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RANDOM NUMBER GENERATION IN UHF RFID TAGS 

 

ABSTRACT 

 

Authentication and encryption are frequently used by secure applications. 

Random number generators are frequently used by authentication and encryption 

algorithms.  Algorithms that use low resource are needed because of the need to high 

quality random number generation in low capacity devices. Such generators can be 

used by all applications which need hard predicted and not frequently repeated 

numbers. 

 

During this research existing random number generators are examined and a new 

random number generator which can work in low capacity devices has been 

developed. The developed generator is tested with statistical test suites which are 

generally used in literature. 

 

Keywords: Authentication, encryption, random number generation, statistical 

randomness test, low capacity devices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 v   

UHF RADYO FREKANSI İLE TANIMLAMA ETİKETLERİNDE 

RASTGELE SAYI URETİMİ 

 

ÖZ 

 

Güvenli uygulamalarda kimlik doğrulama ve şifreleme sıkça kullanılmaktadır. 

Kimlik doğrulama ve şifreleme algoritmalarında sıkça rasgele sayı üreteçleri 

kullanılmaktadır. Düşük kapasiteli cihazlarda kaliteli rasgele sayı üretme işlemini 

yapabilmek için daha az kaynağa ihtiyaç duyan algoritmalar gerekmektedir. Bu 

üreteçler tekrar etme ve tahmin edilebilme olasılığı düşük sayı ihtiyacı olan bütün 

uygulamalarda kullanılabilmektedir.  

 

Bu çalışma kapsamında varolan rasgele sayı üreteçleri incelendi, düşük kaynak ile 

çalışabilen bir rasgele sayı üreteci geliştirildi. Geliştirilen bu üreteç, literatürde 

genellikle kullanılan test araçları ile test edildi.  

 

Anahtar kelimeler : Kimlik doğrulama, şifreleme, Rastgele sayı üretimi, İstatistiksel 

rasgelelik testi, Düşük kapasiteli cihazlar 
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CHAPTER ONE 

INTRODUCTION 

 

Lately, usage of mobile devices is increasing rapidly. Mobile devices are very 

popular among other devices, also they have various usage areas. Security and 

privacy issues in mobile devices are becoming more critical due to the increase in 

their usage. Mobile devices must support confidentiality, integrity and availability 

for privacy and security concerns. A lot of threats exist for mobile devices. 

 

Radio Frequency Identification (RFID) is used for automated identification of 

objects and people. Radio Frequency Identification is a promising mobile 

technology. Data transmission takes place in wireless media. Data transmission is 

between RFID tag and RFID reader. RFID tag is a small microchip which can be 

attached to an antenna. A tag can be as small as 0.4 mm2 and it is generally like a 

sticker (Takaragi, Usami, Imura, Itsuki & Satoh, 2001). RFID gives us opportunity to 

uniquely identify objects and easily do some automation. RFID usage has a lot of 

advantages over using barcode. For instance we can uniquely identify items using 

RFID and barcodes must be optically scanned by the readers. Barcodes need to be in 

a special position and careful contact with the reader. RFID does not require this kind 

of care. RFID reader can scan hundreds of tags per second with high accuracy and 

does not require the tag to be in a certain position with respect to the reader like the 

barcode scanner does. 

 

RFID usage is increasing nowadays. Recent increase in usage of RFID made it 

more popular in respect to the security perspective of Organization for Economic Co-

operation and Development (OECD, 2008). RFID has different constraints according 

to other technologies such as low energy consumption and low capacity. These 

constraints do not allow us to use high capacity required solutions. Scope of this 

work includes proposing a new pseudo random number generator that uses little die 

area and clock cycle. This scheme is also verified using well known statistical 

randomness tests. Test results are included in the work. 
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The thesis is organized in six chapters. The second chapter is about mobile 

devices and ubiquitous systems. Chapter three describes RFID security. Chapter four 

introduces the proposed scheme. Chapter five describes performance, testing and 

evaluation of results. Chapter six concludes the work and discusses the future work. 
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CHAPTER TWO 

RFID TECHNOLOGY 

 

2.1 RFID 

 

Radio Frequency Identification is a wireless technology which helps us to transfer 

data, identify and track the tags. Tag contains identification information. Tags can be 

powered, some of them use local power resource like a battery and some of them can 

collect energy from radio waves.  

  

Tags can have a factory assigned read only ID when the stage of production. This 

ID can be used like a key to match the value in the database. Also tags can have 

memory which can be read and written. System user is authorized to write data into 

the tag. Some programmable tags can be written once and can be read multiple times. 

Blank tags can be written by user.  

 

RFID tags contain two parts. One of them is the integrated circuit. It is used to 

store and the process the data, collect power from reader signal and do some other 

specific functions (OECD, 2008). The other part is the antenna. Antenna is used to 

receive and transmit the signal. RFID tags can include a chip or a programmable 

processor for processing the data. 

 

Figure 2.1 RFID antenna 

 

The reader transmits an encoded signal to activate a tag. The tag receives the 

signal and responds with identification information and the other information if 
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exists. This data can be a unique tag serial number, a product related information, a 

batch number, etc. 

 

2.1.1 RFID Tag Types and Standards 

 

RFID tags can be grouped into three categories which are active, passive and semi 

passive. Active tags hold a battery. They also transmit signals periodically. Semi 

passive tags also hold a small battery on board. They are activated by a reader. When 

no reader exists, they stay passive. Passive tags are small and they do not hold a 

battery. So, they are cheaper than other tags and they are mostly preferred by 

applications. Passive tags are activated by the reader. They stand passive because of 

no battery.  

 

RFID operates on different frequency bands. These are low frequency, high 

frequency and ultra-high frequency. RFID systems which operate in low frequency 

have shorter read range and slower data read rate. But, they operate well on metal 

and liquid surfaces.  

 

Low frequency (LF) RFID systems operate between 30 KHz and 300 KHz. LF 

provides 10 cm read range. Standards for LF are ISO 14223 and ISO/IEC 18000-2. 

High frequency (HF) operates between 3 and 30 MHz Read range for HF varies from 

10 cm to 1m. There are several standards for HF RFID systems such as ISO 15693 

for tracking objects; ECMA-340 and ISO/IEC 18092 for NFC; ISO/IEC 14443 A 

and ISO/IEC 14443 for MIFARE and JIS X 6319-4 for FeliCa. UHF frequency band 

ranges are from 300 MHz to 3 GHz. UHF Gen2 standards for RFID operates 

between 860 and 960 MHz band. Read range of UHF tags are 12 m. EPCglobal Gen2 

(ISO 18000-6C) UHF standard is the only standard which regulates UHF. 
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Figure 2.2 RFID tags 

 

RFID tags are categorized into different classes. Class 0 and Class I tags 

represents the basic functionality. They are read only and passive tags. Class II tags 

are passive tags with additional functionalities such as memory and encryption. Class 

III tags are semi passive tags. They holds a battery. When they run out of energy, 

they are activated like passive tags. Class IV tags are active tags. They are capable of 

peer to peer communication with other active tags. Class V tags are known as 

readers. They can communicate with other tags and readers. In addition to 

communicating, they can power Class I, II and III tags (Sarma & Engels, 2003).  

 

2.2 RFID Readers 

 

RFID readers are also grouped into similar categories like tags. Some readers can 

either be passive or active. Passive readers can only receive the radio signals of 

battery powered active tags. Active readers transmit signals and also receive the 

authentication replies.  

 

Readers can either be fixed or mobile. Fixed readers define a reading area which 

tags can go in or out. Mobile readers can be hand-held or mounted on a vehicle. Tag 

type and reader type define the RFID system. For example, using an active reader 

and passive tags on an RFID system is called as Active Reader Passive Tag (ARPT) 

system. This can vary like Active Reader Active Tag (ARAT) and Passive Reader 

Active Tag (PRAT) (Bachu, Saram & Sharma, 2013).  
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Figure 2.3 RFID reader 

 

Most of UHF readers cost from $500 to $2000 depending on the features of the 

device. It depends on the type of the reader. Tags, antennas and cable are needed to 

build a complete system. Low and high frequency readers are range in price 

depending on different factors. A low frequency reader can be under $100, while a 

fully functional standalone ones can be $750. High frequency readers are typically 

between $200 and $300. A standalone reader can be about $500 (RFID Journal, 

2015).  

 

According to functions in RFID System, two types of antennas can be used. These 

are tag antenna and reader antenna. Tag antenna both transfers the information and 

catch the wave for energy. Eroded or printed antennas are widely used and the dipole 

is the typical tag antenna structure. Some circularly polarized antennas for the tag 

may be preferred for special applications. Patch and spiral antennas are typical reader 

antennas. Linearly polarized antennas can be preferred for some special applications 

(Zhang, Jiao, Zhang & Wang, 2009). 

 

2.3 Signaling 

 

Low frequency tags operate in the 124-135 kHz range and have half a meter read 

range. High frequency tags operate at 13.56 Mhz and have up to a meter or more 

read range. Ultra high frequency tags operate in 860-960 Mhz and have up to ten 

meters read range (Juels, 2006).  
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Electronic Product Code (EPC) is a common type of data stored in the tag. RFID 

printer can write 96 bit data into the tag. First 8 bits are the header information which 

identifies the version of the protocol. Next 28 bits are organization information. The 

organization number is assigned by EPCGlobal consortium. Next 24 bits are object 

class. This identifies the type of the product. The last 36 bits are unique serial 

number for a specific tag. Last two fields are assigned by the organization. The total 

code can be used as a unique key into global database. 

 

Table 2.1 EPC Fields 

 
Header 

Organization 

Information 

Object 

Class 

Unique Serial 

Number 

Number of Bits 8 28 24 36 

Total Numbers  268,435,455 16,777,215 68,719,476,735 

 

Generally more than one tag respond the reader. For example many products are 

hold in a basket. When it is time to check out, lots of products are being read at the 

same time. Some different protocols exist in collision detection. As one approach the 

reader can send the initialization command and a pseudo random delay for each 

individual tag. As adaptive binary tree approach the reader sends initialization 

symbol and then transmits one bit of identification information. Only tags match the 

identification information respond (Glover & Bhatt, 2006). Ideally only one tag 

would respond at a time. Both methods have advantages and disadvantages when 

multiple readers exist or used with multiple tags.  

 

Three key factors play a significant role in RFID usage. Decreased cost of tags, 

increased performance of reliability and stable international standards. These 

standards are driven by the EPCGlobal. 
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2.4 RFID Usage Area 

 

Many of us already use RFID applications. Some applications include proximity 

cards for building access, ignition keys for automobiles, some payment tokens. Some 

American Express and Mastercard credit cards uses RFID (Juels, 2006). Item level 

inventory tracking operation is very suitable for RFID usage. Items can be tracked 

during all steps of gathering the raw material, manufacturing process, supply chain 

and the individual end user. Some intelligent applications like fridge can use the 

RFID information. Some other smarts systems can be built on the top of RFID 

technology.  

 

As a result of the increase in the RFID usage, RFID technology can be used for 

new areas. New smart appliances and interactive objects can use RFID tags. RFID 

usage has lots of advantages and some limitations. These features can be used for 

new areas in the future. 
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CHAPTER THREE 

RFID SECURITY 

 

Because of the increase in development and use of RFID, makes security a big 

concern. RFID usage is not limited to inventory and stock tracking. Nowadays usage 

of RFID is extended to electronic passports and RFID embedded credit cards. The 

increase in usage of RFID raises concerns about security and privacy issues. RFID 

tags are dump devices. They only listen and response without any information about 

the sender. This issue reveals the problems with unauthorized access and tag data 

modification. Some attacks such as eavesdropping, denial of service, traffic analysis 

and spoofing are major threads to RFID tags. 

 

3.1 Known Attacks 

 

As a security concern, all applications are expected to provide data 

confidentiality, data integrity and privacy. Following known attacks can be 

considered as potential risks in RFID security.   

 

Eavesdropping: Radio signals transmitted between tag and reader. This 

communication can be seen by other receivers. An unauthorized user can gain access 

to confidential data during the transmission. Researchers in the US has demonstrated 

a eavesdropping attack on an RFID credit card such as the cardholder’s name and 

account information, could be skimmed if not properly encrypted (Heydt-Benjamin, 

Bailey, Fu, Juels & O’Hare, 2007). 

 

Man-In-The-Middle Attack: Attacker intercepts the communication between two 

parties. The communication between RFID reader and tag can be monitored by 

attacker. Attacker can alter or inject messages into communication. A secure channel 

must be built for attacker not to mediate the traffic between parties. 

  

Replay Attack: Attacker can replay a previously recorded message. Therefore 

third party can trigger an action using a valid message. To prevent from replay 
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attack, constant values must not be used. Using random numbers is a common way 

for prevention. 

 

Location Tracing: Attacker can find a way to identify a tag. This identification 

information can be combined with location information. Therefore, tracing of a tag 

becomes a risk. 

 

Forward Security: Once a secret information is captured, the data used in the 

communication can be revealed. Generation of secret keys is a big concern for 

forward security. Disclosure of a session key must not allow an attacker to reveal the 

future communication between parties. 

 

Backward Security: Like forward security, the captured secret information can be 

used to reveal the past communication. 

 

Synchronization Attack: A dishonest tag can be created using the captured secrets. 

The identity value in the tag is the same. 

 

Physical Attack: This concern is mostly about hardware security issues. This is in 

another category. 

 

Spoofing: Communication records can be used to perform tag spoofing. A 

software called ‘RFDump’ can be used to read and write on a not properly protected 

tag. By using this method, an RFID system can be fooled and the attacker can gain 

unauthorized access. For example, an RFID tag can be spoofed to show lower price. 

When it is used with eavesdropping, a replay attack can be a threat for an RFID tag. 

For a replay attack, attacker queries a tag and receives the information, this 

information can be retransmitted over and over later (Infosec, 2008). 

 

Denial of Service Attack: This kind of attack can occur for large volumes of RFID 

data. A denial of service attack can be used to corrupt large volumes of tags. For 

example a ‘kill’ command can be transmitted to large amount of tags at a certain time 



 

 

 20   

or a high power ratio frequency transmitter can be used to jam the RFID frequencies 

(Infosec, 2008). 

 

Privacy Issues: Along with RFID is being used widely, people concern more 

about privacy issues. This concern includes storage and usage of their data. If a 

person can be identified by an RFID tag, individuals can be profiled and tracked.   

 

3.2 Dealing with Security and Privacy issues 

 

Solutions surrounding to RFID security can be categorized into three areas. They 

are tag data protection, reader integrity and personal privacy.   

 

3.2.1 Tag Data Protection 

 

Tag data protection is about the data RFID stores. For example a password can be 

set to protect the tag data. This approach can prevent being read without knowing the 

password. Only readers which know the password can gain access to the tag data. If 

all tags own a unique password, it means millions of passwords. Having such a high 

number of confidential information can contain storage risks. For a low capacity 

device it can be hard to store lots of data and check the correct password.  

  

Physical locking of tag memory can be used to produce a read only chip and the 

information is embedded during the manufacturing process. In this method tag data 

cannot be overwritten.  

 

Reader authentication in tag memory method can be implemented as follows. The 

author encrypts the data with its own private key, the data and meta-data is stored in 

the tag memory. When a reader wants to verify the information, tag sends the reader 

the data and reader verifies it. Although this solution can seem nice, it requires a key 

management system.  
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3.2.2 RFID Reader Integrity 

 

For a solution method reader protection can be approved as reader and tag can 

agree on a response time or signal power level. Reader can change the frequency, so 

the communication is hard to eavesdrop. An authentication mechanism is needed to 

be implemented between reader and back end application. 

 

RFID architecture can contain special devices to detect unauthorized behaviors 

such as unauthorized update on a tag.  

 

3.2.3 Personal Privacy 

 

Most privacy threads arise from RFID tags which hold unique identifier. These 

tags can easily associated with a person and the tracking of the person becomes easy. 

When a customer purchases an item, customer’s identity can be matched to item’s 

serial number. So this customer can be monitored and location of the customer can 

be revealed. 

 

 Special kill command is used to deactivate a tag and the tag cannot be re-

activated again (Lu, Chen, Qiu & Jan, 2011). This command can disconnect the 

antenna, so the tag cannot be recognized anymore. So personal information cannot be 

viewed. But, stores generally do not prefer deactivating a tag because of returning of 

the product.  

 

A tag can be covered with a special material to block certain frequencies. This 

approach makes tag detection very hard. But, it is not possible to cover all tags in all 

environments.  

 

Active jamming can be used to block the any nearby readers. However, using 

such devices can be illegal. If too much power is used for operation, all nearby RFID 

systems would be affected. 
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A blocker tag can be used to deal with the unwanted RFID readers so the other 

tags can be kept secure from being read or any kind of attack. The blocker tag can 

have more than one antenna to communicate with multiple readers at the same time.  

 

To unlock a locked tag, a key or pin is needed. The tag can be locked for a time 

and can be unlocked soon.  

 

3.3 Authentication in RFID 

 

Every consumer good in a supply chain has an identification sticker, which is used 

to keep track of it, during its journey from manufacture to the basket of a consumer. 

The stickers that used to be barcode papers are being replaced by RFID tags (Robert, 

2006). According to a report RFID is a booming technology, acting as a part of 

ubiquitous systems (Das & Havrop, 2010). RFID rests upon a wireless technology 

where a tiny tag with an integrated circuit is energized through an antenna coil by a 

reader, as shown in Figure 3.1. 

 

Figure 3.1 A typical RFID set up 

  

The unique and sensitive ID information programmed on the tag is read and 

matched to a database on a remote server. The issue of security arises when the tag 

and the reader try to authenticate each other over an insecure, wireless medium. 

Generated pseudo random numbers (PRNs) and the sensitive tag identification 

number (ID) are transmitted, sometimes in obscured messages to avoid their capture. 

The low cost passive-UHF tags are reportedly the most popular (Das & Havrop, 

2010). The main advantage of the RFID compared to other identification systems is 

that "it is capable of identifying items of different types and also distinguishing 
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between items of the same type without mistake, while not requiring physical or 

visual contact" (Lopez, Castro, Tapiador & Ribagorda, 2009a). Low-cost is the 

reason of the popularity of passive tags. However, low cost limits the computational 

capacity and power electronics of the tag; resulting in little resources to be spared for 

security, hence causing vulnerabilities for attacks (Lopez, Castro, Tapiador & 

Ribagorda, 2009a; Chien, 2007). Low cost passive tags should not be confused with 

the high cost tags used in e-passports.  

 

After long efforts, the properties supported on passive tags have been ratified in 

ISO-18000-6 (ISO/IEC, 2010) and the EPCglobal Class-1 Generation-2 (Gen-2) 

standards (Gen-2 Standart Version 1.2.0, 2008). PRNs which are used in many 

security algorithms are supported in the Gen-2 standard. Efficient pseudo random 

number generators (PRNGs) are needed, in low cost tags which dedicate only a few 

thousand gates for security (Lopez, Castro, Tapiador & Ribagorda, 2009b; Martin, 

Millan, San, Entrena, Lopez & Castro, 2011). This is the motivation behind our 

proposal detailed later in thesis.  

 

 

Figure 3.2 Sample RFID authentication  
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3.3.1 Random Numbers 

 

Random numbers are the numbers that could not be predicted before they are 

generated. If a number is generated in a range of 1 to N, all the numbers within the 

range will have same probability to be generated. Random number generation is 

mostly important in mathematics, cryptography and computer games such as 

gambling. Random numbers can be generated by a physical device or 

computationally. Basically randomness exists in daily life including dice and coin 

flipping. However, it is hard to get a computer do something by chance. Computers 

follow the instructions blindly, so they are predictable. Necessary properties of 

random numbers are uniformly distribution and unpredictability. Pseudo Random 

Number Generators and True Random Number Generators are two main approaches 

to generating random numbers. 

 

3.3.1.1 Pseudo Random Number Generators 

 

Pseudo Random Number Generator (PRNG) is about building a mathematical 

model which aims to generate random numbers. PRNG is a deterministic algorithm. 

Number sequences which are generated by PRNG look random (DNRG, 2014). 

PRNG needs a seed value to initialize the model. Each output is used as seed value 

for the next iteration. Therefore, PRNG can generate numbers which show a good 

statistical behavior. After a period is reached, the generator starts to repeat the 

numbers generated before. As a result of determinism, PNRG generates the same 

sequence for the same seed. This deterministic nature can be desirable or undesirable 

according to the context. PNRG can produce many numbers in short time.  

 

Researchers have invented lots of solutions in this domain. A PNRG which passes 

the next bit test is called Cryptographically Secure Pseudo Random Number 

Generator (CRPNRG) (PNRG, 2015). Passing next bit test means that it is 

computationally infeasible to predict the next bit. One of the algorithms used in 

PRNG is linear congruential generator. This algorithm is easy to implement and very 
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fast. A common way to implement a CRPNRG is using a secure block cipher in 

counter mode.    

 

Some of PNRGs: Blum Blum Shub, Wichmann-Hill, Complementary-multiply-

with-carry, Inversive congruential generator, ISAAC (cipher), Lagged Fibonacci 

generator, Linear congruential generator, Linear feedback shift register, Maximal 

periodic reciprocals, Mersenne twister, Multiply-with-carry, Naor-Reingold 

Pseudorandom Function, Park–Miller random number generator, RC4 PRGA, Well 

Equidistributed Long-period Linear, Xorshift, Rule 30 (Generators, 2015). 

 

3.3.1.2 True Random Number Generators 

 

True Random Number Generator (TRNG) extracts randomness from physical 

phenomena. This can be as simple as someone’s mouse movements or keystrokes 

(Rock, 2005). However radioactive source is a really good physical phenomena and 

it can easily be detected. The Hotbits (Hotbits, 2015) service at Fourmilab in 

Switzerland is an excellent random number generator that uses this technique. 

Another suitable phenomenon is atmospheric noise. A normal radio can be used to 

easily pick it up. Random.org (Random, 2014) uses this approach. TRNGs are 

suitable for lotteries, sampling, games and generation of data encryption keys. 

 

Generating a true random number mostly needs a hardware and because of the 

Input/Output waits, number generation takes a while (RNG, 2012). TRNGs are not 

deterministic. They don’t need to be seeded. Physical devices are vulnerable to wear 

over time and generate biased outputs. To overcome the bias, most TRNGs have 

postprocessors (Sunar, Martin & Stinson, 2007).  

 

Lately Intel has developed an instruction to generate true random numbers. 

RDRAND instruction reads the hardware generated random value from SP800-90A 

compliant random bit generator and stores it into the register (DNRG, 2014). The 

size of the random value is related to size of the register.  
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Some of TRNGs: Araneus Alea, ComScire, Entropy Key, Fox-IT Fox 

RandomCard, ID Quantique, Intel 810/815/840/845G chipsets, Intel RdRand 

instruction, LETech, QuintessenceLabs, TectroLabs, TRNG98, true-random.com, 

VIA Padlock engine (Generators, 2015). 

 

3.3.2 Random Number Generation 

 

Random number generation is a process of generating numbers that lack of a 

pattern. Some applications require uniformly distributed or unpredictable numbers. 

Best way to produce random number is measuring physical phenomena. Radioactive 

decay, sound samples in noisy environment, thermal noise and images of a lava lamp 

can be measured to generate unpredictable numbers. However special hardware is 

required to measure these metrics. Randomness is simulated by deterministic 

algorithms.  

 

The work on generating random numbers in RFID tags can be divided into three. 

The first is the work on True Random Number Generators [TRNGs], where they use 

a physical characteristic of the tag to produce random numbers. The second is the 

work on Pseudo Random Number Generators [PRNGs], which a deterministic 

algorithm is used to produce random numbers. The third class is a blend of the first 

and second categories, where an output obtained from a TRNG is used as a seed to a 

PRNG. TRNGs mostly fail to provide good quality random numbers or tend to 

output the same numbers, if physical conditions are reproduced. In PRNGs on the 

other hand, if the initialization value or seed is guessed the generated RN can be 

guessed, as the whole process is mathematically deterministic. Therefore, a PRNG 

by itself is declared insecure without good sources for seeding (Jun & Kocher, 1999; 

Menenez, Oorschot & Vanstone, 1996). Since it is impossible to create true 

randomness from within a deterministic system, a source of true randomness is 

required for seeding (Jun & Kocher, 1999). For these reasons, TRNG outputs are 

used as inputs to PRNG algorithms in order to get good quality RNs (Holcomb, 

Burleson & Fu, 2009; Segui, Alfaro & Joancomarti, 2010). Random numbers 

produced by some tags are shown to look alike or repeat themselves, or can be 
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guessed (Segui, Alfaro & Joancomarti, 2010; Merhi, Castro & Lopez , 2011); the 

reason been limited resources of low-cost tags; in terms of memory, computational 

capability, power consumption and die area. Most schemes which produce good 

quality random numbers and pass certain tests; e.g. hashing and encryption 

algorithms, overwhelm the limited computational capabilities of resource stricken 

RFID (Lopez, Castro, Tapiador & Ribagorda, 2009b; Alomair, Lazos & Poovendran, 

2007).   

 

Two PRNG works support their schemes with widely used randomness tests 

(Lopez, Castro, Tapiador & Ribagorda, 2009b; Martin, Millan, San, Entrena, Lopez 

& Castro, 2011). These works also have detailed design and performance 

information, which can be compared with our work. Two previous works which fall 

into the third category do not provide the same information but concentrate on 

physical characteristics (Che, Deng, Tan & Wang, 2008; Segui, Alfaro & 

Joancomarti, 2010).  In these works, the much criticized LFSR function is used as a 

PRNG scheme, which takes only one bit TRN as input. Many attacks on LFSRs have 

been announced, but they are outside our scope.  

 

Our work comes in at this point, which also falls into the third category that uses a 

TRNG extracting method, supported by a PRNG algorithm. It has been discovered 

that the SRAM memory of a tag can be a source of TRNs (Holcomb, Burleson & Fu, 

2009). Some bits are shown to settle randomly to an either low or high voltage level. 

The obtained TRNs have low entropy and fail the randomness tests. For this reason, 

the authors feed the TRNs to a hash function, which tests show that good quality 

PRNs are obtained. For now assuming hash algorithms as not suitable for low cost 

tags, we attempt to replace the hashing algorithm with an ultra-light scheme. The 

definition of ultra-light tags is in (Lopez, Castro, Tapiador & Ribagorda, 2009a).  
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3.3.3 Random Number Generators 

 

Linear Congruential Generators is widely used pseudo random number generation 

technique. Numbers are calculated with a discontinuous linear equation. The theory 

is simple and fast. Blum Blum Shub generator is cryptographically secure 

pseudorandom bit generator. It passes the next-bit test. 

 

Using a symmetric block cipher is a popular approach as the hearth of PRNG 

mechanism. CTR mode and OFB mode are widely used to build a PNRG.  A 

standardized block cipher is a good candidate for a secure PRNG. 

 

Using a stream cipher is an alternative way to generate pseudorandom number 

generator. If you are dealing with a block of data stream ciphers may be more 

appropriate. 
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CHAPTER FOUR 

PROPOSED SCHEME 

 

4.1 The Inspired PRNG: Mersenne Twister 

 

Our proposal is based on the Mersenne Twister [MT] (Matsumoto & Nishimura, 

1998); which has properties that are feasible in low cost tags. MT is a well-known 

algorithm proposed in 1997 by Matsumoto and Nishimura that is classified as a good 

PRNG (Matsumoto, Nishimura, Hagita & Saito, 2005). The name MT comes from 

the fact that a Mersenne prime is used as its period. MT achieves fast generation of 

pseudorandom numbers with a long period. Many variants of it have been introduced 

for better speed and cryptographic security (Matsumoto, Nishimura, Hagita & Saito, 

2005; Panneton, Ecuyer & Matsumoto, 2006). MT has better equidistribution and 

“bit-mixing” properties than its predecessors, for equivalent period length and speed 

(Panneton, Ecuyer & Matsumoto, 2006). MT is based on linear recurrences in F2 

(finite field with two elements, 0 and 1), where arithmetic operations are arithmetic 

modulo 2m (Panneton, Ecuyer & Matsumoto, 2006). Binary recurrences are suitable 

for implementing bitwise operations in low-cost tags. MT is a special Twisted 

Generalized Feedback Shift Register [TGFSR] that takes an incomplete array to 

realize a Mersenne prime as its period. It uses an inversive-decimation method for 

testing the primitivity of a characteristic polynomial of linear recurrence with a 

computational complexity O(p2), where p is the degree of the polynomial. In general, 

the linear generators over F2 are represented by the matrix linear recurrence 

(Panneton, Ecuyer & Matsumoto, 2006): 

 

𝑥𝑖 = 𝐴𝑥𝑖−1,                                                            (4.1) 

𝑦𝑖 = 𝐵𝑥,                                                                 (4.2) 

𝑢𝑖 = ∑ 𝑦𝑖,𝑙−12−𝑙𝑤
𝑙=1 = 𝑦𝑖,0, 𝑦𝑖,1, 𝑦𝑖,2. ..                     (4.3) 

 

xi = (xi,0, . . . , xi,k−1)
T  F2 

k and yi = (yi,0, . . . , yi,w−1)
T  F2 

w are the k-bit state 

and the w-bit output vector at step i. With elements also in F2, A and B are a k × k 

transition matrix and a w × k output transformation matrix; where k and w are 



 

 

 30   

positive integers and ui  [0, 1) is the output at step i. All operations in (1) - (3) are 

performed in F2 and each element of F2 is represented as one bit. The goal is to find 

matrices A and B whose recurrence can be implemented efficiently, the produced 

sets have good uniformity and the overall generator passes empirical statistical tests. 

Further mathematical argument shows that MT is a special case of Well 

Equidistributed Long-period Linear [WELL] generators (Panneton, Ecuyer & 

Matsumoto, 2006). The details of the argument is beyond the scope of this paper but 

it is shown that MT has a long period of 219937-1, a 623 dimensional equidistribution 

up to 32-bit accuracy, and generates output free from long-term correlations.  

 

The steps of the MT; however, is of interest because of its suitability for the 

simple bit-wise operations a tag can accommodate. MT works in two parts; a 

recurring and a method called tempering part. In the first three steps an array is 

initialized and concatenated. In Step 4, each generated array x during the recursive 

steps is multiplied by a transformation matrix T, to obtain a tempered matrix z = xT. 

Some of the transformation matrices of MT are equal to each other, which makes MT 

a special case of WELL generators (Panneton, Ecuyer & Matsumoto, 2006). The 

simplified steps and the tempering stage of the MT algorithm are given below: 

 

Step 0: Create bitmask for upper and lower bits, 

Step 1: Initialize the x[i] array with seeds of nonzero values, 

Step 2. Concatenate the upper bits of the previous array x[i] with the lower bits of the 

iterated array x[i + 1], 

Step 3. Calculate the next state array x[i], 

Step 4. Carry out tempering part: 

Step 5. Increment i by 1 

Step 6. Repeat the process and go to step 2, until i equals n. 

 

The parameters u, s, t, l are tempering bit shifts and b and c are tempering bit 

masks. These parameters are experimentally tested values for maximally-

equidistributed generators (Panneton, Ecuyer & Matsumoto, 2006). Tempering is 

carried out in Step 4, in order to improve the distribution of the sequences generated 
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from the recursions because MT has some weaknesses. Firstly, the initial state of MT 

has too many zeros therefore the generated sequences also contain many zeros for 

more than 10000 generations. Our work removes this weakness by supplying non-

zero, random number initial inputs and removes the matrix recurrences completely. 

Secondly, for seeds chosen systematically as 0, 20, 30 the output sequences are 

correlated. Finally, MT is not preferred for cryptographic purposes because it is easy 

to predict the next state given the present outputs in MT. To fix the problems many 

variations of MT have been proposed. One of the suggestions is to have the outputs 

of MT go through a hash function. This is why work (Holcomb, Burleson & Fu, 

2009) feeds the obtained TRNGs into a hash function. It is clear that if the generator 

is initialized with uniform random bits, the probability of getting many zero bits or 

correlated output is quite small. Only seeding the algorithm with TRNs and the 

tempering can improve the distribution of the final pseudo random numbers 

generated (Panneton, Ecuyer & Matsumoto, 2006). 

 

Our work is inspired from Mersenne Twister (MT) which is a PRNG that satisfies 

all the requirements to be certified as a good PRNG (Matsumoto & Nishimura, 

1998). MT achieves fast generation of pseudo-random numbers with a long period. 

Many variants of MT have been introduced for better speed and cryptographic 

security (Matsumoto, Nishimura, Hagita & Saito, 2005; Tiny Mersenne Twister, 

2011).  

 

Our work is based on the strategy of using extracted TRNs from hardware as a 

seed for the MT. We aim to remove the deterministic, iterative, pseudo part of the 

MT and replace it with TRNG seeding. Our proposed scheme is shown in Figure 4.1. 

It consists of three simple bit-wise operations; XOR, AND and rotation (circular 

shift). Thus, the hash function is replaced by a scheme that consumes less die area 

and clock cycles.   
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𝑥 ∶=  𝑇𝑅𝑁 ;  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛0 

𝑥 ∶=  𝑅𝑂𝑇𝑙 (𝑥, 𝑥) ;  𝑓𝑜𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑒𝑑 

𝑦 ∶=  𝑥 ⊕ 𝑅𝑂𝑇𝑟 (𝑥, 𝑢) ;  𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 1 

𝑦 ∶=  𝑦 ⊕ (𝑅𝑂𝑇𝑙 (𝑦, 𝑠) 𝐴𝑁𝐷 𝑏) ;  𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 2 

𝑦 ∶=  𝑦 ⊕ (𝑅𝑂𝑇𝑙 (𝑦, 𝑡) 𝐴𝑁𝐷 𝑐) ;  𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 3 

𝑦 ∶=  𝑦 ⊕ 𝑅𝑂𝑇𝑟 (𝑦, 𝑙) ;  𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 4 

𝑧 ∶=  𝑦 ⊕ 𝑅𝑂𝑇𝑙 (𝑦 𝐴𝑁𝐷 𝑏, 𝑝);  𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝑢 =  7𝐹ℎ, 𝑠 = 07ℎ, 𝑡 = 1𝐹ℎ, 𝑙 = 3𝐹𝐹𝐹𝐹ℎ, 𝑝 = 7𝐹ℎ. 

𝑏 = 9𝐷2𝐶5680𝐻 . 

𝑐 = 𝐸𝐹𝐶60000𝐻 . 

Figure 4.1 The proposed scheme. 

 

MT is a special case of Wells function (Panneton, Ecuyer & Matsumoto, 2006). In 

short, it is an algorithm which treats an input as a matrix and twists it right and left 

with corrective temperings in between to produce good PRNs. For a complete 

mathematical analysis the reader is referred to the original documents (Matsumoto & 

Nishimura, 1998). A more compact version of MT has also recently been released as 

TinyMT (Tiny Mersenne Twister, 2011). All versions of MT are known to pass the 

randomness tests.  

 

The matrix iterations of the original MT are eliminated in our scheme. The tag is 

not capable of performing the matrix operations. To compensate, our scheme 

improves the shift operations with rotation operations of the temperings. ROTr(x,y) 

is a simple bit-wise shift operation to the right, where the least significant bit (LSB) 

is wrapped around to most significant bit [MSB]. The value x is the number to be 

rotated and y is the hamming weight (number of ones in) of y. The operation is 

simple because y is loaded into a control register and examined bit by bit, while it is 

shifted. If the tested bit is a one, x is rotated once; if not x remains un-rotated.  
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Overall, the rotation operation executes permutation and XOR-AND operations 

provide substitution, on the operands. Thus, the input goes through a sequence of 

permutations and substitutions, as in modern hashing and encryption algorithms. The 

direction of rotation operations and coefficients of MT are carefully designed and 

well-defended in (Matsumoto & Nishimura, 1998; Panneton, Ecuyer & Matsumoto, 

2006). In our scheme, an extra rotation is necessary to compensate for the lost 

iteration, which brings little computational cost.    

 

In our work, different number of rotation operations, different directions against 

different number of rotations and AND coefficients have been tested, until the 

scheme with the best randomness results was obtained. As it will be revealed, the 

original directions and masking coefficients yield the best results. The scheme can be 

executed as a sequential algorithm, where the coefficients are given as immediate 

constant operands. 
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CHAPTER FIVE 

PERFORMANCE, TESTING AND EVALUATION OF RESULTS 

 

Our proposal uses a 16-bit tag architecture to obtain a 32-bit PRN, because we do 

not believe that the latest 32 or 64 bit, state of the art technologies used for 

microprocessor production, can be widely used in low cost tag production. We 

assume that 16-bit PRNs can be obtained from our 32 PRNs by either taking the 

lower 16 bits, or by XORing the higher 16 bits with the lower 16 bits, as in previous 

work (Lopez, Castro, Tapiador & Ribagorda, 2009a; Martin, Millan, San, Entrena, 

Lopez & Castro, 2011). But we claim that 32 bit, good quality PRNGs that pass the 

popular randomness tests are possible in tags, as shown later in Section 4.1. 

Moreover, only 32 bit randomness tests are accepted, by the community. According 

to Gen-2 specifications, the tag is expected to provide only a 16-bit PRNG but the 

period of a 16 bit generator is much shorter than that of a 32 bit generator. Not only 

the short period hence the reduced randomness of a 16 bit PRN but the overall 

security supported by the Gen -2 standard is considered highly inadequate, as also 

underlined in other work (Lopez, Castro, Tapiador & Ribagorda, 2009b; Martin, 

Millan, San, Entrena, Lopez & Castro, 2011).The maximum number of gates and 

clock cycles allocated for security in a tag are a few thousands gates and 1800 clocks 

(Sarma, Weis & Engels, 2002; Feldhofer, Dominikus, Wolkerstorfer, 2004). These 

cannot be used for only generating a random number, because space and time must 

be left for other processes such as future stronger authentication steps etc. Using the 

above guidelines, first performance results and then randomness test results are 

compared. 

 

5.1 Performance Results  

 

Estimation for the die area of an integrated circuit can be obtained by using the 

gate equivalents (GE) (Moradi & Poschmann, 2010). The GE of each logic gate and 

the total GE for each operator are known (Paar, Poschmann & Robshaw, 2009). The 

same GE metrics are used in the other work that we aim to compare our results. The 

common timing metric, on the other hand is the clock cycle used. A 16-bit ALU 
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requires two clock cycles to finish a 32 bit AND or XOR operation; but n clocks for 

an n number of circular shifts. Using the results of the above metrics, the area-delay 

product; i.e. complexity, of a tag can be determined.   

 

Our scheme of Figure 4.1 requires only XOR, AND and circular shift operators. 

Table 5.1 shows the operation types used in the previous schemes against ours. 

Obviously, the multiplication and the finite state machine requirement of the Akari-x 

hint an overwhelming load on the tag. The Lamed scheme uses three simple 

operations like ours but requires input, control and rotation units for iterative work. 

While Akari-x schemes require memory for an initialization vector, Lamed requires 

two 32-bits space and ours requires one 32-bits and four extra 16-bits space (Martin, 

Millan, San, Entrena, Lopez & Castro, 2011; Lopez, Castro, Tapiador & Ribagorda, 

2009b). 

Table 5.1 Comparison of operation types used in different PRNGs. 

  Operation types used  Iteration  Memory   

Akari1A  SUM, OR, MULTIPLY, SHIFT  For loop, FSM  Initialization 

vector  

Akari1B  SUM, OR, MULTIPLY, SHIFT  For loop, FSM  Initialization 

vector 

Akari2A  SUM, OR, MULTIPLY, 

SHIFT,XOR  

For loop, FSM  Initialization 

vector 

Akari2B  SUM, OR, MULTIPLY, 

SHIFT,XOR  

For loop, FSM  Initialization 

vector 

Akari2C  SUM, OR, MULTIPLY, 

SHIFT,XOR  

For loop, FSM  Initialization 

vector 

Lamed  SUM, XOR, SHIFT  Control Units  Initialization 

vector, key  

Ours  XOR, AND, SHIFT  Sequential  u, s, t, l, p  

 

The total GE required for our scheme is calculated to be 416 gates, as shown in 

Table 5.2. Every 1000 GE adds $0.01 to the cost and power consumption is 
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proportional to the number of gates (Lopez, Lim & Li, 2008). Hence our scheme is 

well in the low cost category (Sarma, Weis & Engels, 2002). Later in Table 5.3, this 

result is compared to previous work together with clock cycles.  

Table 5.2 Total gate equivalent of our proposal 

Operator  # Used  Logic  GE  16-Bit Total  

Register  2  Flip Flop   5.33  170.56  

Shifter  1  Flip Flop   5.33  85.28  

AND  1  Gates   1.33  21.28  

XOR  1  Gates   2.67  42.72  

Total        319.84  

Control  1  Gates   30%  95.95  

Grand Total        415.79  

  

The number of clock cycles spent while obtaining a random number in our 

scheme is obtained from Figure 4.1 as the total of five XOR, three AND operations 

and the sum of x, u, s, t, l, p number of rotations. The TRN is read into register x at 

tag energizing time and is not in the RN generation phase. The XOR and AND 

operations consume 16 clocks. Although the sum of u, s, t, l and p are constant, total 

cycles consumed during rotation operations is dependent on the hamming weight of 

the value x, read from the SRAM. Assuming an average of 16 ones in the initial seed 

x, the total of rotation number is 56. When checked against the declared limit 1800, 

the proposed 72 clock cycle scheme is definitely in the ultra-light category (Sarma, 

Weis & Engels, 2002). This value is shown in Table 5.3, together with the 

performance values of the previous works.   

Table 5.3 Comparison of performance results. 

Scheme  
Area 

GE  

 

Die  

Area  

µm2  

Power 

Consum.  

Delay 

Cycles  

Through

put 

(Kbps)  

Complexity 

(GE×Delay)  

 

Op.  

Types &  

Control  

Akari1A  76  1494  47.35   644  24.24  306,544  Complex  
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Table 5.3 Comparison of performance results. (continue) 

Akari1B   524  1643  54.61   644  3.55  337,456  Complex  

Akari2A   824  2582  57.38   466  31.37  383,984  Complex  

Akari2B   891  2794  76.95   466  5.50  415,206  Complex  

Akari2C   903  2831  72.33   466  3.01  420,798  Complex  

Lamed  1566  4916  157.19   220  71.35  344,520  Complex  

Ours   416  1306  41.75   72  18.95   29,952  Simple  

 

The delay clock cycles of our scheme are the smallest, by a far margin. The GE 

equivalent of our work is also smaller than the others. The area-delay product is a 

measure of complexity (Feldhofer & Wo0lkerstorfer, 2009). Table 5.3 shows that our 

scheme has the lowest complexity, enough for leaving space for other security 

functions as well. The die area, power consumption and throughput values have been 

calculated with the same metrics used in Akari-x, to base the comparisons on equal 

ground. Having the smallest GE, our proposal has a smaller die area and consumes 

less power.  

 

The area-delay product for hashing functions is very high, even for 32-bit 

architectures (Feldhofer, Dominikus, Wolkerstorfer, 2004; Feldhofer & 

Wolkerstorfer, 2009). Their complexity values indicate clearly that encryption and 

hashing schemes are not in the ultra-light category. Therefore, the work of 

(Holcomb, Burleson & Fu, 2009) has not been included in the comparisons.  

 

5.2 Testing Results   

 

In our randomness tests, we used two sets of inputs to reach the best scheme. At 

first, an input set from http://random.org was used as a preliminary test to 

differentiate the failing schemes. Then a second set with low entropy (0.00) was 

used, similar to the entropy of the set in (Holcomb, Burleson & Fu, 2009). Many of 

those schemes that performed well with RN inputs faltered with low entropy inputs. 

We selected and improved only those schemes that passed the randomness tests with 
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low entropy inputs, finally reaching the best solution. It should not be missed that 

LAMED and Akari-X use random.org inputs for obtaining a RN from a RN, but RN 

seeds are not available in tags.  

 

In testing PRNGs the ENT (Walker, 1998), Diehard test suits (versions 1, 2) 

(Marsaglia, 2003) and NIST (Rukhin, Soto, Nechvatal, Smid, Barker, Leigh, et al, 

2001) randomness test are used. We performed all four tests to compare with the 

previous work. First version of Diehard has 15 different tests, which output a "p-

value" for each test. The p-values are in the range 0.0-1.0, where a result close to 

these either extreme values is considered to be an unsatisfactory result. The second 

version of Diehard gives an overall p-value, where a value less than 0.1 is considered 

to be a fail. The NIST test also gives p-values, which are expected to be distributed 

between 0.1 and 0.9. The NIST test also outputs "proportion" values, which should 

be above 0.95. Any undesirable result is marked with a "*" next to the proportion 

value.   

 

Table 5.4 compares the ENT results of our work against Akari-x and Lamed 

results. ENT is relatively a more relaxed test suite, than the Diehard and NIST tests. 

All schemes pass the tests with satisfactory results. To expose the difference in 

testing results, we move on to the more strict tests.  

Table 5.4 Gate equivalent of our proposal. 

ENT Test Results  Lamed  Akari 1/2  Ours  

Entropy (bits/byte)  7.999999  8.000000/8.000000  7.999999  

Compression Rate  0%  0% / 0%  0%  

X2 Statistics  256.90 

(50%)  

259.09 (41.70%)/250.99 

(55.93%)  

212.60 (97.52%)  

Arithmetic Mean  127.5024  127.4976/127.5031  127.5002  

Monte Carlo 

Estimation  3.141474228  3.141447036/3.141512474  

           

3.141529759 

 

Serial Correlation 

Coefficient  
-0.000023  -0.000026/0.000013  0.000009   
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For the first Diehard test we used the evaluation criteria used in (Alani, 2010). 

Because of the detailed output of the Diehard test, the test results and inputs are 

posted at appendix section. According to the evaluation criteria a score is given for 

each of the test result and their sum is calculated. We calculated the scores of the 

previous work by examining their declared results and summarized the overall sums 

in Table 5.5. For 15 tests, the maximum score is 15. It is worth to mention here that 

most of our preliminary schemes which scored high with inputs from random.org, 

scored very low with low entropy inputs. The scheme of Figure 4.1 scored (10.94) 

very close to original MT (score 11.84), in Diehard version 1 results. Therefore, it 

was further compared with the previous works, even though the inputs of previous 

works are RNs and not low entropy values.   

Table 5.5 Comparison of diehard and NIST tests. 

  Diehard1 

Score  

Diehard2 

Score  

NIST  

Akari1A  12.4  0.353  Pass  

Akari1B  12.4  0.353  Pass  

Akari2A  7.5  0.082  Pass  

Akari2B  7.5  0.082  Pass  

Akari2C  7.5  0.082  Pass  

Lamed  13.0  0.778  Pass  

Ours  10.94  0.224  Pass*  

  

The 32-bit version of Lamed performs the best, while its 16-bit version 

performance is poor. But because it is 16-bit, it is not included in these comparisons. 

Akari1 versions are also satisfactory, while the Akari2 versions perform well below 

our proposed scheme. Our scheme's result of 10.94 out of a 15 is far from being 

unsatisfactory, after taking its very low complexity value into consideration. Diehard 

version 2 scores are all in the satisfactory range, except the Akari2 family. Akari2 

results are below the accepted limit of 0.1 and should not be considered to pass the 

Diehard tests.  



 

 

 40   

 

The NIST test results are also very detailed reports. Therefore our results are 

posted in detail at appendices section. The previous work results are also posted on 

their referenced pages. It is acceptable for a scheme to fail a few tests out of a 188; 

i.e. a scheme failing two individual tests cannot be considered to not pass the overall 

strict NIST test (Kohlbrenner & Gaj, 2004). The results of previous work are 

declared to have passed the tests. Our test results however, show that our proposed 

scheme fails the Rank and Universal tests, as pointed out by the "*" mark on their 

right. Nevertheless, the other test results of the NIST test are favorable and our 

proposed can be evaluated as it has passed the NIST test. 

 

According to testing output, the scheme is simple and sequential, yet its 

performance equals similar previous works. With equal performance, our proposal 

uses less die area and clock cycles, proving more suitable for low-cost tags. The 

proposed generator takes low-entropy seeds extracted from a physical characteristic 

of the tag and produces output that passes popular randomness tests.  

 

 

 

 

  



 

 

 41   

CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

 

This work outlines a new random number generator that is feasible in low-cost 

RFID tags. The obtained low complexity, power consumption and die area results are 

an indication that the proposed scheme does not violate the resource limits of the 

ultralight tags. Our scheme takes nonrandom numbers as seeds and produces random 

numbers. Previous work use random number inputs, which are not available in RFID 

tags. The randomness test results of our proposed scheme are satisfactory, 

considering the nonrandom inputs used for seeding. Our scheme is available until a 

suitable hashing or encryption algorithm that is feasible in low cost tags.  

 

Future work involves the detailed design and implementation of the proposed 

scheme. Also some work can be carried out until the scheme is further improved to 

pass all of the NIST tests. Efforts of encryption designs suitable for producing 

random numbers in RFID tags are intensified, but our scheme is available until such 

a low cost solution is found.  
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APPENDICES 

 

PRNG TESTING RESULTS 

 

A. SAMPLE INPUT DATA 

 

Sample input data can be found below. The numbers are in hexadecimal format. 

This sample data is used for testing Diehard Test Suite. The exact input data is 10 

Mb and can be found at http://srg.cs.deu.edu.tr/publications/2012/prng/. 

 

A1 06 6C 7C AD 94 F3 38 8E 10 76 49 8B D4 3B 3A 

42 E6 00 5F 57 15 58 F0 17 95 5A F0 C7 86 04 C8 

6C A7 CB 49 F7 12 EF BB 2A 50 3B 5B 02 2F 25 2F 

32 CC ED 4C 2C 2C FA 69 88 6C B7 7B AE 81 A7 D3 

3A 59 2A E7 04 CC CD DD 13 30 9B 79 51 5C AE 82 

B1 32 13 39 61 D2 1E 47 3F D4 40 E4 29 49 9A BA 

4B 51 5D 7E 81 9E 40 B3 CC CC 06 84 CE A2 85 23 

E2 A2 7F 3B 24 F2 72 0B A4 F2 66 83 CC 49 D2 EC 

89 E5 EF 0E 37 A3 A1 95 AB C5 C0 5B 8D 7F F6 98 

10 C6 B7 CC F7 B9 EE 11 E6 7A 72 FD D5 63 3F 85 

3D A0 D9 5B C3 B7 01 FE E9 25 F4 0E A1 5F 09 FB 

50 DE 06 82 E7 96 FD 89 9F D9 DB A5 E5 BE EE 8C 

 

B. DIEHARD TEST SUITE RESULTS 

 

Table B.1 Results according to DieHard test suite 

Test Extra Rotation Eklenen Input 

birthday spacings, 1.00 0.00 

overlapping permutations, 0.25 0.00 

ranks of 31x31 and 32x32 matrices 0.00 0.00 
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ranks of 6x8 matrices 1.00 0.00 

monkey tests on 20-bit Words 

(bitstream) 0.60 0.00 

monkey tests OPSO, OQSO, DNA 0.62 0.00 

count the 1's in a stream of bytes 0.50 0.00 

count the 1's in specific bytes 0.72 0.00 

parking lot 1.00 0.00 

minimum distance 1.00 0.00 

random spheres 1.00 0.00 

Squeeze 1.00 0.00 

overlapping sums 0.50 0.00 

Runs 0.75 0.00 

craps. 1.00 0.00 

SUM 10.94 0.00 

 

 

C. DIEHARD2 TEST SUITE RESULTS 

 

Table C.1 Results according to DieHard2 test suite. 

NEW DIEHARD2 TEST DETAILS p-value 

Birthday spacings 0.721339 

Tough Birthday spacings 0.547000 

GCD 0.732103 
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Gorilla 0.119000 

Overlapping Permutations 

0.4208, 0.6911, 0.6770, 

0.6521, 0.6798 

Ranks of 31×31 and 32×32 Matrices 1 

Ranks of 6×8 Matrices 0.909593 

Monkey tests on 20-bit words 0.51857165 (Average) 

Monkey Test OPSO 0.549708522 (Average) 

Monkey Test OQSO 0.454735393 (Average) 

Monkey Test DNA 0.603586871 (Average) 

Count the 1's in a stream of bytes 0.249728 

Count the 1's in specific bytes 0.44275264 (Average) 

Parking lot test 0.682237 

Minimum distance test 0.682303 

Random spheres test 0.870077 

The squeeze test 0.217116 

Overlapping sums test 0.773786 

Runs up and down test 0.673000 

The craps test 0.785901 

Craps Test With Different Dice 0.945402 

Overall KS p-value 

0.223461 
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D. NIST TEST SUITE RESULTS 

 

C6 C7 C8 C9 C10 P-VALUE 

PROPO

RTION STATISTICAL TEST 

9 6 17 9 7 0.202268 1.0000 Frequency 

9 5 14 13 12 0.366918 0.9900 BlockFrequency 

14 9 7 12 9 0.224821 1.0000 CumulativeSums 

13 12 8 11 9 0.455937 1.0000 CumulativeSums 

12 7 7 8 10 0.437274 1.0000 Runs 

15 10 15 5 8 0.075719 0.9800 LongestRun 

0 0 0 0 0 0.000000 0.0000 * Rank 

15 11 11 8 9 0.514124 0.9900 FFT 

13 14 8 13 12 0.289667 0.9900 NonOverlappingTemplate 

12 16 15 10 11 0.153763 1.0000 NonOverlappingTemplate 

8 9 19 9 7 0.319084 0.9700 NonOverlappingTemplate 

12 5 16 11 11 0.514124 0.9800 NonOverlappingTemplate 

8 10 12 6 9 0.202268 0.9700 NonOverlappingTemplate 

8 7 11 9 7 0.262249 0.9800 NonOverlappingTemplate 

7 14 7 5 12 0.474986 0.9700 NonOverlappingTemplate 

10 5 7 11 7 0.122325 1.0000 NonOverlappingTemplate 

12 5 12 9 11 0.699313 0.9900 NonOverlappingTemplate 

13 5 4 9 14 0.224821 1.0000 NonOverlappingTemplate 
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8 8 6 13 8 0.455937 0.9900 NonOverlappingTemplate 

10 10 7 10 8 0.759756 1.0000 NonOverlappingTemplate 

10 11 11 10 8 0.964295 0.9900 NonOverlappingTemplate 

6 14 11 9 5 0.657933 0.9800 NonOverlappingTemplate 

13 3 9 14 9 0.202268 0.9700 NonOverlappingTemplate 

8 9 13 7 6 0.514124 0.9900 NonOverlappingTemplate 

8 11 8 8 9 0.236810 0.9600 

* 

NonOverlappingTemplate 

11 10 14 13 6 0.419021 0.9900 NonOverlappingTemplate 

12 9 12 9 7 0.719747 1.0000 NonOverlappingTemplate 

9 12 10 13 11 0.935716 0.9800 NonOverlappingTemplate 

10 10 16 12 9 0.699313 0.9900 NonOverlappingTemplate 

10 6 16 8 6 0.062821 1.0000 NonOverlappingTemplate 

8 7 12 13 6 0.437274 0.9600 

* 

NonOverlappingTemplate 

10 10 9 6 14 0.494392 1.0000 NonOverlappingTemplate 

8 12 15 9 11 0.455937 1.0000 NonOverlappingTemplate 

 

10 12 15 7 13 0.249284 1.0000 NonOverlappingTemplate 

10 6 9 12 10 0.867692 0.9900 NonOverlappingTemplate 

6 10 8 14 12 0.474986 1.0000 NonOverlappingTemplate 

12 9 12 7 8 0.883171 0.9800 NonOverlappingTemplate 
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12 8 7 13 7 0.816537 1.0000 NonOverlappingTemplate 

10 7 10 10 10 0.798139 0.9900 NonOverlappingTemplate 

13 9 12 11 5 0.350485 0.9900 NonOverlappingTemplate 

8 13 11 9 11 0.401199 0.9900 NonOverlappingTemplate 

10 7 8 8 14 0.534146 0.9900 NonOverlappingTemplate 

12 13 5 7 12 0.319084 1.0000 NonOverlappingTemplate 

13 8 6 11 9 0.678686 0.9900 NonOverlappingTemplate 

9 14 11 6 9 0.834308 0.9800 NonOverlappingTemplate 

7 12 16 16 6 0.162606 0.9900 NonOverlappingTemplate 

12 10 14 11 6 0.779188 0.9900 NonOverlappingTemplate 

9 9 14 10 9 0.514124 0.9900 NonOverlappingTemplate 

10 8 11 8 6 0.090936 0.9900 NonOverlappingTemplate 

7 11 13 7 6 0.595549 0.9900 NonOverlappingTemplate 

9 11 9 19 7 0.191687 1.0000 NonOverlappingTemplate 

5 8 7 12 11 0.514124 0.9900 NonOverlappingTemplate 

10 9 8 12 17 0.319084 0.9800 NonOverlappingTemplate 

9 11 12 9 11 0.759756 0.9800 NonOverlappingTemplate 

9 11 9 8 16 0.834308 1.0000 NonOverlappingTemplate 

11 14 9 9 12 0.657933 0.9800 NonOverlappingTemplate 

9 11 12 6 10 0.739918 0.9900 NonOverlappingTemplate 

9 7 12 15 6 0.334538 0.9800 NonOverlappingTemplate 
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6 11 16 13 5 0.066882 0.9700 NonOverlappingTemplate 

2 11 12 9 13 0.090936 0.9900 NonOverlappingTemplate 

12 7 13 11 12 0.554420 0.9700 NonOverlappingTemplate 

20 5 13 5 11 0.019188 1.0000 NonOverlappingTemplate 

15 8 13 10 5 0.455937 0.9900 NonOverlappingTemplate 

12 7 15 6 8 0.455937 0.9800 NonOverlappingTemplate 

13 11 12 11 9 0.514124 1.0000 NonOverlappingTemplate 

6 13 10 11 16 0.401199 0.9800 NonOverlappingTemplate 

6 7 8 13 10 0.595549 1.0000 NonOverlappingTemplate 

6 16 9 8 8 0.102526 0.9900 NonOverlappingTemplate 

11 13 12 11 6 0.739918 0.9900 NonOverlappingTemplate 

5 13 8 13 5 0.514124 1.0000 NonOverlappingTemplate 

9 9 9 10 16 0.867692 0.9800 NonOverlappingTemplate 

11 9 13 8 16 0.474986 0.9900 NonOverlappingTemplate 

15 10 6 10 10 0.437274 0.9900 NonOverlappingTemplate 

6 6 13 13 11 0.637119 1.0000 NonOverlappingTemplate 

11 8 5 15 14 0.171867 0.9800 NonOverlappingTemplate 

13 6 9 10 10 0.494392 0.9700 NonOverlappingTemplate 

10 14 8 5 11 0.514124 1.0000 NonOverlappingTemplate 

9 10 10 7 6 0.249284 0.9800 NonOverlappingTemplate 
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13 10 3 11 11 0.262249 0.9900 NonOverlappingTemplate 

6 8 7 14 11 0.191687 0.9700 NonOverlappingTemplate 

8 8 10 13 8 0.759756 1.0000 NonOverlappingTemplate 

9 4 11 12 13 0.350485 0.9900 NonOverlappingTemplate 

13 14 8 13 12 0.304126 0.9900 NonOverlappingTemplate 

15 6 8 3 15 0.066882 1.0000 NonOverlappingTemplate 

13 8 6 17 12 0.153763 1.0000 NonOverlappingTemplate 

6 10 12 8 11 0.834308 1.0000 NonOverlappingTemplate 

9 11 15 13 6 0.437274 0.9900 NonOverlappingTemplate 

5 5 12 14 11 0.090936 0.9800 NonOverlappingTemplate 

9 8 12 9 10 0.455937 0.9900 NonOverlappingTemplate 

13 12 6 5 12 0.595549 1.0000 NonOverlappingTemplate 

6 9 16 15 6 0.102526 0.9900 NonOverlappingTemplate 

10 7 11 14 13 0.595549 0.9900 NonOverlappingTemplate 

6 10 8 9 12 0.739918 0.9900 NonOverlappingTemplate 

7 7 8 8 13 0.867692 0.9900 NonOverlappingTemplate 

11 15 5 17 6 0.000474 0.9900 NonOverlappingTemplate 

8 18 10 7 7 0.236810 0.9900 NonOverlappingTemplate 

9 11 10 12 10 0.834308 1.0000 NonOverlappingTemplate 

6 11 17 7 8 0.437274 1.0000 NonOverlappingTemplate 

9 9 7 8 14 0.595549 0.9800 NonOverlappingTemplate 
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11 10 12 7 8 0.383827 1.0000 NonOverlappingTemplate 

9 6 11 5 8 0.455937 0.9700 NonOverlappingTemplate 

11 7 8 9 7 0.366918 0.9800 NonOverlappingTemplate 

7 16 11 11 14 0.145326 1.0000 NonOverlappingTemplate 

10 9 13 9 7 0.798139 1.0000 NonOverlappingTemplate 

11 9 9 12 11 0.455937 0.9900 NonOverlappingTemplate 

10 9 9 6 6 0.058984 1.0000 NonOverlappingTemplate 

9 9 11 10 14 0.678686 0.9700 NonOverlappingTemplate 

8 15 8 12 6 0.289667 0.9700 NonOverlappingTemplate 

12 9 12 6 10 0.474986 0.9900 NonOverlappingTemplate 

6 7 7 7 16 0.085587 0.9800 NonOverlappingTemplate 

11 6 8 15 17 0.162606 1.0000 NonOverlappingTemplate 

9 9 8 11 9 0.935716 0.9900 NonOverlappingTemplate 

11 8 13 13 16 0.350485 0.9800 NonOverlappingTemplate 

8 13 12 9 3 0.455937 1.0000 NonOverlappingTemplate 

13 7 9 5 13 0.145326 0.9900 NonOverlappingTemplate 

12 13 10 12 9 0.699313 0.9900 NonOverlappingTemplate 

4 7 12 11 12 0.080519 0.9800 NonOverlappingTemplate 

8 12 12 13 9 0.401199 1.0000 NonOverlappingTemplate 

9 11 15 6 6 0.657933 1.0000 NonOverlappingTemplate 

11 6 12 12 11 0.867692 0.9800 NonOverlappingTemplate 
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5 9 11 9 7 0.289667 0.9900 NonOverlappingTemplate 

7 5 13 13 10 0.657933 0.9800 NonOverlappingTemplate 

7 8 5 17 9 0.080519 1.0000 NonOverlappingTemplate 

 

11 12 6 6 14 0.162606 0.9900 NonOverlappingTemplate 

15 16 8 10 6 0.350485 1.0000 NonOverlappingTemplate 

16 17 8 9 6 0.137282 0.9800 NonOverlappingTemplate 

11 7 8 10 12 0.883171 0.9900 NonOverlappingTemplate 

7 7 10 13 6 0.401199 0.9900 NonOverlappingTemplate 

7 13 8 13 9 0.249284 0.9900 NonOverlappingTemplate 

8 11 11 9 15 0.678686 1.0000 NonOverlappingTemplate 

17 12 10 7 9 0.514124 1.0000 NonOverlappingTemplate 

7 10 13 15 5 0.350485 0.9900 NonOverlappingTemplate 

13 17 8 8 12 0.262249 1.0000 NonOverlappingTemplate 

13 11 8 10 10 0.883171 1.0000 NonOverlappingTemplate 

7 9 15 9 9 0.834308 1.0000 NonOverlappingTemplate 

9 12 13 11 8 0.897763 1.0000 NonOverlappingTemplate 

16 7 10 8 15 0.249284 0.9900 NonOverlappingTemplate 

11 10 12 6 10 0.759756 0.9700 NonOverlappingTemplate 

9 8 16 8 4 0.275709 0.9800 NonOverlappingTemplate 

8 17 9 12 11 0.474986 0.9800 NonOverlappingTemplate 
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13 10 12 8 12 0.616305 0.9800 NonOverlappingTemplate 

8 9 8 9 9 0.719747 0.9900 NonOverlappingTemplate 

8 11 12 14 6 0.275709 1.0000 NonOverlappingTemplate 

12 7 14 9 5 0.514124 0.9900 NonOverlappingTemplate 

13 11 6 16 9 0.401199 0.9700 NonOverlappingTemplate 

10 8 8 14 13 0.883171 0.9700 NonOverlappingTemplate 

8 10 11 13 13 0.719747 0.9900 NonOverlappingTemplate 

9 14 12 10 9 0.699313 1.0000 NonOverlappingTemplate 

8 8 8 11 9 0.514124 0.9700 NonOverlappingTemplate 

12 14 13 6 12 0.616305 0.9800 NonOverlappingTemplate 

8 9 6 12 9 0.897763 1.0000 NonOverlappingTemplate 

6 12 11 10 15 0.779188 1.0000 NonOverlappingTemplate 

11 5 13 9 15 0.616305 0.9900 NonOverlappingTemplate 

11 8 13 8 10 0.816537 0.9900 NonOverlappingTemplate 

9 10 8 5 11 0.816537 1.0000 NonOverlappingTemplate 

9 4 11 12 13 0.249284 0.9900 NonOverlappingTemplate 

3 16 7 10 6 0.085587 1.0000 OverlappingTemplate 

0 0 0 0 0 0.000000* 1.0000 Universal 

9 15 7 7 12 0.616305 0.9800 ApproximateEntropy 

0 1 1 2 1 0.739918 1.0000 RandomExcursions 

0 1 5 1 1 0.035174 1.0000 RandomExcursions 
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3 0 0 1 1 0.122325 1.0000 RandomExcursions 

2 1 3 1 0 0.534146 1.0000 RandomExcursions 

0 3 0 1 1 0.213309 1.0000 RandomExcursions 

0 3 1 1 1 0.534146 0.9167 RandomExcursions 

1 1 1 1 2 0.991468 1.0000 RandomExcursions 

0 5 1 1 3 0.002043 1.0000 RandomExcursions 

3 2 1 0 0 0.213309 1.0000 RandomExcursionsVariant 

 

2 2 0 2 1 0.739918 1.0000 RandomExcursionsVariant 

2 1 0 2 3 0.350485 1.0000 RandomExcursionsVariant 

3 1 1 2 2 0.534146 1.0000 RandomExcursionsVariant 

0 2 0 3 3 0.122325 1.0000 RandomExcursionsVariant 

1 0 1 1 3 0.534146 1.0000 RandomExcursionsVariant 

1 0 2 1 2 0.534146 1.0000 RandomExcursionsVariant 

2 1 2 1 2 0.911413 1.0000 RandomExcursionsVariant 

2 2 3 1 1 0.534146 1.0000 RandomExcursionsVariant 

1 4 1 0 2 0.122325 1.0000 RandomExcursionsVariant 

1 1 2 3 1 0.739918 1.0000 RandomExcursionsVariant 

1 2 3 1 0 0.534146 1.0000 RandomExcursionsVariant 

1 0 2 1 1 0.534146 1.0000 RandomExcursionsVariant 

3 1 1 0 2 0.534146 1.0000 RandomExcursionsVariant 



 

 

 60   

1 0 2 2 0 0.213309 1.0000 RandomExcursionsVariant 

3 0 1 2 0 0.213309 1.0000 RandomExcursionsVariant 

1 1 1 0 2 0.739918 1.0000 RandomExcursionsVariant 

0 1 1 1 1 0.739918 1.0000 RandomExcursionsVariant 

13 7 8 8 10 0.834308 1.0000 Serial 

8 12 7 10 9 0.779188 0.9900 Serial 

7 4 6 13 9 0.122325 0.9900 LinearComplexity 

  

 

 


