
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

RANDOM NUMBER GENERATION IN UHF RFID

TAGS

by

Mesut Can GÜRLE

April, 2015

İZMİR

RANDOM NUMBER GENERATION IN UHF RFID

TAGS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Mesut Can GÜRLE

April, 2015

İZMİR

 ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “RANDOM NUMBER GENERATION IN

UHF RFID TAGS” completed by MESUT CAN GÜRLE under supervision of

ASST. PROF. DR. GÖKHAN DALKILIÇ and we certify that in our opinion it is

fully adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 Asst. Prof. Dr. Gökhan DALKILIÇ

Supervisor

 (Jury Member) (Jury Member)

Prof.Dr. Ayşe Or Sciences

 iii

ACKNOWLEDGMENTS

I would like to thank to my thesis advisor Asst. Prof. Dr. Gökhan DALKILIÇ for

his continuous suggestions, guidance and support during all phases of this research.

I would like to also thank to Asst. Prof. Dr. Mehmet Hilal ÖZCANHAN for his

continuous help and support during all phases of this research.

Mesut Can GÜRLE

 iv

RANDOM NUMBER GENERATION IN UHF RFID TAGS

ABSTRACT

Authentication and encryption are frequently used by secure applications.

Random number generators are frequently used by authentication and encryption

algorithms. Algorithms that use low resource are needed because of the need to high

quality random number generation in low capacity devices. Such generators can be

used by all applications which need hard predicted and not frequently repeated

numbers.

During this research existing random number generators are examined and a new

random number generator which can work in low capacity devices has been

developed. The developed generator is tested with statistical test suites which are

generally used in literature.

Keywords: Authentication, encryption, random number generation, statistical

randomness test, low capacity devices

 v

UHF RADYO FREKANSI İLE TANIMLAMA ETİKETLERİNDE

RASTGELE SAYI URETİMİ

ÖZ

Güvenli uygulamalarda kimlik doğrulama ve şifreleme sıkça kullanılmaktadır.

Kimlik doğrulama ve şifreleme algoritmalarında sıkça rasgele sayı üreteçleri

kullanılmaktadır. Düşük kapasiteli cihazlarda kaliteli rasgele sayı üretme işlemini

yapabilmek için daha az kaynağa ihtiyaç duyan algoritmalar gerekmektedir. Bu

üreteçler tekrar etme ve tahmin edilebilme olasılığı düşük sayı ihtiyacı olan bütün

uygulamalarda kullanılabilmektedir.

Bu çalışma kapsamında varolan rasgele sayı üreteçleri incelendi, düşük kaynak ile

çalışabilen bir rasgele sayı üreteci geliştirildi. Geliştirilen bu üreteç, literatürde

genellikle kullanılan test araçları ile test edildi.

Anahtar kelimeler : Kimlik doğrulama, şifreleme, Rastgele sayı üretimi, İstatistiksel

rasgelelik testi, Düşük kapasiteli cihazlar

 vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

CHAPTER ONE – INTRODUCTION .. 10

CHAPTER TWO – RFID TECHNOLOGY ... 12

2.1 RFID .. 12

2.1.1 RFID Tag Types and Standards ... 13

2.2 RFID Readers .. 14

2.3 Signaling .. 15

2.4 RFID Usage Area .. 17

CHAPTER THREE – RFID SECURITY .. 18

3.1 Known Attacks .. 18

3.2 Dealing with Security and Privacy issues ... 20

3.2.1 Tag Data Protection ... 20

3.2.2 RFID Reader Integrity ... 21

3.2.3 Personal Privacy .. 21

3.3 Authentication in RFID ... 22

3.3.1 Random Numbers .. 24

3.3.1.1 Pseudo Random Number Generators ... 24

3.3.1.2 True Random Number Generators ... 25

3.3.2 Random Number Generation ... 26

3.3.3 Random Number Generators ... 28

 vii

CHAPTER FOUR – PROPOSED SCHEME .. 29

4.1 The Inspired PRNG: Mersenne Twister .. 29

CHAPTER FIVE – PERFORMANCE, TESTING, EVAULATION RESULTS

……………………………………………………………………………………….34

5.1 Performance Results .. 34

5.2 Testing Results .. 37

CHAPTER SIX – CONCLUSION AND FUTURE WORK 41

 REFERENCES .. 42

APPENDICES .. 48

 viii

LIST OF FIGURES

Page

Figure 2.1 RFID antenna .. 12

Figure 2.2 RFID tags .. 14

Figure 2.3 RFID reader .. 15

Figure 3.1 A typical RFID set up ... 22

Figure 3.2 Sample RFID authentication... 23

Figure 4.1 The proposed scheme ... 32

 ix

LIST OF TABLES

Page

Table 2.1 EPC Fields. .. 16

Table 5.1 Comparison of operation types used in different PRNGs. 35

Table 5.2 Total gate equivalent of our proposal .. 36

Table 5.3 Comparison of performance results. .. 36

Table 5.4 Gate equivalent of our proposal. .. 38

Table 5.5 Comparison of diehard and NIST tests. ... 39

 10

CHAPTER ONE

INTRODUCTION

Lately, usage of mobile devices is increasing rapidly. Mobile devices are very

popular among other devices, also they have various usage areas. Security and

privacy issues in mobile devices are becoming more critical due to the increase in

their usage. Mobile devices must support confidentiality, integrity and availability

for privacy and security concerns. A lot of threats exist for mobile devices.

Radio Frequency Identification (RFID) is used for automated identification of

objects and people. Radio Frequency Identification is a promising mobile

technology. Data transmission takes place in wireless media. Data transmission is

between RFID tag and RFID reader. RFID tag is a small microchip which can be

attached to an antenna. A tag can be as small as 0.4 mm2 and it is generally like a

sticker (Takaragi, Usami, Imura, Itsuki & Satoh, 2001). RFID gives us opportunity to

uniquely identify objects and easily do some automation. RFID usage has a lot of

advantages over using barcode. For instance we can uniquely identify items using

RFID and barcodes must be optically scanned by the readers. Barcodes need to be in

a special position and careful contact with the reader. RFID does not require this kind

of care. RFID reader can scan hundreds of tags per second with high accuracy and

does not require the tag to be in a certain position with respect to the reader like the

barcode scanner does.

RFID usage is increasing nowadays. Recent increase in usage of RFID made it

more popular in respect to the security perspective of Organization for Economic Co-

operation and Development (OECD, 2008). RFID has different constraints according

to other technologies such as low energy consumption and low capacity. These

constraints do not allow us to use high capacity required solutions. Scope of this

work includes proposing a new pseudo random number generator that uses little die

area and clock cycle. This scheme is also verified using well known statistical

randomness tests. Test results are included in the work.

 11

The thesis is organized in six chapters. The second chapter is about mobile

devices and ubiquitous systems. Chapter three describes RFID security. Chapter four

introduces the proposed scheme. Chapter five describes performance, testing and

evaluation of results. Chapter six concludes the work and discusses the future work.

 12

CHAPTER TWO

RFID TECHNOLOGY

2.1 RFID

Radio Frequency Identification is a wireless technology which helps us to transfer

data, identify and track the tags. Tag contains identification information. Tags can be

powered, some of them use local power resource like a battery and some of them can

collect energy from radio waves.

Tags can have a factory assigned read only ID when the stage of production. This

ID can be used like a key to match the value in the database. Also tags can have

memory which can be read and written. System user is authorized to write data into

the tag. Some programmable tags can be written once and can be read multiple times.

Blank tags can be written by user.

RFID tags contain two parts. One of them is the integrated circuit. It is used to

store and the process the data, collect power from reader signal and do some other

specific functions (OECD, 2008). The other part is the antenna. Antenna is used to

receive and transmit the signal. RFID tags can include a chip or a programmable

processor for processing the data.

Figure 2.1 RFID antenna

The reader transmits an encoded signal to activate a tag. The tag receives the

signal and responds with identification information and the other information if

 13

exists. This data can be a unique tag serial number, a product related information, a

batch number, etc.

2.1.1 RFID Tag Types and Standards

RFID tags can be grouped into three categories which are active, passive and semi

passive. Active tags hold a battery. They also transmit signals periodically. Semi

passive tags also hold a small battery on board. They are activated by a reader. When

no reader exists, they stay passive. Passive tags are small and they do not hold a

battery. So, they are cheaper than other tags and they are mostly preferred by

applications. Passive tags are activated by the reader. They stand passive because of

no battery.

RFID operates on different frequency bands. These are low frequency, high

frequency and ultra-high frequency. RFID systems which operate in low frequency

have shorter read range and slower data read rate. But, they operate well on metal

and liquid surfaces.

Low frequency (LF) RFID systems operate between 30 KHz and 300 KHz. LF

provides 10 cm read range. Standards for LF are ISO 14223 and ISO/IEC 18000-2.

High frequency (HF) operates between 3 and 30 MHz Read range for HF varies from

10 cm to 1m. There are several standards for HF RFID systems such as ISO 15693

for tracking objects; ECMA-340 and ISO/IEC 18092 for NFC; ISO/IEC 14443 A

and ISO/IEC 14443 for MIFARE and JIS X 6319-4 for FeliCa. UHF frequency band

ranges are from 300 MHz to 3 GHz. UHF Gen2 standards for RFID operates

between 860 and 960 MHz band. Read range of UHF tags are 12 m. EPCglobal Gen2

(ISO 18000-6C) UHF standard is the only standard which regulates UHF.

 14

Figure 2.2 RFID tags

RFID tags are categorized into different classes. Class 0 and Class I tags

represents the basic functionality. They are read only and passive tags. Class II tags

are passive tags with additional functionalities such as memory and encryption. Class

III tags are semi passive tags. They holds a battery. When they run out of energy,

they are activated like passive tags. Class IV tags are active tags. They are capable of

peer to peer communication with other active tags. Class V tags are known as

readers. They can communicate with other tags and readers. In addition to

communicating, they can power Class I, II and III tags (Sarma & Engels, 2003).

2.2 RFID Readers

RFID readers are also grouped into similar categories like tags. Some readers can

either be passive or active. Passive readers can only receive the radio signals of

battery powered active tags. Active readers transmit signals and also receive the

authentication replies.

Readers can either be fixed or mobile. Fixed readers define a reading area which

tags can go in or out. Mobile readers can be hand-held or mounted on a vehicle. Tag

type and reader type define the RFID system. For example, using an active reader

and passive tags on an RFID system is called as Active Reader Passive Tag (ARPT)

system. This can vary like Active Reader Active Tag (ARAT) and Passive Reader

Active Tag (PRAT) (Bachu, Saram & Sharma, 2013).

 15

Figure 2.3 RFID reader

Most of UHF readers cost from $500 to $2000 depending on the features of the

device. It depends on the type of the reader. Tags, antennas and cable are needed to

build a complete system. Low and high frequency readers are range in price

depending on different factors. A low frequency reader can be under $100, while a

fully functional standalone ones can be $750. High frequency readers are typically

between $200 and $300. A standalone reader can be about $500 (RFID Journal,

2015).

According to functions in RFID System, two types of antennas can be used. These

are tag antenna and reader antenna. Tag antenna both transfers the information and

catch the wave for energy. Eroded or printed antennas are widely used and the dipole

is the typical tag antenna structure. Some circularly polarized antennas for the tag

may be preferred for special applications. Patch and spiral antennas are typical reader

antennas. Linearly polarized antennas can be preferred for some special applications

(Zhang, Jiao, Zhang & Wang, 2009).

2.3 Signaling

Low frequency tags operate in the 124-135 kHz range and have half a meter read

range. High frequency tags operate at 13.56 Mhz and have up to a meter or more

read range. Ultra high frequency tags operate in 860-960 Mhz and have up to ten

meters read range (Juels, 2006).

 16

Electronic Product Code (EPC) is a common type of data stored in the tag. RFID

printer can write 96 bit data into the tag. First 8 bits are the header information which

identifies the version of the protocol. Next 28 bits are organization information. The

organization number is assigned by EPCGlobal consortium. Next 24 bits are object

class. This identifies the type of the product. The last 36 bits are unique serial

number for a specific tag. Last two fields are assigned by the organization. The total

code can be used as a unique key into global database.

Table 2.1 EPC Fields

Header

Organization

Information

Object

Class

Unique Serial

Number

Number of Bits 8 28 24 36

Total Numbers 268,435,455 16,777,215 68,719,476,735

Generally more than one tag respond the reader. For example many products are

hold in a basket. When it is time to check out, lots of products are being read at the

same time. Some different protocols exist in collision detection. As one approach the

reader can send the initialization command and a pseudo random delay for each

individual tag. As adaptive binary tree approach the reader sends initialization

symbol and then transmits one bit of identification information. Only tags match the

identification information respond (Glover & Bhatt, 2006). Ideally only one tag

would respond at a time. Both methods have advantages and disadvantages when

multiple readers exist or used with multiple tags.

Three key factors play a significant role in RFID usage. Decreased cost of tags,

increased performance of reliability and stable international standards. These

standards are driven by the EPCGlobal.

 17

2.4 RFID Usage Area

Many of us already use RFID applications. Some applications include proximity

cards for building access, ignition keys for automobiles, some payment tokens. Some

American Express and Mastercard credit cards uses RFID (Juels, 2006). Item level

inventory tracking operation is very suitable for RFID usage. Items can be tracked

during all steps of gathering the raw material, manufacturing process, supply chain

and the individual end user. Some intelligent applications like fridge can use the

RFID information. Some other smarts systems can be built on the top of RFID

technology.

As a result of the increase in the RFID usage, RFID technology can be used for

new areas. New smart appliances and interactive objects can use RFID tags. RFID

usage has lots of advantages and some limitations. These features can be used for

new areas in the future.

 18

CHAPTER THREE

RFID SECURITY

Because of the increase in development and use of RFID, makes security a big

concern. RFID usage is not limited to inventory and stock tracking. Nowadays usage

of RFID is extended to electronic passports and RFID embedded credit cards. The

increase in usage of RFID raises concerns about security and privacy issues. RFID

tags are dump devices. They only listen and response without any information about

the sender. This issue reveals the problems with unauthorized access and tag data

modification. Some attacks such as eavesdropping, denial of service, traffic analysis

and spoofing are major threads to RFID tags.

3.1 Known Attacks

As a security concern, all applications are expected to provide data

confidentiality, data integrity and privacy. Following known attacks can be

considered as potential risks in RFID security.

Eavesdropping: Radio signals transmitted between tag and reader. This

communication can be seen by other receivers. An unauthorized user can gain access

to confidential data during the transmission. Researchers in the US has demonstrated

a eavesdropping attack on an RFID credit card such as the cardholder’s name and

account information, could be skimmed if not properly encrypted (Heydt-Benjamin,

Bailey, Fu, Juels & O’Hare, 2007).

Man-In-The-Middle Attack: Attacker intercepts the communication between two

parties. The communication between RFID reader and tag can be monitored by

attacker. Attacker can alter or inject messages into communication. A secure channel

must be built for attacker not to mediate the traffic between parties.

Replay Attack: Attacker can replay a previously recorded message. Therefore

third party can trigger an action using a valid message. To prevent from replay

 19

attack, constant values must not be used. Using random numbers is a common way

for prevention.

Location Tracing: Attacker can find a way to identify a tag. This identification

information can be combined with location information. Therefore, tracing of a tag

becomes a risk.

Forward Security: Once a secret information is captured, the data used in the

communication can be revealed. Generation of secret keys is a big concern for

forward security. Disclosure of a session key must not allow an attacker to reveal the

future communication between parties.

Backward Security: Like forward security, the captured secret information can be

used to reveal the past communication.

Synchronization Attack: A dishonest tag can be created using the captured secrets.

The identity value in the tag is the same.

Physical Attack: This concern is mostly about hardware security issues. This is in

another category.

Spoofing: Communication records can be used to perform tag spoofing. A

software called ‘RFDump’ can be used to read and write on a not properly protected

tag. By using this method, an RFID system can be fooled and the attacker can gain

unauthorized access. For example, an RFID tag can be spoofed to show lower price.

When it is used with eavesdropping, a replay attack can be a threat for an RFID tag.

For a replay attack, attacker queries a tag and receives the information, this

information can be retransmitted over and over later (Infosec, 2008).

Denial of Service Attack: This kind of attack can occur for large volumes of RFID

data. A denial of service attack can be used to corrupt large volumes of tags. For

example a ‘kill’ command can be transmitted to large amount of tags at a certain time

 20

or a high power ratio frequency transmitter can be used to jam the RFID frequencies

(Infosec, 2008).

Privacy Issues: Along with RFID is being used widely, people concern more

about privacy issues. This concern includes storage and usage of their data. If a

person can be identified by an RFID tag, individuals can be profiled and tracked.

3.2 Dealing with Security and Privacy issues

Solutions surrounding to RFID security can be categorized into three areas. They

are tag data protection, reader integrity and personal privacy.

3.2.1 Tag Data Protection

Tag data protection is about the data RFID stores. For example a password can be

set to protect the tag data. This approach can prevent being read without knowing the

password. Only readers which know the password can gain access to the tag data. If

all tags own a unique password, it means millions of passwords. Having such a high

number of confidential information can contain storage risks. For a low capacity

device it can be hard to store lots of data and check the correct password.

Physical locking of tag memory can be used to produce a read only chip and the

information is embedded during the manufacturing process. In this method tag data

cannot be overwritten.

Reader authentication in tag memory method can be implemented as follows. The

author encrypts the data with its own private key, the data and meta-data is stored in

the tag memory. When a reader wants to verify the information, tag sends the reader

the data and reader verifies it. Although this solution can seem nice, it requires a key

management system.

 21

3.2.2 RFID Reader Integrity

For a solution method reader protection can be approved as reader and tag can

agree on a response time or signal power level. Reader can change the frequency, so

the communication is hard to eavesdrop. An authentication mechanism is needed to

be implemented between reader and back end application.

RFID architecture can contain special devices to detect unauthorized behaviors

such as unauthorized update on a tag.

3.2.3 Personal Privacy

Most privacy threads arise from RFID tags which hold unique identifier. These

tags can easily associated with a person and the tracking of the person becomes easy.

When a customer purchases an item, customer’s identity can be matched to item’s

serial number. So this customer can be monitored and location of the customer can

be revealed.

 Special kill command is used to deactivate a tag and the tag cannot be re-

activated again (Lu, Chen, Qiu & Jan, 2011). This command can disconnect the

antenna, so the tag cannot be recognized anymore. So personal information cannot be

viewed. But, stores generally do not prefer deactivating a tag because of returning of

the product.

A tag can be covered with a special material to block certain frequencies. This

approach makes tag detection very hard. But, it is not possible to cover all tags in all

environments.

Active jamming can be used to block the any nearby readers. However, using

such devices can be illegal. If too much power is used for operation, all nearby RFID

systems would be affected.

 22

A blocker tag can be used to deal with the unwanted RFID readers so the other

tags can be kept secure from being read or any kind of attack. The blocker tag can

have more than one antenna to communicate with multiple readers at the same time.

To unlock a locked tag, a key or pin is needed. The tag can be locked for a time

and can be unlocked soon.

3.3 Authentication in RFID

Every consumer good in a supply chain has an identification sticker, which is used

to keep track of it, during its journey from manufacture to the basket of a consumer.

The stickers that used to be barcode papers are being replaced by RFID tags (Robert,

2006). According to a report RFID is a booming technology, acting as a part of

ubiquitous systems (Das & Havrop, 2010). RFID rests upon a wireless technology

where a tiny tag with an integrated circuit is energized through an antenna coil by a

reader, as shown in Figure 3.1.

Figure 3.1 A typical RFID set up

The unique and sensitive ID information programmed on the tag is read and

matched to a database on a remote server. The issue of security arises when the tag

and the reader try to authenticate each other over an insecure, wireless medium.

Generated pseudo random numbers (PRNs) and the sensitive tag identification

number (ID) are transmitted, sometimes in obscured messages to avoid their capture.

The low cost passive-UHF tags are reportedly the most popular (Das & Havrop,

2010). The main advantage of the RFID compared to other identification systems is

that "it is capable of identifying items of different types and also distinguishing

 23

between items of the same type without mistake, while not requiring physical or

visual contact" (Lopez, Castro, Tapiador & Ribagorda, 2009a). Low-cost is the

reason of the popularity of passive tags. However, low cost limits the computational

capacity and power electronics of the tag; resulting in little resources to be spared for

security, hence causing vulnerabilities for attacks (Lopez, Castro, Tapiador &

Ribagorda, 2009a; Chien, 2007). Low cost passive tags should not be confused with

the high cost tags used in e-passports.

After long efforts, the properties supported on passive tags have been ratified in

ISO-18000-6 (ISO/IEC, 2010) and the EPCglobal Class-1 Generation-2 (Gen-2)

standards (Gen-2 Standart Version 1.2.0, 2008). PRNs which are used in many

security algorithms are supported in the Gen-2 standard. Efficient pseudo random

number generators (PRNGs) are needed, in low cost tags which dedicate only a few

thousand gates for security (Lopez, Castro, Tapiador & Ribagorda, 2009b; Martin,

Millan, San, Entrena, Lopez & Castro, 2011). This is the motivation behind our

proposal detailed later in thesis.

Figure 3.2 Sample RFID authentication

 24

3.3.1 Random Numbers

Random numbers are the numbers that could not be predicted before they are

generated. If a number is generated in a range of 1 to N, all the numbers within the

range will have same probability to be generated. Random number generation is

mostly important in mathematics, cryptography and computer games such as

gambling. Random numbers can be generated by a physical device or

computationally. Basically randomness exists in daily life including dice and coin

flipping. However, it is hard to get a computer do something by chance. Computers

follow the instructions blindly, so they are predictable. Necessary properties of

random numbers are uniformly distribution and unpredictability. Pseudo Random

Number Generators and True Random Number Generators are two main approaches

to generating random numbers.

3.3.1.1 Pseudo Random Number Generators

Pseudo Random Number Generator (PRNG) is about building a mathematical

model which aims to generate random numbers. PRNG is a deterministic algorithm.

Number sequences which are generated by PRNG look random (DNRG, 2014).

PRNG needs a seed value to initialize the model. Each output is used as seed value

for the next iteration. Therefore, PRNG can generate numbers which show a good

statistical behavior. After a period is reached, the generator starts to repeat the

numbers generated before. As a result of determinism, PNRG generates the same

sequence for the same seed. This deterministic nature can be desirable or undesirable

according to the context. PNRG can produce many numbers in short time.

Researchers have invented lots of solutions in this domain. A PNRG which passes

the next bit test is called Cryptographically Secure Pseudo Random Number

Generator (CRPNRG) (PNRG, 2015). Passing next bit test means that it is

computationally infeasible to predict the next bit. One of the algorithms used in

PRNG is linear congruential generator. This algorithm is easy to implement and very

 25

fast. A common way to implement a CRPNRG is using a secure block cipher in

counter mode.

Some of PNRGs: Blum Blum Shub, Wichmann-Hill, Complementary-multiply-

with-carry, Inversive congruential generator, ISAAC (cipher), Lagged Fibonacci

generator, Linear congruential generator, Linear feedback shift register, Maximal

periodic reciprocals, Mersenne twister, Multiply-with-carry, Naor-Reingold

Pseudorandom Function, Park–Miller random number generator, RC4 PRGA, Well

Equidistributed Long-period Linear, Xorshift, Rule 30 (Generators, 2015).

3.3.1.2 True Random Number Generators

True Random Number Generator (TRNG) extracts randomness from physical

phenomena. This can be as simple as someone’s mouse movements or keystrokes

(Rock, 2005). However radioactive source is a really good physical phenomena and

it can easily be detected. The Hotbits (Hotbits, 2015) service at Fourmilab in

Switzerland is an excellent random number generator that uses this technique.

Another suitable phenomenon is atmospheric noise. A normal radio can be used to

easily pick it up. Random.org (Random, 2014) uses this approach. TRNGs are

suitable for lotteries, sampling, games and generation of data encryption keys.

Generating a true random number mostly needs a hardware and because of the

Input/Output waits, number generation takes a while (RNG, 2012). TRNGs are not

deterministic. They don’t need to be seeded. Physical devices are vulnerable to wear

over time and generate biased outputs. To overcome the bias, most TRNGs have

postprocessors (Sunar, Martin & Stinson, 2007).

Lately Intel has developed an instruction to generate true random numbers.

RDRAND instruction reads the hardware generated random value from SP800-90A

compliant random bit generator and stores it into the register (DNRG, 2014). The

size of the random value is related to size of the register.

 26

Some of TRNGs: Araneus Alea, ComScire, Entropy Key, Fox-IT Fox

RandomCard, ID Quantique, Intel 810/815/840/845G chipsets, Intel RdRand

instruction, LETech, QuintessenceLabs, TectroLabs, TRNG98, true-random.com,

VIA Padlock engine (Generators, 2015).

3.3.2 Random Number Generation

Random number generation is a process of generating numbers that lack of a

pattern. Some applications require uniformly distributed or unpredictable numbers.

Best way to produce random number is measuring physical phenomena. Radioactive

decay, sound samples in noisy environment, thermal noise and images of a lava lamp

can be measured to generate unpredictable numbers. However special hardware is

required to measure these metrics. Randomness is simulated by deterministic

algorithms.

The work on generating random numbers in RFID tags can be divided into three.

The first is the work on True Random Number Generators [TRNGs], where they use

a physical characteristic of the tag to produce random numbers. The second is the

work on Pseudo Random Number Generators [PRNGs], which a deterministic

algorithm is used to produce random numbers. The third class is a blend of the first

and second categories, where an output obtained from a TRNG is used as a seed to a

PRNG. TRNGs mostly fail to provide good quality random numbers or tend to

output the same numbers, if physical conditions are reproduced. In PRNGs on the

other hand, if the initialization value or seed is guessed the generated RN can be

guessed, as the whole process is mathematically deterministic. Therefore, a PRNG

by itself is declared insecure without good sources for seeding (Jun & Kocher, 1999;

Menenez, Oorschot & Vanstone, 1996). Since it is impossible to create true

randomness from within a deterministic system, a source of true randomness is

required for seeding (Jun & Kocher, 1999). For these reasons, TRNG outputs are

used as inputs to PRNG algorithms in order to get good quality RNs (Holcomb,

Burleson & Fu, 2009; Segui, Alfaro & Joancomarti, 2010). Random numbers

produced by some tags are shown to look alike or repeat themselves, or can be

 27

guessed (Segui, Alfaro & Joancomarti, 2010; Merhi, Castro & Lopez , 2011); the

reason been limited resources of low-cost tags; in terms of memory, computational

capability, power consumption and die area. Most schemes which produce good

quality random numbers and pass certain tests; e.g. hashing and encryption

algorithms, overwhelm the limited computational capabilities of resource stricken

RFID (Lopez, Castro, Tapiador & Ribagorda, 2009b; Alomair, Lazos & Poovendran,

2007).

Two PRNG works support their schemes with widely used randomness tests

(Lopez, Castro, Tapiador & Ribagorda, 2009b; Martin, Millan, San, Entrena, Lopez

& Castro, 2011). These works also have detailed design and performance

information, which can be compared with our work. Two previous works which fall

into the third category do not provide the same information but concentrate on

physical characteristics (Che, Deng, Tan & Wang, 2008; Segui, Alfaro &

Joancomarti, 2010). In these works, the much criticized LFSR function is used as a

PRNG scheme, which takes only one bit TRN as input. Many attacks on LFSRs have

been announced, but they are outside our scope.

Our work comes in at this point, which also falls into the third category that uses a

TRNG extracting method, supported by a PRNG algorithm. It has been discovered

that the SRAM memory of a tag can be a source of TRNs (Holcomb, Burleson & Fu,

2009). Some bits are shown to settle randomly to an either low or high voltage level.

The obtained TRNs have low entropy and fail the randomness tests. For this reason,

the authors feed the TRNs to a hash function, which tests show that good quality

PRNs are obtained. For now assuming hash algorithms as not suitable for low cost

tags, we attempt to replace the hashing algorithm with an ultra-light scheme. The

definition of ultra-light tags is in (Lopez, Castro, Tapiador & Ribagorda, 2009a).

 28

3.3.3 Random Number Generators

Linear Congruential Generators is widely used pseudo random number generation

technique. Numbers are calculated with a discontinuous linear equation. The theory

is simple and fast. Blum Blum Shub generator is cryptographically secure

pseudorandom bit generator. It passes the next-bit test.

Using a symmetric block cipher is a popular approach as the hearth of PRNG

mechanism. CTR mode and OFB mode are widely used to build a PNRG. A

standardized block cipher is a good candidate for a secure PRNG.

Using a stream cipher is an alternative way to generate pseudorandom number

generator. If you are dealing with a block of data stream ciphers may be more

appropriate.

 29

CHAPTER FOUR

PROPOSED SCHEME

4.1 The Inspired PRNG: Mersenne Twister

Our proposal is based on the Mersenne Twister [MT] (Matsumoto & Nishimura,

1998); which has properties that are feasible in low cost tags. MT is a well-known

algorithm proposed in 1997 by Matsumoto and Nishimura that is classified as a good

PRNG (Matsumoto, Nishimura, Hagita & Saito, 2005). The name MT comes from

the fact that a Mersenne prime is used as its period. MT achieves fast generation of

pseudorandom numbers with a long period. Many variants of it have been introduced

for better speed and cryptographic security (Matsumoto, Nishimura, Hagita & Saito,

2005; Panneton, Ecuyer & Matsumoto, 2006). MT has better equidistribution and

“bit-mixing” properties than its predecessors, for equivalent period length and speed

(Panneton, Ecuyer & Matsumoto, 2006). MT is based on linear recurrences in F2

(finite field with two elements, 0 and 1), where arithmetic operations are arithmetic

modulo 2m (Panneton, Ecuyer & Matsumoto, 2006). Binary recurrences are suitable

for implementing bitwise operations in low-cost tags. MT is a special Twisted

Generalized Feedback Shift Register [TGFSR] that takes an incomplete array to

realize a Mersenne prime as its period. It uses an inversive-decimation method for

testing the primitivity of a characteristic polynomial of linear recurrence with a

computational complexity O(p2), where p is the degree of the polynomial. In general,

the linear generators over F2 are represented by the matrix linear recurrence

(Panneton, Ecuyer & Matsumoto, 2006):

𝑥𝑖 = 𝐴𝑥𝑖−1, (4.1)

𝑦𝑖 = 𝐵𝑥, (4.2)

𝑢𝑖 = ∑ 𝑦𝑖,𝑙−12−𝑙𝑤
𝑙=1 = 𝑦𝑖,0, 𝑦𝑖,1, 𝑦𝑖,2. .. (4.3)

xi = (xi,0, . . . , xi,k−1)
T F2

k and yi = (yi,0, . . . , yi,w−1)
T F2

w are the k-bit state

and the w-bit output vector at step i. With elements also in F2, A and B are a k × k

transition matrix and a w × k output transformation matrix; where k and w are

 30

positive integers and ui [0, 1) is the output at step i. All operations in (1) - (3) are

performed in F2 and each element of F2 is represented as one bit. The goal is to find

matrices A and B whose recurrence can be implemented efficiently, the produced

sets have good uniformity and the overall generator passes empirical statistical tests.

Further mathematical argument shows that MT is a special case of Well

Equidistributed Long-period Linear [WELL] generators (Panneton, Ecuyer &

Matsumoto, 2006). The details of the argument is beyond the scope of this paper but

it is shown that MT has a long period of 219937-1, a 623 dimensional equidistribution

up to 32-bit accuracy, and generates output free from long-term correlations.

The steps of the MT; however, is of interest because of its suitability for the

simple bit-wise operations a tag can accommodate. MT works in two parts; a

recurring and a method called tempering part. In the first three steps an array is

initialized and concatenated. In Step 4, each generated array x during the recursive

steps is multiplied by a transformation matrix T, to obtain a tempered matrix z = xT.

Some of the transformation matrices of MT are equal to each other, which makes MT

a special case of WELL generators (Panneton, Ecuyer & Matsumoto, 2006). The

simplified steps and the tempering stage of the MT algorithm are given below:

Step 0: Create bitmask for upper and lower bits,

Step 1: Initialize the x[i] array with seeds of nonzero values,

Step 2. Concatenate the upper bits of the previous array x[i] with the lower bits of the

iterated array x[i + 1],

Step 3. Calculate the next state array x[i],

Step 4. Carry out tempering part:

Step 5. Increment i by 1

Step 6. Repeat the process and go to step 2, until i equals n.

The parameters u, s, t, l are tempering bit shifts and b and c are tempering bit

masks. These parameters are experimentally tested values for maximally-

equidistributed generators (Panneton, Ecuyer & Matsumoto, 2006). Tempering is

carried out in Step 4, in order to improve the distribution of the sequences generated

 31

from the recursions because MT has some weaknesses. Firstly, the initial state of MT

has too many zeros therefore the generated sequences also contain many zeros for

more than 10000 generations. Our work removes this weakness by supplying non-

zero, random number initial inputs and removes the matrix recurrences completely.

Secondly, for seeds chosen systematically as 0, 20, 30 the output sequences are

correlated. Finally, MT is not preferred for cryptographic purposes because it is easy

to predict the next state given the present outputs in MT. To fix the problems many

variations of MT have been proposed. One of the suggestions is to have the outputs

of MT go through a hash function. This is why work (Holcomb, Burleson & Fu,

2009) feeds the obtained TRNGs into a hash function. It is clear that if the generator

is initialized with uniform random bits, the probability of getting many zero bits or

correlated output is quite small. Only seeding the algorithm with TRNs and the

tempering can improve the distribution of the final pseudo random numbers

generated (Panneton, Ecuyer & Matsumoto, 2006).

Our work is inspired from Mersenne Twister (MT) which is a PRNG that satisfies

all the requirements to be certified as a good PRNG (Matsumoto & Nishimura,

1998). MT achieves fast generation of pseudo-random numbers with a long period.

Many variants of MT have been introduced for better speed and cryptographic

security (Matsumoto, Nishimura, Hagita & Saito, 2005; Tiny Mersenne Twister,

2011).

Our work is based on the strategy of using extracted TRNs from hardware as a

seed for the MT. We aim to remove the deterministic, iterative, pseudo part of the

MT and replace it with TRNG seeding. Our proposed scheme is shown in Figure 4.1.

It consists of three simple bit-wise operations; XOR, AND and rotation (circular

shift). Thus, the hash function is replaced by a scheme that consumes less die area

and clock cycles.

 32

𝑥 ∶= 𝑇𝑅𝑁 ; 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛0

𝑥 ∶= 𝑅𝑂𝑇𝑙 (𝑥, 𝑥) ; 𝑓𝑜𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑒𝑑

𝑦 ∶= 𝑥 ⊕ 𝑅𝑂𝑇𝑟 (𝑥, 𝑢) ; 𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 1

𝑦 ∶= 𝑦 ⊕ (𝑅𝑂𝑇𝑙 (𝑦, 𝑠) 𝐴𝑁𝐷 𝑏) ; 𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 2

𝑦 ∶= 𝑦 ⊕ (𝑅𝑂𝑇𝑙 (𝑦, 𝑡) 𝐴𝑁𝐷 𝑐) ; 𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 3

𝑦 ∶= 𝑦 ⊕ 𝑅𝑂𝑇𝑟 (𝑦, 𝑙) ; 𝑀𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑖𝑛𝑔 4

𝑧 ∶= 𝑦 ⊕ 𝑅𝑂𝑇𝑙 (𝑦 𝐴𝑁𝐷 𝑏, 𝑝); 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑢 = 7𝐹ℎ, 𝑠 = 07ℎ, 𝑡 = 1𝐹ℎ, 𝑙 = 3𝐹𝐹𝐹𝐹ℎ, 𝑝 = 7𝐹ℎ.

𝑏 = 9𝐷2𝐶5680𝐻 .

𝑐 = 𝐸𝐹𝐶60000𝐻 .

Figure 4.1 The proposed scheme.

MT is a special case of Wells function (Panneton, Ecuyer & Matsumoto, 2006). In

short, it is an algorithm which treats an input as a matrix and twists it right and left

with corrective temperings in between to produce good PRNs. For a complete

mathematical analysis the reader is referred to the original documents (Matsumoto &

Nishimura, 1998). A more compact version of MT has also recently been released as

TinyMT (Tiny Mersenne Twister, 2011). All versions of MT are known to pass the

randomness tests.

The matrix iterations of the original MT are eliminated in our scheme. The tag is

not capable of performing the matrix operations. To compensate, our scheme

improves the shift operations with rotation operations of the temperings. ROTr(x,y)

is a simple bit-wise shift operation to the right, where the least significant bit (LSB)

is wrapped around to most significant bit [MSB]. The value x is the number to be

rotated and y is the hamming weight (number of ones in) of y. The operation is

simple because y is loaded into a control register and examined bit by bit, while it is

shifted. If the tested bit is a one, x is rotated once; if not x remains un-rotated.

 33

Overall, the rotation operation executes permutation and XOR-AND operations

provide substitution, on the operands. Thus, the input goes through a sequence of

permutations and substitutions, as in modern hashing and encryption algorithms. The

direction of rotation operations and coefficients of MT are carefully designed and

well-defended in (Matsumoto & Nishimura, 1998; Panneton, Ecuyer & Matsumoto,

2006). In our scheme, an extra rotation is necessary to compensate for the lost

iteration, which brings little computational cost.

In our work, different number of rotation operations, different directions against

different number of rotations and AND coefficients have been tested, until the

scheme with the best randomness results was obtained. As it will be revealed, the

original directions and masking coefficients yield the best results. The scheme can be

executed as a sequential algorithm, where the coefficients are given as immediate

constant operands.

 34

CHAPTER FIVE

PERFORMANCE, TESTING AND EVALUATION OF RESULTS

Our proposal uses a 16-bit tag architecture to obtain a 32-bit PRN, because we do

not believe that the latest 32 or 64 bit, state of the art technologies used for

microprocessor production, can be widely used in low cost tag production. We

assume that 16-bit PRNs can be obtained from our 32 PRNs by either taking the

lower 16 bits, or by XORing the higher 16 bits with the lower 16 bits, as in previous

work (Lopez, Castro, Tapiador & Ribagorda, 2009a; Martin, Millan, San, Entrena,

Lopez & Castro, 2011). But we claim that 32 bit, good quality PRNGs that pass the

popular randomness tests are possible in tags, as shown later in Section 4.1.

Moreover, only 32 bit randomness tests are accepted, by the community. According

to Gen-2 specifications, the tag is expected to provide only a 16-bit PRNG but the

period of a 16 bit generator is much shorter than that of a 32 bit generator. Not only

the short period hence the reduced randomness of a 16 bit PRN but the overall

security supported by the Gen -2 standard is considered highly inadequate, as also

underlined in other work (Lopez, Castro, Tapiador & Ribagorda, 2009b; Martin,

Millan, San, Entrena, Lopez & Castro, 2011).The maximum number of gates and

clock cycles allocated for security in a tag are a few thousands gates and 1800 clocks

(Sarma, Weis & Engels, 2002; Feldhofer, Dominikus, Wolkerstorfer, 2004). These

cannot be used for only generating a random number, because space and time must

be left for other processes such as future stronger authentication steps etc. Using the

above guidelines, first performance results and then randomness test results are

compared.

5.1 Performance Results

Estimation for the die area of an integrated circuit can be obtained by using the

gate equivalents (GE) (Moradi & Poschmann, 2010). The GE of each logic gate and

the total GE for each operator are known (Paar, Poschmann & Robshaw, 2009). The

same GE metrics are used in the other work that we aim to compare our results. The

common timing metric, on the other hand is the clock cycle used. A 16-bit ALU

 35

requires two clock cycles to finish a 32 bit AND or XOR operation; but n clocks for

an n number of circular shifts. Using the results of the above metrics, the area-delay

product; i.e. complexity, of a tag can be determined.

Our scheme of Figure 4.1 requires only XOR, AND and circular shift operators.

Table 5.1 shows the operation types used in the previous schemes against ours.

Obviously, the multiplication and the finite state machine requirement of the Akari-x

hint an overwhelming load on the tag. The Lamed scheme uses three simple

operations like ours but requires input, control and rotation units for iterative work.

While Akari-x schemes require memory for an initialization vector, Lamed requires

two 32-bits space and ours requires one 32-bits and four extra 16-bits space (Martin,

Millan, San, Entrena, Lopez & Castro, 2011; Lopez, Castro, Tapiador & Ribagorda,

2009b).

Table 5.1 Comparison of operation types used in different PRNGs.

 Operation types used Iteration Memory

Akari1A SUM, OR, MULTIPLY, SHIFT For loop, FSM Initialization

vector

Akari1B SUM, OR, MULTIPLY, SHIFT For loop, FSM Initialization

vector

Akari2A SUM, OR, MULTIPLY,

SHIFT,XOR

For loop, FSM Initialization

vector

Akari2B SUM, OR, MULTIPLY,

SHIFT,XOR

For loop, FSM Initialization

vector

Akari2C SUM, OR, MULTIPLY,

SHIFT,XOR

For loop, FSM Initialization

vector

Lamed SUM, XOR, SHIFT Control Units Initialization

vector, key

Ours XOR, AND, SHIFT Sequential u, s, t, l, p

The total GE required for our scheme is calculated to be 416 gates, as shown in

Table 5.2. Every 1000 GE adds $0.01 to the cost and power consumption is

 36

proportional to the number of gates (Lopez, Lim & Li, 2008). Hence our scheme is

well in the low cost category (Sarma, Weis & Engels, 2002). Later in Table 5.3, this

result is compared to previous work together with clock cycles.

Table 5.2 Total gate equivalent of our proposal

Operator # Used Logic GE 16-Bit Total

Register 2 Flip Flop 5.33 170.56

Shifter 1 Flip Flop 5.33 85.28

AND 1 Gates 1.33 21.28

XOR 1 Gates 2.67 42.72

Total 319.84

Control 1 Gates 30% 95.95

Grand Total 415.79

The number of clock cycles spent while obtaining a random number in our

scheme is obtained from Figure 4.1 as the total of five XOR, three AND operations

and the sum of x, u, s, t, l, p number of rotations. The TRN is read into register x at

tag energizing time and is not in the RN generation phase. The XOR and AND

operations consume 16 clocks. Although the sum of u, s, t, l and p are constant, total

cycles consumed during rotation operations is dependent on the hamming weight of

the value x, read from the SRAM. Assuming an average of 16 ones in the initial seed

x, the total of rotation number is 56. When checked against the declared limit 1800,

the proposed 72 clock cycle scheme is definitely in the ultra-light category (Sarma,

Weis & Engels, 2002). This value is shown in Table 5.3, together with the

performance values of the previous works.

Table 5.3 Comparison of performance results.

Scheme
Area

GE

Die

Area

µm2

Power

Consum.

Delay

Cycles

Through

put

(Kbps)

Complexity

(GE×Delay)

Op.

Types &

Control

Akari1A 76 1494 47.35 644 24.24 306,544 Complex

 37

Table 5.3 Comparison of performance results. (continue)

Akari1B 524 1643 54.61 644 3.55 337,456 Complex

Akari2A 824 2582 57.38 466 31.37 383,984 Complex

Akari2B 891 2794 76.95 466 5.50 415,206 Complex

Akari2C 903 2831 72.33 466 3.01 420,798 Complex

Lamed 1566 4916 157.19 220 71.35 344,520 Complex

Ours 416 1306 41.75 72 18.95 29,952 Simple

The delay clock cycles of our scheme are the smallest, by a far margin. The GE

equivalent of our work is also smaller than the others. The area-delay product is a

measure of complexity (Feldhofer & Wo0lkerstorfer, 2009). Table 5.3 shows that our

scheme has the lowest complexity, enough for leaving space for other security

functions as well. The die area, power consumption and throughput values have been

calculated with the same metrics used in Akari-x, to base the comparisons on equal

ground. Having the smallest GE, our proposal has a smaller die area and consumes

less power.

The area-delay product for hashing functions is very high, even for 32-bit

architectures (Feldhofer, Dominikus, Wolkerstorfer, 2004; Feldhofer &

Wolkerstorfer, 2009). Their complexity values indicate clearly that encryption and

hashing schemes are not in the ultra-light category. Therefore, the work of

(Holcomb, Burleson & Fu, 2009) has not been included in the comparisons.

5.2 Testing Results

In our randomness tests, we used two sets of inputs to reach the best scheme. At

first, an input set from http://random.org was used as a preliminary test to

differentiate the failing schemes. Then a second set with low entropy (0.00) was

used, similar to the entropy of the set in (Holcomb, Burleson & Fu, 2009). Many of

those schemes that performed well with RN inputs faltered with low entropy inputs.

We selected and improved only those schemes that passed the randomness tests with

 38

low entropy inputs, finally reaching the best solution. It should not be missed that

LAMED and Akari-X use random.org inputs for obtaining a RN from a RN, but RN

seeds are not available in tags.

In testing PRNGs the ENT (Walker, 1998), Diehard test suits (versions 1, 2)

(Marsaglia, 2003) and NIST (Rukhin, Soto, Nechvatal, Smid, Barker, Leigh, et al,

2001) randomness test are used. We performed all four tests to compare with the

previous work. First version of Diehard has 15 different tests, which output a "p-

value" for each test. The p-values are in the range 0.0-1.0, where a result close to

these either extreme values is considered to be an unsatisfactory result. The second

version of Diehard gives an overall p-value, where a value less than 0.1 is considered

to be a fail. The NIST test also gives p-values, which are expected to be distributed

between 0.1 and 0.9. The NIST test also outputs "proportion" values, which should

be above 0.95. Any undesirable result is marked with a "*" next to the proportion

value.

Table 5.4 compares the ENT results of our work against Akari-x and Lamed

results. ENT is relatively a more relaxed test suite, than the Diehard and NIST tests.

All schemes pass the tests with satisfactory results. To expose the difference in

testing results, we move on to the more strict tests.

Table 5.4 Gate equivalent of our proposal.

ENT Test Results Lamed Akari 1/2 Ours

Entropy (bits/byte) 7.999999 8.000000/8.000000 7.999999

Compression Rate 0% 0% / 0% 0%

X2 Statistics 256.90

(50%)

259.09 (41.70%)/250.99

(55.93%)

212.60 (97.52%)

Arithmetic Mean 127.5024 127.4976/127.5031 127.5002

Monte Carlo

Estimation 3.141474228 3.141447036/3.141512474

3.141529759

Serial Correlation

Coefficient
-0.000023 -0.000026/0.000013 0.000009

 39

For the first Diehard test we used the evaluation criteria used in (Alani, 2010).

Because of the detailed output of the Diehard test, the test results and inputs are

posted at appendix section. According to the evaluation criteria a score is given for

each of the test result and their sum is calculated. We calculated the scores of the

previous work by examining their declared results and summarized the overall sums

in Table 5.5. For 15 tests, the maximum score is 15. It is worth to mention here that

most of our preliminary schemes which scored high with inputs from random.org,

scored very low with low entropy inputs. The scheme of Figure 4.1 scored (10.94)

very close to original MT (score 11.84), in Diehard version 1 results. Therefore, it

was further compared with the previous works, even though the inputs of previous

works are RNs and not low entropy values.

Table 5.5 Comparison of diehard and NIST tests.

 Diehard1

Score

Diehard2

Score

NIST

Akari1A 12.4 0.353 Pass

Akari1B 12.4 0.353 Pass

Akari2A 7.5 0.082 Pass

Akari2B 7.5 0.082 Pass

Akari2C 7.5 0.082 Pass

Lamed 13.0 0.778 Pass

Ours 10.94 0.224 Pass*

The 32-bit version of Lamed performs the best, while its 16-bit version

performance is poor. But because it is 16-bit, it is not included in these comparisons.

Akari1 versions are also satisfactory, while the Akari2 versions perform well below

our proposed scheme. Our scheme's result of 10.94 out of a 15 is far from being

unsatisfactory, after taking its very low complexity value into consideration. Diehard

version 2 scores are all in the satisfactory range, except the Akari2 family. Akari2

results are below the accepted limit of 0.1 and should not be considered to pass the

Diehard tests.

 40

The NIST test results are also very detailed reports. Therefore our results are

posted in detail at appendices section. The previous work results are also posted on

their referenced pages. It is acceptable for a scheme to fail a few tests out of a 188;

i.e. a scheme failing two individual tests cannot be considered to not pass the overall

strict NIST test (Kohlbrenner & Gaj, 2004). The results of previous work are

declared to have passed the tests. Our test results however, show that our proposed

scheme fails the Rank and Universal tests, as pointed out by the "*" mark on their

right. Nevertheless, the other test results of the NIST test are favorable and our

proposed can be evaluated as it has passed the NIST test.

According to testing output, the scheme is simple and sequential, yet its

performance equals similar previous works. With equal performance, our proposal

uses less die area and clock cycles, proving more suitable for low-cost tags. The

proposed generator takes low-entropy seeds extracted from a physical characteristic

of the tag and produces output that passes popular randomness tests.

 41

CHAPTER SIX

CONCLUSION AND FUTURE WORK

This work outlines a new random number generator that is feasible in low-cost

RFID tags. The obtained low complexity, power consumption and die area results are

an indication that the proposed scheme does not violate the resource limits of the

ultralight tags. Our scheme takes nonrandom numbers as seeds and produces random

numbers. Previous work use random number inputs, which are not available in RFID

tags. The randomness test results of our proposed scheme are satisfactory,

considering the nonrandom inputs used for seeding. Our scheme is available until a

suitable hashing or encryption algorithm that is feasible in low cost tags.

Future work involves the detailed design and implementation of the proposed

scheme. Also some work can be carried out until the scheme is further improved to

pass all of the NIST tests. Efforts of encryption designs suitable for producing

random numbers in RFID tags are intensified, but our scheme is available until such

a low cost solution is found.

 42

REFERENCES

Alani, M. M., (2010). Testing randomness in ciphertext of block-ciphers using

DieHard tests. International Journal of Computer Science and Network Security,

10/4 (8), 53-57.

Alomair, B., Lazos, L. & Poovendran, R., (2007). Passive attacks on a class of

authentication protocols for RFID. International Conference on Information

Security and Cryptology – ICISC’07, 102-115.

Bachu, Vinay Kumar, Saram, Sunil, Sharma, N.V.S.Shravan Kumar, (2013). A

review of RFID technology. Interntaional Journal of Engineering Sciences &

Research Technology, 2760-2762.

Che, W., Deng, H., Tan, X. & Wang, J., (2008). A random number generator for

application in RFID tags. Networked RFID Systems and Lightweight

Cryptography, Springer-Verlag, 16, 279-287.

Chien, H. Y., (2007). SASI: a new ultralightweight RFID authentication protocol

providing strong authentication and strong integrity. Transactions on Dependable

and Secure Computing, IEEE, 4, 337–340.

Das, R. & Havrop, P., (2010). RFID Forecasts, players and opportunities 2011-

2021. Retrieved March 27, 2014 from

http://www.idtechex.com/research/reports/rfid_forecasts_players_and_opportuni-

ties_2011_2021_000250.asp

DNRG (2014). Intel Digital Random Number Generator (DNRG). Retrieved March

1, 2015 from:

https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Software_Im

plementation_Guide_2.0.pdf

 43

Feldhofer, M., Dominikus, S. & Wolkerstorfer, J., (2004). Strong authentication for

RFID systems using the AES algorithm. Lecture Notes in Computer Science,

3156, Springer, 357-370.

Feldhofer, M. & Wolkerstorfer, J., (2009). Hardware implementation of symmetric

algorithms for RFID security. RFID Security: Techniques, Protocols and System-

on-Chip Design, III, Springer, 373-415.

Generators, (2015). List of random number generators. Retrieved Feb 28, 2015 from:

http://en.wikipedia.org/wiki/List_of_random_number_generators.

Gen-2 Standart Version 1.2.0, (2008). Class-1 Generation 2 UHF Air Interface

Protocol Standard "Gen-2", Version 1.2.0. Retrieved March 22, 2014 from

http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.

Glover, B. & Bhatt, H, (2006). RFID Essentials, 88-89.

Heydt-Benjamin, T. S., Bailey, D.V., Fu, K., Juels, A. & O’Hare, T. (2007).

Vulnerabilities in first-generation RFID-enabled credit cards. Proceedings of the

11th International Conference on Financial Cryptography and 1st International

Conference on Usable Security, 2-14.

Holcomb, D. E., Burleson, W. P. & Fu, K., (2009). Power-up SRAM state as an

identifying fin-gerprint and source of true random numbers. Transactions on

Computers, IEEE, 58(9), 1198-1210.

Hotbits, (2015). Genuine Random Numbers: generated by radioactive decay.

Retrieved Feb 28, 2015 from: https://www.fourmilab.ch/hotbits/.

Infosec, (2008). RFID security. Retrieved May 19, 2014 from:

http://www.infosec.gov.hk/english/technical/files/rfid.pdf

ISO/IEC, (2010). Retrieved April 3, 2014 from

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumbe

r=46149.

 44

Juels, A., (2006). RFID Security and privacy: a research survey. IEEE Journal on

Selected Areas in Communication 2006, 24, 381-394.

Jun, B. & Kocher, P., (1999). The intel® random number generator. Cryptography

Research, White Paper.

Kohlbrenner, P. & Gaj, K., (2004). An embedded true random number generator for

fpgas. Proceedings of the 12th International Symposium on Field Programmable

Gate Arrays, ACM/SIGDA, 71-78.

Lopez, P. P., Lim, P. T. & Li, T., (2008). Providing stronger authentication at a low-

cost to RFID tags operating under the EPCglobal framework. Embedded and

Ubiquitous Computing Conference, IEEE/IFIP International, 159-167.

Lopez, P. P., Castro, J. C. H., Tapiador, J. E. & Ribagorda, A., (2009a). An ultra

light authentication protocol resistant to passive attacks under the Gen-2

specification. Journal of Information Science and Engineering, 25, 33-57.

Lopez, P. P., Castro, J. C. H., Tapiador, J. E. & Ribagorda, A., (2009b). LAMED a

PRNG for EPC class-1 generation-2 RFID specification. Computer Standards &

Interfaces, 31/1, 88-97.

Lu, J., Chen, Y., Qiu, Z. & Jan, J., (2011). A secure RFID deactivation/activation

mechanism for supporting customer service and consumer shopping. International

Conference on Broadband, Wireless Computing, Communication and

Applications 2011, 405-410.

Marsaglia, (2003). The marsaglia random number CDROM including the DIEHARD

battery of tests of randomness, Diehard ver1:http://stat.fsu.edu/pub/diehard

Martin, H., Millan, E. S., San, M., Entrena, L., Lopez, P. P. & Castro,J. C. H.,

(2011). AKARI-x: a pseudorandom number generator for secure lightweight

systems. 17th International On-Line Testing Symposium (IOLTS), IEEE, 228-233.

 45

Matsumoto, M. & Nishimura, T., (1998). Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transactions on

Modeling and Computer Simulation (TOMACS) - Special issue on uniform

random number generation, 8(1), 3-30.

Matsumoto, M., Nishimura, T., Hagita, M. & Saito, M., (2005). Cryptographic

Mersenne Twister and Fubuki stream/block cipher, International Association for

Cryptographic Research Cryptology ePrint Archive, 165-165.

Menenez, A. J., Oorschot, P. C. & Vanstone, S. A., (1996). Handbook of Applied

Cryptography, 5, 169-190.

Merhi, M., Castro, J. C. H. & Lopez, P. P., (2011). Studying the pseudo random

number generator of a low-cost RFID tag. International Conference on RFID-

Technologies and Applications, IEEE, 381-385.

Moradi, A. & Poschmann, A., (2010). Lightweight cryptography and DPA

countermeasures: a survey. Lecture Notes in Computer Science, 6054, Springer,

68-79.

Organisation for Economic Co-operation and Development. (OECD), (2008).

OECD ministerial meeting on the future of the internet economy. Retrieved May

16, 2014 from: http://www.oecd.org/internet/ieconomy/40892347.pdf

Paar, C., Poschmann, A. & Robshaw, M. J. B., (2009). New designs in lightweight

symmetric en-cryption. RFID Security: Techniques, Protocols and System-on-

Chip Design, 3, Springer, 349-371.

Panneton, F., L'Ecuyer, P. & Matsumoto, M., (2006). Improved long-period

generators based on linear recurrences modulo 2. ACM Transactions on

Mathematical Software, 32/1, 1–16.

PNRG, (2015). Pseudo Random Number Generators. Retrieved Feb 27, 2015 from:

http://sqlity.net/en/2209/pseudo-random/.

 46

Random, (2015). Introduction to Randomness and Random Numbers. Retrieved Feb

28, 2015 from: https://www.random.org/randomness/.

RFID Journal, (2015). RFID Frequently Asked Questions. Retrieved March 7, 2015

from: www.rfidjournal.com/faq/show?86.

RNG, (2012). Random Number Generation: Types and Techniques. Retrieved March

1, 2015 from:

http://digitalcommons.liberty.edu/cgi/viewcontent.cgi?article=1311&context=hon

ors.

Robert, C. M., (2006). Radio frequency identification. Computers and Security,

Elsevier, 25, 18–26.

Rock, Andrea (2005). Pseudorandom number generators for cryptographic

applications. Retrieved March 1, 2015 from:

https://www.rocq.inria.fr/secret/Andrea.Roeck/pdfs/dipl.pdf.

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., et al., (2001). A

statistical test suite for random and pseudorandom number generators for

cryptographic applications. Retrieved May 21, 2014 from

http://csrc.nist.gov/rng/, Technical Report.

Sarma, S. & Engels, D. W., (2003). On the future of RFID tags and protocols.

Technical report, Auto-ID center, Massachusetts Institute of Technology, 2003.

Sarma, S. E., Weis, S. A. & Engels, D. W., (2002). RFID systems and security and

privacy implications. Proceedings of the 4th International Workshop on

Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer

Science, 2523, 454-470.

Segui, J. M., Alfaro, J. G. & Joancomarti, J. H., (2010). Analysis and improvement

of a pseudo-random number generator for EPC gen2 tags. Financial

Cryptography and Data Security 2010 Workshops, Lecture Notes in Computer

Science, Springer-Verlag, 34-46.

 47

Segui, J. M., Alfaro, J. G. & Joancomarti, J. H., (2011). A practical implementation

attack on weak pseudorandom number generator designs for EPC gen2 tags.

International Journal of Wireless Personal Communications, 59/1, 27-42.

Sunar, B., Martin, W. & Stinson, D., (2007). A Provably Secure True Random

Number Generator with Built-In Tolerance to Active Attacks. IEEE Transactions

on Computers, 56/1, 109-119.

Takaragi, K., Usami, M., Imura, R., Itsuki, R., & Satoh, T. (2001). An ultra small

individual recognition security chip. IEEE Micro, 43–49.

Tiny mersenne twister, (2011). Retrieved June 2, 2014 from

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html.

Walker, J., (1998). Randomness battery. Retrieved June 18, 2014 from

http://www.fourmilab.ch/random/.

Zhang, M, Jiao, Y, Zhang, F & Wang, W, (2009). Development and Implementation

of RFID Technology, 1, 554.

 48

APPENDICES

PRNG TESTING RESULTS

A. SAMPLE INPUT DATA

Sample input data can be found below. The numbers are in hexadecimal format.

This sample data is used for testing Diehard Test Suite. The exact input data is 10

Mb and can be found at http://srg.cs.deu.edu.tr/publications/2012/prng/.

A1 06 6C 7C AD 94 F3 38 8E 10 76 49 8B D4 3B 3A

42 E6 00 5F 57 15 58 F0 17 95 5A F0 C7 86 04 C8

6C A7 CB 49 F7 12 EF BB 2A 50 3B 5B 02 2F 25 2F

32 CC ED 4C 2C 2C FA 69 88 6C B7 7B AE 81 A7 D3

3A 59 2A E7 04 CC CD DD 13 30 9B 79 51 5C AE 82

B1 32 13 39 61 D2 1E 47 3F D4 40 E4 29 49 9A BA

4B 51 5D 7E 81 9E 40 B3 CC CC 06 84 CE A2 85 23

E2 A2 7F 3B 24 F2 72 0B A4 F2 66 83 CC 49 D2 EC

89 E5 EF 0E 37 A3 A1 95 AB C5 C0 5B 8D 7F F6 98

10 C6 B7 CC F7 B9 EE 11 E6 7A 72 FD D5 63 3F 85

3D A0 D9 5B C3 B7 01 FE E9 25 F4 0E A1 5F 09 FB

50 DE 06 82 E7 96 FD 89 9F D9 DB A5 E5 BE EE 8C

B. DIEHARD TEST SUITE RESULTS

Table B.1 Results according to DieHard test suite

Test Extra Rotation Eklenen Input

birthday spacings, 1.00 0.00

overlapping permutations, 0.25 0.00

ranks of 31x31 and 32x32 matrices 0.00 0.00

 49

ranks of 6x8 matrices 1.00 0.00

monkey tests on 20-bit Words

(bitstream) 0.60 0.00

monkey tests OPSO, OQSO, DNA 0.62 0.00

count the 1's in a stream of bytes 0.50 0.00

count the 1's in specific bytes 0.72 0.00

parking lot 1.00 0.00

minimum distance 1.00 0.00

random spheres 1.00 0.00

Squeeze 1.00 0.00

overlapping sums 0.50 0.00

Runs 0.75 0.00

craps. 1.00 0.00

SUM 10.94 0.00

C. DIEHARD2 TEST SUITE RESULTS

Table C.1 Results according to DieHard2 test suite.

NEW DIEHARD2 TEST DETAILS p-value

Birthday spacings 0.721339

Tough Birthday spacings 0.547000

GCD 0.732103

 50

Gorilla 0.119000

Overlapping Permutations

0.4208, 0.6911, 0.6770,

0.6521, 0.6798

Ranks of 31×31 and 32×32 Matrices 1

Ranks of 6×8 Matrices 0.909593

Monkey tests on 20-bit words 0.51857165 (Average)

Monkey Test OPSO 0.549708522 (Average)

Monkey Test OQSO 0.454735393 (Average)

Monkey Test DNA 0.603586871 (Average)

Count the 1's in a stream of bytes 0.249728

Count the 1's in specific bytes 0.44275264 (Average)

Parking lot test 0.682237

Minimum distance test 0.682303

Random spheres test 0.870077

The squeeze test 0.217116

Overlapping sums test 0.773786

Runs up and down test 0.673000

The craps test 0.785901

Craps Test With Different Dice 0.945402

Overall KS p-value

0.223461

 51

D. NIST TEST SUITE RESULTS

C6 C7 C8 C9 C10 P-VALUE

PROPO

RTION STATISTICAL TEST

9 6 17 9 7 0.202268 1.0000 Frequency

9 5 14 13 12 0.366918 0.9900 BlockFrequency

14 9 7 12 9 0.224821 1.0000 CumulativeSums

13 12 8 11 9 0.455937 1.0000 CumulativeSums

12 7 7 8 10 0.437274 1.0000 Runs

15 10 15 5 8 0.075719 0.9800 LongestRun

0 0 0 0 0 0.000000 0.0000 * Rank

15 11 11 8 9 0.514124 0.9900 FFT

13 14 8 13 12 0.289667 0.9900 NonOverlappingTemplate

12 16 15 10 11 0.153763 1.0000 NonOverlappingTemplate

8 9 19 9 7 0.319084 0.9700 NonOverlappingTemplate

12 5 16 11 11 0.514124 0.9800 NonOverlappingTemplate

8 10 12 6 9 0.202268 0.9700 NonOverlappingTemplate

8 7 11 9 7 0.262249 0.9800 NonOverlappingTemplate

7 14 7 5 12 0.474986 0.9700 NonOverlappingTemplate

10 5 7 11 7 0.122325 1.0000 NonOverlappingTemplate

12 5 12 9 11 0.699313 0.9900 NonOverlappingTemplate

13 5 4 9 14 0.224821 1.0000 NonOverlappingTemplate

 52

8 8 6 13 8 0.455937 0.9900 NonOverlappingTemplate

10 10 7 10 8 0.759756 1.0000 NonOverlappingTemplate

10 11 11 10 8 0.964295 0.9900 NonOverlappingTemplate

6 14 11 9 5 0.657933 0.9800 NonOverlappingTemplate

13 3 9 14 9 0.202268 0.9700 NonOverlappingTemplate

8 9 13 7 6 0.514124 0.9900 NonOverlappingTemplate

8 11 8 8 9 0.236810 0.9600

*

NonOverlappingTemplate

11 10 14 13 6 0.419021 0.9900 NonOverlappingTemplate

12 9 12 9 7 0.719747 1.0000 NonOverlappingTemplate

9 12 10 13 11 0.935716 0.9800 NonOverlappingTemplate

10 10 16 12 9 0.699313 0.9900 NonOverlappingTemplate

10 6 16 8 6 0.062821 1.0000 NonOverlappingTemplate

8 7 12 13 6 0.437274 0.9600

*

NonOverlappingTemplate

10 10 9 6 14 0.494392 1.0000 NonOverlappingTemplate

8 12 15 9 11 0.455937 1.0000 NonOverlappingTemplate

10 12 15 7 13 0.249284 1.0000 NonOverlappingTemplate

10 6 9 12 10 0.867692 0.9900 NonOverlappingTemplate

6 10 8 14 12 0.474986 1.0000 NonOverlappingTemplate

12 9 12 7 8 0.883171 0.9800 NonOverlappingTemplate

 53

12 8 7 13 7 0.816537 1.0000 NonOverlappingTemplate

10 7 10 10 10 0.798139 0.9900 NonOverlappingTemplate

13 9 12 11 5 0.350485 0.9900 NonOverlappingTemplate

8 13 11 9 11 0.401199 0.9900 NonOverlappingTemplate

10 7 8 8 14 0.534146 0.9900 NonOverlappingTemplate

12 13 5 7 12 0.319084 1.0000 NonOverlappingTemplate

13 8 6 11 9 0.678686 0.9900 NonOverlappingTemplate

9 14 11 6 9 0.834308 0.9800 NonOverlappingTemplate

7 12 16 16 6 0.162606 0.9900 NonOverlappingTemplate

12 10 14 11 6 0.779188 0.9900 NonOverlappingTemplate

9 9 14 10 9 0.514124 0.9900 NonOverlappingTemplate

10 8 11 8 6 0.090936 0.9900 NonOverlappingTemplate

7 11 13 7 6 0.595549 0.9900 NonOverlappingTemplate

9 11 9 19 7 0.191687 1.0000 NonOverlappingTemplate

5 8 7 12 11 0.514124 0.9900 NonOverlappingTemplate

10 9 8 12 17 0.319084 0.9800 NonOverlappingTemplate

9 11 12 9 11 0.759756 0.9800 NonOverlappingTemplate

9 11 9 8 16 0.834308 1.0000 NonOverlappingTemplate

11 14 9 9 12 0.657933 0.9800 NonOverlappingTemplate

9 11 12 6 10 0.739918 0.9900 NonOverlappingTemplate

9 7 12 15 6 0.334538 0.9800 NonOverlappingTemplate

 54

6 11 16 13 5 0.066882 0.9700 NonOverlappingTemplate

2 11 12 9 13 0.090936 0.9900 NonOverlappingTemplate

12 7 13 11 12 0.554420 0.9700 NonOverlappingTemplate

20 5 13 5 11 0.019188 1.0000 NonOverlappingTemplate

15 8 13 10 5 0.455937 0.9900 NonOverlappingTemplate

12 7 15 6 8 0.455937 0.9800 NonOverlappingTemplate

13 11 12 11 9 0.514124 1.0000 NonOverlappingTemplate

6 13 10 11 16 0.401199 0.9800 NonOverlappingTemplate

6 7 8 13 10 0.595549 1.0000 NonOverlappingTemplate

6 16 9 8 8 0.102526 0.9900 NonOverlappingTemplate

11 13 12 11 6 0.739918 0.9900 NonOverlappingTemplate

5 13 8 13 5 0.514124 1.0000 NonOverlappingTemplate

9 9 9 10 16 0.867692 0.9800 NonOverlappingTemplate

11 9 13 8 16 0.474986 0.9900 NonOverlappingTemplate

15 10 6 10 10 0.437274 0.9900 NonOverlappingTemplate

6 6 13 13 11 0.637119 1.0000 NonOverlappingTemplate

11 8 5 15 14 0.171867 0.9800 NonOverlappingTemplate

13 6 9 10 10 0.494392 0.9700 NonOverlappingTemplate

10 14 8 5 11 0.514124 1.0000 NonOverlappingTemplate

9 10 10 7 6 0.249284 0.9800 NonOverlappingTemplate

 55

13 10 3 11 11 0.262249 0.9900 NonOverlappingTemplate

6 8 7 14 11 0.191687 0.9700 NonOverlappingTemplate

8 8 10 13 8 0.759756 1.0000 NonOverlappingTemplate

9 4 11 12 13 0.350485 0.9900 NonOverlappingTemplate

13 14 8 13 12 0.304126 0.9900 NonOverlappingTemplate

15 6 8 3 15 0.066882 1.0000 NonOverlappingTemplate

13 8 6 17 12 0.153763 1.0000 NonOverlappingTemplate

6 10 12 8 11 0.834308 1.0000 NonOverlappingTemplate

9 11 15 13 6 0.437274 0.9900 NonOverlappingTemplate

5 5 12 14 11 0.090936 0.9800 NonOverlappingTemplate

9 8 12 9 10 0.455937 0.9900 NonOverlappingTemplate

13 12 6 5 12 0.595549 1.0000 NonOverlappingTemplate

6 9 16 15 6 0.102526 0.9900 NonOverlappingTemplate

10 7 11 14 13 0.595549 0.9900 NonOverlappingTemplate

6 10 8 9 12 0.739918 0.9900 NonOverlappingTemplate

7 7 8 8 13 0.867692 0.9900 NonOverlappingTemplate

11 15 5 17 6 0.000474 0.9900 NonOverlappingTemplate

8 18 10 7 7 0.236810 0.9900 NonOverlappingTemplate

9 11 10 12 10 0.834308 1.0000 NonOverlappingTemplate

6 11 17 7 8 0.437274 1.0000 NonOverlappingTemplate

9 9 7 8 14 0.595549 0.9800 NonOverlappingTemplate

 56

11 10 12 7 8 0.383827 1.0000 NonOverlappingTemplate

9 6 11 5 8 0.455937 0.9700 NonOverlappingTemplate

11 7 8 9 7 0.366918 0.9800 NonOverlappingTemplate

7 16 11 11 14 0.145326 1.0000 NonOverlappingTemplate

10 9 13 9 7 0.798139 1.0000 NonOverlappingTemplate

11 9 9 12 11 0.455937 0.9900 NonOverlappingTemplate

10 9 9 6 6 0.058984 1.0000 NonOverlappingTemplate

9 9 11 10 14 0.678686 0.9700 NonOverlappingTemplate

8 15 8 12 6 0.289667 0.9700 NonOverlappingTemplate

12 9 12 6 10 0.474986 0.9900 NonOverlappingTemplate

6 7 7 7 16 0.085587 0.9800 NonOverlappingTemplate

11 6 8 15 17 0.162606 1.0000 NonOverlappingTemplate

9 9 8 11 9 0.935716 0.9900 NonOverlappingTemplate

11 8 13 13 16 0.350485 0.9800 NonOverlappingTemplate

8 13 12 9 3 0.455937 1.0000 NonOverlappingTemplate

13 7 9 5 13 0.145326 0.9900 NonOverlappingTemplate

12 13 10 12 9 0.699313 0.9900 NonOverlappingTemplate

4 7 12 11 12 0.080519 0.9800 NonOverlappingTemplate

8 12 12 13 9 0.401199 1.0000 NonOverlappingTemplate

9 11 15 6 6 0.657933 1.0000 NonOverlappingTemplate

11 6 12 12 11 0.867692 0.9800 NonOverlappingTemplate

 57

5 9 11 9 7 0.289667 0.9900 NonOverlappingTemplate

7 5 13 13 10 0.657933 0.9800 NonOverlappingTemplate

7 8 5 17 9 0.080519 1.0000 NonOverlappingTemplate

11 12 6 6 14 0.162606 0.9900 NonOverlappingTemplate

15 16 8 10 6 0.350485 1.0000 NonOverlappingTemplate

16 17 8 9 6 0.137282 0.9800 NonOverlappingTemplate

11 7 8 10 12 0.883171 0.9900 NonOverlappingTemplate

7 7 10 13 6 0.401199 0.9900 NonOverlappingTemplate

7 13 8 13 9 0.249284 0.9900 NonOverlappingTemplate

8 11 11 9 15 0.678686 1.0000 NonOverlappingTemplate

17 12 10 7 9 0.514124 1.0000 NonOverlappingTemplate

7 10 13 15 5 0.350485 0.9900 NonOverlappingTemplate

13 17 8 8 12 0.262249 1.0000 NonOverlappingTemplate

13 11 8 10 10 0.883171 1.0000 NonOverlappingTemplate

7 9 15 9 9 0.834308 1.0000 NonOverlappingTemplate

9 12 13 11 8 0.897763 1.0000 NonOverlappingTemplate

16 7 10 8 15 0.249284 0.9900 NonOverlappingTemplate

11 10 12 6 10 0.759756 0.9700 NonOverlappingTemplate

9 8 16 8 4 0.275709 0.9800 NonOverlappingTemplate

8 17 9 12 11 0.474986 0.9800 NonOverlappingTemplate

 58

13 10 12 8 12 0.616305 0.9800 NonOverlappingTemplate

8 9 8 9 9 0.719747 0.9900 NonOverlappingTemplate

8 11 12 14 6 0.275709 1.0000 NonOverlappingTemplate

12 7 14 9 5 0.514124 0.9900 NonOverlappingTemplate

13 11 6 16 9 0.401199 0.9700 NonOverlappingTemplate

10 8 8 14 13 0.883171 0.9700 NonOverlappingTemplate

8 10 11 13 13 0.719747 0.9900 NonOverlappingTemplate

9 14 12 10 9 0.699313 1.0000 NonOverlappingTemplate

8 8 8 11 9 0.514124 0.9700 NonOverlappingTemplate

12 14 13 6 12 0.616305 0.9800 NonOverlappingTemplate

8 9 6 12 9 0.897763 1.0000 NonOverlappingTemplate

6 12 11 10 15 0.779188 1.0000 NonOverlappingTemplate

11 5 13 9 15 0.616305 0.9900 NonOverlappingTemplate

11 8 13 8 10 0.816537 0.9900 NonOverlappingTemplate

9 10 8 5 11 0.816537 1.0000 NonOverlappingTemplate

9 4 11 12 13 0.249284 0.9900 NonOverlappingTemplate

3 16 7 10 6 0.085587 1.0000 OverlappingTemplate

0 0 0 0 0 0.000000* 1.0000 Universal

9 15 7 7 12 0.616305 0.9800 ApproximateEntropy

0 1 1 2 1 0.739918 1.0000 RandomExcursions

0 1 5 1 1 0.035174 1.0000 RandomExcursions

 59

3 0 0 1 1 0.122325 1.0000 RandomExcursions

2 1 3 1 0 0.534146 1.0000 RandomExcursions

0 3 0 1 1 0.213309 1.0000 RandomExcursions

0 3 1 1 1 0.534146 0.9167 RandomExcursions

1 1 1 1 2 0.991468 1.0000 RandomExcursions

0 5 1 1 3 0.002043 1.0000 RandomExcursions

3 2 1 0 0 0.213309 1.0000 RandomExcursionsVariant

2 2 0 2 1 0.739918 1.0000 RandomExcursionsVariant

2 1 0 2 3 0.350485 1.0000 RandomExcursionsVariant

3 1 1 2 2 0.534146 1.0000 RandomExcursionsVariant

0 2 0 3 3 0.122325 1.0000 RandomExcursionsVariant

1 0 1 1 3 0.534146 1.0000 RandomExcursionsVariant

1 0 2 1 2 0.534146 1.0000 RandomExcursionsVariant

2 1 2 1 2 0.911413 1.0000 RandomExcursionsVariant

2 2 3 1 1 0.534146 1.0000 RandomExcursionsVariant

1 4 1 0 2 0.122325 1.0000 RandomExcursionsVariant

1 1 2 3 1 0.739918 1.0000 RandomExcursionsVariant

1 2 3 1 0 0.534146 1.0000 RandomExcursionsVariant

1 0 2 1 1 0.534146 1.0000 RandomExcursionsVariant

3 1 1 0 2 0.534146 1.0000 RandomExcursionsVariant

 60

1 0 2 2 0 0.213309 1.0000 RandomExcursionsVariant

3 0 1 2 0 0.213309 1.0000 RandomExcursionsVariant

1 1 1 0 2 0.739918 1.0000 RandomExcursionsVariant

0 1 1 1 1 0.739918 1.0000 RandomExcursionsVariant

13 7 8 8 10 0.834308 1.0000 Serial

8 12 7 10 9 0.779188 0.9900 Serial

7 4 6 13 9 0.122325 0.9900 LinearComplexity

