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DATA MINING AND KNOWLEDGE DISCOVERY IN MEDICAL 

INFORMATION SYSTEMS 

 

ABSTRACT 

 

 Hospital Information Management Systems are used in all public and private 

hospitals. Valuable data which is obtained from these big databases, where updated 

data are collected continuously during all day, is used for only some necessary 

reports and queries inside of the corporation, and this data may not be considered for 

an academic study, because it is not held as a clean data warehouse. In this thesis, it 

is underlined that this data should be an open source with standard protocols under 

definite boundaries for academic studies in order to supply the improvement of 

medical research, and it is mentioned that how this data is processed and valuable 

patterns are obtained.   

 

There are studies about three branches, “medical laboratories”, “head and neck 

cancers” and “nutrition and diets” in this thesis. For these three branches, new 

information systems have been implemented by using the technologies of MSSQL 

database and ASP.NET with C# programming languages. Thus, it has supplied to 

collect clean and processable instances in them and, the technique of knowledge 

discovery and data mining was able to be applied for these information systems by 

using different algorithm approaches. 

 

In the studies, clustering algorithms from data mining techniques have been 

implemented with different approaches and firstly, these algorithms have been used 

to analysis laboratory data sets which necessary permissions have been obtained to 

use. Secondly, head and neck cancer instances, which necessary permissions have 

been obtained to use, too, have been analysed by using clustering algorithms with 

different approaches. Lastly, the data set of nutrition and diets is optimized by hybrid 

quantum genetic algorithm. 
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Improved clustering algorithms have been compared with self-organizing map, k-

means++ algorithms and its different approaches. Moreover, improved hybrid 

quantum genetic algorithm has been compared with traditional genetic algorithm and 

quantum genetic algorithm. As a result, the patterns, which have higher accuracy and 

performance than the traditional approaches, have been obtained.  

  

Keywords: Medical information systems, data mining and knowledge discovery, 

medical information systems, clustering algorithms, classification algorithms, 

mapping algorithms and hybrid quantum genetic algorithm. 
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TIBBİ BİLİŞİM SİSTEMLERİNDE VERİ MADENCİLİĞİ VE BİLGİ KEŞFİ 

 

ÖZ 

 

Hastane Bilgi Yönetim Sistemleri kamu ve özel hastanelerinin tamamımda 

kullanılmaktadır. Yirmi dört saat kesintisiz olarak yeni tıbbi verilerin kaydedildiği bu 

geniş veri tabanlarında, biriken bu değerli veriler günümüzde sadece kurum içinde 

gerekli raporlama ve sorgular için kullanılmakta ve temiz veri ambarları şeklinde 

tutulamadığından her hangi bir akademik çalışma için değerlendirilemediğine tanık 

olmaktayız. Bu tezde tıbbi verilerin belirli sınırlar dâhilinde ve standart protokoller 

ile akademik çalışmalar için açık kaynak olması gerektiğine vurgu yapılacak, 

gerçekleştirdiğim tıbbi bilişim sistemleri ve tıbbi uygulamalarda bu verilerin işlenip 

nasıl kıymetli sonuçların elde edilebileceğinden bahsedilecektir.  

  

Tezdeki çalışmalar “tıbbi laboratuarlar”, “yüz ve boyun kanserleri” ve “beslenme 

ve diyet” alanları üzerine yapılmıştır. Bu üç alan için MSSQL veri tabanı ve C# 

programlama dili ile ASP.NET kullanılarak yeni bilişim sistemleri geliştirilmiştir. 

Böylece, temiz ve işlenebilir verilerin bu sistemlere toplanması sağlanmış ve veri 

madenciliği ve bilgi keşfi tekniği bu bilişim sistemleri için farklı algoritma 

yaklaşımları ile uygulanabilmiştir. 

 

Çalışmalarda veri madenciliği tekniklerinden farklı yaklaşımlara sahip kümeleme 

algoritmaları geliştirilmiştir. İlk olarak, bu algoritmalar etik kurul izinleri alınmış 

laboratuar verilerinin analizi için kullanılmıştır. İkinci olarak, yine etik kurul izinleri 

alınmış yüz ve boyun kanser verilerinin analizi için farklı yaklaşımlı kümeleme 

algoritmalar kullanılmıştır. Son olarak beslenme ve diyet veri kümesi melez kuantum 

genetik algoritması ile optimize edilmiştir. 

   

Geliştirilen kümeleme algoritmaları kendi kendini düzenleyen haritalar, k-

ortalama++ algoritmaları ve onların farklı yaklaşımları ile karşılaştırılmıştır. Bunun 

yanında, geliştirilmiş melez kuantum genetik algoritması, geleneksel genetik 

algoritma ve kuantum genetik algoritma ile karşılaştırılmıştır. Sonuç olarak da 
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geleneksel yöntemlere nazaran daha hızlı ve doğruluğu daha yüksek desenler elde 

edilebilmiştir. 

 

Anahtar kelimeler: Tıbbi bilişim sistemleri, veri madenciliği ve bilgi keşfi, 

kümeleme algoritmaları, sınıflandırma algoritmaları, haritalama algoritmaları ve 

kuantum genetik algoritma. 
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CHAPTER ONE 

INTRODUCTION 

 

Medical information systems have very important data sources to analysis. There 

are lots of patients, and their test results, diagnosis and treatments in these large data 

sources. The technique of data mining and knowledge discovery needs large data 

sources to obtain consistent and accurate patterns; medical information systems fulfil 

this requirement exceedingly. This thesis study is about data mining and knowledge 

discovery over medical information systems.  

 

1.1 The Aim of the Thesis 

 

The major aim of this thesis is to point out that various data mining algorithms 

can be applied for various medical information systems which have important and 

hidden knowledge for human being’s healthcare. Another aim of this thesis is that 

running times of the data mining algorithms in medical information systems and 

accuracies of obtained consequences and patterns by data mining algorithms in 

medical information systems are very important for human being’s healthcare; 

therefore, this thesis aims to point out that some additional differences at operations 

in traditional data mining algorithms can increase accuracy of the consequences, and 

patterns and decrease running time. 

 

1.2 History and General Concepts 

 

Increase and simplified methods to access information is the main reason behind 

the late 20th and 21st centuries’ being called as communication era.  This is caused 

by rapid improvement in technologies and becoming widespread of information 

networks. Internet is the most important development that expedited this process is 

the Internet (Akan, 1999). 

 

In recent years, many factors that designate the life on earth has changed: 

Community structure, life style, production tools, products and services, type of 
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products have dramatically changed. The main production of the past, manpower has 

been replaced with brain power. Mechanicals equipment and factories have been 

replaced with tools and factories equipped with information technologies. The most 

important resource in the world is human being and the information generated by the 

human.  As the human and its scientific achievements have become more important, 

developed societies gave priority to the investment on human being rather than 

industry. Therefore, the concept of “people come first” emerged. These societies 

prefer marketing the information instead of industrial products. This provides them 

not only the societies have risk- and problem-free lives but also the opportunity to 

protect their rapidly contaminated environment.  As a result of these policies, there 

has been a dramatic increase in producing information (Musoğlu, 2000).  

 

Rapid improvements in medicine and information technologies result in 

collaboration and even parallel developments between these two disciplines. As 

scientific information gathered in medicine increases, information technologies plays 

an important role in health services management, data storage and sharing. In 

contemporary medicine, computers and computer controlled systems bring incredible 

extends to diagnosis and treatment, accelerates and significantly simplifies them. 

Correct, trustworthy and fast interpretations of complex and similar cases have been 

enabled by information technologies (Ay, 2009). Current data in medicine is huge 

and has vital importance. Big data in medicine has vital importance to analysis. 

Thanks to hospital information systems, this data is stored regularly. It is possible to 

benefit more from this database. Data mining studies on the data obtained from 

hospital and other medical databases can have an effective role for the specialists, 

hospital management and patients for better qualified health services (Kaya, Bulun, 

& Arslan, 2003). 

 

1.3 Statement of Thesis 

 

In this thesis, I studied clustering, classification and genetic algorithms to analysis 

data warehouses in various medical information systems. 
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Chapter 2 presents the descriptions of the major terms in data mining and 

knowledge discovery in medical information systems. 

 

Chapter 3 submits the aims of the studies, which explain in next chapters in detail. 

Motivation and the reasons of preferred algorithms are summarized. 

 

Chapter 4 provides a data mining application for a medical laboratory information 

system. A new approach, SOM++ is implemented and described in detail. This 

clustering algorithm is used for laboratory data as a case study. A manuscript 

describing this new algorithm in this chapter in detail, entitled “SOM++ Integration 

of Self-Organizing Map and K-Means++ Algorithms with The Sequential 

Assignment” has been submitted. 

 

Chapter 5 provides a knowledge discovery application to optimize food receipts to 

obtain "Mediterranean Diet" program. A new approach, hybrid quantum genetic 

algorithm is implemented for the optimal diet receipt according to the some personal 

information like height, weight, age, chronicle illnesses, and etc. it is described in 

detail. A manuscript describing this new optimization algorithm in this chapter in 

detail, entitled “Mediterranean Diet Optimization by Hybrid Quantum Genetic 

Algorithm” has been submitted.  

 

Chapter 6 provides a “head and neck cancers” automation and decision support 

system. A new mapping clustering approach is implemented and described in detail. 

Also, other new mapping clustering alternatives have been implemented and it is 

exposed that the regression mapping approach after weighted K-Means++ is the most 

successful at visualization of clusters and data points on coordinate system. This 

mapping approach points out that the visualization of the real distances between 

clusters and data points make decision diagnosis and treatments of patients easy.  

 

Chapter 7 presents general discussion, conclusion and the future of this work. 

 



4 

 

CHAPTER TWO 

MEDICAL DATA MINING 

 

2.1 Data Mining and Knowledge Discovery in Medical Information Systems 

 

Medical information science, standing at the intersection of medicine and 

information technologies, is a multidisciplinary branch of science that provides 

solutions to medical cases, decision techniques, biomedical data storage, and fast 

access to this data and optimum use of it. Medical information science also rationally 

investigates obtaining, compiling, sharing and application of medical information; 

determination of treatment and care methods for patients and improvement of these 

methods (Musoğlu, 2000; Saka, 2003). British Medical Informatics Society defines 

medical information science as: All the tools, abilities and knowledge that provides 

usage and sharing of available medical data in order to more effectively provide 

health services. As a branch of science has been recently developed and worldwide 

monitored by academic authorities. It investigates and teaches the methods of 

application of information technologies to health services, the meeting point of 

health, information technologies, psychology, epidemiology and engineering (ODTÜ 

Enformatik Enstitüsü Sağlık Bilişimi Anabilim Dalı, 2014). 

 

Considering the high number of studies that are conducted in medicine, the 

difficulty and delay of applying this literature to practice, medical information 

technologies can be seen an important method to overcome these problems. In 

modern world, medicine and healthcare is one of the fields in which the information 

is used the most. The most intense use of information in the modern world fields  As 

the measurement and visualization methods, testing, analysis and monitoring devices 

are improved and more widely used, medicine becomes richer and database and 

amount of information of patients increases fast. Medical information science and 

creation, compilation and sharing of these databases aim to determine and improve 

the treatment and care methods for patients (Ay, 2009; Kaya, Bulun, & Arslan, 

2003). 
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The change in the use of information in medicine has affected healthcare service 

providers and the use of computers, data sharing; teamwork and application based on 

information concepts have become more common. In addition to providing direct 

medical services such as supporting patient care services, evaluation of the quality of 

the healthcare services; computers have begun being more commonly used in 

managerial and academic functions such as decision making, management, planning 

and medical research (Kaya et al., 2003)  

 

Data mining is the search of rules and relationships in the existing large amounts 

of data, which enables us to make predictions for the future (Alpaydın, 2000; Güven, 

Bozkurt, & Kalıpsız, 2007). Improvements in the following four main areas: Result 

in new opportunities and research topics in finding data resources, questioning and 

compiling them, and doing analysis to produce information from them;  

 

1) Technological developments enable us to process more data in less time. 

2) Use of computers, therefore everyday more and more people work in digitally and 

produce more digital data. 

3) Information technologies and internet infrastructure rapidly widespread around the 

world and develop a life independent of location and time.  

4) Individuals adopt the culture of decision making with research and judgement 

based on scientific data. Data mining was born parallel to these improvements and is 

a hot research topic that focuses on finding undiscovered relationship among data 

(Güven et al., 2007).  

 

Data mining is the process of discover hidden patterns in big databases. The 

problems that could take long time to solve with using traditional methods can be 

solved in a faster way using process of data mining. The main goal of the data 

mining is to find out hidden patterns of data, to increase the value of data, and 

transform data into information. In today’s world, data mining is widely used in 

various areas such as banking, marketing, insurance, telecommunication, stock 

market, health, industry, science and engineering (Küçüksille, Taşdelen, & Aydoğan, 

2006).   
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Data mining and the knowledge discovery mainly consist of five stages:  

1- Data Selection 2- Pre-processing 3- Transformation/Reduction   

4- Data Mining 5- Interpretation/Evaluation (Baykal, 2006; Koyuncugil & 

Özgülbaş, 2009; Yıldırım, Uludağ, & Görür, 2008). 

 

 

Figure 1.1 Steps of data mining and knowledge discovery (Sqldatamining, 2015) 

 

2.2 Data Mining Methods 

 

Data mining methods are classified into three groups based on their functions: 

“Classification and Regression”, “Clustering”, and “Association Rules” (Güven et 

al., 2007; Özekeş, 2003). 

 

2.2.1 Classification and Regression 

 

Classification and Regression are the two data analysis methods that can produce 

important data classes or create models that can predict future inclination. While 

classification predicts categorical variables, regression is used to predict continuous 

variables. The main techniques that are used in classification and regression are: 

 

1) Decision Trees 2) Artificial Neural Networks 3) Genetic Algorithms  

4) K-Nearest Neighbour 5) Memory Based Reasoning  

6) Naive-Bayes (Güven et al., 2007; Kaya & Köymen, 2008; Özekeş, 2003). 
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2.2.2 Clustering 

 

Clustering is the process of grouping data.  Objects in the same group are more 

similar to each other than to those in other groups, clusters. Unlike classification, 

there are no data classes in clustering. In some applications, clustering can be pre-

process of classification. Choice of clustering algorithm that is going to be used 

depends on the data type and the purpose. The main clustering methods are:   

 

1) Partitioning methods  

2) Hierarchical methods  

3) Density-based methods  

4) Grid-based methods  

5) Model-based methods (Güven et al., 2007; Kaya & Köymen, 2008; Özekeş, 

2003).  

 

2.2.3 Association Rule Mining 

 

Association rule mining is used to find association relationships among big data 

groups. Since collected and stored data amounts increase day by day, health 

institutions want to find out association rules in databases. Figuring out interesting 

association relationships in huge records of medical operations, make decision 

making process of health institutions more effective. The most typical use of 

association rules is market basket analysis. This method, by finding out association 

relationships among the applications to the individuals that apply to the health 

institution, analyses the determination and improvement of treatment and care 

methods applied to the patients (Güven et a.l., 2007; Jonsdottir, Hvannberg, 

Sigurdsson, & Sigurdsson, 2008; Özekeş, 2003). 

 

2.3 Supervised and Unsupervised Data Mining 

 

Data mining methods can be classified into two main categories: Supervised and 

unsupervised data mining. When data mining has a well-defined certain objective, it 
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is called supervised data mining. If no special definition has been made for the 

objective and there is ambiguity, it is called unsupervised data mining (Baykal, 2003; 

Koyuncugil & Özgülbaş, 2009). 

 

Table 2.1 Supervised and Unsupervised Data Mining Methods 

 

The commonly used methods in data mining are regression models, k-Nearest 

Neighbour and clustering methods. In addition, decision trees, association rules, and 

neural networks are the new generation techniques in data mining (Baykal, 2003; 

Koyuncugil & Özgülbaş, 2009; Yıldırım et al., 2008). 

 

2.4 Challenging Problems (Major Issues) in Data Mining 

 

Data mining consists of databases to provide raw data as input. This causes 

problems if databases do not have dynamic, incomplete, large and clear data. The 

problems can be classified into three main groups:  

  

Limited Data: Databases are usually prepared for the purposes such as presenting 

properties or qualifications that provide simple learning. Thus, some properties that 

simplify learning task cannot be found. For instance, if the patient database does not 

include red blood cell test results of the patients, malaria diagnosis cannot be 

concluded from that database. Size of database: Database sizes are incredibly 

increasing. Database algorithm is created to deal with many small samples. Use of 

the same algorithm for hundreds times bigger samples requires to be very careful 

Supervised Data Mining Methods Unsupervised Data Mining Methods 

• Decision trees 

• Neural networks 

• K-Nearest Neighbour 

• K-means Clustering 

• Regression Models 

• Rule Induction 

• Hierarchical Clustering 

• Self-organized Maps 
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Although, having big samples is an advantage in terms of prediction accuracy, errors 

due to lack of care cannot be ignored.  

 

Outlying and missing data: The out of system errors that occur during data input 

or data collection are called noise. The higher the noise in data means the more 

difficult to obtain trustworthy results. To detect data with noise histogram, clustering 

and regression analysis are used. Missing data is caused by huge size or nature of the 

database. Things to do in case of missing data: Record or records that have missing 

data can be removed, the average value of the variable can be used instead of the 

missing data, or the best suitable value can be found out based on the existing data 

(Baykal, 2006; Akgöbek & Çakır, 2009). 

 

2.5 Literature Review in Medical Data Mining and Knowledge Discovery 

 

Chen et al. (2010) examined the risk factors of parenting stress. To do this, 

Taiwan Birth Panel Study research group obtained the data from a total of 206 

mother gave birth to baby in the National Taiwan University between April 2004 and 

January 2005. Data mining with decision tree C5.0 depicting the classification of risk 

factors is better than the regression model (Chen, Hou, & Chuang, 2010).  

 

Toussi et al. (2009) used a database of 463 type 2 diabetic patient records at 

Avicenne University Hospital in France to analyse physicians’ therapeutic decisions 

using C5.0 decision-tree learning algorithm. 11 and 13 out of the 46 rules from the 

analysis of the database in “the French National Guidelines for the management of 

type 2 diabetes were about the choice of the type of treatment and the choice of 

pharmaco-therapeutic class of each drug, respectively. Only a few rules were 

extracted due to very few numbers of patient records. Similarities between the 

extracted rules and those added to the new clinical guidelines were detected (Toussi, 

Lamyl, Toumelin, & Venot 2009). Phillips-Wren, et al. (2008) assessed the 

utilization of healthcare resources by lung cancer patients. This study has been 

carried on the records of 4365 out of 1.238.895 patients who were benefited from 

health insurance after 65 years old in 1999 and monitored by physicians between 
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1997 and 2001. It was reported that data mining with the combination of decision 

trees and artificial neural networks is better identifier and predictor than solely 

logistic regression (Phillips-Wren, Sharkey, Dy, 2008). 

 

Türe et al. (2009) aimed to determine a new prognostic index for the analysis of 

the subgroups of breast cancer. For this purpose, they conducted a study on 381 

breast cancer patients diagnosed between 1997 and 2007. The techniques of cox 

regression analysis and decision-tree algorithms (C&RT, CHAID, QUEST, ID3, 

C4.5 and C5.0) were performed to obtain new prognostic indexes. C4.5 decision tree 

method performed better than other decision tree techniques and cox regression to 

identify risk groups (Türe, Tokatlı, & Omurlu, 2009). 

 

 Hu et al. (2006) evaluated non-invasive intracranial pressure using a database 

composed of 30-minute long measurements of arterial blood pressure, intracerebral 

pressure, cerebral blood flow velocity, from nine traumatic brain injury patients to 

test database    The data warehouse for data mining is used to test and bigger data 

warehouse has been suggested for future works (Hu, Nenov, Bergsneider, & Martin, 

2006). 

 

Trifiro et al. (2009). In this study it is aimed to form a list of high priority 

pharmacovigilance cases in digital health records database.  Using a data mining 

method, signal detection, 23 adverse drug effects have been identified. The most 

common ones among these are detected as, bulla skin loss, acute renal failure, 

anaphylactic shock, myocardial infarction rhabdomyolysis. New information and 

problems are noted for the safety of the drug and the necessity of updating the list is 

underlined (Trifiro et al., 2009).  

 

Silva et al. (2008) predicted intensive care unit (ICU) organ failure using a 

database with a total of 25,215 daily records from 4425 patients in 42 European 

ICUs. Two data mining techniques: Multinomial logistic regression and artificial 

neural networks were compared. The technique of artificial neural networks was 
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found as the best performer and can be used to develop intelligent clinical alarm 

monitoring (Silva, Cortez, Santos, Gomes, & Neves, 2008).   

 

Jonsdottir et al. (2008) Data collected from 257 patients that are diagnosed with 

breast cancer have been used. A model selection tool (MTS) was used to find out the 

best algorithm for clustering. It was observed that all the algorithms performed 

similarly (Jonsdottir et al., 2008). Kahramanlı & Allahverdi (2008).  An artificial 

immunization algorithm, Opt-aiNET (OPTBP), is used to develop a rule out of 

artificial neural network (ANN), and a rule set is formed for heart diseases.   

 

The database of Clevealand Heart Diseases, which had 303 samples, was used 

from the University of California Irvine Machine Learning Repository and OPTBP 

was applied. This algorithm was noted to be successful; however, it is noted to 

generate too much data. It is indicated that a tool that would generate less data should 

be developed (Kahramanlı & Allahverdi, 2008).  

 

Doğan & Türkoğlu (2008) used the  On the biochemical test results of 472 

patients association rule technique of data mining was used, and a decision support 

system for hypertroid diagnosis was developed and tested.. One to one correlation 

between the results of the developed system and the decision of the physicians 

clearly conformed the effectiveness and reliability of the developed system (Doğan 

& Türkoğlu, 2008).    

 

Vepa (2009) used 45 normal, 42 systolic, 43 diastolic, total 130 heart beat records 

to classify heart murmurs. Data mining methods of support vector machine (SVM), 

k-nearest neighbour (KNN), multilayer perceptron (MLP) and neural networks were 

used. The best performance was obtained by SVM method and KNN method was the 

second (Vepa, 2009). 
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CHAPTER THREE 

MOTIVATION 

 

The major source of motivation in this thesis is to assemble two disciplines, 

computer science and medicine. Medical information systems achieve very rich 

inputs for computer sciences to analysis; that is, while deciding about diagnosis and 

treatments of patients by doctors, intelligent algorithms of data mining support 

doctors.  Accordingly, interdisciplinary studies have been implemented in this thesis. 

 

While literature researches about data mining algorithms, it has been observed 

that especially clustering algorithms and evolutional algorithms are open for 

improvement. Moreover, medical decision support systems involve high accuracy 

rate and performance. Thus, another motivation in this thesis has been to be able to 

notice implementing new approaches of traditional data mining algorithms. 

 

Hospital Information Systems are used actively in almost all hospitals in Turkey 

and World. However, these systems have not got a suitable background to collect 

clean and utility data. These systems have been implemented for routine 

governmental operations; therefore, doctors archive information of their patients as 

hard copies and independently from hospital information systems. Thus, doctors 

cannot deduct patterns and consequences from these archive papers for medical 

researches as it should be. As a result, another motivation in this thesis has been to be 

able to obtain clean data bases in clean information systems.   

 

There are studies about three branches, “medical laboratories”, “head and neck 

cancers” and “nutrition and diets” in this thesis. Next sections submit the reasons of 

choices of these three branches and implemented algorithms for these branches.     

 

3.1 Medical Laboratories 

 

Medical laboratories use a laboratory information system and collect all test 

results in data bases in this system.  Laboratory information system module, which is 
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a part of a hospital information system, covers the period from the acquisition of the 

medical data until the communication of this data. During this process, generated 

data is transferred to databases and safe stored in data centres. High number of 

patients and variability of the generated data, make data mining methods an effective 

way to process this data. Examination of the laboratory test results by an expert 

doctor makes it more possible to obtain meaningful information and provide 

treatment planning and management.  

 

The recent developments in laboratory techniques and the increase in the results 

obtained out of tested materials make it harder for expert doctors to make decisions 

about making similar treatment proposals for patients that have similar test results. 

To uncover meaningful and hidden information in huge data storages and increase 

the pace and quality of the health system, special systems should be developed and 

used by data mining techniques. 

 

3.2 Head and Neck Cancers 

 

Cancer (malignant tumour or malignant neoplasm), is a group of diseases 

involving abnormal cell growth. Over 100 different known cancers affect humans 

beings nowadays (National Cancer Institute, 2014). This group of diseases invade 

and spread to other parts of the body (World Health Organization, 2014; NCI, 2014); 

as a result, life-threatening destructions in body are occurred. Early diagnosis is very 

important at recovery. The rate of fully recovery at the group of “head and neck 

cancers” is observed as approximately 100% at early diagnosis (American Cancer 

Society, 2014). Therefore, the branch of “head and neck cancers” has preferred to 

analysis by data mining algorithms and a decision support system has been 

implemented.  

 

3.3 Nutrition and Diets 

 

A healthy diet is important for maintaining or improving general health, and 

preventing many chronic health risks, such as obesity, diabetes, hypertension and 
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cancer. A healthy diet involves consuming appropriate amounts of all nutrients and it 

needs to have a balance of fats, proteins, carbohydrates, energies, vitamins, and 

minerals. Nutrients can be obtained from many different foods, so there are various 

diets that may be considered healthy. Especially, Mediterranean Diet that we have 

mentioned in this approach is one of the healthiest diets applied worldwide. Its 

success was proved by several clinical studies.  

 

3.4 Clustering Algorithms 

 

Clustering algorithms are the base of the data mining analysis. The other data 

mining techniques, association rule mining and classification are fed back from 

clustering. If it is illustrated for classification; after a clustering analysis, a set 

of clusters is obtained and each data is assigned to a cluster in the set. That is to say, 

each data in data set attains a new feature as a target. This target feature is 

the cluster which the row data belongs to. As a result, classification algorithms can 

analysis this data set which is extended with a new feature after clustering analysis 

and classification analysis may need clustering analysis before itself.  

 

If another scenario is illustrated for association rule mining; association rule 

mining algorithms are interested in frequencies and equivalences of each row data in 

data set while mining the associations. Therefore, if there is a big data set to discover 

hidden secrets in it, association rule mining algorithms use a kind of 

clustering approach by considering equivalence between association combinations. 

The clusters, which have the highest frequencies according to threshold for example 

minimum support and confidence values, are presents as result associations. As a 

result, association rule mining is a significant sub-technique of clustering techniques 

for big data.  

 

3.4.1 SOM++ Integration of Self-Organizing Map and K-Means++ Algorithm 

 

In SOM, initial weight values are assigned randomly, method performance is 

sensitive to these values and it is prohibitively slow in large-scale applications. In 
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order to decrease the time complexity of SOM, I investigated different initialization 

procedures for optimal SOM and now propose K-Means++ as the most convenient 

method, given the proper training parameters. 

 

This approach proposes a new clustering algorithm SOM++, which is composed 

by K-Means++ method followed by SOM clustering. The algorithm consists of two 

stages First, using K-Means++ method to determine the initial weight values instead 

of assigning randomly, then clustering task is done in the second stage by SOM as an 

unsupervised clustering method. The experimental results show that the proposed 

algorithm, SOM++, is considerably better than the conventional SOM based 

algorithms in terms of runtime, the rate of unstable data points and internal error. It 

generates similar clustering results with other SOM based clustering algorithms, 

however the use of it requires the smaller training time (Doğan, Birant, & Kut, 

2013). 

 

3.4.2 PSOMDM Parallel SOM by using Division Method 

 

SOM algorithm requires the high execution times to train the map and this 

situation put a limit to its application in many high-performance data analysis 

application domains. For this reason, it is necessary to develop a parallel 

implementation of SOM by either partitioning the network among the processors 

(network partitioning) or by partitioning the input data across threads or multi-core 

processors (data partitioning). 

  

This novel approach aims for faster clustering by using of SOM, entitled 

PSOMDM (Parallel SOM by using Division Method). PSOMDM is different from 

existing architectures in that it divides the map area constantly and lower number of 

data is clustered on different neurons by parallel method. PSOMDM has many 

advantages over conventional SOM based methods. The most remarkable advantage 

of PSOMDM is in saving training time for clustering large and complicated data sets 

by using special division method. Furthermore, the proposed division method 
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provides higher accuracy by decreasing the number of unstable data points and 

internal errors (Doğan, Birant, & Kut, 2011). 

 

3.4.3 RMWC Regression Mapping with Weighted Clustering 

 

If there is not big data, association rule mining algorithms fails and cannot obtain 

any association. On such an occasion, clustering algorithms can use to analysis and 

mine the associations without consideration of the frequencies and equivalences, thus 

consequences as fuzzy associations can be obtained by explication centre points 

of clusters. In medical studies, a fuzzy structure is wanted by doctors, because certain 

decision about their patients must be done by the doctor.  

 

A new approach for clustering, RMWC makes a successful visualization of data 

on two-dimensional map by using weighted clustering approach. Weighted clustering 

returns a tree from C4.5 decision tree algorithm and weight values are assigned to 

attributes in the data set according to the distances from the root of the returned tree. 

(Doğan, Birant, & Kut, 2011). Thus, doctors see only a map where all instances or 

clusters are located according to their real distances between each other. Then, they 

can interpret the pattern without any certain resolutions.    

 

3.5 HQGA Hybrid Quantum Genetic Algorithm 

 

Hybrid Quantum Genetic Algorithm is a new approach for genetic algorithm to 

optimize a problem which has a big data set in a big search space. In this approach, 

this algorithm has been implemented to obtain the personal optimized menu. It is 

based on the techniques of Quantum Genetic Algorithm and also, has extra methods 

to obtain the sensitive solution of values of optimum energy, protein, fat, 

carbohydrate and inorganic compounds with vitamins.  
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CHAPTER FOUR 

LABORATORY INFORMATION SYSTEMS AND SOM++ 

 

4.1 Laboratory Information System 

 

Today, laboratory test results are used to control early diagnosis and cure of many 

diseases. Using hospital information systems, these results are saved to databases and 

sent to data storage systems. These results are saved to the databases of the 

information systems of the hospitals. Laboratory information system (LIS), which is 

a part of hospital information system (HIS), provides examination of medical 

samples for doctors to solve patient cases, and displays and communicates test 

results. LIS contains the data that forms the richest content of HIS. This content 

archive can be accessed through the data storage in the hospital data centres by 

authorization. In this chapter, it is aimed to process the data that has been generated 

from three months data set of a private laboratory by data mining techniques, and to 

create a special system that is believed to serve medicine. 

 

4.2 Medical Laboratory Tests 

 

The usual biological samples that are taken from patients to diagnose a disease or 

to monitor the success of a treatment are blood, urine and stool.  Medical laboratory 

tests are divided into 4 groups based on the samples taken and the type of 

examination 

 

1. Laboratory analyses performed on blood samples 

a. Biochemical tests; albumin, alkaline phosphatase, alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), acid phosphatase, amylase, bilirubins, 

iron, iron binding capacity, phosphorus, gamma-glutamyl transpeptidase (GGT), 

glucose, globulin, HDL-cholesterol, LDL-cholesterol, calcium, chlorine, cholesterol, 

creatinine, creatinine phosphokinase, creatinine phosphokinase isoenzymes, lactate 

dehydrogenase (LDH), potassium, sodium, transferrin, triglycerides, urea, uric acid.  
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b. Hematology tests; basophils, eosinophils,erythrocytes, lymphocyte, leukocyte, 

monocytes. 

c. Hormone tests; thyroid-stimulating hormone (TSH), triiodothyronine (T3), free T3, 

thyroxine (T4), FT4, estradiol (E2), progesterone, follicle-stimulating hormone 

(FSH), luteinizing hormone (LH), beta human chorionic gonadotropin (hCG), 

prolactin, testerone, dehydroepiandrosterone sulfate (DHEA-SO4).    

d. Tumor markers; alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), 

prostate-specific antigen (PSA), cancer antigen 15-3 (CA15-3), carbohydrate antigen 

19-9 (Ca19-9), cancer antigen 125 (Ca125), cancer antigen 50 (Ca50), cancer antigen 

72-4 (Ca72-4), neuron-specific enolase (NSE), squamous cell carcinoma antigen 

(SCC), beta-2 microglobulin, thyreglobuline.   

2. Urine and and feces screening tests   

a. Urine; bilirubine in urine, urine density, glucose in urine, blood in urine 

(hematuria), urine ketones, the pH of urine, protein in urine, urobilinogen.   

b. Feces; fecal occult blood, fecal parasites. 

3. Pregnancy test Human chorionic gonadotropin (HCG) level  

4. Culture tests Culture; sputum, throat, nose, fecal, eye, urine, ear, wound culture.  

 

Depending on the calibration of devices, the values of a healthy person in the 

results of above mentioned four main test groups are called as reference values.   The 

results that are within the interval of the reference values are classified and stored as 

normal, whereas higher and lower results are classified and stored as high and low 

respectively. Reference values vary deeding on the age and sex of individuals 

(Middle East Technical University Medical Center, 2014). 

 

4.3 Medical Laboratory Information System 

 

Dokuz Eylül University Centre Medical Laboratory uses the laboratory 

information system which has been implemented by a software team where I have 

been. This laboratory examines thousands of people every day and LIS collects 

thousands of test results. Also, all steps are followed by LIS from taking blood to 

confirmation tests results by expert doctors and they are recorded in LIS. This rich 
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database is precipitated to analysis by data mining algorithms significantly. Figure 

4.2 shows a sample interface from LIS.  

 

In the 3 months data sample of laboratory, in which medical samples are 

examined, there exist 39 properties and 650625 instances which belong to 26303 

individuals. Pre-processing covers, the selection of patients and tests, and assignment 

of values between 0 and 1 to the data obtained after this selection by using min-max 

normalization method. During the process of data selection out of data sets, the 

instances that have null value and or values between reference values are excluded. 

After pre-processing, the study has been carried on 39 properties belonging to 18781 

individuals. Since there is no identifying class information such as the result of the 

disease, unsupervised clustering method was selected.  

 

Self-Organizing Map (SOM) has been applied on a 600X600 map; therefore, all 

instances stretch on 180000 cells. Then, K-Means algorithm has been applied on this 

map. Figure 4.1 shows that the maps of applications. In this application, it has been 

observed that SOM with a 600x600 map takes too many running time approximately 

2 weeks; therefore, another approach as SOM++ instead of traditional SOM has been 

implemented and described in the next section in detail.  

 

 

Figure 4.1 Implementation of SOM on 600x600 map, then K-Means k = 3 on this map
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4.4 SOM++ Integration of Self-Organizing Map and K-Means++ Algorithm 

 

Cluster analysis is the process of grouping data into subsets such that each item in 

a cluster is more similar to the items in the same cluster than to the other items at the 

outside of the cluster. Generally, distance measures like Euclidean distance, 

Manhattan distance are utilized to evaluate the dissimilarity between data points. 

Cluster analysis is one of the most useful tasks in machine learning and data mining, 

and has been used in a variety of fields such as marketing, banking, medicine and 

telecommunication. It has been widely used in dimensionality reduction, information 

extraction, density approximation and data compression. 

 

The K-means algorithm (MacQueen, 1967) is the most commonly used 

partitioning cluster algorithm with its easy implementation and its efficient execution 

time. Self-organizing map (SOM) (Kohonen, 1990) is an unsupervised, well-

established and widely used clustering technique. 

 

K-Means++ algorithm gives more successful results than standard K-Means at 

accuracy and consistency (Arthur & Vassilvitskii, 2007). Because, the K-Means 

algorithm works only to find a local optimum and this local optimum often becomes 

poor by using random initial centre points; however, K-Means++ starts with rational 

initial points, thus K-Means++ approximates the best clustering space. Also, K-

Means++ outperforms at speed, too. K-Means++ guarantees O(logk) as the 

complexity time; however, K-Means has a complexity time as O(n
kd + 1 

logn), where  

k is the number of clusters, n is the number of data and d is the Euclidean distance 

between two clusters (Arthur & Vassilvitskii, 2007). 

  

4.4.1 Clustering Algorithms 

 

4.4.1.1 SOM 

 

SOM is an unsupervised neural network which enables clustering according to 

data similarities and learns the patterns within the data itself, without any external 

supervision and without preliminary knowledge of the process. SOM is composed of 
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multiple units called cells or “neurons” which can be further grouped into clusters 

using similarity measures. SOM consists of two layers of artificial neurons: an input 

layer and an output layer. The input layer is fed into feature vectors, so it is the same 

as the number of dimensions of the input feature vector. Output layer, also called the 

output map, is usually arranged in a regular two dimensional structure such that there 

are neighbourhood relations among the neurons. Every neuron in input layer is fully 

connected to every output neuron, and each connection has a weighting value 

attached to it. 

 

The major goal of SOM is to determine the suitable weight values for the neurons 

according to dataset. The count of these weight values is equal to the number of 

attributes in dataset and each weight value corresponds to an attribute. At the 

beginning of the SOM algorithm, these weight values in all neurons are initialized 

randomly. Secondly, the best matching unit as the winner neuron is found by 

calculating Euclidean distance from each weight to the chosen sample vector which 

consists of the weights set in one of neurons. After finding the best matching unit, all 

vectors of the SOM are updated by using Gaussian function. These processes are 

repeated until a certain number of iterations. The details of Gaussian function and 

SOM algorithm are given in Section 4.4.2. 

 

The complexity of SOM algorithm is O(NC), where N is the input vector size and 

C is the number of dataset presentation cycles.  N contains n
2
w as the multiply of the 

map size n
2
 and the number of weights w. C contains n

2
a as the multiply of the map 

size n
2
 and the number of attributes a. The number of attributes is equal to the 

number of weights; therefore, the complexity of SOM algorithm obtains O(N
2
) 

(Roussinov & Chen, 1998).  While simple SOM has been previously used in many 

applications, extended versions of SOM has also been proposed also proposed such 

as FSOM (Fast SOM) (Sagheer, Tsuruta, Maeda, Taniguchi, & Arita, 2006), 

ABSOM (Ant Based SOM) (Chi & Yang, 2006), and ESOM (Emergent SOM) 

(Poelmans, Elzinga, Viaene, Van Hulle, & Dedene, 2009). 
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4.4.1.2 K-Means and K-Means++ 

 

K-Means is a partitioning cluster algorithm by grouping n vectors based on 

attributes into k partitions, where k < n, according to the measure of Euclidean 

distance. The name of K-Means comes from the fact that k clusters are determined 

and the centre of a cluster is the mean of all vectors within this cluster.  

 

The main concept of this method is to define k appropriate centroids, one for each 

cluster. The algorithm starts with k randomly generated centroids, then assigns 

vectors to the nearest centroid using Euclidean distance and re-computes the new 

centroids as means of the assigned data vectors. This process is repeated over and 

over again until vectors no longer changed clusters between iterations. At the end of 

the algorithm, every object is assigned to the only one cluster. 

 

Similar to the other algorithms, K-means method also has some weaknesses. It is 

considered to be unstable; running the procedure several times gives several different 

cluster solutions, so multiple trials are necessary to determine better solution. In 

addition, it is difficult to specify the efficient number of clusters. Depending on its 

initial condition, the algorithm may be trapped in the local optimum. 

 

One of the most important issues in K-Means method is the initialization 

procedure that ultimately determines the number of iterations to run before stopping. 

Arthur and Vassilvitskii propose a specific way to choose centres for the K-Means 

algorithm, instead of generating randomly. They call K-Means++, which weighs the 

data points according to their squared distance squared from the closest centre 

already chosen. Through new seeding method, K-Means++ yields a much faster, and 

consistently finds better clusters than K-Means (Arthur and Vassilvitskii, 2007). 

 

When the performance of the K-Means++ algorithm were evaluated on four 

datasets and K-Means++ consistently outperformed K-Means, both by completing 

faster and by achieving a lower potential value. For example, on one dataset, K-

Means++ terminates almost twice as fast while achieving potential function values 
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about 20% better, on the larger dataset, it is obtained up to 70% faster and the 

potential value is better by factors of 10 to 1000. For this reason, I propose K-

Means++ algorithm in this approach, instead of K-Means. 

 

4.4.1.3 SOM + K-Means 

 

There have been a number of studies comparing SOM with K-Means in the 

literature. Different authors point out different results, in other words, no definitive 

results have emerged and conclusions seem to be ambivalent. Some authors (Watts &  

Worner, 2009) conclude that the quantization errors produced by K-means is 

consistently lower, the information entropy of the target clusters consistently higher 

and the computational efficiency of K-means is also many orders of magnitude 

greater than the corresponding values for SOM. However, some authors (Bação, 

Lobo, & Painho, 2005) conclude that SOM outperforms in terms of three measures: 

Quadratic error, mean classification error and the structural coherence of the groups. 

Therefore, algorithms should be evaluated them under specific conditions and 

compared particularly with different problems and tasks. 

 

In data analysis techniques, the capabilities of K-Means and SOM for clustering 

large datasets have already been confirmed in many studies. Even though these 

clustering methods have their superior features for cluster analysis, their combination 

as a two-stage method is generally much more powerful than individual methods. For 

this reason, applications based on SOM and K-Means as two-stage methods have 

also been proposed for different areas such as the computer security (Tjhai, Furnell, 

Papadaki, & Clarke, 2010), the healthcare (Leão, Neto, & Sousa, 2009), ecological 

modelling (Bedoya, Novotny, & Manolakos, 2009), and the financial sector (Deng, 

& Mei, 2010).  All these studies firstly apply SOM to produce the map, and then use 

K-Means method to further define the boundary between the data by clustering of the 

SOM neurons. Nevertheless, differently from all these studies, our approach 

proposes the exact opposite way. 
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Recently, performing K-Means method after usage of SOM was also studied for 

different purposes as examples of the emergency planning to deal with extreme 

events such as earthquake, flood and fire (Yang & Rong, 2008), clustering 

meteorological data (Khedairia & Khadir, 2008), the biological wastewater treatment 

process (Aguado, Montoya, Borras, Seco, & Ferrer, 2008), the identification of day 

types of electricity load (Benabbas, Khadir, Fay, & Boughrira, 2008), and clustering 

text documents (Xinwu, 2008). Our proposed algorithm, SOM++ is a general 

clustering algorithm; as a result, it can be used in many different applications for 

different purposes. 

 

In recent years, several studies have compared different SOM-based two-stage 

methods. For instance, while Souza et al. (Souza, Ludermir, & Almeida, 2009) 

compared SOMK (SOM+K-Means) with SOMAK (SOM + Ant K-Means), Chi & 

Yang (2008) compared both ABSOM (Ant-based Self-Organizing Map) with 

Kohonen’s SOM individually, and SOM+K-Means with ABSOM+K-Means. 

Besides, Chiu et al. (Chiu, Chen, Kuo, & Ku, 2008; Chiu, Kuo, & Chen, 2009) 

compares four approaches simple K-Means, SOM+K-Means, PSO+K-Means 

(Particle swarm optimization (PSO)) and PSHBMO (Particle Swarm Optimization 

with Honey Bee Mating Optimization). As another example, the study of Corrêa & 

Ludermir (2006) about the comparison of several SOM-based two-stage approaches: 

SOM, SOM+KM (K-Means), SOM+W.KM (Weighted K-Means), SOM+AY 

(proposed by Azcarraga and Yap) and SOM+W.AY (Weighted AY Method), in 

terms of classification accuracy and runtime. To the best of our knowledge, however, 

this approach is the first in performing K-Means method before training neurons by 

usage of SOM to determine the initial weight values of SOM. Moreover, differently 

from other applications, I propose the integration of SOM with K-Means++ instead 

of K-Means for faster clustering. 

 

4.4.2 SOM++ Algorithm 

 

The study of Su et al. shows that the initializing the weight values increases the 

performance of SOM (Su, Liu, & Chang, 2002). SOM++ shows that initializing the 
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weight values by K-Means++ (without K-Means clustering) increases the 

performance of SOM. Also, the study of Attik et al. mentions that the initializing the 

weight values by K-Means clustering increases the performance of SOM without any 

example or method (Attik, Bougrain, & Alexandre, 2005); SOM++ is a supportive 

and integral study of these studies with K-Means++ (without K-Means clustering) 

and a new sequential assignment algorithms. In this section, it is explained that our 

new algorithm SOM++, a two-stage clustering algorithm uses the combination of 

two data mining techniques, namely SOM and K-means++ clustering. SOM 

algorithm uses neurons for all points on its map and these neurons have weight 

values for all attribute values. Before showing the details of SOM++ algorithm, these 

weight values are indicated in the following part. 

 

4.4.2.1 Weight Values 

 

In SOM, input neurons are fully connected to output neurons, and each connection 

has a weighting value. In the initialization process of SOM, each neuron is associated 

with a random weight vector (wi = wi1, wi2, …, win), which has the same dimension 

(n) as the input vector (xi = xi1, xi2, …, xin). Using the Euclidean measure, distance 

between the input vector and the incoming weight vector of each output map neuron 

is calculated. The output neuron with the smallest distance is declared the winner. 

After that, neuron weights are subsequently updated according to Formula 4.1 using 

a neighbourhood function Formula 4.2, which minimizes the overall distance 

between the neuron itself and its neighbours. 

 

wij(t+1) = wij + h(t)(xi – wij)                                         (4.1) 

 

where wij(t) is the connection weight from input i to output neuron j at time t; xi is 

element i of input vector x, and h is the neighborhood function.  

 

h(t) = αGF                                                      (4.2) 

 

where α  is the learning rate; GF is the Gaussian Function  in Formula 4.3. 
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GF = exp(-∑║wui-cui║
2
/2ρ

2
(t))                                   (4.3) 

 

where ρ  is the neighbourhood width parameter and GF uses the Euclidean distance 

between the winner unit wu and the current unit cu. 

 

SOM method performance is sensitive to the randomly assigned initial weight 

values and it is prohibitively slowed in the large-scale applications. In order to 

decrease the time complexity of SOM, this paper proposes K-Means++ to determine 

the initial weight values, instead of random process. In this approach, K-Means++ 

centres are assigned as SOM weight values; thus, SOM will require fewer iterations. 

Since the K-means algorithm is more computationally efficient than SOM, the 

general solution will be faster.  

 

The proposed SOM++ is a two-stage algorithm, which is a combination of SOM 

and the initialization method of centres in K-means++. Figure 4.3 and Figure 4.4 

show pseudo codes for SOM++ algorithm. The algorithm starts to find the centre 

points for the all clusters by using the method of K-Means++ which initializes the 

centre points of the clusters. There must be two sets named as   and D. Set D collects 

the centres of all clusters during the first part of SOM++ (step 1 and step 6 in Figure 

4.3). Set   collects the distances between each data and each centre (step 2 in Figure 

4.3).  The distances are calculated by using the Euclidean Distance. According to 

sum of squares of distances in set, the centres are obtained (step 3-4-5 in Figure 4.3). 

After obtaining k centres in set D (step 7 in Figure 4.3), the second part of SOM++ is 

started (Figure 4.4). 

 

 After these steps, all centre points for all clusters are collected in a set. These 

centres have the attribute values and these values must initialize the weight values of 

neurons on the map of SOM++. However, the most suitable method must be decided 

for locating these initial weight values.  

 

If the locating method is not suitable according to the distances of neurons, the 

result of SOM++ is not different from the result of the standard SOM with the 
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random initialization (Comparing the error rates is given in Section 4.4.4).  

Therefore, a new sequence assignment algorithm is implemented by considering the 

distances between K centres in set. 

 

4.4.2.2 The Description of SOM++ Algorithm 

 

The proposed SOM++ is a two-stage algorithm, which is a combination of SOM 

and the initialization method of centres in K-means++. Figure 4.3 and Figure 4.4 

show pseudo codes for SOM++ algorithm.  

 

The algorithm starts to find the centre points for the all clusters by using the 

method of K-Means++ which initializes the centre points of the clusters. There must 

be two sets named as   and D. Set D collects the centres of all clusters during the first 

part of SOM++ (step 1 and step 6 in Figure 4.3). Set   collects the distances between 

each data and each centre (step 2 in Figure 4.3). The distances are calculated by 

using the Euclidean Distance. According to sum of squares of distances in set, the 

centres are obtained (step 3-4-5 in Figure 4.3). After obtaining k centres in set D 

(step 7 in Figure 4.3), the second part of SOM++ is started (Figure 4.4).  

 

 After these steps, all centre points for all clusters are collected in a set. These 

centres have the attribute values and these values must initialize the weight values of 

neurons on the map of SOM++. However, the most suitable method must be decided 

for locating these initial weight values. If the locating method is not suitable 

according to the distances of neurons, the result of SOM++ is not different from the 

result of the standard SOM with the random initialization (Comparing the error rates 

is given in Section 4.4.4).  Therefore, a new sequence assignment algorithm is 

implemented by considering the distances between K centres in set. 

 

Figure 4.4 and Figure 4.5 show the pseudo code of this sequence assignment 

algorithm. Firstly, the most different point in set D is calculated (step 1 in Figure 4.4) 

and according to the Euclidean Distance, a sorting operation is done by comparing to 

this outlier point. At the end of sorting operation, a new set which has sorted points 
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according to the least similar point is obtained (step 2).  The values in these points 

are assigned to the weight values of neurons as the initial values for SOM++ 

algorithm like the sequence in Figure 4.3 (step 3 in Figure 4.4). Before training 

operations in SOM++, the number of iteration is initialized as the number of total 

data (step 4 in Figure 4.4), because actually, the neurons on the map of SOM++ 

become trained at the beginning; therefore, the number of iteration must not start 

zero. The advantages of initializing of both the number of iteration and weight values 

of neurons with the values coming from K-Means++ are shown in the Section 4.4 

and 4.5 in detail. Finally, training operations of neurons starts by using the standard 

SOM algorithm (step 5 in Figure 4.4). 

 

The weight values become close to the final and decisive values by means of K-

Means++; on the other hand, it is not enough singly, because the single aim of SOM 

algorithm is not to do clustering of data correctly.  It is also a mapping algorithm; 

therefore, the places of the clusters win the importance in SOM algorithm. If locating 

of the weight values which come from the initializing method of K-Means++ is done 

randomly, the correct neuron cannot have the correct weight values, and the success 

of SOM++ algorithm is not realized certainly. In Section 4.4, the importance of the 

sequential assignment is tested with detail.  

 

Our sequential assignment algorithm needs the sorted values according to the least 

similar value to each other in set.  Then, locating operation starts from the neuron in 

[0, 0] which is the one of the furthest four neurons ([0, 0], [0, (n-1)], [(n-1), 0] and 

[(n-1), (n-1)] as n
2
 is the number of neurons) from the centre on the map, because the 

top element in sorted values is the least similar value. The next values after the least 

similar value are located like the sequence in Figure 4.5. The steps on the left and 

right sides are done to down and inner-cross directions. The steps on the top and 

bottom sides are done to left and inner-cross directions; however, the steps on the 

centre side are done mix-cross directions. Finally, the furthest values are located in 

the furthest neurons on the map. 



30 

 

  

Figure 4.3 a) Calculation of initial weight values of neurons (K-Means++ part) b) Initializing 

parameters part of SOM++ algorithm 
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Figure 4.5 Sequential assignment of the initial weight values which come from K-Means++ to 

neurons. 
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4.4.3 Experimental Studies 

 

The error rates and stability of the maps are tested by two datasets with 699 and 

19020 instances. These datasets have an attribute which puts the correct classes of all 

data. However, the datasets are used without this attribute while SOM clustering. 

Because SOM is a clustering algorithm and does not need a target attribute while 

training neurons. This attribute is used while testing the stability of the maps. 

 

After training neurons without the target attribute, all correct classes for each data 

are taken and because a neuron can contain more data than one, containing the 

elements of the same class or not could be showed with coloured neurons. For the 

visual compares, the dataset with 699 instances is used. This dataset contains 10 

attributes and it is about Breast Cancer Wisconsin (BCW) (Wolberg, 1992). There 

are two certain classes and each neuron which contains the elements of the same 

class is shown by a different colour on maps. 

 

On all maps in the following figures, there are three different coloured neurons as 

silver, grey and black. The silver and grey neurons show the correct clustered 

neurons. In the other words, these neurons contain the elements of the same class; 

however, the black neurons contain the elements of the different classes and the 

number of black neurons shows the instability of the map. 

 

For the tests of error rates, the dataset with 19020 instances is used together with 

the dataset with 699 instances. This dataset has also two certain classes and 11 

attributes. It is about MAGIC Gama Telescope (MGT) (Bock, 2007).  

 

For the tests of training time, the dataset with 18781 instances is used. This 

dataset contains the results of laboratorial tests in the Hospital of Dokuz Eylül 

University between years of 2008 and 2009.  These results are put in 390 attributes 

for each patient. This dataset is large for both the number of attributes and the 

numbers of instances. Therefore, the tests of training time are implemented with this 
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datasets to observe the performance of all combinations of SOM, K-Means and K-

Means++ algorithms.  

 

Finally, all compares and tests are done by the implementation which is written 

with C# programming language at Microsoft Visual Studio 2008 platform. 

 

4.4.3.1 Visual Compares 

 

The aim of the visual compares is to find the version of SOM algorithm which has 

both the least indecisive neurons and the best allocation classes visually. In these 

compares, all SOM algorithms for different versions use 5x5, 10x10, 15x15 and 

20x20 neurons. 

 

In Figure 4.6, there are 5x5 neurons for standard SOM algorithm and updating 

weight values is done 3x699 times to train neurons. As a result, the number of 

indecisive neurons is 11 and they locate in the middle of the map and between two 

cluster areas correctly. 

 

 

Figure 4.6 Standard SOM algorithm processes over 5x5 neurons until 3x699 iterations. 

 

In Figure 4.7, there are 5x5 neurons again for three versions of SOM algorithm. 

On the first map, the standard SOM algorithm is used with initialized weight values 

by the centre points which are returned from K-Means clustering. On the second 

map, standard SOM algorithm is used with initialized weight values by the initial 

centre points of K-Means++ without K-Means clustering. On the third map, standard 

SOM algorithm is used with the initialized weight values by the centre points which 

are returned from K-Means++ clustering. The weight values are located in neurons 

sequentially and updating weight values is done with 3x699 iterations. As a result, 

the number of indecisive neurons is near the number which comes from the standard 
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SOM and they locate in the middle of the map and between two cluster areas 

correctly. 

 

 

a                      b                   c 

Figure 4.7 SOM algorithm for each pattern processes over 5x5 neurons until 3x699 iterations. a) K-

Means + SOM, b) K-Means++ (without K-Means Clustering) + SOM, c) K-Means++ (with K-Means 

Clustering) + SOM. 

 

There is already a pre-treatment because of K-Means clustering, calculating the 

initial centre points of K-Means++ or K-Means++ clustering. Therefore, in Figure 

4.8, the iteration numbers at the beginning of SOM algorithms are changed from 0 to 

699 unlike the versions in the Figure 4.7. However, there are not any great changes 

for the number and places of the indecisive neurons. 

 

 

a                    b                     c 

Figure 4.8 SOM algorithm for each pattern processes over 5x5 neurons until 3x699 iterations. The 

number of initialized iteration is 699. a) K-Means + SOM, b) K-Means++ (without K-Means 

Clustering) + SOM, c) K-Means++ (with K-Means Clustering) + SOM. 

 

The visual compares are done with 10x10 neurons under the same conditions to 

catch changes. In Figure 4.9, there is the map for standard SOM algorithm and the 

number of indecisive neurons is 16. 

 

 

Figure 4.9 Standard SOM algorithm processes over 10x10 neurons until 3x699 iterations. 
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In Figure 4.10, standard SOM algorithm is used with initialized weight values by 

the centre points which are returned from K-Means clustering on the first map and 

K-Means clustering does not need all 10x10 clusters. Therefore, some neurons do not 

match with any data. The second and third maps shows that the standard SOM 

algorithms with the versions of K-Means++ have lower number of black neurons 

than the standard SOM. However, the distinction between them is not clear yet. 

 

 

a                          b                         c 

Figure 4.10 SOM algorithm for each pattern processes over 10x10 neurons until 3x699 iterations. a) 

K-Means + SOM, b) K-Means++ (without K-Means Clustering) + SOM, c) K-Means++ (with K-

Means Clustering) + SOM. 

 

In Figure 4.11, the same events in Fig 4.10 are implemented with the changing the 

number of initialized iteration of SOM as 699 to clear the distinction between the 

patterns of the standard SOM and the other versions. However, there is not any great 

changing with 10x10 neurons again. 

 

 

Figure 4.11 Standard SOM algorithm processes over 15x15 neurons until 3x699 iterations. 

 

The visual compares are done with 15x15 neurons under the same conditions to 

see changes better. In Figure 4.11, there is the map for standard SOM algorithm and 

the number of indecisive neurons is 13. 

 

The second and third maps in Figure 4.12 shows that SOM algorithms with the 

versions of K-Means++ have lower number of black neurons than the standard SOM. 
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This result is started to be seen clearer with 15x15 neurons. However, the distinction 

between new versions of SOM algorithm is not clear enough with 13, 10 and 11 

black neurons. 

 

 

a                               b                              c 

Figure 4.12 SOM algorithm for each pattern processes over 15x15 neurons until 3x699 iterations. a) 

K-Means + SOM, b) K-Means++ (without K-Means Clustering) + SOM, c) K-Means++ (with K-

Means Clustering) + SOM. 

 

In Figure 4.13, the same algorithms in Fig 4.12 are implemented with the 

changing the number of initialized iteration of SOM as 699 to clear the distinction 

between the patterns of the standard SOM and the other versions. Halving of the 

number of indecisive neurons is supplied by using K-Means++ without K-Means 

clustering and 15x15 neurons on the second map with 6 black neurons. 

  

 

a                                b                             c 

Figure 4.13 SOM algorithm for each pattern processes over 15x15 neurons until 3x699 iterations. The 

number of initialized iteration is 699. a) K-Means + SOM, b) K-Means++ (without K-Means 

Clustering) + SOM, c) K-Means++ (with K-Means Clustering) + SOM. 

 

The visual compares are done with 20x20 neurons under the same conditions to 

see the best distinction between all versions. 

 

In Figure 4.14, there is the map for standard SOM algorithm and the number of 

indecisive neurons is 9. 
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Figure 4.14 Standard SOM algorithm processes over 20x20 neurons until 3x699 iterations. 

 

On the first map in Figure 4.15, standard SOM algorithm is used with initialized 

weight values by the centre points which are returned from K-Means clustering on 

the first map and K-Means clustering does not need all 20x20 clusters. Therefore, 

many neurons do not match with any data. Also, the number of the black neurons is 

not lower than the number on the map of the standard SOM. 

 

On the second map in Figure 4.15, standard SOM algorithm is used with 

initialized weight values by the initial centre points of K-Means++ without K-Means 

clustering. The number of the black neurons is not lower than the number on the map 

of the standard SOM again. 

 

On the third map in Figure 4.15, standard SOM algorithm is used with initialized 

weight values by the centre points which are returned from K-Means++ clustering. 

The number of the black neurons is lower than the number on the map of the 

standard SOM; however, it cannot be seen clearly. Therefore, the iteration numbers 

at the beginning of SOM algorithms are changed as 699 in the following tests to 

catch the stability clearer. 

 

 

      a                             b                           c 

Figure 4.15 SOM algorithm for each pattern processes over 20x20 neurons until 3x699 iterations. a) 

K-Means + SOM, b) K-Means++ (without K-Means Clustering) + SOM, c) K-Means++ (with K-

Means Clustering) + SOM. 



38 

 

Because many neurons cannot match with any data, decreasing of the indecisive 

neurons cannot be observed clearly on the first map in Figure 4.16. The success by 

using standard SOM algorithm with initialized weight values by the initial centre 

points of K-Means++ without K-Means clustering for 15x15 neurons like on the 

second map in Figure 4.13 gets higher by using 20x20 neurons like on the second 

map in Figure 4.16. As a result, the number of black neurons is observed as only 2. 

The same observation is done with the standard SOM algorithm with initialized 

weight values by the centre points which are returned from K-Means++ clustering on 

the third map in Figure 4.16. The number of the black neurons is obtained as only 3. 

 

 

                                          a                            b                               c 

Figure 4.16 SOM algorithm for each pattern processes over 20x20 neurons until 3x699 iterations. The 

number of initialized iteration is 699. a) K-Means + SOM, b) K-Means++ (without K-Means 

Clustering) + SOM, c) K-Means++ (with K-Means Clustering) + SOM. 

 

4.4.3.2 Visual Compares According to The Sequential Assignment Algorithm at 

The Beginning Maps 

 

Before starting to train neurons in SOM algorithm, initializing the weight values 

of neurons by a pre-treatment supplies a stability to the map at the beginning 

immediately. In the following versions, the distinction, between the sequential 

assignments according to the similarities of the centre points which are returned from 

K-Means clustering algorithms and the random assignments of them, is observed, 

too. 

 

In Figure 4.17, the beginning map for the standard SOM algorithm with 20x20 

neurons is shown. The initial weight values are assigned randomly in the version of 

the standard SOM; therefore, the map is observed indecisively. 
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Figure 4.17 Standard SOM at the beginning phase by using 20x20 neurons without any training. 

 

On the first map in Figure 4.18, there are neurons with initialized weight values 

by the centre points which are returned from K-Means clustering. On the second 

map, there are neurons with initialized weight values by the initial centre points of K-

Means++ without K-Means clustering. On the third map, there are neurons with 

initialized weight values by the centre points which are returned from K-Means++ 

clustering. 

 

 

    a                             b                             c 

Figure 4.18 SOM is at the beginning phase by using 20x20 neurons without any training. a) K-Means, 

b) K-Means++ (without K-Means Clustering), c) K-Means++ (with K-Means Clustering). 

 

These weight values are not located by using the sequential assignment and these 

neurons on the maps are at the beginning phase of SOM algorithm. However, it is 

seem that the instability cannot be prevented in these examples.  

 

In Figure 4.19, the sequential assignment is used and neurons are located 

according to the similarities. The importance of the sequential arraignment is 

observed from the maps in Figure 4.19. 

 

It is observed at the visual tests that the successes of the new versions of SOM 

algorithm have more stability and less indecisive neurons than the standard SOM. 

Also, visually, it can be obtained that using K-Means++ without K-Means clustering 
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has a near success together with using K-Means++ with K-Means clustering for the 

sequential initialized weight values and initialized number of iteration of SOM as the 

number of data (699 in the previous examples).  

 

 

     a                           b                               c 

Figure 4.19 SOM is at the beginning phase by using 20x20 neurons without any training and with 

initialized weights by the sequential assignment. a) K-Means, b) K-Means++ (without K-Means 

Clustering), c) K-Means++ (with K-Means Clustering). 

 

The numerical comparisons of the new versions are done by calculating the error 

rates at the phase of training neurons in SOM algorithm. 

 

4.4.3.3 The Comparison of Indecisive Neurons for the Versions of SOM 

 

The indecisive neurons are shown by black neurons on the previous maps. They 

mean that irrelevant data instances are in same neurons on the map and if the number 

of these neurons is high, the map is not consistent. 

 

The numbers of indecisive neurons in the previous visual compares are collected 

like the graph in Figure 4.20. This graph shows that because the numbers of total 

neurons for the first 5x5 neurons are low, the numbers of indecisive neurons are low, 

too. Therefore, the numbers of indecisive neurons are higher for 10x10 neurons and 

the versions of SOM could be compared according to the numbers of the indecisive 

neurons for 10x10, 15x15 and 20x20 neurons. 

 

The steadiest algorithms are SOM++ (or SOM + K-Means++ (without K-Means)) 

and SOM + K-Means++ according to the graph. Both of these algorithms use both 

initializing iteration number as the number of data and the sequential assignment 

algorithm.  
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As a result, the most successful algorithm is SOM++ with the least number of 

indecisive neurons as 6 for 15x15 neurons and only 2 for 20x20 neurons. 

 

 

Figure 4.20 The comparison of indecisive neurons. 

 

4.4.3.4 The Error Rates 

 

The error rates are obtained for two different datasets with 699 (BCW dataset) and 

19020 (MGT dataset) instances. Table 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 are about BCW 

dataset, and Table 4.7, 4.8, 4.9 and 4.10 are bout MGT dataset. 

 

The error rates are taken until the end of third iteration (3 x number of data), 

because the values of rates decrease too less than zero after third iteration. The rates 

are calculated according to the Eq. 4.1. Actually, this equation updates the weights of 
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neurons on the map for each data; however, the differences between the previous 

values of the weights and the updated values of weights are calculated by Eq. 4.1 and 

the total of these differences gives the error rate.  

  

The compares between error rates are done both among themselves of the versions 

of algorithms according to the different numbers of neurons and the different 

numbers of iterations, and with other versions of algorithms according to the same 

numbers of neurons and the same numbers of iterations. Also, the compares among 

themselves of the versions are done according to initialized number of iteration at 

SOM algorithm as the number of data and initialized weight values by the sequential 

assignment.  

 

The first results of error rates are done by using the dataset BCW with 699 

instances. In Table 4.1, the error rates are collected by using the standard SOM. It is 

too remarkable that the error rates after the first iteration are over 1.0. The error rates 

do not decrease very much when the number of neurons increases and the error rates 

for 1x699 iterations and higher number of neurons come over 1.0. 

 

Table 4.1 Error rates for standard SOM according to the number of neurons and the number of 

iterations. (for BCW dataset) 

Iteration 

Number 

5x5 neurons 10x10 neurons 15x15 neurons 20x20 Neurons 

1
th 

11.65542 7.51092 6.39301 5.64841 

2
nd 

0.75749 0.15426 0.06443 0.04129 

3
rd 

0.07828 0.01595 0.00651 0.00344 

 

The following three tests are about the standard SOM algorithm with initialized 

weight values by the centre points which are returned from K-Means clustering. In a 

column in Table 4.2, there are the results for the sequential assignment; however, 

there is not the initialized number of iteration as the number of data. 

 

The test in b column in Table 4.2 is done without the initialized weight values by 

the sequential assignment and with the initialized number of iteration as the number 

of data, 699. The error rates get higher without the sequential assignments and the 

rate after the first 1x699 iterations is obtained over 1.0. 
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The test in c column in Table 4.2 is done with both the initialized weight values 

by the sequential assignment and the initialized number of iteration as the number of 

data, 699. The error rates get the lowest values under these conditions. When the 

number of neurons gets greater than 5x5, the error rates comes as undefined values; 

because K-Means clustering does not need all clusters for 699 data. Therefore, the 

error rates are taken for only 5x5 neurons in these three tests. 

 

Table 4.2 a) Error rates for K-Means + SOM with the initialized weights by the sequential assignment 

according to the number of neurons and the number of iterations. b) Error rates for K-Means + SOM 

with the initialized number of iteration as the number of total data (699) and without the initialized 

weights by the sequential assignment according to the number of neurons and the number of 

iterations. c) Error rates for K-Means + SOM with the initialized number of iteration as the number of 

total data (699) and the initialized weights by the sequential assignment according to the number of 

neurons and the number of iterations. (for BCW dataset) 

Iteration Number a (5x5 neurons) b (5x5 neurons) c (5x5 neurons) 

1
th 

0.23121 1.28005 0.07629 

2
nd 

0.03068 0.08460 0.01359 

3
rd 

0.00650 0.03274 0.00451 

 

The following three tests are about the standard SOM algorithm with initialized 

weight values by the initial centre points of K-Means++ without K-Means clustering. 

 

Table 4.3 Error rates for K-Means++ (without K-Means clustering) + SOM with the initialized 

weights by the sequential assignment according to the number of neurons and the number of 

iterations.  (for BCW dataset) 

Iteration Number 5x5 neurons 10x10 neurons 15x15 neurons 20x20 neurons 

1
th 

0.42720 0.49013 0.53707 0.27704 

2
nd 

0.01000 0.01873 0.01157 0.00993 

3
rd 

0.00518 0.00177 0.00056 0.00035 

 

In Table 4.3, there are the results for the sequential assignment without the 

initialized number of iteration as the number of data. The values are 0.42720, 

0.01000 and 0.00518 for K-Means++ without K-Means clustering + SOM while 

using 5x5 neurons. The values for K-Means + SOM are 0.23121, 0.03068 and 

0.00650 while using 5x5 neurons. K-Means++ without K-Means clustering uses all 

neurons; therefore, there are defined error rates for 10x10, 15x15 and 20x20 neurons. 

The values get lower while increasing the number of neurons. 
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The test in Table 4.4 is done without the initialized weight values by the 

sequential assignment and with the initialized number of iteration as the number of 

data as 699. The error rates get higher without the sequential assignments and the 

rate after the first 1x699 iterations is obtained over 1.0 like the results of K-Means + 

SOM. 

 

Table 4.4 Error rates for K-Means++ (without K-Means Clustering)+ SOM with the initialized 

number of iteration as the number of total data (699) and without the initialized weights by the 

sequential assignment according to the number of neurons and the number of iterations. (for BCW 

dataset) 

Iteration Number 5x5 neurons 10x10 neurons 15x15 neurons 20x20 neurons 

1
th 

1.61001 0.68055 0.46300 0.20368 

2
nd 

0.08828 0.01924 0.00785 0.00397 

3
rd 

0.03508 0.00733 0.00303 0.00152 

 

The test in Table 4.5 is done with both the initialized weight values by the 

sequential assignment and the initialized number of iteration as the number of data as 

699. The error rates get the lowest values like the error rates of K-Means + SOM 

under the same conditions. It is observed that when using K-Means, the value after 

the first 1x699 iterations is 0.07629; however, when using K-Means++ without K-

Means clustering, the value after the first 1x699 iterations is 0.28725. This difference 

is closed when the number of iteration increases. 

 

Table 4.5 Error rates for K-Means++ (without K-Means clustering) + SOM with the initialized 

number of iteration as the number of total data (699) and the initialized weights by the sequential 

assignment according to the number of neurons and the number of iterations. (for BCW dataset) 

Iteration Number 5x5 neurons 10x10 neurons 15x15 neurons 20x20 neurons 

1
th 

0.28725 0.05095 0.02495 0.00168 

2
nd 

0.00252 0.00058 0.00030 0.00023 

3
rd 

0.00125 0.00007 0.00003 0.00002 

 

The following three tests are about the standard SOM algorithm with the 

initialized weight values by the centre points which are returned from K-Means++ 

clustering. In “a” rows in Table 4.6, there are the results for the sequential 

assignment without the initialized number of iteration as the number of data. It is 

observed that the values for 5x5 and 10x10 neurons are close with the values for 

using K-Means++ without K-Means clustering under the same conditions. 
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The results in “b” rows in Table 4.6 are done without the initialized weight values 

by the sequential assignment and with the initialized number of iteration as the 

number of data, 699.  The error rates get higher without the sequential assignments 

and also, the rate after the first 1x699 iterations is obtained over 1.0; therefore, it can 

be determined that initializing weight values by the sequential assignment is 

necessary. 

 

The results in “c” rows in Table 4.6 are done with both the initialized weight 

values by the sequential assignment and the initialized number of iteration as the 

number of data. These error rates get the lowest values like the other error rates of 

the other versions (c column in Table 4.2 and Table 4.5) under the same conditions. 

 

Table 4.6 a) Error rates for K-Means++ (with K-Means clustering) + SOM with the initialized weights 

by the sequential assignment according to the number of neurons and the number of iterations. b) 

Error rates for K-Means++ (with K-Means Clustering)+ SOM with the initialized number of iteration 

as the number of total data (699) and without the initialized weights by the sequential assignment 

according to the number of neurons and the number of iterations. c) Error rates for K-Means++ (with 

K-Means clustering) + SOM with the initialized number of iteration as the number of total data (699) 

and the initialized weights by the sequential assignment according to the number of neurons and the 

number of iterations. (for BCW dataset) 

Types Iteration Number 5x5 neurons 10x10 neurons 

a 

1
th 

0.43723 0.47991 

2
nd 

0.05145 0.01509 

3
rd 

0.01086 0.00112 

b 

1
th 

1.81375 0.67474 

2
nd 

0.09418 0.01972 

3
rd 

0.03524 0.00777 

c 

1
th 

0.28313 0.08267 

2
nd 

0.00795 0.00029 

3
rd 

0.00298 0.00024 

 

Finally, it is observed that the error rates with using the all new combinations are 

lower than the error rates with using the standard SOM. However, the best 

combination which has the lowest error rates comes from the version with both the 

initialized weight values by the sequential assignment and the initialized number of 

iteration as the number of data. Also, it is observed that there is not a great 

distinction between the versions with K-Means++ without K-Means clustering and 

K-Means++ with K-Means clustering. When using K-Means for 5x5 neurons, the 
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value after the first 1x699 iterations in c column in Table 4.2 is 0.07629; however, 

when using K-Means++ without K-Means clustering for 5x5 neurons, the value after 

the first 1x699 iterations in Table 4.5 is 0.28725 and when using K-Means++ with K-

Means clustering for 5x5 neurons, the value after the first 1x699 iterations in c rows 

in Table 4.6 is 0.28313. 

 

The following results of error rates are done by using the dataset MGT with 19020 

instances to test the new versions of SOM for high number of data. In Table 4.7, the 

error rates are collected by using the standard SOM. It is too remarkable that the 

error rates after the first iteration (1x19020) are too high with the values of 

147.94405 for 5x5 neurons and 91.29000 for 10x10 neurons because of the random 

beginning of weight values. However, when the number of iterations gets higher, the 

error rates get lower and the values approach zero. 

 

Table 4.7 Error rates for standard SOM according to the number of neurons and the number of 

iterations. (for BCW dataset) 

Iteration Number 5x5 neurons 10x10 neurons 

1
th 

147.94405 91.29000 

2
nd 

46x10
-09 

74x10
-10 

3
rd 

24x10
-17 

42x10
-18 

 

The following three tests are about the standard SOM algorithm with initialized 

weight values by the centre points which are returned from K-Means clustering. In 

“a” rows in Table 4.8, there is the sequential assignment; however, there is not the 

initialized number of iteration as the number of data. This combination has more 

successful results than the standard SOM; however, after the first iteration (1 x 

19020), the error rates come high as 1.85885 for 5x5 neurons and 0.32190 for 10x10 

neurons. 

 

The next test in “b” rows in Table 4.8 is done without the initialized weight values 

by the sequential assignment and with the initialized number of iteration as the 

number of data as 19020. The error rates come very low from the first 1x19020 

iterations as 32x10
-09

 for 5x5 neurons and 50x10
-10

 for 10x10 neurons. However, the 
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assignment is not done sequentially in this test and if the sequential assignment is 

used for initializing the weight values, the error rates can become lower. 

 

Table 4.8 a) Error rates for K-Means + SOM with the initialized weights by the sequential assignment 

according to the number of neurons and the number of iterations. b) Error rates for K-Means + SOM 

with the initialized number of iteration as the number of total data (19020) and without the initialized 

weights by the sequential assignment according to the number of neurons and the number of 

iterations. c) Error rates for K-Means + SOM with the initialized number of iteration as the number of 

total data (19020) and the initialized weights by the sequential assignment according to the number of 

neurons and the number of iterations. (for MGT dataset) 

Types Iteration Number 5x5 neurons 10x10 neurons 

a 

1
th 

1.85885
 

0.32190
 

2
nd 

71x10
-11 

25x10
-11 

3
rd 

26x10
-18 

43x10
-19 

b 

1
th 

32x10
-09 

50x10
-10 

2
nd 

17x10
-17 

27x10
-18 

3
rd 

99x10
-26 

14x10
-26 

c 

1
th 

11x10
-10 

88x10
-12 

2
nd 

53x10
-19 

57x10
-20 

3
rd 

55x10
-28 

38x10
-28 

 

The test in “c” rows in Table 4.8 is done with both the initialized weight values by 

the sequential assignment and the initialized number of iteration as the number of 

data as 19020. The error rates have the lowest values as excepted. After the first 

1x19020 iterations, the error rate comes as 11x10
-10

 for 5x5 neurons and 88x10
-12

 for 

10x10 neurons. If these results are compared to the results of the standard SOM, it is 

observed that the error rate for 5x5 neurons comes from 147.94405 to 11x10
-10

 and 

the error rate for 10x10 neurons comes from 91.29000 to 88x10
-10

. Also, if the error 

rates after the second and third 1x19020 iterations are compared, it is seen that the 

success ascends near 1010 times. 

 

The following three tests are about the standard SOM algorithm with initialized 

weight values by the initial centre points of K-Means++ without K-Means clustering. 

In “a” rows in Table 4.9, there is the sequential assignment; however, there is not the 

initialized number of iteration as the number of data. The values under the same 

conditions are 1.30422, 44x10
-11

 and 37x10
-20

 for K-Means++ without K-Means 

clustering + SOM while using 10x10 neurons. The values for K-Means + SOM are 
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0.32190, 25x10
-11

 and 43x10
-19

 while using 10x10 neurons. Although the first results 

are too different, the difference between the other results is not great. 

 

The test in “b” rows in Table 4.9 is done without the initialized weight values by 

the sequential assignment and with the initialized number of iteration as the number 

of data, 19020. The error rates come very low from the first iterations (1 x 19020) as 

36x10
-09

 for 5x5 neurons and 55x10
-10

 for 10x10 neurons. These values are very 

close with the error rates of the version with K-Means clustering in b rows in Table 

4.8. The assignment is not done sequentially in this test and if the sequential 

assignment is used for initializing the weight values, the error rates can become 

lower like the error rates of the version with K-Means clustering in c rows in Table 

4.8. 

 

Table 4.9 a) Error rates for K-Means++ (without K-Means clustering) + SOM with the initialized 

weights by the sequential assignment according to the number of neurons and the number of 

iterations. b) Error rates for K-Means++ (without K-Means Clustering)+ SOM with the initialized 

number of iteration as the number of total data (19020) and without the initialized weights by the 

sequential assignment according to the number of neurons and the number of iterations. c) Error rates 

for K-Means++ (without K-Means clustering) + SOM with the initialized number of iteration as the 

number of total data (19020) and the initialized weights by the sequential assignment according to the 

number of neurons and the number of iterations. (for MGT dataset) 

Types Iteration Number 5x5 neurons 10x10 neurons 

a 

1
th 

1.34450
 

1.30422
 

2
nd 

13x10
-10 

44x10
-11 

3
rd 

38x10
-18 

37x10
-20 

b 

1
th 

36x10
-09 

55x10
-10 

2
nd 

20x10
-17 

30x10
-18 

3
rd 

11x10
-25 

17x10
-26 

c 

1
th 

49x10
-10 

28x10
-11 

2
nd 

25x10
-18 

16x10
-20 

3
rd 

13x10
-26 

15x10
-29 

 

The test in “c” rows in Table 4.9 is done with both the initialized weight values by 

the sequential assignment and the initialized number of iteration as the number of 

data, 19020. The error rates have the lowest values as excepted. After the first 

iterations (1 x 19020), the error rate comes as 49x10
-10

 for 5x5 neurons and 28x10
-11

 

for 10x10 neurons. If these results are compared to the results of the standard SOM, 

the great enhancement is observed that the error rate for 5x5 neurons comes from 



49 

 

147.94405 to 49x10
-10

 and the error rate for 10x10 neurons comes from 91.29000 to 

28x10
-10

. Also, if the error rates after the second and third 1x19020 iterations are 

compared, it is seen that the success ascends near 1010 times. If the results in c rows 

in Table 4.9 are compared to the results of the version with K-Means clustering, it is 

observed that the error rates are very close.  

 

The next three tests are about the standard SOM algorithm with the initialized 

weight values by the centre points which are returned from K-Means++ clustering. In 

“a” rows in Table 4.10, there is the sequential assignment; however, there is not the 

initialized number of iteration as the number of data. The values under the same 

conditions are 1.94547, 19x10
-10

 and 15x10
-18

 for K-Means++ with K-Means 

clustering + SOM while using 10x10 neurons. The values for K-Means + SOM are 

0.32190, 25x10
-11

 and 43x10
-19

 while using 10x10 neurons. Although the first results 

are too different, the difference between the other results is not great. The values for 

K-Means++ without K-Means clustering + SOM are 1.30422, 44x10
-11

 and 37x10
-20

 

while using 10x10 neurons. These values are closer to the results in “a” rows in 

Table 4.10. 

 

The test in “b” rows in Table 4.10 is done without the initialized weight values by 

the sequential assignment and with the initialized number of iteration as the number 

of data, 19020. The error rates come very low from the first 1x19020 iterations as 

33x10
-09

 for 5x5 neurons and 49x10
-10

 for 10x10 neurons. These values are very 

close with the error rates of the other two versions in b rows in Table 4.8 and Table 

4.9.  The assignment is not done sequentially in this test and if the sequential 

assignment is used for initializing the weight values, the error rates can become 

lower like the error rates of the other two versions in c rows in Table 4.8 and Table 

4.9. 

 

The last test in “c” rows in Table 4.10 is done with both the initialized weight 

values by the sequential assignment and the initialized number of iteration as the 

number of data as 19020. The error rates have the lowest values as excepted. After 

the first 1x19020 iterations, the error rate comes as 45x10
-11

 for 5x5 neurons and 
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31x10
-11

 for 10x10 neurons. If these results are compared to the results of the 

standard SOM, it is observed that the error rate for 5x5 neurons comes from 

147.94405 to 45x10
-11

 and the error rate for 10x10 neurons comes from 91.29000 to 

31x10
-11

.  

 

Table 4.10 a) Error rates for K-Means++ (with K-Means clustering) + SOM with the initialized 

weights by the sequential assignment according to the number of neurons and the number of 

iterations. b) Error rates for K-Means++ (with K-Means Clustering)+ SOM with the initialized 

number of iteration as the number of total data (19020) and without the initialized weights by the 

sequential assignment according to the number of neurons and the number of iterations. c) Error rates 

for K-Means++ (with K-Means clustering) + SOM with the initialized number of iteration as the 

number of total data (19020) and the initialized weights by the sequential assignment according to the 

number of neurons and the number of iterations. (for MGT dataset) 

Types Iteration Number 5x5 neurons 10x10 neurons 

a 

1
th 

1.52600
 

1.94547
 

2
nd 

11x10
-10 

19x10
-10 

3
rd 

42x10
-19 

15x10
-18 

b 

1
th 

33x10
-09 

49x10
-10 

2
nd 

18x10
-17 

28x10
-18 

3
rd 

10x10
-25 

15x10
-26 

c 

1
th 

45x10
-11 

31x10
-11 

2
nd 

45x10
-19 

51x10
-21 

3
rd 

20x10
-27 

21x10
-28 

 

Also, if the error rates after the second and third 1x19020 iterations are compared, 

it is seen that the success ascends near 1010 times, again. If the results in c rows in 

Table 4.10 are compared to the results of the other two versions in c rows in Table 

4.8 and Table 4.9, it is observed that the error rates are very close. As a result, 

according to the tests about the error rates, the combination with both the initialized 

weight values by the sequential assignment and the initialized number of iteration as 

the number of data must be used at K-Means clustering + SOM, K-Means++ 

(without K-Means clustering) + SOM and K-Means++ clustering + SOM. 

 

4.4.3.5 Training Times 

 

The tests of training times are implemented by using the dataset with 18781 

instances and 390 attributes. This large dataset is produced the distinctions on 

performance of trainings between simple SOM, SOM++ (with the initialization 
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method of K-Means++), SOM + K-Means++ and SOM + K-Means absolutely. The 

computer, which tests the performances of the algorithms for this large dataset, has 

3.24 GB of RAM and Intel(R) Core(TM) 2 Duo CPU E6550 @ 2.33 GHz. This 

average computer trains 600x600 neurons with this large dataset which has a large 

attribute set for three weeks. 

 

 

Figure 4.21 the error rates - time (day) graphic for the versions of SOM 

  

The Figure 4.21 shows that the simple SOM trains 600x600 neurons since the first 

moment; however, SOM++ (with the initialization method of K-Means++), SOM + 

K-Means and SOM + K-Means++ need a preparation time for SOM. Therefore, the 

error rates of SOM are observed stably until a few times for these versions of SOM. 

These times are less than an hour for SOM++, about 2 hours for SOM + K-Means++ 

and about 3 hours for SOM + K-Means, because there are lots of attributes and 

instances in the dataset. After these times, the simple SOM starts with initialized 

weight values and iteration values for these versions. 

 

At the end of 7 days, the simple SOM gives about 2.4 of the error rate; however, 

SOM++ gives a less error rate than 10x10
-7

 before 8 days. Also, the error rate for 

SOM + K-Means++ is taken a less error rate than 10x10
-7

 before 9 days and the error 
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rate for SOM+ K-Mean is taken a less error rate than 10x10
-7

 before 10 days. These 

results show that the versions of SOM have better performances than the simple 

SOM. However, SOM++ has the best performance. Because of the complexity of 

SOM algorithm as O(N
2
) where N is the input vector size (N is 390 x 18781 and  

N
2
= 53,649,618,668,100), SOM algorithm gets the result map with minimum error 

rates after some days. 

   

Also, it is observed that the initialization method of centre points at K-Means++ 

accelerates K-Means, because K-Means++ with all steps needs about 2 hours to 

cluster a large dataset. However, K-Means needs about 3 hours. 

 

4.4.4 Comparison Results 

 

The accuracy, about which of the SOM versions must be used, is taken by the 

visual tests. It is observed that the SOM versions of K-Means++ without K-Means 

clustering and with K-Means clustering have the least number of indecisive neurons 

in the visual tests.  

 

If the versions of K-Means++ with K-Means clustering and without K-Means 

clustering have a close success, a comparison of time can do the distinction between 

them and it is observed that K-Means++ (without K-Means clustering) + SOM has 

the best results. Consequently, our experimental results empirically prove that K-

Means++ (without K-Means clustering) + SOM (SOM++ with its short name) is best 

suited to data clustering due to its high speed and lower error rates as compared with 

other SOM based techniques. 

 

4.5 PSOMDM Faster Parallel Self Organizing Map by Using Division Method 

 

The Self Organizing Map (SOM) (Kohonen, 1985) is a neural network model that 

is capable of clustering high-dimensional input data. It produces a two-dimensional 

“feature map” that can be useful in detecting and analyzing features in the input 
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space. SOM model has been successfully applied in a number of disciplines 

including pattern recognition, image classification, and document clustering. 

 

Experimental results with various test data sets and comparison results show that 

PSOMDM can be efficiently used for clustering large datasets with SOM, somehow 

making technique move toward the more powerful unsupervised technique. In the 

experimental studies, PSOMDM is implemented by dividing data processing into a 

number of parallel threads and multi-core processors. The threads or multi-cores of 

parallel SOM model process over the same neurons by partitioning data. 

 

4.5.1 Literature Review 

 

The SOM performs clustering by means of unsupervised competitive learning. 

The neurons in the SOM are usually arranged in a two dimensional lattice and each 

neuron get information from the input layer and from the other neurons in the map. 

The SOM has the complexity O(NC), where N is the input vector size and C is the 

number of dataset presentation cycles. N contains n
2
w as the multiply of the map size 

n
2
 and the number of weights w. C contains n

2
a as the multiply of the map size n

2
 

and the number of attributes a. Usage of parallel SOM supplies lower complexity 

than O(N
2
). 

 

Several studies have been done related to parallel SOM by using different 

techniques and different architectures. Garcia et al. proposed a speculative approach 

which fits better than traditional Map-Partitioning strategies due to a better 

exploitation of the memory hierarchy (Garcia, Prieto, & Pascual-Montano, 2006). Yu 

et al. proposed a multistage modular self-organizing map (SOM) model which can be 

used for parallel web text clustering (Yu, Wang, & Lai, 2007). Gorgonio and Costa 

presents an approach for efficient cluster analysis in distributed databases using SOM 

and K-Means (Gorgonio & Costa, 2008; Gorgonio & Costa, 2010). They also 

proposed a SOM-based strategy for cluster analysis in distributed databases 

(Gorgonio & Costa, 2008). Another approach of parallel SOM is about mining 
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massive datasets by an unsupervised parallel clustering on a GRID (Faro, Giordanoa, 

& Maioranaa, 2011).  

 

Liping & Wensheng (2009) analyzed a variety of software and hardware 

environment of designing artificial neutral networks on clusters (Liping & 

Wensheng, 2009). Dagli et al. (2009) proposed a SOM model, called ParaSOM, 

which utilizes a feature called a cover region, in which individual neurons “cover” 

whole regions of the input space, and not just a single vector (Dagli, Bryden, Corns, 

Gen, Tumer, & Süer, 2009). 

 

Parallel SOM and its derivations were used in many different areas. For example, 

the study about dynamics of soil organic matter and mineral nitrogen in soil was 

given as an application which used parallel SOM for geological researches 

(Semaoune et al., 2011). The study of M. Takatsuka and M. Buis presents the parallel 

implementation of SOMs, particularly the batch map variant using Graphics 

Processing Units (GPUs) through the use of Open Computing Language (OpenCL) 

(Takatsuka & Bui, 2010). Parallel SOM was also used for the computer security, the 

healthcare, ecological modelling, the financial sector and other areas which need 

clustering.  

 

Differently from the previous studies, this study proposes a new SOM model 

which is implemented in a parallel way and using a different division method to gain 

greater computational efficiency. To the best of our knowledge, this study is the first 

on proposing a division the area into small areas for parallel processing and different 

SOM architecture as defined in the next section. 

 

4.5.2 PSOMDM Approach 

 

SOM consists of two layers of artificial neurons an input layer and an output 

layer. The input layer is fed into feature vectors, so it is the same as the number of 

dimensions of the input feature vector. Output layer, also called the output map, is 

usually arranged in a regular two dimensional structure such that there are 
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neighbourhood relations among the neurons. Every neuron in input layer is fully 

connected to every output neuron, and each connection has a weighting value 

attached to it. 

 

The major goal of SOM is to determine the suitable weight values for the neurons 

according to dataset. The count of these weight values is equal to the number of 

attributes in dataset and each weight value corresponds to an attribute. At the 

beginning of the SOM algorithm, these weight values in all neurons are initialized 

randomly. Secondly, the best matching unit as the winner neuron is found by 

calculating Euclidean distance from each weight to the chosen sample vector which 

consists of the weights set in one of neurons. After finding the best matching unit, all 

vectors of the SOM are updated by using Gaussian function. These processes are 

repeated until a certain number of iterations. The loop accrues over the all neurons. 

 

Usage of Parallel SOM supplies lower complexity than O(N
2
). According to the 

number of parallel threads or multi-core processors, parallel SOM accelerates the 

process. However, the threads or cores of parallel SOM process over the same 

neurons; therefore, the solutions which come from parallel SOM are at risk about 

lower accuracy. This new approach of parallel SOM by using division method has 

higher accuracy and speed. Because the random choosing the data in the training 

phase of SOM is abandoned and the data are chosen in the same order for each time. 

The accuracy problem is passed over at connecting the subparts of maps. 

  

This new approach firstly divides the area by four and this standard SOM 

processes for all little areas by parallel processing. Thus, datasets are divided for all 

processes and the complexity becomes lower. 

 

 PSOMDB consists of standard SOM (SSOM). This algorithm is used for 2x2 

neurons stably in each phase. PSOMDB starts training with SSOM with 2x2 neurons 

and usage of all dataset. After that, the recursive structure of PSOMDB is activated 

and recursively, SSOM for 2x2 neurons is processed with usage of divided datasets. 

The following Figure 4.22 shows the process-flow of PSOMDB for 4x4 neurons. 
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There are four parallel maps and they are trained for 2x2 maps. At the end of the 

PSOMDB, a 4x4 map is obtained after combining operation in the same order before 

splitting. 

 

 

 

Figure 4.22 The process-flow of PSOMDB for 4x4 neurons. 

 

The complexity of traditional SOM is O(N
2
). However, this formula is obtained 

by the assumption of the multiply of the map size and weight numbers equal to the 

multiply of the number of instances and the number of attributes in the dataset. 

Therefore, if N
2
 is splitted to NxC as N is the total size of map and C is the total size 

of dataset, the changes of SOM speed according to the different datasets and its 

effects appears in more detail. When this formula is splitted sub-components, these 

following formulas in Formula 4.4 and Formula 4.4 are obtained; 

 

T x A = C                                                        (4.4) 

 

M x W = N                                                       (4.5) 

 

where T is the number of instances in the dataset, A is the attribute number for an 

instance in the dataset, M is the total neuron number in the map and W is the total 

number of weight variables for a neuron in the map. 

 

T x A x M x W = α                                               (4.6) 

 

where α is the total time for traditional SOM algorithm. 
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When PSOMDB is processed for 4x4 neurons (M = 16), SSOM algorithm is 

processed for 2x2 neurons (M = 4) and all dataset in the first phase. Secondly, the 

datasets are divided into four pieces for each neuron according to the proximities to 

the weight values of neurons. All proximities calculations in the algorithm are done 

by Euclidean distance formula; 

Euclidean Distance = √∑ (Xk − Yk)2d
k=0                                (4.7) 

 

Four pieces of dataset are used for training by SSOM algorithm in parallel.  

Traditional SOM is processed for 2x2 neurons (M = 4) for each piece again. After 

these pieces are trained, these pieces are joined and the map with 4x4 neurons is 

obtained. The process time calculation is done the following formulas 

 

T x A x
 M

2x2
 x W =

T x A x M x W

4
= β                             (4.8) 

 
T 

4
x

 A x M x W

4
=

T x A x M x W

16
= σ                          (4.9) 

 
5 x T x A x M x W

16
= σ + β                                  (4.10) 

 

If it is assumed that SSOM is processed for all dataset and 4x4 neuron, process 

time of SSOM is found by Formula 4.6. For 4x4 neurons, PSOMDB is processed for 

2x2 neurons firstly and the process time of this phase is calculated by Formula 4.7. 

The result shows that this phase is equals to quarter of SSOM. However, PSOMDB 

continues to be trained for 4x4 neurons and in parallel and for four pieces of datasets, 

PSOMDB is processed for 2x2 neurons again.  

 

The process time of this phase is calculated by Formula 4.8. Totally, the process 

time is calculated by Formula 4.9 and it shows that PSOMDB takes less time than 

SSOM as 5/16 times or nearly 1/3 times. This difference is kept even if the size of 

the dataset gets larger. Also, if the map size gets larger, new components add to 

Formula 4.6 and because the dataset is divided again and again, these process times 

are approximate to zero a lot like. Thus, this difference is kept. Theoretically, this is 
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possible; however, the machine, where PSOMDB is processed, must have enough 

numbers of cores to supply the parallel processing. 

  

In section 4.5.3, experimental studies, these formulas are compared to the results 

when the real world datasets are used for PSOMDB. 

 

4.5.3 Experimental Studies 

 

Our proposed approach was proved by three different datasets from UCI machine 

learning (Lichman, 2013) and successful results are observed. The datasets are “Iris”, 

“CPU” and “Segment- challenge”. These datasets are for classification operation; 

however, for accuracy tests, clustering algorithms are tested by usage of 

classification datasets. Because training phase takes the dataset without the target 

attribute, then test phase compares the derivation of pattern to the correct values in 

target attribute. 

 

“Iris”, “CPU” and “Segment-challenge” have different features: Iris is a small-

sized dataset. It has 150 instances and 5 attributes. The last attribute is the target 

attribute; therefore, this column is deleted in the training phase. Thus, PSOMDB is 

trained with 4 attributes. CPU is a middle-sized dataset. It has 209 instances and 7 

attributes. Like the content in the Iris dataset, the last attribute is the target attribute; 

therefore, training operation of PSOMDB is implemented without this column.  The 

third dataset, Segment-challenge is a larger dataset. It has 1500 instances and 21 

attributes. Like the content in the other two datasets, the last attribute is the target 

attribute and PSOMDB is trained with 20 attributes. 

 

PSOMDB and SSOM algorithms are implemented in Visual Studio 2010 platform 

by usage of C# programming language. The implementation gives the results about 

speeds as Milliseconds with the result map. The comparison of result maps shows 

that there are the same result maps with the same weight values. Therefore, the 

accuracy does not change with PSOMDB. However, it is observed that the 

performance of PSOMDB is better than the performance of SSOM. 
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Table 4.11 shows that there are three different datasets as Iris, CPU and Segment 

challenge and two different clustering algorithms as PSOMDB and SSOM. The 

algorithms are processed for 4x4 neurons. The performance results of PSOMDB are 

given for all components. The first five rows in Table 4.11 are results for PSOMDB 

and the last row is the results for SSOM because SSOM is processed for 4x4 neurons 

at one phase. However, the results of PSOMDB are taken for 2x2 neurons firstly. 

Then, for each cell, {(0,0),(0,1),(1,0),(1,1)}, PSOMDB is processed in parallel and 

for each cell, different results are obtained.  

 

The process time of the cell, which takes the biggest time, determines the total 

process time. For example, (0,1) cell for Iris takes the biggest time as 376 ms, (1,0) 

cell for CPU takes the biggest time as 641 ms and (0,1) cell for Segment-challenge 

takes 3021 ms. Finally, Table 4.11 shows that the total performances for each 

datasets are more successful than the performances of SSOM.  

 

Table 4.11 The speed times of PSOMDB and SSOM for three datasets (Iris, CPU and Segment-

challenge) as millisecond 

Datasets Iris CPU Segment-challenge 

2x2 map calculation (ms) 441 747 3427 

(0,0) cell calculation for 2x2 map (ms) 353 490 2990 

(0,1) cell calculation for 2x2 map (ms) 376 562 2986 

(1,0) cell calculation for 2x2 map (ms) 336 641 3021 

(1,1) cell calculation for 2x2 map (ms) 339 454 2998 

Total time (ms) 817 1388 6448 

SSOM (ms) 1784 2755 11870 

 

The process time of the cell, which takes the biggest time, determines the total 

process time. For example, (0,1) cell for Iris takes the biggest time as 376 ms, (1,0) 

cell for CPU takes the biggest time as 641 ms and (0,1) cell for Segment-challenge 

takes 3021 ms. Finally, Table 4.11 shows that the total performances for each 

datasets are more successful than the performances of SSOM. 
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Figure 4.23 Speeds of SSOM and PSOMDB for UCI datasets as Milliseconds. 

 

Figure 4.23 shows that PSOMDB is more successful than traditional SOM 

because the performances decrease nearly half and half. For Iris dataset, the process 

time decreases from 1784 to 817, for CPU dataset, the process time decreases from 

2755 to 1388 and for Segment-challenge dataset, the process time decreases from 

11845 to 6448. The most important gain is that when there is a large dataset, 

PSOMDB increases the training performance and gives the same result map in less 

time. 
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CHAPTER FIVE 

MEDITERRANEAN DIET OPTIMIZATION BY HQGA 

 

5.1 Diet Optimization 

 

Dietary nutrient needs depend on age, sex, weight, and height. Aim of this 

approach is offering an optimized Mediterranean dietary menu specific to a person 

whose age, sex, weight, height, anamnesis information, eating habits, and daily 

activities are known. A modified version of Hybrid Quantum Genetic Algorithm has 

been developed to generate an optimized menu which supplies daily nutrient needs 

by offering minimum amount of foods without unnecessary consuming. There are a 

lot of different approaches to obtain an optimized menu in literature (Lv, 2009; Mino 

& Kobayashi, 2009; Pei & Liu, 2009; Wang, Lee, Hsieh, Hsu, & Chang, 2009), and 

they are compared with our approach in Section 5.7. Diet optimization methods of 

Hybrid Quantum Genetic Algorithm have been implemented as a WCF web service. 

The expert system application which calls the methods of the WCF web service has 

been implemented as an ASP.NET web site and has been published on a web server 

(The-mediterranean-diet. Retrieved May 01, 2015). All implementations of 

algorithms have been coded on the Visual Studio 2013 platform.   

 

5.2 Mediterranean Diet 

 

The Mediterranean diet has been consumed traditionally in the Mediterranean 

region for thousands of years. This diet is patterned as an intangible cultural heritage 

of Italy, Portugal, Spain, Morocco, Greece, Cyprus and Croatia by UNESCO in 

2013. The potential health benefits of the Mediterranean diet were initially observed 

in the Seven Countries Study in the early 1950s and it formally described by Keys in 

the 1960s (Keys et al.,1986).  

 

The traditional Mediterranean diet is known to be one of the healthiest dietary 

patterns in the world, is characterized by a high intake of virgin olive oil, fruits, 

vegetables, other plant proteins and fibers (walnuts and legumes), unrefined whole 



62 

 

grains, and fish; a moderate intake of dairy products, eggs, and lean meats; moderate 

wine consumption with meals; and low red meat, processed meats, refined 

carbohydrate, and sweet intake (Trichopoulou, 2001; Trichopoulou & Lagiou, 1997; 

Willett et al., 1995). This cultural model for healthy eating is presented graphically 

as pyramid in Figure 5.1. Total fat in this diet is 25% to 35% of energies, with 

saturated fat at 8% or less of energies.  

 

 
Figure 5.1 Mediterranean diet pyramid (Mediterranean diet pyramid, 2009) 

 

It is a nutritionally balanced diet including B-complex vitamins, vitamins A and 

D, polyunsaturated fatty acids (PUFA), flavones (phytochemicals) and other 

antioxidants which are all known to have many beneficial effects including anti-

inflammatory, anti-carcinogenic activities and cardio-protective and neuro-protective 

effects. In addition to its functionally active ingredients, since it has also low energy 

content, this style nutrition has been shown to be effective in weight loss in obese 

population (Roswall et al., 2014). 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Roswall%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25372556
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The most striking effect of this diet is reduction of cardiometabolic disease risks. 

Recently, in the Prevención con Dieta Mediterránea (PREDIMED) study, a large 

intervention trial, significant reductions in incident cardiovascular disease and 

diabetes mellitus were shown in the Mediterranean diet groups as compared to the 

low-fat control group (Estruch et al., 2013). Another study shows that, this healthy 

diet reduces the risk of all-cause and cardiovascular mortality (Reedy et al., 2014). 

 

Mediterranean diet has been shown to be protective for some cancers or premalign 

lesions in adult populations, including hepatocellular cancer (Turati et al., 2014), 

colorectal adenomas and cancers (Schwingshackl & Hoffmann, 2014; Whalen et al., 

2014), breast cancer (Castelló et al., 2014), oropharyngeal cancers (Filomeno et al., 

2014) and prostate cancers (Schwingshackl & Hoffmann, 2014). Moreover, in a 

recent meta-analysis, adherence to Mediterranean diet strictly, has been found 

associated with the lowest risk for overall cancer mortality (Schwingshackl & 

Hoffmann, 2014).  

 

Neuro-protection and prevention of chronic degenerative brain diseases in elderly 

population are other important health effects of Mediterranean diet (Tangney et al., 

2014; Wengreen et al., 2013). Especially higher intakes of nuts, whole grains and 

legumes have found associated with more protective effects (Wengreen et al., 2013).   

 

The traditional Mediterranean diet provides substantial protection against type 2 

diabetes (Martínez-González et al., 2008). Also, the Mediterranean diet is associated 

with lower blood pressure, blood sugar, and triglycerides according to an important 

meta-analysis (Kastorini et al., 2011).  

 

Olive oil is considered as the principle source of fat in the Mediterranean diet and 

some studies show that olive oil consumption improves cholesterol regulation and it 

has anti-hypertensive effects (Covas, 2007). Mediterranean diet also includes health 

effects of red wine that contains flavonoids with powerful antioxidant properties 

(Baron-Menguy et al., 2007). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Estruch%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23432189
http://www.ncbi.nlm.nih.gov/pubmed?term=Estruch%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23432189
http://www.ncbi.nlm.nih.gov/pubmed?term=Reedy%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Reedy%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Turati%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24240052
http://www.ncbi.nlm.nih.gov/pubmed?term=Turati%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24240052
http://www.ncbi.nlm.nih.gov/pubmed?term=Schwingshackl%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoffmann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Whalen%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=25372556
http://www.ncbi.nlm.nih.gov/pubmed?term=Castell%C3%B3%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25372556
http://www.ncbi.nlm.nih.gov/pubmed?term=Castell%C3%B3%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25372556
http://www.ncbi.nlm.nih.gov/pubmed?term=Filomeno%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25036262
http://www.ncbi.nlm.nih.gov/pubmed?term=Schwingshackl%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoffmann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Schwingshackl%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoffmann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24710740
http://www.ncbi.nlm.nih.gov/pubmed?term=Tangney%20CC%5BAuthor%5D&cauthor=true&cauthor_uid=25237654
http://www.ncbi.nlm.nih.gov/pubmed?term=Wengreen%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25093990
http://www.ncbi.nlm.nih.gov/pubmed?term=Wengreen%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25093990
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5.3 Methodology 

 

5.3.1 Description of the Dataset 

 

In scope of this study, nutrition data were obtained from the USDA National 

Nutrient Database for Standard Reference, Release 27 (USDA, 2014). The database 

contains nutrition values of 8,618 different foods grouped by main categories. We 

have eliminated all the food and categories incompatible with Mediterranean diet. 

The resulting database contains 2,586 food and 19 categories to use in menu 

optimization as seen in Table 5.1. 

 

Table 5.1 Food categories used in our study 

Id Category Name Breakfast Lunch Dinner Snack Frequency 

1 Baby Foods 
     

2 Baked Products     ●●● 

3 Beef Products 
 

  
 

● 

4 Beverages     ●●● 

5 Breakfast Cereals 
     

6 Dairy and Egg Products     ●●● 

7 Ethnic Foods 
 

  
 

●●● 

8 Fast Foods 
     

9 Fats and Oils    
 

●●● 

10 Finfish and Shellfish Products 
 

  
 

●●● 

11 Fruits and Fruit Juices  
  

 ●●● 

12 Grains and Pasta 
 

  
 

●●● 

13 Herbs and Spices 
 

  
 

●●● 

14 Lamb, Veal, and Game Products 
 

  
 

● 

15 Legumes and Legume Products 
 

  
 

●●● 

16 Meals, Entrees, and Side dishes 
 

  
 

●●● 

17 Nut and Seed Products  
  

 ●●● 

18 Pork Products 
 

  
 

● 

19 Poultry Products 
 

  
 

●● 

20 Sausages and Luncheon Meats 
     

21 Snacks 
     

22 Soups, Sauces, and Gravies     ●●● 

23 Sweets     ● 

24 Vegetables and Vegetable Products     ●●● 

 

 

Four levels of frequency score are assigned to all food categories depending on 

the degree of correspondence with the Mediterranean diet recommendations. An 
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empty value in frequency column means entire category is never used in menu 

optimization. Scores ●●●, ●●, and ● are used for the categories which should be 

consumed daily, a few times per week and a few times per month, respectively 

(Hammond, 2013). Frequency score of some foods is assigned in food level. For 

example, while Dairy and Egg Products category assumed as can be consumed daily, 

Egg Products in this category is scored as can be consumed a few times per week. 

 

Some foods cannot be consumed at each meal. For instance, it is not customary 

and not appropriate according to the logic of Mediterranean diet to eat beef products 

for breakfast. So we mark the categories can be eaten at breakfast, lunch, dinner and 

snack. 26 features of each food are evaluated to optimize a dietary menu for a 

specific profile. These 26 features are energy, carbohydrate, protein, fat, 11 types of 

vitamins, and 10 types of minerals given in Table 5.2. 

 

Table 5.2 Evaluated nutritive values 

Macronutrients Vitamins Minerals 

 Energy 

 Carbohydrate  

 Protein 

 Fat           

 Water 

 

 Vitamin A 

 Vitamin C 

 Vitamin E 

 Vitamin K 

 Vitamin B1  

 Vitamin B2 

 Vitamin B3  

 Vitamin B5  

 Vitamin B6 

 Vitamin B9 

 Vitamin B12 

 Calcium 

 Iron 

 Magnesium 

 Phosphorus 

 Potassium 

 Sodium 

 Zinc 

 Copper 

 Manganese 

 Selenium 

 

5.3.2 Energy Calculation 

 

A healthy diet requires consuming the right amount of food and taking appropriate 

amounts of nutrients. Personal information consists of age, sex, weight, and height 

are taken into account to determine Recommended Dietary Allowances (RDA) 

established in the Dietary Reference Intake (DRI) (Institute of Medicine [IOM], 

1997, 1998, 2000, 2001, 2002, 2004, 2011). RDA is the daily dietary intake level of 

a nutrient considered sufficient by the Food and Nutrition Board to meet the 

requirements of nearly all (97–98%) healthy individuals in each life-stage and gender 

group.  
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There are two known formulae to calculate Basal Metabolic Rate (BMR) and 

Resting Metabolic Rate (RMR) give how much energy burned in a day based on a 

general activity level. The BMR can be calculated using Harris-Benedict equations 

(Frankenfield, Muth, & Rowe, 1998). Eq. 5.1 is used for men and Eq. 5.2 is used for 

women. 

 

P = (13.75×m+ 5×h+6.76×a+66) kcal/day (5.1) 

P = (9.56×m+ 1.85×h+4.68×a+655) kcal/day (5.2) 

where, P is basal metabolic total energy, m is the weight in kg, h is the height in cm, 

and a is the age in year.  

 

The RMR can be calculated using Mifflin’s equation given below (Mifflin et al., 

1990): 

 

P = (10.0×m+ 6.25×h+5.0×a+s) kcal/day (5.3) 

where, P is total energy at complete rest, m is the weight in kg, h is the height in cm, 

and a is the age in year, where s is +5 for males and −161 for females. 

 

As BMR and RMR only represent resting energy expenditure, an adjustment must 

be made to reflect the activity level. This is done by multiplying the BMR or RMR 

by an activity factor (Dietary Reference Intakes [DRI] tables, 2010). The Physical 

Activity Coefficients given in Table 5.3 corresponds to which activity level the user 

has: Sedentary, Low Active, Active, or Very Active. The explanation of the activity 

levels are listed below: 

 

 Sedentary Typical daily living activities (e.g., household tasks, walking to the 

bus) 

 Low Active Typical daily living activities + 30 - 60 minutes of daily moderate 

activity (ex. walking at 5-7 km/h) 

 Active Typical daily living activities + at least 60 minutes of daily moderate 

activity 
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 Very Active Typical daily living activities + at least 60 minutes of daily moderate 

activity + an additional 60 minutes of vigorous activity or 120 minutes of 

moderate activity 

 

Table 5.3 Physical Activity Coefficients (PAC) 

 Sedentary Low Active Active Very Active 

Boys 3 – 18 y 1.00 1.13 1.26 1.42 

Girls 3 – 18 y 1.00 1.16 1.31 1.56 

Men 19 y + 1.00 1.11 1.25 1.48 

Women 19 y + 1.00 1.12 1.27 1.45 

 

Estimated Energy Requirement (EER) is calculated for boys and girls between 3-

18 years by using Eq. 5.4 and 5.5, respectively.  

 

EER= (88.5-61.9×a+PAC × (26.7×m+ 903×h) + s) kcal/day (5.4) 

 

EER= (135.3-30.8×a+PAC × (10.0×m+ 934×h) + s) kcal/day (5.5) 

 

where, m is the weight in kg, h is the height in cm, and a is the age in year, where s is 

+20 for 3-8 years children and +25 for 9-18 years boys and girls.  

 

EER is calculated for men and women 19 years and older by using Eq. 5.6 and 

5.7, respectively. 

 

EER= (662-9.53×a+PAC × (15.91×m+ 539.6×h)) kcal/day (5.6) 

 

EER= (354-6.91×a+PAC × (9.36×m+ 726×h)) kcal/day 

 

(5.7) 

where, m is the weight, h is the height, and a is the age.  

 

Table 5.4 Recommended macronutrient proportions by age 

 Carbohydrate Protein Fat 

1–3 years 45–65% 5–20% 30–40% 

4–18 years 45–65% 10–30% 25–35% 

19 years + 45–65% 10–35% 20–35% 
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EER is obtained by applying corresponding Physical Activity Coefficient 

according to user’s sex, age and activity level on appropriate EER formula. Energy 

need for a pregnant is considered 300 kcal more than a female while for lactation 

period 500 kcals more. The Institute of Medicine has established ranges for the 

percentage of energies in the diet that should come from carbohydrate, protein, and 

fat as shown Table 5.4 (Gebhardt & Thomas, 2002). These ranges are the minimum 

and maximum percentages of each macronutrient that should comprise total caloric 

intake and they are taken into account both chronic disease risk reduction and intake 

of essential nutrients. Energy yield of macronutrients can be seen in Table 5.5 (DRI, 

2010). 

 

Table 5.5 Energy yield of macronutrients 

 Carbohydrate Protein Fat Alcohol 

Energy 4 kcal /g 4 kcal /g 9 kcal /g 7 kcal /g 

 

According to the advices of dieticians, the energy distribution of daily 3 meals 

should be about 343 for breakfast, lunch and dinner respectively. Most of the 

dieticians advice 3 snacks which are not exceeding 200 kcal, after two hours 

following main meals to complete our energy account, ensure that the blood sugar 

balance in our bodies, reduce the lack of attention and concentration and avoid eating 

too much in main meals. In this case, energy distribution should be about 314131. An 

optimized dietary menu can be generated for every meal, daily, weekly or monthly 

by using this energy distribution rule. 

 

5.4 The Diet Optimization as Knapsack Problem 

 

The diet optimization problem (DOP) contains a big search space with foods and 

their attributes. The target values of energy, carbohydrate, fat, protein and other 

minerals-vitamins cause many combination with an aspect of linear search principles. 

Big search space and many combinations have leaded DOP to evolutionary 

optimization techniques (Garey & Johnson, 1990).  
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DOP is a Knapsack Problem (KP). Both of two have target fitness value as a 

capacity like weight and energy. The target weight at KP is equal to the target energy 

at DOP. Thus, the maximum values of boxes at KS are equal to the optimum values 

of carbohydrate, fat, protein and other minerals-vitamins. Therefore, KP has been 

assumed the kernel point at this study.  

 

The type of DOP is “0-1 KP” which restricts the number xi of duplicates of each 

kind of item to zero or one; because all food are represented as a gene in a 

chromosome and the value of each gene can be zero or one. It means that this food 

should have stayed on the menu or should not. 0-1 KP is formulated as the formula 

below; 

 

Optimum of   ∑(𝑉𝑖𝑋𝑖  ) 

𝑛

𝑖=0

 Subject to   ∑  (𝑐𝑖𝑋𝑖  )   ≤  C

𝑛

𝑖=0

 (5.8) 

 

where X is the chromosome, Xi 0-1 gene, Vi represent optimum value of each 

carbohydrate, fat, protein and other minerals-vitamins of ith food, ci is the value of 

energy of ith food, and C is the target energy (Garey & Johnson, 1990). 

 

0-1 KP is a NP-Complete problem, because Dynamic Programming, Meet-in-the-

middle or other not-evolutionary algorithms run in pseudo-polynomial times (Garey 

& Johnson, 1990). The run time cannot be predicted at the evolutionary optimization 

solutions. The target value, dynamic search space, and parametric boundaries as 

generation number and population size, supply flexibility about run-time. In this 

study, the evolutionary optimization solutions like Simple Genetic Algorithm, 

Quantum Genetic Algorithm and Hybrid Quantum Genetic Algorithm are 

concentrated to test adaptability for DOP.  

 

5.5 Simple Genetic Algorithm (SGA) 

 

SGA is a natural selection and optimization technique based on genetic 

evolutionary argument. These processes are simulated based on evaluation principles 

of Lamarck and Darwin (Rabinovich & Wigderson, 1999).  
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The first step of SGA is to initialize of the first population P(0) by 0 and 1 

randomly. All individuals in this population evaluate by using the fitness function 

and a generation number is determined (Jebari & Madiafi, 2013). After this step, 

SGA triggers a loop where there are methods which are repeated respectively. The 

first method is selectionOperator() which obtains the first two fittest individuals 

according to the fitness function. The second method is crossoverOperator() which 

obtains the hybrid-new individuals by crossing over these individuals (Sivanandan & 

Deepa, 2008). The third method, mutationOperator() is to supply to get rid of local 

optimum by changing a random gene of  random number of individuals. The fourth 

method is calculateAdaptability() which supplies to obtain a new adaptable 

population, and finally, findBestIndividual() method calculates fitness values of all 

individuals according to fitness function. The pseudo code below shows all steps of 

SGA (Kaya, Uyar, & Tekin, 2011); 

 

 Simple Genetic Algorithm Pseudo Code 
Begin 

 Choose an initial population of individuals P(0); 

 Evaluate the fitness of all individuals P(0); 

 Choose a maximum number of generations tmax; 

 While (not satisfied t < tmax)  

Begin 

 t = t+1; 

 Select parents for offspring production; (with 

selectionOperator() method) 

 Apply reproduction and mutation operators ;(with 

crossoverOperator() and mutationOperator() methods) 

 Create a new population of survivors P(t);(with 

calculateAdaptability() method) 

 Evaluate P(t);(with findBestIndividual() method) 

End 

 Return the best individual of P(t); 

End 
 

The complexity of the selectionOperator() that requires reordering, if the class of 

the possible fitness functions to varying fitness functions is restricted, is O(NlogN), 

where N is the size of the population (Eiben & Smit, 2011).  

 

SGA has been implemented in C# in Visual Studio .NET 2013 platform and has 

run with a sample of the food dataset. The results with comparisons between SGA 

and other approaches are given the next section. 
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5.6 Quantum Genetic Algorithm (QGA) and Hybrid Quantum Genetic 

Algorithm (HQGA) 

 

The base structure of QGA is similar to the structure of SGA. A quantum 

selection operation that includes a quantum fitness evaluation unit is used instead of 

selectionOperator() in QGA to solve the problem using a “global search” (Hey, 

1999). QGA is based on the concepts of qubits and superposition of states of 

quantum mechanics. The smallest unit which stored information in a quantum 

computer is called a quantum bit (qubit) (Han & Kim, 2000). A qubit does not get 

only ‘1’ or ‘0’; it may get a value between 0 and 1. The state of a qubit (Ψ) is 

represented like the formula below; 

 

| Ψ > =  𝛼|0 >  + 𝛽|1 > (5.9) 

 

where α and β are complex numbers that specify the probability amplitudes of the 

corresponding states. | α |
2
 gives the probability of ‘0’ state for the qubit and | β |

2
 

gives the probability of ‘1’ state for the qubit. For normalization of the state, the 

following formula is obtained; 

 

| α |2 + | β |2 = 1 (5.10) 

 

The attractive point in QGA is that when there is a system of m-qubits, the event 

of 2
m

 states at the same time is expected of the system; however, it collapses to a 

single state in the act of observing a quantum state. This situation is interested in the 

complexity of QGA directly and the complexity collapses to O(1) (Malossini, 

Blanzieri & Calarco, 2008). An m-qubits representation is defined like the formula 

below; 

 

[ 
α1 

| 
α2 

| 

… 

| 

αm 

], (5.11) β1 β2 … βm 

 

This formula shows the advantage which the qubits can represent any 

superposition of states. If there is, for instance, a two-qubits system with two pairs of 

amplitudes such as; 
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[ 
1/√5 

| 
1/2 

], (5.12) 
2/√5 √3/2 

   The state of the system is represented as; 
 

(1/2√5) |00 >  + (√3/2√5) |01 >  + (1/√5) |10 >  + (√3/√5) |11 > (5.13) 

 

 

The formula in Eq. 5.13 shows that the probabilities to represent the state |00>, 

|01>, |10> and |11> are 1/20, 3/20, 4/20, 12/20, sequentially. As a result, the two-

qubits system in Eq. 5.12 has four states information simultaneously. In DOP, 2586 

foods means 2586 qubits and 22586 probabilities can be considered in the same time. 

 

P(t) = {p1, p2,p3,..., pn} , pi = [α1, α2, α3, ..., αm; β1, β2, β3, ..., βm] (5.14) 

 

In QGA, the first operation is initialization of each qubit (α, β) with 1/√2 in 

chromosomes in the population identically. In Eq. 5.14, n is the number of foods 

(2586) and m is the selected population size. The second step is to make P(t) by 

observing the states with makeOperator() method. This method uses a randomization 

technique between 0 and 1 to assign the value of qubits. The pseudo code of 

makeOperator() is like the following method (Malossini, Blanzieri & Calarco, 2008);  

 
makeOperator(individual as x, length of x as l) Pseudo Code 

Begin 

 i = 0; 

 While (not satisfied i < l) 

Begin 

 i = i + 1; 

 If random[0,1) > |αi|
2 

 Then xi = 1; 

 Else xi = 0; 

End 

End 

 

The next operations are that determining a generation number, evaluating all 

chromosomes and storing the global optimum chromosome. Until generation number 

is reached, makeOperator() is used again, then evaluating and storing the global 

individual are repeated. In this loop, the most important operation is 

updateOperator() method.  
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All qubits are updated according to the best individual to approximate it angular. 

Updating formula of qubits is like the formula in Eq. 5.15 (Malossini et al., 2008). 

 

[ 
αt 

]=[ 
Cos(△θt)  -Sin(△θt) 

] 
. [ 

αt-1 

], βt Sin(△θt)   Cos(△θt) βt-1   (5.15) 
 

 

θ = s(αt, βt). △θt, the value s(αt, βt) and orientation of rotation angle △θt are 

obtained from the following lookup table (Malossini, Blanzieri & Calarco, 2008). 

 

Table 5.6 Lookup table of θt, where f is the fitness function, s(αt, βt) is the sign of θt, and bt and xt are 

the t
th

 bits of the best solution B and the binary solution X, in sequence.  

xt bt f(X) ≥ f(B) △θt s(αt, βt)> 0 s(αt, βt) < 0 αt = 0 βt = 0 

0 0 False 0 0 0 0 0 

0 0 True 0 0 0 0 0 

0 1 False 0 0 0 0 0 

0 1 True 0.05π -1 +1 ±1 0 

1 0 False 0.01π -1 +1 ±1 0 

1 0 True 0.025π +1 -1 0 ±1 

1 1 False 0.005π +1 -1 0 ±1 

1 1 True 0.025π +1 -1 0 ±1 

 

The pseudo code of updateOperator() is like the following method; 

 

updateOperator(individual as x) Pseudo Code 

Begin 

 i = 0; 

 While(not satisfied i < l) 

Begin 

 i = i + 1; 

 Determine θi with the lookup table; 

 Obtain (α'i,β'i) as [α'i β'i]
T = U(θi)[αi βi]

T; 

End 

x = x'; 

End 

 

QGA has been implemented in C# in Visual Studio .NET 2013 platform and has 

run with a sample of the food dataset. The results with comparisons between QGA 

and other approaches are given the next section. The pseudo code of QGA is like the 

following method; 
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Quantum Genetic Algorithm Pseudo Code 

Begin 

 t = 0; 

 Initialize Q(t); 

 Make P(t) by observing Q(t) states;(with makeOperator() 

method) 

 Evaluate P(t); 

 Choose a maximum number of generations tmax; 

 Store the best individual B among P(t); 

 While (not satisfied t < tmax) 

Begin 

 t = t+1; 

 Make P(t) by observing Q(t-1) states; 

 Evaluate P(t); 

 Update Q(t);(with updateOperator() method) 

 Store the best individual B among P(t); 

End 

End 

 

In this study, QGA has broadened by using repairOperator() and searchOperator() 

methods. The repairOperator() runs to approach the optimum energy which is the 

most important parameter of DOP. The searchOperator() runs to approach the 

optimum protein, fat and carbohydrate linearly. The aim of this hybrid structure is to 

obtain the optimum results at less generation number and population size.  

 
repairOperator(individual as x, length of x as l, weights as w, 

capacity as C) Pseudo Code 

Begin 

 overfilled = false; 

 If ∑  𝑙
𝑖=0 wixi > C 

 Then overfilled = true; 

 While (overfilled) 

Begin 

 Select an ith item from data set; 

 xi = 0; 

 If ∑  𝑙
𝑖=0 wixi ≤ C 

 Then overfilled = false; 

End 

 While (not overfilled) 

Begin 

 Select an ith item from data set; 

 xi = 1; 

 If ∑  𝑙
𝑖=0 wixi > C 

 Then overfilled = true; 

End 

xi = 0; 

End 
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The results with comparisons between HQGA and other approaches are given the 

next section and it has been observed that more successful results had been obtained 

by using HQGA with extra two methods.   

 

Hybrid Quantum Genetic Algorithm Pseudo Code 

Begin 

 t = 0; 

 Initialize Q(t); 

 Make P(t) by observing Q(t) states;(with makeOperator() 

method) 

 Repair P(t);(with repairOperator() method) 

 Evaluate P(t); 

 Choose a maximum number of generations tmax; 

 Store the best individual B among P(t); 

 While (not satisfied t < tmax) 

Begin 

 t = t+1; 

 Make P(t) by observing Q(t-1) states; 

 Repair P(t);(with repairOperator() method) 

 Evaluate P(t); 

 Update Q(t);(with updateOperator() method) 

 Store the best individual B among P(t); 

End 

 Local Search for the best individual B;(with searchOperator() 

method) 

End 

 

HQGA has been implemented in C# in Visual Studio .NET 2013 platform and has 

run with a sample of the food dataset like the other algorithms. The pseudo code of 

HQGA is like the method above. 

 

The searchOperator() is expressed in detal in the following pseudo code; 

 
searchOperator(individual as x, weights w) Pseudo Code 

Begin 

 Determine the minimum as v1 and the maximum ones as v2 

from the target protein, carbohydrate  and fat; 

 If v2 = 'protein' 

 Then Select the ith item which has the highest protein  

while xi = 1; 

     Determine the coefficient as c to equate the target  

     protein; 

     wi = wi x c;  

 Else If v2 = 'carbohydrate' 

 Then Select the ith item which has the highest carbohydrate 

while xi = 1; 

Determine the coefficient as c to equate the target 

carbohydrate; 
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      wi = wi x c; 

 Else If v2 = 'fat' 

 Then Select the ith item which has the highest fat  

while xi = 1; 

     Determine the coefficient as c to equate the target fat; 

     wi = wi x c; 

 If v1 = 'protein' 

 Then Select the ith item which has the highest protein  

while xi = 0; 

     Determine the coefficient as c to equate the target  

     protein; 

     xi = 1; wi = wi x c;  

 Else If v1 = 'carbohydrate' 

 Then Select the ith item which has the highest carbohydrate 

while xi = 0; 

Determine the coefficient as c to equate the target 

carbohydrate; 

xi = 1; wi = wi x c; 

 Else If v1 = 'fat' 

 Then Select the ith item which has the highest fat  

while xi = 0; 

Determine the coefficient as c to equate the target fat; 

xi = 1; wi = wi x c; 

End 

 

5.7 The Comparison Results of SGA, QGA and HQGA 

 

SGA, QGA and HQGA have been run on the computer, which has 8 GB of RAM 

and Intel(R) Core(TM) i7-3770T CPU @ 2.50 GHz, to test the performances of these 

algorithms. The same dataset, which had been taken from the food dataset as a 

sample, has become input to SGA, QGA and HQGA in separately. Comparisons 

have been expressed on 3D graphics at 3 different subjects as total value, total energy 

and time on the next figures. Generation numbers and population size have varied 

from 1 to 50 for both these two parameters. It means that different variations have 

been obtained for 2500 probabilities. The target energy has been assumed as 1000 

and while reaching to the value of 1000, total nutrition values of foods have had to 

possess maximum numbers. The expected total value has been approximately 5000.  

 

In Figure 5.2, there are the variations of SGA and QGA. The first variation in 

Figure 5.2 is for SGA. When population size has been stable and while generation 

number has been increasing, becoming slight of the variation of total value has been 

observed. By consequence, the inference is able to obtain that total value is 
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influenced by population size more than generation number. At each increment of 

population size, higher values than the previous ones have been attained and after 20 

for population size, it has been observed that total value has been 4000 

approximately. The second variation in Figure 5.2 is for QGA. In this 3D graphic, it 

has been observed that both population size and generation number have been 

ascendant at the variation of total value. While generation number and population 

size have been increasing, it is clear that the variation of total value has been 

observed. However, this 3D graphic is different from SGA’s graphic and it shows a 

heterogenic variation with irregular increments and decrements of inclined. The 

reason of this situation is said as that QGA had been tried to get rid of local 

optimums.  

 

 
 

Figure 5.2 3D graphics of total value x population size x generation number (SGA & QGA) 
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Another inference is obtained that at low values of population size and generation 

number, the total value for QGA is higher than the total value for SGA. Also, QGA 

has higher the total values than SGA at all probability of generation number and 

population size and the total value is obtained as 3000 approximately at the first 

generation. Finally, the total value converges 5000 by increment of generation 

number. The variation in Figure 5.3 is for HQGA. In this 3D graphic, it has been 

observed that both population size and generation number have been ascendant at the 

variation of total value. However, while generation number and population size have 

been increasing, it is not clear that the variation of total value has been observed. 

HQGA reaches the target value as 5000 approximately except the generation number 

between 1 and 10 and population size between 1 and 10. It means that the value of 

approximately 5000 can be obtained at the lower probabilities. 

 

 
 

Figure 5.3 3D graphic of total value x population size x generation number for HQGA 

 

In Figure 5.4, there are the variations of SGA and QGA. The first variation in 

Figure 5.4 is for SGA. When population size has been stable and while generation 

number has been increasing, becoming slight of the variation of total energy has been 

observed. By consequence, the inference is able to obtain that total energy is 

influenced by population size more than generation number. At each increment of 

population size, higher energies than the previous ones have been attained and after 

20 for population size, it has been observed that total energy has been 1000.  The 

second variation in Figure 5.4 is for QGA. In this 3D graphic, it has been observed 
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that both population size and generation number have been ascendant at the variation 

of total energy. While generation number and population size have been increasing, 

it is clear that the variation of total energy has been observed. However, this 3D 

graphic is different from SGA’s graphic and it shows a heterogenic variation with 

irregular increments and decrements of inclined. The reason of this situation is said 

as that QGA had been tried to get rid of local optimums. 

 

 
 

Figure 5.4 3D graphics of total capacity x population size x generation number (SGA & QGA) 

 

The variation in Figure 5.5 is for HQGA. In this 3D graphic, it has been observed 

that both population size and generation number have been ascendant at the variation 

of total energy. However, while generation number and population size have been 

increasing, it is not clear that the variation of total energy has been observed; it 

shows a heterogenic variation with irregular increments and decrements of inclined. 
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The reason of this situation is said as that HQGA had been tried to get rid of local 

optimums. While QGA is at energy of 920, HQGA is at energy of 940 and earlier, 

HQGA reaches to the target energy, 1000. 

 

 

 
 

Figure 5.5 3D graphic of total capacity x population size x generation number for HQGA 

 

The first 3D graphic in Figure 5.6 is for SGA. In this 3D graphic, it has been 

observed that both population size and generation number have been ascendant at the 

variation of total time. While both of these parameters have been increasing, total 

time has been increasing, too. However, all operations have taken very little time in 

level of millisecond (ms). Maximum time of running of SGA has been 32 ms for 50 

of population size and 50 of generation number. The second 3D graphic in Figure 5.6 

is for QGA. In this 3D graphic, it has been observed that both population size and 

generation number have been ascendant at the variation of total time. While both of 

these parameters have been increasing, total time has been increasing, too. However, 

all operations have taken very little time in level of millisecond (ms). Maximum time 

of running of QGA has been 2000 ms for 50 of population size and 50 of generation 

number. It is higher than the total time of SGA. The 3D graphic in Figure 5.7 is for 

QGA. In this 3D graphic, it has been observed that both population size and 

generation number have been ascendant at the variation of total time. While both of 

these parameters have been increasing, total time has been increasing, too. However, 

all operations have taken very little time in level of millisecond (ms).  
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Figure 5.6 3D graphics of time x population size x generation number (SGA & QGA) 

 

 
 

Figure 5.7 3D graphic of time x population size x generation number for HQGA 
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Maximum time of running of HQGA has been 2300 ms for 50 of population size 

and 50 of generation number. It is higher than the total time of SGA and QGA. The 

reason of this situation, HQGA has 2 different methods as repairOperator() and 

searchOperator(). (At the possibility of population size as 20 and generation number 

as 50, there has been an outlier increment which is different from the homogeny 

variation. It has been assumed that the situation of the computer at that moment had 

caused; therefore, any other inference has not been done from this outlier increment). 

 

5.8 The Application of Diet Optimization and Experimental Studies 

 

An application built with Web services is a service-oriented application. 

ASP.NET Web Services (ASMX) has been available for building Web services since 

.NET was first released.  Then Microsoft introduced the new service model WCF 

that provides a number of benefits over ASP.NET Web Services. WCF service is a 

practical approach while looking at the current development trend. Therefore, the 

diet optimizer application has been developed as a WCF Web Service. 

 

An Asp.Net web application has been implemented and published on the Internet. 

After the implementation phase, the algorithm has been tested with 20 different 

profiles. These profiles contain age, gender, pregnancy and lactation features.  

 

The energies, which have varied from a profile to another profile, have become 

the targets of the algorithm. For these target energies, HQGA has worked with the 

population size as 30 and unlimited generation number. HQGA has terminated at 

145
th

 generation on average and produced the optimal menus at 100% success rate as 

seen in Figure 5.8 and Figure 5.9, respectively.  

 

The generated optimal menus guarantee the optimal energy, carbohydrate, protein 

and fat intake according to daily requirements. Recommended intake values are 

obtained from different sources which are explained in detail in section 5.3. 

Therefore, the application produces the optimal values between ranges. 
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Profile 1 Child (1-3 years), 1300 calories 

 

Profile 8 Male (71- years), 2300 calories 

  
Profile 2 Child (4-8 years), 1800 calories 

 

 Profile 9 Female (9-13 years), 2200 calories  

 
Profile 3 Male (9-13 years), 2500 calories 

 

Profile 8 Male (71- years), 2300 calories 

  

Profile 4 Male (14-18 years), 3000 calories 

 

Profile 9 Female (9-13 years), 2200 calories 

  
Profile 5 Male (19-30 years), 2900 calories 

 

Profile 10 Female (14-18 years), 2200 calories 

  

 Profile 6 Male (31-50 years), 2900 calories 

 

 Profile 11 Female (19-30 years), 2200 calories 

 
 Profile 7 Male (51-70 years), 2300 calories 

 

 Profile 12 Female (31-50 years), 2200 calories 

 
 

Figure 5.8 The variations according to 10 profiles which have different parameters. “Success rate (%) 

x Number of generations (#G)” 

 

 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 

#G 

% 



84 

 

Profile 13 Female (51-70 years), 1900 calories 

 

Profile 17 Pregnant (31-50 years), 2500 calories 

 
Profile 14 Female (71- years), 1900 calories 

 

Profile 18 Lactation (14-18 years), 2700 calories 

 
Profile 15 Pregnant (14-18 years), 2500 calories 

 

Profile 19 Lactation (19-30 years), 2700 calories 

 
Profile 16 Pregnant (19-30 years), 2500 calories 

 

Profile 20 Lactation (31-50 years), 2700 calories 

 
 

Figure 5.9 The variations according to 10 profiles which have different parameters. “Success rate (%) 

x Number of generations (#G)” 

 

For the analysis of the menus, two users U1 and U2 who have different features 

have been handled. The different physical information of two users, U1 and U2 is 

gathered from the Nutrition Advisor web application as shown in Table 5.7. After 

individual nutritional analysis, daily nutritional requirement ranges and the values 

obtained from the optimized menus for U1 and U2 are listed in Table 5.8. The 

sample menu optimized for U1 is shown in Figure 5.10. 

 

Table 5.7 Users’ physical and health condition 

 Sex Age (y) Weight (kg) Height (cm) Physical Activity 

U1 Female (Lactation)  30 75 170 Low Active 

U2 Male  55 82 178 Active 

 Anamnesis Don’t Eat Extra Physical Activities 

U1 -  Egg 

Cycling, 12-13.9 mph, moderate (45 min. – 451 kcal) 

General cleaning (60 min. – 263 kcal) 

U2 Diabetes -  Running, 7 mph (8.5 min mile) (30 min – 470 kcal) 
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Breakfast                                                                                                                                                      700 - 800 

 
Nutrient Energy Carbohydrate Protein Fat 

 

Lemonade-flavour drink, powder 150 kcal 38 gr (11%) 0 gr (0%) 0 gr (0%) 

 

Cheese, Cheshire 150 kcal 2 gr (1%) 9 gr (6%) 12 gr (11%) 

 

Olives, ripe, canned (jumbo-super colossal) 150 kcal 11 gr (3%) 2 gr (1%) 13 gr (11%) 

 

Seeds, cottonseed meal, partially defatted (glandless) 150 kcal 32 gr (8%) 4 gr (3%) 1 gr (1%) 

 
Total 600 kcal 83 gr (20%) 15 gr (11%) 25 gr (23%) 

Snack1                                                                                                                                                       1015 - 1030 

 
Nutrient Energy Carbohydrate Protein Fat 

 

Bananas, raw 150 kcal 39 gr (11%) 2 gr (1%) 1 gr (1%) 

Lunch                                                                                                                                                        1200 - 1300 

 
Nutrient Energy Carbohydrate Protein Fat 

 

Beef, rib, short ribs, separable lean and fat, choice 300 kcal 0 gr (0%) 11 gr (8%) 28 gr (25%) 

 

Strawberry-flavour beverage mix, powder 150 kcal 38 gr (9%) 0 gr (0%) 0 gr (0%) 

 

Cheese, caraway 150 kcal 2 gr (1%) 10 gr (7%) 12 gr (10%) 

 

Fish, perch, mixed species, cooked, dry heat 47 kcal 0 gr (0%) 10 gr (7%) 0 gr (0%) 

 

Macaroni, protein-fortified, cooked, enriched 150 kcal 29 gr (7%) 7 gr (5%) 0 gr (0%) 

 
Total 797 kcal 69 gr (17%) 38 gr (27%) 40 gr (36%) 

Snack2 1545 - 1600 

 
Nutrient Energy Carbohydrate Protein Fat 

 

Muffins, corn, toaster-type 150 kcal 25 gr (6%) 2 gr (2%) 5 gr (4%) 

Dinner 1800 - 1900 

 
Nutrient Energy Carbohydrate Protein Fat 

 

Pasta, homemade, made without egg, cooked 600 kcal 121 gr (29%) 19 gr (14%) 5 gr (4%) 

 

Duck, young duckling, domesticated, White Pekin 300 kcal 9 gr (2%) 22 gr (16%) 19 gr (17%) 

 
Gravy, unspecified type, dry 150 kcal 25 gr (6%) 6 gr (4%) 3 gr (3%) 

 

Ice creams, strawberry 150 kcal 22 gr (5%) 2 gr (2%) 7 gr (6%) 

 

Potatoes, baked, flesh, with salt 150 kcal 35 gr (9%) 3 gr (2%) 0 gr (0%) 

 
Total 1350 

kcal 

213 gr (51%) 53 gr (38%) 34 gr (30%) 

Snack3 2045 - 2100 

 
Nutrient Energy Carbohydrate Protein Fat 

 

Cranberry-apricot juice drink, bottled 53 kcal 13 gr (3%) 0 gr (0%) 0 gr (0%) 

The amount of water you should consume 3.8 lt. 

 

Figure 5.10 The output of generated menu for U1 
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 The fitness function in the application aims to obtain the keep organic and 

inorganic compounds in target interval values. In Table 5.8, there are energy, 

carbohydrate, protein and fat compounds between the target intervals and they are at 

100%.  

 

The local search method in the application supplies to obtain these target values. 

Other values are considered in fitness function; however, when these attributes were 

included in the local search, the performance decreased too much. Therefore, energy, 

carbohydrate, protein and fat as vital needs are considered as the kernel target in the 

application. 

 

Table 5.8 Nutrition values obtained by optimized menus and the interval of requirements 

 U1 U2 

Value Range Value Range 

Macronutrients Energy (kcal) 3099 2959-3413 2829 2770-2913 

Carbohydrate (g) 414 414-478 339 323-339 

Protein (g) 140 140-162 139 139-146 

Fat (g) 103 82-95 106 103-108 

Vitamins A (UI) 2511 4749-5478 3172 3613-3800 

C (mg) 112 132-152 111 108-114 

E (mg) 26 21-24 20 18-19 

K (mcg) 314 99-114 170 152-145 

B1 (mg) 2 2-2 1 1-2 

B2 (mg) 2 2-2 2 2-2 

B3 (mg) 22 19-21 23 19-20 

B5 (mcg) 5 8-9 5 6-6 

B6 (mg) 2 2-3 2 2-2 

B9 (mcg) 403 548-632 345 482-507 

B12 (mcg) 4 3-4 7 3-3 

Minerals Calcium (mg) 1083 1096-1264 1141 1204-1267 

Iron (mg) 18 10-11 12 10-10 

Magnesium 

(mg) 

319 340-392 333 506-532 

Phosphorus 

(mg) 

1324 767-885 1728 843-887 

Potassium (mg) 4434 5590-6447 3945 5660-5953 

Sodium (mg) 601 2740-3161 391 2770-2913 

Zinc (mg) 12 13-15 13 13-14 

Copper (mg) 3 1-2 2 1-1 

Manganese 

(mg) 

3 3-3 4 3-3 

Selenium (mg) 68 77-88 94 66-70 
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5.9 Literature Comparisons 

 

In literature, there are several studies which aim to recommend healthy menu 

according to user’s personal activities, energies and nutrition intakes, and/or personal 

information. Some of these studies have been exemplified for our study. On the 

following paragraphs, these studies are mentioned and the differences and our 

supplements are exposed clearly. 

 

Lv (2009) proposed a multi-objective mathematic model for nutritional diet 

optimization program based on quantum genetic algorithm (QGA) to generate 

computer-aided diet schedules for people. QGA was compared with the random and 

backtracking algorithms and it is observed that the effectiveness and superiority of 

QGA are considerable evident. The differences of our study and Lv (2009)'s study 

are that as HQGA, which provides repair and search methods, is used for 

optimization in our study, Lv (2009) uses QGA without any improvements about 

local search. Therefore, as HQGA reaches to 100% for energy, carbohydrate, protein 

and fat, QGA remains under the success of HQGA. 

 

Wang, Lee, Hsieh, Hsu, & Chang (2009) developed an intelligent healthy diet 

planning multi-agent for healthy diet planning. The study provides a semantic 

analysis of healthy diet status for people based on the pre-constructed ontology by 

domains experts and results of fuzzy inference. Experimental results show that the 

proposed system enables an intelligent behaviour able to generate the more suitable 

healthy diet for a given human being. Also, Pei & Liu (2009) used Compromise 

Differential Evolutionary algorithm to solve the issue of multi-objective nutrition 

diet decision and acquired more stable, more accurate results than that derived in 

genetic algorithms.  

 

After all, these successful approaches present healthy receipts certainly; however, 

our study contains only the Mediterranean foods and presents a Mediterranean diet. 

The benefits on human being of the Mediterranean diet are proved by a lot of articles 

and publications definitely (Baron-Menguy et al., 2007; Castelló et al., 2014; Covas, 
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2007; Estruch et al., 2013; Filomeno et al., 2014; Kastorini et al., 2011; Keys et 

al.,1986; Martínez-González et al., 2008; Reedy et al., 2014; Roswall et al., 2014; 

Schwingshackl & Hoffmann, 2014; Tangney et al., 2014; Trichopoulou, 2001; 

Trichopoulou & Lagiou, 1997; Turati et al., 2014; Wengreen et al., 2013; Whalen et 

al., 2014; Willett et al., 1995). In section 5.2, the benefits and affects over 

physiologic of the Mediterranean diet are exposed in detail. Also, our study considers 

22 parameters of vitamins and minerals in the fitness function distinctively in 

addition. Thus, beside optimum energy, carbohydrate, protein and fat, HQGA 

endeavours to obtain the fittest receipt for vitamins and minerals as much as possible. 

 

Mino & Kobayashi (2009) considered user’s activities as an important factor to 

recommend recipes, and then aim to propose a recipe recommendation method for a 

diet considering user’s personal activities on his/her schedule in the calculation of 

energy intake. This study is similar to our approach by considering user’s activities. 

However, they use linear programming to recommend more healthy recipes among 

the selected recipes. Therefore, as they cannot perform in a reasonable running time, 

our study is published as a web application and returns menus in a short time. 

 

Finally, Personal Mediterranean Diet Optimization by HQGA (PMDOH), which 

provides repair and search methods for sensitive optimization of energy, 

carbohydrate, protein and fat, considers 22 parameters of vitamins and minerals 

beside energy, carbohydrate, protein and fat in the fitness function. This expert 

system holds a database where there are only Mediterranean foods. The database has 

obtained by a process of a data preparation on USDA National Nutrient Database. 

After taking the personal inputs of general health condition and eating habits beside 

age, sex, weight, height and daily activities, PMDOH selects foods from the database 

by eliminating and considers returning a healthy receipt entirely, too. 
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CHAPTER SIX 

HEAD AND NECK CANCERS & RMWC 

 

 6.1 Head and Neck Cancers Automation System 

 

The policlinic of Celal Bayar University Head and Neck Cancers uses the head 

and neck cancers automation system which has been implemented by me. This 

automation system records patients and their following features; 

 

Demographic and medical data of patients are detailed in the following 

paragraphs. Content; Name Surname, ICD Code, Gender (Female/Male), Birth Date, 

Responsible Associate, Registration Date, Address, City, Town, Clinical Protocol 

No, Oncology Protocol No, Vocation, Identity No, Mobile No, Telephone No, 

Cancer History in Family (Exists, Not exist) and Other Illnesses (Exists, Not exist). 

 

 Habits & Height/Weight, Performance & Comorbidity, Size and Properties of 

Tumor, Physical Examination, Radyology and Nuklear Medicine Assessment, 

Distant Metastasis, Pathological Assessment, Clinical TNM, Council, Treatment, 

Chirurgical, Radiotheraphy, RKT, KT, Histopathologic Examination, Postoperation 

TNM. (T means that the size of the original –primary- tumor and whether it has 

invaded nearby tissue, N means that nearby -regional- lymph nodes that are involved, 

M means that distant metastasis -spread of cancer from one part of the body to 

another-) 

 

ECOG, Carnovsky, Charlson Index, Cumulative, Illness Score, these formula 

determines the person's life situation and create a guiding treatment parameters on 

what direction it should be yet. 

 

 This system collects these important information sets. This rich database is 

precipitated to analysis by data mining algorithms significantly. Figure 6.1 shows a 

sample interface from this automation system.  
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6.2 Different Approaches of Mapping Clustering 

 

Clustering algorithms are the base of the data mining analysis. The other data 

mining techniques, association rule mining and classification are fed back 

from clustering. If it is illustrated for classification; after a clustering analysis, a set 

of clusters is obtained and each data is assigned to a cluster in the set. That is to say, 

each data in data set attains a new feature as a target. This target feature is 

the cluster which the row data belongs to. As a result, classification algorithms can 

analysis this data set which is extended with a new feature after clustering analysis 

and classification analysis may need clustering analysis before itself.  

 

If another scenario is illustrated for association rule mining; association rule 

mining algorithms are interested in frequencies and equivalences of each row data in 

data set while mining the associations. Therefore, if there is a big data set to discover 

hidden secrets in it, association rule mining algorithms use a kind 

of clustering approach by considering equivalence between association 

combinations. The clusters, which have the highest frequencies according to 

threshold for example minimum support and confidence values, are presents as result 

associations. As a result, association rule mining is a significant sub-technique 

of clustering techniques for big data.  

 

Additionally, if there is not big data, association rule mining algorithms fails and 

cannot obtain any association. On such an occasion, clustering algorithms can use to 

analysis and mine the associations without consideration of the frequencies and 

equivalences, thus consequences as fuzzy associations can be obtained by explication 

centre points of clusters. 

 

6.2.1 K-Means++ + Quantum Genetic Algorithm 

 

K-Means++ algorithm is a successful clustering algorithm. Its inspirer algorithm 

is K-Means and K-Means++ is more consistent than K-Means by returning a same 

pattern at each running. It is detailed in Section 4.4.1.2. Traditional K-Means++ 
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algorithm submits cluster numbers for each instance; however, there is no data about 

visualization in returned values. In this study, K-Means++ is mapped on two-

dimensional map. 

 

SOM algorithm is a clustering and mapping algorithm. That is, cluster centroids, 

which are trained for all instances, are mapped according to their neighbourhoods. 

SOM is used an artificial neural network structure at background while training. In 

this study, a new K-Means++ approach with a visualization property has been 

implemented; in other words, K-Means++, which has a purer logic than SOM, has 

been improved with a mapping characteristic by using quantum genetic algorithm. 

After K-Means++ obtains the centroids, quantum genetic algorithm is used and this 

successful evolutionary algorithm runs until the fittest map is obtained according to 

the neighbourhoods of the centroids between each other. The centroid values have a 

multi-dimensional structure; therefore, the distances between the centroids according 

to the Euclidean distance formula are the most important reference while mapping on 

a two dimensional pattern of these multi-dimensional centroids. 

 

6.2.1.1 Algorithm of K-Means++ + QGA 

 

The first phase of this mapping approach is the traditional K-Means++. This 

algorithm returns the centroids as multi-dimensional and 0-1 normalized instances. 

The second phase is that obtainment of a matrix where exits the distances between all 

centroids according to the Euclidean distance formula. After that, the standard 

deviation values between all distance values in the matrix are calculated according to 

the following formula; 

 

,                                            (6.1) 

where N is the total number of clusters, xi is i
th

 distance value and x is the mean value 

of the all distances between a current cluster and the others.  
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For example; K-Means++ returns 4 centroids with 5 attributes and the centroid 

instances like the following values; 

 

Table 6.1 An example of centroid instances and values 

Attributes 

Clusters 
A1 A2 A3 A4 A5 

C1 0.6 0.1 0.9 0.7 0.4 

C2 0.5 0.2 0.3 0.6 0.1 

C3 0.4 0.1 0.5 0.7 0.2 

C4 0.7 0.3 0.6 0.8 0.1 

 

Then, the distances between the centroid instances according to the Euclidean 

distance and a matrix is obtained like the following example matrix; 

 

Table 6.2 The distances between the example centroids according to the Euclidean distance 

Clusters C1 C2 C3 C4 

C1 0.0000 0.6928 0.4898 0.4898 

C2 0.6928 0.0000 0.2828 0.4242 

C3 0.4898 0.2828 0.0000 0.3999 

C4 0.4898 0.4242 0.3999 0.0000 

 

Quantum genetic algorithm is used an approach which is based on standard 

deviation values between the centroid instances. If the standard deviation of a 

centroid instance is the least standard deviation value in the others, this instance is 

located on the centre of the map. Accordingly, the centroid instances with the little 

standard deviation values are located near the centre of the map and the other 

centroid instances are located near the boundary lines of the map. Quantum genetic 

algorithm appoints the locations of the centroid instances by stages from the centre to 

the boundary of the map. These standard deviation valued are obtained and an array 

where the standard deviation values between the centroid instances is calculated like 

the following example array; 

 

Table 6.3 The standard deviation values according to the distances of the example centroids 

Clusters The Standard Deviation Values 

C1 0.3358 

C2 0.3185 

C3 0.2410 

C4 0.2557 
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At this phase, one of the two ways in the algorithm is followed according to the 

number of centroids. If the number of the centroids is even, the four points on the 

centre of the map is calculated and determined without quantum genetic algorithm. 

Firstly, the centroids are sorted according to the standard deviation values and the 

four centroids with the least standard deviations are selected. Then, the first one and 

the fourth one are located on the centre four points of the map crossly like the points 

on the following example map;     

 

    

 S1 S2  

 S3 S4  

    

 

Figure 6.2 The four centroids with the least standard deviations are located on the centre of the map 

 

In Figure 6.2, there is a map with 4x4 = 16 points. S1 is the centroid which has the 

least standard deviation value and S4 is the centroid which has the fourth least 

standard deviation value. These two centroids are located crossly because S1 must be 

located farther than S4 considering S2 and S3. Thus, the distance between S1 and S4 

is obtained  unit when the distance between S1 and S2 is 1 unit, and the distance 

between S1 and S3 is 1 unit.
 

 

If the number of the centroids is odd, the nine points on the centre of the map is 

calculated and determined without quantum genetic algorithm. Firstly, the centroids 

are sorted according to the standard deviation values and the nine centroids with the 

least standard deviations are selected. Then, the first one is located on the centre 

point of the map as the other eight ones are located according to the distances 

between the standard deviation values of the first one and these eight ones. The 

second, third, fourth and fifth ones are located according to the protection the 

distance between them and the centre point as 1 unit. It means that the second 

centroid is located on the left-side of the centre point; the third centroid is located on 

the up-side of the centre point; the fourth centroid is located on the down-side of the 

centre point and the fifth centroid is located on the right-side of the centre point. 
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There is the assumption that the second one and the fifth one must be located on the 

furthest points; therefore, they are located on left and right sides of the centre point. 

 

     

  S3   

 S2 S1 S5  

  S4   

     

 

Figure 6.3 The five centroids with the least standard deviations are located on the centre of the map 

 

In Figure 6.3, there is a map with 5x5 = 25 points. S1 is the centroid which has the 

least standard deviation value and it is located on the centre of the map. The other 

centroids, S2, S3, S4 and S5 must be located by the protection the distances between 

S1 and them as 1 unit. S2 is the centroid which has the second least standard 

deviation value as S5 is the centroid which has the fifth least standard deviation 

value. These two centroids are located linearly because S2 must be located farther 

than S5 considering S3 and S4. Thus, the distance between S2 and S5 is obtained 2 

unit, when the distance between S2 and S3 is  unit, the distance between S2 and 

S4 is  unit, the distance between S5 and S3 is  unit and the distance between 

S5 and S4 is  unit. The next four centroids with the least standard deviations are 

located on the vertexes on the centre of the map. The assumption in this phase is that 

the sixth one is located on the nearest vertex of S2 and S3; the seventh one is located 

on the nearest vertex of S2 and S4; the eight one is located on the nearest vertex of 

S3 and S5 and the ninth one is located on the nearest vertex of S4 and S5. Thus, the 

nine centroids which have the least standard deviation values are located on the map 

with the consistency of each other. The initialization of the map with locations of the 

centre nine centroids is determined and a map is obtained like the following one;  

 

     

 S6 S3 S8  

 S2 S1 S5  

 S7 S4 S9  

     

 

Figure 6.4 The next four centroids with the least standard deviations are located 
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In Figure 6.4, the distances between S1 and S6-S7-S8-S9 separately are obtained 

 unit, when the distance between S1 and S2-S3-S4-S5 is 1 unit.
 

 

In the final phase, quantum genetic algorithm is used for the empty and frame 

points which are located on the near centre points. After that, the other outer frame 

points find the centroids by quantum genetic algorithm. These loop operations are 

terminated after the centroids are assigned to the frame points outermost.  

 

       

       

  S6 S3 S8   

  S2 S1 S5   

  S7 S4 S9   

       

       

 

Figure 6.5 The process of quantum genetic algorithm after assignment of the centre centroids 

 

In Figure 6.5, there is an example map with 7x7 = 49 points. Because the number 

of the points is odd, the centroids which have the least standard deviation values are 

assigned to the nine points on the centre of the map. After this introduction phase, the 

next least standard deviation values are assigned by quantum genetic algorithm like 

the red frame on the figure above. Then, it is repeated for the outer frame points like 

the blue frame on the figure. Until all centroids are assigned, quantum genetic 

algorithm is run for all frames separately.    

 

The number of frame points differs according to the total number of points. If the 

number of points is odd, k*8 centroids are taken from the sorted centroids list 

according to the standard deviation values for all frames separately. After the 

introduction assignments, k initializes as 2 and it adds into 1 for each frame.  

 

If the number of points is even, k*8 + 4 centroids are taken from the sorted 

centroids list according to the standard deviation values for all frames separately. 

After the introduction assignments, k initializes as 1 and it adds into 1 for each 

frame.  
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6.2.1.2 Experimental Results of K-Means++ + QGA 

 

This new approach was tested with its alternative, SOM by the usage of three 

datasets which have different characteristics. These datasets were obtained from UCI 

machine learning repository (UCI Machine Learning Repository, 2011)  

 

The first dataset, Iris has 4 attributes and 150 instances which are divided by 3 

clusters. The second dataset, Glass Identification has 9 attributes and 214 instances 

which are divided by 7 clusters. The third dataset, Pima Indian Diabetes has 8 

attributes and 768 instances which are divided by 2 clusters. All these datasets have 

numerical values in their attributes. However, their cluster attributes have been 

deleted while testing. For all data sets, 3 different numbers of clusters have been 

observed as 4, 9 and 16. According to the sum of square error (SSE) in Formula 6.2, 

it can be seen that K-Means++ + QGA have had less SSE values than SOM. 

 

SSE = ∑ (X − X′)2𝑛

𝑘=0
                                               (6.2) 

 

Table 6.4 SSE values of K-Means++ + QGA and SOM 

 
The Number of 

Clusters 

K-Means++ + QGA 

The Sum of Square Error 

(SSE) 

SOM 

The Sum of Square Error 

(SSE) 

Iris 

4 0.09 0.31 

9 0.46 0.63 

16 0.73 2.61 

Diabetes 

4 0.06 0.51 

9 0.42 0.99 

16 0.81 4.98 

Glasses 

4 0.07 0.32 

9 0.45 0.82 

16 0.77 3.76 
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6.2.2 SOM + SOM 

 

Decision Support Systems use different data mining algorithms. Classification 

algorithms gives either a certain class as in Decision Trees and Artificial Neural 

Networks techniques or alternative classes as in Naive Bayes and Fuzzy 

Classification techniques for a new instance.  

 

Given certain rules and consequences at Medical Information Systems by data 

mining algorithms is an un-solicited status. Because, decision support systems for 

doctors are used for only a support and these software systems must not pass 

judgement on patients while deciding of diagnosis, treatments and etc. Therefore, 

clustering algorithms may be more helpful than classification algorithms at cancer 

branches especially.  

 

Doctors can discover the probabilities at deciding of diagnosis, treatments and etc. 

by visualize the consequence pattern of clustering algorithms. SOM algorithm 

returns a map to visualize the pattern; however it is not enough to interpret the 

neighbourhoods of clusters, because traditional SOM ignores the distances between 

centres of clusters. Therefore; a new approach for mapping the clusters, which is 

based on that after applying SOM with all instances, applying again SOM by giving 

the centre points from the first SOM operation as instances, is applied. The algorithm 

is given in detain in next section. 

 

6.2.2.1 Algorithm of SOM + SOM 

 

SOM algorithm as a clustering technique takes only cluster number as a parameter 

and returns a cluster map where all clusters are neighbours with each other. 

However, this pattern is not the expected map because, the distances between the 

returned centre points are not equal to each other actually and these clusters must be 

located on different cells of the map. If it is illustrated by the following patterns, the 

differences between points can be observed; 
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Figure 6.10 a- 5X5 = 25 clusters returned by SOM, b- 25 expected clusters with different distances 

between centre points. 

 

The aim in Figure 6.10 is to point out the differences between the consequence 

pattern of SOM with the neighbours of all points in “a” and the expected patterns 

with real distances of all points in “b”.  

 

There are two main steps of SOM + SOM algorithm to obtain a pattern like the 

map in “b” in Figure 6.10. The first step is that all instances are used to train the map. 

After training operation, the clusters are returned with x and y coordinates.  

 

For example; SOM algorithm is run on a map with 5x5 = 25 points, all instances 

train the all points on the map and 25 clusters are returned with x and y coordinates 

from (0,0) to (3,3).  Thus, a pattern like “a” map in figure above is obtained.   

 

These 25 clusters have 25 centroid instances which have calculated multi-

dimensional values related to the original instances in the data set as well as x and y 

coordinates. The second step of SOM + SOM is that these 25 multi-dimensional 

values generate a new data set where there are these 25 instances and these 25 

instances are used to train a new map with 100x100 = 10000 points. It is assumed 

that all centroids must be located on a map with x and y coordinates from (0,0) to 

(99,99) to compare with other approaches on a standard 100x100 map. This number 

of 100 can be changed according to observations of instances and the number of 

clusters.  As a result, these 25 instances spreads on the 100x100 map and the 

distances between these centroid instances are changed from 1 to different values.  

Thus, a pattern like “b” map in figure above is obtained. 
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6.2.2.2 Experimental Results of SOM + SOM 

 

This approach was tested by the usage of Iris dataset from UCI machine learning 

repository (UCI Machine Learning Repository, 2011). The visualizations of SOM + 

SOM patterns are submitted in the next figures step by step. On the next each figure, 

the sizes of maps increase and the centroid points spread clearer.  

 

In the following Figure 6.11, “a” presents returned 4x4 = 16 centroids by SOM 

algorithm and the distances between all centroids equals to 1 unit there. Then, these 

16 centroid instances are given SOM algorithm again. The another map “b” in Figure 

6.11 presents 16 centroids on 25x25 map and “c” presents these centroids on 36x36 

map. The another map “a” in Figure 6.12 presents 16 centroids on 49x49 map, “b” 

presents these centroids on 64x64 map and “c” in Figure 6.12 presents 16 centroids 

on 81x81 map. These maps specify that these centroids spread on all over map with 

different distances between them by increasing the sizes of maps.      

 

 

a 

 

b 

 

c 

Figure 6.11 a) SOM with4x4 map  b) SOM with 4x4 map + SOM with 25x25 map    c) SOM with 

4x4 map + SOM with 36x36 map 

 

a b c 

Figure 6.12 a) SOM with 4x4 map + SOM with 49x49 map  b) SOM with 4x4 map +  SOM with 

64x64 map    c) SOM with 4x4 map +  SOM with 81x81 map 
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Figure 6.13 100x100 map 

 

In Figure 6.13, all centroid instances are located clearly on 100x100 maps by 

SOM + SOM. 

 

6.2.3 RMWC Regression Mapping with Weighted Clustering 

 

In the field of cluster analysis, most clustering algorithms consider the 

contribution of each attribute for classification uniformly. In fact, different attributes 

(or different features) should be of different contribution for clustering result. In 

order to consider the different roles of each attribute, this chapter proposes a new 

approach for clustering algorithms based on weights, in which decision tree 

technique is used to assign the weights to each attribute. The comparison results 

show that novel approach improves the robustness of the traditional clustering 

algorithms. The experimental results with various test data sets illustrate the 

effectiveness of the proposed approach. 

 

Cluster analysis is one of the main methodologies for analysing multivariate data 

and one of important branches of unsupervised pattern analysis. Clustering is to 

partition data into groups such that data within a group are more similar to one 

another than patterns in different clusters. 
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Traditional clustering algorithms assume that each attribute of the dataset plays a 

uniform contribution for cluster analysis. However, in real world, each attribute (or 

each feature) may have different effects on the clustering result. Some weight values 

should be assigned based on the relative importance of features, reflecting the 

different roles of them during the clustering process. More important features should 

be assigned a higher weight, while less important ones should have a lower weight, 

may even have a zero weight. 

 

This section proposes a novel "weighted clustering using decision tree" approach 

for clustering data sets and for obtaining more consistent rule sets than traditional 

clustering algorithms. In this approach, decision tree technique is used to extract the 

contribution of each attribute for clustering result. By this approach, the dataset is 

firstly clustered by the classical clustering algorithm, then attributes are weighted 

according to the decision tree, then the dataset is clustered again by considering 

extracted weight values and finally rule sets are obtained using decision tree again. 

Experimental results with various test data sets and comparison results show that 

this chapter presents a new approach of clustering via weights on the attributes, 

somehow making clustering move toward the more powerful unsupervised method. 

In the experimental studies, K-Means algorithm was used, which has widely used 

clustering algorithm among unsupervised learning algorithms. However, the 

proposed algorithm can be used other clustering algorithms and can be applied to 

data of any dimensions.        

 

In order to consider the different contributions of features for clustering, several 

empirical studies have been done by using different techniques.  

 

While Bao et al. proposed the usage of ReliefF algorithm to give the weights to 

each feature, Li et al. proposed the usage of atom clustering algorithm to determine 

weights and then both studies used fuzzy c-means (FCM) algorithm to cluster data. 

Nock and Nielsen also presented a different approach, in which weight calculations 

before clustering rely on the local variations of the expected complete log-

likelihoods.  
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Most traditional clustering algorithms are limited to handling datasets that contain 

either numeric or categorical attributes. Han et al. proposed a model such that the 

weights for numerical features are calculated by Variable Precision Rough-Fuzzy 

Sets (VPFRS) algorithm, while the weights for categorical features are calculated by 

Variable Precision Rough Sets (VPRS) algorithm. In order to solve weighted 

clustering analysis problem, Chen used a framework which is based on decision-tree 

classify of little sample using a semi-supervised strategy. However, our approach is 

very different from this study, because it uses decision tree only to give a definition 

of cluster feature vector group for hybrid attributes. 

 

In order to weight attributes before clustering, Song et al. proposed a pre-

processing approach by calculating the coefficients of multiple correlations. Cheng et 

al. proposed a scheme to capture the local correlation structures to associate each 

attribute with an independent weighting vector and embed it in the subspace spanned 

by an adaptive combination of the dimensions. Chen presented a two-step projected 

clustering method for weighted clustering and evolutionary analysis of hybrid 

attributes data streams. Al-Razgan and Domeniconi addressed the problem of 

weighted clustering by using Locally Adaptive Clustering (LAC) algorithm. 

 

To the best of our knowledge, this study is the first on weighted clustering using 

the levels of the decision tree and the calculations of the weights as defined in 

Section 6.2.3.1. 

 

6.2.3.1 Weighted Clustering 

 

The standard clustering operations are done by using of standard distance formula 

like Euclidean distance in Formula 4.7. However, standard clustering algorithms 

assume that all attributes are in the same priority and they ignore the priorities of 

attributes between each other. Weighted clustering method supplies the priorities by 

using different weight value for each attribute. In this study, weight values are 

calculated by a new approach using decision tree algorithm. 
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The decision tree algorithms discover the hidden priorities of attributes. In our 

approach, weight values are calculated from this tree by the following way; the root 

attribute has a weight value as 1, the attributes in the second level have weight values 

as 0.5 and the attributes in the other levels have weight values as the half of the 

previous values.  

 

An attribute can appear in different levels. Therefore, all values in all levels for all 

attributes are found and these values are summed to calculate final weights. The 

calculation examples are given in the Section 6.3.2.2. The flow of this new approach 

is shown in the Figure 6.14 and its details are given below; 

 

 

 

Figure 6.14 The flow of weighted clustering using decision tree. 
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1. All attributes in the dataset have the same priority at the beginning. Therefore, the 

attributes are normalized between 0 and 1.  

 

2. The normalized dataset is clustered by using a standard clustering algorithm. For 

example, K-Means++ algorithm assumes that all attributes have the same priority 

while comparing the distances between two instances. 

 

3. The aim of this approach is to obtain a space of consistent clusters. This 

consistency is supplied by using a decision tree algorithm and a weighted clustering. 

Because clustered instances have the cluster knowledge as a target, a new attribute is 

added to the dataset to put the cluster knowledge. As a result, a classification dataset 

is obtained for the decision tree. 

 

4. The classification dataset is given to a decision tree algorithm. The decision tree 

algorithms discover the hidden priorities of attributes; the attributes from the root to 

the deepest node are listed as from the most important attribute to the least one by 

using Information Gain formula in Formula 6.3. 

 

H(Ex) = − ∑ p(xi)log p(xi)
n

i=0
                                    (6.2) 

 

IG(Ex,a) =  H(Ex) −  H(Ex |a)                                     (6.3) 

 

where p(xi) is the probability mass function of outcome attribute xi, H(Ex) is the 

entropy of all dataset and H(Ex|a) is the entropy for a
th

 attribute.   

 

5. According to the order of nodes in the tree, the weights are calculated and this 

knowledge is used in the standard clustering algorithm. For example, Weighted K-

Means++ algorithm (WKM) uses Weighted Euclidean Distance (WED) in Formula 

6.4, where Wk is the weight value of k
th

 attribute. 

 

WED = √∑ WkǁXk − Ykǁ2d
k=0                                    (6.4) 
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6. The normalized dataset without any target attribute in the first situation is used by 

the weighted clustering. Finally, a space of clusters which has more consistence rule 

set is obtained. The experimental studies given in Section 6.2.3.1.1 show the 

effectiveness of this new approach about accuracy and consistency. 

 

When a new instance out of training dataset comes, its related cluster is found by 

comparison of the weighted distances between the central vector in each cluster and 

this new instance. 

 

6.2.3.1.1 Experimental Studies of Weighted Clustering. The new approach to 

weighted clustering was tested by the usage of four datasets which have different 

characteristics. These datasets were obtained from UCI machine learning repository. 

The operation is clustering in this study; however, the experimental studies are done 

by the usage of classification datasets without target attributes. Thus, both the 

number of clusters and the correct cluster of each instance are known, and the 

success of this new approach can be tested correctly.  

 

The first dataset, Iris has 4 attributes and 150 instances which are divided by 3 

clusters. The second dataset, Glass Identification has 9 attributes and 214 instances 

which are divided by 7 clusters. The third dataset, Pima Indian Diabetes has 8 

attributes and 768 instances which are divided by 2 clusters. The fourth dataset, Page 

Blocks has 10 attributes and 5473 instances which are divided by 5 clusters. All these 

datasets have numerical values in their attributes. 

 

In experimental studies, K-Means++ algorithm is used for the clustering 

operations of this new approach. Also, before clustering operation, all datasets are 

normalized between 0 and 1 by usage of Min-Max Normalization given in formula 

below. 

 

 

where  is the normalized value, is the processed value, is the maximum value of 

the processed attribute and is the minimum value of the processed attribute. 
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K-Means++ algorithm uses Euclidean Distance formula while comparing the 

distances between the centre points of clusters and the processed point. The original 

Euclidean formula assumes that all attributes have the same priority; therefore, the 

coefficients for all attributes are 1. In weighted clustering, these coefficients change. 

In experimental tests, the coefficients were calculated as Table I for Iris, Table II for 

Glass, Table III for Diabetes and Table IV for Page Blocks. As a result, the 

Euclidean distance, “E” is calculated as Formula 6.6 for Iris, Formula 6.7 for Glass, 

Formula 6.8 for Diabetes and Formula. 6.14 for Page Blocks. Firstly, normalized Iris 

dataset between 0 and 1 is given to the K-Means clustering with the standard 

Euclidean distance formula.  

 

This dataset has 3 clusters in the real world; therefore, this attribute which 

contains the correct clusters is deleted before is being given to K-Means and the k 

parameter of algorithm is set as 3. After clustering operation, all instances in the 

dataset have a target attribute as their related clusters. This cluster knowledge is set 

in the dataset as a number like the 1st cluster, the 2
nd

 cluster and the 3rd cluster. The 

second step is using a decision tree algorithm.  

 

In experimental studies, C4.5 is used because this algorithm has a support for 

numerical data; thus, it would be used our test datasets which have numerical values 

in their attributes. Also, C4.5 has a pruning property. It means if there is a bough 

which gives the same result with another bough in the tree; the longest bough is 

deleted from the tree. Therefore, the most dominated attributes emerge and the 

number of identity attributes in the tree nodes is decreased. Furthermore, it means 

that weights of these attributes are decreased. Thus, the weights of the dominant 

attributes are increased according to the identity attributes. The new dataset for Iris 

with the target attribute which puts the values of clusters was given to C4.5 decision 

tree algorithm and the output tree given in Figure 1.2 was obtained. 

 

The leaves in Figure 6.15 show that there are 50 instances in the 2
nd

 cluster, 39 

instances () and 61 instances in the 3rd cluster (). This decision tree 

in this form obtains correct rule sets for 139 of 150 instances. Also, Figure 6.15 
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shows that there are 5 levels in the tree and the root, which indicates the most 

dominant attribute, becomes the 4
th

 attribute.  Therefore, the value of the 4
th

 attribute 

in the first level of Figure 6.15 is 1 and the other values in the first level are 0. There 

is only the 3
rd

 attribute in the second level; therefore, the value of the 3
rd

 attribute in 

the second level is 0.5, while others are 0.  

 

 

 

Figure 6.15 The decision tree of clustered Iris dataset by using C4.5. 

 

The third level contains only the 1
st
 attribute; therefore, the value of the 1

st
 

attribute in this level is 0.25 and the other values are 0. There is only the 3
rd

 attribute 

in the fourth level; therefore, the value of the 3rd attribute in the fourth level is 0.125 

and the other values are 0. The fifth level consists of the 1st attribute; therefore, the 

value of the 1st attribute in this level is 0.0625, while the other attribute values are 0. 

Finally, the total weights for all attributes are obtained (total weights column in 

Table 6.5) and then, Euclidean Distance, “E” in Formula 6.6 is used by K-Means++. 
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Table 6.5 Calculations of weight values for iris dataset 

Attributes 
Levels in Decision Tree 

1 2 3 4 5 Total weights 

a1 0 0.0 0.25 0.000 0.0625 0.3125 

a2 0 0.0 0.00 0.000 0.0000 0.0000 

a3 0 0.5 0.00 0.125 0.0000 0.6250 

a4 1 0.0 0.00 0.000 0.0000 1.0000 

 



X


 X


 X


 X




 

After these steps, Iris dataset without a target attribute is clustered by weighted K-

Means++. Finally, the result dataset with the target attribute, which contains new 

cluster values, is obtained. If this new dataset is given to C 4.5 again, the new 

decision tree obtains correct rule sets for 146 of 150 instances. The other three 

datasets are processed in the same steps. Then, Formula 6.7 according to Table 6.6, 

Formula 6.8 according to Table 6.7 and Formula 6.14 according to Table 6.8 are 

obtained. These Euclidean distance formulas, “E” are used by weighted K-Means.  

 

Table 6.6 Calculations of weight values for glass dataset 

Attributes 
Levels in Decision Tree 

1 2 3 4 5 Total weights 

a1 0 0.0 0.25 0.125 0.0000 0.37500 

a2 0 0.0 0.00 0.000 0.0000 0.00000 

a3 1 0.0 0.00 0.000 0.0000 1.00000 

a4 0 0.0 0.00 0.000 0.0000 0.00000 

a5 0 0.0 0.00 0.125 0.0000 0.12500 

a6 0 0.0 0.00 0.000 0.0625 0.06250 

a7 0 0.0 0.00 0.000 0.0000 0.00000 

a8 0 0.5 0.00 0.000 0.0000 0.50000 

a9 0 0.5 0.25 0.125 0.0000 0.87500 





X 


X 


X 


X 




X 

X 


X 



X 

X 


 

 

As a result, Figure 6.16 shows that the percentages of correct and incorrect 

clustered instances After Weighted Clustering (AWC) are more successful than the 

percentages of correct and incorrect clustered instances After Simple Clustering 

(ASC), because the percentages of correct instances for weighted clustering are more 

approximate to 100% and the percentages of incorrect instances for weighted 

clustering are more approximate to 0%. 
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Table 6.7 Calculations of weight values for diabetes dataset 

Attributes 
Levels in Decision Tree 

1 2 3 4 5 6 Total weights 

a1 0 0.5 0.25 0.125 0.0000 0.00000 0.87500 

a2 0 0.0 0.00 0.000 0.0625 0.00000 0.06250 

a3 0 0.0 0.00 0.000 0.0625 0.00000 0.06250 

a4 0 0.0 0.00 0.000 0.0000 0.03125 0.03125 

a5 0 0.0 0.00 0.000 0.0000 0.00000 0.00000 

a6 0 0.0 0.00 0.000 0.0000 0.00000 0.00000 

a7 0 0.0 0.00 0.000 0.0000 0.00000 0.00000 

a8 1 0.0 0.25 0.125 0.0625 0.03125 1.46875 





X 


X 


X 



X 

X 


X 



X 

X 








 
Figure 6.16 The accuracy percentages for all datasets 

 

C4.5 algorithm for Iris and Glass datasets finds that the dominant attributes a4 for 

Iris and a3 for Glass are in only the root; however, this decision tree algorithm for 

Diabetes and Page Blocks finds that that the dominant attributes a8 for Diabetes and 

a5 for Page Blocks are in both the root and other levels of tree. 

 

The weights of these attributes are calculated as the values greater than 1; thus, 

the differences between these attributes and the other attributes increase. On the other 

hand, C4.5 algorithm for all datasets finds identity attributes. Therefore, their weights 

become 0 and there is not any influence of these attributes over weighted clustering. 
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The identity attributes are a2 for Iris; a2, a4 and a7 for Glass; a5, a6 and a7 for 

Diabetes; a9 for Page Blocks. 

 

Errors are generally analysed by four main methods Mean Absolute Error (MAE) 

(Formula 6.9), Root Mean Square Error (RMSE) (Formula 6.10), Relative Absolute 

Error (RAE) (Formula 6.12) and Root Relative Square Error (RRSE) (Formula 6.13). 

While comparing the errors, MAE and RAE give more general thoughts than others, 

because RMSE and RRSE enlarge the differences by using the operations of power 

and root. 

 

Mean Absolute Error =
∑  | pi−ti |n

i=1

n
                           (6.9) 

 

Root Mean Square Error =√
∑ (pi−ti)2n

i=1

n
                    (6.10) 

 

T =  
∑ tin

i=1

n
                                      (6.11) 

 

Relative Absolute Error =  
∑  |  pi−ti |n

i=1

∑  |  ti−T |n
i=1

                             (6.12) 

 

Root Relative Square Error = √
∑ (pi−ti)2n

i=1

∑ (ti−T)2n
i=1

                         (6.13) 

 

where pi is the prediction, ti is the true value and n is the number of data. 

 

Table 6.9 shows the error test results and comparison of simple and weighted 

clustering.  

 



X


X


X




X

X




X

X




X

X




X



T
ab

le
 6

.8
 C

al
cu

la
ti

o
n
s 

o
f 

w
ei

g
h
t 

v
al

u
es

 f
o
r 

p
ag

e 
b

lo
ck

s 
d

at
as

et
 



112 

 

  

 

T
ab

le
 6

.8
 C

al
cu

la
ti

o
n

s 
o
f 

w
ei

g
h

t 
v

al
u

es
 f

o
r 

p
ag

e 
b

lo
ck

s 
d

at
as

et
 

T
ab

le
 6

.9
 C

o
m

p
ar

is
o

n
 R

es
u

lt
s 

o
f 

E
rr

o
r 

T
es

ts
 



113 

 

6.2.3.2 Algorithm of RMWC 

 

The aim of this algorithm is the same as the aims of the other mapping approaches 

and RMWC returns the centroids, which are multi-dimensional instances, on x and y 

coordinates of a map. However, there is a different approach while locating on the 

map. The distances between the centroids in K-Means++ + QGA or the training the 

all points on the map by SOM + SOM are not considered and important attribute/s in 

other words, the attributes, which have the assigned highest weight values by 

weighted clustering, are considered. Principal component analysis (PCA) has a same 

aim to visual the instances; however, this approach considers only two certain 

attributes while obtaining a two-dimensional map. In RMWC algorithm, all attributes 

have contributions for the visualization on a two-dimensional map and they are 

represented on the map, too.  

 

That is, the first phase of RMWC is the running weighted clustering with K-

Means++ and the weighted clustering gives two patterns. The first pattern is the 

centroid instances of clusters and the second pattern is the weight values of 

attributes.  

 

The second phase of RMWC is the mapping these centroid instances on a two-

dimensional map. X coordinate of this map becomes the most dominant attribute 

values of these centroid instances. The most dominant attribute means the attribute 

which has the highest weight value. Y coordinate of this map is calculated by 

weighted arithmetic mean of the values at other attributes like the following formula; 

 

,                                              (6.15) 

where n is the total number of attributes except the most dominant attribute,  is the 

value of i
th

 attribute and  is the weight value of i
th

 attribute. 

 

For all centroid instances, x and y coordinate values are calculated separately. At 

last phase of the algorithm, these x and y values are normalized between 0 and 100 
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for a clear visualisation. As a result, multi-dimensional centroid instances are 

reduced on a two-dimensional structure.   

 

6.2.3.3 Experimental Studies of RMWC 

 

In experimental studies, the data set which contains the patients of head and neck 

cancers in Celal Bayar University. There is a sample of 50 patients from the data set 

to analysis and it tests for 16 clusters, because this data set has instances which have 

too different characteristics. Thus, each instance locates in single cluster virtually. 

 

The features of the instances are age, gender, diagnostic place, the state of 

dead/survive and T, N and M values separately. (T the size of the tumour and 

whether it has invaded nearby tissue, N which is nearby lymph nodes that are 

involved, M that distant metastasis). The study is done on a 100x100 map and the 

following figure submits these clusters with distances between each other. 

 

 

Figure 6.17 RMWC pattern on the 100x100 map of head and neck cancer data set 
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CHAPTER SEVEN 

CONCLUSIONS 

 

Clustering algorithms and evolutional algorithms are open for improvement. 

Moreover, medical decision support systems involve high accuracy rate and 

performance. This thesis points out that improved new approaches of traditional data 

mining algorithms increases success at deciding at diagnosis and treatments for data 

mining and knowledge discovery in medical information systems. 

 

The first part of Chapter 4 introduces a new clustering algorithm SOM++. The 

significant difference between SOM++ algorithm and the standard SOM is that 

SOM++ does not start to initialize the weight values of neurons with random 

numbers. SOM++ uses the initializing centre points of clusters method in K-

Means++. Eventually, each neurons represent a cluster and thus, SOM++ takes 

advantage of K-Means++. Separately, these significant initial values are not located 

in the neurons on the map and SOM++ has a special locating algorithm namely the 

sequential assignment. 

  

Another difference between SOM++ algorithm and the standard SOM is that 

SOM++ initializes the starting number of iteration. Because the standard SOM starts 

with the random values in neurons, the number of iteration is declared as 0. 

However, because SOM++ starts with significant values in neurons, the number of 

iteration is declared as the number of total data. This initializing increases stability 

and decreases error rates. 

  

In other words, SOM++ algorithm has many advantages over conventional SOM 

based methods. The most remarkable advantage of SOM++ is in saving training time 

for clustering large and complicated data sets by using K-Means++ algorithm in the 

weight initialization procedure of SOM. Furthermore, the rate of unstable data points 

decreases and internal error decreases. 
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In the second part of Chapter 4, parallel implementation of SOM has been devised 

by using a special division method to attempt for improving the performance of SOM 

in large-scale domains. It introduces a new clustering approach PSOMDM. The 

significant difference between PSOMDM algorithm, the standard SOM and parallel 

SOM is that PSOMDM divides the map area constantly and lower number data are 

clustered on different neurons by parallel method.  

 

PSOMDM algorithm has many advantages over conventional SOM based 

methods. The most remarkable advantage of PSOMDM is in saving training time for 

clustering large and complicated data sets by using division method. Furthermore, 

the rate of unstable data points decreases and internal error decreases. For future 

work, the proposed algorithm, PSOMDM, can be used for the computer security, the 

healthcare, ecological modelling, the financial sector and another area which needs 

clustering its large data on a map successfully at accuracy, consistency and speed. 

 

In Chapter 5, we have proposed a method to recommend a daily menu compatible 

with Mediterranean diet considering user’s age, sex, weight, height, general health 

condition, eating habits, and daily activities. It was taken care of providing healthy 

menus considering the amount of 26 features’ intake. Nutrition values have been 

gathered from the USDA National Nutrient Database and the Dietary Reference 

Intakes Tables of Health Canada has been used to determine daily intake values. 

 

In test phases, it has observed that HQGA is the fittest algorithm for the DOP. 

Especially, the local search methods supplies successful results at 100% of the 

energy, carbohydrate, protein and fat as vital needs.  

 

On the other hand, there are still many points where we should improve our 

method, for example, running time of the recommended algorithm can be improved 

and variation of food in our database can be increased. Also, weekly or monthly 

optimized menus can be generated by considering the recorded daily menus which 

have been followed by user.  
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In Chapter 6, All comparisons for the results of C4.5 algorithm according to the 

versions of ASC and AWC shows that the clusters after weighted clustering have less 

error scores and less incorrectly clustered instances. As a last result, if the weighted 

clustering is done after the second C4.5, it is observed that the error scores get 

higher. Because the number of the identity attributes increases and the little influence 

of these attributes is ignored incorrectly. 

 

Traditional clustering algorithms suppose that all attributes have the same priority. 

This study proposes a new approach for clustering algorithms, using decision tree 

technique to assign a weight to each attribute.  

 

This new approach in the design of unsupervised learning algorithms has allowed 

us to obtain dramatic improvements of clustering performances. The percentage of 

correct instances for weighted clustering using decision tree is approximately 97.2% 

on average, while it is around 93.6% for standard clustering algorithm. 

 

The experimental studies show that if the aim of clustering is to obtain the most 

consistent rule set for a dataset at the end of clustering, the attributes must have 

different priorities for the clustering phase. These priorities are supplied by using 

weighted Euclidean distance formula in experimental studies. However, for this new 

approach, another weighted distance formula can be used. The single aim is to supply 

different weights for all attributes. 

 

Other combinations of clustering and decision tree algorithms can be tested and 

compared in the next studies. Finally, the most successful pair will be tried to obtain 

and specially, for expert systems, a new approach will be produced. 
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