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HIGH FREQUENCY VIBRATION ANALYSIS OF LAMINATED 

COMPOSITE STRUCTURES VIA STATISTICAL ENERGY ANALYSI S 

 

ABSTRACT 

 

Statistical energy analysis is a widely used high frequency vibro-acoustic analysis 

tool. It is based on power flow balance between subsystems. In the project, statistical 

energy analysis of several different systems; composite plate-acoustic volume 

structure and point-connected I, L and T type structures made of laminated 

composite plates are investigated for high frequency analysis.  

 

Accuracy of method mainly depends on precise determination of statistical energy 

analysis parameters such as average modal spacing, coupling loss factor, damping 

loss factor. In the study, average modal spacings have been determined numerically 

by using uncoupled natural frequencies whereas loss factors have been obtained by 

using numerical (finite element method by ANSYS) and experimental power 

injection method.  All these parameters have been compared with analytical ones. As 

the last but not the least, composite plates with random thickness/mass variability 

have been considered to carry out the effect of uncertainty by using finite element 

based Monte Carlo simulation. Mean responses of these results have been compared 

via statistical energy analysis to investigate the methodologies used in high 

frequency analysis of vibro-acoustic system with structural uncertainty.  

 

Keywords: Statistical energy analysis, finite element analysis, power injection 

method, Monte Carlo simulation, uncertainty, laminated composite plates, acoustic 

volume. 

 

 

 

 

 

 



 v 

İSTATİSTİKSEL ENERJİ ANAL İZİ İLE LAM İNE KOMPOZ İT YAPILARIN 

YÜKSEK FREKANS T İTREŞİM ANAL İZİ 

 

ÖZ 

 

İstatistiksel enerji analizi, sık kullanılan bir yüksek frekans vibro-akustik analiz 

aracıdır. Alt sistemler arasındaki güç akış dengesine dayanır. Bu projede, farklı 

sistemlerin; katmanlı kompozit plakalardan yapılan kompozit plaka-akustik hacim 

yapısı ve noktasal bağlı I, L ve T tip yapıların istatistiksel enerji analizi yüksek 

frekanslı titreşim analizi için araştırılmıştır. 

 

Yöntemin doğruluğu esasen ortalama modal uzaklık, bağlantı kayıp faktörü ve 

sönüm kayıp faktörü gibi istatistiksel enerji analizi parametrelerinin hassas olarak 

belirlenmesine dayanır. Çalışmada, ortalama modal uzaklık sayısal olarak alt 

sistemlerin ayrık doğal frekansları kullanarak belirlenirken, kayıp faktörleri sayısal 

(ANSYS ile sonlu elemanlar metodu) ve deneysel güç enjeksiyon yöntemi 

kullanılarak belirlenmiştir. Son olarak, rastgele kalınlık/kütle değişkenli kompozit 

plakalar belirsizlik uygulamak için sonlu elemanlar tabanlı Monte Carlo 

simülasyonunun kullanılmasıyla göz önüne alınmıştır. Bu sonuçların ortalama 

cevapları yapısal belirsizlikli vibro-akustik sistemlerin yüksek frekans analizlerinde 

kullanılan metodolojilerin incelenmesi için istatistiksel enerji analizi ile 

karşılaştırılmıştır.  

 

Anahtar kelimeler: İstatistiksel enerji analizi, sonlu elemanlar analizi, güç 

enjeksiyon yöntemi, Monte Carlo simülasyonu, belirsizlik, katmanlı kompozit 

plakalar, akustik hacim 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General Information 

 

Nowadays, composite materials are widely used in aerospace and automobile 

industry since they provide high strength/weight ratio that leads less fuel 

consumption. Therefore, investigation of vibro-acoustic behavior of structures made 

of composite materials becomes one of the most important studies. Generally, in 

vibro-acoustics, analyses are examined in three frequency regions; low, mid and high 

frequency ranges. Conventional analyses are usually performed for low frequencies 

at which resonant modes dominate the response. However, using lightweight 

structures in automobile, vessel and aerospace engineering reduces fuel expenses; 

however it leads to shifting the vibro-acoustic problems to mid and high frequency 

analysis.  High frequency region shows smooth response predictions due to modal 

overlapping, whereas mid frequency region exhibits much more complex response 

characteristics. Although, there is no exact quantification that separates these regions 

from each other, an approximate high frequency threshold can be computed for 

simple structures by using modal overlap factor (count) (MOF).  

 

In low frequency region, deterministic techniques such as finite element method 

(FEM), boundary element method (BEM) are generally used. However, in analysis 

of high frequency vibrations with deterministic techniques, excessive number of 

elements is required, which make them inefficient because of high solution time and 

memory usage. Therefore for mid and high frequency region, special approaches 

should be considered.  

 

In high frequency region, statistic and energy based methods are generally used. 

Statistical energy analysis (SEA) (Fahy, 1994; Lyon & DeJong, 1998) is the most 

popular and widely used approach in many areas in engineering. SEA divides a 

complex structure to its subsystems that each of which composed of common modal 

behavior.  But these subsystems need to include sufficient number of modes for 
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reliability. A power balance between subsystems is then set up to predict the mean 

energy level of each subsystem. By this way, small dimension of system matrix is 

set, thus the solution time becomes insignificant. Success of SEA mainly depends on 

the accurate evaluation of SEA parameters such as coupling loss factor (CLF), 

damping loss factor (DLF), average modal spacing (fδ ) and power input. For 

simple structures, CLFs can be analytically determined by using finite/semi-infinite 

system impedances (Lyon & DeJong, 1998) or dual modal formulation (Maxit & 

Guyader, 2009a, 2009b). For more complex structures, they can be determined by 

numerical/experimental power injection method (PIM) (Bies & Hamid, 1980; 

Langhe & Sas, 1996). Beside that decay rate method (Bloss & Rao, 2005; Lyon & 

DeJong, 1998) and quality factor (Lyon & DeJong, 1998; Rao, 1995) are other 

experimental methods for obtaining DLFs. In numerical PIM, DLFs of subsystems 

has to be initially known for modeling the structure. 

 

Beside that, accurate modeling of coupling type (point, line and area), coupling 

geometry (angle between subsystems, number of subsystem at junction), element 

type (beam, plate, bar, shell, membrane, acoustics etc.,) and modal classification 

(longitudinal, bending, torsional, shear etc.,) of subsystems are very important for 

SEA system. These require experience in SEA modeling. 

 

For mid frequency region, neither deterministic techniques nor statistical and 

energy based methods are applicable alone. In this region, hybrid methods combining 

deterministic and statistical methods (Cotoni et al., 2007; DeRosa & Franco, 2010; Ji 

et al., 2006; Langley & Bremner, 1999; Langley & Cordioli, 2009; Seçgin, 2013; 

Shorter & Langley, 2005; Vanmaele et al., 2007; Vlahopoulos & Zhao, 2001) are 

commonly used. However, developments on this issue are still under consideration 

by the experts. 

 

Products that are manufactured from the same production line and that have the 

same manufacturing processes can exhibit different vibro-acoustic response 

characteristics. This variability in vibro-acoustics is called as “uncertainty”. The 

uncertainty arises from small differences in geometry, material property, 
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characteristic of excitation, initial and boundary conditions of structures. Uncertainty 

in vibro-acoustic systems makes response unreliable not only for low frequencies but  

for higher frequencies  Figure 1.1 (Fahy, 1994) shows acoustic response variation of 

several pickup trucks which are the same model produced in the same line, this 

uncertainty increases as the frequency increases.  

 

 
Figure 1.1 Uncertain acoustic response of pickup trucks (Fahy, 1994) 

 

For low frequencies, the effect of uncertainty is evaluated by some statistical 

classifications based on experiments or deterministic methods such as finite element 

method, boundary element method via Monte-Carlo simulation (Evans & Swartz, 

2000; Fahy, 1994; Hobenbichler & Rackwitz, 1988; Lewis & Böhm, 1984). 

However, for higher frequencies at which the response is sensitive to structural 

variations, statistical approaches such as statistical energy analysis (SEA), and power 

flow methods are often used. These approaches due to their average response 

prediction capability implicitly consider uncertainty in the systems subjected to high 

frequency excitations. 
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1.2 About Statistical Energy Analysis (SEA) 

 

Statistical energy analysis (SEA) was developed by R. H. Lyon (Lyon & DeJong, 

1998) in 1960s. This method arose from the need for the prediction of vibration 

response in aerospace engineering products. In those days, technology was allowing 

engineers to predict limited number of modes. For that reason, engineers were not 

able to perform analysis in higher frequencies. Then, it was suggested that 

determination of local vibration response can be ignored for larger systems at which 

high number of modes are existing. Consequently, an energy-based statistical 

approach known as statistical energy analysis was developed.  

 

Statistical energy analysis (SEA) determines the response of subsystems by means 

of statistical parameters such as mean and variance value. Dynamic values of 

subsystems such as pressure, displacement, velocity, acceleration can be calculated 

from time-, spatial- and frequency- averaged energies.  

 

In this method, complex structure is divided into subsystems and their parameters 

are determined statistically. The primary parameter for this method is the mean 

energies of each subsystem. Other parameters such as displacement, velocity, 

pressure etc. can be derived from these mean energies. Up to now, this method is 

successfully used in various applications such as building, automobile, ships and 

trains; however, it is radically evolved. 

 

Since statistical energy analysis predicts mean response behavior of a structure, 

the method can be used in early design. Beside that since complex structure is 

divided into few subsystems, process takes less time than that of deterministic 

methods such as finite element method and boundary element method.  

 

Determination of SEA parameters is very important step for an accurate analysis. 

Therefore, SEA assumptions and limitations should be clearly understood. First and 

the most important SEA assumption is that the power flow between coupled 

subsystems is proportional to the energy of subsystems by a coupling loss quantity. 
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Another important assumption of SEA is that subsystems are weakly coupled which 

means that coupling loss factors (CLF) should be much smaller than internal or 

damping loss factors (DLF). In the process of exciting subsystems, all power sources 

have to be uncorrelated that leads to give a chance to sum energies linearly. Further 

information about other limitations and assumptions of SEA can be found in (Lyon 

& DeJong, 1998).   

 

As mentioned previously, SEA parameters including DLF, CLF, average modal 

spacing and power input need to be determined for accurate analysis. Here, the most 

critical parameter is coupling loss factor. Although several approaches are available 

in SEA, wave and modal approaches are generally used to determine the coupling 

loss factor. Wave approach uses wave transmission between substructures at a 

common boundary to compute power transmission coefficient. Modal approach uses 

separate modal energies to relate power transmission between subsystems at a 

common boundary.  

 

In the wave approach which is also known as travelling wave approach (Fahy, 

1990; Lyon & DeJong, 1998), vibration field is described in terms of superposition 

of travelling waves where power transfer coefficients are evaluated by transmission 

and reflection at boundaries. Nowadays, researchers are more likely studying on 

wave approach. 

 

Lyon showed that power flow occurs between two coupled oscillators 

proportional to energies of oscillators (Lyon & DeJong, 1998) which is known as 

fundamental of modal approach. In modal approach, each mode of a subsystem 

couples with the other subsystem and a coupling loss factor is generated by using this 

procedure for larger systems.  
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1.3 Thesis Organization 

 

In the thesis, high frequency analysis of composite structures interacted by 

themselves and an acoustic volume is mainly investigated. There are few studies on 

high frequency analysis of composite structures. It is believed that this thesis will fill 

the gap about high frequency vibro-acoustic response of composite structures.  

Specifically, numerical determination of SEA parameters of composite structures and 

analyzing acoustic volume-composite plate interaction will be other contributions of 

the present thesis. The thesis is organized as five chapters with supportive 

appendices: 

 

− General descriptions about SEA and SEA modeling including coupling loss 

factor, damping loss factor, power input, modal density, impedance and modal 

overlap factor are given in Chapter 2. Note that, determination of coupling loss 

factor is given for point, line and area coupling. Power injection method which is 

originally an experimental procedure for evaluating coupling loss factor and 

damping loss factor is also given in this chapter. Then, brief explanation of 

Monte-Carlo simulation for uncertainty analysis is also given in this chapter. 

− Chapter 3 is devoted for high frequency analysis of an acoustic volume-

composite plate (AV-CP) interaction having structural uncertainty is considered 

via SEA and FEM. 

− Chapter 4 is concerned with high frequency analysis of various types of 

structures (I, L and T type) composed of laminated composite plates.  

− In Chapter 5, main conclusions of the study are briefed. 

− In Appendix 1, computer programs used in thesis are presented. 

− Finally, determination of rigidities and mechanical properties of composite 

structures are given in Appendix 2. 

 

Each section in this study is presented uniquely and it has its own references for 

integrity.  
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CHAPTER TWO 

MATHEMATICAL DESCRIPTIONS 

 

2.1 Statistical Energy Analysis (SEA) 

 

SEA equations are written by setting power balance between subsystems. A 

subsystem dissipates energy as (Lyon & DeJong, 1998):  

 

 ,i diss ii iP Eωη= , (2.1) 

 

where ω  is angular velocity of vibration, iiη  is damping loss factor (DLF), iE  is 

vibration energy of i th subsystem,  represents time average and over bar 

represent frequency average. Power transmission from i th subsystem to j th 

subsystem is expressed as (Lyon & DeJong, 1998): 

 

 ij ij iP Eωη= , (2.2) 

 

where ijη , coupling loss factor (CLF) between i th subsystem to j th subsystem. Net 

power transmission between two subsystems can be expressed by using Equation 

(2.2) as: 

 

 ( )ij ij i ji jP E Eω η η= − . (2.3) 

 

Relation between coupling loss factors of two-connected subsystems can be 

determined in terms of modal density of subsystems as (Lyon & DeJong, 1998): 

 

 ( ) ( )i ij j jin nω η ω η= , (2.4) 
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where ( )in Nω ω∆ ∆∆ ∆∆ ∆∆ ∆=  is modal density of i th subsystem, N∆∆∆∆  is number of mode in 

a frequency band ω∆∆∆∆ . Equation (2.4) can be rewritten in terms of average modal 

spacing (AMS): 

 

 
2 2

ij ji

i jf f

η η
πδ πδ

= . (2.5) 

 

Here, ifδ  shows AMS of ith subsystem. More information about modal density 

and AMS are given in Section 2.2.3. 

 

Here, power flow of between two subsystems of a structure is given in Figure 2.1 

for clarifying SEA power balance.   

 

 
Figure 2.1 Power balance of structure having two subsystems 

 

Each subsystem dissipates power by proportional to damping loss factor, 

frequency and energy of subsystem and transmits power by proportional to coupling 

loss factor, frequency and energy of subsystem that injects power to other subsystem. 

Power balance for each subsystem can be written for the first subsystem;   

 

 ( )1,

11 12 1 21 2

inP
E Eη η η

ω
= + − , (2.6) 

 

and for the second subsystem; 

 

Subsystem 1 Subsystem 2 
1,inP  

2,inP  

1, 11 1dissP Eωη=  2, 22 2dissP Eωη=  

12 12 1P Eωη=  

21 21 2P Eωη=  
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 ( )2,

22 21 2 12 1

inP
E Eη η η

ω
= + − . (2.7) 

 

Equations (2.6) and (2.7) can also be expressed in a matrix form as: 

 

 
1 111 12 21

12 22 21 2 2

1E P

E P

η η η
η η η ω

   + −     =    − +        

, (2.8)  

 

or, 

 

 [ ]{ } { }E Pη = , (2.9)  

 

where vector { }P  is input power, vector { }E  is total energy of each subsystem and 

matrix [ ]η  is known as loss matrix. Energy of each subsystem can be calculated 

from Equation (2.9). For vibrating subsystems, velocity can be calculated by 

/i i iv E m=  where im  is mass of subsystem i and for acoustic subsystems, 

pressure can be obtained by 2
i i i i ip E c Vρ=  in terms of volume of acoustic 

space ( iV ), density of air ( iρ ) and speed of sound (ic ). For a reliable analysis, loss 

matrix has to be accurately determined. 

 

2.2 Parameters of Statistical Energy Analysis 

 

In this section, parameters of SEA are introduced and their mathematical 

descriptions are presented.  

 

2.2.1 Coupling Loss Factor (CLF) and Damping Loss Factor (DLF) 

 

CLF and DLF are the most important parameters of SEA. They indicate the ratio 

of power transmission between subsystems and power converted to heat, 
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respectively. These parameters can be determined by experimental methods. 

However, for simple structures, CLFs can be computed by using some analytical 

approaches (Fahy, 1994; Lyon & DeJong, 1998). In this study, CLFs are determined 

by using wave approach in terms of transmission coefficients. Transmission 

coefficient can be obtained by using infinite/semi-infinite impedances of subsystems 

according to the type of connection. Subsystems can be connected to each other by 

point, line and area connections. Point connections can be supplied by bolts, pins or 

spot welding. In line connection, subsystems share a common line whereas in area 

connection, they have a common surface. Analytical derivations of CLFs can be 

given for point, line and area connections, respectively (Lyon & DeJong, 1998): 

 

 
( )

( )
,int

,

0

2 0
ijpo i

ij corr
ij

f

f

τδη β
π τ

∞

∞

= ⋅ ⋅
−

, (2.10) 

 

 ( ) ( ) ,

,

( )cos

2 2 ( )
iji cline i

ij corr
ij

k Lf

f

τ θθδη θ β
π τ θ

∞

∞

= ⋅ ⋅ ⋅
−

, (2.11)                                  

 

 ( ) ( ) ,

,

( )cos

2 2 ( )
iji carea i

ij corr
ij

k Af

f

τ φφδη φ β
π π τ φ

∞

∞

= ⋅ ⋅ ⋅
−

. (2.12) 

 

where, 

 

 

( )

1/48

i, ,

1

1
1

2

corr

net j net

β

π β β

=
  
  +

  +  

.                    (2.13) 

 

and ,i netβ  is net modal factor.  

 

Here, ik , cL , cA , ijτ  and ,i netβ  are wave number, connection length, connection 

area, transmission coefficient and net modal factor, respectively. Modal factor can be 
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calculated by , /i net if fη δ  in terms of net loss factor. Iteration is used for correct 

determination of coupling loss factor. Firstly, DLF is used in modal factor for 

calculating CLF. Then, net loss factor is used for satisfactory results. As it is seen in 

Equations (2.11) and (2.12), CLFs of line and area connections are function of 

incidence angles θ  and φ .  CLFs corresponding to each incidence angle should be 

computed and then averaged. In the process of averaging, it is assumed that energy is 

distributed equivalently to all incidence angles: 

 

 ( )
/2

0

2line line
ij ij d

π

θ
η η θ θ

π
= ∫ , (2.14) 

 

 ( ) ( )
/2

0

2
sinarea area

ij ij d
π

φ
η η φ φ φ

π
= ∫ . (2.15) 

 

CLFs for line and area connections can be combined as: 

 

 ( ) ( )
( )

( ) 0
,

2 0
ijline areai

ij ij i j
ij

f
I k k

f

τδη
π τ

= ⋅ ⋅
−

, (2.16) 

 

where ( )( ) ,line area
ij i jI k k  is obtained by an integral over angle of incidence for each 

subsystem type. For high frequencies, transmission coefficient for normal incidence 

( )0, =φθ  is determined by, 

 

 2

1

4
(0) i j

ij
s

k
k

R R

Z

τ ∞ ∞

∞
=

⋅ ⋅
=

∑
. (2.17) 

 

Here, kZ ∞  represents infinite system driving point impedances of subsystems at 

junction, iR ∞  and jR ∞  represent their real parts of impedances and s shows number 
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of subsystems at junction. For line and area couplings, transmission coefficient is 

calculated by using line and area impedances of subsystems at junctions.  

 

2.2.2 Power Input 

 

Structures can be excited by applying force, moment, sound pressure, fluid flow 

etc… For force and moment excitation, power injected to a structure can be written 

in terms of constant spectral force/moment amplitudes and driving point mobilities 

(Lyon & DeJong, 1998): 

 

 ( )( ) { } ( )( ) { }2 2

0 0Re Retot F M F M
in in inP P P F Y M Yω ω= + = + . (2.18) 

 

Here, 0Y  is driving point mobility of excited subsystem and equal to inverse of 

driving point impedance (0Z ), ( )F ω  and ( )M ω are frequency dependent force and 

moment, respectively. If exciting force consists of discrete data, Equation (2.18) is 

multiplied by ½.  

 

For acoustic excitation, sound source type has to be determined to calculate power 

input. In Table 2.1, sound power of some simple sources is given (Beranek, 1992). 

 

Table 2.1 Sound power of different acoustic sources (Beranek, 1992) 

Source Type Source Behavior Sound Power 

Monopole 

 

2 2
2

2 2

ˆ
ˆ ˆ; 4

8 (1 )
s

M s r

ck Q
W Q a v

k a

ρ π
π

= =
+

 

Dipole 

 

4 2 2
2

ˆ
ˆ ˆ; 4

12
s

D s r

ck d Q
W Q a v

ρ π
π

= =  

Oscillating sphere 

 

4 6 2

4 4

ˆ2

3(4 )
x

OS

ck a v
W

k a

πρ=
+

 

a 

a 

a a 
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In Table 2.1, k is wave number, a is radius of sound source, v̂  is peak velocity on 

the direction of radiation, d is distance between sources. 

 

2.2.3 Modal Density and Average Modal Spacing 

 

To perform more realistic SEA analysis, assumptions and limitations of SEA 

should be considered. One of these assumptions is that each subsystem should 

include sufficient number of modes. Modal density is a parameter that shows mode 

number in a frequency band. As it is seen in Section 2.1, modal density is also used 

for calculating CLF from ith subsystem to jth subsystem when CLF from jth subsystem 

to ith subsystem is known. Modal density can be expressed as (Lyon & DeJong, 

1998): 

 

 ( ) 1

2
n

f
ω

πδ
= . (2.19) 

    

where average modal spacing (fδ ) shows average distance of two modes in terms 

of Hertz of a subsystem as shown in Figure 2.2. In Table 2.2, AMSs of some 

subsystems are shown for several waveguides. 

 

 
Figure 2.2 Modal spacing representation of a frequency response function 
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Table 2.2 Average modal spacings (AMSs) for common subsystems 

Structure Waveguide Average Modal Spacing Wave speed 

Longitudinal 
2

Lc

L
 L yc E ρ=  

Torsional 
2

Tc

L
 T pc GJ Iρ=  Beam 

Flexural Bc

L
 2B Lc f cπ κ=  

Compression 
2

2
Lc

fAπ
′

 ( )21L yc E ρ µ′ = −  

Shear 
2

2
Sc

fAπ
 

Sc G ρ=  

( )2(1 )yG E µ= +  
Plate 

Flexural 
2 Lc

A

κ ′
 ( )21L yc E ρ µ′ = −  

Acoustic 

Volume 
--- 

3

24
airc

Vfπ
 20.05 273.15o

airc C= +  

 

In the table, yE  is young modulus of subsystem, G is shear modulus, µ  is 

poisson ratio, ρ  is density, κ  is radius of gyration, L  is length of beam, A  is area 

of plate, V is volume of acoustic space and ( )4 x y x yJ I I I I= +   is torsional moment 

of rigidity, p x yI I I= +  in terms of area moment of inertia xI  and yI . For orthotropic 

structures, wave speeds can be approximately calculated as the geometric mean of 

wave speeds in two different directions x, y, i.e., L Lx Lyc c c= ⋅ .   

 

As shown in the Table 2.2, AMSs of torsional and longitudinal modes are not a 

function of frequency for beam where frequency dependency can be observed for 

flexural modes for beams. Beside that AMSs for shear and compression modes have 

frequency dependency for plates where flexural modes do not.  
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2.2.4 Infinite System Impedance 

 

Impedance is a frequency response function that is defined as the ratio of force to 

velocity. In Table 2.3, driving point impedances of infinite systems are tabulated for 

some waveguides. In the table, r denotes radius of excitation and h represents 

thickness of plate. Beside force impedances, moment impedances are needed for 

torsional and flexural waveguides.  

 

In the calculation of transmission coefficients, these impedances should be 

calibrated based on the boundary conditions. For example, point impedances for 

plate must be reduced by factor 2 for each free boundary and for beams by factor 4 

under force excitation. Beside that acoustic impedance is reduced by factor 2 for 

each rigid boundary. For each pinned boundary, moment impedances are reduced by 

factor 2. 

 

2.2.4.1 Dimension Reducing Principle (DRP) 

 

As mentioned in Section 2.2.1, line and area impedances of subsystems are 

needed for line and area coupling. Line and area impedances can be evaluated by 

using “dimension reducing principle (DRP)” based on point impedance of structures. 

This principle is simply written as: 

 

 
( )

( ) ( 1)
( 1)

1

1n n
mD m D

m D

Z Z
L

−
−

−

= ⋅ ,     ( ( )1 , 3m n≤ ≤  and m n≥ ). (2.20) 

 

Here, n stands for an integer denoting connection type in Table 2.4, and m denotes 

spatial dimension of the structure. Therefore, ( )n
mDZ  is the impedance of nth type of 

connection for mDth dimension structure. ( 1)m DL −  is the physical parameter selected 

to be reduced, and is shown with dash dot arrows in Figure 2.3.  
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Table 2.3 Driving point impedance of structures (Lyon & DeJong, 1998) 

Subsystem, Waveguide Force Impedance Moment Impedance 

Thin beam, flexural ( )2 1 1BAc jρ +  ( )2

2
1B

B

Ac
j

k

ρ −   

Thin plate, flexural 8 Lh cρ κ ′  ( )

216

11 4 ln

L B

B

h c k

j k r

ρ κ

π  +  
 

 

Bar, longitudinal 2 LAcρ  --- 

Plate, inplane 28 1
j

hfr
kr

πρ  − 
 

 --- 

Bar, torsional --- 2 p LI cρ   

Acoustic space 
2

1
f j

c kr

πρ  + 
 

  --- 

 

 
Figure 2.3 Structures and reducing dimensions 

b(2 )DL

a(2 )DL
c(2 )Dh L=

D 2 

)1( DaLb =

0D 
)0( DbLδ

)0( DaLδ
)0( DcLδD 1 

)1( DbL

)1( DcL

a(3 )DL

(3 )b DL

(3 )c DL

3D 
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Bending line and area impedances of structures are derived by using point 

impedances and DRP in this section and presented in Table 2.4. In Table 2.4, Lm  

represents lumped mass of beam or plate. 

 

Table 2.4 Bending line and area impedances of flexible structures obtained from point connections via 

dimension reducing principle 

Structure Type of  

Connection Point (m=0) Beam (m=1) Plate (m=2) Solid (m=3) 

Point (n=0) Lj mω  2 (1 )BAc jρ +  8 Lh cρ κ  j Vωρ  

Line (n=1) --- j Aωρ  2 (1 )Bhc jρ +  8 Lcρκ  

Area (n=2) --- --- j hω ρ  2 (1 )Bc jρ +  

Volume (n=3) --- --- --- jω ρ  

 

As an example, line impedance of 2D subsystem (plate, (1)
2DZ ), can be found by 

using point impedance of 1D subsystem (beam,(0)
1DZ ); the length of the plate (2 )a DL  

reduces to the width of the beam b ( )1()2( DaDa LbL =→ ). Therefore, line impedance 

of the plate subsystem is calculated by: 

 

 (1) (0)
2 1

1

1 1 1
2 (1 ) 2 (1 ) 2 (1 )D D B B B

D

Z Z Ac j bhc j hc j
L b b

ρ ρ ρ= ⋅ = ⋅ + = ⋅ + = + . (2.21) 

 

Note that, the same procedure can be applied for acoustic subsystems.  

 

2.3 High Frequency Threshold  

 

Modal overlap factor (MOF) is a statistical parameter that quantifies modal 

density in modal bandwidth ( nf∆ ) that is shown in Figure 2.2, and defined as 

/nf fδ∆ . For complex structures, it can be determined experimentally. MOF can 

also be expressed (Lyon & DeJong, 1998): 
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2

f
MOF

f

π η
δ

= . (2.22) 

 

Here, η  is damping loss factor of a subsystem. Rabbiolo et al. (2004) states that 

approximate MOFs can be used as an indicator for high frequency thresholds. For 

this purpose, the thresholds in terms of MOFs are 1, 2.5 and 3 for beams, plates and 

acoustic elements, respectively. However, MOF is not the only factor for deciding 

the threshold for high frequency transition. Observations on frequency spectra 

exhibiting smooth behavior should provide MOFs.   

 

2.4 Power Injection Method (PIM) 

 

In Section 2.2.1, analytical determination of CLF is described by using 

finite/semi-infinite system impedances. It is also stated that loss factors can be 

determined experimentally. Power injection method (PIM) (Bies & Hamid, 1980) is 

one of the most commonly used methods to determine the loss factors. PIM is based 

on the determination of random power injected to the subsystems and the 

measurement of the total vibrational energies of those subsystems. In this technique, 

first, the power is injected to the first subsystem and then total mean energies of each 

subsystem are measured. Normalized form of the balance equation between S 

number of subsystems can be written in terms of total loss quantities (factors) ijηɶ : 

 

 

11 12 1 11

21 22 21

1 1

1
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E

E

E

η η η
η η

η η
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    
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     
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ɶ ɶ ⋯ ⋮
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ɶ ɶ⋯ ⋯

 (2.23) 

 

where n
ijE  is the normalized vibrational energy, and is defined as: 
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ijn

ij

j

E
E

P

ω
= . (2.24) 

 

Here, Eij is the total energy of the ith subsystem when the jth subsystem is excited 

by Pj which is the injected power into the jth subsystem. Then, second subsystem is 

excited, and the same procedure is followed. This is repeated for each subsystem, 

and finally following equality is obtained: 
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1 1

1 0 0

0 1

0 1
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ɶ ɶ ɶ⋯ ⋯⋯

ɶ ɶ ⋯ ⋮ ⋯ ⋮⋯ ⋮

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮

ɶ ɶ⋯ ⋯ ⋯ ⋯⋯ ⋯

 (2.25) 

 

Equation (2.25) implies that total loss quantity matrix is the inverse of the 

normalized energies. DLFs and CLFs are then calculated from the total loss 

quantities as follows: 

 

 

1

,ij ji

S

ii si
s

    i jη η

η η
=

= − ≠

 =


∑

ɶ

ɶ
 (2.26) 

 

Normalized vibrational energy power can be approximately defined from the 

measured mobilities of the vibrating structures as: 

 

 { }
2

0Re

ijn
ij

j

m Y
E

Y

ω
=  (2.27) 

 

Here, m is mass of vibrating structure, ijY  is time- and frequency averaged 

mobility of point i under excitation of point j and { }0Re jY  is the real part of driving 
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point mobility. For acoustic elements, normalized energy can be calculated by using 

Equation (2.24) for various sound source types. 

 

As it is seen from Equation (2.26), PIM can also estimate DLF of subsystems. If 

there is only one subsystem, PIM can estimate only DLF. 

 

It should be noted that this procedure can also be numerically applied to 

determine CLFs by using any proper deterministic techniques. This application is 

then called as numerical power injection method. 

 
2.5 Uncertainty Analysis via Monte Carlo Simulation 

 

As mentioned before, products that are manufactured from the same production 

line and that have the same manufacturing processes can exhibit different vibro-

acoustic response characteristics which are called as “uncertainty”.  

 

For low frequencies, the effect of uncertainty is evaluated by some statistical 

classifications based on experiments or deterministic numerical methods (finite 

element method, boundary element method) via Monte-Carlo simulation (Evans & 

Swartz, 2000; Fahy, 1994; Hobenbichler & Rackwitz, 1988; Lewis & Böhm, 1984). 

Monte Carlo simulation is a statistical technique to predict outputs of systems that 

have uncertain inputs such as modeling stock market, natural events and numerical 

dynamic analyses. Uncertain inputs are chosen as a random distribution function and 

outputs are calculated for each input. But solution time increases between 100 and 

1000 times for complex structures such as automobiles, planes and ships that has 

degree of freedom more than over a million. Beside that, degrees of freedom need to 

be increased with geometrical ratios that lead ineffective deterministic analyses for 

mid and high frequency analyses. Therefore, especially for higher frequencies, 

statistical and energy based approaches are much more convenient since they predict 

mean values both in space and frequency domains.  
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CHAPTER THREE 

COMPOSITE PLATE-ACOUSTIC VOLUME INTERACTION  

 

In this chapter, high frequency vibro-acoustic analysis of an enclosed system; 

composite plate-acoustic volume (CP-AV) having structural uncertainty is 

considered. There are several studies for sound transmission in plate-acoustic 

volume-structures; Craggs (1971) and Craik & Smith (2000) have stated that volume 

is an important parameter for dynamic response. Statistical energy analysis (SEA) is 

used to predict sound transmission by several authors (Brekke, 1981; Crocker & 

Price, 1969; Price & Crocker, 1970; Renji et al., 2001; Steel & Craik, 1994). Price & 

Crocker (1970) and Sgard et al. (2010) have examined the parameters effecting the 

sound transmission for such systems. Totaro et al. (2009) has determined coupling 

loss factor (CLF) of structure-cavity coupling by using dual modal formulation. 

However, as far as the author’s knowledge, there is not any vibro-acoustic analysis 

concerning uncertain composite plate-acoustic volume interaction. 

 

In the chapter, a CP-AV system is considered to demonstrate a reliable 

methodology for high frequency analysis having structural uncertainty. In this 

regard,  

 

− Firstly, an SEA model for the coupled system is constructed.  

− After that, SEA parameters of subsystems such as average modal spacing (AMS), 

CLF, damping loss factor (DLF) are analytically determined. 

− Classical SEA equations are solved and mean sound pressure and velocity 

responses of frequency are obtained. These classical SEA results are indicated as 

“analytical SEA”. 

− Then, finite element method (FEM) based numerical analyses are performed for 

the coupled structure.  

− Natural frequencies are obtained to verify numerical model of subsystems and 

AMS of subsystems are determined. 

− Afterwards, numerical power injection method (PIM) is performed to determine 

CLFs and DLFs. 



 22 

− Computed DLFs are verified for initial DLFs for the considered system. 

− Modal overlap factor (MOF) is also calculated by using computed AMSs and 

DLFs to approximately determine high frequency threshold. 

− The data of statistical parameters computed by FEM are fed to SEA equations 

and solved and mean sound pressure and velocity responses of frequency are 

obtained. These results are indicated as “numerical SEA”. 

− A set of plate thickness variation with normal (Gaussian) distribution is used to 

model structural uncertainty for the composite plate. Monte Carlo simulation is 

then performed based on frequency responses obtained by FEM. These results 

are indicated as “MC-FEM”.  

− Finally, analytical SEA, numerical SEA and MC-FEM results are compared to 

discuss the methodologies performed for such kind of systems.   

 

3.1 Classical Statistical Energy Analysis  

 

Wave-based classical SEA approach uses infinite system impedance to compute 

transmission coefficients and then CLFs. One of six surfaces of the acoustic volume 

is assembled by a plate, while others are kept rigid. For SEA model, acoustic volume 

is labeled as subsystem 1 and the plate is labeled as subsystem 2 as shown in Figure 

3.1. Coupling of these two subsystems are provided by line and area connections as 

also shown in Figure 3.1. Mechanical properties of subsystems are given in Table 

3.1.  

 

 
Figure 3.1 Line and area connections of acoustic volume-composite plate structure 
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Area 
connection 
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Table 3.1 Mechanical properties of subsystems 

 Acoustic volume (air) Composite plate 

Dimensions 1m x 1m x 1m 1m x 1m x 0.0025m 

Young modulus along direction of x - 21.3 [GPa] 

Young modulus along direction of y - 21.1 [GPa] 

Shear modulus along direction of x - 3003 [MPa] 

Poisson ratio along direction of x (xyυ ) - 0.161 

Density 1,225 [kg/m3] 1771.21 [kg/m3] 

Internal Damping 0.0001 0.02 

 

In Figure 3.2, SEA power flow diagram is given. Line and area impedances of 

acoustic volume are expressed to determine CLF as (Lyon & DeJong, 1998): 

 

 2
3 , 0 0 0 /line

D a pZ c k kρ= , (3.1a) 

 

 3 , 0 0
area
D aZ cρ= . (3.1b) 

 

Here, subscript 0 represents property of acoustic volume and pk  is wave number of 

plate which bounds the acoustic volume. CLF for line and area coupling between 

subsystems are determined by using the process mentioned in Section 2.2.1. Integral 

over angle of incidence wave that is shown in Equation (2.16) is given for acoustic 

volume-plate connections for line and area coupling respectively as (Lyon & 

DeJong, 1998): 

 

 
2

0
21
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2
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Note that these results can be used for coupling losses from plate to acoustic 

volume i.e., CLF21 as indicated in Figure 3.3. Coupling losses from acoustic volume 

to plate (CLF12) can be determined by using reciprocity relation using Equation 

(2.5).  

 

 
Figure 3.2 Power flow between acoustic volume and composite plate 
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Figure 3.3 CLF between acoustic volume and composite plate  

 

AMSs and MOFs of subsystems can be calculated for each subsystem as 

mentioned in Section 2.2.3 and Section 2.3, respectively. To provide integrity, these 

SEA parameters will be presented with numerical results in Section 3.3.  

 

 

Composite 
Plate 

2,inP  

1, 11 1dissP Eη ω=  2, 22 2dissP Eωη=  

( )21 21 21 2
line areaP Eω η η= +  

( )12 12 12 1
line areaP Eω η η= +  
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Volume 

1,inP  
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3.2 Numerical Modeling via Finite Element Method 

 

In numerical computation of SEA parameters, finite element method software, 

ANSYS is utilized. In ANSYS modeling, element type shell 181 and fluid 30 are the 

element types those are used for plate and acoustic volume. To demonstrate the 

accuracy of the numerical model, natural frequencies of subsystems are determined 

and then compared with analytical results. Analytically, natural frequencies can be 

calculated for an acoustic volume with rigid walls (Nefske & Sung, 1992) as: 

 

 
2 2 2

, , 2 2 22m n p
x y z

c m n p
f

L L L
= + + . (3.3) 

 

where xL , yL  and zL  are dimensions of acoustic volume on x, y and z coordinates, 

respectively. A MatLAB code constructing ANSYS log file including numerical 

model is given in Section A.1.  The FEM model of the system is presented in Figure 

3.4. Natural frequencies of acoustic volume are determined numerically with respect 

to different mesh sizes and compared with analytical results in Table 3.2. 

 

a) 

Figure 3.4 Numerical model of subsystems a) Acoustic volume, b) Composite plate, c) Acoustic 

volume-composite plate coupling 
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b) 

 
c) 

Figure 3.4 Numerical model of subsystems a) Acoustic volume, b) Composite plate, c) Acoustic 

volume-composite plate coupling (continue) 
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Table 3.2 Natural frequencies of the acoustic volume 

Mode 

Number 
Numerical Analytical 

 N=20x20x20 N=30x30x30 N=40x40x40 N=50x50x50 N=60x60x60  

1 171.6764 171.5784 171.5441 171.5282 171.5196 171.5 

2 171.6764 171.5784 171.5441 171.5282 171.5196 171.5 

3 171.6764 171.5784 171.5441 171.5282 171.5196 171.5 

4 242.7871 242.6485 242.6 242.5775 242.5653 242.5376 

5 242.7871 242.6485 242.6 242.5775 242.5653 242.5376 

6 242.7871 242.6485 242.6 242.5775 242.5653 242.5376 

7 297.3522 297.1825 297.1231 297.0956 297.0806 297.0467 

8 344.4122 343.6272 343.3527 343.2257 343.1567 343 

9 344.4122 343.6272 343.3527 343.2257 343.1567 343 

10 344.4122 343.6272 343.3527 343.2257 343.1567 343 

11 384.828 384.0818 383.8209 383.7002 383.6346 383.4857 

12 384.828 384.0818 383.8209 383.7002 383.6346 383.4857 

13 384.828 384.0818 383.8209 383.7002 383.6346 383.4857 

14 384.828 384.0818 383.8209 383.7002 383.6346 383.4857 

15 384.828 384.0818 383.8209 383.7002 383.6346 383.4857 

16 384.828 384.0818 383.8209 383.7002 383.6346 383.4857 

17 421.385 420.6637 420.4115 420.2948 420.2315 420.0875 

18 421.385 420.6637 420.4115 420.2948 420.2315 420.0875 

19 421.385 420.6637 420.4115 420.2948 420.2315 420.0875 

20 487.0724 485.9623 485.5741 485.3945 485.2969 485.0753 

 

Natural frequencies of fully simply supported symmetrical composite plates 

having only orientation angle of 0-90, are expressed as (Whitney, 1987): 
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Here non-dimensional parameters λ , Dγ  and Dφ  are determined as x yL L , 

11 22( / )D D Dγ =  and  12 66 22( 2 ) /D D D Dφ = + , respectively ( ,x yL L  plate dimensions).  

Here, 11D , 12D , 22D  and 66D  are bending rigidities in the principal material 

directions and can be determined by evaluating the material matrix and z-coordinate 

of each laminate. Further information about determination of rigidities is given in 

Section A.2. Natural frequencies of the composite plate are determined with respect 

to different mesh sizes, and compared with analytical results in Table 3.3.  

 

Table 3.3 Natural frequencies of the composite plates 

Mode 

Number 
Numerical Analytical 

 N=20x20 N=30x30 N=40x40 N=50x50 N=60x60  

1 5.9316 5.9291 5.928 5.9273 5.9269 5.926059 

2 15.885 15.8546 15.8406 15.833 15.8284 15.82726 

3 15.9056 15.8752 15.8611 15.8535 15.8489 15.82726 

4 23.7933 23.7531 23.7345 23.7244 23.7183 23.70424 

5 33.4843 33.3203 33.2449 33.204 33.1795 33.14356 

6 33.5371 33.3729 33.2973 33.2564 33.2318 33.14356 

7 39.9362 39.7868 39.718 39.6807 39.6583 39.62186 

8 39.9723 39.8226 39.7537 39.7163 39.6938 39.62186 

9 53.7864 53.5822 53.4879 53.4367 53.4059 53.33453 

10 58.7022 58.1665 57.9213 57.7888 57.7091 57.55543 

11 58.8001 58.2634 58.0178 57.885 57.8052 57.55543 

12 64.3687 63.8735 63.6467 63.5241 63.4504 63.30904 

13 64.4528 63.9566 63.7294 63.6066 63.5327 63.30904 

14 76.2496 75.767 75.5453 75.4253 75.3531 75.20682 

15 76.3016 75.8183 75.5962 75.476 75.4036 75.20682 

16 91.8934 90.5524 89.9424 89.6138 89.4167 88.99348 

17 92.0502 90.7068 90.0958 89.7666 89.5691 88.99348 

18 96.2494 95.6008 95.2528 94.9412 94.7543 94.35709 

19 97.1018 95.831 95.3021 95.0819 94.8946 94.35709 

20 97.2466 95.9734 95.3941 95.1402 95.0427 94.81694 
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Table 3.2 and Table 3.3 show that numerical natural frequencies well converge 

with analytical ones as the number of elements increases.  

 

3.3 Numerical Computation of Statistical Energy Analysis (SEA) Parameters 

 

3.3.1 Computation of AMSs 

 

After demonstrating the accuracy of numerical model, AMSs of subsystems can 

be numerically determined by using natural frequencies of subsystems (Seçgin, 

2013): 

 

 1
1

1
( ) ( )

1c

P

n p n p
f

p

f f f
P

δ
∆

−∆
=∆

= −
− ∑ . (3.5) 

 

Here, ∆P  denotes number of modes in a frequency band, nf  is natural frequency 

and cf∆  is frequency band. In Figure 3.5, computed AMSs of Subsystem 1 and 

Subsystem 2 for 1/3 octave band are plotted with respect to different number of finite 

elements. Analytical determinations are also given in the figure. Note that analytical 

results in low frequencies are not reliable since there are not enough modes in this 

region. However, higher frequencies can be regarded as reference data. In this 

regard, as expected, increasing number of elements increases accuracy for numerical 

results for both subsystems. As shown in Figure 3.5(a), at some low frequencies, 

AMSs cannot be numerically calculated for the acoustic volume since there are not 

any modes encountered in those considered bands.  
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Figure 3.5 Average modal spacings for different number of elements for a) Acoustic volume, b) 

Composite plate 

 

3.3.2 Computations of CLFs 

 

After determination of AMSs, numerical power injection, (PIM) is applied to 

obtain CLFs of subsystems. Regarding memory usage and CPU time, 80 elements in 

each dimension of subsystems are selected in all analyses. Following the procedure 

given in Section 2.4, loss factors are determined numerically and are given in Figure 
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3.6. In the analyses, the volume is excited by 1 Pa of sound pressure, and the plate is 

excited by 1 N of force. Corresponding input powers to these pressure and force are 

determined using the evaluations in Section 2.2.2. To provide random field, spatial-

averaging is performed for 200 nodes for acoustic space and 50 nodes for composite 

plate. 

 

Considering Figure 3.6, obtained DLFs diverge from initially set damping values 

at small levels. These differences can be regarded as error of the PIM. However, they 

can be regarded as acceptable when considering CLFs tendencies. 
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Figure 3.6 Loss factors of subsystems (black dash: initial damping, black solid: analytical CLF, blue 

solid: PIM results) 

 

3.4 Response Analysis of CP-AV System Having Structural Uncertainty 

 

 In order to demonstrate the effect of structural uncertainty on vibro-acoustic 

response, FEM-Monte Carlo simulation is performed. The uncertainty is simulated 

via the variation of plate thickness with regard to normal (Gaussian) distribution. For 
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this purpose, statistical distribution of the plate thickness is selected as 

( ) ( )0022.0025.0,0022.0, ×= hmh σ  mm. Then classical and numerical statistical 

energy analyses are employed for comparison. Analyses are performed for two 

different cases: 

 

1. Acoustic excitation; it is applied to the mid-point of acoustic volume with 1 Pa. 

2. Structural excitation; it is applied to the mid-point of composite plate with 1 N. 

 

3.4.1 Determination of High Frequency Threshold  

 

Before starting for uncertainty analysis, it is of importance to define approximate 

high frequency threshold. For this purpose, determining approximate MOF of each 

subsystem regarding the Rabbiolo et.al. (2004) criterion is useful; They state that 

approximate MOF is 2.5 for plates and 3 for acoustic volumes for thresholds. MOFs 

are computed via Equation (2.22) by using analytical and numerical data, and the 

results are given in Figure 3.7.  

 

As shown in Figure 3.7, numerical and analytical MOFs are sufficiently 

consistent; the threshold for the acoustic volume is about 3800 Hz for analytical 

results and 3070 Hz for numerical results and it is about 270-350 Hz for the plate. 

These negligible inaccuracies arise from deviations in determination of AMSs and 

DLFs. For structural high frequency analysis, threshold value of the plate has to be 

considered. Therefore one can consider 270 Hz as a starting frequency of high 

frequency region for this system.   
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Figure 3.7 Numerical and analytical modal overlap factor of subsystems a) Acoustic volume, b) Plate 

 

3.4.2 Acoustic Excitation 

 

FEM-Monte Carlo analyses are performed for randomized plate thickness. 

Acoustic volume is excited from the mid-point by 1 Pa via a monopole spherical 

source with a diameter of 1/100 m. The mean sound pressure of the volume and 

mean velocity of the plate are compared via analytical and numerical SEA method 

and, are presented in Figures 3.8-3.9. The results showed that both analytical and 

numerical SEA are capable of predicting high frequency mean levels, however, 

lower frequencies have to be enhanced. 



 34 

100 200 300 400 500 600 700 800 900 1000

10
-2

10
0

10
2

S
ou

nd
 P

re
ss

ur
e 

[P
a]

Frequency [Hz]  
a) 

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

10
-2

10
0

10
2

S
ou

nd
 P

re
ss

ur
e 

[P
a]

Frequency [Hz]  
b) 

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000

10
-2

10
0

10
2

S
ou

nd
 P

re
ss

ur
e 

[P
a]

Frequency [Hz]  
c) 

Figure 3.8 Sound pressure response of acoustic volume under acoustic excitation a) 1-1000 Hz, b) 

1000-3000 Hz, c) 3000-5000 Hz (blue: numerical SEA, red: classical SEA, grey: uncertain results 

black dot: mean of uncertain results) 
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Figure 3.9 Velocity response of composite plate under acoustic excitation a) 1-1000 Hz, b) 1000-

3000, Hz c) 3000-5000 Hz (blue: numerical SEA, red: classical SEA, grey: uncertain results black dot: 

mean of uncertain results) 
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3.4.3 Structural Excitation 

 

For this case, the plate is excited from its mid-point by 1 N. Mean responses of 

sound pressure of the acoustic volume and vibration velocity of the plate are obtained 

and compared by SEA as previously done for the acoustical excitation case (Figure 

3.10 and 3.11).  
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b) 

Figure 3.10 Sound pressure response of acoustic volume under plate excitation a) 1-1000 Hz, b) 1000-

3000 Hz, c) 3000-5000 Hz (blue: numerical SEA, red: classical SEA, grey: uncertain results black dot: 

mean of uncertain results) 
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Figure 3.10 Sound pressure response of acoustic volume under plate excitation a) 1-1000 Hz, b) 1000-

3000 Hz, c) 3000-5000 Hz (blue: numerical SEA, red: classical SEA, grey: uncertain results black dot: 

mean of uncertain results) (continue) 

 

 

 

 

100 200 300 400 500 600 700 800 900 1000

10
-6

10
-4

10
-2

V
el

oc
ity

 [
m

/s
]

Frequency [Hz]  
a) 

Figure 3.11 Velocity response of composite plate under plate excitation a) 1-1000 Hz, b) 1000-3000 

Hz, c) 3000-5000 Hz (blue: numerical SEA, red: classical SEA, grey: uncertain results black dot: 

mean of uncertain results) 
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Figure 3.11 Velocity response of composite plate under plate excitation a) 1-1000 Hz, b) 1000-3000 

Hz, c) 3000-5000 Hz (blue: numerical SEA, red: classical SEA, grey: uncertain results black dot: 

mean of uncertain results) (continue) 

 

Figure 3.8 and 3.10 represent spatial-averaged sound pressure amplitudes of 200 

points in the acoustic volume and Figure 3.9 and 3.11 show spatial-averaged 

vibration velocity amplitudes of 50 points in the plate, in three parts; a) 1-1000 Hz, 

b) 1000-3000 Hz, c) 3000-5000 Hz. In these figures, as FEM-Monte Carlo 

simulation results, spatial averaged mean results and their mean values of 20 samples 

are given. Wider difference in maximum and minimum dynamic response in a 

frequency band means that the response is more sensitive to the plate variation and 

keep in mind that 270 Hz is the high frequency threshold. In this regard, considering 

Figure 3.8-3.11, following outcomes can be drawn; 
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− Main drawback of Monte Carlo simulation is that it needs high computation time 

and memory usage. All analyses are performed in ANSYS APDL 12.1 program 

with Intel Xeon E5-2643 2x3.3 GHz, 96 GB Ram, 64 Bit Win 7 workstation. The 

analysis took about 29490 sec = 491.5 min = 8.2 hours for just 1 sample. 

Performing more sensitive uncertainty analyses will take much more time that it 

will make analyses insufficient. These results show us that FEM-Monte Carlo 

simulation is not a sufficient way to consider uncertainty analysis.  

− Analytical and numerical SEA results converge in high frequencies. 

− The reason of inaccuracy of numerical SEA in low frequencies is the fact that 

since there is not enough modes in the computation of average modal spacing. 

− Considering the difference of analytical SEA and numerical SEA, since the latter 

one uses more realistic data fed by FEM, it is much more reliable. 
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CHAPTER FOUR 

COMPOSITE STRUCTURES 

 

In this chapter, high frequency vibration analysis of point connected T-type 

composite structures having structural uncertainty is considered. As mentioned 

before, the success of vibration prediction of statistical energy analysis (SEA) mainly 

depends on the accurate prediction of loss factors. For simple structures, coupling 

loss factors (CLF) can be analytically determined using finite/semi-infinite system 

impedances/mobilities (Fahy, 1994; Lyon & DeJong, 1998); however, for relatively 

complex systems it requires auxiliary techniques based on numerical and/or 

experimental procedures. For this purpose, power injection method (PIM) (Bies & 

Hamid, 1980; Langhe & Sas, 1996) is a good alternative for determining loss factors 

of SEA without separating structure to its subsystems, i.e. as in-situ. Manik (1988) 

has developed PIM to determine loss factors for strong coupling. There are also 

different methods to determine coupling loss factors such as input power modulation 

technique (Fahy & Ruivo, 1997), dual formulation (Maxit & Guyader, 2009), 

spectral element method (Ahmida & Arruda, 2003) and matrix fitting method 

(Hodges, Nash & Woodhouse, 1987). Beside this, utilization of modal data is also 

used for CLF predictions; Seçgin (2013) has developed a modal-based approach for 

the determination of SEA parameters including CLFs for directly connected 

composite plates having different orientation angles. Totaro et. al. (2009) has used a 

finite element method (FEM) based modal approach for uncoupled subsystems to 

evaluate CLFs. Steel & Craik (1994) has also applied finite element model to 

determine CLF in a different manner. Fredö (1997) has combined FEM and an SEA-

like approach to determine power transmission between two plates in terms of energy 

flow coefficients.  

 

In this chapter, vibration response analyses of I, L and T type composite 

structures, as shown in Figure 4.1, having uncertain mass are considered. Composite 

structures are constructed by using laminated composite plates. The plates are 

connected to each other from three points by using corner irons. For T-type structure, 

there is no direct connection between the plates 1 and 2.  In this study, three, 
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identical, eight-layered symmetrical composite plates orientated as 

{ } 0-90-0-90-90-0-90-0  are manufactured. The mechanical properties of these 

identical plates are measured in laboratory and given in Table 4.1. Procedure of the 

determination of mechanical properties is given in Appendix 2. 

 

  
         a)                                                          b) 

 
c) 

Figure 4.1 Composite structures a) I-type, b) L-type, c) T-type 

 

In SEA, accurate determination of CLFs between subsystems is vital to predict 

realistic responses. For that reason, CLFs between subsystems for all types are 

determined via both numerical and experimental PIM and then, these results are 

compared with analytical CLFs. After determination of loss factors, classical 

(analytical) and numerical SEA are applied to have mean vibration responses. In 

numerical Monte-Carlo analysis for which uncertainty analysis is simulated, finite 

element method (FEM) is performed for each sample of normal distribution of mass 

variation. All these results are then compared to show the effect of uncertainty and 

the accuracy of SEA method with respect to the frequency range, i.e., low, mid and 

high frequency regions.  
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Table 4.1 Properties of the composite plate 

Property Value 

Length along direction of x  0.5 [m] 

Length along direction of y  0.6 [m] 

Thickness  2.50E-03 [m] 

Young modulus along direction of x  21.3 [GPa] 

Young modulus along direction of y  21.1 [GPa] 

Shear modulus along direction of x  3003 [MPa] 

Poisson ratio along direction of x (xyυ ) 0.161 

 

4.1 Classical Statistical Energy Analysis  

 

4.1.1 Force/Moment Power Transmission  

 

As it is known, power transmission occurs by two different ways; 1) Force 

transmission and 2) Moment transmission. These transmissions differ according to 

construction of structure. In Table 4.2, force and moment transmissions for 

longitudinal and bending vibrations are outlined. For instance, for I type connections, 

both bending force and moment transmission occurs, whereas only force 

transmission occurs in longitudinal vibrations.  

 

By using information that is given above, structures can be modeled for I, L and T 

type structure via SEA as shown in Figure 4.2. CLFs are determined by summing 

moment and force transmission coefficients for I type structure. Since there is no 

bending force transmission through the plates, only bending moment transmission 

coefficients are determined for L type structure. For T type structure, both moment 

and force transmission coefficients are considered to determine CLFs. Note that, 

there is no direct coupling between Plate 1 and Plate 2, however, indirect coupling 

exist for T type connection.  
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Table 4.2 Properties of the composite plate 

Power Transmission 
Connection Type 

Source: 1st Plate Receiver: 2nd Plate 

Bending force 

power 

Bending force 

 power 

 

Bending moment power Bending moment power 

 

Longitudinal force 

power 

Longitudinal force 

power 

Bending force  

power 

Longitudinal force 

power 

 

Bending moment power Bending moment power 

 

Longitudinal force 

power 

Bending force  

power 
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a) 

 

b) 

Figure 4.2 SEA model of structures a) I/L type, b) T type 

 

Besides, the coupling between any two plates is affected due to the coupling to the 

other plate. To consider this, an iterative procedure is applied between each couple. 

Firstly, CLFs are determined by using internal damping of subsystems and then 

calculated CLFs of subsystem are summed by damping loss factor (DLF) of 

subsystem and new CLF set are determined. This procedure can be extended until 

satisfactory results are evaluated. It should be also noted that, CLFs are multiplied by 

3, since plates are connected from three points. 

 

Subsystem 2 

1,inP  
2,inP  1, 11 1dissP Eη ω=  

int
12 12 1
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int
21 21 2

poP Eωη=  

Subsystem 3 

3,inP  3, 33 3dissP Eη ω=  
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poP Eωη=  
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Before the determination of CLFs between plates for iterative procedure in T type 

structure, internal damping (damping loss factor, DLF) of plates has to be known. In 

this regard, firstly, an experimental PIM is applied to a single plate as proper to the 

procedure given in Section 2.4.   

 

4.1.2 Determination of Internal Damping (Damping Loss Factor, DLF)  

 

In experimental PIM, the plate is excited by a random noise signal from three 

different points, and point mobilities are measured from five different points. DLF of 

considered plate is obtained for 1/3 octave band averaging for each discrete 

frequency and presented in Figure 4.3. MOF is also calculated to predict approximate 

high frequency threshold by using Equation (2.22) and found as about 2100 Hz 

(Figure 4.4). 
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Figure 4.3 DLF of a single plate obtained by experimental PIM  

10 100 1000 5000

10
-2

10
0

10
2

Frequency [Hz]

M
O

F

 

 

MOF=2.5

MOF plate

 
Figure 4.4 MOF of composite plate 
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4.1.3 Determination of Coupling Loss Factors (CLF) 

 

In Figure 4.5, CLFs between subsystems are determined by using infinite system 

impedances with the procedure given in Section 2.2.1. For T type structure, it is seen 

that for fifth iteration, required balance is provided.  
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b) 

Figure 4.5 CLFs between subsystems a) I type, b) L type, c) T type  
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Figure 4.5 CLFs between subsystems a) I type, b) L type, c) T type (continue) 

 

CLF in very low frequencies for I-type connection is calculated as a value higher 

than 1 as shown in Figure 4.5a, this is not possible situation but it should be 

remembered that calculated CLFs by using infinite impedances are not accurate 

results in low frequency region. Analytical SEA results are given in Section 4.4 

together with the other results for integrity. 

 

4.2 Numerical Computation of Loss Factors  

 

In numerical PIM, finite element method by ANSYS® is used. Each plate is 

discretised by using 25 of quadratic elements along the x-direction and 30 of 

quadratic elements for the y-direction. No boundary condition is applied to structure. 

In the process of power injection, each plate is forced from different points to 

simulate rain-on the roof excitation separately by random force excitation. Point 

mobilities of 200 different points (including driving point) are stored. Note that, it is 

assumed that spatially-averaged energy of each plate is well represented by mean 

energies of these points. After that the procedure given in Section 2.4 is followed to 

obtain CLF and DLFs and given in Figures 4.6-4.8, for I, L and T type structures, 

respectively. Beside that CLFs obtained from approximate analytical impedances are 

also presented in these figures for comparison. On the other hand, DLF of a single 

plate which is used in the computations of numerical PIM is also compared with in 
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situ DLFs of structures obtained by experimental PIM and presented in Figures 4.6-

4.8. 

 

By examining Figures 4.6-4.8, following main conclusions can be drawn; 

 

− As shown in right diagonal of Figures 4.6-4.8, numerical DLFs of composite 

plates constructing the structures are coherent with DLF of a single composite 

plate as expected. Because, numerical analysis uses the experimental data of 

single plate. This shows that numerical (finite element) model and numerical 

procedure for power injection is successfully applied to the structures. 

− Computed CLFs by numerical power injection, for each structure (I, L, and T 

type structures), shows no considerable discrepancies compared to approximate 

analytical results for higher frequencies. This is because the results at lower 

frequencies are not meaningful due to the fact that infinite system impedances are 

used in the computations. 

 
 
4.3 Experimental Determination of Loss Factors  

 

Experimental setup is built for each type of structures. Here, in Figure 4.9, only 

the setup for the T-type is shown. Following equipments are used to perform 

experiments:  

 

1. Agilent 33210A Signal Generator 

2. Bruel Kjaer Power Amplifier Type 2706 

3. Bruel Kjaer Type 4809 

4. PCB Impedance Head 352C33 Model 

5. PCB Accelerometer 288D01 

6. National Instruments 9234 4 Channel Signal Analyzer Card 

7. National Instruments cDAQ 9174 chasis 

8. Labview Signal Express 2012 Sound and Vibration toolkit 

9. MatLAB software 
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All MatLAB codes to process signals are given in Appendix 1 including 

computations for classical SEA, numerical analysis with ANSYS and experimental 

analysis. 

 

Structures are hanged by flexible ropes to supply free boundary conditions. In the 

process of power injection, each plate is forced from different points to simulate rain-

on the roof excitation separately by a random excitation via Bruel Kjaer exciter Type 

4809.  

 

Point mobilities of 20 different points (including driving point) are stored for 

experimental PIM. Note that, it is assumed that spatially-averaged energy of each 

plate is well represented by mean energies of these points. After that the procedure 

given in Section 2.4 is followed to obtain CLF and DLFs and given in Figures 4.6-

4.8, for I, L and T type structures, respectively.  

 

For experimental PIM, these main conclusions can be drawn by examining 

Figures 4.6-4.8; 

 

− DLFs of experimental power injection diverge from the numerical results. This 

can be because of the existence of the coupling to other plate(s). 

− Computed CLFs by numerical and experimental power injection, for each 

structure (I, L, and T type structures), shows no considerable discrepancies 

compared to each other throughout the entire frequency range and, compared to 

approximate analytical results for higher frequencies.  
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Figure 4.6 Loss factors of I-connected composite structure (dash-dot line: analytical, solid line: 

numerical PIM, dot line: experimental PIM, gray solid line: DLF of a single plate) 
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Figure 4.7 Loss factors of L-connected composite structure (dash-dot line: analytical, solid line: 

numerical PIM, dot line: experimental PIM, gray solid line: DLF of a single plate)  
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Figure 4.9 Experimental setup 

 

4.4 Uncertainty Analysis via FEM-Monte Carlo Simulation 

 

The effect of structural uncertainty on vibration response is demonstrated via 

FEM-Monte Carlo simulation. The uncertainty is simulated via the variation of plate 

mass with regard to normal (Gaussian) distribution. For this purpose, statistical 

distribution of the plate mass is selected as ( ) ( ), 1.169,0.025 1.169h m hσ = ×  mm. 

Note that, response of FEM-Monte Carlo simulation and SEA are examined for only 

excitation of subsystem 1. Subsystem 1 is excited by 1 N for FEM-Monte Carlo 

simulation and velocity response is taken into consideration. The results are 

compared with those of 1) analytical (infinite system impedances) SEA, 2) numerical 

SEA (numerical PIM) and 3) experimental SEA (experimental PIM). In the process 

of statistical energy analysis response, power input is calculated as mentioned in 

Section 2.2.2. By using power matrix and SEA matrix, energies of the subsystems 

are calculated to determine vibration velocity and presented with uncertainty results 

in Figures 4.10-4.12. 
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Figure 4.10 Velocity of subsystem 1, a) 10-1000 Hz, b) 1000-3000 Hz, c) 3000-5000 Hz (grey: 

uncertain results, black dot: mean of uncertain results, blue: classical SEA, red: numerical SEA, green: 

experimental SEA) 



 54 

10 100 500 1000
10

-6

10
-4

10
-2

10
0

V
el

oc
ity

 [
m

/s
]

Frequency [Hz]

 

 

 
a) 

1000 1500 2000 2500 3000
10

-6

10
-4

10
-2

10
0

V
el

oc
ity

 [
m

/s
]

Frequency [Hz]

 

 

 
b) 

3000 3500 4000 4500 5000
10

-6

10
-4

10
-2

10
0

V
el

oc
ity

 [
m

/s
]

Frequency [Hz]

 

 

 
c) 

Figure 4.11 Velocity of subsystem 2, a) 10-1000 Hz, b) 1000-3000 Hz, c) 3000-5000 Hz (grey: 

uncertain results, black dot: mean of uncertain results, blue: classical SEA, red: numerical SEA, green: 

experimental SEA) 
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Figure 4.12 Velocity of subsystem 3, a) 10-1000 Hz, b) 1000-3000 Hz, c) 3000-5000 Hz (grey: 

uncertain results, black dot: mean of uncertain results, blue: classical SEA, red: numerical SEA, green: 

experimental SEA) 
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Figure 4.10-4.12 show spatial-averaged vibration velocity amplitudes of 200 

points in the plate, in three parts; a) 10-1000 Hz, b) 1000-3000 Hz, c) 3000-5000 Hz. 

In these figures, as FEM-Monte Carlo simulation results, spatial averaged mean 

results and their mean values of 20 samples are given. Wider difference in maximum 

and minimum dynamic response in a frequency band means that the response is more 

sensitive to the plate variation and keep in mind that the 2100 Hz is the high 

frequency threshold. In this regard, considering Figure 4.10-4.12, following 

outcomes can be drawn; 

 

− As mentioned in Section 3.3.2, main drawback of Monte Carlo simulation is that 

it has high computation time and memory usage. Analyses are performed with 

the same software and computer. The analysis took about 14338 sec = 238.96 

min = 3.98 hours for just 1 sample. Performing more sensitive uncertainty 

analyses will take much more time that it will make analyses insufficient. These 

results show us that FEM-Monte Carlo simulation is not a sufficient way to 

consider uncertainty analysis.  

− As mentioned in Section 3.3.2, velocity response in mechanical excitation is 

more sensitive in low frequencies than in high frequencies. 

− As shown in Figure 4.10-4.12, numerical SEA response can estimate the mean of 

uncertainty with a great accuracy also in lower frequencies (300 Hz and above). 

− Response can also be predicted by using experimental SEA. But range for 

estimating response using experimental SEA is less than numerical SEA (1000-

4000 Hz) if FEM-Monte Carlo results are assumed as reference results. Beside 

that it should be noted that FEM-Monte Carlo results are not reliable for very 

high frequencies. 

− Classical SEA responses converge in high frequencies uncertainty results in high 

frequencies. 

− The reason of inaccuracy of numerical SEA in low frequencies may be the fact 

that PIM is numerically inefficient in lower modes since there are not enough 

modes in the computation of average modal spacing. 

− Finally, the study shows that SEA using PIM either numerical or experimental 

can reliably be used in structural systems having uncertainty.  
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CHAPTER FIVE 

CONCLUSION 

 

Since composite structures replaced with conventional materials in many areas in 

engineering, researchers have started to make investigations on their vibro-acoustic 

behavior. In automobile, vessel and aerospace engineering, together with preferring 

lightweight structures because of fuel expenses and other criteria, performing mid 

and high frequency analysis become much more important. Statistical energy 

analysis is one the most commonly used method in these areas.  

 

In the thesis, mainly, statistical energy analysis (SEA) of composite structures 

consisting of laminated composite plates has been examined. Firstly, a coupled 

system composed of an acoustic volume-composite plate (AV-CP) is considered. For 

this system, SEA parameters are obtained by using analytical expressions and 

numerical determinations. For the numerical determination, power injection method 

(PIM) has been performed. It is observed that damping loss factors (DLF) is over-

estimated according to the predetermined internal damping for each subsystem where 

coupling loss factors (CLF) converges to analytical results. The uncertainty of the 

system is then simulated via Monte Carlo (MC) simulation based on FEM. Thickness 

of the plate is selected as uncertainty parameter and vibro-acoustic responses are 

investigated for two different cases; 1) Plate excitation and 2) Acoustic volume 

excitation. It has been shown that FEM-MC responses converge to SEA using 

numerical/classical SEA parameters at high frequencies.  

 

Secondly, I, L and T type composite structures composed of laminated composite 

plates are considered. Loss factors of these structures are determined via numerical 

and experimental power injection. It has been shown that numerical DLFs of 

structures converge to predetermined DLF which also shows correction of model. 

Beside that calculated CLFs have converged to each other and analytical results. 

Interestingly, moment and force power transmission occur between horizontal plates 

where there is no direct connection for T type structure. Next, mass of the plates is 

considered as uncertainty parameter and again FEA-MC has been carried out and 
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results have been compared with SEA. It has been also shown that SEA can take 

uncertainties into account. After these studies following main conclusions can be 

drawn; 

 

− Numerical SEA can be successfully used in acoustic and composite plate 

interaction having structural uncertainty. 

− Power injection method can be reliably used for numerically and experimentally 

for the computation of SEA parameters. 

− FEM-MC is not an efficient way for considering uncertainty due to the CPU and 

memory limitations. 

− Small variations in the thickness or the mass of composite plates affect the vibro-

acoustic response much especially at higher frequencies. 

 

Future works can be performed for the development of SEA to reduce its deviations 

in mid frequencies. 
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APPENDICES 

 

A.1 Computer Programs 

 

In this chapter, computer programs that are used in study are given. Note that 

“green” inscriptions are the explanation about the code. 

 

A.1.1 Classical SEA for Composite Plate-Acoustic Volume Structure 

 

Here, a Matlab code is created to determine the response of structure via statistical 

energy analysis. Note that, a similar code is utilized for composite structures (I, L 

and T type) where analytical impedances are shown in Table 2.3. 

 

clc;clear; 

% acoustic space with a flat plate 

% Statistical Energy Analysis of SEA response 

% subsystem 1:acoustic volume, subsystem 2:plate 

  

f=1:1:5000; w=2*pi*f;   %Frequency 

%---Properties of plate 

Lp1=1;Lp2=1;                         %Dimension of plate 

Ap=Lp1*Lp2;                           %Area of plate 

hp=2.2*10^-3;                         %Thickness of plate 

K=hp/sqrt(12);                        %Radius of gyration of plate 

E1=21.3e9;                           %Young Modulus of plate on direction-x 

E2=21.1e9;      %Young Modulus of plate on direction-y 

rhop=1771.21;                       %Density of plate 

mp=rhop*Ap*hp;                     %Mass of plate 

mu12=0.161;                           %Poisson ratio of plate on xy direction 

mu21=E2*mu12/E1;                %Poisson ratio of plate on yx direction 

cL1=sqrt(E1/(rhop*(1-mu12^2)));  %Longitudinal wavespeed on direction x 

cL2=sqrt(E2/(rhop*(1-mu21^2)));  %Longitudinal wavespeed on direction y 
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cLp=sqrt(cL1*cL2);    %Geometrical mean wave speed 

ita22=2*0.01*ones(1,length(f));      %Damping loss factor of plate 

Ls=2*(Lp1+Lp2);                      %Radiation length (perimeter of plate) 

 

%---Properties of acoustic volume 

Lx=1;Ly=1;Lz=1;                      %Dimensions of acoustic volume 

Temp=20;                      %Temperature of air 

cg2=20.046*sqrt(Temp+273.2);c0=cg2; %Speed of sound 

V1=Lx*Ly*Lz;    %Volume of acoustic volume 

Ac=2*(Lx*Ly+Ly*Lz+Lx*Lz);           %Total surface area of acoustic volume 

Lc=4*(Lx+Ly+Lz);                   %Total length of all edges 

rho0=1.2;                          %Density of fluid (air) at Temp 

%Loop for damping of acoustic space for each frequency 

for i=1:length(f);     

ita11(i)=1e-4                     %Damping loss factor of acoustic 

volume 

end 

%Case=1:exciting acoustic volume, case=2:exciting plate 

Case=1;                             

FF=1;      %Excitation amplitude of plate 

 

%Loop for determination wave speed, wave number, modal damping factor, AMS 

and modal density for each frequency 

for i=1:length(f); 

    cBp(i)=sqrt(w(i)*K*cLp);        %Speed of wave 

    cgp(i)=2*cBp(i);                  %Group velocity of plate 

    kp(i)=w(i)/cBp(i);              %Wave number of plate 

    k0(i)=w(i)/c0;                    %Wave number of acoustic space 

  

    delf1(i)=pi*c0/(k0(i)^2*V1);     %Average modal spacing of acoustic 

space 

    delf2(i)=2*K*cLp/Ap;             %Average modal spacing of plate    
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    beta1(i)=f(i)*ita11(i)/delf1(i);  %Modal damping factor of acoustic 

space 

    beta2(i)=f(i)*ita22(i)/delf2(i);  %Modal damping factor of plate 

  

    %Modal damping factor correction for low frequencies 

    betacorr_1(i)=1/(1+(1/(2*pi*(beta1(i)+beta2(i))))^8)^(1/4); 

 

    nwp(i)=1/(2*pi*delf2(i));        %Modal density of plate 

    nw1(i)=V1*w(i)^2/2/pi^2/c0^3+… 

           Ac*w(i)/8/pi^2/c0^2+… 

           Lc/16/pi/c0;               %Modal density of acoustic volume 

end 

 

%Loop for impedances, transmission coefficients and coupling loss factors for each 

frequency 

for i=1:length(f); 

    Z2(i)=1j*w(i)*rhop*hp;           %Area impedance of plate 

    Z1(i)=rho0*c0;                    %Area impedance of acoustic volume 

    ReZ2(i)=abs(Z2(i));   %Real part of area plate impedance 

     

    %Area transmission coefficient 

    to21a(i)=4*ReZ2(i)*real(Z1(i))/(abs(Z1(i)+Z2(i)))^2;  

     

    %Integral for area coupling over incident angle 

    I21a(i)=(Ap/(8*pi)*k0(i)^6/kp(i)^4)/sqrt((1-k0(i)^2/kp(i)^2)^2*(1+k0(i)^4  

/(pi*kp(i)^4))^2+2/(pi*kp(i)*sqrt(Ap)));  

 

    %Area coupling loss factor from plate and acoustic volume 

    ita21a(i)=delf2(i)/pi/f(i)*betacorr_1(i)*I21a(i)*to21a(i)/(2-to21a(i));  

 

    Z1l(i)=rho0*c0*k0(i)/2;   %Line impedance of acoustic volume 
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    Z2l(i)=2*rhop*cgp(i)*hp*kp(i)^2*(1+1j);%Line impedance of plate 

     

    %Line transmission coefficient 

    to21l(i)=4*real(Z2l(i))*real(Z1l(i))/(abs(Z1l(i)+Z2l(i))^2); 

     

    %Integral for line coupling over incident angle 

    I21l(i)=2/pi*(k0(i)*kp(i)^2*Ls)/(pi/2*k0(i)^2+kp(i)^2); 

 

    %Line coupling loss factor from plate and acoustic volume 

    ita21l(i)=delf2(i)/pi/f(i)*betacorr_1(i)*I21l(i)*to21l(i)/(2-to21l(i));     

 

    %Coupling Loss Factor from plate to acoustic volume 

    ita21(i)=ita21a(i)+ita21l(i); 

     

    %Reciprocity Relation determines CLF from acoustic volume to plate 

    ita12(i)=nwp(i)*ita21(i)/nw1(i); 

     

    %SEA Matrix 

    C=[ita11(i)+ita12(i) -ita21(i) 

       -ita12(i) ita21(i)+ita22(i)]; 

 

    %Response analysis via classical SEA 

    if Case==1; 

    % Acoustic Power 

    a=10e-3;                %Radius of source 

    Pres=1;     %Magnitude of sound pressure 

    Vr=Pres/rho0/c0;    %Surface velocity of monopole source 

    Qs=4*pi*a^2*Vr;      %Source strength 

    P1=rho0*c0*k0(i)^2/8/pi/(1+k0(i)^2*a^2)*Qs^2; %Acoustic excitation 

    P2=0;                                           %Mechanic excitation 

elseif Case==2; 

P2=abs(FF^2)*real(1/(8*rhop*hp*K*cLp));%Mechanic power  
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P1=0;                                           %Acoustic power 

end 

    P(:,i)=1/w(i)*[P1;P2];          %Power vector 

    E(:,i)=inv(C)*P(:,i);             %Determination of energies of 

subsystems 

     

    Pres1(i)=sqrt(E(1,i)*rho0*cg2^2/V1);  %Pressure of acoustic volume 

    vel2(i)=sqrt(E(2,i)/mp);               %Velocity of plate 

end 

 

%Determination of Modal Overlap Factor for each subsystem 

for i=1:length(f) 

MOF1(i)=pi*beta1(i)/2;              %MOF of acoustic volume 

MOF2(i)=pi*beta2(i)/2;              %MOF of plate 

end 

MOF3=2.5*ones(1,length(f));  %Threshold for composite plate 

MOF4=3*ones(1,length(f));   %Threshold for acoustic volume 

save('acoustic_excitation.mat')  %Saving classical SEA results 

 

figure(1)     %Opens figure 1 

%Plotting CLFs with color of blue(b), black(k) and green(g) 

plot1=semilogy(f,ita21,'k',f,ita21l,'b',f,ita21a,'g',f,ita12,'r'); 

set(plot1(1),'DisplayName','CLF21total'); 

set(plot1(2),'DisplayName','CLF21line'); 

set(plot1(3),'DisplayName','CLF21area'); 

set(plot1(4),'DisplayName','CLF12total'); 

%Creating xlabel 

xlabel('Frequency [Hz]'); 

%Creating ylabel 

ylabel('Coupling Loss Factor'); 

%Showing legend 

legend1=legend('show'); 
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%Locating legend right down 

set(legend1,'Location','SouthEast'); 

%Saving figure 1 in .fig and .eps format 

saveas(figure(1),'CLF_plate_to_acoustic','fig');saveas(figure(1),'CLF_plate_to_acous

tic','eps'); 

   

figure(2) 

%Plotting sound pressure of acoustic volume with color of red(r) 

plot2=semilogy(f,Pres1,'r'); 

set(plot2(1),'DisplayName','pressure of cavity'); 

% Create xlabel 

xlabel('frequency [Hz]'); 

% Create ylabel 

ylabel('response of cavity [Pa]'); 

title('response of subsystem 1 under excitation of subsystem 1') 

legend show 

saveas(figure(2),'SEA_z1o1','fig');saveas(figure(2),'SEA_z1o1','eps'); 

 

figure(3) 

%Plotting velocity of plate with color of blue(b) 

plot3=semilogy(f,vel2,'b'); 

set(plot3(1),'DisplayName','velocity of plate'); 

% Create xlabel 

xlabel('frequency [Hz]'); 

% Create ylabel 

ylabel('response of plate [m/s]'); 

title('response of subsystem 2 under excitation of subsystem 1') 

legend show 

saveas(figure(3),'SEA_z1o2','fig');saveas(figure(3),'SEA_z1o2','eps'); 

 

figure(4) 

%Plotting MOF of acoustic volume with color of blue(b) and MOF=3 
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plot1=semilogy(f,MOF1,'b',f,MOF4,'r'); 

set(plot1(1),'LineStyle',':','DisplayName','MOF of cavity'); 

% Create xlabel 

xlabel('frequency [Hz]'); 

% Create ylabel 

ylabel('Modal Overlap Factor'); 

legend1 = legend('show'); 

set(legend1,'Location','SouthEast'); 

saveas(figure(4),'MOF_cavity','fig');saveas(figure(4),'MOF_cavity','eps'); 

  

figure(5) 

%Plotting MOF of plate with color of blue(b) and MOF=2.5 

plot1=semilogy(f,MOF2,'b',f,MOF3,'r'); 

set(plot1(1),'LineStyle',':','DisplayName','MOF of plate'); 

% Create xlabel 

xlabel('frequency [Hz]'); 

% Create ylabel 

ylabel('Modal Overlap Factor'); 

legend1 = legend('show'); 

set(legend1,'Location','SouthEast'); 

saveas(figure(5),'MOF_plate','fig');saveas(figure(5),'MOF_plate','eps'); 

 

figure(6) 

%Plotting AMS of acoustic volume with color of blue(b) 

plot1=semilogy(f,delf1,'b'); 

set(plot1(1),'LineStyle',':','DisplayName','AMS of cavity'); 

% Create xlabel 

xlabel('frequency [Hz]'); 

% Create ylabel 

ylabel('Average Modal Spacing'); 

legend1 = legend('show'); 

saveas(figure(6),'AMS_cavity','fig');saveas(figure(6),'AMS_cavity','eps'); 
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 figure(7) 

%Plotting AMS of plate with color of blue(b) 

plot1=semilogy(f,delf2,'b'); 

set(plot1(1),'LineStyle',':','DisplayName','AMS of plate'); 

% Create xlabel 

xlabel('frequency [Hz]'); 

% Create ylabel 

ylabel('Average Modal Spacing'); 

legend1 = legend('show'); 

saveas(figure(7),'AMS_plate','fig');saveas(figure(7),'AMS_plate','eps'); 

 

A.1.2 Numerical SEA for Composite Plate-Acoustic Volume Structure 

 

A.1.2.1 Determination of Average Modal Spacings of Subsystems 

 

Here, a Matlab code is created to determine the average modal spacings of 

subsystems by using numerical natural frequencies.  

clc;clear 

fn=load('cavity_30.txt');   %Loading numerical natural frequencies 

fcenter=1:1:5000;                                          %Center frequency of 1/3 octave band 

flow=fcenter/(2^(1/6));                                 %Low frequency of 1/3 octave band 

fhigh=2^(1/3)*flow;                                    %High frequency of 1/3 octave band 

  

%Placing the natural frequencies to each 1/3 octave band center frequencies via for 

loop 

for i=1:length(fn); 

    for k=1:length(fcenter); 

        if  fn(i)>flow(k)&& fn(i)<fhigh(k); 

            x(i,k)=fn(i);    %Assigning natural frequencies to 

matrix x 

        end 

    end 
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end 

b=size(x);     %Determines the size of matrix x 

 

%Eliminating “0” values on top lines in matrix x 

for k=1:b(2); 

    m=1; 

    for i=1:b(1); 

        if x(i,k)~=0; 

           x1(m,k)=x(i,k);    %Result matrix x1 

           m=m+1; 

        end 

    end 

end 

  

SIZE=size(x1);     %Determines the size of matrix x1 

 

%Determining modal spacings between natural frequency 

for k=1:SIZE(2); 

for i=1:SIZE(1)-1; 

    if x1(i+1,k)-x1(i,k)>0; 

    df1(i,k)=x1(i+1,k)-x1(i,k);   %Modal spacings for ith center 

frequency 

    end 

end 

end 

  

%Determining the mode number for each frequency band which is (Pdelta in Eq. 3.5) 

for k=1:SIZE(2); 

   m=1; 

   for i=1:SIZE(1); 

   if  x1(i,k)~=0; 

       pdelta(k)=m; 
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       m=m+1; 

   end 

   end 

end 

%Determining average modal spacings by using Eq. 3.5 

for k=1:SIZE(2); 

delf(k)=1/(pdelta(k)-1)*sum(df1(:,k)); 

end 

end 

save('delf30_cavity.mat','delf') 

 

     Note that, the same procedure can be applied to composite plate. These results are 

compared with analytical results which are calculated as mentioned in Section A1.1. 

 

A.1.2.2 Determination of Loss Factors of Subsystems via Numerical PIM 

 

Here, a Matlab code is created to processing the data which are evaluated from 

Ansys and applied power injection method to determine loss factors. Creating ansys 

file will be presented in Section A1.3.1 with uncertainty results. Note that the same 

computer program is utilized to composite structures (I, L and T type). 

 

clc;clear 

load('P11.mat'),    %Loading mean sound pressure of 

acoustic volume under excitation of acoustic volume 

load('P12.mat'),     %Loading mean sound pressure of 

acoustic volume under excitation of composite plate 

load('V21.mat'),     %Loading mean velocity of composite 

plate under excitation of acoustic volume 

load('V22.mat'),    %Loading mean velocity of composite 

plate under excitation of composite plate 

load('ReY2.mat')    %Loading real part of driving point 

velocity of composite plate under excitation of composite plate 



 74 

f=1:1:5000;                                                    %Frequency range 

w=2*pi*f; 

%---Properties of plate 

Lp1=1;Lp2=1;                                               %Length of plate 

Ap=Lp1*Lp2;                                               %Area of plate 

hp=2.2*10^-3;                                          %Thickness of plate 

rhop=1771.21;                                               %Density of plate 

mp=rhop*Ap*hp;                                      %Mass of plate 

%Energy of subsystem 2 under excitation of subsystem 1 

E21=mp*V21m.^2;     

%Energy of subsystem 2 under excitation of subsystem 2 

E22=mp*V22m.^2; 

 

% Mechanical Power 

F=1;                                                               %Amplitude of excitation of subsystem 

1 

P2in=F^2*ReY2;    %Power input as mentioned in Section 

2.2.2 

   

%---Properties of cavity (air) 

Temp=20;                                                      %Temperature of air 

cg2=20.0457*sqrt(Temp+273.2); c0=cg2;  %Group velocity of air 

rho0=1.225;                                                  %Density of air at temperature Temp 

k=w/c0;     %Wave number of acoustic volume 

 

%Determination of acoustic power 

a=1e-2;                                                           %Radius of source 

Pres=1;     %Pressure amplitude of excitation 

Vr=Pres/rho0/c0;    %Surface velocity of sound source 

Qs=4*pi*a^2*Vr;                                          %Source strength 

%Energy of subsystem 1 under excitation of subsystem 1 

E11=P11m.^2*V1/(rho0*(c0^2)); 
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%Energy of subsystem 1 under excitation of subsystem 2 

E12=P12m.^2*V1/(rho0*(c0^2)); 

 

%Power input as mentioned in Section 2.2.2 

for i=1:length(f); 

P1in(i)=rho0*c0*k(i)^2/8/pi/(1+k(i)^2*a^2)*Qs^2; 

end 

  

for i=1:length(f); 

P=1/w(i)*[P1in(i),0;0,P2in(i)];                     %Power matrix as mention in Section 

2.3 

E=[E11(i),E12(i);E21(i),E22(i)];                  %Energy matrix as mention in Section 

2.3 

nu=P*inv(E);     %Loss factor matrix application of Eq. 

2.25 

 

%Loss factors are determined by using Eq. 2.26 

nu11(i)=nu(1,1)+nu(2,1); 

nu12(i)=-nu(2,1); 

 nu21(i)=-nu(1,2); 

nu22(i)=nu(1,2)+nu(2,2); 

end 

 

nu11=abs(nu11);nu12=abs(nu12);nu21=abs(nu21);nu22=abs(nu22); 

 

%Determining of 1/3 octave band average of loss factors 

nu11_ort=oktav_bandi_ort(nu11,f); 

nu12_ort=oktav_bandi_ort(nu12,f); 

nu21_ort=oktav_bandi_ort(nu21,f); 

nu22_ort=oktav_bandi_ort(nu22,f); 
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%Plotting loss factors 

figure(1),subplot(2,2,1),loglog(f,nu11_ort,'b'),axis([100 5000 1e-6 1]) 

figure(1),subplot(2,2,2),loglog(f,nu12_ort,'b'),axis([100 5000 1e-6 1]) 

figure(1),subplot(2,2,3),loglog(f,nu21_ort,'b:',f,nu21r_ort,'b'),axis([100 5000 1e-6 1]) 

figure(1),subplot(2,2,4),loglog(f,nu22_ort,'b'),axis([100 5000 1e-6 1]) 

%Saving loss factors 

save('PIM_results_new.mat','nu11_ort','nu12_ort','nu22_ort','f') 

 

A.1.2.3 Determination of High Frequency Threshold for Subsystems 

 

In this section, modal overlap factor using numerical results is calculated for each 

subsystem as following: 

 

clc;clear 

%Loading numerical power injection results and average modal spacings 

load ('PIM_results_new.mat') 

load ('delf100_plate.mat') 

delf_plate=delf; 

clear 'delf' 

load ('delf100_cavity.mat') 

delf_cavity=delf; 

clear ('delf','nu12_ort','nu21r_ort') 

%Determining modal overlap factor by using Eq. 2.22 

MOF_plate_s=pi/2*f.*nu22_ort./delf_plate; 

MOF_cavity_s=pi/2*f.*nu11_ort./delf_cavity; 

%Plotting modal overlap factor and threshold for subsystems 

figure(1),semilogy(f,2.5*ones(1,length(f)),'k',f,MOF_plate_s,'b'),xlabel('Frequency 

[Hz]'), ylabel('MOF') 

figure(2),semilogy(f,3*ones(1,length(f)),'k',f,MOF_cavity_s,'b'),xlabel('Frequency 

[Hz]'), ylabel('MOF') 
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     Note that these results are compared with analytical results which are calculated 

in Section A1.1. SEA response is determined by using numerical SEA parameters. 

For this purpose, the same program that is used to evaluate classical SEA response 

can be used. 

 

A.1.3 Uncertainty Analysis 

 

A.1.3.1 Creating Model and Exporting Responses to Notepad for Uncertainty 

Analysis 

 

To perform analysis in Ansys APDL, a MatLAB code is prepared that creates .txt 

file for Ansys APDL. Note that, by running this program it is not needed to open 

Ansys separately. The code that is given above belongs to acoustic excitation where 

plate excitation code is very familiar. 

%Changing directory 

cd D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\ 

clc; clear all 

E1=21.3e9;                           %Young Modulus of plate on direction-x 

E2=21.1e9;      %Young Modulus of plate on direction-y 

Ez=E1; 

pr12=0.161;     %Poisson ratio on xy direction 

pr21=(E2/E1)*pr12;    %Poisson ratio on yx direction 

G=3.003e9;      %Shear modulus 

%Properties of layers 

th1=0;                   %Theta1 

th2=90;       %Theta2 

nl=8;                    %Number of layer 

 

Ro_s=1771.2121;             %Density of solid (plate) 

Ro_a=1.2;                %Density of air 

  

Lx=1;                %Width 
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Ly=1;                %Length 

Lz=-1;      %Depth 

 

es=30;                   %Number of elements 

pressu=1;            %Pressure Amplitude 

nnode=(es^3)+3*(es^2)+3*es+1;   %Number of nodes 

sonic=343;     %Speed of sound 

beta=0;     %Absorption coefficient 

dratio_p=0.01;    % Plate’s damping ratio where 

η=2*dratio_p 

 

%Response measuring points for plate and acoustic volume 

nnum_plate=50; 

nnum_cavity=200; 

 

%Harmonic analysis settings 

%Beginning frequency for harmonic analysis 

nbf=0;                    

%Ending frequency for harmonic analysis     

nef=5000;                 

for ann=1:20;     %Number of analysis 

%THICKNESS OF PLATE 

i=randi(50,1,1);    %Creates 50 random numbers  

ii=i*2.2e-5;     %variation in thickness of plate 

ht=16.5e-4+ii;           %thickness of plate 

%Creating a waitbar 

hw = waitbar(0,'Analysis is progressing, Please wait...'); 

 

%Measuring points from plate with respect to analysis number 

node_plate(:,ann)=randi([7747,10151],nnum_plate,1); 

%Measuring points from acoustic volume with respect to analysis number 

node_cavity(:,ann)=randi([10200,nnode],nnum_cavity,1); 
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%Function file that creates finite element model of structure 

plate_cavity_comp_acoustic(ann,E1,E2,pr12,pr21,nl,th1,th2,G,ht,Ro_s,Ro_a,Lx,Ly,

Lz,nbf,nef,es,pressu,sonic,beta,dratio_p,nnum_plate,nnum_cavity,node_plate,node_c

avity); 

 

%University computer path, opens Ansys and runs .txt file 

eval(['!"C:\Program Files\ANSYS Inc\v150\ansys\bin\winx64\ANSYS150.exe " -b -i 

','D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\cavitymodel.txt', ' -o 

D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\pressure\resultsout.txt 

-np 16']); 

  

%Creates messages on Matlab command window 

d1=[int2str(ann),'. analysis is completed...']; disp(d1) 

waitbar(ann,hw); 

%Clearing temporary analysis files 

delete D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\file.*  

%Closing waitbar 

close(hw); 

end; 

%Saving measuring points for data processing 

save('noderesult.mat','node_plate','node_cavity'); 

 

Following codes are included in function file: 

%Function file uses materials properties, frequency range, element size, 

measurement points of each subsystems 

function 

plate_cavity_comp_acoustic(ann,E1,E2,pr12,pr21,nl,th1,th2,G,ht,Ro_s,Ro_a,Lx,Ly,

Lz, nbf,nef,es,pressu,sonic,beta,dratio_p,nnum_plate,nnum_cavity,ii,jj);    

fid=fopen('D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\cavitymode

l.txt','wt'); 
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%Publishing constants to .txt file 

fprintf(fid, 'FINISH\n');  

fprintf(fid, '/CLEAR,NOSTART\n'); 

fprintf(fid, '/UNITS,mks\n');  

fprintf(fid, '/NERR,1e6,1e6\n');  

fprintf(fid, '/CONFIG,nres,1e6\n');  

fprintf(fid, '*AFUN,deg\n'); 

  

fprintf(fid, 'lx=%f\n',Lx); 

fprintf(fid, 'ly=%f\n',Ly); 

fprintf(fid, 'lz=%f\n',Lz); 

fprintf(fid, 'ht=%f\n',ht); 

fprintf(fid, 'es=%f\n',es); 

fprintf(fid, 'Ro_s=%f\n',Ro_s); 

fprintf(fid, 'Ro_a=%f\n',Ro_a); 

fprintf(fid, 'pressu=%f\n',pressu); 

fprintf(fid, 'sonic=%f\n',sonic); 

fprintf(fid, 'beta=%f\n',beta); 

fprintf(fid, 'dratio_p=%f\n',dratio_p); 

fprintf(fid, 'nl=%f\n',nl); 

fprintf(fid, 'tl=ht/nl\n'); 

fprintf(fid, 'EX=%f\n',E1); 

fprintf(fid, 'EY=%f\n',E2); 

fprintf(fid, 'EZ=%f\n',E1); 

fprintf(fid, 'PRXY=%f\n',pr12); 

fprintf(fid, 'PRYZ=%f\n',pr21); 

fprintf(fid, 'PRXZ=%f\n',pr21); 

fprintf(fid, 'GXY=%f\n',G); 

fprintf(fid, 'GYZ=%f\n',G); 

fprintf(fid, 'GXZ=%f\n',G); 
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%Publishing model 

%Creating elements type 

fprintf(fid, '/prep7\n'); 

fprintf(fid, 'ET,1,SHELL181\n');  

fprintf(fid, 'KEYOPT,1,1,0\n'); 

fprintf(fid, 'KEYOPT,1,8,2\n'); 

fprintf(fid, 'KEYOPT,1,9,0\n'); 

  

fprintf(fid, 'ET,2,30\n');  

fprintf(fid, 'ET,3,30,,1\n');  

fprintf(fid, 'SECTYPE,1,shell,,cpart1\n'); 

 

%Angles of layers  

for i=1:nl/2 

     if  mod(i,2)==1 

       thl(i)=th1;   

     else 

       thl(i)=th2; 

     end;     

end;    

thl=[thl,fliplr(thl)];   

 

%Writing the angles of layer to .txt 

for i=1:nl     

    s1 = int2str(i); 

    s2=['th',s1,'=%f\n']; 

    fprintf(fid,s2,thl(i)); 

    s3=['SECDATA,tl,1,','th',s1,',3\n']; 

    fprintf(fid,s3); 

end; 
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fprintf(fid, 'SECDATA,ht,1,,3\n'); 

fprintf(fid, 'SECOFFSET,MID\n'); 

fprintf(fid, 'SECCONTROL,,,,,,,\n'); 

 

%Assigning material properties 

fprintf(fid, 'MPTEMP,,,,,,,, \n'); 

fprintf(fid, 'MPTEMP,1,0\n'); 

fprintf(fid, 'MP,EX,1,EX\n'); 

fprintf(fid, 'MP,EY,1,EY\n'); 

fprintf(fid, 'MP,EZ,1,EZ\n'); 

fprintf(fid, 'MP,PRXY,1,PRXY\n'); 

fprintf(fid, 'MP,PRYZ,1,PRYZ\n'); 

fprintf(fid, 'MP,PRXZ,1,PRXZ\n'); 

fprintf(fid, 'MP,GXY,1,GXY\n'); 

fprintf(fid, 'MP,GYZ,1,GYZ\n'); 

fprintf(fid, 'MP,GXZ,1,GXZ\n'); 

fprintf(fid, 'MP,DENS,1,Ro_s\n'); 

fprintf(fid, 'MP,DMPR,1,dratio_p\n'); 

fprintf(fid, 'MP,DENS,2,Ro_a\n'); 

fprintf(fid, 'MP,SONC,2,sonic\n'); 

fprintf(fid, 'MP,MU,2,beta\n');   

fprintf(fid, 'MP,DENS,3,Ro_a\n'); 

fprintf(fid, 'MP,SONC,3,sonic\n'); 

fprintf(fid, 'MP,MU,3,beta\n'); 

 

%Creating keypoints for geometry of structure 

fprintf(fid, 'K,1,0,0,0\n'); 

fprintf(fid, 'K,2,lx,0,0\n'); 

fprintf(fid, 'K,3,lx,ly,0\n'); 

fprintf(fid, 'K,4,0,ly,0\n'); 

fprintf(fid, 'K,5,0,0,lz\n'); 

fprintf(fid, 'K,6,lx,0,lz\n'); 
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fprintf(fid, 'K,7,lx,ly,lz\n'); 

fprintf(fid, 'K,8,0,ly,lz\n'); 

  

fprintf(fid, 'L,1,2,es\n'); 

fprintf(fid, 'L,2,3,es\n'); 

fprintf(fid, 'L,3,4,es\n'); 

fprintf(fid, 'L,4,1,es\n'); 

fprintf(fid, 'L,1,5,es\n'); 

fprintf(fid, 'L,2,6,es\n'); 

fprintf(fid, 'L,3,7,es\n'); 

fprintf(fid, 'L,4,8,es\n'); 

fprintf(fid, 'L,5,6,es\n'); 

fprintf(fid, 'L,6,7,es\n'); 

fprintf(fid, 'L,7,8,es\n'); 

fprintf(fid, 'L,8,5,es\n'); 

fprintf(fid, 'V,1,5,8,4,2,6,7,3\n'); 

 

%Assigning element type 2 into volume 

fprintf(fid, 'VATT,2,2,2,,ALL\n'); 

fprintf(fid, 'ASEL,S,AREA,,4,\n'); 

fprintf(fid, 'AATT,1,,1,,1\n'); 

fprintf(fid, 'VMESH,ALL\n'); 

fprintf(fid, 'NSEL,S,LOC,Y,ly\n'); 

fprintf(fid, 'ESLN\n'); 

fprintf(fid, 'CM,C_INT_FE,ELEM\n'); 

fprintf(fid, 'AMESH,ALL\n'); 

fprintf(fid, 'ALLS\n'); 

    

fprintf(fid, 'NSEL,A,LOC,Y,ly\n'); 

fprintf(fid, 'ESLN\n'); 

fprintf(fid, 'ESEL,INVE\n'); 

fprintf(fid, 'TYPE,3\n'); 
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fprintf(fid, 'MAT,2\n'); 

fprintf(fid, 'EMODIF,ALL\n'); 

fprintf(fid, 'ALLS\n'); 

fprintf(fid, 'NUMMRG,ALL\n'); 

fprintf(fid, 'NSEL,NONE\n'); 

 

%Selecting area 4 

fprintf(fid, 'ASEL,S,AREA,,4\n'); 

fprintf(fid, 'NSLA,S,1\n'); 

%Giving boundary conditions to plate  

fprintf(fid, 'NSLA,U,O\n'); 

fprintf(fid, 'D,ALL,UX,,,,,UY,UZ,ROTX,ROTY,ROTZ\n'); 

fprintf(fid, 'ALLS\n'); 

%Applying fluid structure interaction 

fprintf(fid, 'NSEL,S,LOC,Y,ly\n'); 

fprintf(fid, 'CMSEL,S,C_INT_FE\n'); 

fprintf(fid, 'SF,ALL,FSI\n'); 

fprintf(fid, 'ALLS\n'); 

fprintf(fid, 'FINISH\n'); 

   

%Create harmonic analysis codes 

  

fprintf(fid, 'nbf=%f\n',nbf); 

fprintf(fid, 'nef=%f\n',nef); 

%Point of excitation 

fprintf(fid, 'nf=node(lx/2,ly/2,lz/2)\n'); 

   

fprintf(fid, '*get,wall1,active,,time,wall\n'); 

fprintf(fid, '/SOLU\n'); 

fprintf(fid, 'ANTYPE,HARMIC,NEW\n'); 

fprintf(fid, 'hropt,full\n'); 

fprintf(fid, 'hrout,on\n') 
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fprintf(fid, 'LUMPM,0\n'); 

fprintf(fid, 'FLST,5,1,1,ORDE,1\n'); 

fprintf(fid, 'FITEM,5,nf\n'); 

fprintf(fid, 'CM,prs,NODE\n'); 

fprintf(fid, 'NSEL,R, , ,nf\n'); 

fprintf(fid, 'CM,prs1,NODE\n'); 

fprintf(fid, 'CMSEL,S,prs\n'); 

fprintf(fid, 'CMDELE,prs\n'); 

fprintf(fid, '/GO\n'); 

%Amplitude sound pressure excitation 

fprintf(fid, 'D,prs1,PRES,pressu\n'); 

fprintf(fid, 'CMDELE,prs1\n'); 

fprintf(fid, 'HARFRQ,nbf,nef,\n'); 

fprintf(fid, 'NSUBST,nef-nbf\n'); 

fprintf(fid, 'KBC,1\n'); 

fprintf(fid, 'SOLVE\n'); 

fprintf(fid, 'FINISH\n'); 

  

fprintf(fid, '/POST26\n'); 

fprintf(fid, 'numvar,200\n'); 

  

%Exporting data from the excitation point 

fprintf(fid, 'NSOL,2,nf,pres,,pres1,\n'); 

fprintf(fid, 'PLCPLX,0\n'); 

fprintf(fid, '*CREATE,scratch,gui\n'); 

fprintf(fid, '*DEL,_P26_EXPORT\n'); 

fprintf(fid, '*DIM,_P26_EXPORT,TABLE,nef-nbf,2\n'); 

fprintf(fid, 'VGET,_P26_EXPORT(1,0),1\n'); 

fprintf(fid, 'VGET,_P26_EXPORT(1,1),2,,0\n'); 

fprintf(fid, 'VGET,_P26_EXPORT(1,2),2,,1 \n'); 
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%Creating .txt file to results  

s0=char(39);     %(') Character ASCII code 

s1='/OUTPUT,';    

  

s7=int2str(ann);      

s2=[s0,'res_pres_nr1_a',s7,s0,','];s3=[s0,'txt',s0]; 

s4=','; 

%Directory for publishing results 

s5=[s0,'D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\pressure',s0]; 

s6=[s1,s2,s3,s4,s5]; 

  

fprintf(fid, '%s\n',s6); 

fprintf(fid, '*VWRITE,_P26_EXPORT(1,0),_P26_EXPORT(1,1),_P26_EXPORT(1,

2)\n'); 

fprintf(fid, '%s\n','%14.5G %14.5G %14.5G');  

fprintf(fid, '/OUTPUT,TERM\n'); 

fprintf(fid, '*END\n'); 

fprintf(fid, '/INPUT,scratch,gui\n'); 

   

%Exporting plate results into .txt files 

s0=char(39);   

s00=','; 

for j=1:nnum_plate; 

    

    s1='NSOL,'; 

    s2=int2str(ii(j,ann)+1);  

    s4=',u,y,'; 

    s5='uy_n_'; 

    s6=int2str(ii(j,ann)); 

    s7='\n'; 

    s10='2'; 

    s8=[s1,s10,s00,s6,s4,s5,s6,s00,s7]; 
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    fprintf(fid,s8); 

    fprintf(fid,'PLCPLX,0\n'); 

    fprintf(fid,'*CREATE,scratch,gui\n'); 

    fprintf(fid,'*DEL,_P26_EXPORT\n'); 

     

    fprintf(fid,'*DIM,_P26_EXPORT,TABLE,nef-nbf,2\n'); 

    fprintf(fid,'VGET,_P26_EXPORT(1,0),1\n'); 

  

    fprintf(fid,'VGET,_P26_EXPORT(1,1),2,,0\n'); 

    fprintf(fid,'VGET,_P26_EXPORT(1,2),2,,1 \n'); 

  

    s1='/OUTPUT,'; 

    s8='a'; 

    s7=int2str(ann);   

    s22=[s0,'res_uy_',s8,s7,'_n_',s6,s0,',']; 

    s3=[s0,'txt',s0]; 

    s4=','; 

    

s5=[s0,'D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\pressure\',s0]; 

    s66=[s1,s22,s3,s4,s5]; 

    fprintf(fid,'%s\n',s66); 

                              

fprintf(fid, '*VWRITE,_P26_EXPORT(1,0),_P26_EXPORT(1,1),_P26_EXPORT(1,

2)\n'); 

    fprintf(fid,'%s\n','%14.5G %14.5G %14.5G');  

    fprintf(fid,'/OUTPUT,TERM\n'); 

    fprintf(fid,'*END\n'); 

    fprintf(fid,'/INPUT,scratch,gui\n'); 

    fprintf(fid,'VARDEL,2\n'); 

  end; 
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%Exporting acoustic volume results into .txt files 

s0=char(39);  

s00=','; 

for j=1:nnum_cavity 

    s1='NSOL,'; 

    s2=int2str(jj(j,ann)+1);  

    s4=',pres,,'; 

    s5='pres_n_'; 

    s6=int2str(jj(j,ann)); 

    s7='\n'; 

    s10='2'; 

    s8=[s1,s10,s00,s6,s4,s5,s6,s00,s7]; 

    fprintf(fid,s8); 

    fprintf(fid,'PLCPLX,0\n'); 

    fprintf(fid,'*CREATE,scratch,gui\n'); 

    fprintf(fid,'*DEL,_P26_EXPORT\n'); 

     

    fprintf(fid,'*DIM,_P26_EXPORT,TABLE,nef-nbf,2\n'); 

    fprintf(fid,'VGET,_P26_EXPORT(1,0),1\n'); 

  

    fprintf(fid,'VGET,_P26_EXPORT(1,1),2,,0\n'); 

    fprintf(fid,'VGET,_P26_EXPORT(1,2),2,,1 \n'); 

  

    s1='/OUTPUT,'; 

    s8='a'; 

    s7=int2str(ann);   

    s22=[s0,'res_pres_',s8,s7,'_n_',s6,s0,',']; 

    s3=[s0,'txt',s0]; 

    s4=','; 

    

s5=[s0,'D:\TUBITAK_WORKSTATION\5.IS_PAKETI\monte_carlo\pressure\',s0]; 

    s66=[s1,s22,s3,s4,s5]; 
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    fprintf(fid,'%s\n',s66); 

    

fprintf(fid, '*VWRITE,_P26_EXPORT(1,0),_P26_EXPORT(1,1),_P26_EXPORT(1,

2)\n'); 

    fprintf(fid,'%s\n','%14.5G %14.5G %14.5G');  

    fprintf(fid,'/OUTPUT,TERM\n'); 

    fprintf(fid,'*END\n'); 

    fprintf(fid,'/INPUT,scratch,gui\n'); 

    fprintf(fid,'VARDEL,2\n'); 

end; 

  

%Exporting solution time for each analysis 

fprintf(fid, '*get,wall2,active,,time,wall\n'); 

fprintf(fid, 'solving_time = (wall2 - wall1)*3600\n'); 

 s1='*CREATE,'; 

s2=[s0,'solution_time_',s7,s0,',']; 

s6=[s1,s2,s3,s4,s5]; 

 fprintf(fid, '%s\n',s6); 

fprintf(fid, '*END\n'); 

fprintf(fid, '*CREATE,ansuitmp\n'); 

 

s1='*CFOPEN,'; 

s6=[s1,s2,s3,s4,s5]; 

 fprintf(fid, '%s\n',s6); 

fprintf(fid, '*VWRITE,solving_time\n'); 

fprintf(fid, '(F10.1)\n'); 

fprintf(fid, '*CFCLOS\n'); 

fprintf(fid, '*END\n'); 

fprintf(fid, '/INPUT,ansuitmp\n'); 

%Closing ansys macro file 

fclose(fid); 
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A.1.3.2 Data Processing 

 
Two different programs are created to process data those are evaluated from finite 

element analysis with Monte Carlo simulation. But here, program that is used to 

determine mean response of plate is given which is very familiar with mean response 

of acoustic volume. 

 

clc;clear; 

%Loading response nodes for each subsystem 

load 'noderesult.mat';  

%Determining number of analysis, number of response nodes 

Noan=size(node_plate);    

%Reading .txt files via loops 

for m=1:Noan(2);     

jj=node_plate(:,m);    %Analysis number 

for i=1:length(jj); 

%Directory of files 

s1='C:\Users\samsungpc\Desktop\Bosluk_plaka\4temmuz_z1\FEM\'; 

%Creating name of .txt files 

s2='res_uy_a'; 

s3=int2str(jj(i)); 

s4='_n_'; 

s5=int2str(m);     %Node number of jjth analysis 

s6=[s1,s2,s5,s4,s3,'.txt']; 

hu=load(s6); 

freq=hu(:,1);     %Loading frequency range 

%Loading displacements from .txt files 

reU(:,i,m)=hu(:,2); 

ImU(:,i,m)=hu(:,3); 

magU(:,i,m)=abs(reU(:,i,m)+1j*ImU(:,i,m)); 

end 

end 

%Determining velocity response from displacements 
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for k=1:Noan(2); 

for i=1:length(freq); 

    V(i,:,k)=1j*2*pi*freq(i)*magU(i,:,k); 

    magV(i,:,k)=abs(V(i,:,k)); 

end 

end 

save('FEM_z1o2.mat','magV','freq') 

%Spatial averaging of each analysis 

for m=1:Noan(2);  

for i=1:length(freq); 

ort1(i,m)=mean(magV(i,:,m)); 

end 

%Plotting spatial-averaged results 

figure(10),semilogy(freq,ort1(:,m),'color',[0.8 0.8 0.8]);hold on, 

end 

z1o2=ort1; save('belz1o2.mat','z1o2','freq') 

%Determining mean response of all analyses 

for i=1:length(freq); 

ort(i)=mean(ort1(i,:)); 

end 

%Plotting mean results 

figure(10),semilogy(freq,ort,'k'); 

 

A.2 Mechanical Properties of Composite Plates 

 

A.2.1 Determination of Rigidities 

 

In this chapter, determination of bending rigidities is evaluated by using laminate 

theory. Assume that Young modulus (yE ) of the composite plate on each direction, 

Poisson ratio ( xyµ ) and shear modulus (12G ) are known. By using this information, 

stiffness matrix can be expressed as: 
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where, 
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 33 12k G= . (A.1e) 

 

Here, 1yE  is Young modulus in the principal axis and 2yE  is Young modulus in 

the vertical axis of principal axis. Q matrix can be evaluated for each layer by using 

stiffness matrix as: 
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and 

 

 ( ) ( ) ( ) ( ) ( )4 4 2 2
11 11 22 12 33cos sin 2 2 cos sini i i i iQ k k k kθ θ θ θ= + + + , (A.2b) 

 

       ( ) ( ) ( ) ( ) ( )( )2 2 4 4
12 21 11 22 33 124 cos sin cos sini i i i i iQ Q k k k kθ θ θ θ= = + − + + , (A.2c) 
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where iθ  is angle of layer i. To determine rigidities of composite plates, one can 

determine distance of layer from the mid-plane of plate as: 
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Here, ( 1)lh i +  shows distance of layer i, h shows thickness of plate and N shows 

number of layer. 

 

Finally, A, B and D matrix of laminated composite plate can be determined as: 
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Note that, j and t can be equal to 1, 2 and 6. B=0 for symmetrical composite plates 

and 16 26 0D D= =  for specially orthotropic plate which means composite plate has 

only 0 and 90 degree orientation angle. 

 

A.2.2 Determination of Mechanical Properties 

 

Appropriate testing methods are developed by ASTM (American Society for 

Testing Materials) for composite materials which can not be tested as done for 

traditional metallic materials. 

 

A.2.2.1 Determination of Tensile Properties 

 
Tensile test is the fundamental test which specifies appropriate properties for 

design in mechanics and used to evaluate Young’s modulus, Poisson ratio, tensile 

strength and maximum deformation. This test is applied to structure whose geometry 

is shown in Figure A.1, via ASTM D3039 test method. Dimensions of test sample 

are tabulated in Table A.1. 

 

 
Figure A.1 Geometry of test sample according to ASTM D3039 

 

Table A.1 Dimensions of sample according to the ASTM D3039 

L (mm) LG (mm) tT (mm) w 

250 138 1.5 15 

 

Tensile tests are performed via Shimadzu AG-100 Tensile tester which has 100 kN 

force capability. Tensile tester is shown in Figure A.2. Velocity of tensile test is 

selected as 1 mm/min. While force is acting on test sample, extension of sample is 
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measured via video extensometer. Young modulus is calculated by Trapezium 

program entering cross-section of sample. 

 

 
Figure A.2 Shimadzu tensile tester 

 

Poisson ratio is determined by using two strain gauges which are connected on 

direction of fiber ( 1ε ), and vertical to the fiber (2ε ) on the process of tensile test, 

respectively. Extension and contraction is measured while force acting on test sample 

is increasing and Poisson ratio is determined as: 

 

 2
12

1

εν
ε

= − . (A.7) 

 

A.2.2.2 Determination of Shear Properties 

 

Test samples are prepared according to ASTM D7078/D7078M V-Notched Rail 

Shear Method to determine shear modulus. Dimensions of sample are shown in 

Figure A.3.  
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Figure A.3 Test sample for determination of shear modulus 

 
Eq. (A.8) can be used to calculate shear modulus:  
 

 12

12

G
τ
γ

= . (A.8) 

 

Here, a strain gauge is connected to sample with a 45o to determine shear strain. 

Shear strain can be determined from the measured strain as: 

 
 12 2γ ε= . (A.9) 


