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ESTIMATION OF TRAFFIC DENSITY BASED ON PAST DENSITY 

INFORMATION FOR ADAPTIVE TRAFFIC MANAGEMENT  

 

ABSTRACT 

 

     Traffic congestion which causes economic, environmental and even individual 

psychological troubles not only in Turkey but all over the world,  is a very serious 

problem. Developed intelligent traffic systems in recent years aim to produce 

solutions to this problem by monitoring the traffic and applying adaptive decision 

strategies based on estimations about the future situations. The core problem of these 

systems consists of the estimation of traffic density reliably.  

 

     In the literature part of the thesis we will summarize the most commonly used 

density estimation methods. In the application part of the thesis we will examine four 

different algorithms proposed for traffic density estimation which are inspired by the 

methods used to estimate the spectral holes in cognitive radio applications. Data used 

in this study is received from Istanbul Traffic Control Center and has been converted 

into ternary and binary versions depending on the average speed of the traffic flow.  

In the proposed algorithms, density state at the 60th minute of the considered road is 

estimated by looking at the past 50 minutes of density data of the same road or 

adjacent two roads. Different simulations have been performed using these 

algorithms and results are evaluated based on several performance criteria. 

 

Keywords: Density estimation, traffic, congestion, cognitive radio 
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ADAPTİF TRAFİK YÖNETİMİ İÇİN GEÇMİŞ YOĞUNLUK BİLGİLERİNE 

DAYALI TRAFİK YOĞUNLUĞU TAHMİNİ 

 

ÖZ 

 

     Sadece Türkiye’de değil tüm dünyada ekonomik, çevresel ve hatta bireysel 

psikolojik sorunlara yol açan trafik sıkışıklığı, çok ciddi bir problemdir. Son yıllarda 

geliştirilen akıllı trafik sistemleri, trafiği izleyerek ve gelecek durumlar hakkındaki 

tahminlere dayanan adaptif karar stratejilerini uygulayarak bu soruna çözüm 

üretmeyi hedeflemektedir. Bu sistemlerin temel problemini güvenilir trafik 

yoğunluğu tahmini oluşturur. 

 

     Tezin literatür bölümünde en sık kullanılan yoğunluk tahmin yöntemlerini 

özetleyeceğiz. Tezin uygulama kısmında ise bilişsel radyo uygulamalarında spektral 

boşlukları tahmin etmek için kullanılan yöntemlerden esinlenen trafik yoğunluğu 

tahmini için önerilen dört farklı algoritmayı inceleyeceğiz. Bu çalışmada kullanılan 

veriler İstanbul Trafik Kontrol Merkezi'nden alınmıştır ve trafik akışının ortalama 

hızına bağlı olarak üçlü ve ikili versiyonlara çevrilmiştir. Önerilen algoritmalarda, 

dikkate alınan yolun 60. dakikadaki yoğunluk durumu, aynı yolun ya da bitişik iki 

yolun geçmiş 50 dakikadaki yoğunluk verilerine bakarak tahmin edilmektedir. Bu 

algoritmaları kullanarak farklı simülasyonlar gerçekleştirilmiştir ve sonuçlar çeşitli 

performans kriterlerine göre değerlendirilmiştir. 

 

Anahtar kelimeler: Yoğunluk tahmini, trafik, sıkışıklık, bilişsel radyo 
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CHAPTER ONE 

INTRODUCTION 

 

     Today, one of the biggest problems of people living in the city is definitely the 

increasing vehicular traffic. With the increase of job opportunities and the ease of 

getting goods, thousands of vehicles are entering the traffic of big cities each day. By 

the impact of rush hours, or environmental factors such as rain and snow or traffic 

accidents, the problem of traffic density becomes even worse. 

 

     For finding solution to this problem, traffic control centers were established which 

use evolving technology such as loop detectors, GPS-enabled wireless devices, 

cameras, and various software and hardware devices. Traffic control centers aim to 

manage the traffic density and speed of the traffic flow and inform drivers with 

different applications such as density estimation map and traffic guidance by 

evaluating traffic data collected through these devices. 

 

     Here in this study we will concentrate on one of these applications which is traffic 

density estimation. First, in the second chapter, we will introduce the primary traffic 

parameters including density parameter which helps us to understand the traffic flow 

better. In the third chapter, we will briefly explain the density estimation methods 

widely used in many application areas in the literature. In the fourth chapter, we will 

introduce the proposed methods for density estimation based on algorithms 

frequently used in cognitive radio applications. At the end, we will discuss the 

performance of the proposed algorithms by using several performance evaluation 

criteria and also we will make suggestions for future studies. 
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CHAPTER TWO 

TRAFFIC STREAM CHARACTERISTICS 

 

2.1 Background 

 

     Traffic streams occur as a result of mutual effects of drivers and vehicles and their 

interaction with the physical elements of the roadway and its enviroment. Because 

driver behaviours and vehicle characteristics are different, manners of individual 

vehicles within the traffic stream are not exactly the same. In addition to these 

factors, there are also randomly occuring events such as accidents or changing 

weather conditions like rain, snow, icing on the road etc. Therefore, traffic involves 

an element of variability.  

 

     A water flow through channels and pipes of determined characteristics will 

behave in a completely predictable mode, in harmony with the laws of hydraulics 

and fluid flow. On the other hand a given traffic flow through streets and highways 

of specific characteristics will change with both time and location. Therefore, the 

critical problem of traffic engineering is to plan and design for a medium that is not 

presumable in exact terms-one that includes both physical limitations and the 

complex behavioral characteristics of human beings. Luckily, while exact 

characteristics change, there is a quite stable range of driver and, therefore, traffic 

stream behavior. 

 

     In explaining traffic streams in quantitative terms, the aim is to both understand 

the natural variability in their characteristics and to determine normal ranges of 

behavior. By doing so, key parameters must be determined and measured. Traffic 

engineers will examine, evaluate, and finally design improvements in traffic facilities 

depended on such parameters and their knowledge of normal ranges of behavior. In 

fact, these parameters are the traffic engineer’s measurement of reality, and they 

compose a language with which traffic streams are understood and explained (Roess,  

Prassas & McShane, 2004). The following sections will summarize these parameters. 
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2.2 Traffic Stream Parameters 

 

     Traffic stream parameters are divided into two wide categories. Macroscopic 

parameters explain the traffic stream completely; microscopic parameters explain the 

behavior of single vehicle or pairs of vehicles within the traffic streams. 

 

     The three principal macroscopic parameters that explain a traffic stream are (1) 

volume and rate of flow, (2) speed, and (3) density. Microscopic parameters contain 

(1) the speed of single vehicles, (2) headway, and (3) spacing. In this study, we only 

deal with macroscopic parameters. 

 

2.2.1 Volume and Rate of Flow 

 

     Traffic volume is described as the number of vehicles passing a point on a 

highway, or on a given lane or direction of a highway, during a given time interval. 

The unit of measurement for volume is only “vehicles,” though it is often stated as 

“vehicles per unit time.” Units of time used frequently are “per day” or “per hour.” 

 

     Daily volumes are used to determine trends over time, and for general planning 

aims. Detailed plan or control decisions need information of hourly volumes for the 

peak hour(s) of the day. 

 

     Rates of flow are usually expressed in units of “vehicles per hour”, but indicate 

flows available for periods of time less than one hour. For example, a volume of 200 

vehicles observed over a 15 minute period may be stated as a rate of 200 x 4=800 

vehicles/hour, even though 800 vehicles would not be observed in the full hour. The 

800 vehicles/hour becomes a rate of flow available for a 15 minute interval (Roess et 

al., 2004). 
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2.2.2 Speed and Travel Time 

 

     Speed is the other macroscopic parameter explaning the state of a traffic stream. 

Speed is described as a rate of motions in distance per unit time. Travel time is the 

elapsed time in which a vehicle traverse a defined section of a roadway. Speed and 

travel time are inversely proportional: 

 

          (2.1) 

 

     where S is called speed, mi/h or ft/s 

               d is called distance traversed, in mile (mi) or feet (ft) 

     t is called time to traverse distance d, in hour (h) or second (s) 

 

     It is accepted that each vehicle travels at a different speed in a moving traffic 

stream. Therefore, the traffic stream does not have an individual characteristic value, 

but rather a distribution of individual speeds. The traffic stream, taken completely, 

can be described using an average or typical speed. 

 

     For a traffic stream, there are two ways in which an average speed can be 

calculated: 

 

 Time mean speed (TMS): The average speed of all vehicles which pass a 

point on a highway or lane over some given time period. 

 Space mean speed (SMS): The average speed of all vehicles which occupy a 

given section of highway or lane over some given time period. 

 

     In brief, TMS is a point measurement, while SMS indicates a length of highway 

or lane. 

 

     For measuring TMS, an observer standing by the side of the road would record 

the speed of each vehicle as it passes (Roess et al., 2004).  For measuring SMS, an 

observer would require an elevated location from which the full area of the section 
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may be viewed. The SMS attaches importance to slower vehicles more heavily, 

depending on the amount of time they occupy a highway section. Therefore, the SMS 

is generally lower than the corresponding TMS, in which each vehicle is weighted 

equally. The two speed measures may reasonably be equal if all vehicles in the 

section are travelling at just the same speed. 

 

     TMS is calculated by finding each single vehicle speed and taking a simple 

average of the results. On the other hand, SMS is calculated by finding the average 

travel time for a vehicle to pass the section and using the average travel time to 

calculate a speed. 

 

2.2.3 Density and Occupancy 

 

     Density, the last primary measurement of traffic stream characteristics, is 

described as the number of vehicles occupying a given length of highway or lane, 

generally stated as vehicles per mile or vehicles per mile per lane. 

 

     Density is difficult to measure directly, as an observer requires an elevated 

vantage point from highway section. It is often calculated from speed and flow rate 

measurements. 

 

     Density, however, is may be the most important of the primary stream parameters, 

since it is the measurement most directly related to traffic demand. Demand does not 

appear as a rate of flow, even though traffic engineers use density as the principal 

measurement of demand. Traffic is produced from various land uses, inserting a 

number of vehicles into a confined roadway space. This process composes a density 

of vehicles. Drivers choose speeds that are convenient with how close they are to 

other vehicles. The speed and density join to give the observed rate of flow (Roess et 

al., 2004). 

 

     Density is also an important measurement of quality of traffic flow, as it is a 

factor which affects freedom to maneuver and the psychological comfort of drivers. 
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     While density is difficult to be measured, modern detectors can measure 

occupancy, which is closely related with density. Occupancy is defined as the 

proportion of time that a detector is “occupied”, or covered, by a vehicle in a given 

time period. 

      

     Occupancy is measured for a specific detector in a particular lane. Therefore, the 

density estimated from occupancy is in units of vehicles per mile per lane. If there 

are neighboring detectors in extra lanes, the density in each lane may be added to 

provide a density in veh/mi for a given direction of flow over several lanes (Roess et 

al., 2004). 
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CHAPTER THREE 

LITERATURE REVIEW 

 

     As mentioned in the previous sections, density is the most important primary 

traffic parameter since it provides the maximum information about the traffic 

situation. Therefore, traffic control centers, which aim to monitor the traffic of the 

city,  collect the necessary traffic information and usually report this information to 

drivers as the density parameter. Traffic control centers using parameters such as 

speed, flow rate, the number of vehicles in one lane, past density information etc. 

from provided data, try to estimate the density by different methods. In this section 

we will examine the most commonly used methods for density estimation. 

 

      Alvarez-Icaza et al. have made density estimation by using traffic flow model 

derived from the studies of (Lighthill & Whitham, 1955) and (Richards, 1956). This 

model is named LWR which is the base of many traffic engineering studies. A 

proposed traffic density design is used for real time on-ramp metering control for 

freeways. The design can be used in two situations: a) when there are no traffic flow 

sensors properly located, and b) when available sensors have several errors. These 

two problems require to arrange traffic estimation design to recover the missing 

information. In (Alvarez-Icaza, Munoz, Sun & Horowitz, 2004) an estimation design 

for vehicle density in the middle section of a stretch of freeway is presented. It is 

assumed that traffic flow at the entry and exit of that section is known. The design is 

based on a conservancy of vehicles model and a speed-density relationship given by 

“fundamental diagrams.” A nonlinear observer is arranged that uses the model 

structure to set a matrix of observer gains. Together with the design of the observer, 

it is suitable to estimate some traffic mixing factors that appear during the spatial 

discretization of the conservation of vehicles model and whose value indicates the 

traffic state: free or congested (Alvarez-Icaza et al., 2004). 
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3.1 Traffic Flow Modeling  

 

     Traffic flow modeling depends on a conservation of vehicles principle that can be 

expressed as 

 

       

  
  

 

  
{            }                        (3.1) 

 

where x is called the longitudinal position along the freeway, t is the time, N(x, t) is 

the vehicle density at position x and time t and V(x, t)  is the longitudinal speed. Both 

quantities N(x, t) and V(x, t) are collected for all the freeway lanes. 

 

     The model in Equation (3.1) can be discretized in a set of finite length sections, if 

the equation is integrated with respect to x in both sides. For this integration, 

upstream or downstream boundary conditions should be taken into account, based on 

the traffic state being free or congested. Figure 3.1 indicates a schematic diagram of 

a four section freeway where the integration has been made using upstream boundary 

conditions (Alvarez-Icaza et al., 2004). The suitable model has the form 

 

 

 ̇  
 

  
                    (3.2) 

  

 ̇  
 

  
               (3.3) 

 

 ̇  
 

  
               (3.4) 

 

 ̇  
 

  
               (3.5) 
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qin q1 q2 q3     q4 

Figure 3.1 The freeway model of discrete section 

 

where ni is called the average vehicle density in section i, Li is the length of section i, 

qi is the flow between sections i and i + 1, and qin is the inflow to the first section. 

Succession of models as the one in Equations (3.2)-(3.5) makes it possible to plan 

more complex freeway networks. The flow qi in the model of Equations (3.2)-(3.5) 

can be stated as 

 

                      (3.6) 

 

where nqi and vqi are the density and speed in the point where sections i and i + 1 

adjoin. While for a general case of a hydrodynamic system, speed and density are 

independent variables, for transportation systems there is plentiful literature about the 

situation in that drivers adjust their speed depending on the density they percieve 

locally. This speed-density relationship is expressed through what is known as 

“fundamental diagrams.” Figure 3.2 indicates two curves that match to two different 

fundamental diagrams. Two parts can be separated in the curves. In the first part, that 

matches to low densities, speed is constant and characterizes free flow state where 

drivers travel at the maximum permissible speed. The second part of the curve, for 

higher densities, indicates a decreasing value of speed with the increase of density 

when the traffic is congested. In the first example shown in Figure 3.2, speed 

decreases linearly with density, when this goes beyond a critical value, until getting 

to the point of traffic jam, where speed is zero. In the second example, a driver 

decreases its speed as a function of the square of the distance between him/her and 

the driver in front. The distance is inversely proportional to density: more density 

means less distance between vehicles and therefore smaller speeds (Alvarez-Icaza et 

al., 2004). 

 

n1 n2 n3 n4 
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 Velocity(m/s) 

 

 

 

                                 

                                    Density(veh/m) 

Figure 3.2 Examples of density-speed fundamental diagrams (Alvarez-Icaza et al., 2004) 

 

     ni is used to model the average density in section i in Equations (3.2)-(3.5), when 

density nqi in the point adjoining section i and i+1, was used in Equation (3.7)-(3.10). 

Therefore it is essential to express nqi as a function of ni, and to this end it is 

proposed to model flow qi according to 

  

                                               (3.7)     

                              

                               (3.8)                                 

  

                              (3.9)                                 

                                                                                                                                                                                              

              (3.10) 

                 

where αi Є [0, 1] are mixing factors with regard to the length of sections i and i +1 

and the traffic state: free or congested. In (Alvarez-Icaza et al., 2004) these factors 

are considered unknown and constant for each traffic state. The terms in parantheses 

in the right side of Equations (3.7)-(3.10) mean that density nqi is a convex mixing of 

the average densities ni in the adjacent sections. Speed vqi is either known or can be 

computed from a fundamental diagram based on the values of ni and αi. 
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     If Equations (3.2)-(3.5) and (3.7)-(3.10) are designed in matrix form, they become 

 

 ̇                         (3.11) 

                                                                                                  

A proposed algorithm by (Alvarez-Icaza et al., 2004) is used to estimate vehicle 

density in conditions where the sensor is not in the location along the freeway or is 

faulty. The design was depended on a conservation of vehicles model and considered 

the existence of a fundamental diagram describing the speed-density relationship. 

From this, an adaptive observer is proposed whose stable behavior is based on the 

choice of a gain matrix in accordance with traffic state: free or congested. The design 

was demonstrated with simulations that confirm analytical findings. The design can 

be applied to more complex scenarios and combined with on-ramp metering control 

algorithms (Alvarez-Icaza et al., 2004). 

 

Kalman filter is undoubtedly one of the most widely used methods to estimate not 

only density but also speed and travel time parameters (Ye, 2007; Qiu, 2007; Chu, 

2005; Yang, 2012).  

 

Yang pays attention to develop a traffic state estimation algorithm for the specific 

stochastic traffic flow model. He shows that the discretized version of the stochastic 

traffic flow model can be rearranged as a state space model and nonlinear Kalman 

filter algorithms can be implemented. After then, by comparing the estimation 

accuracy of the traffic flow model with and without the on-line algorithm, he shows 

that on-line algorithm is able to improve the estimation performance of the future 

traffic state. 

 

3.2 State Space Models and Filtering 

 

A state space model is given by Equations (3.12) and (3.13). Equation (3.12) is 

the state transition equation of the state space model. xk is the state variable of the 

system at time k and wk is the transition disturbance. We can obviously see from the 



 
 

12 
 

state transition equation that the state variable in the current period is dependent on 

the previous state and the disturbance. Equation (3.13) is the observation equation, 

where zk is observation variable and    is the measurement noise. In state estimation, 

the transition and observation equations are both given. The observation variable zk is 

measured at all time periods. The aim of these equations is to make the best 

estimation of xk which is based on historical observations of zk. 

 

                              (3.12)   

 

                       (3.13)   

                                                                                                                             

3.2.1 Kalman Filter 

 

When Fk and Hk are both linear functions as shown in Equation (3.14) and (3.15), 

and wk,    are distributed independently with normal distribution: wk ~ N(0, Qk) and 

   ~ N(0, Rk), then the state space model is linear and it is known that Kalman filter 

(Kalman, 1960) will make the best estimation of xk under this situation.  

 

                                    (3.14) 

 

                            (3.15) 

                                                                                                                                                                                 

Let  ̂k/k show a posterior estimation of state xk at k
th

 time instant given 

observations up to and including at time k, and Pk\k show a posterior error covariance 

matrix of the state estimation at k
th

 time instant (Yang, 2012). Let  ̂k/k-1 show a priori 

estimation of state xk at k-1
th

 time instant given observations up to and including at 

time k-1, and Pk/k-1 show a priori error covariance matrix of the state estimation at k-

1
th

 time instant.  

 

Kalman filter rearranges the posterior distribution of the state after taking the 

observation information according to Equations (3.16)-(3.20) 
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         ̂              (3.16) 

 

             
             (3.17) 

 

        ⁄   
     

        
(3.18) 

 

 ̂     ̂            
        

(3.19) 

 

                   
        

(3.20) 

 

Kalman filter gives the best estimation for linear state space model. However for 

the stochastic traffic flow model,  because of the complexity of the model, both Fk 

and Hk are nonlinear. Kalman filter is not good at stochastic traffic flow model 

therefore nonlinear Kalman filter has to be applied. 

 

3.2.2 Extended Kalman Filter 

 

Extended Kalman filter (EKF) is a commonly used nonlinear filtering algorithm 

for models like in Equations (3.12) and (3.13) where both Fk and Hk are nonlinear 

functions. It has been frequently used in practice because of its simplicity. The main 

idea of EKF is linearization of the transition equation and measurement equation 

around the current estimated state. Then Kalman filter can be applied to make an 

estimation of the approximated linear model. When EKF is compared with the 

procedure of Kalman filter, it is very similar except some slight differences in the 

predict and update states (Yang, 2012). 

 

3.2.3 Unscented Kalman Filter 

 

Unscented Kalman filter (UKF) is a nonlinear Kalman filter which gives better 

estimation than EKF when the transition equation is highly nonlinear. In EKF, the 

priori distribution of the state variable is estimated by a Gaussian distribution. There 

is a poor approximation when the transition equation is highly nonlinear. Moreover 
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UKF does not calculate the derivative, because of this, it is more efficient than EKF 

in the case where the state variable is high dimensional. With those two advantages, 

UKF might be a better estimator for the on-line traffic state estimation.  

 

  The main idea of UKF is unscented transform. Unscented transform is a 

mathematical sampling method for estimating the mean and covariance matrix of the 

output variable from a non-linear transformation of the input variable, given the 

mean and covariance matrix of the input variable. UKF initially produces a set of 

sample points (called sigma points). Each sigma point is related with a corresponding 

weight, from the mean and covariance matrix of the input random variable by using 

unscented transform. Each sigma point is a performed input of the non-linear 

function. The set of sigma points is spreaded through the non-linear function to 

produce a set of sample outputs, thus the mean and covariance matrix of the output 

variable could be estimated from these sample outputs (Yang, 2012).       

 

3.2.4 Particle Filter 

 

Particle filter (PF) is used as sequential Monte Carlo method for highly non-linear 

and complicated transition and measurement equations (Qiu, 2007). Like UKF, PF 

estimates the posterior probability distribution of the state variable by a set of 

particles (sample points): In the first step, a set of particles with equal weights are 

taken from the prior probability distribution of the state. Then the particles are 

modified by Monte Carlo simulation according to the transition equation. Each 

particle denotes one path of the state variable and the weight denotes the probability 

of the occurrence of this path. When new information is taken at each time step, PF 

updates the weights of all the particles. When the number of particles is large 

enough, the rearranged discrete distribution of the particles estimates the posterior 

probability distribution of the state. A resampling procedure is used at some points of 

time in order to keep variety among the particles. 

 

The synthetic traffic flow data used in (Yang, 2012) are produced by simulation 

from noisy measurement data in a subset of the cells. The performances of UKF and 
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PF in terms of their abilities are evaluated by these data for estimating the true traffic 

state in all the cells over the highway. It is considered that the model parameters are 

known in this numerical experiment. 

 

The estimation of the traffic density without any filtering is computed by dividing 

the measured volume by measured speed. Both PF and UKF estimate the true state 

very closely in all the cells. While the speed is low due to the high density in that 

location, the noise measured in the speed will have much higher effect to the 

estimated density than the condition when the speed is high. Also the measurement 

noise of speed will be increasing as the density increases because of the fact that the 

density is not a continuous variable. Hence, when traffic gets congested, the simple 

estimation will not work properly and filtering algorithms, such as UKF and PF, can 

maintain the estimation error (Yang, 2012). 

 

The performance of the simple estimation is related with the traffic congestion 

level. As the traffic is extremely congested, the error of no filtering estimation is 

much larger than that of UKF and PF. As the traffic is under free flow condition, the 

error of no filtering estimation is similar to that of UKF and PF.  

 

Finally, it can be said that if the model parameters are known, UKF and PF can 

improve the estimation accuracy of the traffic state especially in the congested traffic 

(Yang, 2012). 

      

In (Munoz, Sun, Horowitz & Alvarez, 2003) a macroscopic traffic flow model, 

called the switching mode model (SMM), has been produced by the cell transmission 

model (CTM) and then implemented to the traffic density estimation at unmonitored 

locations along a highway. The SMM is a hybrid system that changes between 

different sets of linear difference equations, or modes, based on the mainline 

boundary data and the congestion status of the cells in a highway section (Munoz et 

al., 2003). 
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3.3 Cell Transmission Model 

 

The Lighthill-Whitham-Richards model (Lighthill & Whitham, 1955; Richards, 

1956) , often referred to as LWR model, contains a vehicle conservation equation 

  

       

  
 

       

  
         (3.21) 

 

and a static flow-density equation  

 

        (      )       (3.22) 

   

which is frequently called the basic diagram in traffic engineering. Because of 

different presumptions about traffic behaviors and better fit for the measured data, 

researchers have suggested many basic diagrams of different shapes (Sun, 2005). But 

they all use the following characteristics: 

 

1. Q(0) =Q(ρJ) = 0, where ρJ is the jam density. 

2. Q(ρ) is a concave function which is given in Figure 3.3. 

3. Q(ρ) reaches its maximum QM, which is the capacity, at ρc, the critical density. 

  

The cell transmission model (CTM) improved by Daganzo, is a finite difference 

approach to the LWR model, which makes it a first-order discrete model (Daganzo, 

1995a; 1995b). 

 

The CTM uses the LWR model in time by selecting a time step Δt and in space by 

separating a road segment into small sections, or cells, of uniform lengths l. The 

CTM was expanded in (Daganzo, 1995a) to contain a more general road topology 

that includes merging and diverging flows. It was further concerted in (Daganzo, 

1995a) to accommodate nonuniform cell lengths. In spite of the relative simplicity 

and approach of the CTM, it still captures the shock behavior estimated by the LWR 

model and derives important traffic phenomena, such as backward propagation of 

congestion waves. 
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     The cell transmission model, a macroscopic traffic model, was chosen for (Munoz 

et al., 2003) because of its analytical simplicity and capability of reproducing 

congestion wave propagation dynamics. The modified CTM, from which the SMM is 

reproduced, (1) uses cell densities as state variables instead of cell occupancies, (2) 

approves nonuniform cell lengths, and (3) approves congested conditions to be 

preserved at the downstream boundary of a modeled freeway section. 

 

Using cell densities instead of cell occupancies allows the CTM to contain uneven 

cell lengths, which guides to greater flexibility in partitioning the highway. Lengths 

of nonuniform cells also allow us to use a smaller number of cells to describe a given 

highway segment, thus decreasing the size of the state vector [ρ1,…,ρN]
T
, where ρi is 

the density of the ith cell. When it is expected that separating a segment into a large 

number of cells can make better numerical accuracy, our attention here is testing our 

methods by using a smaller state vector and simplifying the design of estimators and 

controllers. Permitting congested flow rates at downstream boundaries is essential to 

enable the model to work with real highway data. 

 

A highway is divided into a series of cells in the modified CTM. The density of 

cell i is modified with conservation of vehicles. If there are no on- or off-ramps in 

linear highway segment, vehicle conservation can be written as 

  

              
  

  
(             )     (3.23) 

 

k is called the time index, Ts is called the discrete time interval, li is the length of 

cell i, and qi(k) is defined as the flow rate, in vehicles per unit time, into cell i during 

the interval [k, k + 1). qi(k) is defined by taking the minimum of two quantities: 

 

         (             )       (3.24) 

 

where Si−1(k) = min(vρi−1(k),QM,i−1) is the maximum flow which can be received by 

cell i-1 under freeflow conditions, over the interval [k, k + 1), and Ri(k) = min(QM,i, 
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w(ρJ −ρi(k))), is the maximum flow that can be supplied by cell i under congested 

conditions, over the same time interval. Equations (3.23) and (3.24) are the density-

based equivalents. The modified CTM also uses density-based versions of the merge 

and diverge laws to combine on-ramp and off-ramp traffic (Munoz et al., 2003). 

 

The CTM parameters are described in the basic diagram of Figure 3.3. They can 

be acceptable for all cells or permitted to vary for each cell. The free-flow speed v is 

the average speed at which vehicles move on the highway under uncongested (low 

density) state. w is the average speed at which congestion waves spread upstream 

through the highway under fully congested state.   

 

 

Figure 3.3 Flow parameter as a function of density (Munoz et al., 2003) 

 

The congestion status of cell i is defined by comparing the cell density with the 

critical density: if ρi < ρc,i the cell has free-flow state, otherwise ρi ≥ ρc,i and the cell 

has congested state. The SMM changes between each other several sets of linear 

difference equations based on the values of the mainline boundary inputs and on the 

congestion state of the cells in a section. Each set of linear equations belongs to a 

mode of the SMM. The SMM predicts the movement of congestion wave fronts 

through a highway section. A wave front is defined as a status transition, upstream of 

which nearby cells have one state (e.g. free-flow), and downstream of which nearby 

cells have the opposite state. 
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3.4 Switching-Mode Model 

 

 In the SMM, the cell transmission model is described as a hybrid system that 

switches between 5 sets of linear difference equations, based on the congestion state 

of the cells and the values of the mainline boundary data. Considering our state 

variable is the cell densities, ρ=[ρ1,…,ρN]
T
, the main difference between the CTM 

and the SMM is that, with respect to density, the former is nonlinear, whereas each 

mode of the latter is linear. The SMM can be derived from the modified CTM by 

writing each inter-cellular flow, qi, as either an apparent function of cell density, 

vρi−1(k) or w(ρJ − ρi(k)), or as a constant, QM. This apparent density dependence is 

achieved by supplying a set of logical rules that define the congestion state of each 

cell, at every time step, depending on measurements at the segment boundaries 

(Munoz et al., 2003). 

 

For simplicity, the following presumptions are made: 

 

1. The densities and flows at the upstream and downstream segment boundaries, 

including flows on all the on-ramps and off-ramps, are measured. 

 

2. There is at most one state transition (or wave front) in the highway section. If both 

the upstream and downstream mainline boundaries are at the same state, i.e., both 

free-flow or both congested, it is considered that all the mainline cells, 1 through N, 

have the same state. If the two boundaries are at different states, there exists a single 

wave front in the segment, upstream of which all the cells have congested (free-flow) 

state, and downstream of which all the cells have free-flow (congested) state. 

 

Since an SMM-modeled section includes at most one congestion wave front, the 

modes of the SMM can be discriminated by the congestion state of the cells upstream 

and downstream of the wave front. If there is no wave front in the section, doubled 

label can be used, e.g.“Free-flow– Free-flow” to show the absence of any status 

transition. The five modes are indicated: (1) “Free-flow–Free-flow” (FF), (2) 

“Congestion–Congestion” (CC), (3) “Congestion– Free-flow” (CF), (4) “Free-flow–
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Congestion 1” (FC1), and (5) “Free-flow–Congestion 2” (FC2). The first state of 

“Free-flow–Congestion” is defined as the magnitude of the supplied flow of the last 

uncongested cell upstream of the wave front. The second state is defined as the 

magnitude of the receiving flow of the first congested cell downstream of the wave 

front. If the first one is larger, the SMM is in FC1; and if the second one is larger, it 

is in FC2. Respectively, these two cases are discriminated by whether the congestion 

wave is going backward or forward within the segment. The highway segment is 

shown in Figure 3.4, which is seperated into 8 cells (Munoz et al., 2003).  

 

 

 

Figure 3.4 A segment of I-210W highway divided into cells (Munoz et al., 2003) 

 

The measured total flows and densities at the upstream and downstream mainline 

detectors are indicated by qu, ρu, and qd, ρd. All five modes of the SMM can be 

shown as follows: 

 

                                                  (3.25)  

 

where s = 1, 2, 3, 4, 5 denotes the mode (1: FF, 2: CC, 3: CF, 4: FC1, 5: FC2), ρ = 

[ρ1 . . . ρ4]
T
 is the status, and u = [qu r2 f3 ρd]

T
 are the flow and density inputs; 

specifically, r2 and f3 are the measured on-ramp and off-ramp flows entering and 

leaving the section, as written according to their cell of entry or exit. ρJ = [ρJ1 ρJ2 ρJ3 

ρJ4 ρJ5]
T
 is the jam densities vector, and qM = [QM1 QM2 QM3 QM4]

T
 is the maximum 

flow rates vector. 

 

At each time step, the SMM defines its mode depending on the measured mainline 

boundary data and the congestion state of the cells in the section. If both ρu and ρd 
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have free-flow status, the FF mode is chosen, and if both of these densities are 

congested, the CC mode is chosen. If ρu and ρd are of opposite state, then the SMM 

makes a search over the ρi to define whether there is a state transition inside the 

section. This wave front search looks for the first status transition between adjacent 

cells (Munoz et al., 2003).  

 

We make several presumptions in order to contact the measured quantities (qu, ρu, 

qm, ρm, qd, ρd, and flows measured at each on- and off-ramp) to flows and densities 

used by the model: (1) ρu is a density measurement in the first cell, i.e. ρu = ρ1; (2) 

similarly, ρd = ρ8; (3) A measurement of ρ5 is the middle density ρm, since the middle 

mainline station (Huntington) is placed within cell 5; (4) ri (or fj) is equal to the 

measurement of on-ramp (or off-ramp) flow at the corresponding on-ramp (or off-

ramp) station.  

 

Both the SMM and modified CTM were simulated for the section in Figure 3.4 

using data obtained from I-210 West for several weekdays, over the interval 5AM-

12PM, during the morning rush-hour congestion state. It was considered that the 

upstream and downstream mainline data (qu, ρu, qd, ρd), including the ramp flow data, 

were known. On the other hand, the middle density, ρm, was an estimated parameter. 

The purpose of the simulation was to determine whether the models could accurately 

estimate ρm . 

 

The mean percentage error is defined as;  

 

       
 

 
∑ |

       ̂    

     
|   

          (3.26) 

 

The mean percentage error over five different days in 2001 is nearly 13%. The 

results show that both the SMM and modified CTM have a good estimate of ρm. The 

accuracy of the two models is quite similar (Munoz et al., 2003). 
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CHAPTER FOUR 

PROPOSED TRAFFIC DENSITY ESTIMATION METHODS AND 

SIMULATION RESULTS 

 

We examined the most frequently used density estimation methods in the previous 

chapter. While these methods use traffic parameters such as flow speed, previous 

density, speed, lane number in estimation,  the proposed density estimation methods 

in this study use only the past density information. Proposed methods are inspired by 

a similar problem in cognitive radio (CR) applications namely estimation of the 

status of a slot as busy or available to prevent the similtaneous usage of primary user 

and secondary user. 

 

In the following subsections we will briefly explain the working principles of 

related studies for cognitive radio applications. Then, we will explain our proposed 

methods inspired by these studies for traffic density estimation. 

 

In cognitive radio studies there are three types of prediction problem in the 

literature: 

 

Spectrum Prediction: In this prediction problem, the status of the allocated 

spectrum and location of spectral holes for future periods are estimated by 

interpreting the past decisions or information (Black, Kerans & Kerans, 2012). 

 

Primary User (PU) Traffic Pattern Prediction: For this problem, channel 

traffic parameters (state transition probability, arrival rate, etc.) are estimated first. 

Then, a decision is made by using these estimated parameters about whether the 

primary user (PU) will be in the channel or not for the next sensing period. (Chun-

Hao, Gabran & Cabric, 2012) 

 

Chun-Hao et al. (2012) explains the methods used for traffic estimation and 

prediction. A single channel randomly accessed by a single PU is considered, where 

the traffic of the PU is considered to be stationary. Furthermore, the PU ON/OFF 
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intervals are considered to be exponentially distributed (Wilkomm, Machiraju, Bolot 

& Wolisz, 2008; Lopez-Benitez & Casadevall, 2011; Kim & Shin, 2008), where the 

probability density function of the interval, t, is shown as 

 

       {
             

           
        (4.1) 

  

with λ is λn and λ is λf for the ON and OFF periods, respectively. Because of a 

property of exponential distrubutions, the means of the ON and OFF intervals are 

equal to the reciprocals of λn and λf, respectively. The duty cycle u is described as 

  
  

     
, denoting the fraction of time with the existence of PU. Duty cycle also 

indicates the channel usage, which is the key parameter for traffic estimation. 

 

The PU traffic usage is modeled as a semi-Markov process si (Kim & Shin, 2008), 

where si indicates the status of the PU as absent or present. The traffic is explained 

by a  stationary distribution and the transition probabilities. The former represents the 

probabilities of the PU being absent and present at time Ti, with Pr{si = 0} = P0 = 1 – 

u and Pr{si = 1} = P1 = u. The later represents the probability of changing from state 

x to y during arbitrary time interval Tc (Chun-Hao et al., 2012). The probabilities of 

the four possible transitions are shown as 

 

                         (4.2) 

 

                       (4.3) 

 

                           (4.4) 

 

                         (4.5) 

 

where     (     )  . 
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The traffic parameters are predicted by using the results of spectrum sensing 

measured at time N in (Chun-Hao et al., 2012). Spectrum sensing is considered to be 

perfect. Then the proposed algortihm of (Chun-Hao et al., 2012) predicts the future 

PU state  ̂    depending on the estimated parameters { ̂   ̂   ̂} and the current PU 

state si. The effect of estimation errors on the prediction error rate is analyzed, and 

prediction regions which quantify the prediction confidence are defined.  

 

Binary Estimation: In this method, past spectral decisions about channel states 

are the inputs of the prediction algorithm. This is also the main subject which will be 

discussed in this study. The purpose is to give a binary state to the PU for the next 

period using previously estimated binary states. An illustration for binary prediction 

is shown in Figure 4.1. 

 

 

 

Figure 4.1 Illustration of binary prediction (Düzenli, 2015) 

 

Two new parameters used in our algorithms are introduced below: 

 

History Window (WH): History window includes the binary decisions (0 or 1) 

acquired in the previous sensing periods where 0 means channel is idle and 1 means 

channel is being used by the PU. The length of history window changes as 5, 10, 20, 

and 30 as stated in (Uyanık, Canberk & Oktuğ, 2012).  

 

Prediction Window (WP): Prediction window indicates over how many time 

slots the prediction is carried out. 
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Considering these two parameters, the prediction methods used in (Uyanık et al., 

2012) can be summarized as follows: 

 

Correlation-Based Prediction Method: Pearson correlation coefficient is 

calculated using the past decisions given in history window as below (Canberk, 

Akyildiz & Oktug, 2011; Rodgers & Nicewander, 1988). 

 

 (         )  
 

   
∑ [

      [    ]

 
    

]  [
      [    ]

 
    

] 
       (4.6) 

 

where x
n 

indicates the sample index vector, r
n
 shows the modeled PU activity sample 

vector, E[.] is the mean, and σ is the standard deviation. If correlation coefficient is 

lower than the defined threshold, the majority value in history window is given as the 

future value, if correlation coefficient is higher, future value is the latest slot of 

history window. 

 

Correlation and Linear Regression based Prediction Method: In this 

prediction design, Pearson correlation coefficient is acquired and compared with the 

defined threshold again. If it is greater than the threshold which refers to presence of 

a linear relation among the decisions in history window, then linear regression is 

performed to data in history window to estimate the state of the channel for the next 

period. The results of linear regression are converted into binary data comparing 

them with a threshold value of 0.5. If results are lower than 0.5, the future value is 0, 

if they are greater than 0.5, the future value is 1. If correlation coefficient is lower 

than the threshold, then the majority result is given as the next decision as in 

correlation based prediction design (Düzenli, 2015). 

 

Autocorrelation based Prediction Method: According to this method, 

autocorrelation of the binary data in history window is calculated for different lags 

(l=1, 2, ..., WH/2). When lag is equal to 0, the autocorrelation coefficient will be 

equal to 1. In this method, the property of autocorrelation function given as the next 

maximum of auto-correlation coefficient’s lag number denotes the periodicity. If a 
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repeating pattern exists in history window, then it is used for prediction of the next 

period.  

 

4.1 Algorithms 1 and 2 Based on the First Method 

 

According to this method, the traffic parameters are acquired from the history 

window using the parameters defined below: 

 

 arrival_rate: Number of 0-1 transitions in the history window/History 

window length 

 

 departure_rate: Number of 1-0 transitions in the history window/History 

window length 

 

 last_active_slot: Slot of the last sample of history window where the 

decision is 1 

 

 last_idle_slot: Slot of the last sample of history window where the decision 

is 0 

 

     The reciprocal of the arrival_rate and departure_rate indicate the mean busy and 

idle durations, respectively (Kay, 2006). This method is summarized in Algorithm 1 

below.     
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Figure 4.2 Schema of algorithm 1 

 

     First in Algorithm 1, we have defined vector cluster which is named temp and 

used for taking sample at history window length from data in the first section of the 

algorithm. Then we have found the place of the last 1 and 0 (last active slot and last 

idle slot) in temp window.  

 

     In the second section of the algorithm we have added one to arrival rate parameter 

if there is a transition from zero to one. Then, we have added one to departure rate 

parameter if there is a transition from one to zero. When total arrival rate and 

departure rate are counted, they are divided by the history window length Wh. 

 

     In the third section of the algorithm, it can be seen that the channel will incline to 

be busy if last_active_slot is greater than last_idle_slot and the length of the samples 

between last_active_slot and last_idle_slot is smaller than mean busy duration of the 

PU. On the other hand, if last_idle_slot is greater than last_active_slot and the length 

Last active slot > Last idle slot 

last active slot - last idle slot                      

< arrival rate
-1 

Decision=1 Decision=0 

last idle slot - last active slot          

> departure rate
-1 
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of the samples between last_idle_slot and last_active_slot is smaller than mean idle 

duration of the PU, than the decision for the next period will incline to be idle again. 

 

     In the fourth section of algorithm, if binary data is 0 and decision slot is 0, we 

have added one to true positive parameter. Total true positive is the value which 

shows how much zero we have estimated truely. If binary data is 1 and decision slot 

is 1, we have added one to true negative parameter. When we have divided total true 

positive to total number of 0 and we have divided total true negative to total number 

of 1, we have found the values of true positive ratio and true negative ratio, 

respectively. Success parameter corresponds to addition of total true positive and 

total true negative. We have computed total accuracy with dividing success to total 

number of ones and zeros. 

 

     But when Algorithm 1 is used with converted ternary data, we observed that one 

and two positive ratio obviously are lower than zero positive ratio. So we have 

revised our algorithm as Algorithm 2. In Algorithm 2, if there are at least three 

consecutive identical data between last five data, our decision is that binary value. 

For example, if last five data is 0, 1, 2, 2, 2, our estimated data is 2. This method is 

summarized in Algorithm 2 for binary estimation below. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Schema of algorithm 2 
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4.1.1 Binary Estimation Method 

 

     In our algorithm collected data from Istanbul Metropolitan Municipality at 10 

roads is used. First, it must be converted to binary to be used by the algorithm. 

Unconverted data consists of raw data of average vehicle speed at single road at 

certain time interval. Converted data is binary state of average vehicle speed (change 

between 0-121 km/h) labelled with 0 for above 50 km/h speed and 1 for below 50 

km/h. 

 

4.1.1.1 Estimation for Single Road 

 

     In this section we have evaluated each road individually and we have estimated 

density parameter using speed knowledge of that road. For example at D100 

Bosphorus Bridge Europe Entry road with route number 60 in 00:00-00:40 time 

interval, speed data labeled with 0 and 1, then density parameter at time 00:50 has 

been estimated as 1 or 0. History window length Wh is 5 and estimation window 

length Wp is 1. After the estimation of density at time 00:50, density at time 01:00 is 

estimated by shifting history window one slot and the process has been repeated. So 

all data has been scanned, after that, density state of road in all time have been 

estimated. When free-flow road condition, data 0 is considered as positive, congested 

road condition data 1 is considered as negative in performance evaluation in 

Algorithm 1. Because of this, the rate of correct decision of zero is true positive and 

the rate of correct decision of one is true negative. The rate of all correct decision of 

all binary data is named as total accuracy. As estimated data has been compared with 

real binary data, performance analysis can be made as shown in Table 4.1. 

 

Table 4.1 Binary estimation results of algorithm 1 for single road 

Rtms Place Rtms ID True Positive True Negative Total Accuracy 

D100 Boğaziçi Köp. Avrupa Gir. 60 0.9375 0.9487 0.9437 
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Table 4.1 Binary estimation results of algorithm 1 for single road (continue) 

Perpa 297 0.9874 0.9126 0.9780 

D100 Haliç Köprü Girişi 299 0.9700 0.8125 0.9483 

Boğaziçi Köprüsü Yıldız Katılımı 303 0.9616 0.9679 0.9650 

D100 Mecidiyeköy B. Köprü Katılımı 305 0.9482 0.9281 0.9398 

D100 Çağlayan 363 0.9776 0.9325 0.9664 

Okmeydanı Köprüsü 528 0.9912 0.8949 0.9838 

Çağlayan SSK 529 0.9870 0.9219 0.9777 

Zincirlikuyu İETT Durağı (Tabela) 530 0.9600 0.9479 0.9547 

Haliç Köprüsü 267 0.9626 0.8648 0.9414 

 

4.1.1.2 Estimation for Adjacent Roads 

 

In this section, as we have used past speed knowledge of first two roads of three 

adjacent roads, we have estimated density state of the third road. For example at 

Okmeydanı Bridge road with route number 528 and Perpa road with route number 

297 in 00:00-00:40 time interval, speed data labeled with 0 and 1, then density 

parameter at Çağlayan SSK with route number 529 at time 00:50 has been estimated 

as 1 or 0. History window length Wh is 10 and estimation window length Wp is 1. 

After speed data of 528 and 297 numbered roads have been lined up by two different 

sequences, Algorithm 1 has been run. In the first sequence, first speed data (at time 

00:00 in our example) belongs to 528 numbered road and second speed data belongs 

to 297 numbered road. In brief,  last speed data in history window (at time 00:40 in 

our example) belongs to 297 numbered road. In the second sequence, first five speed 

data (in 00:00-00:40 time interval in our example) belongs to 528 numbered road and 

second five speed data belongs to 297 numbered road. All data has been scanned, 

after then, density state of road in all time have been estimated. Finally, estimated 

data has been compared with real binary data and performance analysis is concluded. 

With Algorithm 2, all true positive ratios are decreased a little but we have observed 

that all true negative ratios and most of total accuracy values are increased as shown 

in Table 4.2. 
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Table 4.2 Binary estimation results of algorithms 1 and 2 for adjacent roads 

Rtms Place Rtms ID 
Data 

Seq. 

True 

Positive 

True 

Negative 

Total 

Accuracy 
Algorithm 

Okmeyd.Köp.Per

pa-Çağl. SSK 

528-297-

529 
One 0.9808 0.7472 0.9484 1 

Okmeyd.Köp.Per

pa-Çağl. SSK 

528-297-

529 
One 0.9796 0.7918 0.9536 2 

Okmeyd.Köp.Per

pa-Çağl. SSK 

528-297-

529 
Five 0.9910 0.7770 0.9613 1 

Okmeyd.Köp.Per

pa-Çağl. SSK 

528-297-

529 
Five 0.9766 0.8104 0.9536 2 

Okmeyd.Köp.Per

pa-Çağl. SSK 

297-529-

363 
One 0.9864 0.5364 0.8807 1 

Okmeyd.Köp.Per

pa-Çağl. SSK 

297-529-

363 
One 0.9851 0.5806 0.8900 2 

Okmeyd.Köp.Per

pa-Çağl. SSK 

297-529-

363 
Five 0.9932 0.5430 0.8874 1 

Okmeyd.Köp.Per

pa-Çağl. SSK 

297-529-

363 
Five 0.9885 0.6026 0.8978 2 

 

4.1.2 Ternary Estimation Method 

 

Converted data is the ternary state of average vehicle speed (change between 0-

121 km/h) labelled with 0 if speed value is above 50 km/h (free-flow). It is labelled 

with 1 if speed value is between 50 km/h-30 km/h (less congested). If the speed 

value is below 30 km (high congested), it is labelled with 2. In this alghorithm the 

rate of correct decision of zero is zero positive rate, the rate of correct decision of one 

is one positive rate and the rate of correct decision of two is two positive rate. The 

rate of all correct decision of all ternary case is named as total accuracy. 

 

4.1.2.1 Estimation for Single Road 

 

In Algorithm 1, one positive rate and two positive rate in road numbers 60, 303, 

305 and 530 are very low and because of this, total accuracy values of those roads 

are not as high as desired. In Algorithm 2, if there are at least three identical values 
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among last five data, our decision is that ternary value. As estimated data have been 

compared with real ternary data, we have observed that one positive ratios are 

slightly increased, two positive ratios and total accuracy values are noticeably 

increased although zero positive ratios are slightly decreased as shown in Table 4.3. 

 

Table 4.3 Ternary estimation results of algorithms 1 and 2 for single road 

Rtms Place 
Rtms 

ID 

Zero 

Positive 

One 

Positive 

Two 

Positive 

Total 

Accuracy 
Algorithm 

D100 Boğaziçi Köp. 

Avrupa Girişi 
60 

0.9665 0.3986 0.3923 0.6534 
1 

D100 Boğaziçi Köp. 

Avrupa Girişi 
60 

0.9375 0.8158 0.5315 0.8362 
2 

Perpa 297 
0.9915 0.1714 0.2300 0.8950 

1 

Perpa 297 
0.9874 0.1714 0.9220 0.9710 

2 

D100 Haliç Köprü Gir. 299 
0.9759 0.5041 0.4619 0.9093 

1 

D100 Haliç Köprü Gir. 299 
0.9700 0.6480 0.5953 0.9238 

2 

Boğaziçi Köprüsü Yıldız 

Katılımı 
303 

0.9730 0.1235 0.1397 0.5179 
1 

Boğaziçi Köprüsü Yıldız 

Katılımı 
303 

0.9616 0.1235 0.9576 0.9376 
2 

D100 Mecidiyeköy B. 

Köprü Katılımı 
305 

0.9590 0.3008 0.2190 0.6534 
1 

D100 Mecidiyeköy B. 

Köprü Katılımı 
305 

0.9482 0.3087 0.9167 0.9025 
2 

D100 Çağlayan 363 
0.9856 0.1687 0.2096 0.7917 

1 

D100 Çağlayan 363 
0.9776 0.2088 0.9302 0.9522 

2 

Okmeydanı Köprüsü 528 
0.9938 0.1977 0.2760 0.9381 

1 

Okmeydanı Köprüsü 528 
0.9912 0.1977 0.9084 0.9796 

2 

Çağlayan SSK 529 
0.9911 0.3029 0.2475 0.8859 

1 

Çağlayan SSK 529 
0.9870 0.3320 0.9200 0.9657 

2 

Zincir. İETT Dur. Tabela 530 
0.9700 0.3850 0.2494 0.6671 

1 
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Table 4.3 Ternary estimation results of algorithms 1 and 2 for single road (continue) 

Zincir. İETT Dur. Tabela 530 0.9600 0.4456 0.9121 0.9043 2 

Haliç Köprüsü 267 
0.9673 0.4009 0.3794 0.8414 

1 

Haliç Köprüsü 267 
0.9626 0.4222 0.7859 0.8981 

2 

 

4.1.2.2 Estimation for Adjacent Roads 

 

     In Algorithm 1, one positive rate and two positive rate are very low. So we have 

run Algorithm 2. As estimated data have been compared with real ternary data, we 

have observed that one positive ratios remained the same, two positive ratios are 

noticably increased and zero positive ratios are slightly increased. All of them are 

causing noticeable increase in total accuracy values as shown in Table 4.4.  

 

Table 4.4 Ternary estimation results of algorithms 1 and 2 for adjacent roads 

Rtms Place 
Rtms 

ID 

Data 

Seq. 

Zero 

Positive 

One 

Positive 

Two 

Positive 

Total 

Accuracy 
Algorithm 

Okmey. Köp.-Perpa-

Çağlayan SSK 

528-

297-529 
One 0.9850 0.1026 0.3870 0.8963 1 

Okmey. Köp.-Perpa-

Çağlayan SSK 

528-

297-529 
One 0.9910 0.1026 0.7957 0.9499 2 

Okmey. Köp.-Perpa-

Çağlayan SSK 

528-

297-529 
Five 0.9916 0.1026 0.4174 0.9056 1 

Okmeyd. Köp.-Perpa-

Çağlayan SSK 

528-

297-529 
Five 0.9910 0.1026 0.7957 0.9499 2 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
One 0.9871 0.1290 0.2014 0.8013 1 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
One 0.9932 0.1290 0.5261 0.8771 2 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
Five 0.9932 0.1290 0.1991 0.8055 1 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
Five 0.9932 0.1290 0.5261 0.8771 2 

 

4.2 Algorithms 3 and 4 Based on Second Method 

 

Second method offered in this study using Markov Chain is depended ON/OFF 

transition probabilities. We will examine (Black et al., 2012) because of similarities 

with our methods. 
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     The CR system is considered to be a secondary user (SU) sharing a section of the 

spectrum allocated to one or more PUs. The purpose of the SU is to increase spectral 

efficiency by operating in the spectrum holes left by the PU. However, the SU needs 

not to reduce the PU’s quality of service below a predefined level. The spectrum is 

separated into N channels each of which has at most one PU in operation. 

 

     The CR perceives the state of the spectrum periodically and it is considered that 

the CR always perceives all channels correctly. Let ti (where i =0,1,2,…) indicate the 

sensing periods. At each instant ti the state of the n
th

 channel Sn is assumed to be 

either busy or idle, Sn (ti) Є {BUSY, IDLE} . The CR establishes the state comparing 

the measured energy in channel n with a threshold value p. Thus; 

 

       {
              

             
          (4.7) 

 

where:        is the energy measured in channel n at time instant ti. If        is equal 

to 1 then the spectrum is busy from time ti to ti+1. 

 

     After that, the sequence of states using a Discrete-time Hidden Markov Model 

(DHMM) can be modeled. This model permits us to make estimations about the 

location and duration of spectrum holes (Black et al., 2012). 

 

     The sequence of spectrum states can be modeled by using a two-state Markov 

chain with the spectrum in either state          or         . A Markov chain’s 

property indicates that the probability of future states is dependent on only the past m 

states where m is the order of the Markov chain, 

 

                        ⁄    

                            ⁄         (4.8) 

 

A DHMM occurs from a N x N state transmission matrix P and a N x M  emission 

matrix Q where N is the number of possible states and M is the number of possible 
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emisssion symbols. If the model has two states, the state transmission matrix is 

shown as: 

 

  [
      

      
]         (4.9) 

 

and if CR is defined as having perfect sensing, the emission matrix will be the 

identity matrix.  

 

  [
  
  

]        (4.10) 

 

     Figure 4.2 represents the transitions between the states and their probabilities  

(Black et al., 2012). 

 

 

Figure 4.4 A two-state Markov Chain (Black et al., 2012) 

 

     The proposed methods in this section use some probability parameters which are 

obtained by the analysis of decisions in history window. First, state transition 

probabilities are calculated. After that, decision slot is estimated by comparing these 

probabilities (Düzenli & Akay, 2015). For Algorithm 3, we calculate these 

probabilities using Equations (4.11)-(4.16) as shown below. 
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|  |
               (4.11) 

 

   
  

|  |
        (4.12) 

 

    
   

  
              (4.13) 

 

    
   

  
                     (4.14) 

 

    
   

  
                  (4.15) 

 

    
   

  
                  (4.16) 

 

where        are probabilities of being zero and one in history window, respectively. 

                  are probabilities of 0-0, 0-1, 1-0, 1-1 transitions in history 

window, respectively.        are uncoditional probabilities of zero and one in 

history window, respectively.                    are numbers of 0-0, 0-1, 1-0, 1-1 

transitions in history window, respectively.    is history window length. 

 

We have defined vector cluster which is named temp and used for taking sample 

at history window length from data in Algorithm 3. Then, we have counted number 

of 1 and 0 in temp window. 

 

In the second section of Algorithm 3, we have added one to zero-one rate 

parameter if there is a transition from zero to one and we have calculated other 

transition like this. After total transitions (1-0, 1-1, 0-1, 0-0) are counted, they are 

divided by the number of transition state in history window. Therefore, we have 

calculated probability of transitions (P00, P01, P10, P11). Also when we have divided 

number of 1 and 0 (in ternary estimation additionally 2) to history window length, we 

have obtained probability of being one (P1) and zero (P0) in history window. 
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     In the third section of Algorithm 3, we have calculated unconditional probability 

of 0 (P(0)) and 1 (P(1)) (in ternary estimation additionally 2) by 

 

                  P(0) = (P00*P0) + (P10*P1)                                       (4.17) 

 

                 P(1) = (P01*P0) + (P11*P1)                                       (4.18) 

 

     Depending on the highest unconditional probability value in binary or ternary 

case, estimation slot is assigned the corresponding value. If unconditional probability 

values are equal, estimation slot is assigned as the majority state. Nevertheless if 

number of transition state in history window are equal, the decision slot will be the 

last data of history window.     

 

     In the fourth section of Algorithm 3, if binary value is 0 and decision slot is 0, we 

have added one to true positive parameter. If binary value is 1 and decision slot is 1, 

we have added one to true negative parameter. When we have divided total true 

positive to total number of 0 and we have divided total true negative to total number 

of 1, we have found the values of true positive ratio and true negative ratio. Success 

rate is the addition of total true positive and total true negative. We have computed 

total accuracy with dividing success to total number of ones and zeros. This method 

is summarized in Algorithm 3 below. 
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Figure 4.5 Schema of algorithm 3 

 

     For Algorithm 4, we calculate the probabilities in Equations (4.19)-(4.26) as 

shown below 

 

 ( |  |     |  |   ⁄ )  
   

|    |
        (4.19) 

 

 ( |  |     |  |   ⁄ )  
   

|    |
        (4.20) 

 

 ( |  |     |  |   ⁄ )  
   

|    |
        (4.21) 

P(0)>P(1) 

Decision=0 

P(0) = (P00*P0) + (P10*P1) 

 

Decision=1 

N 

P(1) = (P01*P0) + (P11*P1) 

 

Y P(1)>P(0) 

Decision=0 

P(0)=P(1) 

Decision=temp(WH) 

N0>N1 

Y 
N 

Decision=1 

N1>N0 N0=N1 
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 ( |  |     |  |   ⁄ )  
   

|    |
         (4.22) 

 

 ̂    ( |  |     |  |   ⁄ )                                 (4.23) 

 

 ̂    ( |  |     |  |   ⁄ )                                    (4.24) 

 

 ̂    ( |  |     |  |   ⁄ )                                    (4.25) 

 

 ̂    ( |  |     |  |   ⁄ )                                    (4.26) 

 

where        are probabilities of being zero and one in history window, respectively. 

 ̂    ̂     ̂     ̂   are conditional probabilities of 0-0, 0-1, 1-0, 1-1 transitions in 

history window, respectively.                    are numbers of 0-0, 0-1, 1-0, 1-1 

transitions in history window, respectively.    is history window length. 

  

     In the first section of Algorithm 4, we have defined temp history window and then 

we have counted number of 1 and 0 (in ternary estimation additionally 2)  in temp 

window. 

 

     In the second section of Algorithm 4, we have added one to one-zero rate 

parameter if there is a transition from one to zero and we have calculated other 

transition similarly. After total transitions are counted, they are divided by history 

window length minus 1 (all state transition number is equal to history window length 

minus 1). Also when we have divided number of 1 and 0 (in ternary estimation, 

additionally 2) by history window length, we have obtained probability of being one 

and zero in history window. By using Equations (4.23)-(4.26), we have calculated 

conditional probability of transitions ( ̂    ̂    ̂    ̂   .  

 

     In the third section of Algorithm 4, we have evaluated probability values 

individually. In which transition probability of binary or ternary state is high, we 
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have estimated that last data is passing to this value. If the last data is zero, we have 

checked 0-0 transition probability ( ̂  ) and 0-1 transition probability ( ̂  ) (in 

ternary estimation additionally 0-2 transition probability). If the last data is one, we 

have checked 1-0 transition probability ( ̂  )  and 1-1 transition probability ( ̂  ) (in 

ternary estimation additionally 1-2 transition probability). In ternary estimation if the 

last data is two, we have checked 2-0 transition probability, 2-1 transition 

probability, and 2-2 transition probability. If transition probabilities are equal, 

estimation slot is assigned as the majority state. Nevertheless if number of transition 

state in history window are equal, the decision slot will be the last data of history 

window. 

 

     In the fourth section of Algorithm 4, we have made performance analysis by the 

same logic in Algorithm 3. This method is summarized in Algorithm 4 below. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Schema of algorithm 4 
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4.2.1 Binary Estimation Method 

 

     In Algorithms 3 and 4, collected data from Istanbul Metropolitan Municipality of 

10 roads are used similarly as in the previous algorithms. First, raw data must be 

converted into binary form. Unconverted data consists of raw data which is the 

average vehicle speed at single roadway at certain time interval. Converted data is 

binary state of average vehicle speed (change between 0-121 km/h) labelled as 0 for 

speed values above 50 km/h and as 1 for speed values below 50 km/h. 

 

4.2.1.1 Estimation for Single Road 

 

     We have observed that all true positive ratios, true negative ratios and total 

accuracy values of Algorithm 3 are equal with Algorithm 4’s as shown in Table 4.5. 

 

Table 4.5 Binary estimation results of algorithms 3 and 4 for single road 

Rtms Place 
Rtms 

ID 
True Positive 

True 

Negative 

Total 

Accuracy 
Algorithm 

D100 Boğaziçi Köp. Avrupa Girişi 60 0.9060 0.9419 0.9257 3 

D100 Boğaziçi Köp. Avrupa Girişi 60 0.9060 0.9419 0.9257 4 

Perpa 297 0.9801 0.8519 0.9639 3 

Perpa 297 0.9801 0.8519 0.9639 4 

D100 Haliç Köprü Girişi 299 0.9600 0.7430 0.9301 3 

D100 Haliç Köprü Girişi 299 0.9600 0.7430 0.9301 4 

Boğaziçi Köprüsü Yıldız Katılımı 303 0.9324 0.9457 0.9396 3 

Boğaziçi Köprüsü Yıldız Katılımı 303 0.9324 0.9457 0.9396 4 

D100 Mecidiyeköy B. Köprü Kat. 305 0.9220 0.8874 0.9075 3 

D100 Mecidiyeköy B. Köprü Kat. 305 0.9220 0.8874 0.9075 4 

D100 Çağlayan 363 0.9633 0.8803 0.9426 3 

D100 Çağlayan 363 0.9633 0.8803 0.9426 4 

Okmeydanı Köprüsü 528 0.9873 0.8311 0.9753 3 

Okmeydanı Köprüsü 528 0.9873 0.8311 0.9753 4 

Çağlayan SSK 529 0.9790 0.8582 0.9618 3 

Çağlayan SSK 529 0.9790 0.8582 0.9618 4 

Zincirlikuyu İETT Durağı (Tabela) 530 0.9339 0.9134 0.9250 3 

Zincirlikuyu İETT Durağı (Tabela) 530 0.9339 0.9134 0.9250 4 

Haliç Köprüsü 267 0.9466 0.8181 0.9188 3 

Haliç Köprüsü 267 0.9466 0.8181 0.9188 4 
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4.2.1.2 Estimation for Adjacent Roads 

 

We have observed that although most of true negative ratios of Algorithm 4 are 

higher than Algorithm 3’s, most of true positive ratios of Algorithm 3 are higher than 

Algorithm 4’s and total accuracy values of two algorithms from the point of 

superiority view are equal as shown in Table 4.6. 

 

Table 4.6 Binary estimation results of algorithms 3 and 4 for adjacent roads 

Rtms Place 
Rtms 

ID 

Data 

Seq. 

True 

Positive 

True 

Negative 

Total 

accuracy 
Algorithm 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-

297-529 
One 

0.9904 0.6171 0.9386 3 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-

297-529 
One 

0.9898 0.5948 0.9350 4 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-

297-529 
Five 

0.9904 0.6171 0.9386 3 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-

297-529 
Five 

0.9904 0.7063 0.9510 4 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
One 

0.9946 0.5077 0.8802 3 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
One 

0.9919 0.5077 0.8781 4 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
Five 0.9946 0.5077 0.8852 3 

Perpa-Çağlayan SSK-

D100 Çağlayan 

297-

529-363 
Five 0.9939 0.5386 0.8869 4 

 

4.2.2 Ternary Estimation Method 

 

Collected data from Istanbul Metropolitan Municipality of 10 roads, must be 

converted to ternary form before used in the algorithms. Converted data is ternary 

state of average vehicle speed (change between 0-121 km/h) labelled with 0 if speed 

value is above 50 km/h (free-flow). It is labelled with 1 if speed value is between 50 

km/h-30 km/h (less congested). If speed value is below 30 km/h (high congested), it 

is labelled with 2.  
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4.2.2.1 Estimation for Single Road 

 

     We have observed that although nearly all one positive ratios and all two positive 

ratios of Algorithm 3 are higher than Algorithm 4’s, all zero positive ratios and 

nearly all total accuracy values of Algorithm 4 are higher than Algorithm 3’s as 

shown in Table 4.7. 

 

Table 4.7 Ternary estimation results of algorithms 3 and 4 for single road 

Rtms Place 
Rtm

s ID 

Zero 

Positive 

One 

Positive 

Two 

Positive 

Total 

Accuracy 
Algorithm 

D100 Boğaziçi Köp. Av. Gir. 60 0.9068 0.8402 0.4654 0.8248 3 

D100 Boğaziçi Köp. Av. Gir. 60 0.9365 0.7813 0.4326 0.8090 4 

Perpa 297 0.9804 0.1071 0.8575 0.9567 3 

Perpa 297 0.9906 0.0857 0.8562 0.9653 4 

D100 Haliç Köprü Girişi 299 0.9610 0.5876 0.4597 0.9049 3 

D100 Haliç Köprü Girişi 299 0.9731 0.5272 0.4513 0.9090 4 

Boğaziçi Köprüsü Yıldız Kat. 303 0.9329 0.0529 0.9432 0.9152 3 

Boğaziçi Köprüsü Yıldız Kat. 303 0.9762 0.0471 0.9312 0.9284 4 

D100 Mecidiye. B. Köprü Kat. 305 0.9244 0.1858 0.8749 0.8669 3 

D100 Mecidiye. B. Köprü Kat. 305 0.9658 0.1701 0.8668 0.8871 4 

D100 Çağlayan 363 0.9646 0.1124 0.8813 0.9293 3 

D100 Çağlayan 363 0.9857 0.1044 0.8774 0.9441 4 

Okmeydanı Köprüsü 528 0.9874 0.0349 0.8515 0.9712 3 

Okmeydanı Köprüsü 528 0.9938 0.0698 0.8379 0.9761 4 

Çağlayan SSK 529 0.9798 0.1909 0.8648 0.9499 3 

Çağlayan SSK 529 0.9917 0.1743 0.8601 0.9592 4 

Zincirlikuyu İETT Dur. (Tabela) 530 0.9349 0.3008 0.8788 0.8673 3 

Zincirlikuyu İETT Dur. (Tabela) 530 0.9716 0.2752 0.8637 0.8807 4 

Haliç Köprüsü 267 0.9495 0.3507 0.7239 0.8737 3 

Haliç Köprüsü 267 0.9684 0.2953 0.6932 0.8801 4 

 

4.2.2.2 Estimation for Adjacent Roads 

 

We have observed that although most of one positive ratios of Algorithm 4 are 

higher than Algorithm 3’s, all zero positive ratios and most of total accuracy values 
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of Algorithm 3 are higher than Algorithm 4’s and two positive ratios of two 

algorithms from the point of superiority view are equal as shown in Table 4.8. 

 

Table 4.8 Ternary estimation results of algorithms 3 and 4 for adjacent roads 

Rtms Place Rtms ID 

Data 

Seq. 

Zero 

Positive 

One 

Positive 

Two 

Positive 

Total 

Accuracy 
Algorithm 

Okmeyd. Köp.-

Perpa-Çağl. SSK 

528-297-

529 
One 

0.9928 0.0256 0.6391 0.9314 3 

Okmeyd. Köp.-

Perpa-Çağl. SSK 

528-297-

529 
One 

0.9910 0.0513 0.6217 0.9283 4 

Okmeyd. Köp.-

Perpa-Çağl. SSK 

528-297-

529 
Five 

0.9934 0.0256 0.6522 0.9334 3 

Okmeyd. Köp.-

Perpa-Çağl. SSK 

528-297-

529 
Five 

0.9928 0.0513 0.7261 0.9422 4 

Perpa-Çağl. SSK-

D100 Çağlayan 

297-529-

363 
One 

0.9953 0.0968 0.5024 0.8729 3 

Perpa-Çağl. SSK-

D100 Çağlayan 

297-529-

363 
One 

0.9925 0.0968 0.4763 0.8651 4 

Perpa-Çağl. SSK-

D100 Çağlayan 

297-529-

363 
Five 

0.9953 0.0968 0.5024 0.8729 3 

Perpa-Çağl. SSK-

D100 Çağlayan 

297-529-

363 
Five 

0.9946 0.0968 0.5047 0.8729 4 

 

4.3 Evaluation of Results 

 

Sample accuracy (acc) is the most frequently used performance criterion of a 

multiclass classifier which is defined as the number of correct predictions across all 

classes, k, divided by the number of examples, n (Carrillo, Brodersen & Castellanos, 

2013). 

 

 For overcoming the limitations of sample accuracies, another performance 

evaluation parameter, the Kappa coefficient, is used in the domain of remote sensing 

problems (Cohen, 1960). It measures the degree of overall agreement within a given 

matrix.
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         (4.28) 

 

where ki is the number of correct predictions in class i and l is the number of classes. 

Ci+ and C+i are the row-wise and column-wise sums of row and column i in the 

confusion matrix, respectively. 

 

Kc is calculated for the degree of class instability in the data. However, it can be 

invariant to the number of misclassifications and does not necessarily express what 

one would consider prediction strength (Cohen, 1960). 

 

The balanced accuracy  ̂ (bac) is an alternative parameter which is defined as the 

average accuracy obtained on all classes. In the case of a multi-class classification 

problem, its formula is given by           

 

  ̂  
 

 
∑

  

  

 
               (4.29) 

 

where ni is the number of examples in class i. The balanced accuracy is commonly 

used in these problems and has several advantages to other criteria because of its 

simplicity (Nishii & Tanaka, 1999). 

 

We have evaluated our algorithms by these criteria which can be used on 

performance analysis. We have used true positive, true negative, zero positive, one 

positive, and two positive parameters in binary and ternary estimation of single road 

case and adjacent roads case.  We have used road 529 Çağlayan SSK as single road, 

528-297-529 roads as adjacent roads.   
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Table 4.9 Binary estimation results of the best algorithms for road 529 

Rtms Place Rtms ID True Positive True Negative Algorithm 

Çağlayan SSK 529 0.9870 0.9219 1 

Çağlayan SSK 529 0.9790 0.8582 4 

 

Table 4.10 Confusion matrix of binary estimation for road 529 of algorithm 1 

 

10357 

1728 

Total                 10357               1728 

 

Table 4.11 Confusion matrix of binary estimation for road 529 of algorithm 4 

 

10385 

1700 

Total                10357                1728 

 

Table 4.12 Binary estimation results of the best algorithms for adjacent roads 

Rtms Place Rtms ID 

True 

Positive 
True Negative Algorithm 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 
528-297-529 0.9796 0.7918 2 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 
528-297-529 0.9904 0.6171 3 

 

Table 4.13 Confusion matrix of binary estimation for adjacent roads of algorithm 2 

 

1691 

247 

Total                 1669                 269 

 

Table 4.14 Confusion matrix of binary estimation for adjacent roads of algorithm 3 

 

1756 

182 

Total                 1669                 269 

 

 

 

0 1 

0               10222 135 

 1 135 1593 

 

0 1 

0               10140 245 

1 217 1483 

 

0 1 

0               1635 56 

1 34 213 

 

0 1 

0               1653 103 

1 16 166 
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Table 4.15 Comparison of the best binary algorithms 

Rtms Place Rtms ID acc bac Kc Algorithm 

Çağlayan SSK 529 0.9777 0.9544 0.9088 1 

Çağlayan SSK 529 0.9618 0.9186 0.8430 4 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-297-

529 
0.9536 0.8857 0.7989 2 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-297-

529 
0.9386 0.8038 0.7029 3 

 

Table 4.16 Ternary estimation results of the best algorithms for road 529 

Rtms Place Rtms ID 

Zero 

Positive 

One 

Positive 

Two 

Positive 
Algorithm 

Çağlayan SSK 529 0.9870 0.3320 0.9200 2 

Çağlayan SSK 529 0.9917 0.1743 0.8601 4 

 

Table 4.17 Confusion matrix of ternary estimation for road 529 of algorithm 2 

 

0 1 2 

 0 10222 94 41 10357 

1 83 80 78 241 

2 52 67 1368 1487 

 

10357 241 1487 

  

Table 4.18 Confusion matrix of ternary estimation for road 529 of algorithm 4 

 

0 1 2 

 0 10271 132 193 10596 

1 33 42 15 90 

2 53 67 1279 1399 

 

10357 241 1487 

  

Table 4.19 Ternary estimation results of the best algorithms for adjacent roads 

Rtms Place Rtms ID 

Zero 

Positive 

One 

Positive 

Two 

Positive 
Algorithm 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-297-

529 

0.9910 0.1026 0.7957 2 

Okmeydanı Köprüsü-

Perpa-Çağlayan SSK 

528-297-

529 

0.9928 0.0256 0.6391 3 
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Table 4.20 Confusion matrix of ternary estimation for adjacent roads of algorithm 2 

 

0 1 2 

 0 1654 23 35 1712 

1 7 4 12 23 

2 8 12 183 203 

 

1669 39 230 

  

Table 4.21 Confusion matrix of ternary estimation for adjacent roads of algorithm 3 

 

0 1 2 

 0 1657 30 81 1768 

1 0 1 2 3 

2 12 8 147 167 

 

1669 39 230 

  

Table 4.22 Comparison of the best ternary algorithms 

Rtms Place Rtms ID acc bac Kc Algorithm 

Çağlayan SSK 529 0.9657 0.7463 0.8626 2 

Çağlayan SSK 529 0.9592 0.6754 0.8258 4 

Okmey. Köp.-Perpa-Çağlayan SSK 528-297-529 0.9499 0.6297 0.7791 2 

Okmey. Köp.-Perpa-Çağlayan SSK 528-297-529 0.9314 0.5525 0.6637 3 

 

     In cognitive radio application, two performance criteria are generally used. These 

are introduced below. 

 

     System Utility: This criterion shows the rate of correct decision of spectum hole 

slots. It is related to true positive ratio in our algorithms. 

 

     Primary User Disturbance Ratio: This criterion shows the rate of false decision 

of active PU slots. It is related to false negative ratio in our algorithms. 

 

     Desired situation is True Positive Ratio=1 and False Negative Ratio=0. 
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Table 4.23 Comparison of the algorithm 1 and other prediction methods 

Rtms ID True Positive False Negative Total Accuracy Best Algorithms 

529 0.9870 0.0781 0.9777 Algorithm 1 

529 0.9863 0.0799 0.9768 Correlation 

529 0.9863 0.0799 0.9768 Linear regression 

529 0.9609 0.2477 0.9311 Auto-correlation 

 

     We can see that our alghoritm is more succesful than other prediction methods 

used in cognitive radio applications like Correlation, Lineer regression and Auto-

correlation in all performance criteria. 
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CHAPTER FIVE 

CONCLUSION 

 

In this thesis, as alternative to the methods used in the literature, new and simplified 

density estimation algorithms have been proposed. These algorithms are inspired by 

the methods used to estimate spectrum holes in cognitive radio channels. We have 

attempted to estimate the density of traffic with the same approach. All proposed 

algorithms estimate the next state of the road by looking at only the history of density 

data. Because of simplicity of our proposed algorithms, they can be preferred to the 

other density estimation methods. The other advantages of proposed alghoritms are 

using only past density data as traffic parameters and high success rate. 

 

In this study, Istanbul Metropolitan Municipality Traffic Control Center data 

gathered from the busiest roads of Istanbul in 2013, have been used as traffic data. 

The raw data have been converted into binary and ternary form and defective 

measurements are removed before application. The algorithms using converted data 

have been tested by simulating two different scenarios. In the first scenario, the 

algorithms have estimated traffic state in the      minute of the road by looking at 

past 50 minutes of density data of the same road. In the second scenario, the 

algorithms have estimated traffic state in the      minute of the third adjacent road 

by looking at past 50 minutes of density data of the preceeding roads. 

 

By evaluating estimation results with three different performance criteria, we have 

determined which algorithms are better at which estimation scenarios. When we have 

considered results separately as binary and ternary, we have expected that binary 

estimation’s performance to be higher. Because we have made a more general 

acceptance with one threshold in binary estimation. When we compare all of the 

results, we observed that Algorithm 1 is the best at binary estimation at road 529 

named Çağlayan SSK, Algorithm 2 is the best at binary estimation of adjacent roads 

and ternary estimation of both road 529 and adjacent roads case. 
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We have also observed that ternary estimation of proposed algorithms have very 

low one positive rate. When we have examined the results exhaustively, we observed 

that the errors are due to sudden changes in the density data. These sudden changes 

are probably caused by unexpected incidents, such as seasonal factors like rain, snow 

etc. and traffic accidents. 

 

But why these events may have influenced severely one positive rates in the 

ternary estimation? In our study, we saw that the less congested (ternary 1 state) 

traffic state in the ternary estimation case is the transition state having low 

probability of being in ternary data compared to the other two states. Additionally, an 

unexpected traffic incident is an event which changes traffic state suddenly and 

affects the traffic in the long run. For example, when state of a road is free-flow 

(ternary 0 state) and a traffic accident suddenly occurs, the state of the road will be 

high congested (ternary 2 state) at that moment. But we have observed that the 

probability of coincidence of this transition (from 0 to 2 transition) moments and 

estimated moment (estimated slot in algorithms) is very low. Therefore, the effect of 

these errors on two positive rate is less. On the other hand, proposed algorithms can 

not estimate correctly the state in which traffic is high congested in long term by 

effects of the incident and then when these effects disappear it is passing to less 

congested case. Because, if past ten states are high congested (ten slots are 2 in 

history window) naturally, algorithms estimate the state of the road as high congested 

(estimated slot is 2). We have observed that the probability of coincidence of this 

transition (from 2 to 1 transition) moments and estimated moment (estimated slot) is 

high and the possibility of less congested (ternary 1 state) traffic state being in 

ternary data is low. Therefore, one positive rate fall down seriously in ternary 

estimation. Although these events impact binary estimations as well, total accuracy 

values of binary estimations are very high due to the fact that the number of 

transitions of 0 state to 1 state (and from 1 to 0) at estimated moments are low and 

probabilities of 0 and 1 states being in binary data are close and relatively high.  

 

For solving this problem in future studies, by making unexpected traffic events as 

an additional system parameter in the algorithms, it is planned to increase the success 
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rate. Also neural networks can be used to create a model for a specific road with the 

help of history data. Accurate modeling of a road segment will improve the accuracy 

of estimation of future traffic density. 
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