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PLANNING AND SCHEDULING IN SUPPLY CHAIN ENVIRONMENT 

WITHIN PROCESS INDUSTRY 

ABSTRACT 

Process manufacturing is common in the food, beverage, chemical, 

pharmaceutical and consumer packaged goods industries. There is a continuous 

stream of input materials and output products. The structural characteristics of the 

process industry are sequence dependent setup times, high changeover costs, 

numerous flavored and colored product types with the complicated changeover rules, 

limited shelf life restricting the storage duration and delivery conditions for each 

perishable raw material, intermediate and final product. In this environment, efficient 

planning and scheduling of the supply chain is of vital importance and has become 

one of the most challenging problems in practice. 

 

This dissertation concerns planning and scheduling problems in the process 

industry. The main goal is to develop mathematical formulations of the supply chain 

problems. In this thesis, the characteristics of the process industry are analyzed. The 

major trends and research opportunities are explored from the existing literature. The 

existing models in the literature do not address many realistic aspects of the planning 

and scheduling problems in the process industry. Starting from this point of view, a 

production and distribution problem is studied in the soft drink industry. A mixed-

integer linear programming model is introduced and, due to the high complexity in 

production and distribution structure, a hybrid solution methodology is developed to 

solve the realistic problems.  

 

The operational scheduling represents the realization of tactical planning 

decisions in operational level. Having created a plan for defining the production tasks 

has to be sequenced ensures that the planning activities are indeed applicable. The 

integration of planning and scheduling can be an effective way to make more 

applicable decisions. Accordingly, a production and distribution problem is studied 

in the dairy industry. A mixed-integer linear programming formulation is introduced 
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to integrate tactical planning and operational scheduling decisions and, a heuristic 

approach is proposed to decompose the different time buckets of the decisions.  

 

In real life, intermediates are more perishable than final products. The final 

products can survive for long shelf life periods, but the lifetimes of the intermediates 

are only restricted with several hours. The perishability should not be only included 

in inventory level or shelf life of final products, it should also be realized that the 

perishability limits the intermediate storage and affects run-lengths of production. A 

scheduling problem is studied in the make-and-pack production process. A stochastic 

mixed-integer linear programming model is introduced to schedule the production. A 

simulation of the production process is introduced to evaluate the proposed 

production schedule in terms of the production waste, mostly caused by the 

variability in lifetime of intermediates. 

 

In summary, the industry specific characteristics, incorporation of the decision 

levels providing interrelated feedbacks to each other and perishability issues are 

recent challenges confronted by the process industry. These challenges require 

specific models to support decision making in supply chain. In response, this thesis 

develops mathematical models and optimization approaches applicable to different 

processes industries and can easily be modified for process specific operating 

conditions. 

 

Keywords: Supply chain management, process industry, planning, scheduling, 

mixed-integer linear programming, stochastic programming, constraint 

programming, simulation 
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PROSES ENDÜSTRİSİ KAPSAMINDA TEDARİK ZİNCİRİNDE 

PLANLAMA VE ÇİZELGELEME 

ÖZ 

Proses tipi üretim, gıda, içecek, kimya ve tüketici ürünleri endüstrilerinde yaygın 

olarak karĢımıza çıkmaktadır. Girdi malzemelerinin ve çıkan ürünlerin sürekli akıĢı 

söz konusudur. Proses endüstrisinin yapısal karakteristiği, sıra bağımlı hazırlık 

sürelerine, yüksek kalıp değiĢtirme maliyetlerine, karmaĢık kalıp değiĢtirme 

kurallarına, değiĢik tatlarda ve renklerde ürün tiplerine, hammadde, yarımamül ve 

nihai ürün bazında stokta bulundurma sürelerini ve teslim Ģartlarını etkileyen kısıtlı 

raf ömrüne sahip olmasıdır. Bu ortamda, etkin tedarik zincirinin etkin planlanması ve 

çizelgelenmesi hayati öneme sahiptir ve uygulamada zor problemlerden biri haline 

gelmiĢtir. 

 

Bu tez proses endüstrisinde planlama ve çizelgeleme problemleri ile 

ilgilenmektedir. Ana hedef tedarik zinciri problemlerinin matematiksel 

formülasyonlarının geliĢtirilmesidir. Tezde, proses endüstrisinin karakteristikleri 

araĢtırılmıĢtır. Eğilimler ve araĢtırma fırsatları mevcut literatürden faydalanılarak 

ortaya çıkarılmıĢtır. Literatürde yer alan modeller proses endüstrisindeki gerçekçi 

yönlerden birçoğunu göz ardı etmektedir. Bu bakıĢ açısından yola çıkarak, alkolsüz 

içecek endüstrisinde bir üretim ve dağıtım planlama problemi çalıĢılmıĢtır. Bir 

karıĢık tamsayılı programlama modeli geliĢtirilmiĢ. Üretim ve dağıtım yapısındaki 

karmaĢıklık sebebiyle gerçekçi problemleri çözmek için bir melez çözüm yöntemi 

önerilmiĢtir. 

 

Operasyonel çizelgeleme taktiksel planlama kararlarının gerçekleĢmesini temsil 

etmektedir. Çizelgelenmesi gereken üretim görevlerinin belirlenmesi için bir planın 

ortaya konulması alsında planlama kararlarının uygulanabilirliğini göstermektedir. 

Bu doğrultuda, süt ve süt ürünleri endüstrisinde bir üretim dağıtım problemi 

çalıĢılmıĢtır. Taktiksel planlama ve operasyonel çizelgeleme kararlarını bir araya 

getiren bir karma tamsayılı programlama modeli ve bu kararları farklı zaman 

aralıklarına ayıran bir sezgisel yöntem geliĢtirilmiĢtir. 
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Gerçek hayatta, yarımamüller nihai ürünlerden daha kolay bozulabilmektedir. 

Nihai ürünler daha uzun raf ömrü süresince sağlam kalabilmektedirler, fakat 

yarımamüllerin ömürleri yalnızca birkaç saat ile sınırlıdır. Bozulabilirlik yalnızca 

envanter seviyesinde değil aynı zamanda üretim süresini ve yarımamüllerin stokta 

bulundurma süresini kısıtlaması açısından da ele alınmalıdır. Yap-paketle üretim 

sürecinde bir çizelgeleme problemi çalıĢılmıĢtır. Üretimin çizelgelenmesi için bir 

stokastik karma tamsayılı programlama modeli geliĢtirilmiĢtir. Önerilen çizelgenin 

çoğunlukla yarımamüllerin ömürlerindeki değiĢkenlikten kaynaklanan üretim israfı 

açısından değerlendirilmesi için bir benzetim modeli geliĢtirilmiĢtir. 

 

Özetle, endüstriye has bu karakteristikler, birbirleri ile iliĢkili geri-besleme 

sağlayan karar seviyelerinin birleĢtirilmesi ve bozulabilirlik konuları proses 

endüstrisinde karĢılaĢılan yeni zorluklardır. Bu zorluklar tedarik zincirindeki 

kararları desteklemesi açısından özel modeller gerektirmektedir. Bunun üzerinde, bu 

tez farklı proses endüstrilerinde de uygulanabilir matematiksel modeller ve eniyileme 

yöntemleri geliĢtirmektedir ve sürece özgü farklı operasyon Ģartları için kolayca 

düzenlenebilmektedir. 

 

Anahtar kelimeler: Tedarik zinciri yönetimi, proses endüstrisi, planlama, 

çizelgeleme, karma tamsayılı doğrusal programlama, stokastik programlama, kısıt 

programlama, benzetim 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction to the Field of Research 

 

In the production environment, there are two distinct types of manufacturing 

systems. These are discrete and continuous manufacturing systems. The discrete 

manufacturing systems involve a certain number of product batches. In continuous 

production, there is a continuous stream of input materials and output products. The 

continuous manufacturing industries have typically products such as foods, drugs, 

petroleum, and chemicals. Other, the discrete manufacturing industry is quite diverse 

and includes automotive industry, appliances industry (Kreipl and Pinedo, 2004). 

Planning and scheduling in continuous manufacturing often deal with the issues 

differing from discrete manufacturing by means of product and process 

characteristics. 

 

Product characteristics: The continuous manufacturing systems are well-known as 

process industries. In the process industry, multiple intermediate products are 

produced by a few production recipes and then converted into great types of different 

finished goods. To avoid contamination of the products, the product dependent 

cleaning, sterilizing, re-tuning issues arise in processing units. Perishability issues of 

intermediate and final products restrict their production run-lengths, storage 

durations and delivery conditions.  

 

Process characteristics: The continuous manufacturing basically involves two 

fundamental production stages. The first is a make-stage including such operations as 

processing, milling or mixing. Taking in raw milk, mixing with the required 

ingredients (e.g., culture, fruit) to produce yoghurt or ice-cream and, transportation 

using pipes or vessels is the dairy production operations can be evaluated in the 

make-stage. The second is a pack-stage consisting of finishing, converting or 

packaging operations. Filling into cups and packaging with parallel packaging lines 

can be evaluated in the pack-stage.  
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Planning and scheduling of continuous manufacturing systems should encompass 

these characteristics together and, requires specific models to support decision 

making in process industries (Kallrath 2002, 2005). The dairy and the soft-drink are 

process industry examples and, offer a real-life make-and-pack production problems. 

Whereas many research has been carried out to investigate the planning and 

scheduling problems in the literature, there is still need on research taking into 

account the mentioned unique characteristics of the process industries (see 

Chapter2).  

 

1.2 Research Objectives 

 

The overall objective of this research is to obtain insights planning and scheduling 

decisions by developing decision support models and solution approaches that can 

address the inherent characteristics of process industry. The research will focus on 

four main research objectives and studies: 

 

Research objective 1: Searching the major research opportunities and trends on 

production planning and scheduling problems encountered in the process industry? 

 

A literature review is introduced to provide a critical review on quantitative 

supply chain models within the dairy industry. A number of problem variants are 

investigated in terms of solution approaches, problem and model characteristics, 

decision levels. Through the analysis of the literature review, a framework is 

developed for the existing literature to reveal problem characteristics, major trends, 

explore research opportunities and give several directions for future research 

 

Research objective 2: Developing a solution approach which can be used as 

decision aids under consideration of uncertain machine failures in the production 

allocation and distribution planning problem. 

 

A production and distribution planning problem is studied in the soft drink 

industry. The problem involves the allocation of production volumes among the 
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different production lines in the manufacturing plants, and the delivery of products to 

the distribution centers (DCs). A mixed-integer linear programming (MILP) model is 

developed for the problem. We present a hybrid solution methodology combining 

simulation and MIP based fix-and-optimize (F&O) heuristic to solve the considered 

problem.  First, MIP based fix-and-relax (F&R), F&O heuristics are proposed. The 

solution quality and performance of the proposed heuristics are analyzed with the 

randomly generated demand figures for the three granularity categories and various 

capacity load scenarios. Computational performances of these heuristic procedures 

are compared with the standard MIP results. The computational experiments carried 

out on a large set of instances have shown that the F&O heuristic algorithm provides 

good quality solutions in a reasonable amount of time. Second, simulation model is 

introduced to represent the problem with stochastic machine failures. Hybrid 

methodology combining the MIP based F&O heuristic and simulation model is 

implemented. The optimization model uses an F&O heuristic to determine the 

production and delivered quantity. Subsequently the simulation model is applied to 

capture the uncertainty in the production rate. Numerical studies from the data which 

have a tight production capacity and high demand granularity demonstrate that the 

developed hybrid approach is capable of solving real sized instance within a 

reasonable amount of time and demonstrate the applicability of the proposed 

approach.  

 

Research objective 3: Integrating tactical planning and operational scheduling 

decisions in dairy industry and challenging with bottleneck incubation process in set 

type yoghurt production.  

 

An integrated planning and scheduling problem is studied for the set type yoghurt 

production in dairy industry. A MILP formulation is introduced to integrate tactical 

and operational decisions and a heuristic approach is proposed to decompose time 

buckets of the decisions. The decomposition heuristic improves computational 

efficiency by solving big bucket planning and small bucket scheduling problems. 

Further, MILP and constraint programming (CP) methodologies are combined with 

the algorithm to show their complementary strengths. Numerical studies using 
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illustrative data with high demand granularity (i.e., a large number of small-sized 

customer orders) demonstrate that the proposed decomposition heuristic has 

consistent results minimizing the total cost (i.e., on average 8.75% gap with the best 

lower bound value found by MILP) and, the developed hybrid approach is capable of 

solving real sized instances within a reasonable amount of time (i.e., on average 92% 

faster than MILP in CPU time).   

 

Research objective 4: Dealing with perishability issues and uncertainty of quality 

decay in the make-and-pack production process. 

 

In food processing, the diversity of products to make and pack restricts 

productivity due to contamination issues. Moreover, rapid quality decay of 

intermediates forces organizations to carefully schedule their production. A 

scheduling problem is studied in the make-and-pack production and, a stochastic 

MILP model is proposed. The aim of the problem is to find an optimal schedule with 

minimum makespan (total time needed to finish the daily production) taking into 

account uncertainty in quality decay. A yoghurt production case is presented to 

illustrate the typical structure of a two-stage semi-continuous make-and-pack 

production process. Accordingly, a simulation of the production process is 

introduced to evaluate the proposed production schedule in terms of product waste. 

The scenario analysis shows that the proposed schedule results in 62.3% decrease of 

product waste with only 4.3% increase of makespan.  

 

1.3 Outline of the Thesis 

 

The rest of the dissertation is divided into five chapters. According to the three 

research questions, the second chapter aims at answering the first research question 

with a literature review and concludes research directions. To deal with the 

outstanding research opportunities, the third chapter provide a mathematical model 

and a solution approach on the production and distribution planning problem, the 

fourth chapter provide a mathematical model and a solution approach on the 

integration of planning and scheduling decisions, the fifth chapter introduce a 
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research accounting for perishability issues and uncertainty of quality decay as major 

trends in the field.  

 

Figure 1.1 summarizes the research framework followed in this PhD thesis. It 

shows that the studied supply chain problems deal with production and/or 

distribution activities and planning and scheduling decisions. The literature review in 

Chapter 2 identifies the problem characteristics and analysis presents the available 

quantitative models, points out modelling challenges and research opportunities of 

supply chain problems in process industry. The subsequent chapters (Chapter 3, 4 

and 5) focus on developing decision support models defined by research 

opportunities.  

 

 

Figure 1.1 Research framework 

 

In the last chapter (i.e., Chapter 6) the conclusions from the conducted studies and 

general discussion of the results are presented. In addition, limitations of the 

conducted studies and recommendations on further research are provided.  
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1.4 Included Publications 

 

This  thesis  is  a  collection  of  four  research  that  all  aim  at  the  improvement  

of  planning and scheduling in supply chain environment within process industry. 

The papers are either published, accepted for publication, or under review for journal 

publication. The chapters contain the following papers. 

 

Chapter 2: Sel, Ç., and Bilgen, B. (2014). Quantitative models for supply chain 

management within dairy industry: a review and discussion. European Journal of 

Industrial Engineering, In press.  

 

Chapter 3: Sel, Ç., and Bilgen, B. (2014). Hybrid simulation and MIP based heuristic 

algorithm for the production and distribution planning in the soft drink industry. 

Journal of Manufacturing Systems, 33 (3), 385-399. 

 

Chapter 4: Sel, Ç., Bilgen, B., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. 
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CHAPTER TWO 

QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT 

WITHIN DAIRY INDUSTRY: A REVIEW AND DISCUSSION 

 

2.1 Introduction 

 

Supply chain management (SCM) has become one of the most important 

strategies for achieving competitive advantage in different industries. During the last 

three decades, SCM is a common approach with wide range of applications to take 

an integrated look at closely related procurement, production, storage and 

distribution processes. Nowadays, more effective planning and control of these 

processes in supply chains begin to be directed towards food SCM.  

 

The most important fresh food segments are dairy products. Dairy industry is a 

significant component of many economies, and is a major industry in the most 

developed and developing economies of the world. Dairy product is the collective 

name for products milk, cream, yoghurt, kefir, buttermilk, butter, cheese, ice-cream, 

condensed milk and milk powder. In the literature, these products and manufacturing 

processes are explained in detail from the primary production of the milk to the 

following phases by Bylund (1995). The individual products are made through a 

complex, multi-step process. A typical production process consists of a number of 

stages such as, receiving materials, mixing and blending according to recipe, 

processing and packaging. Out of a limited number of raw materials (e.g., raw milk) 

still a moderate number of intermediate products (e.g., full-fat milk, diet milk, aroma 

milk) are produced within the processing step. High product complexity typically 

occurs at the packaging level due to different tastes and customer individual 

packaging forms (Lütke Entrup, 2005).  

 

The dairy industry is characterized by unique features that differentiate it from the 

other industries. The specific characteristics of dairy industry are summarized such 

as  high number of products and variants, divergent product structure, complicated 

setup operations with sequence dependent times having different changeover rules, 
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capital intensive processing equipment, shared resources, identical machines, 

hygienic factors, multi-stage production process, necessity for lot traceability due to 

quality and environmental issues, special needs for handling, transportation and 

storage technologies, and shelf life restriction for raw materials, intermediate 

products, and final products which has directly influence on wastage, inventory 

levels and out of stock rates and product preference of the customer (Nakhla, 1995; 

Lütke Entrup, 2005; Amorim et al., 2011).  

 

Due to the mentioned factors, production planners face a complex task in which a 

number of constraints have to be met. Deciding which and how much white mass to 

produce in each tank given the available connections to the filling and packaging 

lines is a challenging task. The synchronization of production stages is difficult due 

to the difference between processing and packaging rates and the limitations on 

intermediate storage. Furthermore, the technical constraints such as cleaning and 

traceability requirements interfere with the timing and assignment decisions. To 

these production challenges must be added those for high demand variability. 

Moreover, in the dairy industry, the challenges associated with demand variability 

are compounded by the short shelf life of the finished products and relatively long 

production lead times. These all together make the planning and scheduling of the 

processing system a challenging task (Kilic, 2011). Besides, transportation is a 

significant component of total cost for a company where the movement of raw 

materials or products is required. Major components of the transportation costs 

include the labor cost of the drivers, the cost of fuel, and the cost of the vehicles. 

These costs are especially important where perishable products are being transported 

and specialized handling is required (Butler et al., 2005). It is important nowadays 

that dairy products must be delivered within allowable delivery times or time-

windows.  

 

In this research, based on the characteristics, we review the most relevant and 

recent literature on the supply chain problems within the dairy industry. The aim is to 

provide a detailed literature review of previous research on quantitative models 

addressing a variety of problem types and solution approaches to be subject of 
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production planning, distribution planning and scheduling problems. The research 

presents a literature review consisting of past reviews and surveys besides the current 

research articles. Due to the diversity of available publications, the search has to be 

directed by setting appropriate limits. As for the methodology, we review the peer-

reviewed articles published in the English language, proceeding papers, PhD 

dissertations commonly cited in the literature. Furthermore, we review past reviews 

and review articles to obtain some related research in addition to corresponding 

literature.  

 

In this review, we confine ourselves to the production planning and scheduling, 

distribution planning, and vehicle routing problems (VRPs) within dairy SCM. 

Inventory models with deteriorating or perishable products have also received 

considerable attention in the literature. For a complete review on perishable 

inventory models, the reader is referred to Nahmias (1982), Raafat (1991), Goyal and 

Giri (2001), Karaesmen et al. (2011) Bakker et al. (2012). Inventory management is a 

topic beyond the scope of this review.  

 

Since dairy industry is an important part of the food sector, interested readers are 

referred to following review articles on food, and the agricultural supply chain: 

Ahumada and Villalobos (2009) reviewing models for the agricultural food business; 

Akkerman et al. (2010) addressing research done in the field of food distribution 

where different characteristics are identified as key issues such as quality, safety and 

sustainability; Tarantilis and Kiranoudis, (2005) and Grunow and Van der Vorst 

(2010) providing an editorial perspective on food production and SCM; Pahl et al. 

(2007) focusing on deterioration constraints of production planning, lot sizing and 

inventory; Amorim et al. (2013c) reviewing the production-distribution planning 

problems tackling with perishability explicitly; Soysal et al. (2012) reviewing the 

quantitative models for sustainable food logistics management; Shukla and 

Jharkharia (2013) providing a state of the art on agri-fresh product SCM.  

 

Dairy industry that is a sub-segment of the food industry shares similar 

fundamental properties. However, there are several differentiating characteristics: the 
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production is semi- continuous/continuous make-and-pack process operating with 

shared resources and parallel packaging machines; the setup operations are more 

complicated with sequence dependent time; there are different changeover rules for 

not only the products but also the product groups; more critical hygienic factors 

should be taken into account; a variety of intermediate and final products is produced 

by a single raw material (e.g., milk). Moreover, dairy shows the highest criticality 

with regard to very restricted and limited shelf life reflecting not only physical state 

but also representing whether it is in a saleable condition or not. The main objective 

of this research is to review existing operations research literature on SCM problems 

in the dairy industry and to identify the areas where further research is needed. The 

fundamental motivation for this review comes from the practical significance of the 

supply chain planning problems in the dairy industry. In the last decade, the literature 

is replete with publications related to the applications of operations research 

methodologies to SCM problems within the dairy industry. However, a unified body 

of literature that deals SCM problems in the dairy industry does not exist yet. To the 

best of our knowledge, there is no previous literature review particularly focusing on 

SCM problems in the dairy industry. The main contribution of this review is to fill 

the perceived gap by providing a comprehensive overview of the current literature on 

the applications of SCM in the dairy industry.  

 

We have scrutinized the previous reviews, in order to determine the classification 

criteria. To our knowledge, although there is no review offering assessments 

especially on dairy supply chain problems, the literature on the food SCM includes 

many surveys. Various classification schemes are available to categorize the SCM 

research. Ahumada and Villalobos (2009) classify the reviewed perishable and non-

perishable agricultural foods into modelling approaches under the consideration of 

different planning levels. Akkerman et al. (2010) concentrate on the food distribution 

by focusing on quality, safety and sustainability. Pahl et al. (2007) present a 

categorization on perishability, deterioration and classify the articles in terms of 

material flow along the supply network. Amorim et al. (2013c) categorize production 

and distribution planning problems by gathering the lot sizing, scheduling, vehicle 

routing articles into one group. Of all the previously published review literature, the 
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classification scheme used by Amorim et al. (2013c) is the closest one to what we 

present.  

 

Figure 2.1 presents the factors used to dissect and organize this review. The 

classification scheme followed presents problem areas along with the solution 

methodology developed. From the perspective of the problem scope, we divide the 

research into three main problem types such as production planning and scheduling, 

vehicle routing and distribution planning, integrated production and distribution 

planning. In a second level of the classification, we make a further categorization 

using the particularities of the solution approaches used. The reviewed research is 

classified by problem types based on solution approaches. The papers are listed as 

summary tables in the every subsection of the review with the fundamental 

subdivisions such as perishability, product types, supply chain processes, fictitious 

data or case study, product stages, solution approach, decision levels, objective 

function, shelf life, capacity and time constraints, labor and working time 

restrictions, production overtimes, setups. The supply chain planning matrix 

developed by Meyr et al. (2002) classifies the planning tasks into two dimensions 

planning horizon and supply chain processes. The framework presented by Meyr et 

al. (2002), as seen in Figure 2.2, is used to display the supply chain processes 

focused on. These processes are highlighted in the figure.  

 

Dairy Industry

Production Planning 

and Scheduling

Vehicle Routing and 

Distribution

 Production and 

Distribution Planning

- Analytical Methods

- Approximate Methods

- Simulation

- Hybrid Approaches

- Analytical Methods

- Approximate Methods

- Simulation

- Hybrid Approaches

- Analytical Methods

- Hybrid Approaches

 

Figure 2.1 Classification scheme 
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Figure 2.2 Supply chain planning matrix (Meyr et al., 2002) 

 

The remainder of this chapter is organized as follows. In section 2, literature 

review on quantitative models in the dairy industry is presented with the subsections 

corresponding with the variety of problem types and solution approaches. In section 

3, the chapter ends with conclusions, and possible directions for the future research.  

 

2.2 Quantitative Models in Dairy Industry 

 

In this section, we review quantitative models in the supply chain literature within 

the dairy industry. The three subsections corresponding to the various problems types 

arising from the dairy industry are presented with respect to the solution approaches. 

The covered problem types are: production planning and scheduling; vehicle routing 

and distribution planning; integrated production and distribution planning problems. 

The reviewed works are ordered chronologically. They have been classified 

according to the solution approach proposed.  

 

2.2.1 Production Planning and Scheduling 

 

Production planning and scheduling is crucial for achieving competitive 

advantage in different industries (Grunder et al., 2013; Hsu et al., 2009). As well, the 

dairy industry contains various complex optimization problems. Several production 

planning problems arise from the different processing stages. The individual products 
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are made through a complex, multi-step process. Extra care must be taken to ensure 

high standards of sanitizations, control of allergens, batch traceability, and product 

freshness. Due to divergence of the product structure, pressure on product freshness, 

respecting lot sizing policies, demand variability, synchronizing material 

consumption among the production stages, the task of planners becomes more 

complex in the dairy industry. The production environment has several industry-

specific characteristics involving traceability requirements, limited production 

resources, time-dependent and sequence-dependent cleaning of production units. The 

characteristics together lead to challenging of scheduling problems which require 

efficient and flexible modelling approaches (Kilic, 2011). In the remainder of this 

section, we classify the production planning and scheduling research in the dairy 

industry based on the solution methodologies used. These classifications are 

analytical methods, approximate methods, simulation and hybrid approaches.  

 

2.2.1.1 Analytical Methods 

 

Pioneering research is done by Sullivan and Secrets (1985), Rutten (1993), and 

Jakeman (1994) in the field of production planning within the dairy industry. 

Sullivan and Secrets (1985) design a small optimization based decision support 

system (DSS) for production planning and inventory forecasting of dairy industry 

and they implement it to a real world application. The designed milk flow analysis 

program is prepared as an interactive and user-friendly primal linear programming 

(LP) model. Rutten (1993) considers the operational level planning problem in a 

process industry producing milk replacer. The considered problem is handled with a 

hierarchical approach decomposing the large problem into two sub-problems, which 

can be solved using an LP approach. The objective is to minimize the total costs of 

raw materials. They develop a DSS operating in an acceptable solution time. 

Jakeman (1994) discusses a knowledge based production management system using 

modelling techniques, handling industry specific issues of food production and 

providing expert information to assist operators and production management to make 

decisions in complex production operating environments. The proposed system is 

applied to practical applications of ice cream and yoghurt production. A case study is 
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presented on yoghurt production process by taking into account various important 

specific restrictions. The knowledge based production management system yields 

interesting results in improving efficiency and understanding plant operations. This is 

the first fundamental research considering the incubation process incorporated into 

the filling and packaging.  

 

Until recently, the use of optimization based techniques for the production 

planning problem in the dairy industry has received little attention in the operations 

research literature. Lütke Entrup et al. (2004) and Lütke Entrup et al. (2005b) 

consider shelf life issues for integrated production planning and scheduling problem 

in an industrial case of stirred type of yoghurt within the dairy industry. The focus is 

particularly on the filling and packaging stages of the production process. The MILP 

models are based on the principle of block planning and combination of a discrete 

and a continuous time representation. The objective function is maximization of the 

contribution margin considering revenues and variable costs. Both of the papers take 

into account a shelf life dependent pricing component, sequence independent setups 

and cleaning time. While Lütke Entrup et al. (2005b) consider the planning periods 

based on the production day, Lütke Entrup et al. (2004) present a position based 

planning model. As an extension of the both research, Lütke Entrup et al. (2005a) 

develop several block programming MILP models for the same industrial case of 

yoghurt production. These are standard models with day bounds, setup conservation 

allowing the overnight production and position based splitting the planning horizon 

up into consecutive enumerated positions. The models aim at the maximization of the 

contribution margin taking into account shelf life integrated price component. 

However, the MILP models focus on flavoring and packaging stages. Thus, 

operations involving the processing and storage of products are neglected. The 

improvement of the position based model, integration of the fermentation process 

into the planning procedure and incorporation of uncertainty are presented as the 

future directions of the research.  

 

Bongers and Bakker (2006) introduce a multi-stage scheduling model derived 

from a medium size ice cream manufacturer. The model handles a simplified process 
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consisting of only one pasteurization and packaging process. The solutions of the 

model are achieved using commercial scheduling software. Later, Subbiah and 

Engell (2009) and Subbiah and Engell (2010) study on the same case which is 

considered by Bongers and Bakker (2006). While Subbiah and Engell (2009) 

demonstrate an application of the timed automata (TA) based approach to the 

problem of scheduling batch processes with resources subject to sequence dependent 

changeovers, Subbiah and Engell (2010) describe the application of the TA based 

approach to model and solve batch scheduling problems, which are subject to 

sequence dependent changeovers and limited discrete resources with the objective of 

makespan minimization.  

 

Doganis and Sarimveis (2007) propose an MILP model for production scheduling 

in yoghurt industry. The model considers the sequencing limitations, sequence 

dependent changeover times and costs in addition to standard constraints 

encountered in the production scheduling such as material balances, inventory 

limitations, machinery capacity, labor shifts and manpower restrictions. The 

objective of the proposed MILP model is only minimization of all major sources of 

variable costs such as setup, inventory and labor costs. However the model is limited 

to the single production line. Doganis and Sarimveis (2008) extend their previous 

research by presenting a customized MILP model to optimize yoghurt packaging 

lines consisting of multiple parallel machines where actions have to be synchronized 

across all machines due to common feeding line. The proposed model decides the 

produced quantities of each product at each machine, the starting and finishing time 

for the production of each item in each machine, the total machine utilizations 

including changeover times, the inventory levels at the end of the day with the given 

data of the demand during the scheduling horizon. The model incorporates sequence 

dependent setup costs and times, the cleaning task at the end of the day, multiple 

intermediate due dates, job mixing and splitting, product specific machine speed, and 

minimum lot sizes. The performance of the proposed model is illustrated through its 

application to the yoghurt production plant of a leading dairy product manufacturing 

company. Doganis and Sarimveis (2009) address a new MILP model that combines 

the advantages of the models presented by Doganis and Sarimveis (2007) and 
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Doganis and Sarimveis (2008). They integrate the production constraints, 

management directives with the proposed model. The shelf life restriction is not only 

considered in the constraints to keep stable the remaining shelf life on the production 

process, but also in the objective function in which there is a penalization to control 

the freshness on delivery. The number and sizes of lots are not limited and the total 

production time is limited by the available machine time. The objective of the MILP 

model is a minimization function involving setup, storage, machine utilization, 

overtime labor costs and a term for marketability loss.  

 

Environmental considerations are taken into account by a number of researchers 

in the dairy industry. Stefanis et al. (1997) consider environmental conditions in the 

optimal design and scheduling of batch/semi-continuous processes and present 

examples from the cheese production process. They use life cycle analysis based 

methodology within general multi-objective formulation consisting of process 

economics and environmental impact. The process of interest is investigated to 

evaluate environmental impact with a set of metrics such as air, water pollution, 

global warming. Vaklieva-Bancheva and Kirilova (2010) focus on both the 

environmental consideration and the choice of the production recipes for the products 

within the scheduling framework. They propose a mathematical formulation to solve 

the multi-objective optimization problems for a special class of schedules. These 

papers contribute to the literature in terms of the consideration of environmental 

issues as well as design and scheduling within the dairy industry.  

 

Wang et al. (2010) take into consider the determination of buffer capacity in dairy 

filling and packaging lines. They use the transient analysis method to analyze the 

performance of the filling and packing system using Bernoulli two-machine model. 

They also perform sensitivity analysis on larger buffer capacity, higher filling station 

throughput, and initial inventory buildup. The performance parameters of the system 

are production rate, work in process during transients, necessary extra time of filling 

station, operating, blockage and starvation times of filling and packaging stations.  

 



17 

 

Jang and Klein (2011) consider business-to-customer and business-to-business 

aspects of an agricultural supply chain model motivated by the needs of a local dairy 

farm. They present an optimization model using mathematical modelling techniques. 

They study on the strategic planning issue by forming cooperative agreements, 

deciding the size of cooperative, and defining the production quantities. The research 

differentiates from the literature by dealing with business-to-customer and business-

to-business aspects on strategic level decisions of dairy industry.  

 

Guan and Philpott (2011) develop a multi-stage stochastic programming model 

taking into account uncertainty and a linear price–demand curve to solve the 

production planning problem in the dairy industry. In addition, they analyze sales 

policy by a multi-stage stochastic quadratic model using a decomposition algorithm. 

This is the only work that takes into account uncertainty and dynamic policies in 

dairy SCM.  

 

Kopanos et al. (2009, 2010a) study on the lot sizing and scheduling problem in a 

multi-product yoghurt production line of a real life plant. A mixed 

discrete/continuous time MILP model is proposed. The problem under question is 

mainly focused on the packaging stage, whereas timing and capacity constraints are 

imposed with respect to the pasteurization, homogenization and fermentation stage. 

Sequence dependent setup times and costs are explicitly taken into account and 

optimized by the proposed framework. However, the scheduling problem they 

consider only involves the packaging stage. Kopanos et al. (2011a), present a MILP 

framework for the resource constrained production planning problem in a semi-

continuous food process, similar to the dairy industry. Quantitative as well as 

qualitative optimization goals are included in the proposed model. Renewable 

resource limitations are appropriately taken into account. All of the above mentioned 

works are related to the single stage production systems in the dairy industry. 

Kopanos et al. (2011b) present a novel MILP formulation and solution strategy to 

address the challenging production scheduling problems in the multi-product, multi-

stage dairy industry. The main features of the proposed approach rely on the 

integrated production stages, and the inclusion of strong valid integer cuts favoring 
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shorter computational times. In a paper by Kopanos et al. (2012b), the MILP model 

developed by Kopanos et al. (2011b) is further enhanced by introducing new sets of 

tightening constraints in order to improve computational efficiency in industrial size 

scheduling problems in food industry. Both of the papers consider production 

scheduling problem in a real world multi-stage food processing industry with the 

limited shelf life of intermediate mixes in the aging stage.  

 

Amorim et al. (2013a, 2014) investigate the production planning problem with a 

different point of view from the existent literature. While Amorim et al. (2013a) 

assess the suitability of financial risk measures for mitigating crucial risks in the 

production planning of perishable goods, Amorim et al. (2014) consider the influence 

of customer purchasing behavior on the production planning of perishable goods. 

The paper presented by Amorim et al. (2013a) goes beyond the literature considering 

risk management within dairy supply chain. They explore the tradeoff between 

expected profits and risk under perishable nature of goods by developing risk-averse 

production planning model. The model is developed as a stochastic programming 

model. In this model, they asses the sustainability of financial risk measures and 

consider uncertainty in the demand level, decay rates and customer purchasing 

behavior. They present deterministic and stochastic mathematical models accounting 

consumer purchasing behavior. The impact of customer purchasing behavior is 

investigated by the influence of the age dependent demand, and the effect of 

faithfully representing product quality risk in the model. Investigation of demand 

uncertainty under risk management perspective is highlighted as a promising area. 

Apart from these, Amorim et al. (2013b) focus on lot sizing and scheduling decisions 

of the production process consisting of multi-product and multi-parallel lines with 

complex setup structure. They analyze the performance of existent and well 

identified formulations in the literature for small bucket and big bucket capacitated 

lot sizing and scheduling problems.  

 

Recently, Kilic et al. (2013) and Banaszewska et al. (2013) take into account 

blending and intermediate production stages besides the final production stage. Kilic 

et al. (2013) consider a capacitated intermediate product selection and blending 
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problem which is a two-stage production system. They focus on a baker industry 

example but the model is applicable with small modifications to the dairy industry. 

They introduce a MILP model and give scenario based analysis. Banaszewska et al. 

(2013) present a comprehensive dairy valorization model for mid-term allocation of 

raw milk to final products and production planning. They present a MILP model that 

allocates raw milk to the most profitable dairy products by taking into account 

recipes, composition variations, dairy production interdependencies, seasonality, 

demand, supply, capacities, and transportation flows. They also analyze the effect of 

seasonality for milk valorization.  

 

2.2.1.2 Approximate Methods 

 

Nakhla (1995) expresses the increasing need for flexibility due to rising logistical 

demands as the result of the change in the market conditions for food processing 

companies. The problem arises from a yoghurt production process being a specific 

dairy product industry. A rule-based scheduling approach is introduced for packaging 

lines.  

 

Vaklieva et al. (2005) consider a multi-objective optimization problem analyzing 

the trade-off between plant profit and environmental impacts in curds manufacturing 

process of a dairy industry.  They use a genetic algorithm (GA) technique as a 

solution approach to  find  the  conditions  leading  to  the  best  compromise  

between  both  objectives taking into account the  effect of the amount  and 

composition of  processed  milk,  processing  unit's  assignment  and  number  of 

processed  batches. The paper presents a salient research contribution by considering 

the amount and composition of processed milk and inherent losses in addition to 

production constraints.  

 

Marinelli et al. (2007) present a real capacitated lot sizing and scheduling problem 

with parallel machines and shared buffers in a packaging company producing 

yoghurt. The discrete mathematical planning model aims at minimizing the setup, 

storage and processing costs. As a solution methodology, they propose a two-stage 
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heuristic based on the decomposition of the problem into lot sizing on tanks and 

scheduling on lines. In order to obtain the lower bounds, the proposed model 

formulation is relaxed in five ways, while the upper bound value is calculated with 

the two-stage optimization heuristic consisting of a nested local search framework. In 

the computational efforts, the data is generated with the two different scenarios for 

the dedicated and general purpose lines. The proposed two-stage heuristic is very 

effective and produces near optimal solutions within very short computational times. 

However, it is assumed that the production rate is fixed by a single bottleneck stage, 

setup time, and setup cost are sequence independent.  

 

Banerjee et al. (2008) consider the planning and scheduling of milk food 

processing process. They propose a hybrid meta-heuristic approach based on a multi-

objective Bee Colony algorithm combined with the constructive rough set heuristics. 

They also present a case study on process scheduling of a milk production centre.  

 

Gellert et al. (2011) consider an integrated sequencing and scheduling problem of 

filling lines in the dairy industry. The fundamental focus is to sequencing and 

scheduling of dairy industry production process under consideration of cleaning and 

sterilizing issues. They introduce an application of the general sequencing and 

scheduling framework. They utilize a GA for the sequencing by incorporating a 

problem specific algorithm for the fixed sequence scheduling. They also propose the 

sub-optimal greedy and optimal shortest path algorithms. The aim is to find a 

production plan consisting of a processing order or sequence, and a feasible 

schedule, which minimizes the makespan. This research differentiates itself from the 

literature in the sense that it focuses on the scheduling under consideration of 

cleaning and sterilizing issues.  

 

In a recent study, Van Elzakker et al. (2012) present a new MILP scheduling 

model and algorithm for the scheduling in the fast moving consumer goods industry. 

A problem specific formulation is used since the efficiency of the model is crucial to 

be able to address larger cases. They focus on the ice cream production process of 

parallel mixing and parallel packing lines. The objective is the minimization of the 
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makespan. An algorithm is proposed to tackle with the periodic cleaning 

characteristic of the production process. The proposed model is evaluated based on 

the ice cream scheduling case study presented by Bongers and Bakker (2006).  

 

2.2.1.3 Simulation 

 

Kuriyan et al. (1987) present a preliminary research using simulation to solve the 

scheduling problem in the dairy industry. In this research, production schedules are 

generated by using efficient sub-optimal algorithms and the performance of the 

algorithms are evaluated by using simulation package. The use of a simulation 

approach is a research direction which has a gap on the production planning and 

scheduling application area in the dairy industry.  

 

2.2.1.4 Hybrid Approaches 

 

Claassen and Van Beek (1993) develop and implement a pilot DSS to solve a 

planning and scheduling problem for the packaging line which is the most bottleneck 

process of the cheese production of a large dairy company. They handle the problem 

for both tactical and operational control levels. On the operational control level, the 

sequence of packaging lines is identified with the sequence dependent setup times by 

an asymmetric travelling salesman heuristic solution approach and the sequence of 

jobs is determined by logical rules. On the tactical level, an MILP model is 

introduced to determine the feasible and daily master production schedule.  

 

The research papers stated below contribute to the literature using a seminal 

solution approach to incorporate environmental considerations in the scheduling 

problems. Berlin et al. (2007) present a method to calculate the sequence of yoghurt 

products to minimize milk waste of yoghurt production. The goal of the research is to 

find a practical method to calculate a sequence of a great number of cultured 

products. Furthermore, they design a method which describes an interdisciplinary 

approach incorporating a heuristic sequencing approach fundamentally based on the 

production rules, constraints with the life cycle assestment methodology. They take 
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into account the environmental impact and economic aspects simultaneously, by 

combining environmental systems analysis and production scheduling. As an 

extension of previous research, Berlin and Sonesson (2008) present an application of 

the proposed method to minimize the waste caused by a sequence for a given set of 

products and to calculate the environmental impact of a waste in the dairy industry. 

The environmental impact of the proposed sequences is calculated with a detailed 

scheduling model and life cycle assestment method.  

 

Adonyi et al. (2009) consider the short-term flow shop scheduling problem in the 

dairy industry. They propose two distinct approaches aiming at makespan 

minimization. First, they introduce an s-graph representation and apply the branch 

and bound technique. Second, they introduce integer programming (IP) formulation 

and apply the basic GA as a solution technique.  

 

Amorim et al. (2011) present multi-objective MIP models using block planning 

approach to solve a lot sizing and scheduling problems considering perishability 

issues on packaging process of yoghurt production having a fixed shelf life. The 

setup considerations are handled as sequence dependent for the major setups and 

sequence independent for the minor setups. The model is analyzed for two distinct 

scenarios depending on make-to-order and hybrid make-to-order/make-to-stock 

production systems. The proposed MILP model is hybridized with a non-dominated 

sorting GA. It differs from the literature by introducing a multi-objective MIP model 

to solve lot sizing and scheduling problems.  

 

2.2.1.5 Research Directions 

 

To summarize the reviewed literature on production planning and scheduling 

within the dairy industry, the preliminary research on production planning and 

scheduling problem presents analytical methods applications and DSSs (Sullivan and 

Secrets, 1985; Rutten, 1993; Jakeman, 1994). Scheduling problems are initiative 

research areas (Bongers and Bakker, 2006; Subbiah and Engell, 2009, 2010). They 

extensively presented as the mathematical modelling applications (Doganis and 
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Sarimveis, 2007, 2008, 2009; Kopanos et al., 2011a, 2011c, 2012a; Van Elzakker et 

al., 2012).  As well, the integrated production planning and scheduling problems are 

taken into account with the mathematical modelling applications (Kopanos et al. 

2009, 2010a, 2011b; Lütke Entrup et al., 2004; Lütke Entrup et al., 2005a, 2005b). A 

systematic methodology is used to incorporate environmental considerations in the 

optimal scheduling and design of batch processes (Stefanis et al., 1997; Vaklieva-

Bancheva and Kirilova, 2010). Buffer capacity determination with transient analyses, 

strategic planning with optimization models and production planning with stochastic 

programming are other miscellaneous applications (Guan and Philpott, 2011; Jang 

and Klein, 2011; Wang et al., 2010). The contribution by Guan and Philpott (2011) is 

the first example that considers stochastic parameters within dairy SCM. Recently, 

Amorim et al. (2013a, 2014) present research directions considering stochastic 

parameters by means of two distinct perspectives (e.g., consumer purchasing 

behavior and risk management).  

 

Although, the perishability and shelf life issues, capacity and time constraints, 

working time and overtime restrictions, changeover considerations are not explicitly 

taken into account by pioneering research papers, these problem characteristics have 

gained attention in recent research. Perishability, consideration of shelf life, sequence 

dependent setup time, and environmental aspects appear to be the most promising 

aspects that support the realistic representations.  

 

Approximate methods such as heuristic and metaheuristic methods support the 

solution efforts by requiring less running times. Whereas research papers using these 

methods are capable of representing the specific characteristics of dairy industry, 

capacity and time constraints with working time and overtime restrictions, sequence 

dependent setup and cleaning times and perishability and shelf life issues are rarely 

taken into account (Banerjee et al., 2008; Gellert et al., 2011; Marinelli et al., 2007; 

Nakhla, 1995; Vaklieva et al., 2005).  
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Kuriyan et al., (1987) is the only paper that applies simulation methodology for 

the production scheduling in the dairy industry. Simulation applications allow 

production scheduling to be modeled more realistically.  

Some of the preliminary research papers combine heuristics, and exact 

optimization methods by a DSS (Claassen and Van Beek, 1993). The environmental 

issues within the production planning are considered with the optimization heuristics 

for travelling salesman problem and life cycle assessment methodology (Berlin et al., 

2007; Berlin and Sonesson, 2008). Integrated production planning and scheduling 

problem is commonly taken into account by mathematical modelling integrated with 

heuristic and metaheuristic methods (Adonyi et al., 2009; Amorim et al., 2011). 

Research papers using hybrid approaches rarely consider some of the specific 

characteristics of dairy industry. These characteristics are stressed in a recent article 

by Amorim et al. (2011) within the hybrid approach.  

 

Table 2.1 summarizes the reviewed literature of production planning and 

scheduling within the dairy industry. The papers are listed in the order presented in 

the review. For each research, the table illustrates the different characteristics in a 

systematic manner.  

 

2.2.2 Vehicle Routing and Distribution Planning 

 

The dairy industry is an important part of the food sector, and the attention has 

been shifted towards faster replenishment and improved logistical performance in 

addition to the production costs in this industry. The dairy industry is a large-scale 

industry due to numerous farms, collection centers, manufacturing facilities, DCs and 

markets. The dairy products are sensitive to environmental conditions and can be 

affected by rapid changes of environmental conditions. Logistic activities are 

especially important where dairy products are being transported and specialized 

handling is required. Furthermore, they show continuous quality changes throughout 

the supply chain, all the way until final consumption. Hence, in the dairy industry, 

quality, health, and safety require central consideration and more effort for the 

routing and distribution planning (Akkerman et al., 2010).  
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Several authors have previously addressed VRPs arising in the dairy industry. In 

the remainder of this section, we classify the vehicle routing and distribution research 

in the dairy industry based on the solution methodologies used. These classifications 

are analytical methods, approximate methods, simulation, and hybrid approaches.  

 

2.2.2.1 Analytical Methods 

 

Milk collection issues and DSS development are challenging logistics problems 

that have long been of interest to researchers using analytical methods (Butler et al., 

1997; Butler et al., 2005; Claassen and Hendriks, 2007). Butler et al. (1997) consider 

a symmetric travelling salesman problem applied to milk collection problem in the 

dairy industry. A number of possible IP formulations are presented and valid cutting 

plane inequalities are combined with branch and bound method to identify optimal 

integer solutions. Wide variety of DSS applications appears in the literature. Butler et 

al. (2005) introduce a DSS based on previous technique to plan milk collection 

operations and to schedule the routes. They also discuss automatic data capture 

devices and database management systems to provide effective management. Both of 

the papers contribute to the literature by providing optimization techniques and 

introducing efficient DSS for milk collection in the dairy supply chain. Claassen and 

Hendriks (2007) develop a MILP model to solve a milk collection problem. They 

propose a DSS generating milk collection plans associated with daily milk collection 

routes combined with the midterm planned milk demand.  

 

The paper presented by Nicholson et al. (2011) focus on the effects of localization 

on supply chain costs which are complex to analyze in multi-product, multi-process 

dairy supply chain. They develop an optimization model to minimize total supply 

chain costs, including assembly, processing, interplant transportation and final 

product distribution. The research contributes to the literature by presenting a 

strategic level transshipment model.  



 

 

Table 2.1 Summary of production planning and scheduling research 

Reviewed Literature 
Perish- 

ability 
Product Types 

Supply Chain 

Processes 

Fictitious  

Data / 

Case Study 

Product Stages Production Stages  Solution Approach  Decision Levels  Objective Shelf Life 

Capacity  

and Time 

Constraints  

Labor,  Working Time, 

Overtimes  
Setups  

Analytical Methods 

Sullivan and Secrest (1985) - D PRD CS RM-FP O LP & DSS O S - C - - 

Rutten (1993)  - D PRD CS RM-IP-FP O-P LP & DSS O S - C O - 

Jakeman (1994)  - I-Y PRD CS IP-FP I-P OT O S - - - - 

Bongers and Bakker (2006)  P I PRD CS FP O-P OT O S SL CT - 
 

Subbiah and Engell (2009)  P I PRD CS FP O-P OT O S SL CT - SD 

Subbiah and Engell (2010)  P I PRD CS FP O-P OT O S SL CT - SD 

Kopanos et al. (2011a)  P I PRD CS FP O-P[MP] MILP O S SL[IC] CT - P-SD 

Kopanos et al. (2011c)  P I PRD CS FP O-P[MP] MILP O S SL[IC] CT - P-SD 

Kopanos et al. (2012b) P I PRD CS FP O-P[MP] MILP O S SL[IC] CT - P-SD 

Van Elzakker et al. (2012) P I PRD-STR CS IP-FP O-P[MP] MILP O S - CT - P-SD 

Lütke Entrup et al. (2004)  P Y[ST] PRD CS FP F-P[MP] MILP O S SL[IO] CT O SI 

Lütke Entrup et al. (200b)  P Y[ST] PRD CS FP F-P[MP] MILP O S SL[IO] CT O SI 

Lütke Entrup et al. (2005a)  P Y[ST] PRD CS FP F-P[MP] MILP O S SL[IO] CT O SI 

Doganis and Sarimveis (2007)  - Y PRD-STR CS FP P[SP] MILP O S - T - SD 

Doganis and Sarimveis (2008)  - Y PRD-STR CS FP P[MP] MILP O S - T - SD 

Doganis and Sarimveis (2009)  P Y PRD-STR CS FP P[MP] MILP O S SL[IO] T - SD 

Kopanos et al. (2010) - Y PRD-STR CS FP F-P[MP] MILP O S - CT - G-SD 

Kopanos et al. (2009)  - Y PRD-STR CS FP F-P[MP] MILP O S - CT - G-SD 

Kopanos et al. (2011b)  - Y[SE&ST] PRD CS FP P[MP] MILP O S - CT - G-SD & P-SI 

Wang, Hu and Li (2010) - D PRD CS IP-FP P OT O M - - - - 

Guan and Philpott (2011) P D PRD-STR-DST CS FP O SP O S - C - - 

Stefanis et al. (1997) - C PRD CS RM-IP-FP O LCA O M - CT - - 

Vaklieva-Bancheva and Kirilova (2010) - C PRD CS RM-FP O OT O M - T - - 

Jang and Klein (2011) - D PRD CS FP - OT S S - - - - 

Amorim et al. (2013a) P O-D-Y PRD-STR CS FP P[MP] SP O-T S SL[IC] CT - SI 

Amorim et al. (2014) P O-D-Y PRD-STR CS FP P[MP] SP O-T S SL[IC] CT - G-SI & P-SI 

Amorim et al. (2013b) - O-D-Y PRD-STR HY FP P[MP] MILP O S - CT - G-SD & P-SI 

Kilic et al. (2013) - O-D PRD-STR CS IP-FP O MILP O S - CT - SI 

Banaszewska et al. (2013) - D PRD CS RM-FP O MILP O S - C - - 

Approximate Methods 

Nakhla (1995)  - D-Y PRD HY FP P HE O S - - - - 

Vaklaiva et al. (2005) - C PRD CS RM-IP-FP O GA O-T M - - - - 

Banerjee et al. (2008) P D PRD CS FP O HE O M - T - - 

Marinelli et al. (2007)  - Y PRD-STR CS FP P[MP] MILP-HE O S - C - SI 

Gellert et al. (2011)  - D PRD HY FP P[SP] MH O S - C - P-SD 

Simulation 

Kuriyan et al. (1987) - D-Y PRD CS IP-FP O-P SM & HE O S - - - - 

Hybrid Approaches 

Claassen and Van Beek (1993)   - C PRD CS FP P[MP] HD[MILP-HE]& DSS O-T S - - L-O SD 

Adonyi et al. (2009) - D-C PRD CS FP O HD[IP-HE] & OT O S - - - - 

Amorim et al. (2011)  P Y PRD CS FP P[MP] HD[MILP-MH] O M SL[IO] T - G-SD & P-SI 

Berlin et al. (2007) - Y PRD CS FP P HD[LCA-HE] O-S S - - - - 

Berlin and Sonesson (2008)  - D-Y PRD CS FP P HD[LCA-HE] O-S S - - - - 

* Perishability; P-Perishability*Product Types; C-Cheese, D-Dairy and Milk, I-Ice cream, Y-Yoghurt [SE-Set or ST-Stirred], O-Others *Supply Chain Processes; PRC-Procurement, PRD-Production, STR-Storage, DST-Distribution *Fictitious Data or Case Study; HY-

Hypothetical Application, CS-Case Study*Product Stages; RM-Raw Materials, IP-Intermediate Products, FP-Final Products *Production Stages; F-Fermentation, I-Incubation, P-Filling and Packaging [SP-Single Packaging Line or MP-Multiple and/or Parallel Packaging 

Line], O-Other Production Processes *Solution Approach; DSS-Decision Support System, MIP-Mixed-Integer Programming, MILP-Mixed-Integer Linear Programming, MINLP-Mixed-Integer Non-Linear Programming, LP-Linear Programming, IP-Integer Programming, 

NLP-Nonlinear Programming, SP-Stochastic Programming, HE-Heuristic, MH-Metaheuristic, FZ-Fuzzy, HD- Hybrid Approaches, HI-Hierarchical Solution Approaches, SM-Simulation, AN-Analytical Methods, LCA-Life Cycle Analysis, TA-Timed Automata, GA-Genetic 

Algorithm, OT-Other *Objective; S-Single Objective, M-Multi Objective *Shelf Life; SL-Shelf Life [IO-In objective function or IC-In constraints] *Capacity and Time Constraints; C-Capacity, T- Time, CT-Capacity & Time*Labor, Working Time & Overtimes; L-Labor, 

W-Working Time, O-Overtime *Setups; G-Product Group (Family) Setups, P-Product Setups, SD-Sequence-Dependent, SI-Sequence-Independent 

2
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2.2.2.2 Approximate Methods 

 

The limitations of mathematical techniques have forced the use of heuristics in 

finding feasible solutions for large-scale VRP problems in the dairy industry. Chung 

and Norback (1991) present the VRP of foods including dairy and frozen goods. 

They introduce a heuristic approach consisting of clustering, insertion procedures for 

the allocation of drivers and vehicles. Sankaran and Ubgade (1994) consider a 

routing problem in the dairy industry. They introduce an operational level DSS by 

using a novel heuristic approach for the minimization of the transportation cost. 

Adenso-Diaz et al. (1998) consider the dairy routing problem as a version of the 

travelling salesman problem with the time windows. They propose a hierarchical 

approach and a local search heuristic as the solution methodologies. They also design 

and implement a DSS to organize the delivery network for a dairy industry.  

 

As pioneering research in the literature, Tarantilis and Kiranoudis (2001, 2007) 

analyze the distribution of fresh milk. They formulated the problem as a 

heterogeneous fixed fleet VRP. Tarantilis and Kiranoudis (2001) developed a 

threshold-accepting based algorithm for a heterogeneous fixed-fleet VRP applied to a 

fresh milk industry with the goal of minimizing the total transportation time. 

Tarantilis and Kiranoudis (2007) propose a metaheuristic methodology for solving a 

practical variant of the well-known VRP. Using a two-phase construction heuristic, 

the proposed metaheuristic approach enhances its flexibility to easily adopt various 

operational constraints. Via this approach, two real-life distribution problems faced 

by a dairy and a construction company are tackled and formulated as a VRP. Both of 

the papers have salient contributions to the literature as the pioneering vehicle 

routing applications in the dairy industry.  

 

In the literature, GA is used as a common alternative solution approach (Lin and 

Chen, 2003; Xu et al., 2011). Lin and Chen (2003) present a dynamic allocation 

problem with uncertain supply for the perishable commodity supply chain to develop 

an analytical model and an optimal control mechanism for the allocation of orders. 

The objective of the problem is to maximize the total net profit, which involves total 
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sales, costs, and penalties, of the perishable commodity supply chain subject to the 

dynamic variations in supply capabilities and demand uncertainties. The model 

determines the optimal orders placed to suppliers, and the amount of perishable 

commodities allocated to retailers. A two-stage extended GA is developed to control 

the dynamic orders and allocation quantities of suppliers and retailers. Simulation 

experiments are conducted to evaluate the performance of GA under various sizes of 

problem domains and different status of supply uncertainties. The perishability and 

uncertainty considerations within a dynamic assignment problem are the main 

contributions to the dairy industry literature. Xu et al. (2011) develop a multi-

objective programming model with random fuzzy coefficients for solving the 

logistics distribution centre location problem. Chance-constrained programming is 

used to represent the uncertainty in the model. The spanning tree-based GA is 

proposed to solve the problem.   

 

Lahrichi et al. (2012), Dayarian et al. (2015a, 2015b) present real life applications 

of milk collection and distribution in the dairy industry. Although the problems 

addressed similar characteristics, they handle the problem with different perspectives 

and propose different solution approaches. Lahrichi et al. (2012) consider dairy 

transportation problem taking into account supply, demand and transportation details. 

The problem has different characteristics such as delivery destination at the end of 

the routes, different capacities for the vehicles, different number of vehicles at each 

depot, multiple depots and periods at the same time. They introduce a mathematical 

model, and propose a heuristic solution approach which is a generalized version of 

tabu search algorithm. Dayarian et al. (2015a) present a deterministic multi-attribute 

VRP. They introduce a branch and price methodology adapted to the special 

structure of the problem. Main contributions are introduction of VRP problem within 

an extra level of difficulty associated with the assignment of routes to plants, 

development of branch and price algorithm including structural exploration that 

improve the computational efficiency, and presentation of extensive analysis to 

illustrate algorithm efficiency and investigate the characteristics of the problem. 

Dayarian et al. (2015b) consider multi-period VRP. They introduce dynamic 

programming based label correcting algorithm. The problem is a VRP problem in 
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which suppliers of producers vary on a seasonal basis and inspired from a dairy 

industry. The solution is based on branch and price algorithm, strong branching rule 

to find integer solutions.  

 

More recently, Li and Wang (2013) consider a VRP for dairy cold chain with 

random demands and time window. They introduce a mathematical model with 

chance constrained programming and penalty function. A scanning insert algorithm 

is proposed to solve the model. While the scanning stage classifies the customers 

accordance with capacity of the vehicle and time window restrictions, insertion stage 

adjust the vehicle route to find the final optimal distribution.   

 

2.2.2.3 Simulation 

 

There are very few research papers addressing VRP by using simulation approach 

in the literature. The available literature focuses fundamentally on milk distribution 

issues (Manzini et al., 2005; Quinlan et al., 2012). Manzini et al. (2005) provide a 

supply chain optimization model for the milk distribution by presenting an industrial 

case. They introduce a simulation model to handle shipping and distribution process. 

They study on two important strategic aspects as make-to-order and make-to-stock 

production policy by simulation. Quinlan et al. (2012) consider milk transport 

problem under different seasonality assumptions. They propose a simulation model 

to estimate milk transport costs and carbon emissions from milk transport associated 

with alternative milk supply patterns.  

 

2.2.2.4 Hybrid Approaches 

 

Most of the early works on hybrid approaches has used DSS and heuristic 

algorithms. Basnet et al. (1996, 1997 and 1999) introduce a DSS for milk tanker 

routing as a particular version VRP within New Zealand dairy industry. Basnet et al. 

(1996) give a general description of the milk collection scenario, DSS and graphical 

interfaces. While Basnet et al. (1997) introduce a typical allocation problem and 
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heuristic solution approaches, Basnet et al. (1999) present an exact algorithm 

incorporating a MILP problem with additional nonlinear constraints.  

 

Most of the papers on hybrid applications have been devoted the use of MIP and 

simulation applications with the heuristic approaches. Foulds and Wilson (1997) 

have proposed two heuristics algorithms for an allocation problem arising in the New 

Zealand dairy industry. The research differs from the literature by considering the 

problem as a variant of generalized allocation problem. It is a pioneering research 

presenting hybrid approach combining MILP model and heuristics to tackle with 

milk collection and transportation problem in the dairy industry. Dooley et al. (2005) 

consider a milk transport simulation model to estimate transport costs by taking into 

account milk segregation. It is also used to evaluate alternative transport 

management strategies in the dairy industry. They use GA as a solution mechanism 

to search for the least cost solution for the collection of milk from farms. Another 

application is provided by Bottani and Rizzi (2006). They introduce a solution 

methodology based on a fuzzy multi-attribute decision making approach for selection 

and ranking problem of the most suitable third party logistic service provider. The 

proposed fuzzy TOPSIS methodology is tested by a real case application of a firm 

operating in the dairy industry. The research differentiates form the literature with a 

quantitative methodology based on a structured framework for the selection of the 

most appropriate third party logistic service provider.  

 

2.2.2.5 Research Directions 

 

To summarize the reviewed literature on vehicle routing and distribution within 

the dairy industry, due to complexity on modelling and solution of problems 

representing dairy industry characteristics, there is limited research using analytical 

methods. Most of the research papers focus on procurement stage. The models are 

represented as a variant of travelling salesman problem, DSS using analytical 

methods, transshipment models for dairy supply chains (Butler et al., 1997, 2005; 

Claassen and Hendriks, 2007; Nicholson et al., 2011).  
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In the literature, analytical methods are commonly supported by heuristic and 

metaheuristic methods. In the preliminary research of approximate methods, the 

research papers present vehicle routing and DSS development examples (Chung and 

Norback, 1991; Sankaran and Ubgade, 1994; Adenso-Diaz et al., 1998). Most of the 

VRPs in the dairy industry are solved using metaheuristic solution approaches 

(Tarantilis and Kiranoudis, 2001, 2007). The dynamic allocation problem and the 

distribution centre location problem with fuzzy application are other research areas in 

the approximate methods literature (Lin and Chen, 2003; Xu et al., 2011). The 

development of efficient solution approaches to tackle the special structure of the 

milk collection and distribution problems are recent issues in the literature (Lahrichi 

et al., 2012; Dayarian et al., 2015a, 2015b).  

 

There are limited simulation applications on milk distribution problems (Manzini 

et al., 2005; Quinlan et al., 2012). The simulation applications are still the promising 

research direction in the literature.  

 

Most of the papers study on mathematical models integrated with the heuristic 

approaches (Basnet et al., 1996, 1997, 1999; Foulds and Wilson, 1997). In addition, 

the milk transportation problems have been solved using metaheuristic algorithms 

(Dooley et al., 2005). There also exist hybrid approximate methods dealing with 

multi-criteria decision making problems (Bottani and Rizzi, 2006). The hybrid 

methodologies need to be considered recently in the literature, because of their more 

flexible frameworks. Table 2.2 summarizes the reviewed literature of vehicle routing 

and distribution within the dairy industry. The papers are listed in the order presented 

in the review. For each research, the table illustrates the different characteristics in a 

systematic manner.  

 

 



 

 

Table 2.2 Summary of vehicle routing and distribution research 

Reviewed Literature 
Perish- 

ability 

Product 

Types 

Supply Chain 

Processes 

Fictitious  

Data / 

Case Study 

Product 

Stages 

Production 

Stages  
Solution Approach  

Decision 

Levels  
Objective Shelf Life 

Capacity  

and Time 

Constraints  

Labor,  

Working 

Time, 

Overtimes  

Setups  

Analytical Methods 

Butler et al. (1997) - D PRC CS RM - IP & DSS O S - - - - 

Butler et al. (2005) - D PRC CS RM - OT & DSS O S - CT - - 

Claassen and Hendriks (2007) - D PRC HY RM - MILP & DSS O S - - - - 

Nicholson et al. (2011) - D DST CS IP-FP - OT S S - - - - 

Li and Wang (2013) - D DST HY FP - MILP  O S - CT - - 

Approximate Methods 

Chung and Norback (1991) - D DST CS FP - HE O S - - O - 

Sankaran and Ubgade (1994) - D DST CS RM - HE & DSS O S - CT - - 

Adenso-Diaz et al. (1998) - D DST CS FP - HE O S - - - - 

Tarantilis and Kiranoudis (2001) P D DST CS FP - MH O S - - - - 

Tarantilis and Kiranoudis (2007) P D DST CS FP - MH O S - - - - 

Lin and Chen (2003)  P D STR-DST HY FP - LP-MH-SM T S - - - - 

Xu, Yao and Zhao (2011) - I DST CS FP - MILP-FZ-MH T M - C - - 

Lahrichi et al. (2012) - D PRC-DST CS RM  MILP-MH O-S S - CT - - 

Dayarian et al. (2015a) - D PRC-DST CS RM - MILP-HE T-S S - CT - - 

Dayarian et al. (2015b) - D PRC-DST CS RM - MILP-HE T S - CT - - 

Simulation 
             

Manzini et al. (2005) P D-C-Y DST CS RM-FP - SM O-T-S S SL[IC] - - - 

Quinlan et al. (2012) - D DST CS RM - SM O S - CT - - 

Hybrid Approaches 

Basnet et al. (1996) - D DST CS FP - 
HD[OT-HE- IP] 

& DSS 

O-S S - C - - 

Basnet et al. (1997)  - D DST CS FP - O-S S - C - - 

Basnet et al. (1999) - D DST CS FP - O-S S - C - - 

Foulds and Wilson (1997) - D PRC CS RM - HD[MILP-HE] O S - - - - 

Dooley et al. (2005) - D PRC-STR HY RM - HD[GA-SM] O S - C - - 

Bottani and Rizzi (2006) - D DST CS FP - HD[FZ-OT] S S - - - - 

* Perishability; P-Perishability*Product Types; C-Cheese, D-Dairy and Milk, I-Ice cream, Y-Yoghurt [SE-Set or ST-Stirred], O-Others *Supply Chain Processes; PRC-Procurement, PRD-Production, STR-Storage, DST-Distribution *Fictitious Data or Case Study; HY-

Hypothetical Application, CS-Case Study*Product Stages; RM-Raw Materials, IP-Intermediate Products, FP-Final Products *Production Stages; F-Fermentation, I-Incubation, P-Filling and Packaging [SP-Single Packaging Line or MP-Multiple and/or Parallel Packaging 

Line], O-Other Production Processes *Solution Approach; DSS-Decision Support System, MIP-Mixed-Integer Programming, MILP-Mixed-Integer Linear Programming, MINLP-Mixed-Integer Non-Linear Programming, LP-Linear Programming, IP-Integer Programming, 

NLP-Nonlinear Programming, SP-Stochastic Programming, HE-Heuristic, MH-Metaheuristic, FZ-Fuzzy, HD- Hybrid Approaches, HI-Hierarchical Solution Approaches, SM-Simulation, AN-Analytical Methods, LCA-Life Cycle Analysis, TA-Timed Automata, GA-Genetic 

Algorithm, OT-Other *Objective; S-Single Objective, M-Multi Objective *Shelf Life; SL-Shelf Life [IO-In objective function or IC-In constraints] *Capacity and Time Constraints; C-Capacity, T- Time, CT-Capacity & Time*Labor, Working Time & Overtimes; L-Labor, 

W-Working Time, O-Overtime *Setups; G-Product Group (Family) Setups, P-Product Setups, SD-Sequence-Dependent, SI-Sequence-Independent 
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2.2.3 Production and Distribution Planning 

 

In the dairy industry market demand is no longer confined to local or regional 

supply. The strong competition in dairy food market, product variety and short shelf 

lives force the companies to a closer coordination of production and distribution 

activities for more flexible utilization of resources and faster response to demands 

while reducing production costs, and increasing throughput. Especially, there are 

tight shelf life restrictions for dairy products, and customer prefers the product that 

has maximum available shelf life. To avoid excessive inventories and to allow a 

quick response to customer enquiries are important aspects that require more 

attention. Therefore, an efficient integration of production and distribution plans into 

a unified framework is critical to achieve competitive advantage. In the remainder of 

this section, we classify the production and distribution research in dairy industry 

based on   solution methodologies used. These classifications are analytical methods, 

approximate methods and hybrid approaches.  

 

2.2.3.1 Analytical Methods 

 

Most of the seminal publications reported in the literature address the integrated 

production and distribution planning problem from a strategic and tactical point of 

view (Mellalieu and Hall, 1983; Benseman, 1986; Pooley,1994). Mellalieu and Hall 

(1983) present a long term planning model focusing on processing and transportation 

operations of dairy industry. They introduce a network formulation with the 

objective function which maximizes net revenue based on product prices, variable 

process and transport costs,  subject  to  factory  capacity,  product  demand  and  raw 

material  supply  constraints. Benseman (1986) develops a MILP model for medium-

term production planning problem. A milk collection and distribution process is 

considered in addition to milk production and allocation to maximize the profit by 

taking into account transportation costs and the variable production costs. Pooley 

(1994) considers production and distribution facility network planning problem in 

dairy processor company. A tactical level MILP model is proposed to minimize total 
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supply chain cost consisting of fixed and variable costs corresponding to production 

and distribution activities.  

 

MIP has been widely used to formulate production and distribution planning 

problem in the dairy industry. Wouda et al. (2002) present an MILP model to 

optimize a supply chain network. The focus of the research is to evaluate the 

regionalization, product and process specialization strategies with the real life 

industrial scenarios. The objective is to find optimal number of plants, their locations 

and allocation to the product portfolio in order to minimize the total production cost 

and the transportation cost. Subbaiah et al. (2009) present a supply chain model 

mainly focusing on production and distribution activities in the dairy industry. The 

model consists of four echelons as raw milk suppliers, plant, warehouse and 

customers and incorporates the purchase plan of raw milk, production plan of 

product mix and final product transportation. They propose a LP model with a single 

objective function handling various supply chain costs. The objective function is to 

minimize the total supply chain cost consisting of material, production and 

transportation costs. The research contributes to the literature by presenting a real 

world application of the coordinated supply chain planning model. The model 

developed by Kopanos et al. (2012a) appears as the most comprehensive model in 

dairy industry. They present a novel MILP framework based on a hybrid 

discrete/continuous time representation for the simultaneous detailed production and 

distribution planning problem of multi-site, multi-product, semi-continuous food 

processing industry. The novelty of the proposed mathematical formulation is the 

integration of the different modelling approaches and consideration of the detailed 

production and distribution operations.  

 

Recently, Van Elzakker et al. (2013, 2014) present a tactical production-

distribution planning problem of fast moving consumer goods and develop a MILP 

model which is also applicable to dairy industry. While, one of the main challenges 

is the size of the problem considered by Van Elzakker et al. (2014), Van Elzakker et 

al. (2013) account additionally shelf life restrictions and waste.  Van Elzakker et al. 

(2014) propose a decomposition algorithm to be capable of solving real sized case. In 
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the decomposition, sub-models containing single stock keeping unit are optimized 

sequentially while a penalty cost is introduced for violating capacity. The penalty 

cost is increased after each optimization until it becomes high to obtain a feasible 

solution. Van Elzakker et al. (2013) present computationally efficient methods to 

accurately track the shelf life (e.g., direct, indirect and hybrid). In the direct method, 

age of each product is tracked. While the direct method can guaranty the optimal, it 

is computationally inefficient. In the indirect method, products are forced to leave 

inventory at the end of shelf life. Indirect method cannot guaranty the optimal but it 

reaches close results to optimal. Hybrid method combines the advantages of these 

two approaches. Product age is handled directly in the first stage while considering 

the shelf life indirectly in the second stage. It provides near optimal solutions with 

respectively efficient computational times. In addition, Yu and Nagurney (2013) 

develop a network-based food supply chain model under oligopolistic competition 

and perishability, with a focus on fresh produce. They introduce a network based 

model which is highly relevant to dairy products. Their study differs from the 

literature with several aspects such as capturing the deterioration of fresh food for 

entire supply chain, exponential time decay, oligopolistic competition with product 

deterioration, disposal of spoiled foods with associated cost and assessment of 

alternative technologies.  

 

2.2.3.2 Hybrid Approaches 

 

Hybrid approaches usually considers a combination of optimization and 

simulation models. As a preliminary research, Sonesson and Berlin (2003)present 

scenario based analysis on the environmental impact of milk supply chain. The 

scenarios are handled with simulation experiments and the analysis is mainly based 

on life cycle assessment methodology. The objective of the study is to assess the 

potential environmental impact of various supply chains for dairy products as well as 

to test and develop the material flow approach to analyze the sustainability of food 

supply systems. Li et al.  (2008) introduce a simulation and optimization based DSS 

to cope with the complexity and uncertainties. The production activities are handled 

in order to meet the market demand and minimize the difference between supply and 
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demand. In addition, the supply and collection of raw milk from farmers is 

implemented as a VRP. The main contribution of the research is to incorporate the 

production and distribution planning by using optimization with simulation model to 

deal with uncertainty. Amorim et al. (2012) present multi-objective MIP models 

using block planning approach to solve an integrated production and distribution 

planning problem integrating the economic aspects and freshness at an operational 

level. The models are formulated for two distinct cases with a fixed and a loose shelf 

life of rapidly deteriorating goods. While the first objective is concerned with 

minimizing the total costs over the supply chain covering transportation, production, 

setup and spoilage costs, the second one maximizes mean remaining shelf life of 

products at the DCs over the planning horizon. They propose a simple hybrid genetic 

heuristic to solve the problem where the shelf life is loose. Amorim et al. (2012) is 

the pioneering research that addresses the integrated production and distribution 

planning of perishable dairy products in a multi-objective framework.  

 

Recently, Bilgen and Çelebi (2013) consider an integrated production scheduling 

and distribution planning problem in yoghurt production. They present a hybrid 

method combining MILP and simulation approaches. The model obtains optimal 

production and delivery plan and hybrid approach is introduced to explore the 

dynamic behavior of the real world system. Operation times are considered as a 

dynamic factor and adjusted using optimization and simulation in an iterative 

manner. While in the most of the previous studies the problem parameters are 

accepted as deterministic, they handle the stochastic failures on operation times to 

obtain more realistic solutions. Jouzdani et al. (2013) present a dynamic facility 

location problem for transportation of raw milk and dairy products and under 

consideration of traffic congestion and demand uncertainty. They consider possible 

changes in transportation network, facility investment cost, and monetary value of 

time changes in production process. Fuzzy linear programming and mixed-integer 

non-linear programming (MINLP) are used as solution approaches.  
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2.2.3.3 Research Directions 

 

To summarize the reviewed literature on production and distribution planning 

research, Mellalieu and Hall (1983), Benseman (1986) and Pooley (1994) are the 

pioneering research papers that consider the strategic, tactical network models, 

respectively. In the last decade, the research papers present integrated production and 

distribution models considering tactical level decisions by using fundamentally LP 

and MILP methodologies (Kopanos et al., 2012a; Subbaiah et al., 2009; Wouda et 

al., 2002). The perishability and deterioration issues have been recently taken into 

account in MILP models in tactical decision level. These models are more realistic 

models which are capable of representing the specific dairy industry characteristics 

(Van Elzakker et al., 2013, 2014; Yu and Nagurney, 2013).  

 

Besides, there are hybrid approaches taking into account the environmental issues 

using simulation and life cycle assessment methodologies (Li et al., 2008; Sonesson 

and Berlin, 2003). Recently, hybrid approaches have begun used in yoghurt 

production process to get advantage of mathematical programming and metaheuristic 

approaches and to tackle with perishability issues (Amorim et al., 2012). Since there 

are few papers in the literature, the simulation and approximate methods based 

applications are still promising areas (Bilgen and Çelebi, 2013). Apart from these, 

Jouzdani et al. (2013) present an MINLP example using approximate methods. Table 

2.3 summarizes the reviewed literature of production and distribution within the 

dairy industry. The papers are listed in the order presented in the review. For each 

research, the table illustrates the different characteristics in a systematic manner. 

Table 2.4 illustrates the reviewed literature by presenting number of papers with the 

classification scheme used in the review.  

 

 

 



 

 

Table 2.3 Summary of production and distribution planning research 

Reviewed Literature 
Perish- 

ability 

Product 

Types 

Supply Chain 

Processes 

Fictitious  

Data / 

Case Study 

Product 

Stages 

Production 

Stages  
Solution Approach  

Decision 

Levels  
Objective Shelf Life 

Capacity  

and Time 

Constraints  

Labor,  

Working 

Time, 

Overtimes  

Setups  

Analytical Methods 

Mellalieu and Hall (1983) - D PRD-DST CS RM-FP O OT O S - CT - - 

Benseman (1986) - D PRC-PRD-DST CS FP O MILP O S - C - - 

Subbaiah et al. (2009) - D PRC-PRD-STR-DST CS RM-IP-FP O LP T S - - - - 

Kopanos et al. (2012a) - Y PRD-STR-DST CS FP P[MP] MILP O-T S - CT - G-SD & P-SI 

Pooley (1994) - D PRD-DST CS FP O MILP T S - C - - 

Wouda et al. (2002) - D PRC-PRD-DST CS RM-FP P MILP T S - - - SI 

Van Elzakker et al. (2014) - OT PRC-PRD-DST HY RM-IP-FP O-P MILP T S - - - G-SD & P-SD 

Van Elzakker et al. (2013) P OT PRC-PRD-DST HY RM-IP-FP O-P MILP T S SL[IC] CT - G-SI & P-SI 

Yu and Nagurney (2013) P OT PRD-DST CS FP O OT T S - - - - 

Hybrid Approaches 

Sonesson and Berlin (2003) - D PRD-DST CS RM-FP O HD[SM-LCA] O-S S - - - - 

Li, Zhang and Jiang (2008) - D PRC-PRD-DST CS RM-FP P HD[SM-HE-OT] & DSS O M - CT - - 

Amorim et al. (2012)  P D-Y PRD-DST HY FP P[MP] HD[MILP-MINLP &GA] O-T M SL[IO-IC] CT - G-SD & P-SI 

Bilgen and Çelebi (2013) P Y PRD-DST CS FP P[MP] HD[MILP-SM] O S SL[IO-IC] CT O P-SD 

Jouzdani et al. (2013) - D PRC-PRD-DST CS RM-FP o HD[FZ & MINLP] T-S S - CT   

* Perishability; P-Perishability*Product Types; C-Cheese, D-Dairy and Milk, I-Ice cream, Y-Yoghurt [SE-Set or ST-Stirred], O-Others *Supply Chain Processes; PRC-Procurement, PRD-Production, STR-Storage, DST-Distribution *Fictitious Data or Case Study; HY-

Hypothetical Application, CS-Case Study*Product Stages; RM-Raw Materials, IP-Intermediate Products, FP-Final Products *Production Stages; F-Fermentation, I-Incubation, P-Filling and Packaging [SP-Single Packaging Line or MP-Multiple and/or Parallel Packaging 

Line], O-Other Production Processes *Solution Approach; DSS-Decision Support System, MIP-Mixed-Integer Programming, MILP-Mixed-Integer Linear Programming, MINLP-Mixed-Integer Non-Linear Programming, LP-Linear Programming, IP-Integer Programming, 

NLP-Nonlinear Programming, SP-Stochastic Programming, HE-Heuristic, MH-Metaheuristic, FZ-Fuzzy, HD- Hybrid Approaches, HI-Hierarchical Solution Approaches, SM-Simulation, AN-Analytical Methods, LCA-Life Cycle Analysis, TA-Timed Automata, GA-Genetic 

Algorithm, OT-Other *Objective; S-Single Objective, M-Multi Objective *Shelf Life; SL-Shelf Life [IO-In objective function or IC-In constraints] *Capacity and Time Constraints; C-Capacity, T- Time, CT-Capacity & Time*Labor, Working Time & Overtimes; L-Labor, 

W-Working Time, O-Overtime *Setups; G-Product Group (Family) Setups, P-Product Setups, SD-Sequence-Dependent, SI-Sequence-Independent 
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Table 2.4 Number of papers 

  Solution Approaches 

Problem Types 

Analytical 

Methods 

Approximate 

Methods 
Simulation 

Hybrid 

Approaches 
Total 

Production Planning and 

Scheduling 
30 5 1 5 41 

Vehicle Routing  

and Distribution 
5 10 2 6 23 

Production and Distribution 

Planning 
9 - - 5 14 

Total 44 15 3 16 78 

 

2.3 Conclusions and Future Research Directions 

 

In this chapter, we have reviewed quantitative operations research literature on 

dairy SCM to reveal major trends, to explore research opportunities. Moreover, we 

have identified the characteristics that a model should have to address adequately 

dairy SCM planning needs. The reviewed research is classified by problem types 

based on the solution approaches.  

 

As can be easily seen from the various tables throughout the review, the most 

widely used solution approaches are analytical methods and they are extensively 

accepted tools in the dairy industry for well-defined problems. In addition, most of 

the research addresses case studies and real-life problems in the literature. Due to the 

nature of the dairy industry problems, the models and methods should meet the 

requirements of practical applications which consist of complex scenarios. Although 

analytical approaches have advantages on providing mathematical frameworks to 

represent specific characteristics of problems and to get optimal solutions, they may 

be not powerful enough to handle real sized problems with regard to the 

computational efforts. Another inadequacy of some analytical approaches is that it is 

not easy to model uncertainty mathematically by analytical methods. Alternatively, 

simulation approaches are capable of introducing more flexible and handling real 

cases in the dairy industry. However, complex simulation models could require large 

amount of installation and running time. Approximate methods have been proven 

useful in many cases since they overcome the computing time limitation. 

Approximate methods provide less computational efforts, however optimum cannot 

be guaranteed. They are especially convenient to analyze real cases. On the other 
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hand, hybrid methods integrate the best capabilities of the solution approaches for the 

effective decision making.  

 

For each of the problem types examined in this review, some generalized results 

can be concluded in terms of the quantitative methods. Production planning and 

scheduling issues are extensively solved by analytical methodologies. Most of the 

formulations in this field are in the form of MILP models with several assumptions. 

Much research is still needed on application of approximate methods, simulation, and 

hybrid approaches. The areas of vehicle routing and distribution issues, integrated 

production and distribution problems in the dairy industry have also received much 

attention. The most widely used solution approach in application of VRP is the 

metaheuristics. A number of applications on integrated production and distribution 

planning are formulated as MILP models. It is an evidence gap that there is no 

research using approximate based methods and simulation approach to tackle with 

integrated production and distribution planning problem within the dairy industry.  

Traditional production scheduling focuses on the determination of schedules for 

production such that some performance measures are optimized without considering 

the distribution planning. Very few works have been devoted to investigate the 

coordination of production scheduling and delivery planning for dairy products. 

Therefore, the coordination of production scheduling and distribution planning 

becomes an important issue in the dairy industry and needs further studies. The 

literature integrating uncertainty in dairy SCM is still scarce. In particular, very few 

papers address stochastic parameters combined with other aspects. Another aspect 

that requires more attention is the integration of postponement strategies within dairy 

SCM problems. Future research directions are stated with respect to different 

perspectives. 

 

2.3.1 Multi-Stage Production Planning Perspective 

 

The vast majority of the papers in dairy production planning process focus on the 

packaging process. The structure of the production process is considerably 

simplified. However, the integrated modelling and simultaneous optimization of all 
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stages (e.g., fermentation/incubation and packaging) needs to be considered. The 

integrated models should be introduced to get advantages of simultaneously 

optimization of production, fermentation, incubation, filling and packaging 

processes. Another finding that can be drawn from the reviewed research is that there 

is abundant literature on supply chain planning of dairy products at operational 

decision level. Another aspect requiring more attention is the integration and/or the 

hierarchical structure of the tactical and operational planning levels in the dairy SCM 

context.  

 

2.3.2 Sustainability Perspective 

 

Until recently, the models very often fail to incorporate especially perishability 

and shelf life issues. Perishability issues are extensively taken into account in terms 

of final products within the literature. The consideration of perishability constraints 

on raw materials and/or intermediate products is a promising area. Incorporation of 

perishability and batch dispersion, traceability, food safety considerations are 

promising research directions. Other promising research areas are to take into 

account waste minimization and the environmental considerations within the 

optimization models in the dairy industry.   

 

2.3.3 Integrated Production-Distribution Planning and Scheduling Perspective 

 

Another aspect that requires more attention is the full integration of production, 

distribution planning and scheduling activities within dairy SCM. The dairy industry 

characteristics should be taken into account more intensively by the integrated 

production, distribution planning and scheduling models.  

 

2.3.4 Single, Multi-objective Perspective 

 

The consideration of multi-objective functions within the models requires more 

attention. The most of the reviewed literature consider the problems which have only 

single objective mainly expressed as a cost or cost related function. However, in real 
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applications, there exist multiple conflicting objectives. Therefore, the multi-

objective treatments need to be considered to represent the conflicting objectives 

corresponding to joint procurement, production and inventory planning decisions.  

 

2.3.5 Uncertainty Perspective 

 

In real life applications, consideration of stochastic parameters is more common 

owing to uncertain environment. Hence, stochastic parameters such as demand, 

waste, production delays, machine failures, and process times should be included 

into the problem. Scenario based analysis can support the decision making process 

effectively. The risk assessment is a promising research area for the more realistic 

scenarios. Robust designs and optimization approaches can be added as promising 

research directions to tackle with the unexpected events that severely impact 

performance.  

 

The further research also should be directed towards the incorporation of 

uncertainty in the mathematical framework. Stochastic programming, which models 

optimization problems that involve uncertainty, and multi-parametric programming 

techniques, where some of the parameters vary between specified lower and upper 

bounds, may be important application areas within the dairy SCM. To the best of our 

knowledge, there is no research handling stochastic parameters by using stochastic or 

multi-parametric programming techniques with perishability consideration within the 

dairy industry.  

 

Simulation approach is a suitable solution technique to study the impact of 

stochastic environment. To the best of our knowledge, there are very few studies 

combining the mathematical programming approach with simulation within the 

perishable dairy SCM.  

 

Some of the researchers have attempted to solve dairy industry problems by the 

well-known traditional static and deterministic models. Nevertheless, optimizing the 

dynamic systems comprising continuous changes has been a difficult task for the 
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researchers. In this concept, though the analytical methods can provide optimal 

results, they cannot effectively handle dynamic and stochastic situations separately. 

Instead of these methods, approximate methods, simulation and hybrid 

methodologies may be more convenient and development of real time optimization 

tools can be promising research direction to address the dynamic and stochastic 

nature of the dairy supply chain problems.  

 

2.3.6 Alternative Solution Techniques Perspective 

 

Recently, CP receives considerable attention as a common alternative method to 

mathematical programming technique for solving optimization problems by offering 

a more flexible modelling framework. To the best of our knowledge there is no 

research that uses CP on production, distribution planning and scheduling within the 

dairy industry SCM. The application of the CP may provide an important 

contribution to the corresponding literature.  

 

The MIP techniques are extensively used in production-distribution planning and 

scheduling problems of perishable products. However, there are respectively few 

studies using heuristics, meta-heuristics or hybrid solution methodologies. These 

methodologies emerge as promising solution alternatives especially on 

computational efforts and future research needs to introduce detailed procedures to 

use advantages of these alternative solution mechanisms.  

 

The complexity of the MIP models increases significantly with the number of 

products, length of planning horizons, number of demand points. Efficient 

decompositions schemes and hierarchical methodologies can be introduced to tackle 

with the complexity of the problems. In addition, to improve the computational 

efficiency of the MIP models for solving large scale problems, MIP based 

decomposition heuristics, especially such as F&O, F&R, rolling horizon approaches, 

can be suggested for large sized instances.  
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2.3.7 Postponement and Decoupling Point Theory Perspective 

 

Postponement and decoupling point theory practices are fairly low in the dairy 

industry in contradiction to other industries. Hence, the application of postponement 

and decoupling point theory under consideration of the special characteristics in the 

dairy industry is one of the promising future research directions.  

 

Production-distribution problems are mostly considered by analytical methods to 

model the deterministic problems. The problem complexity of the problems is 

inherently high because of the considered constraints restricting the problem 

structure (e.g., shelf life, capacity and time constraints, setups). Approximate 

methods are quite appropriate achieving close optimum solutions in reasonable 

solution times for industrial cases rather than the exact solution approaches. 

Reviewed literature commonly presents the problems using industrial case studies 

and most of them neglect the uncertainty issues confronted in most of the real cases. 

For example, the machine failures can be stated as an uncertain parameter affecting 

the cost driven objectives in consequence of restricting the production capacity. 

Simulation can be used as a technique to study the impact of the uncertainty 

environment.  

 

In the next chapter, alternative solution techniques and uncertainty perspectives of 

the literature review is discussed. A production-distribution planning problem is 

considered and a MILP model is presented. MILP based heuristics are introduced to 

solve the problem with reasonable computational efforts. Operation times are 

considered as an uncertain parameter and represented by probability distributions of 

machine failures and repair a simulation model of the production process. 

Accordingly, a simulation optimization methodology is introduced to solve the 

problem. 
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CHAPTER THREE 

HYBRID SIMULATION AND MIP BASED HEURISTIC ALGORITHM FOR 

THE PRODUCTION AND DISTRIBUTION PLANNING IN THE SOFT 

DRINK INDUSTRY 

 

3.1 Introduction 

 

In recent years, the achievement of effective supply chain operations to avoid 

excessive inventories and operation costs depends on closer coordination of 

production and distribution activities. MIP is a popular optimization approach in the 

literature to model this coordination. Due to the extensive and complex nature of 

organization, MIP techniques may not have acceptable solution times for a wide 

range of real case applications. To overcome this obstacle of MIP technique for 

larger problem size, the MIP based heuristics emerge as promising solution 

methodologies.  

 

Our research is motivated by the production-distribution planning problem 

encountered by a soft-drink company, which has to decide routinely the quantity 

produced and, the best way of delivering a set of orders to its customers over a multi-

day planning horizon. The problem is formulated as an MILP model. In this research, 

operation times in the MILP model are considered as the dynamic factor and adjusted 

by the results from independently developed simulation model. Hybrid MIP based 

heuristic and simulation model are aimed at combining the strength of MIP based 

heuristic and the simulation model and reducing the impact of limiting characteristics 

of these models. Iterative use of MIP based heuristic and simulation methodologies 

exploit the benefit of obtaining optimal solutions, while revealing the impact of 

operation time uncertainty on system performance.  

 

The main contributions of this research are (i) implementation of the MIP based 

rolling horizon heuristics to the production allocation and distribution planning 

problem, (ii) propose a hybrid approach that combines simulation and MILP based 
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F&O heuristic in an iterative process in order to gain the advantages of MILP based 

heuristics and simulation to minimize the overall cost for the considered problem.  

 

The remainder of this chapter is organized as follows. The relevant literature is 

reviewed in Section 2.In section 3, the key characteristics of the problem are 

outlined, and the MILP model is described in detail. The solution approaches are 

described in Section 4.Numerical results are presented in Section 5.Conclusions and 

directions for further work are discussed in Section 6. 

 

3.2 Literature Review 

 

The efficient coordination of production and distribution systems becomes a 

challenging problem as companies move towards higher collaborative and 

competitive environments. In the literature, integrated production and distribution 

planning problem has been subject of many studies during the last decade. Interested 

readers are referred to Bilgen (2010), Kanda and Deshmukh (2008), Mula et al. 

(2010), Farahani et al. (2014), De Matta and Miller (2004) for a complete review of 

production and distribution models in supply chain environments. In the last decade, 

several models which address the supply chain coordination issues at different 

decision levels are developed (e.g., Lei et al., 2006; EkĢioğlu et al, 2007; Tsiakis & 

Papageorgiou, 2008; Rizk et al, 2008; Bilgen and Günther, 2010; Ahumada and 

Villalobos, 2011; Bashiri et al., 2012).  

 

In this section we review the most relevant and recent literature on MIP based 

heuristic applications and application of hybrid analytic and simulation modeling 

approach to the production and distribution planning problem.  

 

3.2.1 Literature on MIP Based Heuristics 

 

In terms of the solution procedures, the common MIP based heuristics, which are 

widely used in the literature, are F&R and F&O. The applications of these MIP based 
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heuristics fundamentally focus on the production planning, lot-sizing and scheduling 

problems.  

 

F&R Heuristic: F&R approach is originally described as a time decomposition 

heuristic by Dillenberger et al. (1994). There are various extensive F&R studies 

concerning the lot sizing and scheduling applications in the literature (e.g., 

Dillenberger et al., 1994; Stadtler, 2003; Kelly and Mann, 2004; Absi and Kedad-

Sidhoum, 2007; De Araujo et al., 2007; Federgruen et al., 2007; Beraldi et al., 2008; 

Pochet and Warichet, 2008; De Araujo et al., 2008; Akartunalı and Miller, 2009; 

Ferreira et al., 2009, Mohammadi et al., 2010). Stadtler (2003) considers a dynamic 

multi-item multi-level lot-sizing problem. He solves the problem on a rolling basis 

by adding later periods and removing the earlier ones. Kelly and Mann (2004) 

present a methodology using F&R decomposition heuristic with a constraint 

dropping strategy on a lot sizing problem. Absi and Kedad-Sidhoum (2007) propose 

new MIP-based heuristics to address a multi-item capacitated lot sizing problem with 

setup times that arises in real world production planning context. De Araujo et al. 

(2007) develop an F&R procedure to solve lot sizing and scheduling model that 

considers backorders and sequence dependent setup costs and times for group 

changeovers. Federgruen et al. (2007) present a so called progressive interval 

heuristic for the capacitated lot sizing problem with joint setup cost. Beraldi et al. 

(2008) present a new rolling horizon and F&R heuristics for the single machine and 

identical parallel machine capacitated lot sizing problem with sequence dependent 

setup costs. Pochet and Warichet (2008) present a continuous time MILP formulation 

for the cyclic scheduling. De Araujo et al. (2008) consider lot sizing and scheduling 

problem in a manufacturing plant for animal feed compounds. F&R approach is 

developed to solve the problem. Akartunali and Miller (2009) present a heuristic 

framework that can generate high quality feasible solutions quickly for various kinds 

of lot sizing problems. Ferreira et al. (2009) introduce a MIP model that integrates 

the production lot sizing and scheduling decisions of beverage plants with sequence 

dependent setup times and costs. A relaxation algorithm and various F&R strategies 

that explore the model structure are proposed and used to solve real instances of the 

problem. Mohammadi et al. (2010) consider the multi-product multi-level 
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capacitated lot sizing problem with sequence dependent setups. Four variants of F&R 

heuristics are developed. F&R heuristic is the most widely applied in production 

planning, in particular lot sizing and scheduling problems. In addition to F&R 

heuristic applications on lot sizing and scheduling problem, there are few papers that 

use F&R heuristic on supply chain planning problems. Ouhimmou et al. (2008) 

present a mathematical model for furniture supply chain planning problem. They 

develop a heuristic using a time decomposition approach. Alonso-Ayuso et al. (2006) 

and Alonso-Ayuso et al. (2009) consider a multi-period single-sourcing supply chain 

problem under uncertainty. Uggen et al. (2013) have applied F&R time 

decomposition heuristics to solve the maritime inventory routing problem, and this is 

a new approach for this problem class. Table 3.1 summarizes the relevant literature 

in a systematic manner to clarify the application areas of the F&R heuristic 

algorithm.  

 

F&O Heuristic: Pochet and Wolsey (2006) describe an improvement heuristic 

similar to the F&R heuristic, which they called ―exchange‖ heuristic.  The same 

approach is used in Sahling et al. (2009) and Helber and Sahling (2010) for the 

multi-level capacitated lot sizing problem, where the authors called it the F&O 

heuristic (James and Almada-Lobo, 2011). James and Almada-Lobo (2011) integrate 

F&O in a stochastic local search algorithm to improve the initial solution obtained 

with the F&R heuristic, delivering solutions within a small deviation from theoretical 

lower bounds to solve the capacitated lot sizing problem with sequence dependent 

setup times and costs in single and multi-machine settings.  

 

The F&O heuristic is introduced by Sahling et al. (2009), Helber and Sahling 

(2010) for solving the dynamic multi-level capacitated lot sizing problem with setup 

carry over. Their algorithm solves a series of MIPs in an iterative F&O approach. 

Helber and Sahling (2010) present an optimization based solution approach for the 

dynamic multi-level capacitated lot sizing problem with positive lead times. Lang 

and Shen (2011) consider a capacitated single-level dynamic lot-sizing problem with 

sequence-dependent setup costs and times that includes product substitution options. 

They develop a MIP formulation of the problem and introduce MIP-based F&R and 
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F&O heuristics. More recently, Helber et al. (2013) present a stochastic version of 

the single-level, multi-product dynamic lot-sizing problem subject to a capacity 

constraint. They use an adapted version of the flexible F&O heuristic proposed by 

Helber and Sahling (2010).  

 

The last few years have seen increasing interest and efforts in the integration of 

MIP based heuristics and the other metaheuristics. Gören et al. (2012) introduce a 

novel hybrid approach by combining genetic algorithms and an F&O heuristic to 

solve the capacitated lot sizing problem with setup carryover.  

 

Seeanner et al. (2013) present an improvement heuristic based on the principles of 

the variable neighborhood decomposition search and F&O to solve multi-level lot 

sizing and scheduling problems. Toledo et al. (2013) propose a multi-population 

based metaheuristic using F&O heuristic and mathematical programming techniques 

to solve the multi-level capacitated lot sizing problem with backlogging. Stadler and 

Sahling (2013) present a new model formulation for lot-sizing and scheduling of 

multi-stage flow lines which works without a fixed lead-time offset. They present a 

solution approach based on F&R and F&O. Ghaderi and Jabalameli (2013) formulate 

the multi-period health care facility location problem as a budget-constrained model. 

A greedy heuristic and an F&O heuristic based on simulated annealing and exact 

methods are proposed to solve the model. Guimarães et al. (2013) present a novel 

mathematical model and a mathematical programming based approach to deliver 

superior quality solutions for the single machine capacitated lot sizing problem with 

sequence-dependent setup times and costs. They propose a solution approach, based 

on a large bucket sequence related model, integrates column generation in F&R and 

F&O schemes. Xiao et al. (2013) examines capacitated lot sizing problem with 

sequence-dependent setup times, time windows, machine eligibility and preference 

constraints. Two MIP-based F&O algorithms are proposed.  
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Table 3.1 F&R applications 

  
Prod. 

plan.  

Lot-

sizing 
Sch.  

Inven. 

plan.  
SCM Information 

Absi and Kedad- Sidhoum (2007)     
  

A multi-item capacitated lot-sizing problem with 
setup times that arises in real-world production 

planning contexts.  

Akartunali and Miller (2009)          

A heuristic framework that can generate high quality 

feasible solutions quickly for various kinds of lot-

sizing problems.  

Alonso-Ayuso et al. (2006)          
Multi-period single-sourcing SCM problem under 

uncertainty 

Alonso-Ayuso et al. (2009)          
Multi-period single-sourcing SCM problem under 

uncertainty 

Beraldi et al. (2008)        

New rolling-horizon and F&R heuristics for the 

identical parallel machine lot sizing and scheduling 

problem with sequence-dependent set-up costs.  

De Araujo et al. (2007)         
Present a MIP model taking into account sequence-

dependent setup costs and times 

De Araujo et al. (2008)         
Present lot sizing and scheduling in a manufacturing 
plant for animal feed compounds 

Dillenberger et al. (1994)         
F&R application to MIP on production planning and 

lot sizing problem 

Federgruen et al. (2007)         

Main objective of the paper is to find a lot sizing 

strategy that satisfies the demands for all items over 
the entire horizon without backlogging 

Ferreira et al. (2009)         

A MIP model that integrates production lot sizing 

and scheduling decisions of beverage plants with 
sequence-dependent setup costs and times 

Kelly and Mann (2004)          

An F&R decomposition heuristic strategy is used 

with a constraint dropping strategy on a lot sizing 

problem.  

Mohammadi et al. (2010)         
The multi-product multi-level capacitated lot sizing 

problem with sequence-dependent setups.  

Ouhimmou et al. (2008)          
A mathematical model for tactical planning of the 

supply chain structure 

Pochet and Warichet (2008)          
A continuous time MILP formulation for the cyclic 
scheduling of a mixed plant 

Stadtler (2003)          A dynamic multi-item multi-level  lot sizing problem 

 

Table 3.2 summarizes the relevant literature in a systematic manner to clarify the 

application areas of the F&O algorithm and displays that production planning, 

inventory planning and SCM are promising areas for the future research. Most of the 

literature has been focused on the lot sizing and scheduling problem.  

 

3.2.2 Hybrid Simulation based Optimization Approaches 

 

Mathematical approaches require too many simplifications to model realistic 

supply chain planning problems. Real world situations are characterized by a high 

degree of uncertainty. Inclusion of uncertainties often makes pure mathematical 

modeling intractable. Discrete event simulation is emerging as a decision support 
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tool for the food industry due to powerful and realistic modeling and analysis 

characteristics (Yoo et al, 2010). On the other hand hybrid approaches proposed in 

the literature offer the advantages of simulation based methodologies together with 

the optimization capabilities of mathematical programming models for the effective 

decision making.   

 

Table 3.2 F&O applications 

  

Authors & Date Application Area Information 

Sahling et al. (2009) 
Production planning 

and Lot Sizing 

A new algorithm so-called F&O approach for the dynamic 

multi-level capacitated lot sizing problem with setup 

carryovers.  

Helber and Sahling (2010) 
Production planning 

and Lot Sizing 

An optimization-based solution approach for the dynamic 

multi-level capacitated lot sizing problem with positive lead 

times.  

James and Almada-Lobo (2011) 

Capacitated Lot 

Sizing and Scheduling 

problem 

F&O is integrated in a stochastic local search algorithm to 

improve the initial solution obtained with the F&R heuristic.  

Lang and Shan (2011) 

Production planning, 

Lot Sizing and 

Scheduling 

A capacitated single-level dynamic lot-sizing problem with 

sequence-dependent setup costs and times that includes product 

substitution options. Solution procedures are MIP, F&R and 

F&O heuristics.  

Helber et al. (2013) 
Dynamic lot sizing 

problem 

Stochastic single level multi product dynamic lot sizing 

problem 

Gören et al. (2012) 

Production planning 

and Lot Sizing 

 

A hybrid F&O application using genetic algorithm to solve the 

capacitated lot sizing problem with setup carryover.  

Seeanner et al. (2013) 
Lot sizing and 

scheduling problem 

Hybrid variable neighborhood decomposition search and F&O 

Heuristic to solve multi-level lot sizing and scheduling 

Toledo et al. (2013) 

Multi-level 

Capacitated lot sizing 

problem 

Multi population based metaheuristic using F&O to solve lot 

sizing problem with backlogging 

Stadler and Shaling (2013) 
Lot sizing and 

scheduling 

F&R and F&O are used to solve the multi-stage flow line lot 

sizing and scheduling problem 

Ghaderi and Jabalameli (2013) 
Healthcare facility 

location problem 

A greedy heuristic, F&O and simulated annealing are proposed 

to solve the problem 

Guimarães et al. (2013) 
Capacitated lot sizing 

and scheduling 

Column generation algorithm is integrated with F&R and F&O 

heuristic.  

Xiao et al. (2013) 
Capacitated lot sizing 

and scheduling 

Two MIP based F&O algorithm is proposed capacitated lot 

sizing problem with sequence-dependent setup times, time 

windows, machine eligibility and preference constraints.  
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Major drawback in most past research on supply chain planning problems is the 

assumption that the critical parameter such as the operation time is deterministic, 

whereas the uncertainty can be observed, such as machine breakdowns, late 

deliveries. Therefore it is necessary to handle the uncertainty. Discrete event 

simulation allows production scheduling to be modeled more realistically.  

 

Shanthikumar and Sargent (1983) discuss comparative advantages and 

disadvantages of analytic versus simulation models giving a unifying definition for 

hybrid simulation, analytic approaches and modeling. Several researchers have 

developed iterative solution approaches for various types of problems that integrate 

optimization and simulation approaches. Byrne and Bakir (1999) study a hybrid 

algorithm combining mathematical programming and simulation models of a 

manufacturing system for the multi-period, multi-product production planning 

problem. Kim and Kim (2001) propose an iterative approach for finding the capacity-

feasible production plan, applying the hybrid framework by Byrne and Bakir (1999). 

An extended formulation of linear programming (LP) model is proposed to consider 

the workload profile of the production quantity and the actual amount of the capacity 

to be allocated to the requirements for each machine. Lee and Kim (2002) develop an 

integrated multi-period, multi-product, multi-shop production and distribution model. 

They also take into consideration various kinds of uncertain factors so that the 

integrated supply chain system can reflect the dynamic characteristics of the real 

system. Operation time in the analytic model is considered as a dynamic factor. They 

propose a hybrid approach that combines both the analytic and the simulation model. 

In another paper, Lee et al. (2002) study the same model. While the operation time is 

a stochastic factor in their previous work (Lee and Kim, 2002), machine capacity and 

distribution capacity are considered as stochastic factors. Hsieh (2002) reviews 

hybrid approaches and their applications and proposes a new hybrid modeling class, 

and illustrates a cost function for selecting analytic or simulation modeling 

approaches through a problem solving process. Gnoni et al. (2003) consider the 

production planning problem of a multi-site manufacturing system subject to 

capacity constraints in case of an uncertain, multi-product and multi-period demand. 

A hybrid model, resulting from the integration of a MILP model and a simulation 
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model, is developed to solve a lot sizing and scheduling problem. Byrne and Hossain 

(2005) describe an extended LP model for the hybrid approach proposed by Byrne 

and Bakir (1999) incorporating JIT concepts.  

 

Recently, Almeder et al. (2009) present a new approach that combines the 

advantages of complex simulation models and abstract optimization models. They 

include simulation and optimization in an iterative process in order to gain the 

advantages of optimization (exact solution) and simulation (nonlinearities, complex 

structure, stochasticity). Safaei et al. (2010) propose a hybrid mathematical-

simulation model to solve the multi-product, multi-period, multi-site production-

distribution planning problem. Acar et al. (2010) develop a decision support 

framework for a global specialty chemical manufacturer that operates under demand, 

supply, and transportation lead-time uncertainties. Their modeling approach 

combines optimization and simulation methodologies to obtain optimal supply chain 

plans via mathematical modeling, while incorporating uncertainties in the execution 

of these plans via simulation. In a recent paper, Nikolopoulou and Ierapetritou (2010) 

propose a hybrid simulation and optimization approach for the integrated planning 

and scheduling problem. The simulation based optimization strategy uses an agent 

based system to model the supply chain network. In another paper, Sahay and 

Ierapetritou (2013) study on the same model. Compared to their work, they present a 

multi-objective model by taking the environmental impact of the supply chain as an 

additional objective for decision making. They propose a more flexible approach in 

which optimization is only used as a target setting. More recently, Bilgen and Çelebi 

(2013) propose an efficient hybrid solution methodology based on a MILP 

formulation and a simulation approach to address production scheduling and 

distribution planning problem in the dairy industry. The discussion of previous 

literature establishes the need for a hybrid approach that efficiently recognizes 

uncertainty. This research proposes a hybrid approach for the production allocation 

and distribution planning problem within the soft drink industry.  
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3.3 Problem Definition 

 

This research is motivated by the production-distribution problem encountered by 

a soft-drink company, which has to decide routinely the best way of delivering a set 

of orders to its customers over the multi-day planning horizon. In this research, the 

model developed by Bilgen (2010) is extended to include backordering. When 

customer demand exceeds product held in inventory, unmet demand is backordered 

and delivered to customers as soon as it becomes available in stock. It is generally 

not economical to install production equipment at each plant for the entire portfolio 

of products due to the high investment costs. For this reason, dedicated lines for the 

production of a specific range of products are established at each plant. Each 

individual plant has two production lines. No plant can produce the whole product 

range but just a part of the product range. Each production line at each individual 

plant can be viewed as a single stage process capable of producing several product 

groups. Setup costs are incurred at each plant whenever a production line changes 

production to a different product group. Each plant has an attached DC which serves 

as a buffer for the local production, and storage for products, which cannot be 

produced at the corresponding plant. Each DC is able to deliver the whole range of 

products. The products which cannot be produced in the corresponding plant must be 

delivered to a DC from another plant or another DC. Delivery takes place by means 

of homogenous vehicles with limited capacity.  

 

In our model, the most common transportation modes, namely less than truckload 

(LTL), and full truckload (FTL) are used. The distribution of goods from the plants 

to the DCs occurs in one of two ways (1) on a straight-and-back basis, i.e., there is 

only one DC on a given delivery vehicle’s path, which is the case if the customer 

requirements constitute a FTL, or (2) in a route involving multiple DCs on the route 

have individual requirements for LTL. For LTL multiple customers are served in a 

single route. In this case, transportation costs only depend on the transportation 

distance, not on the specific load. Figure 3.1 illustrates the considered production–

distribution system.  
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The problem is to assign products to the production lines, and to determine the 

routes to be travelled to coordinate the production and transportation routing 

operations so that the customer demand, capacity constraints, production, and 

inventory constraints are all satisfied, while the resulting cost (i. e. the sum of the 

production, inventory, set up, and transportation costs) over a given planning horizon 

is minimized.  

 

 

 

Figure 3.1 Supply chain network 

 

The following considerations further define and delimit the problem: 

 

 The supply network consists of several plants which deliver the final products 

to various DCs.  

 Each plant comprises several not necessarily identical production lines. Each 

line produces a given range of products. Multiple assignments of products to 

the production lines are allowed.  

 Each product inventory balances at DCs is updated on a daily basis according 

to the production output from the various lines at the plants, the inbound and 

outbound transportation quantities, backorder quantity and the given external 

demand. Backorder is allowed in every period except the last one.  

 All vehicles used in LTL transportation are assumed to be identical.  

 No specific handling capacities and costs at DCs are considered.  

 Transportation activities are carried out within a single day. Nevertheless, 
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lead times for long-distance transportation can be modeled simply by 

offsetting the time index of the respective decision variables.  

 Each vehicle can only travel according to the predefined route with fixed 

operational cost. It is assumed that a vehicle can pick up products from a 

plant in a travel.  

 

The objective of the MIP model is to determine (i) production quantities which 

are produced on each production line, (ii) setup operations for each product and the 

corresponding product groups, (iii) number of vehicles which are used for 

transportation operations, (iv) inventory, and backordered quantity level of each time 

period. The external demands of each product and period at DCs are given and have 

to be satisfied. Whenever a product is produced during a time period, a setup 

operation of the product and the corresponding product group is required which 

results in setup cost. The capacity of the production lines cannot be extended and 

limits the production quantities. Also, each transportation vehicle is allowed to 

discharge cargo at most two DCs.  

 

For convenience and readability, the parameters and notations of the MIP model 

are described in the nomenclature at the end of the chapter.  

 

Objective Function 
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The first term in objective function (3.1) defines the production costs and the 

second and the third terms represent the minor and major setup costs for products, 

and product groups, respectively. Finally, the last three terms represent the 

transportation cost of the system, inventory and backorder costs. Constraints (3.2) are 

the time capacity constraints. Capacity is the upper bound on the total time that can 

be consumed to produce products. It specifies that the time used for processing 

(manufacturing) on a line cannot exceed the capacity of that line in time period t . 

Constraints (3.3) enforce the production quantity i  on line l  to zero, if no 

corresponding setup operation is performed (i. e. 0iltz  ).  Constraints (3.4) ensure 

that product i belong to product group j  can only be set, if the line is setup for the 

product group j . In the constraints (3.5), total output quantities achieved from 

producing product i  at the production lines in plant p  must be equal to the FTL 

shipping quantities on the routes starting from plant p  and including DC w  plus the 

LTL shipping quantities to the DCs which are supplied from plant p . That is, it 

ensures the availability of the product i  at plant p  in time period t . In the 

constraints (3.6), the total quantity of products (converted into unit loads) to be 

transported to the various DCs w  included in LTL route r  determines the number of 

vehicles rtn required for that route in time period t. Note that variable rtn  is defined 

as an integer number of identical vehicles each having a transportation capacity of V  

unit loads. The daily demands of products must be satisfied. Constraints (3.7) ensure 

the inventory flow balance at DCs, and require each DC to have enough supply (from 

either inventory and/or the quantity arrived in that period) to meet the demand and 

the backordered quantity. That is, the inventory of product i at DC w at the end of 

time period t is determined by the ending inventory of the previous time period, the 

irwty ipwtq 0rtn

iltz
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quantities received, the quantity backordered and the external demand to be satisfied 

on the respective time period. Finally, constraints (3.8) are integrity and non- 

negativity constraints.  

 

3.4 Solution Approaches 

 

3.4.1 MIP Based Heuristics 

 

In our research, the proposed MIP based rolling horizon methods are F&R and 

F&O heuristics. These heuristics operate basically with the similar procedure which 

processes to solve the problem in a systematic manner by fixing the binary variables 

in the certain time periods. The setup variables are progressively fixed at their 

optimal values. The distinctive points of the processing procedures are in the relaxing 

and optimizing phases. F&R heuristic allows the corresponding binary variables to 

get continuous values within the 0 and 1 range. But, F&O heuristic seeks only 

discrete values for these binary variables in the same range. In addition, F&O 

heuristic needs to be a given feasible initial solution and the corresponding objective 

function value to start the algorithm. The use of the appropriate initial solution and 

objective value provides explicit advantages to get more favorable feasible solutions 

to the F&O heuristic.  

 

F&R Heuristic: F&R heuristic is introduced to provide good solutions in 

deterministic environments by Dillenberger et al. (1994). It is an approach to find 

feasible solutions for larger instances of complex problems. The basic idea of the 

method is to divide the planning horizon into a number of finite time intervals and to 

solve the sub-problems in iterations corresponding to the time intervals Uggen et al. 

(2013).  

 

The structure of the F&R algorithm with time decomposition is outlined in Figure 

3.2. The algorithm can be explained basically in three steps. In the first step, the time 

interval is equal to 1.The first sub-problem is solved with the binary variables in the 

initial time interval, while the remaining binary variables for other time intervals are 
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relaxed to get continuous values. In the second step, time interval is increased step by 

step by controlling the stopping criterion. The integer variables from the previous 

intervals are fixed to the solution values obtained from the previous iteration. 

Simultaneously, integrality constraints are reintroduced for the integer variables, 

while all other variables are kept non-fixed and continuous. After solving the new 

sub-problem, the iteration is completed. The iteration is then repeated until all 

intervals except last one are completed. If the stopping criterion is satisfied with the 

feasible solutions for all n-1 intervals, the algorithm is directed through the third step. 

In this last step, after solving the binary variables of the last interval by fixing other 

previous solutions, a complete solution is found for the original problem.  

 

F&O Heuristic:  The fundamental idea of the F&O heuristic is to solve the 

problem in a systematic manner by setting most of the binary variables to the fixed 

values at each of the iterations (Sahling et al, 2009; Helber and Sahling, 2010). This 

procedure reduces the number of non-fixed binary variables which are optimized in 

the problem and leads to very reasonable solution time. Then, the problem is solved 

to get the temporary solution which is utilized in the next iterations. Hence, there is a 

new problem with a different subset of fixed binary variables and the rest of the 

binary variables are optimized (Helber and Sahling, 2010).  

 

The basic structure of the F&O algorithm with time decomposition is outlined in 

Figure 3.3.The F&O heuristics start with an initial solution which yields an initial 

objective. Firstly, the algorithm starts with the adjustment of the Best Solution as 

Initial Solution and Objective
 (Old)

 as Initial Objective. Objective
 (Old)

 indicates the 

objective value calculated using the last valid and best solution. Best Solution shows 

the binary variable values of the best solution ever achieved from the algorithm. 

Initial objective value is calculated to adjust the first value of the Objective
 (Old)

. The 

performance of the algorithm depends on the initial solution.  

 

Many heuristics are available in the literature to construct an initial solution. 

However, since the aim is not spend too much computation time for any construction 
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heuristic, four simple initial solutions are investigated for the test instance with low 

granularity level, and 90% capacity load.  

 

The test results are obtained for four different initial cases (i) in which all binary 

variables are fixed to 0, (ii) in which all binary variables are fixed to 1, (ii) in which 

the binary variable assignments are made randomly, (iv) in which the initial solution 

is generated based on the F&R heuristic. The results are summarized in Table 3.3. As 

an initial solution, we start similarly to Helber and Sahling (2010) with a pattern, i.e., 

all binary setup variables are fixed to 1, since it results in the best solution. After 

initial adjustments, the algorithm checks the stopping criteria, which decide either 

continue or finish the processing. The stopping criteria consist of two distinct 

controls, Iteration Limit and Feasible Solution. The first control limits the number of 

iteration to the maximum allowed iteration number. And, the second checks whether 

the feasible solution is achieved for all time intervals. In any case, algorithm tries to 

complete the Iteration Limit. When the maximum iteration limit is reached, the F&O 

algorithm stops and represents the feasible solution. But, if Iteration Limit is 

exceeded and there is no feasible solution, algorithm represents ―No solution‖. For 

the experimental studies, it is enough to run the algorithm for a single iteration to get 

feasible and relatively close objective values to the optimal in a small computational 

time.  

 

Table 3.3 Initial solutions with test case- 90% capacity load and low demand granularity level 

 Initial Solution Objective Function (€) Time (h:m:s:ms) 

UFO  

Heuristic 

Initial 0 370145890.62 00:00:15:75 

Initial 1 307650973.31 00:00:17:70 

Initial RND 350883593.08 00:00:16:97 

Initial UFR 370145890. 62 00:00:55:20 

ZFO 

 Heuristic 

Initial 0 445348753.94 00:00:14:83 

Initial 1 294133498.81 00:00:17:70 

Initial RND 445348753.94 00:00:16:97 

Initial ZFR 445348753.94 00:01:05:90 

 

After controlling the stopping criteria, the F&O procedure divides the time period 

into certain intervals and generates the sub-problems. There are three steps in F&O 

procedure to operate with the generated sub-problems; Step1: Optimize–Fix, Step 2: 

Fix–Optimize–Fix, Step 3: Fix–Optimize.  These steps are quite similar procedures 
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to each other with small differences. In Step1, the lower and upper bounds of the 

corresponding binary variable are released as 0 – 1 to optimize the first interval and 

the following intervals are fixed to the Best Solution. Hence, the temporary solution 

is calculated by solving the model with these predefined binary variable values. 

Then, there is a comparison to evaluate the solution. Each temporary solution yields 

an Objective
 (New)

 and the temporary solution is only accepted as a new solution if it 

yields the Objective
 (New)

 value lower than Objective
 (Old)

. After the comparison, if the 

temporary solution is accepted, Temporary Solution is assigned to Best Solution 

variable and Objective
 (New)

 value is assigned to Objective
 (Old)

. Then, algorithm 

continues with Step2. 

 

In Step2, the lower and upper bounds of the corresponding binary variable are 

released as 0 – 1 to optimize the intermediate intervals and the other remaining 

intervals are fixed to the Best Solution. Hence, the temporary solution is calculated 

by solving the model with these predefined binary variable values. If the temporary 

solution is accepted, Temporary Solution is assigned to Best Solution variable and 

Objective
 (New)

 value is assigned to Objective
 (Old)

.  

 

Step3 is the final procedure releasing the lower and upper bounds of the 

corresponding binary variable as 0 – 1 to optimize the last interval and fixing the 

remainder intervals to the Best Solution. If the temporary solution is accepted, 

Temporary Solution is assigned to Best Solution variable and Objective
 (New)

 value is 

assigned to Objective
 (Old)

 with the temporary solution control procedure. Then, 

iteration counter is updated.  
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Figure 3.2 Fix & Relax algorithm 
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3.4.2 Simulation 

 

Optimization models have been proved useful, but they require too many 

simplifications to model realistic supply chain problems. Real world situations are 

characterized by a high degree of uncertainty. Inclusion of uncertainties often makes 

pure mathematical modeling intractable. Simulation models include nonlinearities, 

complex structure and uncertainty which are main features of the real systems. In this 

research, simulation modeling and analysis is introduced to include the stochastic 

factor to the solution as unexpected delays and changes on operation time causing 

from queuing and machine failure. All machines in the line have the same processing 

rates, and all the machines are subject to breakdown. The simulation model is 

established to represent MILP model and it enhances the predefined problem by 

queuing and machine failures. The conceptual model of the system is shown in 

Figure 3.4.  

 

In this model, the simulation model starts with the creation of semi-products 

which have different Product_IDs and Product_Groups. The production quantity and 

machine allocation data is received from the MILP results. The simulation model 

always starts with the first product considering the queue ranking criterion. While the 

first product is operating on the line to produce desired quantity, the model controls 

the conditions of other lines and products, and then starts the production of the 

second and the following products.  When the plan given according to MILP results 

for the corresponding day is completed, the model starts the production of the next 

day. In real systems, the theoretical capacities for machines cannot be used 

completely because of the failures. During the program, the failures become active. 

Thus, we can measure the operation time on each production line for the production 

schedule given by the MILP model.  
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Figure 3.3 Fix & Optimize algorithm 
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Figure 3.4 The conceptual model 
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3.4.3 Hybrid Approach 

 

 The hybrid approach combining simulation and MILP optimization merges 

independent analytic and simulation model of the production system to make use of 

their solution procedures together for problem solving. The goal of the hybrid 

approach is to achieve near optimal, more realistic production-distribution plans. The 

connection of two corresponding models is shown in Figure 3.5.  

 

 

Figure 3.5 Connection of the simulation and optimization models 

 

In this research, a hybrid solution approach is developed by applying MIP based 

F&O heuristic solution approach and simulation approach. The algorithm of hybrid 

approach basically consists of two consecutive procedures. First, F&O heuristic 

solution of the mathematical model gives the near optimal solution that minimizes 

the costs for set up, production, inventory, and distribution without considering the 

stochastic factors (i. e. unexpected delays as queuing and machine failures. Second, 

simulation approach adjusts the capacities of the production lines by updating 

operation times under consideration of uncertainty. The corresponding algorithm is 

explained in details with the following steps and illustrated in Figure 3.6 (Safaei et 

al., 2010).  

 

Step 1. Solve the MILP model using F&O heuristic algorithm to generate the 

initial production-distribution plan.  

Step 2. Run the simulation model based on the current production-distribution 

plan with ten independent replications.  

Step 3. Calculate average operation times by means of ten replications.  

Step 4. If the difference rate between preceding operation times (POT) and current 
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operation times (COT) is not within the rate of 0. 025, then go to Step 

5.Otherwise go to Step 6. 

Step 5. Solve the MILP model with COT using F&O heuristic algorithm to update 

production-distribution plan.  

Step 6. Solve the MILP model using F&O heuristic and present near optimal 

production-distribution plan.  

 

 

Figure 3.6 The hybrid simulation-optimization procedure 
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3.5 Case Study 

 

To demonstrate the validity and practicality of the proposed heuristics and hybrid 

methodology, an industrial case inspired from a soft-drink industry is presented. The 

case study is presented to demonstrate the efficiency of the proposed method to 

highlight the characteristics of the proposed model. The supply chain network 

involves three plants, six production lines and three DCs located in different 

customer zones. There are two different types of product groups, and 19 different 

product types.  

 

Other relevant data are summarized as follows.  

 

 The planning horizon consists of 4 weeks with daily periods.  

 The manufacturing plants operate 16 hours per day and 5 days per week.  

 The processing speed of the six production lines is given as 8000 (line 1), 

6000 (line 2), 7000 (line 3), 7000 (line 4), 8000 (line 5), 6000 (line 6) 

liters per hour as independent from the specific beverage produced on the 

line. The corresponding line-specific processing costs per day are defined 

as 8, 12, 10, 10, 8 and 12 € for the individual lines.  

 A major setup time is considered as 1 hour for setting up a specific 

production line and product group, while a minor setup time of 18 

minutes is required for setting a product on a production line. The minor 

setup time is the same for all production lines and products. Setup costs 

including material losses amount to 150 € per major and 30 € per minor 

setup.  

 For transportation, trucks with 26 tons loading capacity to be hired from 

an external logistics service provider are considered.  

 

The MILP formulations and MIP based F&O, and F&R heuristic algorithms are 

implemented and solved using IBM ILOG CPLEX 12.1.The simulation model is 

implemented in Arena version 10. 0. They are solved on a Dual CPU notebook with 

4GB RAM and 2.16 GHz.  
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3.5.1 Numerical Results of MIP Based Heuristics 

 

In the numerical examples, a short-term planning horizon of four weeks is 

considered, and seasonal demand variations are not essential. However, depending 

on the time of the year, the average workload may be higher or lower. These 

conditions are reflected by five scenarios which assume an average workload of 50, 

60, 70, 80 and 90% of the available total capacity, respectively. Moreover, since 

demand in the fast moving consumer goods industry is driven by customer orders of 

various sizes, granularity of demand elements is considered as a key factor. In order 

to reflect these issues, three distinct demand data are examined to represent the 

demand granularity: high, medium, and low. These different degrees of demand 

granularity are reflected by scenarios with the randomly generated demand figures. 

For instance, while high demand granularity indicates a large number of small-sized 

customer orders, low demand granularity implies comparatively small number of 

large-sized orders for the same aggregate demand volume. The proposed test bed is 

designed to cover a large set of combinations regarding the capacity loads, and 

demand granularity levels, from relatively easy instances to very challenging ones. In 

order to evaluate the solution quality of the proposed algorithms, three different 

variants of MIP based heuristics are introduced and compared with the optimum.  

 

These are: (i) Method ZFO-F&O algorithm applied on iltz   binary variable, 

indicating setup operations for each product. (ii) Method UFO-F&O algorithm 

applied on jltu  binary variable, indicating setup operation for each of product group. 

(iii) Method UFR-F&R algorithm applied on jltu  binary variable, indicating setup 

operation for each of product group.  

 

Table 3.4 shows the main results of the computational test. The computation time 

and MIP gaps are obtained by MILP, F&R and F&O solutions for the five scenarios 

of 50, 60, 70, 80 and 90% capacity load, and for the three different levels of demand 

granularity, respectively. The gap values are calculated to reveal the differences 

between the heuristic solution value and optimal solution value. Optimal solutions 
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and the required computational times to get these optimal solutions are presented in 

the MILP column. 300 numerical experiments are carried out in order to evaluate the 

proposed MILP model and MIP based F&R and F&O algorithms. Each experiment is 

repeated five times with the randomly generated demand data. Runtime limit of the 

MILP model is adjusted as 600 seconds. While optimal results are obtained for some 

of 50, 60 and 70% capacity loads, lower bound values are determined for the other 

large scaled and complex instances within the considered time limit.  

 

Note from Table 3.4 that capacity loads and granularity levels affect both the gap 

values and the solution time. Our numerical results reveal that MIP gap decreases 

and computational time increases considerably when customer orders get smaller 

size (i. e. low to high granularity level). In particular, the computational complexity 

considerably increases in the high demand granularity scenario, since comparatively 

large number of production lots have to be established. In terms of the capacity 

loads, the increasing capacity load expresses the problem on manufacturing with 

more tightly used resources and represents the more realistic problem. It complicates 

the problem and computational efforts systematically and rises up both of the MIP 

gap and computational time, simultaneously.  

 

 When the performances of the F&R and F&O algorithms are analyzed using the 

subtotal values, it is concluded that the F&O outperforms with respect to both the 

MIP gap values and the computational time with a considerable difference. In this 

concept, ZFO can be determined as the favorable. F&O Heuristic algorithm with 

ZFO variant has an average 6.39-% MIP gap value, and noticeably shorter 

computational time than the standard MILP solution. It is an expected result that the 

start with an appropriate initial solution provides explicit advantages to F&O 

heuristic. Hence, the proposed F&O heuristic has a more reasonable computational 

performance in comparison with F&R. The gap values of F&R alternatives are too 

big and alternative algorithms may be implemented that overcome this limitation for 

the further research.  



 

 

Table 3.4 Experimental results 

Capacity  

Util. (%) 

Gran.  

Level 

UFR UFO ZFO MILP (time limit=600) 

 
Result (€) 

Comp. Time 
Gap 

(%) Result (€) 

Comp. Time 
Gap 

(%) Result (€) 

Comp. Time 
Gap 

(%) Result (€) 

Comp. Time 

  (h:m:s:ms)  (h:m:s:ms)  (h:m:s:ms)  (h:m:s:ms) 

 50 Low 190,715,072.99 00:00:14:95 12.92 174,632,736.49 00:00:15:70 1.83 172,278,472.12 00:00:12:74 0. 65 171,163,895.74 00:00:21:63 * 

50 Med.  210,482,749.74 00:00:20:83 25.66 170,275,606.26 00:00:21:38 0. 97 168,993,545.96 00:00:14:75 0. 27 168,553,859.30 00:02:47:60 * 

50 High 150,815,375.65 00:00:21:65 6.99 141,266,784.24 00:00:28:55 0. 91 140,415,563.71 00:00:16:70 0. 25 140,068,640. 99 00:03:35:40 * 

50 AVG 184,004,399.46 00:00:18:92 15.19 162,058,375.66 00:00:21:65 1.24 160,562,527.26 00:00:14:73 0. 39 159,928,798.68 00:01:47:77 

 60 Low 540,170,050. 52 00:00:14:41 67.93 338,433,376.74 00:00:10:33 7.75 319,328,678.53 00:00:09:42 0. 35 318,255,541.91 00:00:11:75 * 

60 Med.  313,307,041.65 00:00:22:56 29.97 242,406,425.81 00:00:18:50 0. 47 241,921,265.74 00:00:15:40 0. 27 241,282,435.91 00:04:75:68 * 

60 High 282,081,791.32 00:00:40:61 49.61 205,869,202.42 00:00:32:68 7.27 193,807,424.90 00:00:22:86 1.57 190,600,306.47 00:10:01:45 

 60 AVG 378,519,627.83 00:00:25:64 49.17 262,236,334.99 00:00:20:50 5.16 251,685,789.72 00:00:15:67 0. 73 250,046,094.76 00:04:42:74 

 70 Low 335,236,334.41 00:00:12:60 48.62 360,385,539.44 00:00:13:56 63.25 229,927,951.57 00:00:10:69 0. 56 228,678,071.69 00:00:19:47 * 

70 Med.  320,893,374.03 00:00:33:82 40. 09 261,804,181.29 00:00:20:76 14.79 257,344,768.24 00:00:18:33 11.41 232,367,883.60 00:10:01:55 

 70 High 392,798,546.69 00:00:33:84 70. 14 278,232,873.32 00:00:29:26 22.13 229,185,418.42 00:00:20:62 0. 83 227,492,538.44 00:10:01:56 

 70 AVG 349,642,751.71 00:00:19:75 52.95 300,140,864.69 00:00:20:75 33.39 238,819,379.41 00:00:16:55 4.26 229,512,831.24 00:06:20:64 

 80 Low 440,435,573.91 00:00:16:46 36.62 388,295,466.34 00:00:10:63 13.55 423,589,301.14 00:00:10:91 26.21 343,138,070. 97 00:10:01:46 

 80 Med.  555,013,133.20 00:00:29:57 63.75 421,733,109.97 00:00:25:57 21.05 371,814,399.07 00:00:21:89 6.97 352,105,487.47 00:10:01:82 

 80 High 434,665,274.03 00:00:38:80 70. 77 343,002,993.49 00:00:30:75 36.75 272,987,090. 36 00:00:24:82 10. 95 248,222,933.55 00:10:01:50 

 80 AVG 476,704,660. 38 00:00:27:83 57.05 384,343,856.60 00:00:21:87 23.78 356,130,263.52 00:00:18:98 14.71 314,488,830. 66 00:10:01:59 

 90 Low 1,195,419,386.21 00:00:19:82 166.87 927,513,127.97 00:00:11:73 97.2 496,125,533.95 00:00:13:51 10. 71 446,602,618.96 00:10:01:64 

 90 Med.  736,140,181.09 00:00:28:78 102.7 646,720,298.90 00:00:17:75 84.71 411,659,665.87 00:00:20:44 12.66 362,209,142.12 00:10:01:81 

 90 High 470,005,118.81 00:00:39:51 53.23 417,264,826.28 00:00:30:56 35.24 347,943,264.48 00:00:23:69 12.13 311,620,332.99 00:10:01:77 

 90 AVG 800,521,562.04 00:00:28:93 107.6 663,832,751.05 00:00:19:79 72.38 418,576,154.77 00:00:18:77 11.84 373,477,364.69 00:10:01:74 

 Overall AVG 437,878,600. 28 00:00:25:69 56.39 354,522,436.60 00:00:20:62 27.19 285,154,822.94 00:00:16:68 6.39 265,490,784.01 00:06:16:66 

 * Optimum results 
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Figures 3.7 displays and summarizes the MIP gap and the computation time for 

the instances, which have different granularity levels and capacity loads. The 

analyses on gap indicate that the F&O algorithm gets solutions with low MIP gap 

values in comparison with F&R algorithm. High demand granularity, which has a 

large number of small-sized customer orders, and low demand granularity, which has 

a comparatively small number of large-sized orders do not make the F&O algorithm 

more difficult to reach good solutions. The results show that the ZFO is the most 

promising procedure which has the best gap values.  

 

The computational time for the cases which has low demand granularity and 

lower capacity level requires less computational effort. Hence, the span between the 

CPU times for high granularity level instances is quite large. In addition, both of 

heuristic procedures outperform the standard MIP solution procedure in terms of the 

computation time. As it can be observed form Figure 3.7, the ZFO procedure may be 

chosen as a favorable structure for the F&O heuristic.  

 

3.5.2 Numerical Results of Hybrid Approach 

 

In the numerical analysis of hybrid approach, the proposed simulation model and 

ZFO algorithm is hybridized and a numerical example with %90 capacity load and 

high granularity level is chosen as the most challenging test instance. The hybrid 

method starts with the MIP-based F&O heuristic which provides near optimal 

production and distribution plan by minimizing the total cost. Then, the simulation 

model that reflects the dynamic situations as queuing, machine failure and repair 

times is applied to obtain the results of the real system behavior. The failures come 

out during production exponentially with the mean value of 100 minutes and repair 

operations actualize with normal distribution which has the mean value of 30 

minutes and standard deviation of 30 minutes. In order to obtain mean operations 

times, ten independent replications are applied in the simulation model. The 

independence of the replications is accomplished by different random numbers using 

for each replication. The results of the initial condition for operation times and mean 

of results gathered from simulation replications are listed in Table 3.5 and illustrated 
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in Figure 3.8. Operation times are fluctuating. However the width of fluctuation 

decreases as iteration is increased. It can be seen from the Table 3.5 of results that 

dramatic changes have occurred in operation times immediately after the initial 

iteration.  

 

Table 3.5 Simulation results for each iteration 

 

 

 

 

Operation 

Times 

 (Hour/Unit) 

Initial 

Solution 

1.iteration 2.iteration 3.iteration 4.iteration 5.iteration 

Line 1 0. 000125 0. 000169 0. 000162 0. 000166 0. 000167 0. 000166 

Line 2 0. 000167 0. 000218 0. 000221 0. 000228 0. 000219 0. 000224 

Line 3 0. 000143 0. 000184 0. 000185 0. 000187 0. 000195 0. 000193 

Line 4 0. 000143 0. 000191 0. 000188 0. 000189 0. 000190 0. 000186 

Line 5 0. 000143 0. 000159 0. 000165 0. 000164 0. 000167 0. 000165 

Line 6 0. 000167 0. 000224 0. 000221 0. 000219 0. 000217 0. 000223 

Solution Time 0. 08 min 0. 07 min 0. 07 min 0. 08 min 0. 07 min 



 

 

 

Figure 3.7.The computational comparison 
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Figure 3.8 Simulation results for each of the iterations 

 

The solution identified by the initial iteration of hybrid procedure results in 

increased operation time. The changes in operation time have also resulted in 

substantial increase in total system costs over the original analytic optimum. This 

solution incurs high costs, due the capacity disruption. Despite of increasing in 

objective value, the last iteration gives us a more realistic and practical solution for 

the problem. The objective values of MILP model are tabulated in Table 3.6 and 

illustrated in Figure 3.9.  

 

Table 3.6 MILP results for each iteration 

Total Cost 

 (€) 

Initial  

Solution 

Iterations 

1. 2. 3. 4. 5. 

Objective 321,214,990 373,463,399 370,592,741 378,058,418 372,119,302 371,596,141 

S.Time 

(m:s:ms) 
00:25:36 00:34:78 00:29:47 00:30:60 00:34:19 00:32:68 



76 

 

 

Figure 3.9 MILP results for each of the iterations 

 

As can be seen in Table 3.7 hybrid approach is stopped in five iterations with the 

control of critical rate indicating the consistency between iterations. The critical rate 

values and threshold controls are presented in Table 3.7 and illustrated in Figure 

3.10.  

 

Table 3.7 Computation of critical rate for each iteration 

 

Critical  

Rate 1 

Critical  

Rate 2 

Critical  

Rate 3 

Critical  

Rate 4 

Critical  

Rate 5 

Line 1 0. 261011 0. 042099 0. 024930 0. 003194 0. 006631 

Line 2 0. 234296 0. 012303 0. 029591 0. 038883 0. 022609 

Line 3 0. 224862 0. 003421 0. 009365 0. 040068 0. 008810 

Line 4 0. 252483 0. 019995 0. 007234 0. 003166 0. 017721 

Line 5 0. 101571 0. 035451 0. 005076 0. 015195 0. 012449 

Line 6 0. 254298 0. 014113 0. 007681 0. 007741 0. 024886 
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Figure 3.10 Critical rates for each of the iteration 

 

The numerical results of hybrid approach  demonstrate summarily that the overall 

cost increases in comparison with the initial solution. However, the results obtained 

by considering stochastic factors reflect the real system features.  

 

3.6 Conclusion 

 

In this research, production allocation and distribution planning problem arises in 

the soft drink industry is considered. Analytical methods have advantages on 

providing mathematical frameworks to model problems by representing specific 

characteristics and to get optimal solutions. Due to the complex natures of the supply 

chains, solution of the complicated models requires large amount computational 

times and heuristic methods are appropriate solution techniques for solving the 

complex optimization problems. Three different variants of MIP based heuristics are 

proposed.  

 

For the computational performance tests, randomly generated demand figures for 

the three granularity categories and different capacity loads are examined to compare 

the standard MIP procedure and MIP based heuristic approaches. We have found that 

F&O heuristic with ZFO variant yields the best solution.  



78 

 

Operation time is inserted as a stochastic parameter for the realistic solution. It is 

adjusted according to the simulation model results. For determining operation time, 

probability density of machine failures and repair times are considered in the 

simulation model.  

 

Hybrid method integrate the best capabilities of MILP model and simulation 

model, which lead to more realistic planning environments for the considered supply 

chain planning problem. The hybrid methodology merges the advantages of these 

two distinct modeling techniques to introduce the production and distribution 

planning model which has more acceptable results in practice.  

 

Further research should address improving the computational efficiency of the 

proposed heuristics and making use of the advantageous of alternative heuristic 

techniques. Developing similar hybrid approach to deal with the other distinctive 

stochastic characteristics of different supply chain network problems may be 

promising further research directions.  

 

The scheduling represents the realization of the tactical planning decisions in 

operational level. Having created a plan for defining the production tasks has to be 

sequenced to ensure that the planning activities are indeed applicable. Therefore, the 

integration of planning and scheduling or even incorporation as processes providing 

interrelated feedbacks to each other can be an effective way to make more applicable 

production plans. Planning and scheduling of process industry includes operational 

decisions on allocation of the productions to packaging lines, sequencing the multi-

stage production and corresponding setups. Although soft-drink production does not 

include explicit perishability issues by means of final product which has a shelf-life 

period varying between months and years, most of other industrial examples should 

be planned and scheduled under shelf life and perishability constraints. Dairy 

industry includes highly perishable products and offers real life planning and 

scheduling problems.  
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In the next chapter, multi-stage-production planning, integrated production 

planning and scheduling perspectives of the literature review is discussed. An 

integrated planning and scheduling problem is considered in yoghurt production 

process and a MILP model is presented. The product perishability is considered as 

loss function in a cost-driven objective and shelf life constraints are taken into 

account. Working time and overtime are planned and bottleneck production 

operations are scheduled by the time and capacity constraints. Due to the high 

complexity of integrating planning and scheduling decisions in a single mathematical 

model, a decomposition approach is introduced and MILP/CP methodologies are 

combined to show their complementary strengths. 
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Nomenclature 

For the mathematical description of the models the following notation is introduced; 

Sets: 

I   Set of products (i=1,2,…,I) 

J   Set of product groups (j=1,2,…,J) 

L   Set of production lines (l=1,2…,L) 

W  Set of DCs (w=1,2,…,W) 

T   Set of time periods  

R   Set of routes 

 

Parameters: 

lPCap  capacity of production line l 

iwtd   external demand of product i at DC w, in period t 

 time consumed to produce product i on line l 

i  factor for converting quantities of product i into unit loads, e.g., pallets 

V  loading capacity of a vehicle 

ilts  minor setup- time of product i on line l 

jlTS  major setup time of product group j on line l 

prod

il
C   processing cost of product i on production line l 

SMin

il
C   minor setup cost of product i on production line l 

SMaj

jl
C   major setup cost of product group j on production line l 

Inven

iw
C   inventory holding cost of product i at DC w in time period t 

LTL
rC  transportation cost per vehicle on route r 

Bord

iwC  backorder cost of product i at DC w 

M extremely big number 

 

Decision Variables: 

iltx   production volume for product i produced on production line l in time 

period t 

ila



81 

 

irwty   quantity of product i delivered to DC w via route r in time period t 

ipwtq   quantity of product i shipped from plant p to DC w in time period t 

iwtI   inventory level of product i at DC w at the end of time period t 

iwtb   backorder quantity
 

rtn  the number of vehicle used on route r in time period t. (identical vehicles are 

used) 

iltz   1,  if product i is setup on line l in period t 
 

   0, otherwise 

jltu   1,  if product group j is setup on line l in period t 

   0, otherwise 
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CHAPTER FOUR 

MULTI-BUCKET OPTIMIZATION FOR INTEGRATED PLANNING AND 

SCHEDULINGIN THE PERISHABLE DAIRY SUPPLY CHAIN 

 

4.1 Introduction 

 

The yoghurt production is a semi-continuous process and subject to individual 

characteristics. Yoghurt is a notably perishable product within the category of dairy 

industry (Lütke Entrup, 2005). The perishability highly restricts its storage duration 

and delivery conditions. It has a wide variety of retail cup sizes or labels, contents 

and special ingredients with numerous flavored and colored types. When it comes to 

producing large numbers of products from a few initial product recipes, product 

dependent cleaning, sterilizing, re-tuning issues of pipes and mixing units arise to 

avoid contamination (Montagna et al., 1998). Especially, long sequence-dependent 

setup times and high costs are considerable at the filling and packaging stages of the 

yogurt production and, they cause a noticeable reduction of available production 

times and increase the costs. Hence, planning and scheduling of the yoghurt 

production require specific models to support decision making.  

 

MILP models provide mathematical frameworks to represent specific 

characteristics of problems and to get optimal solutions. The MILP is an extensively 

accepted tool in the dairy industry for well-defined problems (e.g., Banaszewska et 

al., 2013; Kopanos et al., 2011a, 2012b). Bilgen and Çelebi (2013) present a MILP 

model addressing the production scheduling and distribution planning problem in a 

yoghurt production line of multi-product dairy plants. They consider the yoghurt 

production with perishability and sequence-dependency issues by focusing on the 

packaging stage operating with parallel units sharing common resources. Sel and 

Bilgen (2014a) state that integrated multi-echelon, multi-period planning and 

scheduling models accounting for multi-stage semi-continuous yoghurt production 

particularities are found to be of practical use in the field. Accordingly, the 

contribution of this research is aligned with the gap pointed out by Sel and Bilgen 
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(2014a) presenting a literature review and discussion on quantitative models for 

SCM within dairy industry.  

 

In this research, we consider a production and distribution problem for a two-

stage semi-continuous set type yoghurt production which is also comparable to other 

dairy production processes (e.g., cheese, butter and ice cream). The production side 

fundamentally corresponds to packaging and fermentation/incubation operations. 

The distribution side considers the storage of products and the delivery to DCs. The 

scope of the considered problem is illustrated in Figure 4.1. For the problem, we 

introduce a multi-echelon, multi-period integrated MILP model with shelf life 

consideration. The model is extended by considering timing and capacity constraints 

with respect to the incubation operation of set type yoghurt. The scheduling 

constraints corresponding to both packaging and incubation operations are 

reformulated efficiently inspired by the generic MILP model of parallel machine 

scheduling with sequence dependent setup times, which is studied by Guinet (1993) 

as a vehicle routing formulation.  

 

 

Figure 4.1 Scope of the yoghurt production problem 

 

MILP software may be not powerful enough to handle the computational effort of 

integrated models of real sized problems. A production schedule typically comprises 

500-1500 operations and complex technological constraints such as parallel 

processing units, sequence-dependent changeovers (Baumann and Trautmann, 2014). 

The inadequacy of MILP is the usage of various big M constraints and an enormous 

number of binary variables for making scheduling decisions. In this case, 

decomposition heuristic which divides the model into different planning and 
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scheduling time buckets can reduce the complexity caused by the scheduling 

decisions.  

 

CP has been developed as a useful modelling and solution paradigm overcoming 

the computational limitations for many scheduling cases such as staff, train, 

assembly line, batch plant and flexible manufacturing system scheduling (Novas and 

Henning, 2014). The CP models provide more convenient analyses for real cases by 

requiring less computational efforts. However, they search values of decision 

variables in a certain domain and the optimum cannot be guaranteed for planning 

problems which have large domains of continuous variables concerning to the 

production and distribution decisions (Sel and Bilgen, 2014a).  

 

Since the integrated planning and scheduling problem contains aspects that are 

individually difficult for each approach, a relevant contribution would be the 

development of an effective hybrid approach (Steger-Jensen et al., 2011). The hybrid 

MILP/CP decomposition strategies integrating the best capabilities of the MILP and 

the CP models iteratively, are used as a common way to overcome the computational 

limitations of scheduling problems (e.g., Erdirik-Dogan and Grossmann, 2006; 

Harjunkoski and Grossmann, 2002; Roe et al., 2005). Jain and Grossmann (2001) 

present a generic hybrid MILP/CP approach for optimization problems. The 

approach focuses on only operational scheduling. Grossmann (2004) present the 

integration planning and scheduling at the supply chain level as a future challenge. 

They define the major difficulty of the integration on ensuring consistency, 

feasibility and optimality across models that are applied over large changes in time 

scales varying as months, weeks, days, down to hours. To overcome this challenge, 

we propose a decomposition heuristic which divides the integrated planning and 

scheduling model into big bucket planning, and small bucket scheduling sub-models. 

The iterative decomposition heuristic links the different time horizons. In each of the 

iterations, the heuristic limits tactical production planning and distribution decisions 

(e.g., stock keeping, demand satisfaction) with an actual production capacity 

determined by a simulated annealing based optimization heuristic. Further, MILP 
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and CP methodologies are combined with the proposed algorithm to show their 

complementary strengths.  

 

In this concept, the research aims at making a twofold contribution to the planning 

and scheduling literature in the dairy industry. The first is to introduce an integrated 

MILP model for the planning and scheduling problem considering particular 

characteristics of set type yoghurt production. The second is to deal with the problem 

complexity through the development of a computational efficient decomposition 

heuristic and MILP/CP hybrid approaches.  

 

The rest of the chapter is organized as follows. A detailed description of the 

production system under consideration is described in Section 2.The relevant 

literature is reviewed in Section 3.The mathematical formulation of the integrated 

planning and scheduling model is described in Section 4.The proposed solution 

approach is described in Section 5. An illustrative case study is discussed with the 

results in Section 6. Finally, the main conclusions are given in Section 7. 

 

4.2 Description of the Yoghurt Production Process 

 

In this research, we address an integrated planning and scheduling problem in a 

yoghurt production process. The yoghurt production process starts with the collection 

of milk and continues with pasteurization, standardization, homogenization, culture 

addition, fermentation/incubation, packaging and cold storage, distribution 

operations.  

 

Fresh milk can be collected from dairy farms to the production plant with churn 

collection (i.e., uncooled milk in churns with churn-collecting lorries) or bulk 

collection (i.e., cooled milk in insulated tankers with cooled containers). The 

pasteurization of milk is a special type of heat treatment which is used to get rid of 

pathogenic organisms in milk. It must be applied as quickly as possible after the milk 

has arrived at the dairy plant. After pasteurization, standardization and 

homogenization takes place in order to enhance the quality of the yoghurt product. 
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Standardization involves adjustment of the fat or dry solids contents of milk and, 

homogenization is basically disruption of fat globules into much smaller ones. Then, 

starter cultures are added to incubate the mix. For fermentation, the cultured milk 

must be held at the optimum temperature for certain duration in tanks and cooled 

quickly to stop the fermentation process. Filling and packaging operations are 

performed in parallel packaging machines. The packed yoghurt is placed in cooling 

storage containers and usually delivered to DCs by third-part logistics companies. 

Interested readers are referred to Bylund (1995) for details on yoghurt production.  

The yoghurt is subdivided into different groups based on chemical composition (e.g., 

plain, flavored, vitamin addition), fat content (fat, or skimmed yoghurt), cup sizes or 

its texture (e.g., set or stirred). The cup size is determined in the packaging operation, 

the chemical composition and the fat rate is arranged with standardization operation.  

 

Stirred yoghurt is a common type which is generally mixed with different 

ingredients such as fruit, flavor and nuts. In the stirred yoghurt production, warm 

cultured milk mixture is fermented, cooled and stirred before packaging for a creamy 

texture. Set yoghurt is a particular type of yoghurt especially preferred because of its 

thick texture. The set type is fermented and cooled in retail cups without any further 

stirring operation. The incubation operation which comes after the packaging 

operation, blocks the production process with specialized incubation rooms which 

have tight capacity restrictions. The incubation is operated with heating and chilling 

units in which the set type yoghurt is put with specific temperature conditions and 

predefined duration.  

 

4.3 Related Literature and Positioning 

 

In this section, we review the most relevant and recent literature considering 

planning and scheduling problems in yoghurt production. We provide distinguished 

publications which are selected due to the novelty of the proposed model 

formulation. Reviewed research is investigated in terms of several subdivisions 

defining problem characteristics and extensively accepted solution methodologies. 

For more detailed information, interested readers are referred to the review and 
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discussion article on quantitative models for SCM within the dairy industry by Sel 

and Bilgen (2014a).  

 

4.3.1 Problem Characteristics 

 

We make a further categorization to clarify the significance of the research in 

terms of the problem characteristics such as decision levels, supply chain processes, 

product type, production process, perishability, working time and changeovers.   

 

4.3.1.1 Decision Levels 

 

The decisions take place at operational and tactical level. The difference between 

the two levels lies in their decision time horizon. The time scales range from short 

term to medium term, respectively. The operational level fundamentally refers to 

scheduling decisions and most of the research deals with this level (e.g., Lütke 

Entrup et al., 2005a; Marinelli et al., 2007; Doganis and Sarimveis, 2007). The 

tactical level concerns further planning decisions. Integration of operational and 

tactical level decisions leads to better solutions (Maravelias and Sung, 2009). Only a 

few authors address integration challenges (Kopanos et al., 2012a; Amorim et al., 

2012, 2013a, 2014; Bilgen and Çelebi, 2013).  

 

4.3.1.2 Supply Chain Processes 

 

The supply chain consists of complementary production, storage and distribution 

processes which require an adequate coordination and collaboration (Sel and Bilgen, 

2014b). Lütke Entrup et al. (2005a) focus only on the production. The inventory 

decisions are considered by the inventory available at the beginning of the planning 

period. The initial inventory may be used to satisfy a demand if shelf life 

requirements are respected. Production and storage are mostly integrated components 

(e.g., Marinelli et al., 2007; Doganis and Sarimveis, 2007; Kopanos et al., 2009). 

Amorim et al. (2012), Kopanos et al. (2012a) and Bilgen and Çelebi (2013) differ 



88 

 

from those in the remaining literature optimizing production, storage and distribution 

processes simultaneously.  

 

4.3.1.3 Product Type 

 

There are two yoghurt product types (i.e., set and stirred yoghurt). Whereas stirred 

yoghurt is commonly considered in the literature (Lütke Entrup et al., 2005a; 

Kopanos et al., 2009; Bilgen and Çelebi, 2013). Kopanos et al. (2011b, 2012a) 

present the only research on set yoghurt. The rest of the reviewed research does not 

define the type of yoghurt, nor consider the process order of set yoghurt and 

sequencing of the additional incubation operation explicitly (e.g., Marinelli et al., 

2007; Doganis and Sarimveis, 2007; Amorim et al., 2011, 2013c).  

 

4.3.1.4 Production Processes 

 

The fundamental yoghurt production comprises of fermentation, filling/packaging 

and incubation operations. The packaging process can consist of a single unit or 

multiple parallel units. Doganis and Sarimveis (2007) is the only research presenting 

a methodology for optimal scheduling of a single packaging line which is later 

extended to parallel units (Doganis and Sarimveis, 2008, 2009). Other research deals 

with independently packaging process with multiple or parallel units using hybrid 

solution approaches (e.g., Marinelli et al., 2007; Amorim et al., 2011; Bilgen and 

Çelebi, 2013), the fermentation process is considered for stirred type yoghurt 

production with time and capacity constraints (e.g., Lütke Entrup et al., 2005a; 

Kopanos et al., 2009).  

 

4.3.1.5 Perishability 

 

The recent reviews covering various supply chain planning problems highlight the 

importance of perishability consideration (Akkerman et al., 2010; Amorim et al., 

2013c; Karaesmen et al., 2011). The dairy production is relatively complex due to its 

highly perishability nature and limited shelf life (Lütke Entrup, 2005). In order to 
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account for the perishability, the formulation of the production planning and 

scheduling problems has to keep track of the age of inventories and/or products 

(Amorim et al., 2013a, 2014).  The shelf life can be considered as a loss or benefit 

function accounting for the economic value of freshness products in objective 

functions (Amorim et al., 2011, 2012). In addition, Doganis and Sarimveis (2009), 

Lütke Entrup et al. (2005a), Bilgen and Çelebi (2013) consider the shelf life both to 

keep track of the age of inventories and to take into account the economic value of 

freshness.  

 

4.3.1.6 Working Time 

 

The production activities are performed daily in a maximum allowed time. The 

maximum allowed time, consisting of regular time and overtime components. 

Further, working time planning supports valuable information to make cleaning 

programs which are essential for the dairy industry. Lütke Entrup et al. (2005a) and, 

Bilgen and Çelebi (2013) are the only research considering regular time and overtime 

issues.  

 

4.3.1.7 Changeovers 

 

The changeover operations can be taken into account as sequence independent 

and sequence dependent. Some of the research handles changeover operations as 

sequence independent by assuming negligible differences or that the different 

products have almost similar setup durations (e.g., Marinelli et al., 2007; Amorim et 

al., 2013a, 2014). This assumption simplifies the analysis; however it affects the 

solution quality of applications which require explicit setup treatment (Allahverdi et 

al., 1999, 2008). Sequence dependent changeovers are much closer to the reality of 

dairy supply chains (e.g., Bongers and Bakker, 2006; Subbiah and Engell, 2009, 

2010; Van Elzakker et al., 2014). Hence, the vast body of literature take into account 

sequence dependency (e.g., Lütke Entrup et al., 2005a; Doganis and Sarimveis, 2007; 

Kopanos et al., 2009).  
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In the literature, most of the research ignores the interrelation of tactical planning 

and operational scheduling decisions. However, operational scheduling receives 

tactical planning as its input. The integration of the planning and scheduling 

decisions provides coordination between production, storage and distribution 

processes. Hence, the integration constitutes a research direction at supply chain 

level. Perishability issues, sequence dependency and working time planning are other 

components which can help for the decision making process of the set yoghurt 

production. In brief, there is a need for a research on the set type yoghurt production 

(i) considering production, storage and distribution decisions in an integrated way, 

(ii) focusing on not only the packaging, but also the incubation stage of set type 

yoghurt production process, (iii) addressing the perishability and shelf life 

restrictions, (iii) taking into account planning working time and (iv) sequence 

dependency of changeovers.  

 

4.3.2 Modelling Methods and Solution Approaches 

 

The modelling methods vary from MILP and CP to stochastic programming and 

simulation. MILP is commonly used to define planning and scheduling problems of 

dairy industry in a mathematical framework (e.g., Lütke Entrup et al., 2005a; 

Marinelli et al., 2007; Doganis and Sarimveis, 2007). Stochastic programming and 

simulation are used to account for stochastic properties of the yoghurt production 

problem (e.g., Amorim et al., 2013a, 2014; Bilgen and Çelebi, 2013). CP is accepted 

as an effective approach in solving scheduling problems (Maravelias and Grossmann, 

2004b; Harjunkoski and Grossmann, 2002).  

 

In addition to the modelling methods using exact methods, the solution 

approaches found in the literature are hybrid approaches and evolutionary strategies. 

Marinelli et al. (2007) develop a two stage optimization heuristic using a local search 

strategy. The heuristic is based on the decomposition of the integrated problem in lot 

sizing and scheduling sub-problems. Amorim et al. (2011) introduce a bi-objective 

model on maximization of the freshness and minimization of production related 

costs.  They propose a hybrid multi-objective genetic algorithm to evaluate these two 
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conflicting objectives. Bilgen and Çelebi (2013) propose an iterative hybrid 

optimization-simulation procedure to explore operation times as the dynamic factor 

of the scheduling problem in yoghurt production.  

 

For the planning and scheduling problems, MILP and CP can be used for 

decomposition heuristics to solve the problem more efficiently (Kilic, 2011). The CP 

applications (e.g., Castro et al., 2006; Novas and Henning, 2010; Zeballos et al., 

2011) and the hybrid MILP/CP approaches (e.g., Harjunkoski et al., 2000; Jain and 

Grossmann, 2001; Maravelias and Grossmann, 2004a) have been formulated for 

batch plant scheduling problems. As the yoghurt production is a semi-continuous 

production in a discrete time period, CP and hybrid MILP/CP approaches 

can be adopted for the yoghurt production problems.  

 

The summary of the literature review is presented in Table 4.1. Table 4.1 shows 

the characteristics of the considered problem, and confirms the lack of an integrated 

MILP model, decomposition and MILP/CP hybrid approaches.  

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0957417413007604#b0035
http://www.sciencedirect.com/science/article/pii/S0957417413007604#b0105
http://www.sciencedirect.com/science/article/pii/S0957417413007604#b0145
http://www.sciencedirect.com/science/article/pii/S0957417413007604#b0145
http://www.sciencedirect.com/science/article/pii/S0957417413007604#b0070


 

 

Table 4.1 Literature summary – characteristics of the planning and scheduling of yoghurt production problem 
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Reviewed Literature 
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Lütke Entrup et al. (2005a)    
 

         

Marinelli et al. (2007)     


         

Doganis and Sarimveis (2007)     


         

Doganis and Sarimveis (2008)     


         

Doganis and Sarimveis (2009)     


         

Kopanos et al. (2009)    


         

Kopanos et al. (2011b)     


         

Kopanos et al. (2012a)               

Amorim et al. (2011)     


         

Amorim et al. (2012)                

Amorim et al. (2013a)    


         

Amorim et al. (2014)    


         

Amorim et al. (2013b)    


     


  

Bilgen and Çelebi (2013)               

This research       


      



– defined otherwise undefined
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Table 4.1 Literature summary (continued) – modelling and solution approaches for the planning and scheduling of yoghurt production problem 

    Reviewed literature 
Modelling approaches 

Solution approaches 

MILP MINP SM SP CP 

Lütke Entrup et al. (2005)        

Marinelli et al. (2007)       Two stage decomposition heuristic 

Doganis and Sarimveis (2007)        

Doganis and Sarimveis (2008)        

Doganis and Sarimveis (2009)        

Kopanos et al. (2009)       

Kopanos et al. (2011b)        

Kopanos et al. (2012a)       

Amorim et al. (2011)       Hybrid multi-objective genetic algorithm 

Amorim et al. (2012)        

Amorim et al. (2013a)       

Amorim et al. (2014)       

Amorim et al. (2013b)       

Bilgen and Çelebi (2013)    


Iterative hybrid optimization-simulation procedure 

This research 
  

 Decomposition heuristic and MIL/CP hybrid approach 



– defined otherwise undefined, MILP – Mixed-Integer Linear Programming, MINP – Mixed-Integer Non-linear Programming, 

SM – Simulation, SP – Stochastic Programming, CP – Constraint Programming  
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4.4 Mathematical Formulation 

 

The problem statement and the integrated planning and scheduling MILP model 

are given as follows. The corresponding parameters and decision variables are listed 

in the nomenclature at the end of the chapter.  

 

4.4.1 Problem Statement 

 

This problem is motivated by a production-distribution problem encountered by a 

dairy company and, originally introduced and studied by Bilgen and Çelebi (2013). 

The problem consists of tactical planning and operational scheduling decisions. The 

production, storage and distribution operations are considered in the tactical planning 

decisions. The product type is set type yoghurt, the packaging and incubation 

operations are considered in the scheduling decisions. Because of the perishability 

issues, the planning and scheduling decisions take the age of inventories into 

consideration. Work time planning with regular time and overtime components, and 

sequence dependent setup times are considered in the problem.  

 

The problem that is investigated in this research has the following structure; 

 

1. The supply network consists of a single plant which delivers the final 

products to various DCs.  

2. The demand for each product in each day is collected from the DCs 

respectively. The demands have certain due dates and backlogging is not 

allowed. Unmet demand cannot be transferred to the next periods. The unmet 

demand is discarded at costs.  

3. The planning and scheduling is performed in a short-term horizon. For each 

product, inventory balances are updated on a daily basis according to the 

production output from the plant. There is a certain inventory capacity for 

final products and they are stored in pallets. Storage costs depend on product 

types. Transportation to DCs is operated by third party logistics using cold 

chain trucks.  
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4. The plant comprises several identical packaging lines. Each packaging line is 

able to produce all products and has different operation cost. A product 

cannot be processed on more than one line simultaneously and a line cannot 

process more than one job at a time. The production precedence, pre-emption, 

cancellation, batch splitting and mixing are not allowed. There are no recycle 

streams. Lines are always available. The production is limited with minimum 

and maximum lot-sizes.  

5. Processing times are independent of the schedule. Variable production costs 

of the products that can be produced at any of the identical packaging lines 

differ from each other. Therefore, the variable production costs are computed 

for each product.  

6. Sequence dependent setups are required because of hygiene and 

contamination rules. Cleaning operations (i.e., automatic washing and 

sterilization of the product tank and the filling valves) are processed for every 

packaging operation with regard to changeover rules and, can also be planned 

weekly on idle times of the production. The cleaning time is a part of setup 

times. The changeover time and cost are involved for possible transitions 

between products.  

7. The process leads each production directly to the incubation process after the 

packaging. The incubation unit has a limited capacity and it can only serve to 

one lot simultaneously to avoid contamination between products. Incubation 

duration and corresponding costs depend on each product.  

8. Finished products are checked in the final control process. The quality 

analyses require a certain control time. It is not allowed that the products are 

delivered before they complete the required time for the quality control 

process.  

9. The freshness is a significant part in competition. Freshness can be measured 

with shelf life which is a small duration (i.e., varying between 7 and 21 days 

for homogenized and cooled products under refrigerated keeping conditions) 

that the products can be used by final consumers. The minimum shelf life 

required by the customers is defined as a critical rate which is a fraction of 
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maximum shelf life. The decrease of shelf life is considered by a loss 

function.  

10. The available working hours for the lines are defined according to working 

days. An overtime production is allowed in every working day under 

environment of heavy demand.  

 

The key decisions for each planning and scheduling period are; (i) the produced 

quantity of each product on each line (ii) distribution quantity of each product 

transported to each DC and corresponding unmet demand, (iii) inventory level of 

each product, (iv) finishing time of each product on each line, production time of 

each product and overtime (v) maximum completion times of each product and each 

line, (vi) number of incubation operation required for each product and incubation 

sequence of the products (vii) production assignments of each product and 

changeover assignment between products on each line.  

 

4.4.2 Integrated Planning and Scheduling MILP model 

 

Objective function: 

 

 

 
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.

ij jda a

jda

jda j

jda

cNb IncCost y TransCost

UnmD UnmDCost



 (4.1)

 

 

In Equation (4.1), the linear objective function aims at minimizing total cost. The 

total cost corresponds to cost of the loss of product value caused by deterioration 

and, production, inventory, changeover, waste, overtime, packaging and incubation 

operations, transportation and unmet demand costs. The loss of product value caused 

by deterioration is calculated using a shelf life dependent loss function which is 

adopted from Lütke Entrup et al. (2005a). The shelf life dependent loss increases 
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linearly for the customer with every additional day of shelf life. For instance suppose 

that product j has a total shelf life of 15 days (i. e., 15jShelfLife  ), the customers 

require 66% of shelf life as a minimum residual shelf life (i. e., 0.66jCrRate  ). If 

the production starts on day 2 (i. e., 2i  ) and the product is delivered to the DC on 

day 2 (i. e., 2d  ) then the loss of the value is minimum (i. e.,0). However, if the 

product is delivered to the DC on day 4 (i. e., 4d  ) then the loss become slightly 

higher (i. e., 0.40 jLost ). When it comes to delivery on day 6 (i. e., 6d  ), the loss 

increases to 0.80 jLost .  

 

Constraints: 

 

Shelf life; 

 

   0         , , ,  :  :  1 .ijld j jx i j l d i d QContTime d i CrRate ShelfLife         (4.2) 

 

Equation (4.2) guarantees that the demand of demand day d cannot be produced 

after the demand day. Also, difference between production day and demand day 

should be enough to perform the quality control operation and should meet the 

maximum shelf life of product j . The shelf life and the quality control time are 

defined as a precondition for the achievement of the desired sensory qualities (Lütke 

Entrup et al. 2005a).  

 

Demand satisfaction; 

 jda ijld

a il

y x       ,j d   (4.3) 

jda jda jdaDemand y UnmD      , ,j d a   (4.4) 

 

Equation (4.3) provides that the total quantity of product j transferred to DCs for 

demand of day d is less than or equal to the total quantity of product j produced on 

line l on day i . Equation (4.4) computes the quantity of unmet demand. Backorder 

is not allowed. The demand of DC a for product j on demand day d is less than or 

http://tureng.com/search/greater%20than%20or%20equal%20to
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equal to the sum of the quantity of product j transported to DC a  for demand of day

d and the unmet demand DC a for product j on demand dayd .  

 

Inventory balance; 

ij ijld jia

dl a

inv x y        , : 1i j i    (4.5) 

 1ij ijld jiai j

dl a

inv inv x y


         ,  : 1i j i    (4.6) 

.ij j

j

inv StCapacity        i  
 (4.7) 

 

Equation (4.5) shows the inventory level only for the first day. The inventory of 

product j at the end of first day is less than or equal to difference between the 

quantity of product j produced on line l during the first day and the delivered 

quantity of product j produced on line l to the DCs. Equation (4.6) refers to the 

inventory level of product j at the end of day i . The inventory level is computed by 

adding the production quantity of product j on line l on day i to difference between 

the inventory of the previous day and the delivered quantity of product j produced 

on line l to the DCs. Equation (4.7) converts the inventory of  product j on day i

into unit storage (e.g., pallets) by multiplying with the corresponding factor j and 

limits the stored inventory level.  

 

Sequencing of parallel packaging machines; 

ijldld
ij

j

x
PT

MchSpeed



 
  ,i j   (4.8) 

0 , :

1
S

ijkl

j P l j k

binsetup

 

    ,i k   (4.9) 

0 0: :

  0
S S

ijtl itkl

j P j t k P k t

binsetup binsetup

   

      , ,i t l   (4.10) 

0

0 1
S

i kl

k P

binsetup


      ,i l   (4.11) 

 1 .ikl ijl jk ik ijklFT FT SetupTime PT binsetup M      
0  , , ,Si j P k l    (4.12) 
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0:

.
S

ijl ikjl

k P j k

FT binsetup M
 

   
  , ,i j l

 
 (4.13) 

ijl ilFT CmaxLine    , ,i j l   (4.14) 

 

Equation (4.8) shows that processing time of a product depends on the production 

quantity and the machine speed for the product. Equation (4.9) ensures that each 

product is processed maximum once. Equation (4.10) specifies that each product 

must have a predecessor and a successor. Equation (4.11) ensures that each machine 

has at most one first product (i.e., one product sequence). Equation (4.12) calculates 

the product completion times which depend on processing time, sequence dependent 

setup time and the order of products assigned to the machine. It also prevents a 

product to be the predecessor and the successor of the same product. Equation (4.13) 

enforces the finishing time j on line l on day i to zero, if no corresponding 

production operation is performed. Equation (4.14) defines the maximum completion 

time of day i corresponding with line l .  

 

Sequencing of incubation operation 

0 0: :,

 
S S

itj ikjl

t P j t k P l j k

IncSequence binsetup

   

     ,i j   (4.15) 

0:

1 
S

ijk

j P j k

IncSequence

 

    ,i k   (4.16) 

0 0: :

0 
S S

ijt itk

j P j t k P k t

IncSequence IncSequence

   

      ,i t   (4.17) 

0

0 1 
S

i k

k P

IncSequence


   i   (4.18) 

. /ij ijld j

ld

IncNb x IncCapacity    ,i j   (4.19) 
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i j

kij ik

k

CmaxProduct CmaxProduct IncTime IncNb

IncSequence M








 

0  , ,Si j P k    (4.20) 

.ij ijl ij

l

jCmaxProduct FT IncTime IncNb  0  , ,Si j P k    (4.21) 

 1 .ikl ij ikj

l

FT CmaxProduct IncSequence M    0  , ,Si j P k    (4.22) 
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Equation (4.15) inserts the product j into the incubation sequence if product j is 

produced on line l on day i . Equation (4.16) ensures that each product is processed 

once and only once. Equation (4.17) specifies that each product must have a 

predecessor and successor. Equation (4.18) provides that the incubation sequence has 

at most one first product, (i.e., one product sequence). Equation (4.19) calculates the 

number of products lots regarding to maximum capacity of incubation room. 

Equation (4.20) and Equation (4.21) are balance equations for the incubation process. 

Completion time of production on day i must be greater than or equal to end of prior 

packaging and incubation operations, respectively. Equation (4.22) presents the 

timing between packaging and incubation operations. It provides that the packaging 

operations are finalized just before incubation operation. The finishing time of the 

product k on line l on day i must be greater than the maximum completion time of 

the previous product j .  

 

Working time; 

i i iRTime overtime MaxTime    i   (4.23) 

.ij i iCmaxProduct RTime overtime M    ,i j   (4.24) 

ij i iCmaxProduct overtime RTime     ,i j   (4.25) 

 

Equation (4.23) limits the total working time with the maximum available time on 

day i . Equation (4.24) limits the maximum completion time on day i with the 

regular working time if the overtime is not necessary (i. e., 0iovertime  ). Equation 

(4.25) shows that the maximum completion time on day i is limited with maximum 

working time consisting of regular hours and required overtime.  

 

Lot-sizing; 

0:

 .  
S

ijld j ikjl

dl k P j k

x MaxLot binsetup

 

     , i j   (4.26) 

0:

 .  
S

ijld j ikjl

dl k P j k

x MinLot binsetup

 

     , i j   (4.27) 
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Equation (4.26) and Equation (4.27) defines minimum and maximum production 

lot-sizes by the value of the binary variable as equal to 1 if and only if product j is 

produced on line l on day i for demand of day d .  

 

Integrality and non-negativity; 

0,  ,  , ,  , , Sijld jda ij ij iij P l
x y inv PT FT overtime



0 ,, ,    ,Sjda il ij P
UnmD CmaxLine CmaxProduct Z


 

 

    ,  ,  , ,i j l d a  
 (4.28) 

0   ijIncNb and integer  

  ,      0,1ijk ijklIncSequence binsetup   

0 0  ,  ,  ,S Si j P k P l     (4.29) 

 

Finally, Equation (4.28), and Equation (4.29) are integrality and non-negativity 

constraints which define the domain of the decision variables.  

 

4.5 Multi-bucket Optimization Models 

 

The integration includes a big bucket planning and a small bucket scheduling grid. 

The basic idea of the proposed solution strategy is to handle these different time 

horizons by dividing the entire model into two distinct sub-models. The ability to 

generate qualified solutions of each planning and scheduling problem and strong 

linkage constraints are crucial. In our approach, the planning sub-model acts as a 

master process calling the scheduling sub-models for every scheduling decision and a 

search procedure improves the current solution using capacity linkage.  

 

4.5.1 Big Bucket Planning Sub-model 

 

A MILP sub-model addresses the planning sub-problem. The big bucket planning 

sub-model, the planning part of the integrated model is simplified to obtain 

production targets with a solution which is likely to be sub-optimal. Then, the 

scheduling sub-model is fed with an input of planning decisions. The planning sub-

model is formulated as follows and the corresponding parameters and decision 

variables are listed in the nomenclature at the end of the chapter.  



102 

 

Objective function: 

The same monetary objective function Z in Equation (4.1), which aims at 

minimization of total costs, is used to be comparable with the integrated model.  

 

Constraints: 

Equation (4.2) of shelf life constraints, Equations (4.3), (4.4) of demand 

satisfaction constraints, Equations (4.5), (4.6) and (4.7) of the inventory balance 

constraints, Equation (4.8) calculating process time of production, Equation (4.19) 

calculating the number of incubation operations, Equation (4.25) deciding on 

overtime are used in the planning sub-model.  

 

Lot-sizing; 

 . ijld j ijl

dl

x MaxLot bin      ,  ,i j l  (4.30) 

 . ijld j ijl

dl

x MinLot bin      ,  ,i j l  (4.31) 

 

Equation (4.30) and Equation (4.31) define minimum and maximum production 

lot-sizes with the value of the binary variable corresponding with production 

decision. The lot-sizing restrictions are adopted from Equation (4.26) and Equation 

(4.27). Since the planning sub-model considers planning issues and takes the 

scheduling information from the scheduling sub-model, it is enough to decide only 

on allocation of the products to the packaging lines and to the production days 

instead of determination of production precedence. Therefore, ijlbin  is modified from 

ijklbinsetup  to shorten the redundant indices.  

 

Linkage Constraints; 

 ijld i

djl

x Capacity     i   (4.32) 

 

Equation (4.32) is a linkage constraint which is used in the hybrid method to 

represent the relation of planning MILP and scheduling sub-models. The equation 
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limits the capacity produced quantity for each day by taking the capacity values from 

the heuristic as a parameter.  

 

Integrality and non-negativity; 

,  ,  , , , ijld jad ij ijl ix y inv PT overtime , ,jdaUnmD Z
 

 0    ,      0,1ij ijlIncNb and integer bin   

    ,  ,  , ,i j l d a   (4.33) 

   

Equation (4.33) provides the integrality and non-negativity constraints and defines 

the domain of the binary decision variables.  

 

4.5.2 Small Bucket Scheduling Sub-models 

 

The small bucket scheduling problem is to assign each packaging operation to the 

parallel lines, to order the packaging and the following incubations operations such 

that makespan is minimized. For the small bucket scheduling sub-problem, useful 

modelling methods are selected to achieve the computational efficiency. Two 

alternative sub-models which are the MILP and CP formulation are introduced for 

the scheduling sub-problem.  

 

4.5.2.1 The MILP Sub-model 

 

The scheduling MILP sub-model is formulated as follows and the corresponding 

parameters and decision variables are listed in the nomenclature at the end of the 

chapter. The objective is to minimize the completion time of the production and the 

constraints are adopted from the scheduling constraints of the integrated MILP model 

by removing the redundant i  day indices, since the scheduling corresponds to small 

bucket time horizon.  

 

Objective function: 

 minCmax   (4.34) 
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Equation (4.34) illustrates the objective function of the scheduling MILP model 

aiming at minimization of makespan.  

 

Constraints: 

Sequencing of parallel packaging machines;  

0 , :

1
S

jkl

j P l j k

binsetup

 

   k   (4.35) 

0 0: :

  0
S S

jtl tkl

j P j t k P k t

binsetup binsetup

   

      ,t l   (4.36) 

0

0 1
S

kl

k P

binsetup


     l   (4.37) 

 1 .kl jl jk k jklFT FT SetupTime PT binsetup M      
0  , ,Sj P k l    (4.38) 

0:

.
S

jl kjl

k P j k

FT binsetup M
 

   
  ,j l

 
 (4.39) 

jl lFT CmaxLine    ,j l   (4.40) 

 

Equation (4.35) ensures that each product is processed maximum once. Equation 

(4.36) specifies that each product must have a predecessor and successor. Equation 

(4.37) ensures that each machine has at most one first product (i.e., one product 

sequence). Equation (4.38) calculates the product completion times which depend on 

processing time, sequence dependent setup time and the order of products assigned to 

the machine. It also prevents a product to be the predecessor and the successor of the 

same product. Equation (4.39) enforces the finishing time j on line l to zero, if no 

corresponding production operation is performed. Equation (4.40) defines the 

maximum completion time of line l .  

 

Sequencing of incubation operation;  

0 0: :,

 
S S

tj kjl

t P j t k P jl k

IncSequence binsetup

   

    j   (4.41) 

0:

1 
S

jk

j P j k

IncSequence

 

   k   (4.42) 

0 0: :

0 
S S

jt tk

j P j t k P k t

IncSequence IncSequence

   

     t   (4.43) 
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0

0 1 
S

k

k P

IncSequence


    (4.44) 

. /j jld j

ld

IncNb x IncCapacity   j   (4.45) 

 

.

1 .

k j k

j

k

k

CmaxProduct CmaxProduct IncTime IncNb

IncSequence M








 

0  ,Sj P k    (4.46) 

.j jl j

l

jCmaxProduct FT IncTime IncNb  0  ,Sj P k    (4.47) 

 1 .kl j kj

l

FT CmaxProduct IncSequence M  0  ,Sj P k    (4.48) 

 

Equation (4.41) inserts the product j into the incubation sequence if product j is 

produced on line l . Equation (4.42) ensures that each product is processed once and 

only once. Equation (4.43) specifies that each product must have a predecessor and 

successor. Equation (4.44) provides that the incubation sequence has at most one first 

product, (i.e., one product sequence). Equation (4.45) calculates the number of 

products lots regarding to maximum capacity of incubation room. Equation (4.46) 

and Equation (4.47) are balance equations for the incubation process. Completion 

time of product j  must be greater than or equal to end of prior packaging and 

incubation operations, respectively. Equation (4.48) presents the timing between 

packaging and incubation operations. It provides that the packaging operations are 

finalized just before incubation operation. The finishing time of product k on line l

must be greater than the maximum completion time of the previous product j .  

 

4.5.2.2 The CP Sub-model 

 

The CP methodology is chosen as useful modelling technique overcoming the 

computational limitations for the scheduling problem. Activities are fundamental 

building blocks of any scheduling problem modeled by CP. The activities represent 

an interval of time during which an operation is performed. The positions of the 

intervals are determined by the sequence variables of the scheduling model. Each of 

the intervals is characterized by a start time, an end time and duration between these 

times. Additionally, the intervals can be considered as optional by using alternative 
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constraints. This feature provides to handle the intervals by parallel resources. In the 

proposed model mainly two activities are presented; Production activities (i. e., jTask

, jlOptTask with size of jDuration ) and Incubation activities (i. e., jInc with size of

jIncDuration ). The sequence of these activities is decided with a sequence variable

lSchedule . The scheduling CP sub-model is formulated as follows and the 

corresponding parameters and decision variables are listed in the nomenclature at the 

end of the chapter.  

 

Objective function: 

        

 

(  :     ( )  )      j
Smax endO

Minimize

jf Inc J
 

 

 (4.49) 

 

Equation (4.49) illustrates the objective function of the scheduling CP model 

aiming at minimization of makespan. endOf is an expression used to access the end 

time of the given interval. The maximum of the incubation intervals corresponding to 

job j represent the makespan value of the schedule.  

 

Constraints: 

Alternative formation;  

( , )j jlalternative Task OptTask    j   (4.50) 

 

Equation (4.50) provides an alternative constraint between each of jTask  intervals 

and a set of jlOptTask  intervals. This constraint specifies that if the jTask  interval is 

presented in the solution, then exactly one interval variable of the jlOptTask set exists 

in the solution. jTask starts and ends together with this chosen jlOptTask interval.  

 

Overlap prevention; 

( , ) lnoOverlap Schedule Setup    l   (4.51) 
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Equation (4.51) presents a noOverlap  constraint on the interval sequence variable 

lSchedule  states that the sequence defines a chain of non-overlapping intervals, where 

any interval in the chain is constrained to end before the start of the next interval in 

the chain. The sequence dependent setups are modeled as a triple Setup set that 

specifies a minimal distance between pairs of jobs. It states that if a job is scheduled 

after another job in the sequence, a sequence dependent setup time must separate the 

end of the first interval from the start of the following second interval.  

 

Precedence; 

( , ) j jstartAtEnd Inc Task    j   (4.52) 

( 1)( , )j jendBeforeTask Inc Inc    : 1j j    (4.53) 

 

Equation (4.52) and Equation (4.53) are precedence constraints which ensure 

relative positions of intervals in the solution. Equation (52) is a startAtEnd  

constraint stating that the start of jInc interval variable equals the end of a jTask  

interval variable. Equation (4.53) is a endBeforeStart  constraint stating that the end of 

a preceding interval variable is less than or equal to the start of following jInc

interval variable.  

 

Presence; 

( )  0jpresenceOf Task     : 0jj Duration    (4.54) 

( )  1jpresenceOf Task     :  0jj Duration    (4.55) 

 

Equation (4.54) and Equation (4.55) are precedence constraints ensure that the 

tasks which have duration values must be scheduled. Otherwise, the tasks are not 

included to the proposed schedule.  
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4.5.3 Decomposition Heuristic 

 

The algorithm includes a decomposition function and a search procedure. In the 

decomposition function, the planning sub-model is solved with given capacity 

limitations and the planning decisions are given to the scheduling sub-model. Then, 

the scheduling sub-model is solved to schedule planned productions for each day. 

The scheduling decisions are given to the planning sub-model to calculate the total 

cost of the proposed production plan and schedule. Note that, the planning sub-model 

is operated for the first iteration by giving an initial capacity. The initial solution 

should be large enough to satisfy the demand to start from a broad range of solution 

space. Hence, the initial capacity is chosen as sum of the demand data (i. e,

jda

jda

Demand ).  

 

Once a feasible solution has been reached, the heuristic enters a search procedure 

that aims to improve the current solution. The decomposition function is embedded 

in the search procedure to evaluate the other suitable capacity limitations by a 

simulated annealing algorithm. In the search procedure, the capacity limitations 

tighten the solution space iteratively to achieve strong results and, continuously 

updated for each day of the entire planning horizon using the decomposition 

function, repeatedly. Thereby, each replication supports a sufficient change to make 

the planning decisions feasible and close to optimal. Neighborhood solutions are 

generated by a move strategy multiplying the current capacity with a random number 

for each day. The cooling strategy is a geometric sequence in which the temperature 

at each step decreases with a certain ratio. The cost efficient results are kept track 

and the solution with the minimum cost is presented after the stopping criterion is 

satisfied. The algorithm stops, if the best solution found does not improve in a 

limited number of consecutive changes in temperature. The following pseudo code in 

Algorithm is adopted by adding the decomposition function into the generic 

simulated annealing algorithm presented by Alizamir et al. (2008).  

 

 

 

http://tureng.com/search/repeatedly
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Decomposition Algorithm: 

Input : Initial temperature
0t , Number of iterations

pM for each step p , 

Neighborhood structure ( )N w , overall stopping criteria and temperature decreasing 

rule.  

Output : Feasible solution w  

1: Calculate the initial solution: the decomposition function with the initial capacity.  

2: Initialize step counter: 0p   

3: Set current solutionw to initial solution
0w : w=

0w  

4: while the stopping criteria are not met do 

5: for 
pM iterations do 

6: compute a neighborhood solution: ' ( )w N w :  

7:   if ( ) ( ) 0f w f w   then 

8:   'w w  

9:  else 

10:   'w w with probability 
( ) ( )

p

f w f w
exp

t

  
 
 

 

11:  end if 

12: end for 

13: decrease temperature
pt  

14: 1p p   

15: end while 

16: return feasible solution w  

 

Decomposition function: 

 Step 1: Solve the big bucket planning sub-model 

 Step 2: Transfer the planning decisions to the small bucket scheduling sub-model  

 Step 3: Solve the small bucket scheduling model for each day 

 Step 4: Transfer the scheduling decisions to the big bucket planning model 

 Step 5: Calculate the objective value 
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Planning decisions; The planning decisions are outputs of the planning MILP sub-

model which serve as inputs of the scheduling sub-models. The equations calculating 

the transferred planning decisions differ in modelling approach of the scheduling 

sub-model as follows; 

l ilCmaxLine CmaxLine    i   (4.56) 

j ijCmaxProduct CmaxProduct    i   (4.57) 

jkl ijklbinsetup binsetup    i   (4.58) 

 

For scheduling MILP sub-model, the solution values for the decision variables of 

planning MILP sub-model (i. e.,
ilCmaxLine , ijCmaxProduct and 

ijklbinsetup ) are 

transferred by the proposed algorithm using Equation (56), (57) and (58). Equation 

(4.56) and (4.57) provides the transfer the completion times of lines and products, 

respectively. Equation (4.58) provides the transfer of sequence of production and 

changeovers.  

 

j ijl

l

Duration PT    ,i j   (4.59) 

.j ij jIncDuration IncNb IncTime    ,i j   (4.60) 

 

For scheduling CP sub-model, the solution values of MILP decision variables (i. 

e., ijlPT , ijIncNb ) are compiled by the proposed algorithm using Equation (4.59) and 

(4.60), then given to the CP model as parameter values of jDuration and jIncDuration

. Equation (4.59) provides that duration of product j is equal to process time of 

product j and Equation (4.60) calculates the incubation duration multiplying the 

number of incubation operation and the incubation times.  

 

Scheduling decisions; The scheduling decisions are outputs of the scheduling sub-

model which serve as inputs of the planning MILP sub-model. The equations 

calculating the scheduling decisions differ in modelling approach of the scheduling 

sub-model as follows; 
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For the scheduling MILP sub-model, the solution values for the decision variables 

of scheduling MILP sub-model (i. e.,
lCmaxLine , jCmaxProduct and 

jklbinsetup ) are 

retransferred by the proposed algorithm using Equation (4.56), (4.57) and (4.58).  

 

.  i ll scheduleCmaxLine end    ,i l   (4.61) 

(  )  i jjC endOmaxP f Ino uc cr d t     , : j iendOfTask MaxTi j ime   (4.62) 

    

     

0,  

1, jl

kijkl l lbinsetup in S

OptTask

OptTa chedule

otherwise

sk

 





   , , ,i j k l   (4.63) 

 

For the scheduling CP sub-model, the solution values for the decision variables of 

scheduling model (i. e., lSchedule , jInc , jTask , jlOptTask ) are compiled by the 

proposed algorithm using Equations (4.61), (4.62) and (4.63), then given the MILP 

model as parameter values of 
ilCmaxLine , ijCmaxProduct , ijklbinsetup . Equation (4.61) 

ensures that the end of schedule for line l  is equal to completion time of line l  on 

day i . Equation (4.62) guarantees that the end of the incubation operation of product 

j  is equal to completion time of product j  on day i . Equation (4.63) shows that 

the binary setup variable is equal to 1 if product j  precedes product k  on schedule 

of line l  and, otherwise equals 0.   

 

It should be noted for Equations (4.56) to (4.63) that the same scheduling sub-

model is called by planning  MILP sub-model recursively for each day (i. e., i ) and 

hence, the variables of the scheduling CP sub-model (i. e., jDuration , jIncDuration , 

lSchedule , jInc , jTask and jlOptTask ) and the variables of the scheduling MILP sub-

model (i. e., lCmaxLine , jCmaxProduct and 
jklbinsetup ) do not include of i production 

day indices.  
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4.6 An Illustrative Case Study 

 

In this section, an illustrative case study on production planning and scheduling of 

a dairy industry is considered to show applicability and effectiveness of the proposed 

approaches.  

 

4.6.1 Description and Data 

 

The production and distribution network consists of a single plant and seven DCs. 

The production planning and scheduling is performed for a weekly planning. Regular 

working time of the plant is 8 hours among 5 working days of the week. If necessary, 

overtime can be afforded in addition to regular working times. Available working 

time is limited by maximum 16 hours for each working day. The daily demand of 

DCs for 11 separate products is collected during working days. The plant comprises 

two packaging lines and one single room for incubation. The products are operated 

on these identical parallel lines. The processing time of a product depends on the 

produced quantity and the corresponding machine speed. In yoghurt production, 

there is a natural sequence in which the various products are to be produced in an 

order. It stands to reason that each product has different fat consistency and 

ingredients. The changeover rules arranged with data. Product 1, 2 and 3 requires 

120 min changeover time and 600 € cost between each other. The corresponding 

changeover time and cost are 30 min - 350 € for the rest of the products. In addition, 

to set the packaging lines between some certain products is time consuming and 

costly. The changeover time and cost between the product group of product 1, 2, 3 

and the other products are either 30 min - 350 € for product 4, 5, 6, 7 or 60 min - 450 

€ for product 8, 9, 10, 11.The setup matrix is designed symmetrically. The rest of the 

input data used is summarized in Table 4.2. Data collection for analysis of the 

proposed models took place in cooperation with research partners through 

interviews, industrial reports and literature. Only the most important problem 

parameters are given in details in order to be concise. The remaining data are 

available upon request from the authors.  

 

http://tureng.com/search/it%20stands%20to%20reason%20that%20...
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Table 4.2 Input data for model parameters 

Monetary Parameters 
Value  

(~ between) 
Unit 

Cost of the decrease on shelf life 0. 1 ~ 0. 5  € / lt per day 

Variable production cost 0. 09 ~ 0. 16 € / lt 

Inventory cost 0. 01 ~ 0. 07 € / lt per day 

Operating cost of lines 0. 3 € / min.  

Production waste cost 0. 01 ~ 0. 05 € / min.  

Operation cost of incubation room 360 € per batch 

Overtime cost 1 € / min.  

Transportation cost 0. 120 ~0. 300 €/ lt 

Unmet demand cost  1.4 ~ 2 € / lt 

Technical Parameters 
Value  

(~ between) 
Unit 

Shelf life of product 1 week 

Minimum shelf life required by the customers 66 % 

Incubation time 180 ~ 240 min.  

Packaging machine speeds 10 ~ 50 lt/min.  

Maximum storage capacity 2000 pallets 

Maximum incubation capacity 150 pallets 

Minimum production lots 100 lt 

Maximum production lots 10,000 lt 

Factor converting quantities to pallets 0. 1 ~ 0. 05 pallets/lt 

 

4.6.2 Analysis and Discussion 

 

The analysis is performed with respect to changes in the demand. Since a short-

term planning horizon of one week is considered, seasonal demand variations are not 

essential. However, depending on the time of the year, the average workload may be 

higher or lower. These conditions are reflected by two scenarios which assume an 

average workload of 75 and 90% of the available total capacity, respectively. 

Moreover, since the demand is driven by customer orders of various sizes, the 

granularity of demand elements are considered as a key factor and examined in three 

levels (i.e., high, medium, and low). The high demand granularity implies a large 

number of small-sized customer orders while low demand granularity is given by a 

comparatively small number of large-sized orders. In particular, in a high demand 

granularity scenario the scheduling complexity is considerably increased because a 

comparatively large number of production lots have to be established. The demand 

figures are randomly generated according to the following procedure in line with 

Bilgen and Günther (2010).  
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1. Determine X as the total number of available operating hours: 

8 5 1 2 80X       hours based on 8 hours operating time per day, five days 

per week, a planning horizon of one week, and two production lines.  

2. Considering an average workload factor of 75% and 90%, respectively, and a 

capacity loss of 10 hours due to setup operations, determine Y as the effective 

total workload on the production system:  0 75 10 52 5Y . X .     and 

 0 9 10 63Y . X    , respectively.  

3. The entire set of products can be produced on two lines and 2 11 22N   

product-week assignments are achieved. In order to generate demand 

elements of different size, a granularity factor g taking values of 1, 3, and 5 is 

defined. Accordingly, 1 22 22n    , 3 22 66n    , and 5 22 110n     

demand elements are generated under the three different granularity 

scenarios.  

4. The average size of demand elements is D Y n  hours. In order to create a 

realistic degree of demand variability for each scenario, actual values of 

demand elements d are randomly drawn from the uniform distribution 

 0 5 1 5d . D, . D   . The detailed assignment of demand elements to 

products, periods, and DCs is completed by the following procedure.  

(a) Select randomly one out of the 11 products. The demand d  of the 

selected product is doubled for two lines, i.e., 2d d  . The 

manufactured products causing a capacity load of more than 75% or 

90%, respectively, can be produced with overtime reach up to 8 

additional working hours. The overtime rule provides to avoid infeasible 

capacity loads.  

(b) Select randomly one of days 1, 2, …, 5 within the planning horizon and 

assign the demand element generated in the previous step.  

(c) Assign fractions of 50%, 30%, and 20% of the generated demand 

randomly to the three DCs.  

(d) For each DC, assign the demand to a day selected in (b), and convert the 

demand from hours into liters. Aggregate demand generated for the 
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specific product and the specific day with already existing demand, if 

necessary.  

5. Repeat this procedure until the assigned demand equals or exceeds the 

effective total workload Y .  

 

Several numerical experiments were carried out in order to evaluate the proposed 

models and the algorithms. Each experiment was repeated five times with different 

randomly generated demand data. According to the demand generation procedure, 

45, 133 and 222 demand elements were generated on average per problem instance 

for the three granularity levels under the 75% capacity load scenario. The 

corresponding figures for the 90% capacity load scenario are 43, 132 and 219. 

 

In addition, a parameter setting is performed to make the proposed decomposition 

heuristic more robust. From the result of some pilot experiments, the initial 

temperature 
0t is pre-determined as 100. The temperature reduction factor is chosen 

as 0. 90. The number of iterations pM for each step p is equal to 10. The algorithm 

stops, if the best solution found does not improve in 100 consecutive changes in a 

temperature.  

  

The numerical investigation is performed by comparing results of the integrated 

model, the decomposition heuristic and the hybrid MILP/CP approaches by means of 

both optimality and computational efforts. The IBM ILOG CPLEX optimization 

studio version 12.6 is used with the default parameter settings to solve the proposed 

models for the case study. The hybrid algorithm is developed using IBM ILOG 

Script. All analyses were conducted on a computer with an Intel Core i7-3630QM 

CPU @ 2.40GHz and 16 GB memory. The resulting integrated model contains 1245 

integer, 2160 binary decision variables and 5140 constraints. All of the 30 problems 

are solved within the imposed CPU time limit of 18,000 seconds and evaluated with 

the corresponding MILP gaps.  

 

Table 4.3 present the comparative results of the proposed approaches. The 

experiments show each scenario generated with the corresponding demand 
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parameters (i.e., capacity load and granularity level). The table presents all demand 

scenarios together with the results, the computational times and the gap values which 

compare the results. First, it appears that the decomposition heuristic and the 

MILP/CP hybrid approaches are preferable to the integrated MILP model. 

Obviously, the decomposition heuristic exploits the possibility to link the planning 

and scheduling decisions and reach to reasonable solutions. The decomposition 

heuristic reach even better results than the integrated MILP results more often for the 

scenarios which have 90% capacity load. The decomposition heuristic is 

considerably fast comparing to the integrated MILP model. In addition, while the 

heuristic can reach the results in short computational times especially for low 

granularity level scenarios. The MILP/CP hybrid approach requires less 

computational effort due to its inherent scheduling flexibility of CP sub-model. The 

second observation is that the decomposition heuristic and the MILP/CP hybrid 

approach leads to the results with very low computational efforts when the number of 

the demand elements is small and at the same time the average size of the demand 

elements is large. The lowest demand granularity allows to a smooth plan and 

schedule, which balances out the lumpy demand. Hence, the proposed approaches 

seem to be more effective than in the cases with a higher demand granularity level.  

 

Figure 4.2 and Figure 4.3 present the convergency charts of 75% and 90% 

capacity load experiments, respectively. The convergency charts show the 

computational time related results. The charts are used to compare the computational 

performance of the proposed approaches in time. Apparently, the proposed 

approaches start with better objective values for the initial operations. The 

decomposition heuristic reaches to a quite low objective value in initial iterations, 

and search for better solutions. The MILP/CP hybrid approach starts with a 

reasonable value, but the search for better solutions has a drastic improvement 

comparing to the decomposition heuristic. After the MILP/CP hybrid approach stops 

with a feasible solution, the search of the decomposition heuristic can continue for a 

while to reach better solutions. In general the solutions of the proposed approaches 

converge enough to close optimum results of integrated MILP model and can reach 

even better results for the low granularity scenarios. Most of the results of 90% 
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capacity load in the low granularity level have lower heuristic gaps than the 75% 

capacity load scenarios.  

 

It should be noted that a high capacity load refers to more efficient utilization the 

existing manufacturing resources and a low granularity level expresses the situation 

of a manufacturer who faces comparatively large replenishment orders from his 

customers. The tendency of concentration and mergers in the retail sector cause high 

demand volumes. This situation gets more common in industrial sized problems. The 

observations show that the proposed decomposition heuristic and the MILP/CP 

hybrid approach are reliable and quick optimization approaches and capable of 

solving the industrial sized problems.  
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Table 4.3Comparison of the numerical results
*
 

Experiment 

Decomposition Heuristic MILP/CP Hybrid Approach Integrated model 

Result 

(€) 

Time 

(s) 

H. Gap 

(%) 

Result 

(€) 

Time 

(s) 

H. Gap 

(%) 

Result 

(€) 

O. Gap 

(%) 

7
5

%
 C

ap
ac

it
y

 l
o

ad
 

L
o

w
 g

ra
n

. 
 1 33,680 330 1.50 36,786 1,260 10. 86 33,181 14.65 

2 23,812 1,619 4.98 25,874 1,819 14.07 22,683 9.64 

3 35,634 800 -4.74 40,204 1,294 7.47 37,408 16.20 

4 26,753 1,063 0. 10 33,031 950 23.59 26,727 12.95 

5 23,948 695 4.31 25,799 764 12.37 22,958 17.45 

Avg.  28,765 902 1.23 32,339 1,217 13.67 28,591 14.18 

M
ed

iu
m

 g
ra

n
. 
 

1 34,747 17,090 15.06 36,936 569 22.30 30,200 21.28 

2 36,033 4,717 11.72 38,401 1,227 19.07 32,252 21.13 

3 35,484 414 33.78 36,533 722 37.73 26,525 17.34 

4 36,432 1,457 17.74 37,303 928 20. 55 30,943 18.58 

5 35,197 2,579 7.90 37,813 2,252 15.92 32,621 17.81 

Avg.  35,579 5,251 17.24 37,397 1,139 23.11 30,508 19.23 

H
ig

h
 g

ra
n

. 
 1 39,092 2,731 19.88 36,804 1,769 12.87 32,608 21.06 

2 35,883 1,233 14.57 33,959 737 8.43 31,320 22.60 

3 39,224 18,000 11.13 41,362 3,112 17.19 35,295 20. 75 

4 44,218 18,000 13.49 47,234 1,870 21.23 38,961 27.07 

5 37,333 11,242 -4.18 39,156 859 0. 50 38,961 27.04 

Avg.  39,150 10,241 10. 98 39,703 1,669 12.04 35,429 23.70 

9
0

%
 C

ap
ac

it
y

 l
o

ad
 

L
o

w
 g

ra
n

. 
 1 37,921 84 -10. 07 44,204 353 4.83 42,169 21.40 

2 31,179 332 -1.84 34,234 678 7.77 31,765 17.29 

3 30,369 329 -0. 70 32,359 1,995 5.81 30,582 18.42 

4 39,731 221 -6.38 42,205 2,659 -0. 55 42,436 21.50 

5 30,171 82 2.20 33,966 1,410 15.06 29,520 13.80 

Avg.  33,874 210 -3.36 37,394 1,419 6.59 35,294 18.48 

M
ed

iu
m

 g
ra

n
. 
 

1 40,108 1,829 15.32 44,972 5,294 29.31 34,779 19.11 

2 37,076 2,174 4.18 40,364 2,049 13.41 35,590 23.04 

3 32,971 730 7.83 33,075 1,338 8.17 30,577 22.02 

4 46,366 2,123 8.66 53,220 425 24.73 42,670 21.89 

5 39,000 1,731 11.89 43,538 1,532 24.91 34,855 20. 32 

Avg.  39,104 1,717 9.58 43,034 2,128 20. 11 35,694 21.28 

H
ig

h
 g

ra
n

. 
 1 41,129 403 4.04 47,024 1,548 18.95 39,531 30. 38 

2 44,320 9,322 22.47 45,747 516 26.41 36,188 24.15 

3 42,254 18,000 19.30 46,595 1,099 31.56 35,419 22.57 

4 48,806 18,000 16.32 51,155 647 21.92 41,957 25.81 

5 41,345 18,000 22.06 40,452 1,214 19.42 33,872 22.38 

Avg.  43,571 12,745 16.84 46,195 1,005 23.65 37,393 25.06 

Overall 

Avg.  
36,674 5,178 8.75 39,343 1,430 16.53 33,818 20. 32 

 
* The current optimality gap value of the integrated MILP model is calculated by CPLEX within 18,000 seconds computational 

time limitation (see, User's Manuel for CPLEX / Progress reports: interpreting the node log).  The gap values of the 
decomposition heuristics are calculated to make comparison between the results of proposed heuristics and the results of 

integrated MILP model. Note that a negative value indicates that the heuristic is able to reach better results than the integrated 

MILP model within the computational time limitation. i.e., Heuristic gap = [ (Heuristic result - MILP result)/MILP result]*100 



 

 

 
Figure 4.2 Convergency charts of 75% capacity load experiments
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Figure 4.3 Convergency charts of 90% capacity load experiments
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4.7 Conclusion 

 

This research addresses the integrated production planning and scheduling 

problem within dairy industry. The problem is motivated from a two-stage semi-

continuous set type yoghurt production process and formulated as a comprehensive 

MILP model. The objective function of the MILP model aims at minimization of the 

total cost by considering a shelf life dependent loss function. The model formulation 

is introduced to represent the planning and scheduling decisions under consideration 

of the shelf-life restrictions, sequence dependent changeovers, product dependent 

machine speeds, demand due dates, regular and overtime working hours, and 

delivery to the DCs. The key limitation of the overall MILP solution approach lies in 

the large computational times that are mainly due to large number of integer 

variables related with planning decisions, as well as binary setup variables triggered 

with big M constraints for scheduling decisions.  

 

The integration of production planning and scheduling have been a challenging 

issue for a long while since it requires a comprehensive point of view on both tactical 

and operational level decisions. The major challenges appear in the development of 

computationally effective planning and scheduling formulations and, in the 

achievement of linkage with qualified restrictions between these two interrelated 

levels. In our approach, the integrated planning and scheduling problem is divided 

into two distinct sub-problems. The sub-problems are solved by the decomposition 

heuristic. A hybrid MILP/CP hybrid approach is proposed. The hybrid approach 

exploits complementary strengths of the MILP model on the accuracy in the planning 

level and, of the CP model on the computational efficiency in the scheduling level. 

The results show that the decomposition heuristic achieves reasonable solutions and 

the hybrid approach outperforms the integrated MILP model with short 

computational times.  

 

The major advantages of the proposed approaches are their applicability to 

different dairy production processes (e.g., cheese, butter, ice cream). The flexibility 

originates from the integrated MILP model formulation providing an opportunity to 
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integrate planning and scheduling horizons, as well as CP model which can easily be 

modified to account for process specific operating conditions. A limitation of the 

research is that the model is presented under assumption of all packaging lines are 

identical and, simultaneous production of the same product in many packaging lines 

is not allowed. Therefore, the line speeds and the setup times depend only on 

products and not on the machines.  

 

It is possible to extend the research in several ways, which can be suggested as 

future research areas. The first direction for further research is to deal with the non-

identical packaging line considerations. Second, the further research should address 

improving the computational efficiency of the proposed hybrid methodology. 

Another feedback mechanism aside from linkage capacity constraints can be 

investigated. Third, the other alternative solution techniques (e.g., stochastic 

programming and simulation) dealing with the stochastic and dynamic nature of 

dairy supply chains and various key characteristics of sustainability issues are 

promising directions.  

 

The yoghurt production is a multi-stage semi-continuous process. The process 

characterized with make-and-pack stages. In addition to the final product which is 

perishable and its shelf life is restricted with a short period such as weeks, raw 

material milk and intermediate product milk-culture mixture is much more perishable 

and highly restricted with only several hours. Because of this time restriction 

scheduling of the make-and-pack production should be modeled to not allow the 

production waste. 

 

 In the next chapter, multi-stage-production planning, uncertainty and 

sustainability perspectives of the literature review are discussed. A scheduling 

problem is considered in make-and-pack production and a MILP model is 

introduced. The lifetime of the intermediates is represented by a probability 

distribution and a stochastic variant of the MILP model is developed. The production 

process is simulated and the proposed schedules are evaluated in terms of production 

waste. 
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Nomenclature 

For the mathematical description of the models the following notation is introduced; 

Indices &sets:  

Si I  days  1..SI I  

  Sd D  demand days  1..SD D  

1,  ,    Sj k t P  products    0 10.. ,  1..S SP P P P   

  Sl L  lines  1..SL L  

  Sa A  distribution centers  1..SA A  

Monetary parameters: 

MILP models; 

jLoss  Cost of the decrease on the shelf life of product j , €/liter per day  

jVarCost  Variable production cost of product j , €/liter   

jStrgCost  Inventory cost of product j , €/liter per day  

jkSetupCost  Changeover cost from product j to k , € 

lLineCost  Operating cost of line l , € per day  

jPwCost  Waste cost of product j  during packaging, €/minute 

IncCost  Operating cost of incubation room, € 

OverTCost  Overtime cost, €/minute  

aTransCost  Transportation cost from plant to DC a , € 

jUnmDCost  Unmet demand cost of product j , € 

Technical parameters of: 

MILP models; 

jShelfLife  Shelf life of product j , day 

jCrRate  Minimum shelf life requirement of customer for product j , % of 

shelf life  

jIncTime  Incubation time of product j , minute 



124 

 

jdaDemand  Demand of DC a  for product j  on demand day d , liter 

QContTime  Quality control time, day 

jMchSpeed  Machine speed for product j , liter per minute 

StCapacity  Storage capacity of the plant, minute 

IncCapacity  Incubation capacity of the plant, minute 

jMinLot  Minimum production lots of product j , liter 

jMaxLot  Maximum production lots of product j , liter 

0Sj P k
SetupTime


 Changeover time from product j  to k , minute 

iMaxTime  Maximum available time on day i , minute 

iRTime  Regular working time on day i ,minute 

iCapacity  Production capacity on day I, minute 

j  Factor for converting product quantity to storage unit, e.g., pallet 

M  Scalar chosen to be huge number 

CP model; 

jIncDuration  Incubation duration of job j , minute 

jT  The type associated with each interval variable in the sequence, a 

non-negative integer 

Setup  Setup time defined as triple, hour

{ , ,  |  ,   :  :   }    S SSetup j k st j k in J j k st in ST     

SST  Set of setup times 

 

Decision variables of: 

Integrated model and planning sub model – MILP; 

ijldx  Quantity of product j  produced on line l  on day i  for 

demand day d , liter 

jday  Quantity of product j  produced for DC a  for demand day d , 

liter  

jdaUnmD  Unmet demand of product j  for DC a  on demand day d , 

liter 
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ijinv  Inventory of product j  at the end of day i , liter 

iovertime  Overtime on day i , minute 

ijPT  Production time of product j  on day i , minute 

0Sij P l
FT


 Finishing time of product j  on line l  on day i , minute 

ilCmaxLine  Maximum completion time of line l  on day i , minute 

0Sij P
CmaxProduct


 Maximum completion time of product j  on day i , minute 

0Sij P
IncNb


 Number of incubation for product j  on day i  

0 0S Sij P k P l
binsetup

 
 Changeover from product j  to k  on line l  on day i , binary 

0 0S Sij P k P
IncSequence

 
 Incubation sequence of product j  preceding product k  in day 

i , binary 

ijlbin  Production of product j on line l on day i , binary 

Scheduling sub-model – MILP; 

jldx  Quantity of product j  produced on line l  for demand day d , 

liter 

jPT  Production time of product j , minute 

0Sj P l
FT


 Finishing time of product j  on line l , minute 

lCmaxLine  Maximum completion time of line l , minute 

0Sj P
CmaxProduct


 Maximum completion time of product j , minute 

0Sj P
IncNb


 Number of incubation for product j  

0 0S Sj P k P l
binsetup

 
 Changeover from product j  to k  on line l , binary 

0 0S Sj P k P
IncSequence

 
 Incubation sequence of product j  preceding product k , 

binary 

Scheduling sub model – CP; 

jTask  Activities corresponding with each of job j , interval variable 

jlOptTask  Operational activities which has optional size of jDuration , interval 

variable 

Optional activities correspond with each of job j  operated on line 
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l  

jDuration  Size of the jlOptTask  

jInc  Incubation activities which has size of jIncTime , interval variable 

Incubation activities correspond with each of job j  

lSchedule  Variable represents a total order over a set of jlOptTask , sequence 

variable 

jT  integer type is used 
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CHAPTER FIVE 

SCHEDULING OF THE MAKE-AND-PACK PRODUCTION PROCESS 

WITH UNCERTAIN PERISHABILITY IN THE DAIRY INDUSTRY 

 

5.1 Introduction 

 

During recent decades, perishability has received increasing attention of the food 

processing industry. Apart from raw foods (e.g., meat, grains, legumes, nuts, fruits, 

vegetables), almost all foods are processed such as bakery, dairy and meat products 

(e.g., bread, milk, ice creams, burgers and sausages). These processed foods are 

inherently perishable and have mostly specific product and process characteristics 

such as variety in product types, contamination issues and long changeover times 

(Akkerman and van Donk, 2009a). Product and process characteristics of perishable 

food products require specific models to support decision making.  

 

Processed foods show a wide variety of retail cup sizes or labels, contents and 

special ingredients with numerous flavors. A few intermediate product recipes lead 

to a large number of product types. Hence, product-dependent cleaning, sterilizing 

and re-tuning of used production units (e.g., pipes, mixing tanks, packaging lines) 

arise to avoid contamination (Montagna et al., 1998) and, and, long sequence-

dependent changeover times cause a noticeable decrease of available production 

times. Considering this issue, Günther et al. 2006, Bilgen and Günther (2010) 

introduce the block planning concept to ease make planning decisions by using a pre-

defined production sequence (i. e. from low to high concentrations of certain content 

such as fat). The intermediates of the processed foods are subject to time-dependent 

deterioration. The possible storage time of perishable intermediates is very short and 

depends on varying semi-controllable parameters such as raw material characteristic 

(e.g., pasteurized or not) and composition (e.g., fat, protein, sugar content), used 

process equipment (e.g., vessels, tanks or pipe lines), storage and transportation 

conditions. In addition, the available time span is uncertain due to uncontrollable 

parameters such as microbial load, cleaning efficiency and water activity. The time-

dependent deterioration can be represented with lifetime probabilities which fit 
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gamma distributions, Weibull, two-parameter Weibull, or exponential distributions 

(Pahl and Voß, 2010; Al-Kadamany et al., 2002; Al-Kadamany et al,. 2003). 

Stochastic linear programming has been developed as a useful modelling and 

solution paradigm to deal with such uncertainty (Charles et al. 2011; Javaid et al., 

2013).  

 

The production process of processed foods commonly consists of two stages 

(processing and packaging) (van Dam et al. 1993). Scheduling two-stage flow shop 

problems have been studied in literature (e.g., Allahverdi, 1995; Bousonville 2002; 

Ruiz and Vázquez-Rodríguez, 2010). As a pioneering research, Méndez and Cerdá 

(2002) define the two-stage food production as make-and-pack. Akkerman et al. 

(2007) and Akkerman and van Donk (2009b) consider a make-and-pack production 

process with a batch processor in the first stage and parallel packaging lines in the 

second stage. They introduce explanatory studies using simulation methodology. 

Akkerman et al. (2007) investigate capacity and time constraints of a limited number 

of storage tanks (which often have to be shared by a multitude of products) using 

simulation. Akkerman and van Donk (2009b) extend the previous study to model 

possible dependencies between intermediate products and packages. They conclude 

that lifetime and rapid quality decay of intermediates are uncertain parameters 

affecting the total time needed to finish the daily production and the amount of waste 

during the production process.  

 

In dairy industry, intermediates are more perishable than final products. Final 

products can have long shelf life from 15 days up to years, but the lifetime of the 

intermediates is restricted to several hours (Bylund, 1995). Besides, foods are never 

completely the same as time progresses and there is always variability and 

uncertainty in the condition of raw ingredients. Therefore, the dependency between 

intermediate production and packaging levels and the uncertainty in lifetime of 

intermediates negatively affect the makespan and the waste.  

 

The dairy industry offers real-life production problems as in the case of yogurt 

production. Lütke Entrup et al. (2005) develop several MILP models. They take into 
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account the perishability of final products with a shelf life integrated price 

component. The MILP models focus on flavoring and packaging stages. The 

integration of the fermentation process into the planning procedure, and 

incorporation of uncertainty are presented as the future directions of the research. 

Marinelli et al. (2007) present a real capacitated lot sizing and scheduling problem 

with parallel machines and shared buffers in the packaging stage. They introduce a 

discrete mathematical planning model minimizing the setup, storage and processing 

costs. As a solution methodology, they propose a two-stage heuristic based on the 

decomposition of the problem into lot sizing on tanks and scheduling on lines.  

Doganis and Sarimveis (2007) propose a MILP model for production scheduling. 

The model considers the sequencing limitations, sequence dependent changeover 

times and costs in addition to material balances, inventory, machinery capacity, labor 

shifts and manpower restrictions. The model is limited to the single production line. 

Doganis and Sarimveis (2008) extend the previous MILP model to multiple parallel 

machines together with the different production costs of each parallel machine, the 

starting and finishing time for the production of each product at the machines. 

Doganis and Sarimveis (2009) address a new MILP model that combines the 

advantages of the two models. Additionally, they integrate shelf life restrictions in 

the constraints to keep stable the remaining shelf life on production and in the 

objective function to control the freshness on delivery.  

Kopanos et al. (2010) study on a lot sizing and scheduling problem and introduce 

a mixed discrete/continuous time MILP model. They consider parallel packaging 

units sharing common resources and take into account the sequence-dependent times 

and costs. Kopanos et al. (2011b) present a MILP framework for a resource 

constrained production planning problem. They consider renewable resource 

limitations and differ from the literature by optimizing quantitative as well as 

qualitative optimization goals. Kopanos et al. (2012a) present a MILP framework 

based on a hybrid discrete/continuous time representation for the simultaneous 

production and distribution planning problem. In these studies, whereas timing and 

capacity constraints are imposed with respect to the pasteurization, homogenization 

and fermentation processes, the main focus is on the packaging stage.  
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Amorim et al. (2011) present multi-objective MIP models on a lot sizing and 

scheduling problem considering perishability issues. The model is analyzed for two 

distinct scenarios depending on make-to-order and hybrid make-to-order/make-to-

stock production systems. The proposed MILP model is hybridized with a non-

dominated sorting genetic algorithm. Amorim et al. (2012) present multi-objective 

MIP models for an integrated production and distribution planning problem 

integrating the economic aspects and freshness at an operational level. The models 

are formulated for two distinct cases with a fixed and a loose shelf life. They propose 

a simple hybrid genetic heuristic to solve the problem where the shelf life is loose. 

Amorim et al. (2013a) and Amorim et al. (2014) investigate a production planning 

problem with a different point of view from the existent literature. Amorim et al. 

(2013a) assess the suitability of financial risk measures for mitigating crucial risks, 

Amorim et al. (2014) consider the influence of customer purchasing behavior on the 

production planning of perishable goods. Amorim et al. (2013b) focus on lot sizing 

and scheduling decisions of the production process consisting of multi-product and 

multi-parallel lines with complex setup structure. They analyze the performance of 

existent formulations in the literature for small bucket and big bucket capacitated lot 

sizing and scheduling problems. 
 

Recently, Bilgen and Çelebi (2013) consider an integrated production scheduling 

and distribution planning problem. They introduce a MILP model and propose a 

hybrid method combining MILP and simulation approaches. While in the most of the 

previous studies parameters are accepted as deterministic, they handle the stochastic 

failures on operation times to obtain more realistic solutions. Sel et al. (2015) 

considers an integrated planning and scheduling problem. They introduce a MILP 

model to integrate tactical and operational decisions and propose a heuristic approach 

to decompose time buckets of the decisions. Further, they combine MILP and CP 

methodologies with the decomposition algorithm to show their complementary 

strengths.  

The studies considering the yoghurt production process focus on the packaging 

stage (e.g., Lütke Entrup et al., 2015; Doganis and Sarimveis, 2007; Kopanos et al., 

2010). However, the packaging stage has an interrelation with the processing or 
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mixing stages. Honkomp et al. (2000) discuss the interrelation of these two stages 

with scheduling examples from consumer goods industry including food and 

beverage. Based on practical examples, Stadtler and Sahling (2013) present a lot-

sizing and scheduling model for multi-stage flow lines and a solution approach using 

rolling horizon techniques. Baumann and Trautmann (2013)develop a MILP model 

for short-term scheduling of make-and-pack production processes. Baumann and 

Trautmann (2014) extend the previous study by a hybrid method linking the MILP 

model with a heuristic framework for large-scale instances. Nevertheless, 

perishability issues have been excluded from these studies.  

In brief, research dealing with the yoghurt production and the perishability mostly 

focus on the packaging stage ignoring interrelations the processing or mixing stages 

and research taking into account the interrelations neglect perishability issues. The 

contribution of the research is to account for both of the interrelations and the 

perishability issues in the make-and-pack production. The summary of the related 

literature is presented in Table 1. Table 1 shows the characteristics of the problems, 

and confirms the lack of stochastic programming and simulation models.  

In this research, we consider a scheduling problem accounting for the interrelation 

of two consecutive stages (i. e. processing and packaging). We propose a stochastic 

MILP model aiming at minimization of makespan. The model deals with uncertainty 

in quality decay of perishable intermediates. A yoghurt production case is presented 

to illustrate the typical structure of a two-stage semi-continuous make-and-pack 

process. Accordingly a simulation of the production process is introduced to evaluate 

the solutions of the proposed model in terms of product waste. The research helps to 

fill the gap pointed out by Sel and Bilgen (2015) stating the uncertain characteristic 

of perishable dairy products.  

 

The reminder of this chapter is organized as follows. The structure of the 

considered make-and-pack production is described in Section 5.2.The MILP model 

and the simulation model are described in Section 5.3. An illustrative case study is 

presented in Section 5.4.Finally, the main conclusions are given in Section 5.5. 



 

 

Table 5.1 Literature summary –two-stage & yoghurt production scheduling problem  

Reviewed literature 
 Problem characteristics Modelling approaches 

Make Pack Perish.  MILP MINP SM SP CP 

Y
o
g
h
u
rt

 

p
ro

d
u
ct

io
n
 

Lütke Entrup et al. (2005) 
 

       

Marinelli et al. (2007)         

Doganis and Sarimveis (2007) 
 

       

Doganis and Sarimveis (2008) 
 

       

Doganis and Sarimveis (2009) 
 

       

Kopanos et al. (2009)         

Kopanos et al. (2011b)         

Kopanos et al. (2012a)         

Amorim et al. (2011) 
 

       

Amorim et al. (2012) 
 

       

Amorim et al. (2013a)        

Amorim et al. (2014) 
 

      

Amorim et al. (2013b) 
 

       

Bilgen and Çelebi (2013) 
 

       

Sel et al. (2015) 
 

       

T
w

o
-s

ta
g

e 

p
ro

d
u

ct
io

n
 Méndez and Cerdá (2002)   

 
     

Akkerman et al. (2007)         

Akkerman and van Donk (2009b)         

Stadtler and Sahling (2013)   
 

     

Baumann and Trautmann (2013)   
 

     

Baumann and Trautmann (2014)   
 

     

This research        

– Defined otherwise undefined, Perish. - Perishability, MILP – Mixed-Integer Linear Programming, MINP – Mixed-Integer Non-linear Programming, 

SM – Simulation, SP – Stochastic Programming, CP – Constraint Programming

1
3
2
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5.2 Problem Description and Notations 

 

We consider a two-stage semi-continuous make-and-pack production in line with 

Honkomp et al. (2000), Méndez and Cerdá (2002), Akkerman and van Donk (2007, 

2009b), Baumann and Trautmann (2013, 2014). The intermediates {1,...,| |}i I I   

(i.e. variations in fat content) are processed with a mixing unit in the first stage and 

product types , , {1,...,| |}j j j J J    (i. e. retail cups in different sizes) are packed 

on non-identical parallel lines {1,...,| |}l L L  in the second stage during production 

cycles {1,...,| |}n N N  . Each cycle represents an interval in which processing, storage 

and packaging operations are performed for intermediate i . A cycle starts with 

mixing of the intermediate and finishes after its packaging operations (i. e. until the 

mixing tank is fully discharged). The production process is analogue with many food 

production processes such as candy, flour, yoghurt (see respective references in 

Akkerman and van Donk, 2009a). Figure 5.1 illustrates the schematic representation 

of the process.  

 

 

Figure 5.1The two-stage semi-continuous make-and-pack production 

 

Each product type j packed from intermediate ihas a known non-negative 

demand ijd . To fulfill the demand, homogeneous intermediate mixtures i are 

produced in a certain mixing time imt and the processing unit can only mix one 

single intermediate iat the same time. The processing unit serves as temporary 

storage within the lifetime of the intermediate if . Lifetime is very limited because of 

rapid chemical reactions (e.g., fermentation). Lifetime also has variations in reaction 
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rate because of uncontrollable process parameters causing quality decay (e.g., 

microbial load, cleaning efficiency and water activity). Therefore, the limited 

lifetime is uncertain and can be described with a non-linear continuous distribution. 

Each product type j requires a certain amount of intermediate. jr is a conversion 

factor to translate the demand of product type j packed from intermediate i into 

necessary amount of intermediate i . The changeovers at the processing unit are 

realized in a pre-defined production sequence from low to high fat concentrations. 

Each product type j of intermediate i is packed in non-identical lines with different 

packaging speeds ijls . Changeovers require sequence-dependent setup times j jst   , 

j j   (i. e., j  is the successor of product type j ). Cleaning operations (i. e. 

automatic washing and sterilization of the product tank and the filling valves of 

packaging machines) are processed for each of the packaging operations based on 

changeover rules. The setup times include the time spent on cleaning operations. The 

mixing unit has a minimum production lot-size ml  with maximum mixing capacity 

mc . The packaging lines have minimum lot-size pl and maximum packaging 

capacity pc .  

The short-term scheduling of the make-and-pack production aims at minimization 

of Makespan . To achieve a minimum makespan, decision variables are as follows;  

(i) Allocation of mixing intermediate iat production cycle n on the 

processing unit and allocation of product type j from intermediate i  on 

packaging line l at cycle n by binary allocation variables inM and ijlnP ,  

(ii) Changeovers from product type j  to j  on packaging line l at 

production cycle n  by binary setup variable ij j lnS   ,  

(iii) The packaging time for product type j  of intermediate i  packed on line 

l  at cycle n  by continuous time variable ijlnPT ,  

(iv) The required production amount of intermediate i  to produce product type 

j  on line l at production cycle n  by continuous quantity variable ijlnX ,  
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(v) The beginning and completion times for mixing operation of intermediate 

i  at production cycle n  by ,M M
in inB C continuous time variables,  

(vi) The beginning and completion times for packaging operation of product 

type j of intermediate ion line l  at production cycle n  by continuous 

time variables ,P P
ijln ijlnB C .  

 

5.3 Modelling Approach 

In this section, we propose a stochastic MILP model and a simulation model. The 

stochastic MILP model determines optimum schedules yielding minimum production 

makespan as an indicator of productivity of the production process. It uses a 

deterministic approximation of the probability distribution describing the uncertain 

lifetime. The simulation model provides a reasonable representation of the 

production process and is able to describe the uncertainty from the actual 

distribution. It is possible with the simulation model to mimic the proposed schedule 

of MILP model and to determine the waste caused by quality decay.  

5.3.1 Mathematical Formulation 

The stochastic MILP model and the deterministic approximation of probabilistic 

perishability constraints are formulated as follows.  

Objective; 

Minimise Makespan  
  (5.1) 

The minimum makespan objective is given in Equation (5.1) as a performance 

measure of productivity.  

 

Demand constraints; 

.ijln ij j

ln

X d r  ,i j   (5.2) 

/ijln ijln jlPT X ls  , , ,i j l n   (5.3) 
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Equation (5.2) ensures that the amount of intermediate i  meets the demand of 

related product type j . In Equation (5.3) the packaging time for product type j  of 

intermediate i  on line l  at production cycle n  depends on the required amount of 

intermediate i  to produce product type j  on line l  at cycle n  and packaging speed 

of lines for product type j .  

Timing constraints; 

.M M
in in in iC B M mt   ,i n   (5.4) 

In Equation (5.4), the completion time of mixing for intermediate i  at cycle  n

should be greater than or equal to the sum of the starting time of mixing for 

intermediate i  at cycle  n and the corresponding mixing time (see Figure 5.2). Note 

that completion times are also assigned to empty mixing orders. In case no 

intermediate i  is processed, the completion time of the mixing operation equals the 

beginning time.  

1
M P
in iJlnB C   , ,i l n   (5.5) 

1 1
M P
i i JlNB C   ,i l   (5.6) 

Equation (5.5) and (5.6) calculate beginning times for mixing operations (see 

Figure 5.2). In Equation (5.5), the beginning time for mixing of intermediate i  at 

production cycle n  should be greater than or equal to completion time for packaging 

of the last product type J  of intermediate i  operated at the preceding production 

cycle 1n  . In Equation (5.6), the beginning time for mixing of intermediate i  at the 

first production cycle should be greater than or equal to the completion time for 

packaging of the preceding intermediate 1i   at the last production cycle N .  

P M
ijln inB C  , , ,i j l n   (5.7) 

P P
ij ln ij lnB C   , , , ,i j j j l n      (5.8) 
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Equation (5.7) and (5.8) calculate beginning times for packaging operations (see 

Figure 5.2). In Equation (5.7), beginning time for packaging of product type j  of 

intermediate i on line l  at production cycle n  should be greater than or equal to 

completion time for mixing of intermediate i  at production cycle n . In Equation 

(5.8), beginning time for packaging of product type j  of intermediate i on line l  at 

production cycle n  should be greater than or equal to completion time for packaging 

of preceding product type j  of intermediate i on line l  at production cycle n .  

1

.
P

P P
ij ln ij ln ij ln j j ij j ln

j j

C B PT st S      

  

     , , ,i j l n   (5.9) 

P
ijlnMKS C  , , ,i j l n   (5.10) 

 

In Equation (5.9), completion time for the packaging operation of product type j  

of intermediate i  on line l  at production cycle n  is calculated by summing its 

beginning time, processing time and the setup time required for changeover to the 

succeeding product type j . When a product type is not packed, the production time 

and all the binary variables involved in Equation (5.9) are zero and, the completion 

time is the same as the beginning time. Finally, Equation (5.10) provides that the 

makespan is longer than the completion time of each product in the sequence.  

 

 

 

Figure 5.2 Timing decisions sequencing the mixing-packaging operations 
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Allocation and sequencing constraints; 

0ij j lnS     , , , ,i j j j l n      (5.11) 

1

1

1 (1 ) (1 ) .
j

ij j ln ij ln ij ln ijln

j j

S P P P


   

 

        , , , ,i j j j l n      (5.12) 

1

1

1
j

ij j ln ij ln ij ln ijln

j j

S P P P


   

 

      , , , ,i j j j l n      (5.13) 

ij j ln ij lnS P    , , , ,i j j j l n      (5.14) 

ij j ln ij lnS P    , , , ,i j j j l n      (5.15) 

1ij ln ij j ln

j j j

P S  

  

    
, ,i l n   (5.16) 

1ijln

l

P   , ,i j n   (5.17) 

 

Equations (5.11) to (5.16) are adopted from the allocation and sequencing 

constraints which are introduced by Doganis and Sarimveis (2007, 2008, and 2009) 

to decrease search efforts using pre-defined precedence rules of product types (i. e.,

j j  ). Equation (5.11) prevents the transitions violating the given sequence of 

production. In Equations (5.12) to (5.15), binary variable equals 1 if and only if the 

product type   packed from intermediate   is allocated to line   at production cycle. In 

addition, binary variable equals 1 if and only if there is a changeover from product 

type to product   packed from intermediate on line at production cycle.  represents a 

small number. Equation (5.16) presents a constraint accelerating the optimization 

process considerably. The equations always produce the correct binary values using 

an interaction between the binary variables representing production and setup 

operations. The set of constraints is examined with different cases by Doganis and 

Sarimveis (2007). In addition, Equation (5.17) forbids the batch splitting for 

packaging operations.  
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Capacity and lot sizing constraints; 

.ijln in

jl

X M ml  ,i n   (5.18) 

.ijln in

jl

X M mc  ,i n   (5.19) 

.ijln ijlnX P pl  , , ,i j l n   (5.20) 

.ijln ijlnX P pc  , , ,i j l n   (5.21) 

 

Equations (18) to (21) state that production of product type j from intermediate i  

on packaging line l at production cycle n is allowed if and only if the respective 

binary variables inM  and ijlnP  are equal to 1.The maximum and minimum allowed lot 

sizes are denoted by parameters ml , mc , pl  and pc . Equations (18) and (19) 

guarantee minimum and maximum lot sizes for mixing of intermediates. Equations 

(20) and (21) pose minimum and maximum lot sizes for individual products.  

 

Perishability constraints; 

 P M
iJln in i iP C C f p    , ,i l n   (5.22) 

 

The storage duration is calculated as the difference between completion time of 

last product type J  of intermediate i  on packaging lines l  at production cycle n  

and completion time of corresponding intermediate i  on the processing unit. 

Equation (5.22) limits the storage duration of intermediate i  with the lifetime 

parameter if  where 0 1ip 
 
is a given probability.  

 

Deterministic approximation of the probabilistic perishability constraints; 

1/
{ log( )} ic

i i i if p     i   (5.23) 

1/
{ log( )} icP M

iJln in i i iC C p      , ,i l n   (5.24) 
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It is assumed that the lifetime if  shows random variability and fits a Weibull 

probability distribution. It is also given that random lifetime parameter if  has known 

i  location, i  scale and ic  shape parameters.  In Equation (5.22), the random 

lifetime parameter if  can be expressed with its deterministic equivalent given in 

Equation (5.23), based upon Javaid et al. (2013). As a result, the stochastic model is 

simplified replacing Equation (5.22) with Equation (5.24).  

 

5.3.2 Simulation 

 

The simulation model is introduced to evaluate the proposed production schedule. 

The simulation model mimics the production process with the decisions made by the 

proposed MILP model (e.g., allocation of mixing unit and packaging lines, 

production quantities). The aim of the simulation is to calculate the production waste. 

The simulation produces random lifetime values from a Weibull distribution using 

the same mean and scale parameters as the proposed MILP model. Then, the 

simulation calculates the waste by comparing production length and the produced 

lifetime values. In this way, the performance of the stochastic model using a 

deterministic approximation of the Weibull distribution is evaluated with random 

lifetimes produced from the actual continuous distribution. The simulation is 

presented within three sub-groups; (i) mixing, (ii) packaging and (iii) waste 

calculation.  

 

 (i) Mixing stage: The simulation starts with arrivals of entities representing 

intermediates produced in a cycle. The arrivals of entities are produced by a time 

based entity generator. Entities arrive at the beginning time of mixing operations for 

each intermediate. Each entity carries attributes representing a set of indices (i. e. 

intermediates i , production cycle n ), lifetimes if   and mixing times of 

intermediates produced in each production cycle (i. e., .in iM mt ). Lifetime values are 

produced from a continuous Weibull distribution. The other attribute values are taken 

from the proposed mathematical model using attribute setting and attribute function 

blocks. Finally, intermediates are produced in a mixing unit within the mixing time. 
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The mixing unit is represented by a single server block which has a service time 

equal to the mixing time. Figure 5.3 illustrates the used simulation blocks of the 

mixing stage.  

 

 

Figure 5.3 Simulation of mixing stage 

 

 (ii) Packaging stage: Entities are replicated according to the number of product 

types. From here, entities represent product types of intermediates. Each entity 

representing a product type has the same attributes as the corresponding 

intermediate. Besides, the new entities have additional attributes representing indices 

of product types j , the assigned parallel machine  to each product type l  and their 

packaging durations including corresponding setup times (i. e., .ij ln j j ij j lnPT st S     ). 

The values of new attributes are taken from the proposed mathematical model using 

attribute setting and attribute function blocks. The queue orders the incoming entities 

using pre-defined precedence rules of product types (i. e., j j  ). And output 

switch leads entities to the allocated packaging lines. Product types are produced by 

two parallel packaging lines within the packaging duration. The paths are combined 

to lead entities to the following if-control for waste calculation. Figure 5.4 illustrates 

the used simulation blocks of the packaging stage.  

 

 

Figure 5.4 Simulation of packaging stage 
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 (iii) Waste calculation: Each entity is controlled by an if-control statement. If 

packaging duration of the entity is longer than lifetime, it gets a value to attribute 

waste. If the entity has the attribute value of waste then Waste  is calculated as the 

proportion of the produced amount run longer than random lifetime. The waste 

calculation is formulated in Equation (5.25).  

 

 .P M
ijln in i ijln

P M
ijln ijln in

C C f X
Waste

C C

  
 
  

  where 
P M
ijln in iC C f    (5.25) 

 

Finally, entities are reported and disposed. The simulation is replicated until an 

average of the waste is calculated accurately. Figure 5.5 illustrates the used 

simulation blocks of the waste calculation stage.  

 

Figure 5.5 Simulation of waste calculation 

 

5.4 An Illustrative Case Study 

 

An illustrative case on production planning and scheduling of a dairy industry is 

considered to show applicability and numerical validation of the proposed model. 

The considered production process is a set type yoghurt production process. The 

yoghurt production typically starts with standardized and homogenized milk. The 

standardization and homogenization are pre-process operations to enhance the 

quality of final product. In these operations, fat and solid-not-fat content are 

standardized, and fat globules are granulated to a smaller diameter. Later on, the pre-

processed milk is cooled to 43-45 °C and mixed with starter cultures in a tank. 

Filling and packaging are performed in parallel packaging machines which can pack 

different types of yoghurt depending on the cup sizes. Set yoghurt is fermented after 
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the packaging stage. Interested readers are referred to Bylund (1995) for details on 

set type yoghurt production.  

 

The production process consists of a mixing unit and two parallel packaging 

machines. The scheduling is performed over an hourly time horizon. The demands 

for 8 product types of 3 intermediates are produced within regular working hours (i. 

e. 8 hours). The cleaning of the processing equipment and parallel machines are 

performed within 2 cleaning hours in every working day after shutting down the 

process. The demand data is presented in Table 5.2. Each intermediate can be 

produced within 3 production cycles. Cup sizes of each product type are given in 

Table 5.3. Mixing times of intermediates are given in Table 5.4. Packaging speeds of 

each packaging line are given in Table 5.5. Sequence dependent setup times of 

changeovers between product types are given in Table 5.6. The mixing unit has a 

minimum level and should not be used to have a mixture less than 1,200 liters. The 

mixing unit has a tank capacity of 10,000 liters. The minimum production amount of 

any product type in any packaging unit is 150 cups. The tank capacity also limits the 

maximum production amount of product types in each packaging unit.  

 

Table 5.2 Demand data (in cups) 

Intermediates 
Product types  

1 2 3 4 5 6 7 8 Total 

Low-fat 750 0 890 620 0 1,180 780 0 4,220 

Medium-fat 0 0 3,425 3,460 0 2,700 0 0 9,585 

High-fat 0 2,180 2,950 0 2,905 0 1,580 1,730 11,345 

Total 750 2,180 7,265 4,080 2,905 3,880 2,360 1,730 25,150 

 

Table 5.3 Cup sizes of product types (in liters) 

 

Product types 

1 2 3 4 5 6 7 8 

Cup sizes 1.5 1.25 1 0. 75 0. 5 0. 35 0. 2 0. 15 

 

Table 5.4 Mixing times for intermediates (in hours) 

 
Intermediates 

Low-fat Medium-fat High-fat 

 Mixing times 0. 33 0. 42 0. 50 
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Table 5.5 Packing speeds of lines (in liters/hours) 

Lines 
Product types 

1 2 3 4 5 6 7 8 

Line 1 4,615 2,640 2,013 1,710 1,350 1,230 1,150 850 

Line 2 3,420 2,316 1,768 1,547 1,320 1,210 1,140 850 
 

Table 5.6 Setup times (in hours) 

 Product types 

1 2 3 4 5 6 7 8 

P
ro

d
u

ct
 t

y
p

es
 

1 - 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

2 1.5 - 1 1 0. 5 0. 5 0. 5 0. 5 

3 1.5 1 - 1 0. 5 0. 5 0. 5 0. 5 

4 1.5 1 1 - 0. 5 0. 5 0. 5 0. 5 

5 1.5 0. 5 0. 5 0. 5 - 0. 5 0. 5 0. 5 

6 1.5 0. 5 0. 5 0. 5 0. 5 - 1 1 

7 1.5 0. 5 0. 5 0. 5 0. 5 1 - 1 

8 1.5 0. 5 0. 5 0. 5 0. 5 1 1 - 

 

 

The process has a time restriction between mixing and packaging stages, since 

bacteria growth has been started already in the mixing stage. At the end of the 

mixing operation, the culture added milk reaches the optimum activation. Hence, the 

intermediate mixture must be packed in a limited time and delivered to incubation 

which is a quality and temperature controlled storage process to perform 

fermentation. Otherwise, firmness cannot be achieved and the yoghurt product 

cannot get a thick texture. In the process, the temperature, the final product type and 

the concentration of the culture in the mixture (i. e. limited time depends on these 

process parameters) can be controlled to a certain extent. Still variations can occur 

because of uncontrollable parameters such as microbial loads, and temperature 

variations on process equipment (e.g., mixing unit, pipes), cleaning efficiency, and 

activity of the starter culture. The uncertainty is represented by a Weibull distribution 

which has 95%ip  lifetime probability and distribution parameters such as location

1.5i  ,  scale 2i  , shape 0.5ic 
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5.4.1 Numerical Validation 

 

The IBM ILOG CPLEX Optimization Studio version 12.6 is used with the default 

parameter settings to solve the deterministic approximation of the proposed 

stochastic model. The resulting mathematical model contains 604 continuous, 1305 

binary decision variables and 4215 constraints. It takes less than one hour to get 

optimal solutions. The simulation model is developed using the SimEvents toolbox 

of Simulink/Matlab (R2013a). The simulation is replicated 1,000 times and 

maximum waste value is calculated. All analyses are conducted on a computer with 

an Intel Core i7-3630QM CPU @ 2.40GHz and 16 GB memory.  

 

The resulting schedule of the illustrative case study is completed in a makespan of 

8.97 hours and illustrated in Figure 5.6. Table 5.7 and Table 5.8 present the optimal 

production schedule of the two-stages. The intermediate mixtures are categorized in 

different fat contents. For the intermediate mixtures, mixing quantities in each cycle, 

beginning times and completion times of the corresponding mixing operations are 

presented in Table 5.7. The packaging operations follow to each mixing operation 

and, cleaning/changeover operations can be operated during the mixing operations in 

every cycle. Packing of the intermediate mixtures to the retail cups in different sizes 

is explained with product types. For the packaged products, packing quantities on 

each production line in each cycle, beginning times and completion times of the 

corresponding packing operations are presented in Table 5.8. 

 

For the illustrative case, the intermediate mixing is operated in two cycles for low 

fat content and high fat content and three cycles for medium fat contents. The mixing 

operations start with 1538 liters of intermediate mixture in low fat content. Then, 

1180 cups of product 6 and 750 cups of product 1 are packed on line 1 and line 2 

until 0. 66 hours. After the first production cycle, mixing tank is refilled to mix 1511 

liters of the same intermediate mixture. Then, 620 cups of product 4 and 890 cups of 

product 3 are packaged on line 1 and line 2.After product 4 is packed, line 1 is 

changed to produce 780 cups of product 7.Thus, all of the mixing and the packaging 

operations corresponding to low fat content are completed at 1.90 hours.  
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For medium fat content, 1200 liters intermediate mixture is mixed in the first 

cycle, 752 cups of product 11 and 1280 cups of product 14 are packaged on line 1 

and line 2 until 2.70 hours. After the first production cycle, the same mixing 

operation is repeated for the second production cycle. 937 cups of product 12 and 

1420 cups of product 14 are packaged on line 1 and line 2 until 3.53 hours. Then, 

4565 liters intermediate mixture is mixed in the third cycle. 2623 cups of product 11 

and 2523 cups product 12 are packed on line 1 and line 2.Thus, all of the mixing and 

the packaging operations corresponding to medium fat content are completed at 5.28 

hours.  

 

For high fat content,2965 liters intermediate mixture is mixed in the first cycle, 

2950 cups of product 19 and 1223 cups of product 18 are packaged on line 1 and line 

2 until. After product 18 is packed, line 2 is changed to produce 1733 cups of product 

24.Thus, all of the mixing and the packaging operations corresponding to high fat 

content are completed at 8.97 hours. The simulation experiments result in zero waste 

and confirm that the proposed schedule is applicable.  

 

 

Figure 5.6 The resulting schedule of the illustrative case study 
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Table 5.7 Optimal mixing schedule 

Intermediate Cycle Mixing quantity Beginning time Completion time 

i  n  ijln

jl

X ,liters M
inB , hours 

M
inC , hours 

Low-Fat 
1 1538 0 0. 33 

2 1511 0. 66 1.00 

Medium-Fat 

1 1200 1.90 2.32 

2 1200 2.70 3.12 

3 4565 3.53 3.95 

High-Fat 
1 2965 5.28 5.78 

2 4739 7.24 7.74 

 

Table 5.8 Optimal packing schedule 

Product P. Type Intermediate Line Cycle Packing 

Quantity 

Beginning 

time 

Completion 

time  i  j  l  n  ijln jX r

,cups 

P
ijlnB

 

,hours 

P
ijlnC

 

, hours p6 6 Low-fat 1 1 1180 0. 33 0. 66 

p1 1 Low-fat 2 1 750 0. 33 0. 66 

p4 4 Low-fat 1 2 620 1.00 1.77 

p7 7 Low-fat 1 2 780 1.77 1.90 

p3 3 Low-fat 2 2 890 1.00 1.50 

p11 3 Medium-fat 1 1 752 2.32 2.70 

p14 6 Medium-fat 2 1 1280 2.32 2.70 

p12 4 Medium-fat 1 2 937 3.12 3.53 

p14 6 Medium-fat 2 2 1420 3.12 3.53 

p11 3 Medium-fat 1 3 2673 3.95 5.28 

p12 4 Medium-fat 2 3 2523 4.05 5.28 

p19 3 High-fat 1 1 2950 5.78 7.24 

p18 2 High-fat 2 1 1223 5.78 6.94 

p24 8 High-fat 2 1 1733 6.94 7.24 

p18 2 High-fat 1 2 957 7.74 8.69 

p23 7 High-fat 1 2 1580 8.69 8.97 

p21 5 High-fat 2 2 2906 7.87 8.97 

 

5.4.2 Scenario Analysis 

 

This section presents the scenario analysis for the proposed models with respect to 

changes in the probability distribution. The value of the shape parameter ic  and the 

scale parameter i affect the characteristics of the probability distribution and, 
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change the shape of the function curve. Different values of the shape parameter ic  

change the behavior of the probability distribution (i. e., 0 1ic  , 1ic   and 1ic  ). 

For example, some values of the shape parameter cause the probability distribution to 

reduce to other distributions (e.g., 1ic  , Exponential distribution and 2ic  , 

Rayleigh distribution). Increasing the value of the scale parameter i  without 

changing the value of scale parameter ic  stretches the probability distribution 

function curve. Interested readers might consult Dodson (2006) for a broad overview.  

 

In addition to characteristics of the probability distribution, we consider demand 

variations changing with the capacity load of the production process. Depending on 

the working period, the average workload may be higher or lower. The demand 

conditions are reflected by two scenarios which assume an average workload of 75% 

and 90% of the available total capacity. The demand figures are randomly generated 

for each scenario according to the following procedure in line with Bilgen and 

Günther (2010).  

 

1. The total number of available operating hours X  is determined: 8 2 16X     

hours based on average 8 hours operating time per day and two production 

lines.  

2. The effective total workload on the production system Y  is determined by 

considering 3.75 hours of average capacity usage for the mixing operations, 

1.5 hours average capacity loss due to setup operations and a workload factor 

of 75% and 90%, respectively:  0 75 5 25 8 1Y . X . .    and 

 0 9 5 25 9 7Y . X . .    , respectively.  

3. The entire set of products (i.e., 3 intermediates and 8 product types) can be 

produced on two lines and 2 3 8 48n     product assignments are achieved.  

4. The average size of demand elements is D Y n  hours. In order to create a 

realistic degree of demand variability for each scenario, actual values of 

demand elements d are randomly drawn from the uniform distribution

 0 5 1 5d . D, . D   .  
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5. One of the 24 products is selected randomly. The demand is doubled for two 

lines, i. e. 2d d   and assigned to the selected product until the assigned 

demand equals or exceeds the effective total workloadY .  

 

The proposed model is examined with 8 scenarios under 0%,5  99% ip   lifetime 

probabilities. Each scenario is formulated using different scale parameters (i. e.,

  1, 3i  ) and shape parameters (i. e.   1, 2ic  ) of the probability distribution which 

has 1   , 1.25i   location parameters. Each scenario is repeated five times with 

different randomly generated demand data.  Results of the scenario analysis are 

presented with the considered demand variations in Table 5.9. 

 

Table 5.9 Results of the scenario analysis 

Scenarios 75% Capacity load 90% Capacity load 

S
 i  i  ic  ip  if  Makespan Waste Makespan Waste 

1. 0. 75 1 1 50% 1.30 7.17 1.02 8.13 0. 00 

99% 1.00 7.24 0. 00 8.52 0. 00 

2. 0. 75 1 2 50% 1.55 7.01 325.89 8.27 100. 50 

99% 1.07 7.06 6.11 8.57 1.11 

3. 0. 75 3 1 50% 1.90 8.32 983.56 7.56 95.83 

99% 1.01 8.58 0. 00 7.92 0. 00 

4. 0. 75 3 2 50% 2.65 6.58 0. 00 6.93 0. 00 

99% 1.20 6.58 0. 00 7.12 0. 00 

5. 1 1 1 50% 1.55 7.17 0. 00 8.13 762.86 

99% 1.25 7.24 0. 00 8.52 0. 00 

6. 1 1 2 50% 1.80 7.01 13.42 8.27 1.21 

99% 1.32 7.06 0. 00 8.57 0. 00 

7. 1 3 1 50% 2.15 8.32 0. 00 7.56 33.03 

99% 1.26 8.58 0. 00 7.92 0. 00 

8. 1 3 2 50% 2.90 6.58 0. 00 6.93 382.65 

99% 1.45 6.58 0. 00 7.12 0. 00 

 

i : Mean, ic : Shape parameter and i : Scale parameter  

ip : Lifetime probability of intermediate i , %
 

if : Lifetime of intermediate i , hours 

Makespan  : Maximum completion time of the production, hours 

Waste : Amount of the product waste, liters 
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Waste occurs in the 1
st
, 2

nd
, 3

rd
 and 6

th
 scenario of 75 % capacity load examples, 

For the 1
st
 and 6

th 
scenarios, the waste is at a tolerable level. To tighten the 

corresponding if lifetime values with 99 % probability level (i. e. the lifetime highly 

fits the distribution defined with given i  location, i  scale and ic  shape 

parameters) has only limited effect on the waste. However, for the 2
nd

 and 3
rd

 

scenarios, the results show that the waste can be drastically decreased with the 

proposed if lifetime values and a reasonable increase of makespan.  

 

The similar results are observed from the 90 % capacity load examples. For the 6
th

 

scenario of 90 % capacity load examples, the if lifetime value calculated from the 50 

% probability level has only limited effect on the waste. The improvement can be 

achieved in the 2
nd

, 3
rd

,4
th

,7
th

 and 8
th 

scenario. Besides, the 4
th

, 5
th

, 7
th

, 8
th

 scenarios of 

75% capacity load examples have no improvement of waste. The number of the 

scenarios which have no improvement is comparatively different for two distinct 

capacity levels. This number is lower for 90% capacity load examples (i. e. only 1
st 

and 4
th 

scenarios) than in the 75% capacity load examples. This investigation shows 

that the proposed solutions become more effective for high capacity load levels.  

 

In summary, within a certain lifetime period, the intermediates have to be packed, 

or else the product has to be disposed as waste. In case the lifetime is considered as a 

wide parameter, there is a risk on packing spoiled products and transporting to 

customers. However, for tight lifetime restrictions, emptying the processing unit as 

soon as possible (i. e. mixing the intermediates frequently in small quantities) results 

in a long makespan of production which may extend lead times to customers. The 

proposed approach helps to analyze the uncertainty on lifetimes of intermediates, 

thereby optimizing the production makespan to decrease the product waste.  

 

5.5 Conclusion 

 

This research addresses a scheduling problem in the make-and-pack production. 

The problem is motivated from a two-stage semi-continuous set type yoghurt 
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production process. The problem has been formulated as a stochastic MILP model to 

deal with the uncertainty in the quality decay of intermediates. The objective of the 

model is minimizing makespan.  

 

The lifetime and rapid quality decay of intermediates have been a challenging 

issue as uncertain parameters affect the makespan and the amount of waste. In our 

approach, the mathematical model describing the uncertain lifetime decides optimum 

schedules yielding minimum production makespan as an indicator of productivity of 

the production process. The simulation model mimics the production process and 

determines the waste to evaluate the proposed schedule of the MILP model.  

 

The major advantage of the proposed approach is its applicability to different 

dairy production processes (e.g., cheese, butter, ice cream). The flexibility originates 

from the mathematical model formulation providing an opportunity to deal the 

uncertain lifetime of intermediates, as well as the simulation model which can easily 

be modified to account for process specific operating conditions. Further research 

could address a make-and-pack production consisting of multiple mixing units and 

packaging lines combinations. Another future direction is to improve the 

computational efficiency of the proposed model. In this respect, MILP based 

heuristics as rolling horizon techniques and decomposition algorithms using the 

complementary strengths of different modelling techniques can be alternative 

solution approaches.  
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Nomenclature 

For the mathematical description of the models the following notation is introduced; 

Indices &sets:  

i I  intermediates {1,...,| |}I I  

, ,j j j J   product types {1,...,| |}J J  

l L  non-identical parallel lines {1,...,| |}L L  

n N  production cycles {1,...,| |}N N  

 

Parameters: 

ijd  demand of product type j packaged from intermediate i , cups 

imt  mixing time of intermediate i  , hours
 

if  lifetime of intermediate i , hours 

jr  amount of intermediate for product type j , liters 

jlls  packaging speed of line l  for each product type j , liters/hours 

j jst    sequence-dependent setup time between product types j  and j , hours
 

ml  minimum lot-size of mixing unit, liters 

mc  maximum capacity of mixing unit, liters 

pl  minimum lot-size of packaging line, liters 

pc  maximum capacity of packaging lines, liters 

ip  Lifetime probability of  intermediate i , %
 

i  
Mean of the probability distribution, hours 

ic  Shape parameter of the probability distribution 

i  
Scale parameter of the probability distribution 

 

Decision variables: 

Makespan  makespan of production, hours 

inM  
allocations for mixing of intermediate i at production cycle n on the 

processing unit, binary 
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ijlnP  
allocations for production of product type j from intermediate i  on 

packaging line l at cycle n , binary 

ij j lnS    
changeovers from product type j to j on packaging line l at 

production cycle n , binary 

ijlnPT  
packaging time for product type j  of intermediate i  packaged on line 

l  at cycle n , hours 

ijlnX  
production amount of intermediate i  to produce product type j  on 

line l at production cycle n , liters 

M
inB  

beginning for mixing operation of intermediate i  at production cycle 

n , hours 

M
inC  

completion times for mixing operation of intermediate i  at production 

cycle n , hours 

P
ijlnB

 

beginning for packaging operation of product type j of intermediate i

on line l  at production cycle n , hours 

P
ijlnC

 

completion times for packaging operation of product type j of 

intermediate i on line l  at production cycle n , hours  

Waste
 

production waste, liters 
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CHAPTER SIX 

CONCLUSION 

 

The planning and scheduling activities brings planning and production 

organizations together. They start to act as one, and work as a common unit. While 

the proposed models improve the quantity and quality of the information, the 

proposed solution approaches provide faster decision making. Moreover, we can 

enumerate several benefits of using the proposed models and solution approaches in 

terms of operational and tactical level. Operational level consists of day to day 

activities which are repeated periodically, such as daily, weekly and monthly. The 

activities require be well organized because of the usage of production resources 

which are mostly common and shared. When it comes to achieve cutting costs, 

raising outputs, speeding up processes, increasing operation volumes, cycle time 

reduction, productivity improvement, quality improvement, it is inevitable to use the 

proposed reliable and quick optimization approaches. Tactical level guide control 

and coordination of these allocated resources. The proposed optimization approaches 

support the management process by providing summarized information and reports 

which are closely connected with better resource management, improved decision 

making and planning, performance improvement. 

 

7.1 Summary and Concluding Remarks 

 

In this thesis, we have studied planning and scheduling problems in supply chain 

environment within process industry. In Chapter 2, a review on quantitative 

operations research literature is studied to reveal major trends of process industry and 

to explore research opportunities. We identify the characteristics that a model should 

have to address adequately in dairy SCM planning needs. The reviewed research is 

classified by problem types based on the solution approaches. Future research 

directions are stated with respect to different perspectives (i.e., multi-stage 

production planning, sustainability, integrated production-distribution planning and 

scheduling, single and multi-objective, uncertainty, alternative solution techniques, 

http://tureng.com/search/be%20closely%20connected%20with
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postponement and decoupling point theory perspectives). According to these 

concluding remarks of the Chapter 2, the following studies are organized.  

 

In Chapter 3, a production allocation and distribution planning problem is 

considered in the soft drink industry. We introduce a MILP model and propose the 

MIP based rolling horizon heuristics. For a realistic solution, operation time is taken 

into account as a stochastic parameter and adjusted according to a simulation model. 

For determining operation time, probability density of machine failures and repair 

times are considered in the simulation model. For the computational performance 

tests, randomly generated demand figures for the three granularity categories and 

different capacity loads are examined to compare the standard MIP procedure and 

MIP based heuristic approaches.  

 

The concluding remarks of Chapter 3 are; (i) the F&O heuristic yields the best 

solution, (ii) hybrid method integrate the best capabilities of MILP model, (iii) 

simulation model leads to more realistic planning solutions, (iv) the hybrid 

methodology merges the advantages of these two distinct modeling techniques 

 

In Chapter 4, an integrated production planning and scheduling problem is 

considered in dairy industry. The problem is motivated from a two-stage semi-

continuous set type yoghurt production process and formulated as a MILP model. 

The objective function of the MILP model aims at minimization of the total cost 

considering a shelf life dependent loss function. The model formulation is introduced 

to represent the planning and scheduling decisions under consideration of the shelf-

life restrictions, sequence dependent changeovers, product dependent machine 

speeds, demand due dates, regular and overtime working hours, and delivery to the 

DCs. The key limitation of the overall MILP solution approach lies in the large 

computational times that are mainly due to large number of integer variables related 

with planning decisions, as well as binary setup variables triggered with big M 

constraints for scheduling decisions. In our approach, the integrated planning and 

scheduling problem is divided into two distinct sub-problems. The sub-problems are 
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solved by the decomposition heuristic. A hybrid MILP/CP hybrid approach is 

proposed.  

 

The concluding remarks of Chapter 4 are; (i) the hybrid approach exploits the 

complementary strengths of the MILP model (the accuracy in the planning level) and 

the CP model (the computational efficiency in the scheduling level) (ii) the 

decomposition heuristic achieves reasonable solutions, (iii) the hybrid approach 

outperforms the integrated MILP model with short computational times.  

 

In Chapter 5, a scheduling problem is considered in the make-and-pack 

production. The problem is motivated from a two-stage semi-continuous set type 

yoghurt production process. The problem formulated as a stochastic MILP model to 

deal with the uncertainty in the quality decay of intermediates. The objective 

function of the proposed model aims at minimization of the makespan. The model 

formulation is introduced to represent the scheduling decisions under consideration 

of the shelf-life restrictions, sequence dependent changeovers, product dependent 

machine speeds. The lifetime and rapid quality decay of intermediates have been a 

challenging issue as uncertain parameters affecting the makespan and the amount of 

waste. In our approach, the mathematical model describing the uncertain lifetime 

decides optimum schedules yielding minimum production makespan as an indicator 

of productivity of the production process. The simulation model mimics the 

production process and determines the waste to evaluate the proposed schedule as the 

result of MILP model. The major advantage of the proposed approach is its 

applicability to different dairy production processes (e.g., cheese, butter, ice cream). 

The flexibility originates from the mathematical model formulation providing an 

opportunity to deal the uncertain lifetime of intermediates, as well as the simulation 

model which can easily be modified to account for process specific operating 

conditions.  

 

The concluding remarks of Chapter 5 are; (i) In case the lifetime is considered to 

be long, there is a risk on packing spoiled products and transporting to customers. (ii) 

Otherwise, emptying the processing unit as soon as possible results in a long 
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makespan of production which may extend lead times to customers. (iii) The 

proposed approach helps to analyze the uncertainty on lifetimes of intermediates, 

thereby optimizing the production makespan to decrease the product waste.  

 

7.2 Future Research 

 

As a scope for future research, the computational efficiency of the rolling horizon 

heuristics proposed in Chapter 2 can be improved by integrating meta-heuristics and 

alternative hybrid approach using MILP and simulation techniques can be studied to 

deal with the stochastic characteristics of supply chain network problems. In Chapter 

3, non-identical packaging lines can be considered to enhance the problem. A 

feedback mechanism aside from linkage capacity constraints can be investigated for 

the proposed hybrid methodology. Alternative solution techniques (e.g., stochastic 

programming and simulation) dealing with the stochastic and dynamic nature of 

dairy supply chains can be studied with various key characteristics of sustainability 

issues. In Chapter 4, a make-and-pack production consisting of multiple mixing units 

and packaging lines combinations can be considered to enhance the problem.  MILP 

based heuristics (e.g., rolling horizon techniques such as F&R and F&O) and 

decomposition algorithms (i.e., using the complementary strengths of MILP and CP 

models) can be investigated to improve the computational efficiency of the proposed 

model.  
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