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ALMOST PERFECT RINGS

ABSTRACT

Bazzoni and Salce have showed that all modules over a commutative domain R have

a strongly flat cover if and only if every flat R-module is strongly flat and that holds

if and only if R is almost perfect, that is, every proper quotient of R is a perfect ring.

Facchini and Parolin defined a ring R to be right almost perfect if the quotient ring R/I

is a right perfect ring for every nonzero proper two-sided ideal I of R. They proved

that most of the properties of commutative almost perfect domains still hold in the

noncommutative setting. In this thesis, we observe the relation between commutative

almost perfect domains and C-rings of Renault, and then the relation between right

almost perfect rings and C-J-rings of Generalov. A ring R is said to be a left C-ring if

for every left R-module M and for every essential proper submodule N of M, M/N has

a simple submodule. For a set J of left ideals of a ring R, the ring R is said to be a left

C-J-ring if for any proper J-dense left ideal I of R (that is, for every element r of R,

the left ideal (I : r) belongs toJ and (I : r)r not equal to 0), there exists an element r of

R such that (I : r) is a maximal left ideal. Facchini and Parolin have defined h-locality

also for noncommutative rings. A ring R is said to be h-local if R/I is semilocal for

every proper nonzero two-sided ideal I of R and every nonzero prime two-sided ideal

of R is contained in a unique maximal two-sided ideal of R. We prove that for a prime

ring R, R is right almost perfect if and only if it is h-local and a left C-J-ring, whereJ

is the Gabriel filter that consists of the left ideals I of R such that for every two-sided

ideal J containing I properly, there exists an element r not contained in J with (J : r)

containing a nonzero two-sided ideal.

Keywords: Almost perfect rings, perfect rings, C-rings, C-J-rings, torsion theory,

hereditary torsion theory, Gabriel filter, h-local ring, J-dense ideal, cotorsion, covers.
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NEREDEYSE MÜKEMMEL HALKALAR

ÖZ

Bazzoni ve Salce değişmeli bir tamlık bölgesi üzerindeki her modülün bir güçlü

düz örtüye sahip olması ile her düz R-modülün güçlü düz modül olmasının denk

olduğunu göstermiştir ve bu durum ancak ve ancak R neredeyse mükememmel ise,

yani R’nin bütün öz bölümleri mükemmel olan bir halka ise sağlanır. Facchini ve

Parolin sağ neredeyse mükemmel halkaları, her sıfırdan farklı iki-taraflı öz I ideali için

R/I bölüm halkası sağ mükemmel olan halkalar olarak tanımlamışlardır. Değişmeli

neredeyse mükemmel tamlık bölgelerinin sahip olduğu özelliklerin çoğunun değişmeli

olmayan uyarlamada hala geçerli olduğunu kanıtladılar. Bu tezde, değişmeli neredeyse

mükemmel tamlık bölgeleri ile Renault tarafından tanımlanan C-halkalar arasındaki

ilişkileri, ve daha sonra sağ neredeyse mükemmel halkalar ile Generalov tarafından

tanımlanan sol C-J-halkalar arasındaki ilişkileri gözlemledik. Eğer her sol R-modül

M ve onun her büyük altmodülü N için M/N modülü basit bir altmodüle sahipse,

R halkasına sol C-halka deriz. Bir J sol idealleri kümesi için, R halkasının sol C-

J-halka olması için gereken şart, R halkasının her J-yoğun sol ideali I (yani, R’nin

her r elemanı için (I : r) sol ideali J’ye aittir ve (I : r)r ifadesi 0’dan farkldır) için

(I : r) maksimal sol ideal olacak şekilde halkada bir r elemanı olmasıdır. Facchini ve

Parolin değişmeli olmayan halkalar için h-lokal kavramını da tanımladı. R halkasının

her sıfırdan farklı iki-taraflı öz I ideali için R/I bölüm halkası yarılokal ve R’nin

her sıfırdan farklı iki-taraflı asal ideali R’nin tek bir iki-taraflı maksimal idealinde

içeriliyorsa, R’ye h-lokal halka denir. Bir asal R halkasının sağ neredeyse mükemmel

halka olması için gerek ve yeter şartın R nin h-lokal ve sol C-J-halka olması olduğunu

kanıtladık; burada J Gabriel filtresi öyle I sol ideallerinden oluşur ki I’yı öz içeren

her iki-taraflı J ideali için halkanın öyle bir r elemanı vardır ki (I : r) sol ideali sıfırdan

farklı iki-taraflı bir ideal içerir.

Anahtar kelimeler : Neredeyse mükemmel halkalar, mükemmel halkalar, C-halkalar,

C-J-halkalar, burulma teorisi, kalıtsal burulma teorisi, Gabriel filtresi, h-lokal halka,

J-yoğun ideal, eş-burulma, örtüler.
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CHAPTER ONE

INTRODUCTION

Throughout the thesis, R will denote an associative ring with 1 , 0 and all modules

are unital right R-modules unless otherwise stated. Also, a homomorphism will be

used to imply an R-module homomorphism unless otherwise stated. Whenever we say

a domain we mean a ring without (left or right) zero-divisors that is not necessarily

commutative, whereas we use commutative domain or integral domain to emphasize

the commutativity. By an ideal, we always mean a two sided ideal.

In this thesis, first of all, we summarize and explain the motivation of the notion of

right almost perfect rings from the beginning (see especially Section 1.3). We remind

fundamentals of ring and module theory and we explain the concept of torsion theory

(see Chapter 2). As a serious work, we investigate the work of Facchini and Parolin,

namely, the extension of commutative almost perfect domains to noncommutative

setting, and we explain it by giving much more details (see Chapter 3). Furthermore,

we remind the notion of C-rings of Renault as well as CJ -rings of Generalov. Finally,

we pose their relation with commutative almost perfect domains and right almost

perfect rings (see Chapter 4).

In this introductory chapter, we give a brief summary about the motivating ideas and

necessary concepts for almost perfect rings. In the first section, we collect the main

definitions and mention some new results we obtain in this thesis. For more details of

the results, see Chapter 4. Section 1.2 is devoted to summarize the notion of covers and

envelopes in relative homological algebra. In Section 1.3, we summarize the concept of

cotorsion theory and explain the problem posed by Trlifaj which gave rise to the notion

of commutative almost perfect domains. In the last section of this chapter, we list some

properties of commutative almost perfect domains since they have generalizations to
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noncommutative setting by Facchini and Parolin.

1.1 Motivation and Main Results of This Thesis

The theory of covers and envelopes goes back to 1950’s. Since its beginnings,

the main concern about them has been showing their existence according to some

classes of modules. In years, the existence of some types of covers and envelopes have

been proved such as projective covers, pure-injective envelopes, torsion-free covers

and flat covers. See Section 1.2 for the notions of covers and envelopes. After that,

Trlifaj posed some open problems in the workshop ‘Homological Methods in Module

Theory’, Cortona, 2000. One of them was the following: When is the class of strongly

flat modules a cover class? Namely, over which commutative domains every module

has a strongly flat cover? See Section 1.3 for the notion of strongly flat modules.

Salce and Bazzoni were motivated by this question and obtained the answer in

2002. They proved that all modules over a commutative domain R have a strongly

flat cover if and only if every flat R-module is strongly flat, and also they showed that

the commutative domains satisfying this property correspond to commutative almost

perfect domains (see Theorem 1.3.4 and 1.3.5). A commutative ring R is said to be

almost perfect if its nonzero proper quotients are perfect rings. Afterwards, this class

of rings have been studied by Bazzoni, Salce, Zanardo and others. Several interesting

properties and characterizations have been obtained for commutative almost perfect

rings; for the properties that we are interested in see Section 1.4.

In this thesis, we investigate the notion of right almost perfect rings, which is a

generalization of commutative almost perfect domains to the noncommutative case,

introduced by Facchini & Parolin (2011): A ring R is said to be right almost perfect if

the quotient ring R/I is a right perfect ring for every nonzero proper two-sided ideal I

of R (for details and explanations, see Section 3.1). In their work, they also obtained

a generalization to the noncommutative case for the theorem which gives equivalent

conditions to the statement ‘every torsion module over a commutative domain contains

a simple submodule’ (see Theorem 1.4.4 for the commutative case and Theorem 3.3.4
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for the noncommutative version). The important point was to define a suitable torsion

theory for prime rings. Besides, they defined h-locality for noncommutative rings.

A ring R is said to be h-local if R/I is semilocal for every proper nonzero two-sided

ideal I of R and every nonzero prime two-sided ideal of R is contained in a unique

maximal two-sided ideal of R. Moreover, they showed that most of the properties

of commutative almost perfect domains still hold in the noncommutative setting (see

Section 3.3). They gave some examples of right almost perfect rings (see Section 3.2).

After we study the structure of right almost perfect rings, we observe the common

properties of C-rings of Renault and right almost perfect rings. The notion of C-rings

was introduced by Renault in 1964 as follows: A ring R is said to be a left C-ring if for

every left R-module M and for every essential proper submodule N of M, M/N has a

simple submodule (see Section 4.1). At first, we obtain some one way implications for

right almost perfect rings, such as for a prime local ring R, if R is a left C-ring, then it is

right almost perfect (see Proposition 4.1.5 and Corollary 4.1.7). Also, for left bounded

rings, we show an equivalence relation as follows: For a prime left bounded ring R, R is

right almost perfect if and only if R is h-local and a left C-ring (see Proposition 4.1.9).

Another situation that we obtain an equivalence is the commutative case, that is, for a

commutative domain R, R is almost perfect if and only if R is h-local and R is a C-ring

(see Corollary 4.1.11).

In an attempt to obtain an equivalence relation for the noncommutative case, we

study CJ -rings of Generalov. This class of rings forms a generalization of C-rings.

CJ -rings were introduced by Generalov in 1978 as follows: For a set J of left ideals

of a ring R, the ring R is said to be a left CJ -ring if for any proper J-dense left ideal

I of R, there exists an element r in R such that (I : r)l = {x ∈ R : xr ∈ I} is a maximal

left ideal. Here, by a J-dense left ideal I of the ring R, we mean a left ideal I of

R such that for every r ∈ R, the left ideal (I : r)l = {x ∈ R : xr ∈ I} belongs to J and

(I : r)lr , 0 (see Section 4.2). As a main result, we prove that for a prime ring R, R is

right almost perfect if and only if it is h-local and a left CJ -ring, whereJ is the Gabriel

topology (see Definition 2.2.20 for Gabriel topology) that consists of the left ideals I

of R such that for every ideal J containing I properly, there exists an element r not
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contained in J such that (J : r)l contains a nonzero two-sided ideal (see Theorem 4.2.6

and Corollary 4.2.7).

1.2 Covers and Envelopes

In Ring and Module Theory, it has been always important to characterize rings via

their modules. Since it is almost impossible to describe all modules over a given ring

R, the idea is to approximate arbitrary modules by the modules from a particular class

X of modules.

This procedure has been used to investigate injective envelopes by Eckmann &

Schopf (1953), and they proved the existence of injective envelopes for modules over

any ring R. Dually, Bass (1960) studied projective covers and introduced the notion of

right perfect rings. Afterwards, many other varied notions of covers and envelopes

were defined, such as pure-injective envelopes and torsion-free covers. The first

problem that have been considered related to covers and envelopes are defining covers

and envelopes in a general setting. Enochs (1981) first made a general definition of

covers and envelopes by diagrams for a given class of modules. The same notion was

also considered by Auslander & Buchweitz (1989). For a given class X of modules,

determining whether every module has an X-cover (or X-envelope) or not has been

another problem related to covers and envelopes.

Since the existence of projective covers is not so common and also it is believed

that the duality between flat modules and injective modules is better than that between

projective modules and injective modules, Enochs (1981) conjectured that over any

ring R, every module has a flat cover. At first, they knew that the conjecture is true for

right perfect rings since over right perfect rings every module has a projective cover

and every flat module is projective.

Proposition 1.2.1. (Xu, 1996, Proposition 1.3.1) Every right R-module over a right

perfect ring R has a flat cover which is the same as its projective cover.

In an attempt to enlarge the class of rings over which every module has a flat cover,

4



Enochs (1963) initiated the study of torsion-free covers over integral domains. The

fact that every module over an integral domain has a torsion-free cover provided the

first class of rings, Prüfer domains (over such a domain, a module is flat if and only

if it is torsion-free), over which every module has a flat cover. Afterwards, by Xu

(1995), some improvements were obtained. The conjecture had been open for many

years until Bican, El Bashir, & Enochs (2001) gave its proof in two different ways. We

shall summarize the ideas of the way of Enochs in Section 1.3.

We shall state the general definitions of the notions of covers and envelopes, as well

as collect some of their properties by following the books Xu (1996) and Enochs &

Jenda (2000). For the unexplained terms and concepts of homological algebra, see for

instance, Osborne (2000) or Bland (2011). All classes of modules are assumed to be

closed under isomorphisms, under taking finite direct sums and direct summands.

Definition 1.2.2. LetX be a class of right R-modules. For an R-module M, anX-cover

is a module homomorphism ϕ : X→M with X ∈ X satisfying the following conditions:

(1) For every homomorphism ϕ
′

: X
′

→M with X
′

∈X, there exists a homomorphism

f : X
′

→ X such that ϕ f = ϕ
′

, i.e., f completes the following diagram

X
ϕ // M

X
′

ϕ
′

OO

f

__

commutatively.

(2) For every endomorphism f : X→ X, if ϕ f = ϕ, then f must be an automorphism.

If the first condition holds (and perhaps not the second condition), ϕ : X→ M is called

an X-precover.

Note that, an X-cover need not be epic. Also, whenever it exists, it is unique up to

isomorphism:

Proposition 1.2.3. (Xu, 1996, Theorem 1.2.6) If ϕi : Xi→ M, i = 1,2, are two different

X-covers for a module M, then X1 � X2.
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Proof. By the definition of the notion ofX-covers, there exist module homomorphisms

f1 : X2→ X1 and f2 : X1→ X2 such that ϕ1 f1 = ϕ2 and ϕ2 f2 = ϕ1. So, ϕ1 f1 = ϕ2 implies

that (ϕ2 f2) f1 = ϕ2, and ϕ2 f2 = ϕ1 implies that (ϕ1 f1) f2 = ϕ1. Then, f2 f1 and f2 f1 are

automorphisms by the hypothesis (2) in the definition. Hence, X1 � X2. �

In addition, a class X of modules over any ring R is said to be a cover class, if every

R-module has an X-cover.

Definition 1.2.4. Let X be a class of right R-modules. For an R-module M, an X-

envelope of M is a homomorphism ϕ : M→ X such that the following hold:

(1) For every ϕ
′

: M→ X
′

with X
′

∈X, there exists a homomorphism f : X→ X
′

such

that ϕ
′

= fϕ.

(2) If f is an endomorphism of X with ϕ = fϕ, then f must be an automorphism.

Similarly, if the first one holds (and perhaps not the second), ϕ : M → X is called an

X-preenvelope, and also envelopes, if exist, are unique up to isomorphism.

By specializing the class of modules, all the existing covers and envelopes can be

obtained. As an example of consistency, we shall show that projective covers and P-

covers coincide, where P is the class of all projective right R-modules for a ring R.

Recall that, if P is a projective module and ϕ : P→ M is an epimorphism, then ϕ is

called a projective cover in case Kerϕ is a small submodule of P. A submodule K

of an R-module M is said to be small in M if for every submodule L ⊆ M, K + L = M

implies L = M.

Theorem 1.2.5. (Xu, 1996, Theorem 1.2.12) Let P be the class of all projective right

R-modules for a ring R. For a right R-module M and a homomorphism ϕ : P→ M,

with P ∈ P, the following are equivalent:

(1) ϕ : P→ M is a P-cover,

(2) ϕ : P→ M is a projective cover.

Proof. (1)⇒ (2): First we see that ϕ is epic. By using the fact that any right R-module

is an image of a projective module, we have a projective module P
′

∈ P such that

6



ϕ
′

: P
′

→ M is epic. Since ϕ is a P-cover, there exists a homomorphism f : P
′

→ P

such that ϕ f = ϕ
′

. This implies that ϕ is also an epimorphism. To see that Kerϕ is

small in P, let K = Kerϕ and K + L = P for a submodule L ⊆ P. We claim that L = P.

Since the restriction ϕL : L→ M is epic, we have the following commutative diagram:

P
ϕ
��

L
/ �

i
??

ϕL // M // 0

P
f

__

ϕ

OO

Since ϕ is a P-cover, i f must be an automorphism. Then Im(i f ) = P, and so P ⊆ L.

(2)⇒ (1): Clearly ϕ : P→ M is a P-precover. Now suppose that f : P→ P is an

endomorphism with ϕ f = ϕ. Since P = Kerϕ+ f (P) and Kerϕ is small in P, we have

f (P) = P. Consider the short exact sequence

0 // Ker f �
� // P

f // P // 0 .

Since it is splitting, there exists a homomorphism g : P→ P such that f g = 1P. Then

g is monic and P = Ker f + Img. But ϕ = ϕ f , hence Ker f ⊆ Kerϕ is small in P. It

requires that Img = P. Therefore, g is an isomorphism, and so is g−1 = f . �

1.3 Strongly Flat Covers Over Commutative Domains

In this section, we will summarize the work done by Bazzoni & Salce (2002).

For undefined notions and more explanation, see Enochs & Jenda (2000) and Trlifaj

(2000). We shall start by presenting the concept of cotorsion theory. Note that we use

Ext(M,N) to indicate Ext1R(M,N), that is, the class of all the equivalence classes of

short exact sequences starting with the R-module N and ending with the R-module M.

For a given class X of right R-modules, let

⊥X = {F ∈Mod-R : Ext(F,X) = 0 for every X ∈ X}

7



and

X⊥ = {G ∈Mod-R : Ext(X,G) = 0 for every X ∈ X}.

These classes are called orthogonal classes of X. Note that, for any class X of

modules, we have X ⊆⊥(X⊥) and X ⊆ (⊥X)⊥. Also, if X1 ⊆ X2, then ⊥X2 ⊆
⊥X1 and

X⊥2 ⊆ X
⊥
1 . By using these relations, we have ⊥X =⊥ ((⊥X)⊥) and X⊥ = (⊥(X⊥))⊥ for

every class X of modules.

Definition 1.3.1. A pair (A,B) of classes of R-modules is said to be a cotorsion pair

or cotorsion theory ifA⊥ = B andA =⊥B.

For a given cotorsion pair (A,B), a class D is said to generate the cotorsion pair

(A,B) if ⊥D=A (and soD⊆B), whereas a classG is said to cogenerate the cotorsion

pair (A,B) if G⊥ = B (and so G ⊆A).

As examples for cotorsion pairs, (Mod-R,I), (P,Mod-R) can be given where I and

P denote the classes of injective and projective R-modules, respectively. We remark

that if (A,B) is a cotorsion pair, then A and B are both closed under extensions and

summands, also A contains all projective modules whereas B contains all injective

modules. Moreover, A is closed under arbitrary direct sums, and B is closed under

arbitrary direct products.

A cotorsion pair (A,B) is said to have enough projectives if for every module

M, there is an exact sequence 0 −→ B −→ A −→ M −→ 0 with A ∈ A and B ∈ B.

Besides, (A,B) is said to have enough injectives if for every module M, there exists

an exact sequence 0 −→ M −→ B −→ A −→ 0 with B ∈ B and A ∈ A. Moreover, if

a cotorsion pair has enough injectives and enough projectives, it is called complete.

However, we have that a cotorsion pair (A,B) has enough projectives if and only if

it has enough injectives. Also, it is easy to see that having such an exact sequence

0 −→ B−→ A −→M −→ 0 with A ∈A and B ∈ B implies that A→M is anA-precover

of M. Similarly, if the cotorsion pair (A,B) has enough injectives, then every module

M has a B-preenvelope.

Definition 1.3.2. An R-module C is said to be cotorsion (in the sense of Enochs) if

8



Ext(F,C) = 0 for every flat R-module F.

The pair (F ,C) where F is the class of all flat R-modules and C is the class of all

cotorsion modules forms a cotorsion pair, and it is called flat cotorsion pair. If we turn

back to the proof of flat cover conjecture given by Enochs, the sketch of the proof is as

follows: Eklof & Trlifaj (2001) proved that every cotorsion pair which is cogenerated

by a set of modules has enough projectives and enough injectives. Bican, El Bashir, &

Enochs (2001) proved that the flat cotorsion pair is cogenerated by a set of modules.

Hence, every module M over any ring R has a flat precover. It had been also proved

by Enochs (1981) that if a class X of modules is closed under direct limits and every

module admits anX-precover, thenX-covers exist. Since the class of flat modules over

any ring R is closed under direct limits, we conclude that the class of flat modules is a

cover class.

Definition 1.3.3. Let R be a commutative domain with the field of fractions Q. An

R-module C is said to be weakly cotorsion if Ext(Q,C) = 0. It is also called Matlis

cotorsion or cotorsion in the sense of Matlis. An R-module M is said to be strongly

flat if Ext(M,C) = 0 for every weakly cotorsion module C.

Hence, over any integral domain R, the pair (SF ,WC) is a cotorsion pair where

SF andWC denotes the classes of all strongly flat modules and all weakly cotorsion

modules, respectively. Furthermore, we can partially order the cotorsion pairs in

the following way: (A,B) ≥ (A
′

,B
′

) means the class B contains the class B
′

, or

equivalently, the class A
′

contains the class A. Since the field of fraction Q of a

commutative domain R is a flat R-module, every cotorsion module is weakly cotorsion,

and so every strongly flat module is flat. Thus, we have the subsequent relation for the

cotorsion pairs we mention up to present:

(P,Mod-R) ≥ (SF ,WC) ≥ (F ,C) ≥ (Mod-R,I) if R is a commutative domain.

Note that all these cotorsion pairs are complete.

Bazzoni & Salce (2002) have been motivated by the question posed by Trlifaj
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(2000). Trlifaj (2000) asked the following question: when is the class of strongly

flat modules over a commutative domain R a cover class? Actually, this is a part of the

following more general question: For a class X of modules, is the property of being

closed under direct limits necessary to be a cover class? Because the property of being

closed under direct limits imply for a complete cotorsion pair to be a cover class. The

general question is still open.

Over a commutative domain R, the class SF is not closed under direct limits in

general, but its closure under direct limits is the class of flat modules. Note that over

Dedekind domains SF = F , hence SF -covers exist for these domains. Bazzoni &

Salce (2002) proved the following main result.

Theorem 1.3.4. (Bazzoni & Salce, 2002, Theorem 2.10) Let R be a commutative

domain. Every module admits an SF -cover if and only if the class of strongly flat

modules coincides with the class of flat modules. Thus, in particular, SF is a cover

class if and only if it is closed under direct limits.

Moreover, Bazzoni & Salce (2002) also characterized the commutative domains for

which SF = F , similar to the characterization of perfect rings by Bass (1960).

Theorem 1.3.5. (Bazzoni & Salce, 2002, Theorem 4.5) The following are equivalent

for a commutative domain R:

(1) R satisfies SF = F ,

(2) R is h-local and every localization RP of R at a maximal ideal P is almost perfect,

(3) R is almost perfect, i.e., R/I is perfect for every nonzero proper ideal I of R,

(4) SF is a cover class,

(5) SF is closed under direct limits,

(6) WC = C.
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1.4 Commutative Almost Perfect Domains

In this section, we aim to collect some of the important results about commutative

almost perfect domains given by Bazzoni & Salce (2003). The reason why we are

interested in these properties of a commutative almost perfect domain is that they

have generalizations to noncommutative case given by Facchini & Parolin (2011).

Moreover, the properties of a commutative almost perfect domain we state here will be

necessary while we show their relation with C-rings in Section 4.1.

To begin with, let us recall the notion of a torsion module over an integral domain.

In the case R is an integral domain, we call an element m of a module MR torsion

element if there is a nonzero element r ∈ R such that mr = 0. The set of all torsion

elements of a module MR, denoted by t(M), is a submodule of M. The submodule

t(M) is called the torsion submodule of M. Also an R-module M is said to be a

torsion module if t(M) = M, and it is said to be a torsion-free module if t(M) = 0.

Note that the quotient module M/t(M) is torsion-free for every R-module M.

Now, remember the characterization of commutative perfect rings. Although Bass

(1960) defined the notion of a perfect ring for arbitrary rings, it gives us a bit more

advantages when we consider that the ring R is commutative. For the definitions of the

terms used in the following theorems and propositions, see Section 2.1 and especially

Subsection 2.1.2. Besides, it will be beneficial to note in advance that the notion of

a right perfect ring and a right T -nilpotent ideal coincides with their left counterparts

since the ring R is commutative.

Theorem 1.4.1. (Bazzoni & Salce, 2003, Theorem 1.1) If R is a commutative ring, then

the following are equivalent:

(1) R is a perfect ring, i.e., R is semilocal and Jac(R) is T -nilpotent,

(2) R satisfies the DCC on principal ideals,

(3) R is a finite direct product of local rings with T-nilpotent maximal ideals,

(4) R is semilocal and every localization of R at a maximal ideal is a perfect ring,
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(5) R is semilocal and semiartinian.

Furthermore, R is a perfect domain if and only if it is a field.

Definition 1.4.2. A commutative ring R is called almost perfect if for every nonzero

proper ideal I of R, the quotient ring R/I is a perfect ring.

The next proposition enables to restrict the study of commutative almost perfect

rings to the commutative domain case.

Proposition 1.4.3. (Bazzoni & Salce, 2003, Propposition 1.3) Let R be a commutative

almost perfect ring. If R is not a domain, then R is a perfect ring.

We shall state a theorem, used in below Theorem 1.4.5, from the book Enochs &

Jenda (2000), which has an extension to noncommutative case by Facchini & Parolin

(2011) (see Proposition 3.3.4).

Theorem 1.4.4. (Enochs & Jenda (2000, Theorem 4.4.1) and Bazzoni & Salce (2003,

Theorem 2.2)) The following are equivalent for an integral domain R with the field of

fractions Q:

(1) Every nonzero torsion module contains a simple submodule,

(2) Every torsion module over R is semiartinian,

(3) For every nonzero proper ideal I of R, R/I contains a simple submodule,

(4) For every nonzero proper R-submodule N of Q, Q/N has a simple submodule,

(5) Q/R is semiartinian,

(6) A module M is injective if and only if Ext(S ,M) = 0 for every simple module S ,

(7) If {ϕi : Ti → Mi}i∈I is a family of torsion-free covers, then their product∏
i∈I ϕi :

∏
i∈I Ti→

∏
i∈I Mi is again a torsion-free cover.

Recall that a commutative domain R is said to be h-local if R is of finite character,

that is, each nonzero proper ideal I of R is contained in at most finitely many maximal
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ideals of R and every nonzero prime ideal of R is contained in only one maximal ideal

of R.

Theorem 1.4.5. (Bazzoni & Salce, 2003, Theorem 2.3) The following are equivalent

for a commutative domain R.

(1) R is almost perfect,

(2) R is h-local and R satisfies one of the equivalent conditions of Theorem 1.4.4.

Corollary 1.4.6. (Bazzoni & Salce, 2003, Corollary 2.4) If R is a commutative local

domain and Q is its field of fractions, then the following are equivalent:

(1) R is almost perfect,

(2) Q/R is semiartinian,

(3) Every nonzero torsion module is semiartinian.

13



CHAPTER TWO

PRELIMINARIES

This chapter is prepared with the aim of collecting the definitions and results

frequently used throughout the thesis. In the first section of this chapter, we concern

about results related to ring and module theory. In the second section, using the book

Stenström (1975), we summarize torsion theory which was defined by Gabriel (1962)

and Maranda (1964).

2.1 Ring and Module Theory

In this section, our objective is to give a brief information about some notions of ring

and module theory. We do not deal with every term in modules and rings. Actually, we

accept the fundamentals of module theory and ring theory. The definitions and results

we remind here will be used in the next chapters commonly. We shall usually state the

definitions and results for right modules which have obvious left versions. For further

and deeper results and detailed proofs, see for example Anderson & Fuller (1992),

Lam (2001), Farb & Dennis (1993) and Bland (2011).

A right R-module M is said to be a semisimple module if it is a direct sum of simple

submodules, or equivalently, if every submodule of M is a direct summand.

Definition 2.1.1. A ring R is called right semisimple if any of the following equivalent

conditions hold:

(1) R is semisimple as a right R-module,

(2) Every right R-module is semisimple,

(3) Every short exact sequence of right R-modules splits.

Also, left semisimple rings can be defined similarly. Note that, for a right

semisimple ring R, since the right R-module R is finitely generated and from

Definition 2.1.1-(1), it follows that RR satisfies both ACC and DCC. Thus, a

right semisimple ring R is both right noetherian and right artinian. Moreover, the
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Wedderburn & Artin Theorem which presents the structure of semisimple rings gives

us that a ring is right semisimple if and only if it is left semisimple. Therefore, we drop

the term left or right.

A ring R is called simple if it has no nontrivial two-sided ideals. It is clear that

saying the ring is simple does not imply that it is simple as a module over itself whereas

any ring which is simple as a module over itself is a simple ring. Besides, we know that

simple modules are semisimple, but it is not true that every simple ring is semisimple.

To make it correct, we need one more condition as we can see in the following theorem.

Theorem 2.1.2. (Farb & Dennis, 1993, Theorem 1.15) Let R be a ring. Then the

following are equivalent:

(1) R is a simple right artinian ring,

(2) R is isomorphic to a matrix ring over a division ring,

(3) R is semisimple as a right R-module and all simple modules over R are

isomorphic,

(4) R is homogeneous semisimple as a right R-module,

(5) R is right artinian and has a faithful simple module.

Because of the left-right symmetry in (2), they are all equivalent to the left-handed

versions of (1), (3), (4) and (5). From now on, for semisimple rings we use the term

semisimple artinian to emphasize the above equivalences.

We endure by giving a few definitions of some types of ideals. The Jacobson

radical of a ring R, denoted by Jac(R), is defined to be the intersection of all the

maximal right ideals of R. However, it coincides with the intersection of all the

maximal left ideals, and also we shall remark that it is a two-sided ideal (see Lam

(2001, Lemma 4.1 and Corollary 4.2)). A one-sided (or two-sided) ideal I of R is said

to be nil if I consists of nilpotent elements while it is said to be nilpotent if In = 0

for some positive integer n. Clearly, every nilpotent ideal is nil; the converse holds for

right noetherian rings:
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Proposition 2.1.3. (Anderson & Fuller, 1992, Theorem 15.22) If R is a right

noetherian ring, then every nil one-sided ideal of R is nilpotent.

Theorem 2.1.4. (Anderson & Fuller, 1992, Theorem 15.20) A ring R is left artinian

if and only if R is left noetherian, Jac(R) is nilpotent, and R/Jac(R) is semisimple

artinian.

Theorem 2.1.5. (Anderson & Fuller, 1992, Corollary 15.23) Let R be a left noetherian

ring. If R/Jac(R) is semisimple artinian and if Jac(R) is nil, then R is left artinian.

Proposition 2.1.6. (Lam, 2001, Lemma 4.11) If a right (resp., left) ideal I ⊆ R is nil,

then I ⊆ Jac(R).

Proposition 2.1.7. (Lam, 2001, Proposition 4.6) If I is an ideal of R lying in Jac(R),

then Jac(R/I) = Jac(R)/I.

The Jacobson radical of a ring R turns out to be a useful tool when determining

whether the ring is semisimple artinian as in the following way:

Theorem 2.1.8. (Lam, 2001, Theorem 4.14) A ring R is semisimple artinian if and

only if R is right artinian and Jac(R) = 0.

In the next definition, we can find an important class of rings which generalizes

one-sided artinian rings: A ring R is said to be semiprimary if Jac(R) is nilpotent and

R/JacR is semisimple artinian.

Another important class of rings is primitive rings. They are a generalization of

simple rings. Before we state its definition, we shall mention some module theoretic

notions. The annihilator of an element m of a R-module M is the set {r ∈ R : mr = 0}

which has a right ideal structure. The annihilator of a right R-module M, which forms

a two-sided ideal, is defined as follows: ann(M) ={r ∈ R : mr = 0 for every m ∈ M}.

We say a right R-module M is faithful if its annihilator is zero. A ring R is called a

right primitive ring if it has a faithful simple right R-module. We call an ideal I of R a

right primitive ideal if it is the annihilator of a simple right R-module. Left primitive
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rings and left primitive ideals are defined similarly. In spite of the name right and left,

primitive ideals are always two-sided. In addition, the quotient of a ring R by a right

primitive ideal I becomes a right primitive ring.

Now, we remind the socle and the radical of a right R-module. For a right R-module

M, its socle, denoted by Soc(M), is defined to be the sum of all simple submodules of

M. Dually, the radical of M, denoted by Rad(M), is the intersection of all maximal

submodules in M. Note that Rad(M) = M if and only if M has no maximal submodule.

Another class of modules that we shall use are semiartinian modules. A right R-

module M is called semiartinian if every nonzero homomorphic image of M, i.e.,

every nonzero quotient module of M, has a nonzero socle, that is, has a simple

submodule. Equivalently, a module M is semiartinian if and only if it is an essential

extension of its socle.

Definition 2.1.9. A ring R is said to be right semiartinian ring if it is semiartinian as

a right R-module over itself, that is, Soc(R/I) is nonzero for every proper right ideal I

of R. Equivalently, a ring R is right semiartinian if and only if every right R-module is

semiartinian.

There is a correspoding notion of a left semiartinian ring. Also, every artinian

module is of course semiartinian, as well as right artinian rings are right semiartinian.

For more details, see for instance, the books Stenström (1975, Ch. VIII, §2) and Dung,

Huynh, Smith, & Wisbauer (1994, p. 26–28).

2.1.1 Prime and Semiprime Rings

Prime rings, which generalize domains, will play an important role in the characterization

of almost perfect rings. Because of this reason, we summarize definitions and some

necessary properties about prime rings.

Definition 2.1.10. An ideal P in a ring R is said to be a prime ideal if P , R and, for

all ideals I and J of R, IJ ⊆ P implies I ⊆ P or J ⊆ P. Also, an ideal P of a ring R is

called semiprime if for every ideal I of R, I2 ⊆ P implies that I ⊆ P.
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In fact, for the preceding definitions, we have frequently used equivalent conditions

which can be seen for example in Lam (2001, Proposition 10.2 and Proposition 10.9).

Definition 2.1.11. A ring R is called a prime (resp., semiprime) ring if the zero ideal

0 is a prime (resp., semiprime) ideal.

Lemma 2.1.12. (Lam, 2001, p. 158) Let R be a ring and I a two-sided ideal in R.

Then, the quotient ring R/I is a prime ring if and only if I is a prime ideal in R.

The subsequent theorem relates semiprime rings to semisimple rings.

Theorem 2.1.13. (Lam, 2001, Theorem 10.24) For any ring R, the following three

statements are equivalent:

(1) R is semisimple artinian,

(2) R is semiprime and right artinian,

(3) R is semiprime and satisfies DCC on principal right ideals.

2.1.2 Perfect and Semiperfect Rings

First of all, it will be advantageous to give a brief summary about the notions of

local and semilocal rings. In commutative algebra, local rings are defined to be rings

as those which have a unique maximal ideal. Its generalization to arbitrary rings is

defined as follows: a ring R is said to be local if the quotient ring R/Jac(R) is a division

ring, or equivalently, if R has a unique maximal right ideal. As a matter of fact, there

are a few more conditions that are equivalent to this definition. For them, see for

example Anderson & Fuller (1992, Proposition 15.15). It is worthwhile to note that, in

contrast to commutative case, if a ring R is local, then it has a unique maximal ideal,

while having a unique maximal ideal is not sufficient to be a local ring. As an example,

simple rings have a unique maximal ideal (the zero ideal) but need not be local.

A ring R is said to be semilocal if the quotient ring R/Jac(R) is semisimple artinian.

Proposition 2.1.14. (Lam, 2001, Proposition 20.2) For a ring R, consider the following

two conditions:

18



(1) R is semilocal,

(2) R has finitely many maximal ideals.

In general, we have (2)⇒ (1). The converse holds if R/Jac(R) is commutative.

Note the following well-known fact which we use in Chapter 3; for completeness,

we shall also give its proof.

Proposition 2.1.15. If R is a semilocal ring, then R has no infinite orthogonal set of

idempotents.

Proof. Suppose for the contrary that R has an orthogonal set of nonzero idempotents,

say {ei : i ∈ I}, where I is an infinite index set and ei , e j for all i , j in I. Then

{ei +Jac(R) : i ∈ I} is an infinite orthogonal set of idempotents (not necessarily nonzero)

in the quotient ring R/Jac(R). The submodule U =
⊕

i∈I(ei + Jac(R))(R/Jac(R)) ⊆

R/Jac(R) is a direct summand of the right R/Jac(R)-module R/Jac(R) since R/Jac(R)

is semisimple artinian. Hence, R/Jac(R) = U ⊕V for some submodule V ⊆ R/Jac(R),

and it must be a finite sum of nonzero submodules of R/Jac(R) since it is finitely

generated. So, ei + Jac(R) = 0 + Jac(R), that is, ei ∈ Jac(R), for all but finitely many

i ∈ I. It follows that 1−ei is a unit in R, and (1−ei)R = R for all but finitely many i ∈ I.

Then, R = eiR⊕ (1− ei)R implies eiR = 0 and so ei = 0 for all but finitely many i ∈ I

which is a contradiction with the infinity assumption on the set {ei : i ∈ I}. �

Perfect rings were introduced by Bass (1960) in the discussion of dualizing the

injective envelopes. This class of rings result in a homological characterization for

modules, namely: Right perfect rings are exactly the rings whose right modules

have projective covers, and they are precisely the rings whose right flat modules are

projective. Due to these reasons, it became a remarkable class of rings. We shall start

with the definition of semiperfect rings.

Definition 2.1.16. A ring R is called semiperfect if R is semilocal and idempotents of

R/Jac(R) can be lifted to R.
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There is no distinction between being a right or left semiperfect ring. Moreover, it

contains the class of local rings, whereas it is contained in the class of semilocal rings

(see Lam (2001, Chapter 8))

Theorem 2.1.17. (Lam, 2001, Theorem 23.11) Let R be a commutative ring. The ring

R is semiperfect if and only if it is a finite direct product of local rings.

Before we give the definition of a right perfect ring, we need the notion of a right

T -nilpotent ideal:

Definition 2.1.18. A one-sided ideal J of a ring R is called right T -nilpotent (resp.,

left T -nilpotent) if for any sequence (ak)∞k=1 of elements in J, there exists an integer

n ≥ 1 such that an . . .a2a1 = 0 (resp., a1a2 . . .an = 0).

Clearly, for a one-sided ideal I of a ring R, we have:

I is nilpotent⇒ I is right (left) T -nilpotent⇒ I is nil.

Definition 2.1.19. A ring R is called a right perfect ring (resp., left perfect ring)

if R is semilocal and the Jacobson radical Jac(R) of R is right T -nilpotent (resp., left

T -nilpotent).

It can be easily seen that the class of right perfect rings is a generalization of

semiprimary rings, in particular, one-sided artinian rings. Now we state the famous

theorem called Bass’ Theorem P (see Bass (1960)).

Theorem 2.1.20. (Anderson & Fuller, 1992, Theorem 28.4) For any ring R, the

following conditions are equivalent:

(1) R is right perfect,

(2) R is semilocal and R is right max , i.e., every nonzero right R-module contains a

maximal submodule,

(3) Every (right) R-module has a projective cover,
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(4) Every flat (right) R-module is projective,

(5) R satisfies the DCC on principal left ideals,

(6) R does not contain an infinite orthogonal set of nonzero idempotents and R is left

semiartinian, i.e., any nonzero left R-module N contains a simple submodule.

Remark 2.1.21. Right perfect rings do not have to be left perfect. For instance, see the

example given by H. Bass in (Lam, 2001, p. 345).

We shall end this section with the following theorem which can be considered as an

analogue of Theorem 2.1.17.

Theorem 2.1.22. (Lam, 2001, Theorem 23.24) Let R be a commutative ring. R is

perfect if and only if it is a finite direct product of local rings each of which has a

T-nilpotent maximal ideal.

2.2 Torsion Theory

In commutative algebra, the field of fractions of an integral domain, or more

generally the total ring of fractions of a commutative ring and localization in

commutative rings are well-known tools. Nevertheless, extending this idea to

noncommutative case was not that simple. It was first investigated by Ore (1931)

for the case R is a domain, and then Asano (1939) considered the existence of a

classical ring of fractions (or a total ring of fractions) with respect to a multiplicative

set of regular elements for an arbitrary ring R. The conditions that will allow us to

construct a general ring of fractions with respect to a multiplicative closed set that may

contain zero divisors was studied by Elizarov (1960). For all the discussion above, we

recommend for example Goodearl & Warfield Jr (2004) or Stenström (1975).

In particular, to each ring of fractions of a ring R, there is an associated notion of

torsion for R-modules. In this section, we are interested in this most general concept of

torsion theories instead of the notion of torsion related to various multiplicative closed

sets in a ring R. Our objective is to state some definitions and results relevant to torsion
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theory which will be used in Chapters 3 and 4. For the details of proofs and more about

the theory in this section, see Stenström (1975, Chapter VI).

The concept of torsion theory for abelian categories has been introduced by Dickson

(1966) formally even though the concept is in the work of Gabriel (1962) and Maranda

(1964) earlier.

Before we give the necessary definitions and important results of torsion theory, we

will mention the basic concepts of category theory in a concise manner since it is the

natural language to use in torsion theory. On the ground that it is a wide theory, one can

need more definitions or details than we collect here. For this reason, see for instance,

Stenström (1975) or Osborne (2000).

Definition 2.2.1. A category C consists of a class of objects, ObjC, and morphism

sets MorC(A,B) for every A,B ∈ ObjC (an element f of MorC(A,B) is denoted by

f : A 7→ B) with a composition law for MorC(B,C)×MorC(A,B)→MorC(A,C) denoted

by (g, f ) 7→ g f that satisfies the followings:

(1) Composition is associative, that is, if f ∈ Mor(C,D), g ∈ Mor(B,C) and h ∈

Mor(A,B), then ( f g)h = f (gh).

(2) Each Mor(A,A) contains a distinguished element 1A and each 1A is an identity,

that is, if f ∈Mor(A,B), then f = f 1A = 1B f .

If B and C are categories, then B is a subcategory of C in the case (i) ObjB is a

subclass of ObjC, (ii) MorB(A,B) is a subset of MorC(A,B) for all A,B ∈ ObjB, and

(iii) the composition in B is the same as in C. Also, a category is said to be small if

the class of objects actually is a set.

Definition 2.2.2. A (covariant) functor F:K →M, where K ,M are categories, is a

function which assigns each object A of ObjK to the object F(A) of ObjM as well

as each morphism f : A→ B in MorK (A,B) to the morphsim F( f ) : F(A)→ F(B) in

MorM(F(A),F(B)) such that F(g f ) = F(g)F( f ) for all morphisms f ,g whenever the

composite is defined and F(1A) = 1F(A) for all A ∈ ObjK .
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The identity functor I :K →K assigns every object A to itself and every morphism

f : A→ B again to itself.

As an important remark, we shall stress that for a ring R, the module categories

R-Mod and Mod-R are abelian categories which are locally small, complete and

cocomplete (see Stenström (1975, p. 87–89, 99)).

Now, we return to our main concept of torsion theory. Gabriel (1962) and Maranda

(1964) describes this notion in three equivalent ways:

(i) by the class of torsion modules,

(ii) by the right ideals that serve as annihilators of torsion elements,

(iii) by the functor assigning to each module its torsion submodule.

Even though the notion of preradicals defined for locally small, complete and

cocomplete abelian categories in Stenström (1975), for our purposes, we prefer to

state all definitions for the categoryMod-R of right R-modules. Similar definitions are

given for the category R-Mod of left R-modules also.

Definition 2.2.3. A preradical r :Mod-R→Mod-R is defined to be a functor such that

it assigns each module M to its submodule r(M) and each R-homomorphism f : M→N

induces a homomorphism r(M)→ r(N) via restricting f to the submodule r(M). Note

that this just means f (r(M)) ⊆ r(N).

So a preradical is a subfunctor of the identity functor. Provided that we consider the

class of all preradicals ofMod-R, it forms a complete lattice (see Stenström (1975, p.

63–64) for the notions lattice and complete lattice).

Suppose that r1 and r2 are preradicals. Then, one can define a preradical

r1r2 by r1r2(M) = r1(r2(M)). Also, we may define a preradical (r1 : r2), so that

(r1:r2)(M)/r1(M) = r2(M/r1(M)). A preradical is said to be idempotent if rr = r and is

said to be radical if (r : r) = r, that is, if r(M/r(M)) = (r : r)(M)/r(M) = r(M)/r(M) = 0.
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We can associate two classes of modules to each preradical r :

Tr = {M ∈Mod-R : r(M) = M}

and

Fr = {M ∈Mod-R : r(M) = 0}.

Proposition 2.2.4. (Stenström, 1975, Proposition 1.2) For a preradical r, Tr is closed

under quotient modules and direct sums, and Fr is closed under submodules and direct

products.

Definition 2.2.5. A class C of modules is called a pretorsion class if it is closed under

quotient modules and direct sums while it is called a pretorsion-free class if it is

closed under submodules and direct products.

Thus, the preceding proposition gives that the classes Tr and Fr associated to a

preradical r are pretorsion and pretorsion-free, respectively.

Conversely, if we take a pretorsion class C of right R-modules, there is a

corresponding idempotent preradical t defined for all modules M by

t(M) =
∑

N⊆M,N∈C

N,

where the summation is over all submodules N of M such that N ∈ C. Hence, every

module M has a largest submodule t(M) in C.

The above argument gives more precisely the following one-to-one correspondence.

Proposition 2.2.6. (Stenström, 1975, Proposition 1.4) There is a bijective correspondence

between idempotent preradicals of Mod-R and pretorsion classes of modules of

Mod-R.

A pretorsion class is said to be hereditary if it is closed under submodules.

24



The next proposition enables to connect the left exactness of a preradical and the

hereditary property.

Proposition 2.2.7. (Stenström, 1975, Proposition 1.7) The following are equivalent

for a preradical r:

(1) r is a left exact functor.

(2) If N ⊆ M, then r(N) = r(M)∩N.

(3) r is idempotent and Tr is closed under submodules.

Corollary 2.2.8. (Stenström, 1975, Corollary 1.8) There is a bijective correspondence

between left exact preradicals and hereditary pretorsion classes.

Definition 2.2.9. A torsion theory forMod-R is a pair (T ,F ) of classes of right R-

modules such that

(1) Hom(T,F) = 0 for all T ∈ T and F ∈ F .

(2) If Hom(C,F) = 0 for all F ∈ F , then C ∈ T .

(3) If Hom(T,C) = 0 for all T ∈ T , then C ∈ F .

Therefore, for a torsion theory (T ,F ) forMod-R, we have that:

C ∈ T ⇔ Hom(C,F) = 0 for all F ∈ F

and

C ∈ F ⇔ Hom(T,C) = 0 for all T ∈ T .

The class T is called a torsion class and its elements are called torsion modules,

whereas F is said to be a torsion-free class and its elements are called torsion-free

modules.

A torsion theory generated by a given class C of right R-modules is obtained as

follows:

F = {F ∈Mod-R : Hom(C,F) = 0 for all C ∈ C}
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and

T = {F ∈Mod-R : Hom(T,F) = 0 for all F ∈ F }.

In this case, T is the smallest torsion class containing C.

Proposition 2.2.10. (Stenström, 1975, Proposition 2.1) The following properties of a

class T of modules are equivalent:

(1) T is a torsion class for some torsion theory,

(2) T is closed under quotient modules, direct sums and extensions.

Accordingly, if (T ,F ) is a torsion theory, then in particular, T is a pretorsion class,

and we can associate an idempotent preradical t by Proposition 2.2.6. In fact, a module

M is torsion-free if and only if t(M) = 0. Furthermore, t is actually a radical. On the

other hand, for a given idempotent radical t of Mod-R, the pretorsion class Tt we

associate to t will be a torsion class. By these explanations, we state the following

proposition:

Proposition 2.2.11. (Stenström, 1975, Proposition 2.3) There is a bijective correspondence

between torsion theories and idempotent radicals.

Proposition 2.2.12. (Stenström, 1975, Proposition 2.5) If C is a class of modules

closed under quotient modules, then the torsion theory generated by C consists of all

modules T such that each nonzero quotient module of T has a nonzero submodule in

C.

A torsion theory (T ,F ) is said to be hereditary if T is hereditary, i.e., T is closed

under submodules.

By recalling Proposition 2.2.7, and combining Corollary 2.2.8 and Proposition 2.2.11,

we obtain the next proposition:

Proposition 2.2.13. Stenström (1975, Proposition 3.1) There is a bijective correspondence

between hereditary torsion theories and left exact radicals.
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At this point, we shall continue a few more propositions which will be useful in

Section 3.3.

Proposition 2.2.14. (Stenström, 1975, Proposition 3.2) A torsion theory (T ,F ) is

hereditary if and only if F is closed under injective envelopes.

Proposition 2.2.15. (Stenström, 1975, Proposition 3.3) The torsion class T generated

by a given class C of modules closed under submodules and quotient modules is

hereditary.

Proposition 2.2.16. (Stenström, 1975, Proposition 3.6) A hereditary torsion theory is

generated by the family of those cyclic modules R/I which are torsion modules, where

I runs through right ideals of R.

As a consequence, a hereditary torsion theory is uniquely determined by the family

of right ideals I of R such that R/I is a torsion module; such a family of right ideals is

a family of neighborhoods of 0 for a certain topology on R. Due to this cause, it may

be suitable to remind some topological structures. A topological ring is a ring with a

topology that makes it a topological group under addition and makes the multiplication

R×R→ R a continuous map. The topology of R is characterized by the filter S of

neighborhoods of 0 satisfying the following conditions (for the notion of filter, see

Stenström (1975, p. 64)):

(N1) For every U ∈ S, there exists V ∈ S such that V + V ⊆ U.

(N2) If U ∈ S, then −U ∈ S.

(N3) For every r ∈ R and U ∈ S, there exists V ∈ S such that rV ⊆ U and Vr ⊆ U.

(N4) For every U ∈ S, there exists V ∈ S such that VV ⊆ U.

A topological right R-module can be defined in a similar manner (see Stenström

(1975, p. 144)).

We pay attention to the topologies defined by ideals or submodules.
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Definition 2.2.17. A topological ring R is right linearly topological if there is a basis

of neighborhoods of 0 consisting of right ideals.

Recall that for a right ideal I and element r of a ring R, we may define the right

ideal (I : r)r = {x ∈ R : rx ∈ I}. Similarly, for a left ideal I, we have the left ideal

(I : r)l = {x ∈ R : xr ∈ I}.

If R is a right linearly topological ring, then the set J of all open right ideals

satisfies:

(T1) If I ∈ J and I ⊆ J, then J ∈ J .

(T2) If I, J ∈ J , then I∩ J ∈ J .

(T3) If I ∈ J and r ∈ R, then (I : r)r = {x ∈ R : rx ∈ I} ∈ J .

Conversely, if J is a set of right ideals of R satisfying (T1), (T2), (T3), then there is a

unique right linear topology on R with J as a basis of neighborhoods of 0.

Likewise, a linearly topological right R-module M over a right linearly topological

ring R with J as the set of all open right ideals can be defined (see Stenström (1975,

p.144)). In particular, for any right R-module M, there is a strongest linear topology

on M whose open submodules are given by

J(M) = {L ⊆ M : (L : m)r ∈ J for all m ∈ M}.

This topology is called J-topology on M. Besides, a module MR is a linearly

topological module under its discrete topology, that is, theJ-topology of M is discrete

if and only if the annihilator ideals

ann(m) = {r ∈ R : mr = 0} = (0 : m)r ∈ J for every m ∈ M.

Also, M is said to be J-discrete if the J-topology of M is discrete.

Lemma 2.2.18. (Stenström, 1975, Lemma 4.1) The class of J-discrete modules is a

hereditary pretorsion class.
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As a consequence of the above lemma, we can associate a left exact preradical t to

the class of J-discrete modules by Corollary 2.2.8.

Proposition 2.2.19 (Proposition 4.2). (Stenström, 1975) There is a bijective correspondence

between:

(1) Right linear topologies on R,

(2) Hereditary pretorsion classes of R-modules,

(3) Left exact preradicals ofMod-R.

It is benefical to stress that the hereditary pretorsion class we associate to a right

linear topology J is

{MR : ann(m) ∈ J for every m ∈ M},

that is, the class of J-discrete modules, whereas the corresponding linear topology for

a hereditary pretorsion class C is the following set of right ideals of R:

{IR ⊆ RR : (R/I)R ∈ C}.

Adding the below new axiom (T4) to the list (T1), (T2), (T3), we obtain the

definition of a (right) Gabriel topology:

Definition 2.2.20. A (right) Gabriel topology on a ring R is a family J of right ideals

of R satisfying the following axioms (T1)− (T4):

(T1) If I ∈ J and I ⊆ J, then J ∈ J .

(T2) If I, J ∈ J , then I∩ J ∈ J .

(T3) If I ∈ J and r ∈ R, then (I : r)r = {x ∈ R : rx ∈ I} ∈ J .

(T4) If I is a right ideal of R and there exists J ∈J such that (I : j)r = {r ∈R : jr ∈ I} ∈J

for every j ∈ J, then I ∈ J .

Theorem 2.2.21. (Stenström, 1975, Theorem 5.1) There is a bijective correspondence

between:
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(1) Right Gabriel topologies on R,

(2) Hereditary torsion theories for R,

(3) Left exact radicals ofMod-R.

By the preceding theorem, we obtain that for a Gabriel topologyJ , the corresponding

hereditary torsion class consists of all modules which are discrete in their J-topology.

These modules are called J-torsion modules.

The following serve as a useful tool.

Lemma 2.2.22. (Stenström, 1975, Lemma 5.2) If J is a non-empty set of right ideals

of R satisfying (T3) and (T4), then it also satisfies (T1) and (T2).

Now, let us consider the class Top(R) of the topologies on R. We say τ1 is weaker

than τ2, or equivalently, τ2 is stronger than τ1, if τ1 ⊆ τ2. Then, Top(R) forms a

complete lattice. Moreover, every intersection of Gabriel topologies is again a Gabriel

topology, and so there is a closure operator J on Top(R) which to each topology τ

associates the weakest Gabriel topology J(τ) stronger than τ.

Proposition 2.2.23. (Stenström, 1975, Proposition 5.4) If τ is a topology, then the

Gabriel topology J(τ) is equal to the set

{IR ⊆ RR : for every J ⊇ I, J , R, there exists r < J such that (J : r)r ∈ τ}.

We shall note as an important remark that if τ is a topology, then the corresponding

hereditary torsion class for the Gabriel topology J(τ) is the class of modules generated

by the class of τ-discrete modules.
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CHAPTER THREE

ALMOST PERFECT RINGS

In this chapter, the notion of a right almost perfect ring will be introduced and

some properties of this class of rings investigated by Facchini & Parolin (2011) will be

explained in detail.

3.1 An Overview of Almost Perfect Rings

As we mentioned before, we call a ring R right almost perfect if R/I is a right

perfect ring for every proper nonzero two-sided ideal I of R. One can define left

almost perfect rings similarly. This class of rings generalizes right perfect rings, in

other saying, right perfect rings are right almost perfect since quotient rings of right

perfect rings are right perfect by Lam (2001, Corollary 24.19) or Anderson & Fuller

(1992, Corollary 28.7).

To begin with, we can say that the notion of almost perfect rings is not left-right

symmetric, in other words, there are left almost perfect rings that are not right almost

perfect as the following example shows:

Example 3.1.1. (Facchini & Parolin, 2011, §3 Example (4)) Let k be a field and kω

be the k-algebra of all matrices consisting of countably many rows and columns with

entries in k such that each row has only finitely many nonzero entries. If we consider

the set N of all strictly lower triangular matrices in kω with only finitely many nonzero

entries, then R = k + N forms a subalgebra of kω. In this case, Ei j ∈ N if and only

if i > j where Ei j denotes the matrix units. Thus, the Jacobson radical Jac(R) of R

is N. It is shown that R is left perfect but not right perfect in Bass (1960, p. 476).

As a result, it is a left almost perfect ring. Now we claim that it is not right almost

perfect. In order to show this, we take into account the principal ideal I of R generated

by E2,1. It can be seen that I is the vector space generated by all Ei1 with i ≥ 2. Then

I ⊆ Jac(R) and so Jac(R/I) = Jac(R)/I = N/I. But, Jac(R/I) = N/I is not a right T -

nilpotent ideal: For the sequence {Ek,k−1}
∞
k=3 = {. . . ,E5,4,E4,3,E3,2} of elements in N,

the products En,n−1En−1,n−2 · · ·E4,3E3,2 = En,2 are not in I for every positive integer n.
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So the quotient ring R/I is not right perfect which implies that R is not right almost

perfect.

As a further information, there is no relation between almost perfect rings and

semiperfect rings:

Example 3.1.2. (Facchini & Parolin, 2011, §3, Example (5)) The ring Z of integers is

almost perfect inasmuch as every quotient ring of Z is artinian but it is not semiperfect,

the reason is that the ring Z/Jac(Z) = Z is not semisimple artinian, and so Z is not

semilocal.

Example 3.1.3. (Facchini & Parolin, 2011, §3, Example (5)) A commutative valuation

domain of Krull dimension ≥ 2 is semiperfect, but is not almost perfect.

Recall that if R is a commutative almost perfect ring which is not a domain, then R

must be a perfect ring (see Proposition 1.4.3). As an analogue of this theorem, Facchini

& Parolin (2011) shows that for non-prime rings, right almost perfect rings and right

perfect rings coincide:

Theorem 3.1.4. (Facchini & Parolin, 2011, Theorem 3.1) If R is right almost perfect

and not a prime ring, then R is right perfect.

Proof. With the purpose of showing that R is right perfect, the proof of the theorem

separates into two cases depending on having nilpotent two-sided ideals or not.

First case: Suppose that R has a nonzero nilpotent two-sided ideal, that is, there

exists a nonzero two-sided ideal J of R such that Jn = 0, where n is the smallest

positive integer with this property. Therefore, with the hypothesis that R is not prime,

it follows that there exists a nonzero two-sided ideal K with K2 = 0. In particular,

K is nilpotent, hence nil. By Proposition 2.1.6, we have K ⊆ Jac(R), and so Jac(R)

is nonzero. Because R is right almost perfect, the quotient ring R/Jac(R) is right

perfect, and by Theorem 2.1.20, R/Jac(R) is semisimple artinian. This gives us that R is

semilocal. Now we can conclude that R has no infinite orthogonal set of idempotents by
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Proposition 2.1.15. In order to obtain that R is right perfect by using Theorem 2.1.20-

(6), we claim that R is left semiartinian, i.e., every nonzero left R-module contains a

simple submodule. Take a nonzero left R-module M. Here, we have two observations.

Firstly, if KM = 0, that is, K ⊆ ann(M), then M is a left R/K-module. But R/K is

right perfect since R is right almost perfect. Therefore R/K is left semiartinian which

means every left R/K-module has a simple submodule. Consequently, M has a simple

R/K-submodule which is also a simple R-module. On the other hand, if KM , 0, then

KM is a nonzero left R/K-module. On the ground that R/K is right perfect, and so

left semiartinian, the module KM has a simple R/K-submodule which is also a simple

R-module. Thus, M has a simple R-submodule as required. Subsequently, R is left

semiartinian.

Second case: This time we assume that R has no nonzero nilpotent two-sided ideal.

Since R is not prime, there exist two-sided nonzero ideals I and J of R with IJ = 0.

Then (I ∩ J)2 ⊆ IJ = 0 implies that I ∩ J = 0 because R has no nonzero nilpotent two

sided ideal. Our first claim is that R contains no infinite orthogonal set of idempotents.

Suppose for the contrary that R contains an infinite orthogonal set E of idempotents

in R. Let EI = {e + I : e ∈ E}. Then by Theorem 2.1.20-(6),EI must be finite due to

the fact that R/I is right perfect. Therefore, there is a partition of E into finitely many

subsets E1,E2, . . . ,En with the property that for every e, f ∈ E; e− f ∈ I if and only if e

and f belong to same block partition Ei of the partition. But E is infinite, hence one of

the blocks is infinite, say Et. Thus Et is an infinite orthogonal set of idempotents of R.

If we take the set Et,J = {e + J : e ∈ Et}, it will be an orthogonal set of idempotents of

R/J. As in the above argument, the set Et,J must be finite. Similarly, there is a partition

of Et into finitely many subsets E
′

1, . . . ,E
′

m with the property that for every e, f ∈ Et;

e− f ∈ J if and only if e and f belong to same block partition E
′

j of the partition of Et.

Since Et is infinite, one of these blocks must be infinite, say E
′

l . However, for every

e, f ∈ E
′

l , we have e− f ∈ J because e and f belong to the same block E
′

l . Also, e− f ∈ I

because both e and f are in Et. Subsequently, e− f ∈ I∩ J = 0, that is, e = f for every

e, f ∈ E
′

l . It means that E
′

l has just one element. This gives a contradiction with our

assumption on E
′

l . Now we pose our second claim: R is left semiartinian. For the proof
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of this claim, let M be a left R-module. If IM = 0, then M has a simple R/I-submodule,

hence a simple R-submodule. In the case IM , 0, IM has a module structure over the

right perfect and so left semiartinian ring R/J. Thus, IM has a simple R/J-submodule,

hence a simple R-module. As a result, M has a simple R-submodule in any case. �

By the above theorem, we understand that to investigate the structure of right almost

perfect rings, we should only focus on the prime case, because otherwise the ring R

will be a right perfect ring. For this reason, we state some properties about prime rings

which will be useful for the following theorems in this chapter.

Lemma 3.1.5. (Facchini & Parolin, 2011, Lemma 4.1) Every prime right perfect ring

is a simple artinian ring.

Proof. Since R is a right perfect ring, it satisfies the DCC on principal left ideals by

Theorem 2.1.20. In view of Theorem 2.1.13 and by considering the fact that every

prime ring is semiprime, we can conclude that R is semisimple artinian. Now we

need to see that semisimple prime rings are simple. Suppose for the contrary that the

ring R is not simple, i.e., R contains a nonzero two-sided ideal I properly. Since R

is semisimple artinian, IR is a direct summand of RR, that is, RR = IR ⊕ BR for some

nonzero right ideal B of R. But R is prime, hence BI ⊆ B∩ I = 0 gives us I = 0 or B = 0

which contradicts with our assumption. Therefore R is simple artinian. �

Corollary 3.1.6. (Facchini & Parolin, 2011, Corollary 4.2) A nonzero two-sided ideal

of a right almost perfect ring R is a maximal ideal if and only if it is a prime ideal if

and only if it is a right primitive ideal.

Proof. We already know that every maximal ideal is prime. For the second implication,

suppose that I is a nonzero prime ideal of R. Then R/I is right perfect. Besides, by

Lemma 2.1.12, R/I is a prime ring. Consequently, by the above lemma, R/I is a simple

artinian ring. Theorem 2.1.2 gives us that R/I is semisimple artinian and all simple

modules over the ring R/I are isomorphic. For this unique simple right R/I-module,

say M, annR/I(M) must be equal to zero as R/I is a simple ring. So annR(M) = I.

As a result, I is the right annihilator of the unique simple right R-module M which
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means I is a right primitive ideal. In an effort to see the last implication, i.e., to see

that I is maximal whenever it is right primitive, we consider the ring R/I. Since R/I

is a right perfect ring with a faithful simple right R/I-module, we have Jac(R/I) =⋂
ann(S ) = 0, where S ranges over all the simple right R/I-modules. It gives us that

(R/I)/(Jac(R/I)) � R/I is semisimple artinian. It follows that R/I is simple artinian,

otherwise R/I = B1 ⊕ B2 · · · ⊕ Bn for n > 1 where Bi’s are homogeneous semisimple

components of R/I. But it requires that BiB j = 0 and B j ⊆ ann(Bi) for every i , j. It

contradicts with R/I having a faithful simple right R/I-module. Thus n must be equal

to 1. Therefore I is maximal. �

Now, we can give our attention to the notion of h-locality. Matlis (1964) gives the

definition of this notion in the study of commutative domains whose torsion modules

admit primary decompositions and this class of domains generalize Dedekind domains.

Actually, the notion of h-locality had been studied first by Jaffard (1952) and then the h-

local domain property was studied by many others for their own purposes; see Fontana,

Houston, & Lucas (2012, §2.1) or Fuchs & Salce (2001, Chapter IV, §3).

Definition 3.1.7. A commutative domain R is said to be h-local if

(1) R is of finite character, that is, each nonzero proper ideal I of R is contained in at

most finitely many maximal ideals of R.

(2) Every nonzero prime ideal of R is contained in only one maximal ideal of R.

It is worth to explain that in Definition 3.1.7 the condition (1) means that the

quotient ring R/I is semilocal for every nonzero proper ideal I of R. Indeed, for a

nonzero ideal I ⊆R, there are at most finitely many maximal ideals M1, . . . ,Mn of R that

contains I if and only if the ring R/I has finitely many maximal ideals M1/I, . . .Mn/I if

and only if R/I is semilocal by the commutative part of Proposition 2.1.14. Likewise,

the condition (2) says that the ring R/P is local for every nonzero prime ideal P of R.

The reason is that, for a prime ideal P of R, we know that there exists a unique maximal

ideal M of R that contains P, that is, M/P is the unique maximal ideal in R/P if and

only if R/P is local since R is commutative.
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Facchini & Parolin (2011) extend this notion to general (noncommutative) rings in

the following way:

Definition 3.1.8. A ring R is said to be h-local if

(1) The ring R/I is semilocal for every proper nonzero two-sided ideal I of R.

(2) Every nonzero prime two-sided ideal of R is contained in a unique maximal two-

sided ideal of R.

Moreover, we can easily see that local rings are h-local as follows. Suppose that R

is a local ring. Then R has a unique maximal ideal, namely Jac(R), and every two-sided

proper ideal I of R is contained in Jac(R). Then (R/I)/Jac(R/I) = (R/I)/(Jac(R)/I) �

R/Jac(R) by Proposition 2.1.7, and R/Jac(R) is semisimple artinian. Hence R/I is

semilocal. Also, for every prime ideal P of R, we have P ⊆ Jac(R).

We immediately deduce the following corollary:

Corollary 3.1.9. (Facchini & Parolin, 2011, Corollary 4.3) Every right almost perfect

ring is h-local.

Proof. It follows from Theorem 2.1.20 that R/I is semilocal for every nonzero prime

ideal I and from Corollary 3.1.6 that each prime ideal is contained in a unique maximal

ideal P. �

We conclude this section by collecting the discussion appearing up to present. In

general, for an arbitrary ring R, one has two exclusive cases according to the ideal

0 is maximal or not. The case that the zero ideal is maximal corresponds to simple

rings. If R is not simple, that is, if 0 is not a maximal ideal in R, again we can separate

into cases whether R is semilocal or not. On the ground of these reasons, Facchini

& Parolin (2011) indicate that right almost perfect rings belong to exactly one of the

following three classes and give the conditions for a ring R to belong to these classes:

Theorem 3.1.10. (Facchini & Parolin, 2011, p. 201) Right almost perfect rings belong

to exactly one of the following three classes.

(1) First class: Simple rings.
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(2) Second class: Semilocal non-simple right almost perfect rings. A ring R belongs

to this second class if and only if R/P is simple artinian for every nonzero prime

ideal P ⊆ R and every nonzero non-faithful left R-module is semiartinian.

(3) Third class: Non-simple, non-semilocal right almost perfect rings. A ring R

belongs to this third class, that is, R is not simple, not semilocal, and right almost

perfect if and only if Jac(R) = 0, every nonzero element of R belongs to only finitely

many maximal ideals of R, the ring R/P is simple artinian for every nonzero prime

ideal ideal P of R and every nonzero non-faithful left R-module is semiartinian.

3.2 Examples of Almost Perfect Rings

In this section, we would like to collect a few more examples of right or left almost

perfect rings in order to make the notion more concrete and understandable. This

section is based on Facchini & Parolin (2011, §3 and §5).

Example 3.2.1. Simple rings. Since simple rings have no proper nonzero two sided

ideals, they are trivially both right and left almost perfect.

Example 3.2.2. Nearly simple chain rings. In the first place, let us consider the

intersection of all nonzero two-sided ideals of a ring R and call it A. Then the ideal A is

either the zero ideal or the least nonzero two-sided ideal of R. Now, suppose that this

second case holds, that is, R has a least nonzero two-sided ideal, A. In this situation

we have the following observation: R is right almost perfect if and only if the quotient

ring R/A is right perfect. It can be seen straightforwardly by observing that for every

nonzero two-sided ideal I of R, A is contained in I and R/I � (R/A)/(I/A). As an

example, take into account the case where R has exactly three two-sided ideals: 0, R

and I. Then R is right almost perfect if and only if the simple ring R/I is right perfect.

However, for simple rings we have that it is right perfect if and only if it is simple

artinian since semisimplicity implies being artinian. As a consequence, we obtain that

R is right almost perfect if and only if R/I is simple artinian, where R is a ring with

exactly three ideals. Particularly, such a ring R is right almost perfect if and only if it is

left almost perfect. An example of these rings with three ideals is given by the nearly

simple chain rings.
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Definition 3.2.3. A nearly simple chain ring R is a noncommutative right and left

chain ring (i.e., right ideals and left ideals are linearly ordered), with exactly three

two-sided ideals: 0, R and Jac(R).

On the ground that chain rings are local, R/Jac(R) is a division ring, hence R/Jac(R)

is semisimple which means artinian, and so both left and right perfect. Therefore,

nearly simple chain rings are right and left almost perfect. Note that nearly simple

chain rings belong to the second class in Theorem 3.1.10.

Example 3.2.4. Von Neumann regular rings that are right V-rings but not left V-rings.

For a field k and an infinite-dimensional vector space Vk, if we take into account the

endomorphism ring End(Vk) and its two-sided ideal S consisting of endomorphisms

of finite rank, then we obtain that the k-subalgebra R = k + S which has just three two-

sided ideals: 0, R and S . Also, R is prime and clearly right and left almost perfect.

Moreover, the Jacobson radical Jac(R) is 0. Otherwise, Jac(R) = S which is impossible

due to the fact that we have 1− E11 is not invertible (where E11 ∈ S ), and so E11 <

Jac(R). This fact brings about that R is not semilocal. Consequently, this class of rings

constitutes an example for the third class of right almost perfect rings that we explained

in Theorem 3.1.10. Further, R is not right perfect and is not left perfect.

3.3 Main Results by Facchini

After we met the notion of (noncommutative) right almost perfect rings, we turned

our attention to the properties of commutative almost perfect domains (see Section 1.4)

that still hold in the noncommutative setting; we present them in this section from

Facchini & Parolin (2011).

In the work of extending the characterizations and results to the noncommutative

case, at first, we need the notion of torsion module over a noncommutative ring. We

know that for each ring of fractions of a ring R, there is a notion of torsion for R-

modules which corresponds to the ring of fractions. However, the example of a nearly

simple chain domain R (hence an example of right and left almost perfect domain)
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which is also an Ore domain given by Puninski (2001) indicates that the conditions

of Theorem 1.4.4 do not hold if we consider the torsion modules as those in which

every element is annihilated by a nonzero element of R and Q is the classical ring of

fractions of R, which is a division ring. In this torsion theory, we obtain a nonzero

torsion module whose socle is zero (for the example and explanations, see Facchini

& Parolin (2011, p. 195–196)). For these reasons, Facchini & Parolin (2011) uses a

different torsion theory as explained below.

Firstly, let us remind the following well-known notions:

Definition 3.3.1. A submodule N of a module M is said to be essential in M if for

every submodule L ⊆ M, N ∩L = 0 implies L = 0.

Definition 3.3.2. Let I be a one-sided ideal of a ring R. The core of I, denoted by

core(I), is the largest two-sided ideal of R contained in I. Observe that core(I) is the

annihilator in R of the right R-module (R/I)R for a right ideal I of R. Similarly, this

holds for left ideals of R.

Lemma 3.3.3. (Facchini & Parolin, 2011, Lemma 4.4) In a prime ring R, every right

ideal with a nonzero core is essential in the right R-module R.

Proof. Assume that I is a right ideal with core(I) , 0. For a nonzero right ideal J of R,

we know that J core(I) , 0 since R is prime. The inclusions J core(I) ⊆ core(I)∩ J ⊆

I ∩ J show that the ideals I and J have nonzero intersection. Thus, I is essential in

RR. �

On any prime ring R, we can define a natural topology, which is right and left

linearly topological, by taking the set B of all nonzero two-sided ideals of R as a basis

of neighborhoods of zero. The set D of left ideals of R that are open in this topology

satisfies the conditions (T1), (T2) and (T3) that we state in Section 2.2. We have

D = {RI ⊆R R : there exists K ∈ B such that K ⊆ I} = {RI ⊆R R : core(I) , 0},

and so (T1) is trivial. For K1 ⊆ I and K2 ⊆ J where I, J ∈D, it comes that K1K2 ⊆ I∩ J,
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and so (T2) holds. (T3) can be seen as follows: For I ∈ D and r ∈ R, clearly

K ⊆ (I : r)l = {x ∈ R : xr ∈ I} ∈ D,

where K is some ideal in B chosen such that K ⊆ I by the definition ofD. As Facchini

& Parolin (2011, p. 197) point out, (T4) does not hold for this topology in general, and

so this left linear topology does not always form a left Gabriel topology.

For the next step, consider the class P of all left R-modules whose elements are

annihilated by an element of B, that is, the class ofD-discrete modules,

P = {RM : for every m ∈ M, there exisits K ∈ B such that Km = 0 }.

It is clearly closed under quotient modules, i.e., under homomorphic images and also

under submodules. In order to see that it is closed under direct sums, take a collection

{Mλ}λ∈Λ in P. Let m ∈
⊕

λ∈Λ Mλ. Then m = m1 + · · ·+mn for some mi ∈Mλi and λi ∈Λ

for i = 1,2, . . . ,n. If we take K = K1 · · ·Kn, where each Ki belongs to B and Kimi = 0

for i = 1,2, . . . ,n, then since R is prime, K is nonzero. Also, K ⊆ Ki since each of

K1, . . . ,Kn are two-sided ideals. So, we have Kmi ⊆ Kimi = 0 for each i = 1, . . . ,n, and

so Km = 0. Thus, P is a hereditary pretorsion class. Therefore, by Proposition 2.2.12,

the torsion theory T generated by P consists of all left R-modules T such that each

nonzero quotient module of T has a nonzero submodule contained in P. Namely,

T = {T : T/N has a nonzero submodule contained in P for every N ( T }.

Also, T is hereditary by Proposition 2.2.15, and T is the smallest torsion class that

contains P. On the other hand, the torsion theory T generated by P corresponds to the

left Gabriel topology J(D) by the last paragraph of Page 30, and we have the following

by Proposition 2.2.23:

J(D) = {RI ⊆R R : for every J ⊇ I, J , R, there exist r < J such that core(J : r)l , 0}.

Here, by the arguments in Section 2.2, J(D) is the weakest Gabriel topology stronger
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than D, and so B ⊆ D ⊆ J(D). In addition, in this torsion theory, the module RR is

torsion-free. Suppose for the contrary that it is not. Then, t(RR) , 0 for the left exact

radical t corresponding to this torsion class T . It requires that there exists a nonzero

left ideal I of R contained in T . So for a nonzero r ∈ I, the cyclic submodule Rr is

torsion since T is hereditary. Then Rr contains a nonzero submodule K in P, that is,

for all x ∈ K ⊆ Rr, there exists I ∈ B such that Ix = 0, which is a contradiction since R

is prime.

In the rest of this and the next chapter, whenever we say a torsion module over

a prime ring, we mean a module in T . We follow the proofs of Facchini & Parolin

(2011) by giving detailed explanations.

The following proposition is a noncommutative analogue of Theorem 1.4.4.

Proposition 3.3.4. (Facchini & Parolin, 2011, Proposition 4.5) The following conditions

are equivalent for a prime ring R:

(1) Every nonzero torsion left R-module contains a simple submodule,

(2) Every torsion left R-module is semiartinian,

(3) R/I is a left semiartinian ring for every nonzero proper two-sided ideal I of R,

(4) For every proper left ideal L with a nonzero core, the cyclic left R-module R/L

contains a simple submodule.

Proof. (1)⇒ (2): Let M be a torsion left R-module. By Proposition 2.2.10, T is closed

under quotient modules, i.e., homomorphic images. So every nonzero homomorphic

image of M is torsion. The condition (1) says that every homomorphic image contains

a simple submodule.

(2) =⇒ (3): Assume that I is a nonzero proper two-sided ideal of R. We claim that

R/I is a left semiartinian ring, that is, every nonzero left R/I-module has a simple

submodule. In order to show this, let M be a nonzero left R/I-module. We can view

M as a left R-module whose elements are annihilated by I, which is an element of B.
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Therefore RM ∈P⊆T , hence M is a nonzero torsion left R-module, and so semiartinian

by (2). It gives us that every left R/I-module is semiartinian.

(3) =⇒ (4): Suppose that L is a left ideal of R with core(L) , 0. (3) gives that the

quotient ring R/core(L) is a left semiartinian ring, hence we obtain the left R/core(L)-

module R/L is semiartinian. But it is also semiartinian as a left R-module which means

that it contains a simple R-submodule.

(4) =⇒ (1) : Let M be a nonzero torsion left R-module, i.e., M ∈ T . If M is simple,

then it is trivial, so assume that M is not a simple module. Then there exists a nonzero

submodule N of M such that N ∈ P by Proposition 2.2.12. It means that for every

n ∈ N, there exist I ∈ B such that In = 0. Now, set L = ann(n). So L is a proper left ideal

of R containing I. In particular, L has a nonzero core. Therefore, by (4), the cyclic left

R-module R/L � Rn contains a simple submodule which means RM contains a simple

submodule. �

The next theorem gives the noncommutative analogue of Theorem 1.4.5.

Theorem 3.3.5. (Facchini & Parolin, 2011, Theorem 4.6) For a prime ring R, the

following statements are equivalent:

(1) The ring R is right almost perfect,

(2) The ring R is h-local and satisfies one of the equivalent conditions of Proposition

3.3.4.

Proof. (1)⇒ (2). Suppose that R is a right almost perfect ring. By Corollary 3.1.9, R

is h-local. For the remaining part, we will show that it satisfies the third condition of

Proposition 3.3.4. Let I be a nonzero proper two-sided ideal of R. Then the ring R/I is

right perfect, hence left semiartinian by Theorem 2.1.20.

(2)⇒ (1). Let R be a h-local ring, and assume that every torsion left R-module is

semiartinian. Every left R-module M with a nonzero annihilator is torsion. Because

ann(M) ∈ B, so clearly M ∈ P which gives M ∈ T . Let I be a nonzero proper two-

sided ideal of R. We claim that R/I is right perfect. On the ground that every nonzero
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left R/I-module is a left R-module annihilated by the nonzero proper ideal I, every

left R/I-module is semiartinian. Thus, the ring R/I is left semiartinian. Besides, R/I

is semilocal as R is h-local. By Proposition 2.1.15, R/I contains no infinite set of

orthogonal idempotents. We conclude that R/I is right perfect by Theorem 2.1.20-(6).

Hence R is right almost perfect. �

The following corollary is a noncommutative analogue of Corollary 1.4.6.

Corollary 3.3.6. (Facchini & Parolin, 2011, Corollary 4.7) Let R be a prime local

ring. Then, R is right almost perfect if and only if R satisfies one of the equivalent

conditions of Proposition 3.3.4.

Proof. First part by Theorem 3.3.5. Converse part is obtained by the fact that local

rings are h-local and again by Theorem 3.3.5. �

We shall state another characterization of right almost perfect rings by Facchini &

Parolin (2011).

Proposition 3.3.7. (Facchini & Parolin, 2011, Proposition 4.8) A ring R is right almost

perfect if and only if it satisfies the following conditions:

(1) R is h-local,

(2) Every nonzero right R-module MR with Rad(M) = M is faithful.

Proof. (⇒): The condition (1) is satisfied by Corollary 3.1.9. In order to see (2),

let M be a nonzero right R-module with Rad(MR) = MR. Suppose for the contrary

that it is not faithful, i.e., the two-sided ideal I = ann(M) is nonzero. Also, since

the quotient ring R/I is a right perfect ring by the hypothesis, it is also a right max

ring by Theorem 2.1.20-(2). But it means that every nonzero right R/I-module has a

maximal submodule, and so Rad(MR/I) , MR/I . It contradicts with Rad(MR) = MR, so

I := ann(M) must be zero.

(⇐): Suppose that (1) and (2) hold. Let I be a nonzero proper two-sided ideal of

R. Since R is h-local, the factor ring R/I is semilocal. Now, we claim that R/I is
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right max. For the proof of the claim, let M be a nonzero right R/I-module. Then M,

viewed as a right R-module, is not faithful because I ⊆ ann(MR). So, by the condition

(2), Rad(MR) , MR, that is, MR has a maximal submodule, as well MR/I . Therefore,

R/I is right perfect by Theorem 2.1.20-(2). �

Facchini & Parolin (2011) also consider the left noetherian case for prime rings

and obtain stronger results for right almost perfect rings. Before we state this stronger

characterization, we shall explain the advantages of being left noetherian for a ring R.

Lemma 3.3.8. (Facchini & Parolin, 2011, p. 199) Let R be a left noetherian ring.

Then, R is right perfect if and only if R is left artinian.

Proof. If R is right perfect, then R is semilocal and Jac(R) is right T -nilpotent. By

Proposition 2.1.3, Jac(R) is also nilpotent. Then, by Theorem 2.1.4, we conclude that

R is left artinian. Conversely, if R is left artinian, it is also semilocal. Also, Jac(R) is

nilpotent, hence right T -nilpotent. �

In the case R is a left noetherian prime ring, the set B of nonzero two-sided ideals

of R becomes a basis for a left Gabriel topology, so that the left Gabriel topology J(D)

turns out to be the linear topologyD, and P = T .

We are ready to state the following characterization for left noetherian rings.

Theorem 3.3.9. (Facchini & Parolin, 2011, Proposition 5.1) The following conditions

are equivalent for a left noetherian prime ring R:

(1) Every nonzero torsion left R-module contains a simple submodule,

(2) Every torsion left R-module is semiartinian,

(3) The ring R/I is a left semiartinian ring for every nonzero proper two-sided ideal

I of R,

(4) The ring R/I is left artinian for every nonzero proper two-sided ideal I of R,

(5) R is right almost perfect.

44



Proof. (1)⇔ (2)⇔ (3) has been shown in Proposition 3.3.4.

(3)⇒ (4): Since R is left noetherian, the left Gabriel topology corresponding to

semiartinian modules consists of the left ideals A of R with R/A of finite length. If I is

two-sided and R/I is left semiartinian, then 1 + I is annihilated by I, hence I belongs

to the left Gabriel topology corresponding to the semiartinian modules, and so R/I is

a left R-module of finite length. Therefore, R/I is left artinian.

(4)⇒ (5): By Lemma 3.3.8, R/I is right perfect for every nonzero proper two-sided

ideal I of R.

(5)⇒ (1): Let M be a nonzero torsion left R-module. We claim that RM contains a

simple submodule. Take a nonzero element m of M. Since M ∈ T = P, every element

of M is annihilated by an element of B. So, there exists I ∈ B such that Im = 0. Thus,

I ⊆ ann(Rm). Moreover, the ring R/I is left semiartinian since it is right perfect. Then

the module R/I(Rm) contains a simple R/I-submodule, and so a simple R-submodule.

�
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CHAPTER FOUR

ALMOST PERFECT RINGS AND CJ -RINGS

In this chapter, our main object is to state and prove the relations between almost

perfect rings and C-rings of Renault (1964), and as well as CJ -rings of Generalov

(1978). In an attempt to declare the relations between these classes of rings, we divided

the investigation into two cases. First, we state the results related with C-rings and

commutative C-domains. Secondly, we show the relation concerning about CJ -rings.

Before anything else, we shall start the sections by presenting the concepts of C-rings

and of CJ -rings.

4.1 C-rings of Renault

Definition 4.1.1. (Renault, 1964) A ring R is said to be right C-ring, if for every right

R-module M and for every essential proper submodule N of M, Soc(M/N) , 0, that is,

the quotient module M/N has a simple submodule.

Proposition 4.1.2. (Renault, 1964, Proposition 1.2) A ring R is right C-ring if and

only if for every essential right ideal I of R, Soc(R/I) , 0.

A module MR is said to be singular if its every element is singular, that is, for every

m ∈ M, ann(m) is essential in RR. Also, we have the following proposition that will

provide an equivalence for the notion of C-ring.

Proposition 4.1.3. (Lam, 1999, p. 269) Let N be a submodule of the R-module M,

where M is a free R-module. Then, the quotient module M/N is singular if and only if

N is essential in M.

Since R is a free right module over itself and every cyclic R-module is isomorphic

to the right R-module R/I for some right ideal I of R, right C-rings are also defined to

be as those rings such that every cyclic singular right R-module has a nonzero socle.

A submodule N of a right R-module M is said to be neat if any simple module S is

projective relative to the projection M→ M/N. Besides, a submodule N of M is said
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to be closed in M if it has no essential extension in M, or equivalently, if there exists

a submodule N
′

of M such that N is a complement of N
′

in M, that is, N is maximal

with respect to the property N ∩N
′

= 0. For every module M and submodule N of M,

if N is a closed submodule of M, then N is a neat submodule of M. The converse does

not hold and indeed that characterizes C-rings. That is, C-rings are characterized as the

rings over which every neat submodule is a closed submodule. Similarly, left C-rings

are defined. For all of the above argument, see Generalov (1978), Mermut (2004, §3.3)

and Clark, Lomp, Vanaja, & Wisbauer (2006, §10).

A module M is called max-injective if for every maximal right ideal I of R, every

homomorphism I→ M can be extended to a homomorphism R→ M. A module M is

max-injective if and only if Ext(S ,M) = 0 for every simple module S (for details see

for example Özdemir (2011, §4.2)). Smith (1981, Lemma 4) proved that R is a right

C-ring if and only if every max-injective right R-module is injective (without using the

C-ring terminology).

By combining all of these results, we obtain a list of characterizations for right

C-rings as follows:

Proposition 4.1.4. (Hatipoğlu, 2014, Proposition 3.3) The following are equivalent

for a ring R and if one of the equivalent conditions is satisfied, then the ring R is said

to be a right C-ring:

(1) For every right R-module M and for every essential proper submodule N of M,

Soc(M/N) , 0,

(2) For every essential right ideal I of R, Soc(R/I) , 0,

(3) Every singular module is semiartinian,

(4) For every cyclic singular module M, Soc(M) , 0,

(5) For every right R-module M, all neat submodules of M are closed,

(6) Every max-injective right R-module is injective.
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Clearly right semiartinian rings are right C-rings. Another example of right C-

rings are left perfect rings since left perfect rings are right semiartinian. Commutative

noetherian rings whose nonzero prime ideals are maximal are C-rings (see Mermut

(2004, Proposition 3.3.6)). In particular, commutative artinian rings and Dedekind

domains are such C-rings.

Recall that in a prime ring R, every right ideal with a nonzero core is essential in the

right R-module RR (see Lemma 3.3.3).

Proposition 4.1.5. If R is a prime left C-ring, then it satisfies the last condition of

Proposition 3.3.4, that is, for every proper left ideal I of R with a nonzero core, the

cyclic left R-module R/I contains a simple submodule.

Proof. Let I be a proper left ideal of R with core(I) , 0. By Lemma 3.3.3, I is essential

in the left R-module R. Since R is a left C-ring, the left R-module R/I contains a simple

submodule. So, R satisfies condition (4) in Proposition 3.3.4. �

Corollary 4.1.6. For a prime ring R, if R is h-local and a left C-ring, then it is a right

almost perfect ring.

Proof. Since R is a left C-ring, it satisfies one of the equivalent conditions in

Proposition 3.3.4 by Proposition 4.1.5. Thus, R is right almost perfect by Theorem 3.3.5.

�

Corollary 4.1.7. For a prime local ring R, if R is a left C-ring, then it is right almost

perfect.

Corollary 4.1.8. For a left noetherian prime ring R, if R is a left C-ring, then it is right

almost perfect.

Proof. If R is a left C-ring, then every nonzero torsion left R-module (in the sense of

Facchini) contains a simple submodule by Proposition 4.1.5. Hence, R is right almost

perfect by Theorem 3.3.9. �

Recall that a ring R is said to be right bounded if every essential right ideal of R

contains an ideal which is essential as a right ideal. Left bounded rings are defined

48



similarly. Note that a prime ring R is right bounded if and only if every essential right

ideal I of R contains a nonzero ideal, that is, core(I) , 0 (see Goodearl & Warfield Jr

(2004, p. 156)).

Proposition 4.1.9. For a prime left bounded ring R, R is right almost perfect if and

only if R is h-local and a left C-ring.

Proof. Since R is a prime left bounded ring, we have core(I) , 0 for every essential

left ideal I of R. Thus, R/I contains a simple submodule for every essential left ideal I

of R since R is right almost perfect. This means that R is a left C-ring. Converse part

holds by Corollary 4.1.6. �

Another situation that we obtain equivalence is the commutative case. For

commutative domains, we have:

Proposition 4.1.10. (Mermut, 2004, Proposition 3.3.9) A commutative domain R is a

C-ring if and only if every nonzero torsion module has a simple submodule.

Corollary 4.1.11. For a commutative domain R, R is almost perfect if and only if R is

h-local and R is a C-ring.

Proof. Straightforward by Proposition 4.1.10 and Theorem 1.4.5. �

Corollary 4.1.12. For a local commutative domain R, R is almost perfect if and only

if R is a C-ring.

4.2 CJ -rings of Generalov

Definition 4.2.1. (Generalov, 1978) Let J be a set of right ideals of a ring R. A

submodule N of a module M is said to be J-pure if for any commutative diagram of

the form

I

f
��

i // R
g
��

N
j // M
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where I ∈ J , i and j are injections, and f and g are arbitrary homomorphisms, there

exists a homomorphism h : R→ N such that hi = f .

Definition 4.2.2. LetJ be a set of right ideals of a ring R. A submodule N of a module

M is called J-dense if for every m ∈ M the right ideal (N : m)r = {r ∈ R : mr ∈ N}

belongs to J and m(N : m)r , 0. In this case, the module M is said to be an essential

J-extension of N.

Definition 4.2.3. A submodule N of a module M is called a weakly J-pure

submodule if it does not have any proper essential J-extension in M, that is, if N

is J-dense in K ⊆ M, then N = K.

Let us observe the following conditions that we may want the set J of right ideals

of a ring R to satisfy.

(F1) If I ∈ J and the right ideal J contains I, then J ∈ J .

(F2) If I ∈ J and r ∈ R, then (I : r)r ∈ J .

(F3) If a right ideal I is contained in J ∈ J and (I : r)r ∈ J for every r ∈ J, then I ∈ J .

If the set J of right ideals of R satisfies all three conditions, then it is said to be a

radical filter.

Lemma 4.2.4. A setJ of right ideals is a Gabriel topology if and only if it is a radical

filter.

Proof. (⇒) part is clear. Conversely, suppose that J is a radical filter. (T3) comes

from (F2) easily. For (T4), suppose that I is a right ideal and there exists a right ideal

J ∈ J such that (I : r)r ∈ J for every r ∈ J. We aim to obtain I ∈ J . Since I ∩ J is a

right ideal that is contained in J and (I∩ J : r)r = (I : r)r ∈ J for every r ∈ J, we obtain

by (F3) that the right ideal I∩ J belongs to J . Also, (F1) implies that I ∈ J . Thus, it

is a Gabriel topology by Lemma 2.2.22. �

From now on, let us suppose that J satisfies (F1) unless otherwise stated.

Definition 4.2.5. Let J be a set of right ideals of a ring R. The ring R is said to be

a right CJ -ring if for any proper J-dense right ideal I of R, there exists an element
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r ∈ R such that (I : r)r is a right maximal ideal. Left CJ -rings for a set J of left ideals

of R are defined similarly.

CJ -rings generalizes the concept of C-rings. If J is the set of all right ideals of R,

then being a right CJ -ring means just being a right C-ring.

We can state our main theorem:

Theorem 4.2.6. Let R be a prime ring and J = J(D) the left Gabriel topology in the

sense of Facchini. Then, R is a left CJ -ring if and only if it satisfies the following

condition which is one of the equivalent conditions of Proposition 3.3.4 for prime

rings: For every proper left ideal I of R with a nonzero core, the cyclic left R-module

R/I contains a simple submodule.

Proof. Suppose that R is a left CJ -ring. We will show that the condition (4) of

Proposition 3.3.4 holds. Let I be a proper left ideal of R with core(I) , 0. Since

the core of I is nonzero, I is essential in the left R-module RR by Lemma 3.3.3, which

means (I : r)lr , 0 for every 0 , r ∈ R. Also, core(I) is a two-sided ideal, so it is

contained in B ⊆ D ⊆ J(D). By (T2), I ∈ J(D). Moreover, for every nonzero r ∈ R,

core(I) ⊆ (I : r)l, and so the left ideal (I : r)l is in J(D). So, I is J-dense in RR. Due

to the fact that R is a left CJ ring, there exists r ∈ R such that (I : r)l is a maximal left

ideal, that is, R/(I : r)l � R(r + I) is a simple left R-module in the left R-module R/I.

For the converse part, assume (4) of Proposition 3.3.4 holds. Let I be a J-dense

left ideal of R, i.e., for every r ∈ R and for the element r + I ∈ R/I, (I : r)l = (0 : r + I)l =

ann(r+ I) ∈J and (I : r)lr , 0. Recall that the torsion class corresponding to the Gabriel

topology J = J(D) consists of left R-modules M such that ann(m) ∈ J(D) for every

m ∈ M. Thus, the left R-module R/I is torsion. By Proposition 2.2.12, R/I contains a

nonzero submodule N = U/I in P. Then, for a nonzero x = u+ I ∈ N, there exists K ∈ B

such that Kx = 0. But, K ⊆ (I : u), that is, K ⊆ ann(x). It follows that core(ann(x)) , 0.

By assumption R/ann(x) contains a simple submodule, and then R/ann(x) � Rx ⊆ R/I

implies that R/I also contains a simple submodule. �
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We end the section with immediate corollaries of Proposition 4.2.6.

Corollary 4.2.7. For a prime ring R, R is right almost perfect if and only if R is h-local

and R is a left CJ -ring, where J = J(D) is the left Gabriel topology in the sense of

Facchini.

Corollary 4.2.8. For a local prime ring R, R is right almost perfect if and only if R is

a left CJ -ring, where J = J(D) is the left Gabriel topology in the sense of Facchini.
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CHAPTER FIVE

CONCLUSION

In this thesis, we summarized and explained the motivation of the notion of right

almost perfect rings from the beginning. We investigated the work of Facchini and

Parolin and explained it by giving much more details. Furthermore, we remind the

notion of C-rings of Renault and CJ -rings of Generalov. Finally, we pose their relation

with commutative almost perfect domains and right almost perfect rings.

In the study of right almost perfect rings, there is still some characterizations and

properties of commutative almost perfect domains that we do not have noncommutative

analogues such as in Bazzoni & Salce (2002). The motivation to investigate

commutative almost perfect domains was to consider strongly flat covers. So, as a

major object, it can be dealt with the problem of generalizing the following theorem

proved by Bazzoni and Salce to noncommutative setting: ‘For a commutative domain

R; every R-module has a strongly flat cover if and only if every flat R-module is

strongly flat if and only if R is almost perfect.’ Namely, the next step may be to find

a class of rings so that we can define the notion of strongly flat modules coinciding

with its commutative counterpart. For this reason, it is necessary to introduce an

analogue of the field fractions Q of a commutative domain for an arbitrary prime

ring. So, the question is: for which class of prime rings R, its maximal quotient ring

becomes a flat R-module and can we define the notion of strongly flat module over it?

Facchini suggests for a prime ring R that the candidate for Q is the ring of quotients

lim
−−→

Hom(RI,RR), where the direct limit is over RI ∈ J(D), of the prime ring R with

respect to the Gabriel topology J(D). The first attempt for this may be to understand

the case for semiprime right Goldie rings. Because in this case, its maximal ring of

quotients will be a flat module over the ring.
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APPENDICES

NOTATIONS

R an associative ring with unit unless otherwise stated

M a right R-module unless otherwise stated

M⊕N the direct sum of modules M and N

Mod-R the category of right R-modules

R-Mod the category of left R-modules

ObjC the class of objects for a category C

Mor(A,B) the set of all morphisms from an object A to a object B in a

category

Ext(M,N) All the equivalence classes of short exact sequences starting

with the R-module N and ending with the R-module M

Z the ring of integers

� isomorphic

Ker the kernel of the map f

Im the image of the map f

ann(M) the annihilator of the R-module M

ann(m) the annihilator of an element m of the R-module M

Soc(M) the socle of the R-module M

Rad(M) the radical of the R-module M

ACC ascending chain condition

DCC descending chain condition

Jac(R) the Jacobson radical of the ring R

core(I) the core of the one-sided ideal I

J(τ) the Gabriel topology for the topology τ
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J-dense submodule, 50

J-pure submodule, 49
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X-envelope, 6

X-precover, 5
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h-local domain, 35
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almost perfect ring, 2
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closed submodule, 47
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cover class, 6

discrete, 28
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essential submodule, 39

faithful module, 16
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hereditary torsion theory, 26

idempotent preradical, 23

Jacobson radical, 15

local ring, 18

max-injective module, 47

neat submodule, 46

nil ideal, 15

nilpotent ideal, 15

orthogonal classes, 8

preradical, 23

pretorsion class, 24

pretorsion-free class, 24

prime ideal, 17

prime ring, 18

projective cover, 6

radical, 23

radical filter, 50

radical of a module, 17

right C-ring, 46

right CJ -ring, 50

right T -nilpotent ideal, 20

right almost perfect ring, 31

right bounded ring, 48

right linearly topological ring, 28

right max ring, 20

right perfect ring, 20
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right primitive ideal, 16

right primitive ring, 16

right semiartinian ring, 17

right semisimple ring, 14

semiartinian module, 17

semilocal ring, 18

semiperfect ring, 19

semiprimary ring, 16

semiprime ideal, 17

semiprime ring, 18

semisimple module, 14

simple ring, 15

singular module, 46

small submodule, 6

socle of a module, 17

strongly flat module, 9

topological ring, 27

torsion class, 25

torsion theory, 25

torsion-free class, 25

weakly J-pure submodule, 50

weakly cotorsion module, 9
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