (1.3) by using induction. Clearly (1.3) is true for n = 1. Now

suppose that (1.3) is true for any n≥ 1 and 1≤ k≤ n. Replacing k by n−k+2 in (1.3),

we obtain the relation

A(n,n− k+2) = A(n,k−1). (1.4)

Using (1.2) and induction hypothesis with (1.3) and (1.4), we have

A(n+1,n− k+2) = kA(n,n− k+1)+(n− k+2)A(n,n− k+2)

= kA(n,k)+(n− k+2)A(n,k−1)

= A(n+1,k)

(1.5)
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which shows that (1.3) is true for n+1.

Another elegant proof of (1.3) can be given by using the combinatorial definition of

A(n,k). That is, the permutation π1π2...πn has n−k descents if and only if its reflection

πn...π2π1 has k−1 descents.

Proposition 1.1.3.
n

∑
k=1

A(n,k) = n! (1.6)

Proof. We use induction on n. For n = 1, it is trivial. Suppose that (1.6) is true for

n > 1. Then by recurrence relation

n+1

∑
k=1

A(n+1,k) =
n+1

∑
k=1
{(n− k+2)A(n,k−1)+ kA(n,k)}. (1.7)

Since A(n,0) = A(n,n+1) = 0, we have

n+1

∑
k=1

A(n+1,k) =
n+1

∑
k=2

(n− k+2)A(n,k−1)+
n

∑
k=1

kA(n,k). (1.8)

Shifting the index of the first summation on the right gives

n+1

∑
k=1

A(n+1,k) = (n+1)
n

∑
k=1

A(n,k)

= (n+1)!

(1.9)

Similarly (1.6) can be proved using the combinatorial interpretation. Clearly, the

summation of A(n,k) for all 1 ≤ k ≤ n is the number of all the permutations of

{1,2, ...,n}.

In 1833 Worpitzky proved that the monomial xn can be expressed in terms of

Eulerian numbers.

Proposition 1.1.4.

xn =
n

∑
k=1

A(n,k)
(

x+ k−1
n

)
n≥ 1 (1.10)

4



Proof. The proof is by induction on n. For n = 1, it is trivial. Now assume that for

any n > 1, (1.10) is true and consider the expression
n+1

∑
k=1

A(n+1,k)
(

x+ k−1
n+1

)
. Since

A(n,0) = 0 for n≥ 1, then by (1.2)

n+1

∑
k=1

A(n+1,k)
(

x+ k−1
n+1

)
=

n+1

∑
k=2

(n− k+2)A(n,k−1)
(

x+ k−1
n+1

)
+

n+1

∑
k=1

kA(n,k)
(

x+ k−1
n+1

)
.

(1.11)

Shifting the index of the first summation and rearraging the terms by using A(n,k) = 0

for k ≥ n+1 gives

n+1

∑
k=1

A(n+1,k)
(

x+ k−1
n+1

)
=

n

∑
k=1

A(n,k)
(

x+ k−1
n

)
k

x+ k−n−1
n+1

+
n

∑
k=1

A(n,k)
(

x+ k−1
n

)
(n− k+1)

x+ k
n+1

.

(1.12)

Since

k
x+ k−n−1

n+1
+(n− k+1)

x+ k
n+1

= x (1.13)

we have
n+1

∑
k=1

A(n+1,k)
(

x+ k−1
n+1

)
= x

n

∑
k=1

A(n,k)
(

x+ k−1
n

)
. (1.14)

Using inductive hypothesis gives

n+1

∑
k=1

A(n+1,k)
(

x+ k−1
n+1

)
= xn+1. (1.15)

This completes the proof.

Euler showed that A(n,k) can be calculated directly by the following explicit

formula.

Proposition 1.1.5.

A(n,k) =
k

∑
j=0

(−1) j
(

n+1
j

)
(k− j)n , 1≤ k ≤ n. (1.16)

Proof. We will prove the identity (1.16) by using induction on n ≥ 1. If n = 1 and

k = 1, then (1.16) is satisfied since A(1,1) = 1. Now assume that (1.16) is true for

5



n−1 and substitute it into the recurrence relation (1.2)

A(n,k) = k
k

∑
j=0

(−1) j
(

n
j

)
(k− j)n−1 +(n− k+1)

k−1

∑
j=0

(−1) j
(

n
j

)
(k− j−1)n−1

= kn + k
k

∑
j=1

(−1) j
(

n
j

)
(k− j)n−1 +(n− k+1)

k

∑
j=1

(−1) j−1
(

n
j−1

)
(k− j)n−1

= kn +
k

∑
j=1

(
k
(

n
j

)
− (n− k+1)

(
n

j−1

))
(−1) j(k− j)n−1

= kn +
k

∑
j=1

(−1) j
(

n+1
j

)
(k− j)n

=
k

∑
j=0

(−1) j
(

n+1
j

)
(k− j)n.

(1.17)

Hence the formula (1.16) is true for n.

In He (2011), the generating function of Eulerian numbers, known as Eulerian

polynomials An(z), defined by

An(z) =
n

∑
k=1

A(n,k)zk, A0(z) = 1. (1.18)

Definition 1.1.6. (He (2011)) Eulerian polynomial sequence {An(z)}n≥0 is given by

∑
l≥0

lnzl =
An(z)

(1− z)n+1 , |z|< 1. (1.19)

There is also a combinatorial interpretation of the Eulerian polynomials which is

given by Garsia (1979)

An(z) = z ∑
πεδn

zdes(π), n > 0 (1.20)

where des(π) is the number of descents in the permutation π and δn is the symmetric

group on the set {1,2, ...,n} and π = π1π2...πn ∈ δn.

A formula for exponential generating function of Eulerian polynomials is given in

(Stanley, 2011, p. 41 ) in the following way.

Proposition 1.1.7.

∑
n≥0

An(z)
tn

n!
=

(1− z)
1− zet(1−z)

. (1.21)

6



Proof. Multiply (1.19) by tn/n! and then take the summation we have

∑
n≥0

An(z)
(1− z)n+1

tn

n!
= ∑

n≥0
∑
l≥0

lnzl tn

n!

= ∑
l≥0

zlelt

= 1
1−zet .

(1.22)

Multiplying the both sides of the last equation by 1− z and repalacing t by t(1− z) we

obtain (1.21).

Proposition 1.1.8. (He (2011)) The Eulerian polynomials is computed by recurrence

A0(z) = 1, An+1(z) = z(1− z)A′n(z)+ z(n+1)An(z) (1.23)

Proof. Multiplying (1.19) by (1− z)n+1 we get

An(z) = (1− z)n+1
∑
l≥0

lnzl. (1.24)

Taking the derivative of (1.24) with respect to z, we obtain

A′n(z) =−(n+1)(1− z)n
∑
l≥0

lnzl +
1
z
(1− z)n+1

∑
l≥0

ln+1zl. (1.25)

To compute the proof multiply both sides of the above identity by z(1− z) and use

(1.24).

Proposition 1.1.9.

A0(z) = 1, An(z) = z
n

∑
k=0

(
n
k

)
(1− z)n−kAk(z). (1.26)

Proof. Multiplying (1.21) by 1− zet(1−z) yields

1− z = ∑
n≥0

An(z)
tn

n!
− z ∑

k≥0

tk(1− z)k

k! ∑
n≥0

An(z)
tn

n!

= ∑
n≥0

An(z)
tn

n!
−∑

n≥0

(
z

n

∑
k=0

(
n
k

)
(1− z)n−kAk(z)

)
tn

n!

= ∑
n≥0

(
An(z)− z

n

∑
k=0

(
n
k

)
(1− z)n−kAk(z)

)
tn

n!
.

(1.27)

Now comparing the coefficients of tn/n! gives (1.26).
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1.2 B-Splines

Definition 1.2.1. (Cury & Schoenberg (1947)) For any positive integer n, let

(t− x)n−1
+ =

 (t− x)n−1, if −∞ < x≤ t

0, if t > x.
(1.28)

Given any knot sequence ...x−2 < x−1 < x0 < x1 < x2 < ...., the B-spline sequence

Bn−1
i of degree n−1 is defined by

Bn−1
i (x) := (xi+n− xi)[xi, ...,xi+n](t− x)n−1

+ . (1.29)

The B-spline have the following properties. See (Phillips, 2003, chap.6, sec. 2) and

(Schoenberg, 1993, chap.2, sec.1).

(1) B-spline is indeed a spline, i.e., a piecewise polynomial function of degree n− 1

with the knots xi,xi+1, ...,xi+n. In particular, when this knots are distinct, we have the

explicit representation

Bn−1
i (x) = Bn−1

i (x;xi,xi+1, ...,xi+n) =
i+n

∑
j=i

(xi+n− xi)(x j− x)n−1
+

ω′(x j)
(1.30)

where ω = (x− xi)...(x− xi+n). The above equation follows from the formula for

divided difference. For more information about divided difference see (Phillips, 2003,

chap.1, sec. 1). In view of the identity xn−1
+ = xn−1 +(−1)n(−x)n−1

+ , we may write

(1.30) as follows

Bn−1
i (x) = Bn−1

i (x;xi,xi+1, ...,xi+n) = (−1)n
i+n

∑
j=i

(xi+n− xi)(x− x j)
n−1
+

ω′(x j)
(1.31)

It is clear that Bn−1
i (x) ∈Cn−2.

(2) B-splines have a finite support

suppBn−1
i (x) = [xi,xi+n]. (1.32)

Because, if x ≥ xi+n, then (t − x)n−1
+ = 0 at t = xi, ...,xi+n, hence [xi, ...,xi+n](t −

x)n−1
+ = 0, and if x ≤ xi, then (t − x)n−1

+ = (t − x)n−1 at t = xi, ...,xi+n, hence

[xi, ...,xi+n](t− x)n−1
+ = 0.

8



(3) If f ∈Cn(R), then taking the Taylor formula (see (Phillips, 2003, p. 147))

f (t) = pn−1(t)+
1

(n−1)!

∫ xi+n

xi

(t− x)n−1
+ f (n)(x)dx (1.33)

and applying the divided difference to both sides, we obtain

[xi, ...,xi+n] f =
1

(n−1)!(xi+n− xi)

∫ xi+n

xi

Bn−1
i (x;xi,xi+1, ...,xi+n) f (n)(x)dx, (1.34)

i.e., B-spline Bn−1
i (x;xi,xi+1, ...,xi+n) is the Peano kernel in the integral representation

of the functional [xi, ...,xi+n].

(4) The B-splines satisfy the following expression

1
xi+n− xi

∫ xi+n

xi

Bn−1
i (x;xi,xi+1, ...,xi+n)(x)dx =

1
n
. (1.35)

The condition follows from (1.34) if we take f (x) = xn.

(5) (de Boor recurrence) The following formula relates two B-splines of degree n−2

with the supports [xi,xi+n−1] and [xi+1,xi+n] with that of degree n−1 with the support

[xi,xi+n].

Bn−1
i (x) =

(
x− xi

xi+n−1− xi

)
Bn−2

i (x)+
(

xi+n− x
xi+n− xi+1

)
Bn−2

i+1 (x) (1.36)

(6) B0
i is a step function, that is

B0
i (x) :=

 1, xi ≤ x < xi+1,

0, otherwise.
(1.37)

Theorem 1.2.2. The derivative of B-spline can be calculated for n≥ 3 as

d
dx

Bn−1
i (x) =

(
n−1

xi+n−1− xi

)
Bn−2

i (x)−
(

n−1
xi+n− xi+1

)
Bn−2

i+1 (x) (1.38)

for all real x. For n = 2, (1.38) holds for all x except at xi,xi+1, and xi+2 since the

derivative of B1
i is not defined on these knots.

Proof. See (Phillips, 2003, p. 218).

Theorem 1.2.3. (Marsden’s identity) For any n≥ 1,

(t− x)n−1 =
∞

∑
i=−∞

(t− xi+1)...(t− xi+n−1)Bn−1
i (x). (1.39)

9



If n = 1, then (t− xi+1)...(t− xi+n) is taken to be 1.

Proof. See (Phillips, 2003, p. 222).

Now, we consider special case of knot points, that is xi = i. The corresponding B-

splines are called cardinal B-splines. Since the knot sequence is equally spaced the

above formulas turn into much simpler form. An important property of cardinal B-

splines is thst they have translation property. That is

Bn−1
i (x) = Bn−1

0 (x− i). (1.40)

Here and in the sequel we will use the notation

Bn(x) := Bn−1
0 (x). (1.41)

Bn is completely determimined by n+1 knots 0,1, ...,n.

If we choose the knots as 0,1, ...,n, the recurrence relation (1.36) becomes

Bn(x) =
x

n−1
Bn−1(x)+

n− x
n−1

Bn−1(x−1), (1.42)

and B-spline B1(x) of degree zero is given by

B1(x) =

 1, if 0≤ x < 1

0, otherwise.
(1.43)

The derivative formula for cardinal B-splines of degree n− 1 follows from the

derivative formula of genaral B-splines (1.38) and the translation property. For n≥ 3,

we have
d
dx

Bn(x) = Bn−1(x)−Bn−1(x−1) (1.44)

for all real x. For n = 2, (1.44) holds for all x, except at the knots 0,1, and 2, since the

derivative of B2 is not defined on these knots.

We obtain the following proposition by using the expression in (Phillips, 2003, p.

229) and the translation property of B-splines.
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Proposition 1.2.4. Each cardinal B-spline Bn of degree n− 1 is symetric about the

centre of its interval of support in particular [0,n], so that

Bn(x) = Bn(n− x), −∞ < x < ∞. (1.45)

Theorem 1.2.5. Bn(x) can be calculated by the following explicit formula

Bn(x) =
1

(n−1)!

n

∑
j=0

(−1) j
(

n
j

)
(x− j)n−1

+ . (1.46)

Proof. When we take the knots as 0,1, ...,n, it is derived from (1.31).

Bn(x) = (−1)n
n

∑
j=0

n(x− j)n−1
+

ω′( j)

= (−1)n
n

∑
j=0

n(x− j)n−1
+

( j−0)( j−1)...( j− ( j−1))( j− ( j+1))...( j−n)

= (−1)n
n

∑
j=0

n(x− j)n−1
+

j!(−1)n− j(n− j)!
.

(1.47)

Then multiplying both numerator and denominator of the latter equation by n! gives

(1.46).

Corollary 1.2.6.

Bn(k) =
1

(n−1)!

n

∑
j=0

(−1) j
(

n
j

)
(k− j)n−1

+ =
1

(n−1)!

k

∑
j=0

(−1) j
(

n
j

)
(k− j)n−1 (1.48)

for 1≤ k ≤ n−1. Here (k− j)0
+ = 1 when k ≥ j and 0 otherwise.

1.2.1 Euler-Frobenius Polynomials

Euler-Frobenius polynomials Πn(z) are introduced in 1749 in the paper ”Remarques

sur un beau rapport entre les series des puissances tant direct que reciproques” in the

form
n

∑
l=0

(l +1)nzl =
Πn(z)

(1− z)n+1 (1.49)

to calculate the Dirichlet η− function

η(s) =
∞

∑
n=1

(−1)n−1

ns (1.50)
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at s =−1,−2, .... Altough the series (1.49) converges for |z|< 1, Euler showed that

η(−n) = Πn(−1)2−n−1 (1.51)

for n = 0,1,2, .... The polynomial Πn(z) is the generating function of Eulerian

numbers. After MacMahon (1915) had showed equidistribution of descent and

excadence numbers, Riordan (1958) showed that

Πn(z) = ∑
π∈δn

zdes(π) = ∑
π∈δn

zexc(π) (1.52)

Later the polynomials were studied by Frobenius to obtain their interrelationship

with Bernoulli numbers. Euler-Frobenius polynomials are also related to Eulerian

polynomials and their properties. In He (2011), a different approach is followed to

construct Euler-Frobenius polynomials. He considered the space Sn of splines with

knots at integers satisfying f (x+1) = z f (x) for z 6= 0,1. The most general element of

Sn satisfying this equation is stated in (Schoenberg, 1993, p. 17) which leads us to the

concept of an exponential spline defined by

φn(x;z) =
∞

∑
−∞

z jBn+1(x− j), z 6= 0,1. (1.53)

φn(x;z) is called the exponential spline of degree n to the base z.

If we differentiate (1.53) and use derivative formula of cardinal B-splines (1.44) we

find that
φ′n(x;z) =

∞

∑
−∞

z jB′n+1(x− j)

=
∞

∑
−∞

z j(Bn(x− j)−Bn(x− j−1))

=
∞

∑
−∞

z jBn(x− j)−
∞

∑
−∞

z j−1Bn(x− j)

(1.54)

and thus

φ
′
n(x;z) = (1− z−1)φn−1(x;z). (1.55)

Repeating this process n times, we obtain

φ
(n)
n (x;z) = (1− z−1)n

φ0(x;z) = (1− z−1)n
∞

∑
−∞

z jB1(x− j). (1.56)

Since B1(x) = 1 for 0≤ x < 1, B1(x) = 0 otherwise, we find

φ
(n)
n (x;z) = (1− z−1)n, 0≤ x < 1. (1.57)
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Its polynomial component in the interval 0≤ x < 1 has the form

φ(x;z) =
1
n!
(1− z−1)nxn + lower degree terms. (1.58)

Euler showed that the monic polynomial n!(1 − z−1)−nφn(x;z) is equivalent to

exponential Euler polynomial An(x;z) for x ∈ [0,1]. Hence

An(x,z) := n!(1− z−1)−n
φn(x,z), 0≤ x≤ 1, z 6= 0,1. (1.59)

The generating function of {An(x,z)} is (see (Schoenberg, 1993, p. 21))

z−1
z− et ext = ∑

n≥0
An(x,z)

tn

n!
. (1.60)

Writing x = 0, (1.60) becomes

z−1
z− et = ∑

n≥0
βn(z)

tn

n!
(1.61)

where βn(z) = An(0,z). Substituting (1.61) into (1.60), we get

∑
n≥0

An(x;z)
tn

n!
= z−1

z−et ext

= ∑
j≥0

βn(z)
tn

n! ∑
j≥0

x jt j

j!

= ∑
n≥0

( n

∑
j=0

(
n
j

)
β j(z)xn− j

)
tn

n!

(1.62)

and comparing the coefficients of tn/n! on both sides we obtain

An(x,z) =
n

∑
j=0

(
n
j

)
β j(z)xn− j. (1.63)

Particularly,

An(1,z) =
n

∑
j=0

(
n
j

)
β j(z). (1.64)

Here βn(z) is called the Euler-Frobenius fraction. See He (2011).

Moreover, multiplying (1.61) by z− et yields

z−1 = (z− et) ∑
n≥0

βn(z)
tn

n!

= z ∑
n≥0

βn(z)
tn

n!
− et

∑
n≥0

βn(z)
tn

n!

= z ∑
n≥0

βn(z)
tn

n!
−∑

k≥0

tk

k! ∑
n≥0

βn(z)
tn

n!

= ∑
n≥0

(
zβn(z)− z

n

∑
k=0

(
n
k

)
βk(z)

)
tn

n!
.

(1.65)
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Now, comparing the coefficients of tn/n! gives

β0(z) = 1, zβn(z) =
n

∑
k=0

(
n
k

)
βk(z). (1.66)

Associating (1.64) with (1.66) yields

An(1,z) = zAn(0,z). (1.67)

Finally, Πn(z) is defined from a different viewpoint (see He (2011))

Πn(z) := βn(z)(z−1)n ≡ An(0,z)(z−1)n. (1.68)

Πn(z) can be written by the following expression using the interval of support property

of B-spline and Proposition 1.2.4

Πn(z) = n!
∞

∑
−∞

Bn+1(− j)zn+ j = n!
n−1

∑
j=0

Bn+1(n− j)z j = n!
n−1

∑
j=0

Bn+1( j+1)z j (1.69)

since

An(0;z) = n!(1− z−1)−n
φ(0;z) = n!(1− z−1)−n

∞

∑
−∞

z jBn+1(− j). (1.70)

There is a relation between eulerian polynomials and euler-frobenius polynomials.

The relation is given in He (2011) by the following theorem.

Theorem 1.2.7.

An(z) =

 Πn(z) = 1, if n = 0

zΠn(z), if n > 0.
(1.71)

Proof. See He (2011).

1.3 Relation Between Eulerian Numbers and B-Splines

The relation between eulerian numbers and the value of cardinal B-spline of degree

n at x = k is given in He (2011) by

A(n,k) = n!Bn+1(k) (n > 0). (1.72)
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As a corollary the identities of the Eulerian numbers which are previously proven

such as (1.2), (1.3), and (1.10) can be proved by using the corresponding identities of

the cardinal B-splines and the relation (1.72).

Recurrence for Eulerian numbers: From (1.36) we have

Bn+1(k) =
k
n

Bn(k)+
n+1− k

n
Bn(k−1) (1.73)

multiplying the above eqation by n! and using (1.72) we obtain

A(n,k) = kA(n−1,k)+(n+1− k)A(n−1,k−1). (1.74)

Symetry to Eulerian numbers: From symmetry property of B-splines

Bn+1(k) = Bn+1(n+1− k). (1.75)

The result immediately follows by multiplying the above equation by n!.

Worpitzky identity: (Wang, Xu, & Xu (2010)) From Marsden’s identity

(t− x)n =
∞

∑
i=−∞

(t− (i+1))...(t− (i+n))Bn+1(x− i)

=
∞

∑
i=−∞

(t− i−1))...(t− i−n))Bn+1(x− i)

=
∞

∑
i=−∞

Bn+1(x− i)
n

∏
γ=1

(t− i− γ)

(1.76)

replacing i by −i yields

(t− x)n =
∞

∑
i=−∞

Bn+1(x+ i)
n

∏
γ=1

(t + i− γ). (1.77)

Then write x = 0

tn =
n

∑
i=1

n!Bn+1(i)
n

∏
γ=1

(t + i− γ)

n!
. (1.78)

Using the relation (1.72),

tn =
n

∑
i=1

A(n, i)
(t + i−1)(t + i−2)...(t + i−n)

n!
(1.79)

and hence

tn =
n

∑
i=1

A(n, i)
(

t + i−1
n

)
. (1.80)
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CHAPTER TWO

Q-EULERIAN NUMBERS AND Q-EULERIAN POLYNOMIALS

2.1 q-Calculus

In this section we will mention the basic concepts of the q-calculus briefly, which is

used in our subsequent study. For more information on q-calculus see Kac & Cheung

(2002).

For a given value of q > 0 and any number n we define the q-integer [n] by

[n] =


1−qn

1−q , if q 6= 1

n, if q = 1.
(2.1)

We next define the q-factorial [n]! by

[n]! =

 [n][n−1]...[1], if n = 1,2, ...

1, if n = 0.
(2.2)

We also need the concept of the q-binomial coefficients which is defined by[
n
k

]
=

[n]!
[k]![n− k]!

, 0≤ k ≤ n. (2.3)

For q = 1, it reduces to the usual binomial coefficients.

The q-binomial coefficient satisfies the Pascal type identities,[
n
k

]
=

[
n−1
k−1

]
+qk

[
n−1

k

]
(2.4)

and [
n
k

]
= qn−k

[
n−1
k−1

]
+

[
n−1

k

]
. (2.5)

The q-analogue of (1+ x)n is the polynomial

(1+ x)n
q :=

 (1+ x)(1+qx)...(1+qn−1x), if n = 1,2, ...

1, if n = 0.
(2.6)

The q-derivative of the function f (x) is

Dq f (x) =
dq f (x)

dqx
=

f (qx)− f (x)
(q−1)x

(2.7)
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The q-derivative of the product f (x) and g(x) is

Dq( f (x)g(x)) = f (qx)Dqg(x)+g(x)Dq f (x) (2.8)

or

Dq( f (x)g(x)) = f (x)Dqg(x)+g(qx)Dq f (x) (2.9)

2.2 q-Eulerian Numbers

q-Eulerian numbers An,k are defined in Carlitz (1954) by

[x]n =
n

∑
k=1

An,k

[
x+ k−1

n

]
. (2.10)

In this paper, we examine an another construction of q-Eulerian numbers Aq(n,k)

defined in Carlitz (1975), which is different from An,k. However, there is a relation

between them such that Aq(n,k) = An,n−k+1. The construction of recurrence relation

for q-Eulerian numbers is stated in Carlitz (1975) as follows.

Let π denote a permutation of {1,2, ...,n} with k rises and therefore n− k+1 falls.

We count a conventional rise on the extreme left and a conventional fall on the extreme

right. We shall label both rises and falls by the positions of their left hand elements.

Let the rises of π have the positions i0, i1, ..., ik−1 and let the falls have the positions

j1, j2, ..., jn−k+1.

Put

i = i0 + i1 + ...+ ik−1, j = j1 + j2 + ...+ jn−k+1, (2.11)

so that

i+ j =
1
2

n(n+1) (2.12)

For example, the permutation •3o1•2•4•5o6o has rises at positions 0,2,3,4 and falls

at 1,5,6. Here •, o indicates rises and falls.

Let ã(n,k, i) denote the number of permutations π of {1,2, ...,n} with k rises and

i as defined in (2.11). Consider the effect of inserting the element n + 1 in π. If

it is inserted in the rise of position t, the number of rises remains unchanged but i
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becomes i′ = i+ k− t−1. If it is inserted in the fall of position t, then the number of

rises becomes k+1 but the number of falls remains unchanged. Moreover, j becomes

j′ = j+n− k− t +2 = 1
2(n+1)(n+2)− i− k− t +1, by (2.12). Hence i becomes

i′ =
1
2
(n+1)(n+2)− j′ = i+ k+ t−1 (2.13)

It follows that

ã(n+1,k, i) =
k−1

∑
t=0

ã(n,k, i− k+ t +1)+
n−k+2

∑
t=1

ã(n,k−1, i− k− t +2)

=
k−1

∑
t=0

ã(n,k, i− t)+
n−k+1

∑
t=0

ã(n,k−1, i−n+ t).
(2.14)

Introduce

Aq(n,k) = ∑
i

ã(n,k, i)qi. (2.15)

It follows from (2.14) that

Aq(n+1,k) = ∑
i

qi
k−1

∑
t=0

ã(n,k, i− t)+∑
i

qi
n−k+1

∑
t=0

ã(n,k−1, i−n+ t)

= ∑
i

ã(n,k, i)qi
k−1

∑
t=0

qt +∑
i

ã(n,k−1, i)qi
n−k+1

∑
t=0

qn−t .

(2.16)

Replacing n by n−1 yields

Aq(n,k) = [k]Aq(n−1,k)+qk−1[n− k+1]Aq(n−1,k−1) (2.17)

where Aq(0,0) = 1 and Aq(0,k) = 0 for k 6= 0. We will asume that Aq(n,k) = 0 if

k < 1 and Aq(n,k) = 0 if k≥ n+1. The following table gives few values of q-Eulerian

numbers.

Table 2.1 First values of q-Eulerian numbers

Aq(n,k) 1 2 3

1 1

2 1 q

3 1 2q+2q2 q3

4 1 3q3 +5q2 +3q 3q5 +5q4 +3q3

5 1 4q4 +9q3 +9q2 +4q 6q7 +16q6 +22q5 +16q4 +6q3
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Proposition 2.2.1.
n

∑
k=1

Aq(n,k) = [n]! (2.18)

Proof. It can be proved by induction on n. For n = 1, it is trivial. We supoose that

(2.18) is true for n > 1. Then by recurrence relation

n+1

∑
k=1

Aq(n+1,k) =
n+1

∑
k=1
{[k]Aq(n,k)+qk−1[n− k+2]Aq(n,k−1)} (2.19)

since Aq(n,0) = 0 when n≥ 1 and Aq(n,n+1) = 0

n+1

∑
k=1

Aq(n+1,k) =
n

∑
k=1

[k]Aq(n,k)+
n

∑
k=2

qk−1[n− k+2]Aq(n,k−1). (2.20)

Shifting the index of the second summation and rearranging the terms we obtain

n+1

∑
k=1

Aq(n+1,k) =
n

∑
k=1

(
[k]+qk[n− k+1]

)
Aq(n,k)

= [n+1]
n

∑
k=1

Aq(n,k).
(2.21)

Using the inductive hypothesis we see that (2.18) is true for n+ 1, which completes

the proof.

Proposition 2.2.2. q-Eulerian numbers satisfy the following symetry relations

Aq(n,k) = q−n(n−2k+1)/2Aq(n,n− k+1) (2.22)

and

Aq(n,k) = qn(k−1)A1/q(n,k) (2.23)

Proof. We prove both of them by induction.

Proof of (2.22): For n = 1 and k = 0, Aq(1,0) = 0 = q−1Aq(1,2) is true by definition

of Aq(n,k). For n = 1 and k = 1, clearly q−1(1−2+1)/2Aq(1,1−1+1) = q0Aq(1,1) =

Aq(1,1). Assume that it is true for any n > 1. By (2.17)

Aq(n+1,k) = [k]Aq(n,k)+qk−1[n− k+2]Aq(n,k−1)

= [k]q−n(n−2k+1)/2Aq(n,n− k+1)

+qk−1[n− k+2]q−n(n−2k+3)/2Aq(n,n− k+2)

= q−(n+1)(n−2k+2)/2[k]qn−k+1Aq(n,n− k+1)

+q−(n+1)(n−2k+2)/2[n− k+2]Aq(n,n− k+2).

(2.24)
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Using (2.17) we get

Aq(n+1,k) = q−(n+1)(n−2k+2)/2Aq(n+1,n− k+2). (2.25)

Proof of (2.23): For n = 1 and k = 0, Aq(1,0) = 0 = q−1A1/q(1,0). For n = 1 and

k = 1, Aq(1,1) = 1 = A1/q(1,1). Assume that (2.23) is true for any n > 1. Then

Aq(n+1,k) = [k]Aq(n,k)+qk−1[n− k+2]Aq(n,k−1)

= [k]qn(k−1)A1/q(n,k)+qk−1[n− k+2]qn(k−2)A1/q(n,k−1)

= q(n+1)(k−1)
{
[k]q1−kA1/q(n,k)+q−n[n− k+2]A1/q(n,k−1)

}
.

(2.26)

Since

A1/q(n,k) = [k]q1−kA1/q(n−1,k)+ [n− k+1]q1−nA1/q(n−1,k−1) (2.27)

we have

Aq(n+1,k) = q(n+1)(k−1)A1/q(n+1,k). (2.28)

Aq(n,k) can be calculated directly by the following explicit formula.

Corollary 2.2.3.

Aq(n,k) =
k

∑
j=0

(−1) jq j( j−1)/2
[

n+1
j

]
[k− j]n , 1≤ k ≤ n (2.29)

Proof. It can be shown by induction on n ≥ 1. For n = 1, it is trivial by Table (2.1).

We assume that (2.29) is true for n−1. Substituting (2.29) into the recurrence relation

(2.17) we obtain

Aq(n,k) = [k]
k

∑
j=0

(−1) jq j( j−1)/2
[

n
j

]
[k− j]n−1

+qk−1[n− k+1]
k−1

∑
j=0

(−1) jq j( j−1)/2
[

n
j

]
[k−1− j]n−1.

(2.30)
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Shifting the index of the second summation and rearranging

Aq(n,k) = [k]n +[k]
k

∑
j=1

(−1) jq j( j−1)/2
[

n
j

]
[k− j]n−1

+qk−1[n− k+1]
k

∑
j=1

(−1) j−1q( j−1)( j−2)/2
[

n
j−1

]
[k− j]n−1

= [k]n

+
k

∑
j=1

{
[k]
[

n
j

]
−qk− j[n− k+1]

[
n

j−1

]}
(−1) jq j( j−1)/2[k− j]n−1.

(2.31)

Using the identities qk− j[n−k+1] = [n− j+1]− [k− j] and [k] = q j[k− j]+ [ j] we

obtain

Aq(n,k) = [k]n +
k

∑
j=1

{
q j[k− j]+ [ j]

}[n
j

]
(−1) jq j( j−1)/2[k− j]n−1

−
k

∑
j=1

{
[n− j+1]− [k− j]

}[ n
j−1

]
(−1) jq j( j−1)/2[k− j]n−1

= [k]n

+
k

∑
j=1

{{[ n
j−1

]
+q j

[
n
j

]}
[k− j]+ [ j]

[
n
j

]}
(−1) jq j( j−1)/2[k− j]n−1

−
k

∑
j=1

[n− j+1]
[

n
j−1

]
(−1) jq j( j−1)/2[k− j]n−1.

(2.32)

Finally, using the Pascal-type relation and rearranging the terms, we get

Aq(n,k) = [k]n +
k

∑
j=1

(−1) jq j( j−1)/2
[

n+1
j

]
[k− j]n

=
k

∑
j=0

(−1) jq j( j−1)/2
[

n+1
j

]
[k− j]n

(2.33)

Next we derive a q-analogue of Worpitzky identity.

Theorem 2.2.4.

n

∑
k=1

Aq(n,k)q(−2kn+n(n+1))/2
[

x+ k−1
n

]
= [x]n. (2.34)

Proof. We prove (2.34) by induction on n. For n = 1, it is trivial. Now assuming the

truth of (2.34) for any n > 1, set A = ∑
n+1
k=1 Aq(n+1,k)q(n+1)(n−2k+2)/2[x+k−1

n+1

]
. Using
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the recurrence relation (2.17) and using Aq(n,0) = 0, we get

A =
n+1

∑
k=1

[k]Aq(n,k)q(n+1)(n−2k+2)/2
[

x+ k−1
n+1

]
+

n+1

∑
k=2

qk−1[n− k+2]Aq(n,k−1)q(n+1)(n−2k+2)/2
[

x+ k−1
n+1

]
.

(2.35)

Shifting the index of the second summation and rearranging

A =
n

∑
k=1

Aq(n,k)
[

x+ k−1
n

]
q(n+1)(n−2k+2)/2[k]

[x+ k−n−1]
[n+1]

+
n

∑
k=1

Aq(n,k)
[

x+ k−1
n

]
q(−2kn+n(n+1))/2[n− k+1]

[x+ k]
[n+1]

=
n

∑
k=1

Aq(n,k)
[

x+ k−1
n

]
q(−2kn+n(n+1))/2qn−k+1 [x+ k−n−1][k]

[n+1]

+
n

∑
k=1

Aq(n,k)
[

x+ k−1
n

]
q(−2kn+n(n+1))/2 [n− k+1][x+ k]

[n+1]
.

(2.36)

Since

qn−k+1 [x+ k−n−1][k]
[n+1]

+
[n− k+1][x+ k]

[n+1]
= [x] (2.37)

we have

A = [x]
n

∑
k=1

Aq(n,k)q(−2kn+n(n+1))/2
[

x+ k−1
n

]
. (2.38)

Using the inductive hypothesis we obtain (2.34) for n+1, which completes the proof.

2.3 q-Eulerian Polynomials

Since lim
q→1

(1− z)n+1
q = (1− z)n+1 and lim

q→1
[l] = l, Definition 1.1.6 suggests that a

new sequence of polynomials exist.

Definition 2.3.1. q-Eulerian polynomial sequence {An(z,q)}n≥0 is given by setting

An,q(z)
∏

n
i=0(1− zqi)

= ∑
l≥0

[l]nzl (2.39)

Each q-Eulerian polynomials can be presented as a generating function of q-

Eulerian numbers.

An,q(z) =
n

∑
k=1

Aq(n,k)zk, A0,q(z) = 1. (2.40)
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There is also a combinatorial interpretation of the q-Eulerian polynomials. It is

defined in Foata (2010) by means of fundamental permutations statistics; descent

numbers and inversion numbers.

An,q(z) = z ∑
πεδn

zdes(π)qinv(π), n≥ 1 (2.41)

where inv(π) := #{(πi,π j) : 1≤ i < j≤ n,πi > π j} and δn is the symetric group on the

set {1,2, ...,n} and π = π1π2...πn ∈ δn.

The corresponding exponential generating function is stated in Foata (2010) as

∑
n≥0

An,q(z)
tn

[n]!
=

1− z

1− zet(1−z)
q

(2.42)

where ez
q = ∑

∞
j=0

z j

[ j]! .

Using q-calculus, we find the following q-analogue of the equation (1.23).

Theorem 2.3.2. The q-Eulerian polynomials can be computed by recurrence

An+1,q(z) = z[n+1]An,q(z)+ z(1− z)DqAn,q(z) (2.43)

Proof. Multiplying (2.3.1) by ∏
n
i=0(1− zqi) we get

An,q(z) =
n

∏
i=0

(1− zqi)∑
l≥0

[l]nzl. (2.44)

Taking the q-derivative of (2.44) with respect to z,

DqAn,q(z) =
n

∏
i=0

(1− zqi+1).Dq

{
∑
l≥0

[l]nzl
}
+ ∑

l≥0
[l]nzl.Dq

{ n

∏
i=0

(1− zqi)

}
. (2.45)

From the definition of the q-derivative, we obtain

DqAn,q(z) =
1
z

n+1

∏
i=1

(1− zqi)∑
l≥0

[l]n+1zl− [n+1]
(1− z)

n

∏
i=0

(1− zqi)∑
l≥0

[l]nzl. (2.46)

Multiply both sides of the above equation by z(1− z) gives

z(1− z)DqAn,q(z) =
n+1

∏
i=0

(1− zqi)∑
l≥0

[l]n+1zl− z[n+1]
n

∏
i=0

(1− zqi)∑
l≥0

[l]nzl. (2.47)

Using (2.44), we obtain (2.43).
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Theorem 2.3.3.

A0,q(z) = 1, An,q(z) = z
n

∑
k=0

[
n
k

]
(1− z)n−kAk,q(z) (2.48)

Proof. Multiplying (2.42) by 1− zet(1−z)
q yields

1− z = (1− zet(1−z)
q ) ∑

n≥0
An(z,q)

tn

[n]!

= ∑
n≥0

An(z,q)
tn

[n]!
− zet(1−z)

q ∑
n≥0

An(z,q)
tn

[n]!

= ∑
n≥0

An(z,q)
tn

[n]!
− z ∑

k≥0

tk(1− z)k

[k]! ∑
n≥0

An(z,q)
tn

[n]!

= ∑
n≥0

(
An,q(z)− z

n

∑
k=0

[
n
k

]
(1− z)n−kAk,q(z)

)
tn

[n]!
.

(2.49)

Now, comparing the coefficients of tn/[n]! gives (2.48).
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CHAPTER THREE

B-SPLINES

In this chapter we examine the B-splines with both at q-integers and in geometric

progression.

3.1 B-splines with Knots at q-integers

The B-splines of degree n− 1 with knots at q-integers are not translates of one

another as in cardinal splines but there is a relation between them. This relation is

Bn−1
i (x) = Bn

(
x− [i]

qi

)
(3.1)

Bn is completely determined by the n+1 knots [0], [1], ..., [n].

With knots at [0], ..., [n], the recurrence relation (1.36) becomes

Bn(x) =
x

[n−1]
Bn−1(x)+

[n]− x
q[n−1]

Bn−1

(
x−1

q

)
, (3.2)

and the B-spline B1 is given by

B1(x) =

 1, [0]≤ x < [1],

0, otherwise.
(3.3)

Substituting x = [k] in the equation (3.2) and using [n]− [k] = qk[n−k], we see that the

B-splines with knots at q-integers satisfy

Bn([k]) =
[k]

[n−1]
Bn−1([k])+qk−1 [n− k]

[n−1]
Bn−1([k−1]). (3.4)

Using equation (1.38) together with (3.1), for n≥ 3 we have

d
dx

Bn(x) =
n−1
[n−1]

Bn−1(x)−
n−1

q[n−1]
Bn−1

(x−1
q

)
(3.5)

for all real x. Similar to cardinal B-splines, when n = 2, (3.5) holds for all x except at

the three knots [0], [1], and [2], since the derivative of B2 is not defined on these knots.

The following theorem gives a q-analogue of Marsden’s identity in terms of B-

splines with knots at q-integers.
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Theorem 3.1.1. (Marsden’s identity) For n≥ 0,

([t]− x)n =
∞

∑
i=−∞

([t]− [i+1])...([t]− [i+n])Bn+1

(x− [i]
qi

)
. (3.6)

When n = 0 we take ([t]− [i+1])...([t]− [i+n]) = 1.

Proof. We use induction on n. It follows from (1.37) that

∞

∑
i=−∞

B0
i (x) = 1. (3.7)

Then using (3.1) we obtain

∞

∑
i=−∞

B1

(x− [i]
qi

)
= 1, (3.8)

which shows that (3.6) is true for n = 0. Assume that (3.6) is true for any n ≥ 0. We

need the following identity to complete the rest of the proof

[t]− [i+n+1]
[i]− [i+n+1]

([i]− x)+
[t]− [i]

[i+n+1]− [i]
([i+n+1]− x) = [t]− x. (3.9)

This is the linear interpolating function of [t]− x which interpolates at t = i and t =

i+n+1. Mutiplying (3.6) by ([t]− x) yields

([t]− x)n+1 =
∞

∑
−∞

([t]− [i+1])...([t]− [i+n+1])
[i]− x

[i]− [i+n+1]
Bn+1

(x− [i]
qi

)
+

∞

∑
−∞

([t]− [i])...([t]− [i+n])
[i+n+1]− x
[i+n+1]− [i]

Bn+1

(x− [i]
qi

)
.

(3.10)

Shifting the index of the second summation

([t]− x)n+1 =
∞

∑
−∞

([t]− [i+1])...([t]− [i+n+1])
[i]− x

[i]− [i+n+1]
Bn+1

(x− [i]
qi

)
+

∞

∑
−∞

([t]− [i+1])...([t]− [i+n+1])
[i+n+2]− x

[i+n+2]− [i+1]
Bn+1

(x− [i+1]
qi+1

)
.

(3.11)

Since [i]− [i+n+1] =−qi[n+1] and [i+n+2]− [i+1] = qi+1[n+1]

([t]− x)n+1 =
∞

∑
−∞

([t]− [i+1])...([t]− [i+n+1])
x− [i]

qi[n+1]
Bn+1

(x− [i]
qi

)
+

∞

∑
−∞

([t]− [i+1])...([t]− [i+n+1])
[i+n+2]− x

qi+1[n+1]
Bn+1

(x− [i+1]
qi+1

)
(3.12)
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using (3.2) we obtain

([t]− x)n+1 =
∞

∑
i=−∞

([t]− [i+1])...([t]− [i+n+1])Bn+2

(x− [i]
qi

)
(3.13)

which completes the proof.

B-splines with knots at integers have the symmetry property about the midpoint of

interval of support but this property is not valid for B-splines with knots at q-integers.

In (Phillips, 2003, p. 241) the following two generalizations of (1.45) are given.

Theorem 3.1.2. The B-splines of degree n− 1 with knots at q-integers satisfy the

relation

Bn(x) = q−n(n−1)/2(1− (1−q)x)n−1Bn

(
[n]− x

1− (1−q)x

)
(3.14)

for all integers n > 1, all real q > 0 and x, for n = 1 and all x except for x = [0] and

[1].

Proof. See Kocak & Phillips (1994).

Theorem 3.1.3. The B-splines of degree n− 1 with knots at q-integers satisfy the

relation

Bn(x;q) = Bn(q−n+1([n]− x);1/q), (3.15)

for all inregers n > 1, all real q > 0 and x, for n = 1 and all x except from x = [0] and

[1].

Proof. See Kocak & Phillips (1994).

Theorem 3.1.4. (Phillips, 2003, p. 241) Bn(x) can be calculated by the following

explicit formula

Bn(x) =
1

[n−1]!

n

∑
j=0

(−1) jq j( j−2n+1)/2
[

n
j

]
(x− [ j])n−1

+ . (3.16)
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Proof. It follows from (1.31) with knots at [0], [1], ..., [n] that

Bn(x) = (−1)n
n

∑
j=0

[n](x− [ j])n−1
+

ω′([ j])

= (−1)n
n

∑
j=0

[n](x− [ j])n−1
+

([ j]− [0])([ j]− [1])...([ j]− [ j−1])([ j]− [ j+1])...([ j]− [n])
.

(3.17)

Using [ j]− [k] = qk[ j− k] we obtain

Bn(x) = (−1)n
n

∑
j=0

[n](x− [ j])n−1
+

q j( j−1)/2[ j]!(−1)n− jq j(n− j)[n− j]!
. (3.18)

Multiplying both numerator and denominator of the latter equation by [n]! gives (3.16).

Corollary 3.1.5.

Bn([k]) = 1
[n−1]!

n

∑
j=0

(−1) jq j( j−2n+1)/2
[

n
j

]
([k]− [ j])n−1

+

= 1
[n−1]!

k

∑
j=0

(−1) jq j( j−1)/2
[

n
j

]
[k− j]n−1

(3.19)

for 1≤ k≤ n−1, where ([k]− [ j])0
+ = 1 if k≥ j and 0 otherwise, and ([k]− [ j])n−1

+ =

([k]− [ j])n−1 = q j(n−1)[k− j]n−1 if k ≥ j and 0 otherwise.

3.1.1 q-Euler-Frobenius Polynomials

Euler-Frobenius polynomials which are related to Eulerian polynomials were

constructed previously. Now, to construct the q-analogue of Euler-Frobenius polynomials

we consider the space Sn of splines with knots at q-integers satisfying f (qx+ 1) =

zqn f (x) for z 6= 0,1 and each f ∈ Sn. This consideration requires that we should define

the q-analogue of exponential spline by

φn,q(x;z) :=
∞

∑
−∞

(qnz) jBn+1

(
x− [ j]

q j

)
, z 6= 0,1. (3.20)

We call φn,q(x;z) as the q-analogue of exponential spline of degree n to the base z.

If we differentiate (3.20) and use the derivative formula of B-spline functions with
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knots at q-integers (3.5) we find that

φ
′
n,q(x;z) =

∞

∑
−∞

(qnz) j
(

Bn+1

(
x− [ j]

q j

))′
=

∞

∑
−∞

(qn−1z) jB′n+1

(
x− [ j]

q j

)
=

∞

∑
−∞

(qn−1z) j n
[n]

{
Bn

(
x− [ j]

q j

)
− 1

q
Bn

(
x− [ j+1]

q j+1

)}
= n

[n]

{
∞

∑
−∞

(qn−1z) jBn

(
x− [ j]

q j

)
− (qnz)−1

∞

∑
−∞

(qn−1z) jBn

(
x− [ j]

q j

)}
.

(3.21)

Hence

φ
′
n,q(x;z) =

n
[n]

(1− (qnz)−1)φn−1,q(x;z). (3.22)

Repeating the operation n times we have

φ
(n)
n,q(x;z) = n!

[n]!(1− (qnz)−1)(1− (qn−1z)−1)...(1− (qz)−1)φ0,q(x;z)

= n!
[n]!(1− (qnz)−1)(1− (qn−1z)−1)...(1− (qz)−1)

∞

∑
−∞

z jB1

(
x− [ j]

q j

)
.

(3.23)

Since B1(x) = 1 in [0]< x < [1], B1(x) = 0 elsewhere, we find that

φ
(n)
n,q(x;z) =

n!
[n]!

(z−q−n)(z−q−n+1)...(z−q−1)

zn , [0]< x < [1] (3.24)

and its polynomial component in the interval [0]< x < [1] has the form

φn,q(x;z) =
1
[n]!

(z−q−n)n
q

zn xn + lower degree terms. (3.25)

From (3.25) we also know that the coefficient of xn is (z−q−n)n
q/([n]!z

n). We generate

the following q-analogue of exponential Euler polynomial.

Definition 3.1.6. We define the monic polynomial An,q(x;z)= xn+(lower degree terms)

by

An,q(x;z) =
[n]!zn

(z−q−n)n
q

φn,q(x;z) (3.26)

in [0]≤ x≤ [1], z 6= 0, z 6= 1.

Substituting x = 0 in (3.26), we have

An,q(0;z) = [n]!zn

(z−q−n)n
q
φn,q(0;z) = [n]!zn

(z−q−n)n
q

∞

∑
−∞

(qnz) jBn+1([− j])

= [n]!
(z−q−n)n

q

∞

∑
−∞

qn( j−n)z jBn+1([n− j]).
(3.27)
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From Theorem 3.1.2 we have Bn+1[n− j] = qn(n−1−2 j)/2Bn+1[ j+1]. Thus

An,q(0;z) =
[n]!

(z−q−n)n
q

q−n(n+1)/2
n−1

∑
j=0

z jBn+1([ j+1]). (3.28)

Set

Πn,q(z) := qn(n+1)/2An,q(0;z)(z−q−n)n
q. (3.29)

The q-analogue of Euler-Frobenius polynomials and then (3.28) becomes

Πn,q(z) = [n]!
n−1

∑
j=0

z jBn+1([ j+1]) (3.30)

The following theorem gives the relation between Πn,q(z) and An,q(z).

Theorem 3.1.7.

An,q(z) =

 Πn,q(z) = 1, if n = 0

zΠn,q(z), if n > 0.
(3.31)

Proof. We prove the above relation by using explicit forms of Aq(n,k) and B-spline

with knots at q-integers. Shifting the index of (3.30), we have

Πn,q(z) = [n]!z−1
n

∑
j=1

z jBn+1([ j])

= [n]!z−1
n

∑
j=1

z j
(

1
[n]!

j

∑
i=0

(−1)iqi(i−1)/2
[

n+1
i

]
[ j− i]n

)
= z−1

n

∑
j=1

z jAq(n, j)

= z−1An,q(z).

(3.32)

In case n = 0, it follows from (3.29) and (2.40).

Using (3.31) in the comparision between (2.40) and (3.30), we obtain the following

corollary.

Corollary 3.1.8. The relation between q-eulerian numbers and the value of B-spline

of degree n at x = [k] with knots at q-integers is

Aq(n,k) = [n]!Bn+1([k]), 1≤ k ≤ n. (3.33)
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Proof. We use induction on n. For n = 1, Aq(1,1) = 1 = B2([1]). Assume that (3.33)

is true for any n > 1. First we write the recurrence relation of q-Eulerian numbers

Aq(n+1,k) = [k]Aq(n,k)+qk−1[n− k+2]Aq(n,k−1) (3.34)

and then by inductive hypothesis we obtain

Aq(n+1,k) = [n+1]!
{

[k]
[n+1]

Bn+1([k])+qk−1 [n− k+1]
[n+1]

Bn+1([k−1])
}
. (3.35)

From (3.4) we see that (3.33) is also true for n+1, which completes the proof.

Furthermore, previously proven identities such as (2.17), (2.22), (2.23) and (2.34)

can be proved by using the corresponding identities of the B-splines with knots at q-

integers and (3.33).

Proof of (2.17): From (1.36) we have

Bn+1([k]) =
[k]
[n]

Bn([k])+qk−1 [n− k+1]
[n]

Bn([k−1]). (3.36)

Then multiply both sides of the identity with [n]!

Aq(n,k) = [k]Aq(n−1,k)+qk−1[n− k+1]Aq(n−1,k−1) (3.37)

Proof of (2.22): From the relation (3.14) we get

Bn+1([k]) = q−n(n+1)/2(1− (1−q)[k])nBn+1

(
[n+1]− [k]

1− (1−q)[k]

)
. (3.38)

Since 1− (1−q)[k] = qk

Bn+1([k]) = q−n(n+1−2k)/2Bn+1([n+1− k]). (3.39)

Equation (2.22) immediately follows from multiplying the above equation by [n]!.

Proof of (2.23): From the relation (3.15) we have

Bn+1([k],q) = Bn+1

(
q−n([n+1]− [k]);1/q

)
= Bn+1

(
qk−n[n+1− k];1/q

)
.

(3.40)

Multiplying both sides of the above equation by [n]q! and using the identity [n]1/q! =

q−n(n−1)/2[n]q! we obtain

[n]q!Bn+1([k];q) = qn(n−1)/2[n]1/q!Bn+1

(
[n+1− k]1/q;1/q

)
. (3.41)
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Using the relation (3.33)

Aq(n,k) = qn(n−1)/2A1/q(n,n− k+1). (3.42)

From (2.22), we obtain

Aq(n,k) = qn(k−1)A1/q(n,k). (3.43)

Proof of (2.34): From (3.6) we have

([t]− x)n =
∞

∑
i=−∞

([t]− [i+1])...([t]− [i+n])Bn+1

(x− [i]
qi

)
=

∞

∑
i=−∞

Bn+1

(x− [i]
qi

) n

∏
γ=1

([t]− [i+ γ])

=
∞

∑
i=−∞

Bn+1

(x− [i]
qi

) n

∏
γ=1

qi+γ[t− i− γ].

(3.44)

Replacing i by −i yields

([t]− x)n =
∞

∑
i=−∞

Bn+1

(x− [−i]
q−i

) n

∏
γ=1

q−i+γ[t + i− γ]

=
∞

∑
i=−∞

Bn+1(xqi +[i])
n

∏
γ=1

q−i+γ[t + i− γ].
(3.45)

Substituting x = 0 gives

[t]n =
∞

∑
i=−∞

Bn+1([i])
n

∏
γ=1

q−i+γ[t + i− γ]. (3.46)

Now using the relation (3.33) and Bn+1([i])> 0 for 1≤ i≤ n we obtain

[t]n =
n

∑
i=1

Aq(n, i)
∏

n
γ=1 q−i+γ[t + i− γ]

[n]!

=
n

∑
i=1

Aq(n, i)q(−2in+n(n+1))/2 [t + i−1][t + i−2]...[t + i−n]
[n]!

=
n

∑
i=1

Aq(n, i)q(−2in+n(n+1))/2
[

t + i−1
n

]
.

(3.47)

The following corollary obtained from (3.30) and (3.33).

Corollary 3.1.9.

Πn,q(z) =
n−1

∑
j=0

Aq(n, j+1)z j (3.48)

We see that Πn,q(z) is identical with An(z,q) defined in Foata (2010) as q-Eulerian

polynomials. For this reason we quote from Foata (2010) that q-analogue of Euler-

Frobenius polynomials can be expressed by the following proposition.
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Proposition 3.1.10. For n≥ 0 we have

Πn,q(z)
∏

n
i=0(1− zqi)

= ∑
l≥0

zl([l +1])n (3.49)

The corresponding exponential genearting function is defined as follows.

Theorem 3.1.11. (Stanley (1976))

∑
n≥0

Πn,q(z)
tn

[n]!
=

1− z
Eq(t(z−1))− z

(3.50)

where Eq(z) = ∑n≥0 qn(n−1)/2 zn

[n]! .

The recurrence relation for q-Euler-Frobenius polynomials given by

Corollary 3.1.12. (Foata (2010))

Πn+1,q(z) = (1+qz[n])Πn,q(z)+qz(1− z)DqΠn,q(z) (3.51)

Proof. Multiplying (3.49) by ∏
n
i=0(1− zqi) gives

Πn,q(z) =
n

∏
i=0

(1− zqi)∑
l≥0

[l +1]nzl. (3.52)

Taking the q-derivative of both sides of the above identity we obtain

DqΠn,q(z) =
n

∏
i=0

(1− zqi+1).Dq

{
∑
l≥0

[l +1]nzl
}
+ ∑

l≥0
[l +1]nzl.Dq

{ n

∏
i=0

(1− zqi)
}

=
n

∏
i=0

(1− zqi+1)∑
l≥0

[l +1]n[l]zl−1− [n+1]
(1− z)

n

∏
i=0

(1− zqi)∑
l≥0

[l +1]nzl

= 1
qz

n

∏
i=0

(1− zqi+1)∑
l≥0

([l +1]n+1− [l +1]n)zl

− [n+1]
(1−z)

n

∏
i=0

(1− zqi)∑
l≥0

[l +1]nzl.

(3.53)

Multiplying both sides of the last equation by qz(1− z) we get

qz(1− z)DqΠn,q(z) =
n+1

∏
i=0

(1− zqi)∑
l≥0

[l +1]n+1zl−
n+1

∏
i=0

(1− zqi)∑
l≥0

[l +1]nzl

−qz(1− z)
n

∏
i=0

(1− zqi)∑
l≥0

[l +1]nzl

= Πn+1,q(z)− (1− zqn+1 +qz[n+1])Πn,q(z).
(3.54)

Finally, rearraging inside of the paranthesis gives (3.51).
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3.2 B-splines with Knots in Geometric Progression

Similar to the B-splines with knots at q-integers, the B-splines with knots in

geometric progression don’t have translation property, nevertheless, they are closely

associated with one another. Namely, with the indexing xi = qi, for all i, we get

Bn−1
i (x) = Bn

(
x
qi

)
. (3.55)

Bn is completely determined by the n+1 knots q0,q1, ...,qn.

With knots at q0, ...,qn, the recurrence relation (1.36) becomes

Bn(x) =
x−1

qn−1−1
Bn−1(x)+

qn− x
q(qn−1−1)

Bn−1(xq−1), (3.56)

and B1(x) is given by

B1(x) =

 1, q0 ≤ x < q1

0, otherwise.
(3.57)

The derivative formula of B-splines with knots in geometric progression follows

from the derivative formula of general B-splines (1.38) and (3.55). For n≥ 3, we have

d
dx

Bn(x) =
1

q−1

{
n−1
[n−1]

Bn−1(x)−
n−1

q[n−1]
Bn−1

(x
q

)}
(3.58)

for all real x. For n = 2, (3.58) holds for all x except at the three knots q0,q1, and q2,

where the derivative of B2 is not defined.

The following theorem gives a q-analogue of Marsden’s identity for B-splines with

knots in geometric progression.

Theorem 3.2.1. For any n≥ 0,

(qt− x)n =
∞

∑
i=−∞

(qt−qi+1)...(qt−qi+n)Bn+1

( x
qi

)
. (3.59)

When n = 0, we take (qt−qi+1)...(qt−qi+n) = 1 .

Proof. We use induction on n. From (3.55) we obtain
∞

∑
i=−∞

B1

( x
qi

)
= 1, (3.60)

34



which shows that (3.59) is true for n = 0. Assume that (3.59) is true for any n≥ 0. We

need the following identity to complete the rest of the proof

qt−qi+n+1

qi−qi+n+1 (q
i− x)+

qt−qi

qi+n+1−qi (q
i+n+1− x) = qt− x. (3.61)

This is the linear interpolating function of qt − x which interpolates at t = i and t =

i+n+1. Mutiplying (3.59) by (qt− x) yields

(qt− x)n+1 =
∞

∑
−∞

(qt−qi+1)...(qt−qi+n+1)
qi− x

qi−qi+n+1 Bn+1

( x
qi

)
+

∞

∑
−∞

(qt−qi)...(qt−qi+n)
qi+n+1− x
qi+n+1−qi Bn+1

( x
qi

)
.

(3.62)

Shifting the index of the second summation

(qt− x)n+1 =
∞

∑
−∞

(qt−qi+1)...(qt−qi+n+1)
qi− x

qi−qi+n+1 Bn+1

( x
qi

)
+

∞

∑
−∞

(qt−qi+1)...(qt−qi+n+1)
qi+n+2− x

qi+n+2−qi+1 Bn+1

( x
qi+1

)
.

(3.63)

Using (3.56) we obtain

(qt− x)n+1 =
∞

∑
i=−∞

(qt−qi+1)...(qt−qi+n+1)Bn+2

( x
qi

)
(3.64)

which completes the proof.

Similarly, the B-splines with knots in geometric progression are not symmetric

about the midpoint of interval of support.

Theorem 3.2.2. The B-splines with knots in geometric progression satisfy the relation

Bn(x) = q−n(n−1)/2xn−1Bn

(qn

x

)
(3.65)

for all integers n > 1, all real q > 1 and x, when n = 1 (3.65) satisfied for all q > 1 and

all x except for x = q0 and q1.

Proof. We use induction. For n = 1, we have B1(x) = B1

(
q1

x

)
. This identity is not

valid at the end points of the interval of the support of B1(x) but is valid for x∈ (q0,q1)
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since for x = q0 we have q
x = q, but B1(q) = 0 while B1(q0) = 1. Now we must show

that it is true for n = 2. From (3.56) we have

B2(x) =
x−1
q−1

B1(x)+
q2− x

q(q−1)
B1(xq−1). (3.66)

Replacing x by q2

x

B2

(q2

x

)
=

q2− x
x(q−1)

B1

(q2

x

)
+

xq2−q2

xq(q−1)
B1

(q
x

)
(3.67)

and multiplying the both sides of the last equation by x
q

x
q

B2

(q2

x

)
=

q2− x
q(q−1)

B1

(q2

x

)
+

x−1
q−1

B1

(q
x

)
. (3.68)

Using the truth of (3.65) for n = 1 we obtain x
qB2

(
q2

x

)
= B2(x) which shows that

(3.65) is true for n = 2. For x = q0, B2(q0) = 0 = 1
qB2(q2) and for x = q2, B2(q2) =

0 = qB2(q0) since the interval of support of B2(x) is x ∈ [q0,q2]. Suppose that (3.65)

holds for n−1. Then we see from the recurrence relation

Bn(x;q) =
x−1

qn−1−1
Bn−1(x)+

qn− x
q(qn−1−1)

Bn−1(xq−1), (3.69)

using inductive hypothesis yields

Bn(x) = x−1
qn−1−1q−(n−1)(n−2)/2xn−2Bn−1

(
qn−1

x

)
+ qn−x

q(qn−1−1)q
−(n−1)(n−2)/2(xq−1)n−2Bn−1

(
qn−1

xq−1

)
.

(3.70)

After rearranging the terms we have

Bn(x) = q−n(n−1)/2xn−1
{

qn−1(x−1)
x(qn−1−q)Bn−1

(
qn−1

x

)
+ q(qn−x)

x(qn−q)Bn−1

(
qn

x

)}
= q−n(n−1)/2xn−1Bn

(
qn

x

) (3.71)

which completes the proof.

Theorem 3.2.3. The B-splines of degree n− 1 with knots in geometric progression

satisfy the relation

Bn(x;q) = Bn(q−nx;1/q) (3.72)

for all integers n > 1 and i, all real q > 1 and x, and for n = 1 and all x except for

x = q0 and q1.
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Proof. We prove by induction. For n = 1, (3.72) reduces to B1(x;q) = B1(q−1x;1/q).

This identity is not provided for x = q0 and x = q1 since while B1(x;q) = 1 for x ∈

[q0,q1) and 0 otherwise, B1(q−1x;1/q) = 1 for q−1x ∈ [1/q,1/q0) and 0 otherwise.

Now, we show the truth of (3.72) for n = 2. From (3.56) we have

B2(x;q) =
x−1
q−1

B1(x;q)+
q2− x

q(q−1)
B1(xq−1;q). (3.73)

Replacing q by 1/q

B2(x;1/q) =
q(x−1)

1−q
B1(x;1/q)+

1− xq2

1−q
B1(xq;1/q) (3.74)

and substituting x/q2 for x

B2(x/q2;1/q) =
x−q2

q(q−1)
B1(x/q2;1/q)+

1− x
1−q

B1(x/q;1/q). (3.75)

By using the truth of (3.72) for n = 1 we have B2(x/q2;1/q) = B2(x;q). For x = q0,

B2(q0;q) = 0 = B2(q−2;1/q) and x = q2, B2(q2;q) = 0 = B2(q0;1/q) since the

interval of support of B2(x;q) is [q0,q2] while the interval of support of B2(x;1/q) is

[1/q0,1/q2]. Suppose that (3.72) holds for n−1. Then we write the recurrence relation

Bn(x;q) =
x−1

qn−1−1
Bn−1(x)+

qn− x
q(qn−1−1)

Bn−1(xq−1), (3.76)

using the inductive hypothesis we obtain

Bn(x;q) = x−1
qn−1−1Bn−1(q−n+1x;1/q)+ qn−x

qn−qBn−1(q−nx;1/q)

= Bn(q−nx;1/q).
(3.77)

Theorem 3.2.4. The B-spline Bn(x) of degree n−1 can be calculated by the following

explicit formula

Bn(x) =
1

(q−1)n−1[n−1]!

n

∑
j=0

(−1) jq j( j−2n+1)/2
[

n
j

]
(x−q j)n−1

+ . (3.78)

Proof. Substituting xi = qi, ∀i in (1.31) gives

Bn(x) = (−1)n
n

∑
j=0

(qn−1)(x−q j)n−1
+

ω′(q j)

= (−1)n
n

∑
j=0

(qn−1)(x−q j)n−1
+

(q j−q0)(q j−q1)...(q j−q j−1)(q j−q j+1)...(q j−qn)

= (−1)n
n

∑
j=0

(qn−1)(x−q j)n−1
+

(q j−1)q(q j−1−1)...q j−1(q−1)q j(1−q)...q j(1−qn− j)
.

(3.79)
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Multiply and divide the denominator by (q−1)n

Bn(x) = (−1)n
n

∑
j=0

(qn−1)(x−q j)n−1
+

q j( j−1)/2[ j]!(−1)n− j(q−1)nq j(n− j)[n− j]!
(3.80)

after multiplying both numerator and denominator of the above equation by [n]! and

rearranging the terms we obtain (3.78).

Corollary 3.2.5.

Bn(qk) =
1

[n−1]!

k

∑
j=0

(−1) jq j( j−1)/2
[

n
j

]
[k− j]n−1 (3.81)

for q > 1 and 1 ≤ k ≤ n− 1, where (qk − q j)0
+ = 1 if k ≥ j and 0 otherwise, and

(qk−q j)n−1
+ = (qk−q j)n−1 = q j(n−1)(qk− j−1)n−1 if k ≥ j and 0 otherwise.

3.2.1 q-Euler-Frobenius Polynomials

We constructed the q-analogue of Euler-Frobenius polynomials with knots at q-

integers. In this section we show that q-Euler-Frobenius polynomials can be derived

from the B-splines with knots in geometric pregression. First we define the elements

of Sn with knots in geometric progression satisfying f (qx) = zqn f (x) by

φ̃n,q(x;z) :=
∞

∑
−∞

(qnz) jBn+1

(
x
q j

)
, z 6= 0,1. (3.82)

We call φ̃n,q(x;z) as the q-analogue of exponential spline of degree n with knots in

geometric progression to the base z.

If we differentiate (3.82) and use the derivative formula of B-spline functions with

knots in geometric progression (3.58) we find that

φ̃′n,q(x;z) =
∞

∑
−∞

(qn−1z) jB′n+1

( x
q j

)
=

∞

∑
−∞

(qn−1z) j n
[n]

1
q−1

(
Bn

( x
q j

)
− 1

q
Bn

( x
q j+1

))
= n

[n](q−1)

{
∞

∑
−∞

(qn−1z) jBn

( x
q j

)
− (qnz)−1

∞

∑
−∞

(qn−1) jBn

( x
q j

)}
.

(3.83)

Hence

φ̃
′
n,q(x;z) =

n(1− (qnz)−1)

[n](q−1)
φ̃n−1,q(x;z). (3.84)
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Repeating the operation n times we have

φ̃
(n)
n,q(x;z) = n!(1−(qnz)−1)(1−(qn−1z)−1)...(1−(qz)−1)

[n]!(q−1)n φ̃0,q(x;z)

= n!(1−(qnz)−1)(1−(qn−1z)−1)...(1−(qz)−1)
[n]!(q−1)n

∞

∑
−∞

z jB1

(
x
q j

)
.

(3.85)

Since B1(x) = 1 in q0 < x < q1, B1(x) = 0 elsewhere, we find that

φ̃
(n)
n,q(x;z) =

n!(z−q−n)(z−q−n+1)...(z−q−1)

[n]!(q−1)nzn , q0 < x < q1 (3.86)

and its polynomial component in the interval q0 < x < q1 has the form

φ̃n,q(x;z) =
(z−q−n)n

q

[n]!(q−1)nzn xn + lower degree terms. (3.87)

Thus we generate a monic polynomial from (3.87).

Definition 3.2.6. We define the monic polynomial Ãn,q(x;z)= xn+(lower degree terms)

by

Ãn,q(x;z) =
(q−1)n[n]!zn

(z−q−n)n
q

φ̃n,q(x;z) (3.88)

for q0 ≤ x ≤ q1, z 6= 0,1 and call it the exponential Euler polynomial with knots in

geometric progression.

Substituting x = 1 in (3.88), we have

Ãn,q(1;z) = (q−1)n[n]!zn

(z−q−n)n
q

φ̃n,q(1;z)

= (q−1)n[n]!zn

(z−q−n)n
q

∞

∑
∞

(qnz) jBn+1(q− j)

= (q−1)n[n]!
(z−q−n)n

q

∞

∑
−∞

z jqn( j−n)Bn+1(qn− j).

(3.89)

Using Bn+1(qn− j) = qn(n−1−2 j)/2Bn+1(q j+1)

Ãn,q(1;z) =
(q−1)n[n]!
(z−q−n)n

q
q−n(n+1)/2

n−1

∑
j=0

z jBn+1(q j+1). (3.90)

Define

Π̃n,q(z) :=
qn(n+1)/2Ãn,q(1;z)(z−q−n)n

q

(q−1)n . (3.91)

Then (3.90) becomes

Π̃n,q(z) = [n]!
n−1

∑
j=0

z jBn+1(q j+1) (3.92)
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Theorem 3.2.7. Let Π̃n,q(z) and An,q(z) be the polynomials defined by (3.90) and

(2.39), respectively. Then we can construct the relation between them as follows

An,q(z) =

 Π̃n,q(z) = 1, if n = 0

zΠ̃n,q(z), if n > 0
(3.93)

Proof. We will prove the above relation by using the explicit forms of Eulerian

numbers and B-spline with knots in geometric progression. Shifting the index of (3.92)

yields

Π̃n,q(z) = [n]!z−1
n

∑
j=1

z jBn+1(q j)

= [n]!z−1
n

∑
j=1

z j
(

1
[n]!

j

∑
i=0

(−1)iqi(i−1)/2
[

n+1
i

]
[ j− i]n

)
= z−1

n

∑
j=1

z jAq(n, j)

= z−1An,q(z).

(3.94)

The relation is also true for n= 0 since Π̃0,q(z) = 1 and A0,q(z) = 1 which follows from

(3.90) and (2.40), respectively.

We conclude from Theorem (3.1.7) and Theorem (3.2.7) that the relation between

Π̃n,q(z) and Πn,q(z) can be expressed in the following corollary.

Corollary 3.2.8. For n≥ 0

Π̃n,q(z) = Πn,q(z). (3.95)

Using (3.93) in the comparision between (2.40) and (3.92), we obtain a relation

between q-Eulerian numbers and the value of B-splines with knots in geometric

progression that evaluated at x = qk.

Proposition 3.2.9.

Aq(n,k) = [n]!Bn+1(qk), 1≤ k ≤ n. (3.96)

Proof. We prove the above identity by induction on n ≥ 1. If n = 1 and k = 1, then

Aq(1,1) = 1 = B2(q1). We assume that it is true for n− 1. We use (3.56) and the
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inductive hypothesis we get

Aq(n,k) = [k][n−1]!Bn(qk)+qk−1[n− k+1]Bn(qk−1)

= [n]!
(

[k]
[n]Bn(qk)+qk−1 n−k+1

[n] Bn(qk−1)

)
= [n]!Bn+1(qk).

(3.97)

Similarly (2.17), (2.22), (2.23) and (2.34) can be proven by using corresponding

identities of B-splines with knots in geometric progression and (3.96).

Proof of (2.17): From (1.36) we have

Bn+1(x) =
[k]
[n]

Bn(qk)+qk−1 [n− k+1]
[n]

Bn(qk−1). (3.98)

Multiplying the above equation by [n]! and using (3.96) we obtain

Aq(n,k) = [k]Aq(n−1,k)+qk−1[n− k+1]Aq(n−1,k−1). (3.99)

Proof of (2.22): From (3.65) we have

Bn+1(qk) = q−n(n−2k+1)/2Bn+1(qn+1−k). (3.100)

The result follows from multiplying the above equation by [n]!.

Proof of (2.34): From (3.59) we get

(qt− x)n =
∞

∑
i=−∞

(qt−qi+1)...(qt−qi+n)Bn+1

( x
qi

)
=

∞

∑
i=−∞

Bn+1

( x
qi

) n

∏
γ=1

(qt−qi+γ).
(3.101)

Replacing i by −i gives

(qt− x)n =
∞

∑
i=−∞

Bn+1

( x
q−i

) n

∏
γ=1

q−i+γ(qt+i−γ−1). (3.102)

Writing x = 1 and using (qt−1)n = (q−1)n[t]n

(q−1)n[t]n =
∞

∑
i=−∞

Bn+1(qi)
n

∏
γ=1

q−i+γ(qt+i−γ−1). (3.103)

Dividing both sides of the above equation by (q−1)n and using the interval of support

of Bn+1(qi) yields

[t]n =
n

∑
i=1

Bn+1(qi)q(−2in+n(n+1))/2[t + i−1][t + i−2]...[t + i−n]. (3.104)
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From (3.96)

[t]n =
n

∑
i=1

Aq(n, i)q(−2in+n(n+1))/2 [t + i−1][t + i−2]...[t + i−n]
[n]!

=
n

∑
i=1

Aq(n, i)q(−2in+n(n+1))/2
[

t + i−1
n

]
.

(3.105)

42



CHAPTER FOUR

CONCLUSIONS

In this study, we give the relation between q-Eulerian polynomials and B-splines

with knots at q-integers and in geometric progression. We find two different q-

analogues of Euler-Frobenius polynomials by constructing q-analogues of exponential

splines. We state the relation between q-Eulerian numbers and B-spline values with

knots at q-integers and in geometric progression via q-analogues of Euler-Frobenius

polynomial as the following

Aq(n,k) = [n]!Bn+1([k]), 1≤ k ≤ n (4.1)

and

Aq(n,k) = [n]!Bn+1(qk), 1≤ k ≤ n. (4.2)

We also find these q-analogues of Euler-Frobenius polynomials can be written in

terms of B-splines with knots at q-integers and in geometric progression. We show

that both B-spline has same value on their knots. For the B-splines with knots in

geometric progression, we construct the following identities for all integers n > 1 and

i, all real q > 1 and x, and for n = 1 and all x except for x = q0 and q1

Bn(x) = q−n(n−1)/2xn−1Bn

(qn

x

)
(4.3)

and

Bn(x;q) = Bn(q−nx;1/q), (4.4)

which generalize the symmetry property of cardinal B-splines. We establish q-

analogues of Marsden’s identity in terms of B-splines with knots at q-integers and

in geometric progression. These q-analogues of Marsden’s identity is used in the

construction of q-analogue of Worpitzky’s identity.
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