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MACHINE LEARNING MODELS FOR AUTOVERIFICATION OF 

MEDICAL LABORATORY TEST RESULTS 

 

ABSTRACT 

 

Understanding the job of biochemistry specialists while accepting and checking 

blood test results during in a day where they spend a lot of time, we decided to 

develop a learning system that can help them. 

 

In our experiment we used machine learning models, LibSVM and ANN for 

classifying the data sets. Because our experiment was started with Artificial Neural 

Networks (ANN) datasets were obtained from the prior experiment and that approach 

was tested in a view of Support Vector Machines. We used Replace Missing Values 

filter for cleaning up the data instances of null values, and correlation of attributes 

was done with Correlation Attribute Evaluator of WEKA software.  

 

We trained and tested our datasets which were taken from Beckmann blood 

analyzing machine, where machine learning models classified with high average rate. 

 

Keywords : Support vector machines, LibSVM, artificial neural networks, machine 

learning, SMO, Spegasos 
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TIBBİ LABORATUVAR TETKİK SONUÇLARININ OTOVERİFİKASYONU 

İÇİN MAKİNA ÖĞRENME MODELLERİ 

 

ÖZ 

 

Biyokimya uzmanlarının gün içinde kan pıhtılaşması test sonuçlarının 

onaylanmasında, harcadıkları zamanı azaltmak amacı ile yardım edebilecek öğrenim 

sistemi geliştirilmiştir.  

 

Uyguladığımız çalışmada verilerin sınıflandırılması için LibSVM ve yapay sinir 

ağları öğrenme modelleri kullanılmıştır. Veriler önceki çalışmadan elde edilmiştir, 

bir önceki çalışmada yapay sinir ağları burada o yaklaşım destekçi vektör makinesi 

üzerinde test edilmiştir. Verilerin null değerlerinden temizlenmesi için Replace 

Missing Values filtrelemesi kullanılmıştır, atribütlerin bağıntısı ise Correlation 

Attribute Evaluator ile gerçekleşmiştir.  

 

Beckmann kan analiz makinasından alınan veri setlerimiz eğitilmiş ve test 

edilmiştir. Test edilen bu veri setleri yüksek doğruluk oranı elde edilmiştir.  

 

Anahtar kelimler :  Destekçi vektör makinesi, LibSVM, yapay sinir ağları, makina 

öğrenme, SMO, Spegasos 
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CHAPTER ONE 

INTRODUCTION 

 

The aim and the basic idea of this project is to integrate a learning system with a 

view to reduce time where biochemistry specialists are spending during the process 

of checking patient blood results, blood results also have to be accepted by the 

biochemistry specialist. To reduce the time where biochemistry specialists spends 

during the processes of accepting and checking patient blood results we decided to 

develop a learning system that can help them. Our learning system is able to make 

decisions like a biochemistry specialist. For facilitating the work of biochemistry 

specialists and assistants we dealt with Machine Learning models. We will 

experimentally evaluate Artificial Neural Networks (ANN), LibSVM, SPegasos, 

SMO models. All four models are based on a prepared data set where data 

cooperation was done with biochemistry specialists. 

 

 In order to solve practical problems learning algorithms are considered intelligent 

if they have the ability to give conclusions on the basis of certain facts. Since ANN 

and SVM algorithms characterize a high degree of error tolerance we have reached a 

satisfactory result. The performance of ANN with back-propagation is slower then 

Lib SVM, results shows that Lib SVM works with better accuracy also statistically 

better. If we have to compare two algorithms understanding and solving the way of 

ANN is easier then Lib SVM model. 

 

How the project is divided into two parts in the first part is destined ANN, and for 

the second part where to improve learning system is developed SVM models.  The 

models were trained and tested by Weka 3.7 tools. 

 

1.1 Neural Networks (NN) 

 

Neural network simulates the operation of the human brain while performing a 

given task or functions. Neural network is parallelized distributed processor with a 

natural ability for storing knowledge and ensuring it for using.  



 

2 
 

Artificial Neural Networks reminds the process of working the human brain in two 

respects: 

 

1. Neural networks saves knowledge through the training process. 

2. Weights between neural connections (the strength of synaptic connections) are 

used to memorizing the knowledge. 

 

 The procedure for performing the training neural network is same as training the 

algorithm. In algorithmic way through this procedure synaptic weights are changing 

in order to have desired network performance. 

Performance of Neural Networks: 

 

1. Nonlinearity, which is basically distributed. 

2. Input-Output mapping, which can restore through the process of training 

3. Adaptability- Ability of changing the strength of synaptic connections. 

4. Response – As output neural networks can produce and degree certificates of a 

given decision. 

 

1.2 Introduction to Machine Learning Algorithms 

 

Machine Learning is a natural outgrowth of the intersection of Computer Science 

and Statistics. Computer Science has focused primarily on how to manually program 

computers, on the other side Machine Learning focuses on how to get computers to 

program themselves whereas Statistics has focused primarily on what conclusions 

can be inferred from data (Mitchel, 2006). Mathematical models for adaptation in 

these fields are somewhat different from those commonly used in machine learning 

suggesting significant potential for cross-fertilization of models and theories. 

 

1.2.1 Place of Machine Learning within Computer Science 

 

The question is “What is the role of machine learning in the field of computer 

applications?” First answer can be to imagine the world of all software applications, 
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and to recognize the applications suggest within this space where machine learning 

has a special role for manipulating. Actually, machine learning methods and 

algorithms are the best methods available for developing particular types of software, 

in applications where: 

 

  The application is too complex for people to manually design the algorithm. Here 

machine learning algorithm is the software development method of choice simply 

because it is relatively easy to collect labeled training data, and relatively ineffective 

to try writing down a successful algorithm. 

 

  The application requires that the software customize to its operational environment 

after it is fielded. Machine learning provides the mechanism for adaption. Software 

applications that customize to users are growing rapidly within machine learning 

algorithms (Mitchell, 2006). 

 

     If we assume how much machine learning methods play a key role in the world of 

computer science, there will remain software applications for demand grows of self-

customizing software, as computer gain access to more data, as we use effective 

machine learning algorithms. 

 

     Machine learning will help reshape the field of Statistics, by bringing a 

computational perspective to the fore, and raising issues such as never-ending 

learning, both Computer Science and Statistics will also help shape Machine 

Learning as we progress and provide new ideas to change the way we view learning 

(Mitchell, 2006). 

 

     For understanding the relationship between different learning algorithms, and 

which algorithms should be used and when it should be used is experimentally in 

different application domains. One part of understanding the relationships between 

algorithms and which one to use is to develop a theoretical understanding of the 
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relationships among these algorithms, and of when it is appropriate to use each. More 

generally, the theoretical characterization of learning algorithms, their convergence 

properties, and their relative strengths and weaknesses remains a major research. 

 

1.3 Support Vector Machines (SVM) 

 

Support vector machines are supervised learning methods used for regression and 

classification. At the same time, is a regression and classification prediction tool that 

uses machine learning theory to maximize predictive accuracy. Support vector 

machines use hypothesis space of a linear function in a high dimensional feature 

space and implements a learning bias derived from statistical learning theory 

(Support Vector Machines, 2011). 

 

With most machine learning tasks, the aim is usually to classify something into a 

group that you can then inspect later. When it is a couple of class types that you are 

trying to classify, then it is a fairly trivial matter to perform the classification. When 

we are dealing with many types of classes, the process becomes more of a challenge. 

Support vector machines helps us to work through the challenging classification. 

 

Medical science has long used support vector machines for protein classification. 

The National Institute of Health has even developed a support vector machine 

protein software library. It is a web-based tool that classifies a protein into its 

functional family.  

 

Some people criticize the support vector machine because it can be difficult to 

understand, unless you are blessed with a very good mathematician who can guide 

and explain to you what is going on. In some cases you are left with a black box 

implementation of a support vector machine that is taking in input data and 

producing output data, but you have little knowledge in between (Bell, 2013). 
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1.3.1 Linear Classifiers 

 

    To determine in which group an object belongs, we use a linear classifier to 

establish the locations of the objects and see if there is a neat dividing line-called a 

hyperplane – in place; there should be a group of objects clearly on one side of the 

line and another group of objects clearly on one side of the line and another group of 

objects just as clearly on the opposite side.   

 

 

Figure 1.1 Illustration of Linear Classification  

 

 Figure 1.1 visually illustrates linear classification, it looks straightforward, but we 

need to compute it mathematically. Every object that we classify is called a point, 

and every point has a set of features. 

 

For each point in the figure 1.1, we know there is an x-axis value and there is a y-

axis value. The classification point is calculated as  

 

                                                                                                    (1.1) 

 

The values for a, b, and c are the values that define the line; these values are ones 

that you choose, and we will need to tweak them along the way until we get good fit 
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(clear separation). What we are interested in, though, is the result; we want a function 

that returns +1 if the result of the function is positive, signifying the point is in one 

category, and returns -1 when the points is in the other category. The function is 

resulting value (+1 or -1) must be correct for every point that we are trying to 

classify. 

 

If we look at figure 1.1 objects again. We know how a hyperplane divides the 

objects into either +1 or -1 on the plane. Extending that notion further, support vector 

machines define the maximum margin, assuming that the hyperplane is separated in a 

linear function. We can see in figure 1.2 with the main hyperplane line giving the 

written notation of  

                                                                                                                 (1.2) 

 

This dot product shows the normal vector, and x is the point of the object. There is 

an offset of the hyperplane that goes from the origin to the normal vector. As the 

objects are linearly separable, we can create another two hyperplanes – edge 

hyperplanes – that define the offset on either side of the main hyperplane. There are 

no objects within the region that spans between the main hyperplane and the edge 

hyperplanes. 

 

On one side, there is the equation 

                                                                                                             (1.3) 

 

and on the other side there is 

                                                                                                             (1.4) 

 

The objects that lie on the edge hyperplanes are the support vectors. 
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Figure 1.2 The Support Vectors on the hyperplane edges 

 

 

Figure 1.3 Support vector machines max margin hyperplane 

 

When new objects are added to the classification, then the hyperplane and its 

edges might move. The key objective is to ensure a maximum margin between the +1 

edge hyperplane and the -1 edge hyperplane. If we can manage to keep a big gap 

between the categories, then there is an increase in confidence in your predictions. 

Knowing the values of the hyperplane edges gives you a feel for how well your 

categories are separated.  
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After minimizing the value w (called ||w|| in mathematical notation), we can look 

at optimizing w by applying the following equation: 

 

                                              
 

 
                                            (1.5) 

 

Basically, we are taking half of ||w|| squared instead of using the square root of 

||w||. Based on Lagrange multipliers, to find the maxima and minima in the function, 

we can now look for a saddle point and discount other points that do not match zero. 

We are shaping the graph into a multidimensional space and seeing where the vectors 

lie in order to make the category distinctions as big as possible. With standard 

quadratic programming, we then apply the function expressing the training vectors as 

a linear combination 

 

                                       ∑   
 
                                                 (1.6) 

 

Where    is greater than zero, the    value is a support vector (Bell, 2013) 

 

1.3.2 Non-Linear Classification 

 

In an ideal world, the objects would lie on one side of the hyperplane or the other. 

Life, unfortunately, is rarely like that. Instead, we see objects straying from the 

hyperplane, as shown in Figure 1.4 

By applying the kernel function, we can apply an algorithm to fit the hyperplane‟s 

maximum margin in a feature space. The method is very similar to the dot products 

discussed in the linear methods, but this replaces the dot product with a kernel 

function. With a radial basis function, we have a few kernel types to choose from: the 

hyperbolic tangent, Gaussian radial basis function (or RBF, which is supported in 

Weka), and two polynomial functions-one homogenous and the other 

inhomogeneous. 
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Figure 1.4 Linearly inseparable and linearly separable inputs 

 

1.3.3 Maximizing and Minimizing to Find the Line 

 

Using a log function that is always increasing maximizes values that are above the 

equation. So, we end up with a function written as 

 

                      ∑                                
                        (1.7) 

 

To achieve minimization, we just multiply the equation by -1. It then becomes a 

“cost” or “lost” function. The goal is to find line parameters that minimize this 

function (Bell, 2013). 

 

1.3.4 SVM  for  Classification 

 

The goal of SVM is to produce a model which predicts target value of data 

instance in the testing set which are given only the attributes. Classification in SVM 
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is an example of Supervised Learning. Known labels help indicate whether the 

system is performing in a right way or not. This information points to a desired 

response, validating the accuracy of the system, or be used to help the system learn to 

act correctly. A step in SVM classification involves identification as which are 

intimately connected to the known classes. This is called feature selection or feature 

extraction. Feature selection and SVM classification together have a use even when 

prediction of unknown samples is not necessary. They can be used to identify key 

sets which are involved in whatever processes distinguish the classes (Cristianini and 

Shawe-Taylor, 2000). 

 

1.3.5 SVM for Regression  

 

SVM‟s can also be applied to regression problems by the introduction of an 

alternative loss function. The loss function must be modified to include a distance 

measure. The regression can be linear and non linear. Linear models mainly consist 

of the following loss functions, e-intensive loss function, quadratic and Huber loss 

function. Similarly to classification problems, a non linear model is usually required 

to adequately model data. In the same manner as the non linear SVC approach, a non 

linear mapping can be used to map the data into a high dimensional feature space 

where linear regression is performed. The kernel approach is again employed to 

address the curse of dimensionality. In the regression method there are 

considerations based on prior knowledge of the problem and the distribution of the 

noise. In the absence of such information Huber‟s robust loss function, has been 

shown to be a good alternative (Corina et al., 1995) 

 

1.3.6 Applications of SVM 

 

There are standard choices such as a Gaussian or polynomial kernel that are the 

default options, but if these prove ineffective or if the inputs are discrete structures 

more elaborate kernels will be needed. By implicitly defining feature space, the 

kernel provides the description language used by the machine for viewing the data. 

Once the choice of kernel and optimization criterion has been made the key 
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components of the system are in place (Nello et al., 2000). The first real world task 

on which Support Vector Machines were tested was the problem hand written 

character recognition. Furthermore, multi-class SVM‟s have been tested on these 

data. It is interesting not only to compare SVM‟s with other classifiers, but also to 

compare different SVM‟s amongst themselves (Mark et al., 1996) 
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CHAPTER TWO 

METHODOLOGY 

 

2.1 Preprocess 

2.1.1 Preparing the Training and Test Data 

 

 The raw data has the blood tests of 4550 patients which were made between 

01.01.2013-30.06.2013 and 500 attributes (Name, Age, Sex, Glucose, K… etc.). 

Then the raw data is evaluated by FileMaker 8.5Pro (US) software (Nil et al., 2014). 

 

2.2 Weka Software  

 

Weka is open source software and set of tools for pre-processing, classification, 

regression, clustering, association rules, and for visualization data files. System is 

written in Java programming language which enables to work with different kind of 

filters and classifiers, also allows to experiment the data sets with data mining and 

machine learning algorithms. 

 

 Includes a very vide area of preprocessing tools. Users can very efficiently learn 

how to use methods and algorithms, other good side of the software is that users can 

experiment more than one classifier and different type of methods in one data set for 

identifying the most appropriate classifier. Clustering algorithms in weka are 

specified with no class attribute but classifiers like SVM algorithms are specified 

with class attributes. 

 

 The main GUI (graphical user interface) in weka is the explorer, with a six 

different panels. The most used part of weka‟s GUI the explorer is shown in the 

following Figure 2.1. 
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Figure 2.1 Shows Weka‟s GUI 

 

2.2.1 Preparing ARFF Data File 

 

In ARFF (Attribute Relation File Format) file there is three sections. The first 

section is called the Relation section and every line begins with  “@” sign this is how 

weka deals with an ARFF file in order to understand the sections. After “@Relation” 

for naming our data file name we can use any other name in order to define our data 

file relation, it does not have to be same as data file name. 

 

 The second section is an attribute section, this section actually is holding the data 

attributes also starts with “@” sign. We can see it in the second line we have to write 

“@attribute” for every feature whereas we have to define every attribute with data 

type. 

 

 Our class attribute is called Onay/Red (eksonuc1) where have values negative 

one (-1) and positive one (1) for classifying our patients in order to make decision 

which patients are for examination. In general features section or attributes section in 

our data file we can have either nominal types of data type or numeric types of 

features. 
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 The third section of data file is the data section, also starts with “@” sign written 

as “@data”. Weka starts to populate the algorithm inputs from third section, later on 

we will explain our SVM algorithms how data results are dealing with each section 

or part of the algorithm. 

 

 We have to maintain order of the features in our data section just like the way we 

have ordered our instances in attribute section. The first attribute is ADSOYAD, so 

in data section our first result has to be compatible with our attribute.  

 

 
Figure 2.2 Shows Arff data file 

 

2.2.2 Correlation Attribute Evaluator 

 

Correlation Attribute Evaluator calculates the correlation coefficient what we refer 

to as our 25 attributes, 1635 for training, 2585 for testing the instances for correlation 

of the coefficients.  



 

15 
 

                                      
 

    
         

    
                                          (2.1) 

 

 In this case we have 2585 patients so N is equal to 2585, X and Y„s are our 

attributes, this X and Y„s were calculated by laboratory machines. We also needed to 

know the mean squared error and standard deviation for our attributes. 

 

 Within the parenthesis we can see that, there is two major calculations, first one 

is the sum of  X and Y this means that we take the sum of all the X and Y‟s 

multiplied together and add  them together , after that algorithm will subtract the 

summed  values. Second one in the parenthesis N multiplies mean of X times mean 

of Y. 

 

 In the denominator on the bottom of the equation we can see S of x and S of y 

which means that the standard deviation of all attributes multiplied together. Results 

shown in table one are correlation attribute evaluator with 12 Cross-validation for 

training the dataset. 

Table 2.1 Shows the result of correlation attribute evaluator 

Average Merit Average Rank Attribute 
0.746 0.007 1 0 1 HEM_INDX 

0.315 0.009 2 0  10 GLUKOZ 

0.168 0.006 3 0 3 LIP_INDX 

0.135 0.003 4 0 12 URIC 

0.116 0.002 5.2 0.37 14 KALSIYUM 

0.106 0.011 6.8  1.53  11 DELTA_GLUKOZ 

0.106 0.008 6.8 1.14 2 IKT_INDX 

0.096 0.004 8 0.82  23 GGT 

0.09 

0.082 

0.079 

0.07 

0.072 

0.066 

0.063 

0.057 

0.054 

0.047 

0.044 

0.036 

0.025 

0.015 

0.007 

0.008 

0.006 

0.009 

0.002 

0.009 

0.002 

0.002 

0.009 

0.001 

0.006 

0.001 

0.002 

0.001 

0.015 

0.005 

9.1 

10.4 

11.3 

12.3 

12.3 

13.8 

15 

15.9 

16.8 

18 

18.8 

20 

21.1 

21.6 

22.8 

0.95 

1.11 

1.88 

0.75 

2.36 

0.72 

0.91 

2.02 

0.69 

1.22 

0.37 

0 

0.28 

2.02 

0.37 

5 DELTA_NA 

17 DELTA_MG 

7 DELTA_K 

20 AST 

22 ALP 

4 NA 

21 ALT 

15 

DELTA_KALSIYUM 

8 CL 

13 DELTA_URIC 

6 K 

18 BUN 

19 CREA 

9 DELTA_CL 

16 MG 

Total  Instances: 1635    
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2.2.3 Replace Missing Values Filter 

 

     When the blood test machine outputs the results for each instance and when that 

results are replaced in excel form (in our situation we worked with excel files) there 

can be seen in some colons missing values for instances.  Handling that problem 

which is very significant for accuracy of our learning system we could replace it with 

just replacing the question marks with nothing in notepad, furthermore we used 

filtering to handle this problem. 

Where the explanation for replacing the missing values is:  

 

 Replaces all missing values for nominal and numeric attributes in a dataset 

with the modes and means from the training data. 

 

Figure 2.3 Shows dataset with question marks. 
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Figure 2.4 Shows the dataset after using replace missing values filter. 

 

2.3 Predictions of Performance Measures 

 

Data accuracy will be shown from the experimental tables with correctly and 

incorrectly classified instances. For defining the accuracy as we said before was used 

two classes, which is often defined like positive and negative class. Class numbering 

represents two different categories in which classifier distributes a set of instances. 

  

So that the instances classified as positive can be really positive and false positive. 

Samples marked as negative can be really classified as true negatives and false 

negatives. 

 

 One of the measures that is using for evaluating the performance prediction is 

accuracy.  The accuracy of classification can be defined as the ratio of correctly 

classified samples and the total number of samples.  

 

         
       

             
                                       (2.2) 

 

Recall is defined as the ratio of correctly classified positive instances and the 

instances that the classifier declared positive. 
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                                                          (2.3) 

 

      Precision is defined as the ratio of correctly classified positive instances and the 

instances that the classifier declared as positive. 

                                               
  

       
                                               (2.4) 

 

     F-Measure is a weighted harmonic mean of precision and recall. 

                                                   
                  

                  
                               (2.5) 

 

2.3.1 Roc (Receiver Operating Characteristics) 

 

Roc is a visualization tool by which we can tell that our classifier is really 

appropriate or not. Roc curve is a two dimensional performance classifier in which 

on the Y-axis displays true positives (TP) and on the X-axis false positives (FP).This 

two axis are showing us the relationship between the true positives (TP) and false 

positives (FP). 
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Figure 2.5 Shows the representation of roc area 

 

2.3.2 Precision Recall  

 

 It is using in the case of asymmetry distribution in the class and it is 

corresponding curve is often used as an alternative to the Receiver Operating 

Characteristics (ROC) curves. An important difference between Precision recall and 

ROC space is a visual representation of the curve.  

 

 So in ROC curve the main idea is to have the curve much more upper left on the 

corner, where is the top of the Y-axis which is one. It means that we are using the 

best classifier for our dataset.  

 

To produce it in a different way we can also see Area under ROC which has 

0.9984 percent of accuracy, it has really high percentage for using that classifier. 
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Figure 2.6 Shows the representation curve of precision recall 

 

2.4 Choosing Model for Classification 

 

Our experiment was separated into two parts. First part was experimented by my 

colleagues with Artificial Neuron Networks (ANN), we had good results also with 

back propagation algorithm where the ANN results were up to 95 percent of 

accuracy with well experimented learning rates, momentum and cross validation.  

 

2.4.1 Artificial Neural Network Model 

  

Polynomial classifiers can model decision surfaces of any shape; and yet their 

practical utility is limited because of the easiness with which they overfit noisy 

training data, and because of the sometimes impractically high number of trainable 

parameters. Much more popular are artificial neural networks where many simple 
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units, called neurons, are interconnected by weighted links into larger structures of 

remarkably high performance (Kubat, 2015). 

 

Feed-forward architecture with sigmoid function often have one or more hidden 

layer neurons, whereupon is located output layers with a linear function. Multiple 

layers of neurons with nonlinear transfer function enable the network to learn 

nonlinear relationships between input and output vectors. Linear output layer is most 

commonly used for troubleshooting adjustment function. ANN uses back-

propagation algorithm for backward the obtained weights and for minimizing the 

errors uses gradient descent algorithm. For optimizing the architecture network it is 

used Levenberg-Marquardt optimization technique. It is hard for determine for 

selecting the neurons in hidden layers although there is formula (Figure 2.9). If the 

number of the neurons in the hidden layer are not enough then network begins to 

decline, when the number of neurons are enough for the hidden layer learning 

process increases and the network becomes ineffective.  

Structure of ANN is shown in Figure 2.7 

 

Figure 2.7 Shows Structure of ANN 

 

2.4.1.1 Multilayer Perceptrons as Classifiers 

 

      Neurons: The function of a neuron, the basic unit of  a multilayer perceptron, is 

quite simple. A weighted sum of signals arriving at the input is subjected to a transfer 
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function. Several different transfer functions can be used; the one that is preferred is 

sigmoid, defining by the following formula where ∑ is the weighted sum of inputs. 

                                            ∑  
 

     ∑
                                                     (2.6) 

     Figure 2.8 shows the curve representing the transfer function. The reader can see 

that   ∑  grows monotonically with the increasing value of ∑ but is destined never 

to leave the open interval (0, 1) because       = 0, and      = 1. The vertical axis 

is interested at      = 0.5. We will assume that each neuron has the same transfer 

function. 

 

Figure 2.8 Sigmoid transfer function (Kubat, 2015) 

 

     Multilayer perceptron. The neural network in figure 2.8 is known as the 

multilayer perceptron. The neurons, represented by circles, are arranged in the output 

layer and the hidden layer while remembering that it is quite common to employ two 

such -layers, even three, though rarely more than that. 

 

     While there is no communication between neurons of the same layer, adjacent 

layers are fully interconnected. Importantly, each neuron-to-neuron link is associated 

with a weight. The weight of the link from the j-th hidden neuron to the i-th output 

neuron is denoted as    , and the weight of the link from the k-th attribute to the j-th 

hidden neuron as    . First index always refers to the link‟s “beginning”; the second, 

to its “end”. (Kubat, 2015) 
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2.4.1.2 Gradient Descent 

                                     

                                                                                             (2.7) 

 

Equation describes the first steps of Gradient Descent, but before explaining the 

equation, we will illustrate how gradient descent works. 

 

Figure 2.9 Shows starting point of gradient descent 

 

Figure 2.8 shows how gradient vector starts from point local minimum X0 to the 

ending point X4. To arrive in the middle of the gradient it depends exactly of length 

of the vector. We want to minimize the function before we get overshoot. 

 

 From the expression (2.6) b is our current position b is going to be our next 

position, gradient term tells us the direction of steepest ascent, and gamma is a factor. 

With this formula is taking the position of gradient descent. 

After this step we have to minimize our function.  

 

2.4.1.3 Learning Rate 

 

 Learning rate is a parameter for controlling the step size and for updating the 

weights of the learning system. Where with several experimentations we can 
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comprehend that if we use high learning rate it is obviously that we will have faster 

learning but it will have big risk of overshooting. 

  

 In the other side if we take slow learning rate of values we will have slower 

learning, but overshooting will be avoided. 

 

In the below table the learning rates of ANNs were experimented. 

 

Table 2.1 Learning rate results (Nil et al., 2014). 

Learning Rate Kappa 

Statistic 

Mean 

Absolute 

error 

Root Mean 

squared error 

Root 

absolute 

error 

Root relative sq. 

error 

0.001 0.9329 0.0884 0.1467 28.1944 % 37.067 % 

0.005 0.9782 0.0243 0.0821 7.7481 % 20.752 % 

0.007 0.9782 0.0199 0.0758 6.3434 % 19.145 % 

0.01 0.9803 0.0158 0.0717 5.0532 % 18.802 % 

0.05 0.9783 0.0089 0.0734 2.8259 % 18.541 % 

0.07 0.9803 0.0082 0.0733 2.6173 % 18.518 % 

0.1 0.9783 0.008 0.0747 2.5569 % 18.872 % 

0.5 0.9803 0.0078 0.0726 2.4857 % 18.342 % 

0.7 0.9764 0.0085 0.0779 2.7015 % 19.682 % 

1 0.9783 0.0087 0.0803 2.7759 % 20.282 % 

 

2.4.1.4 Momentum 

 

With respect to proven experiments for momentum term that improves the speed 

of back-propagation algorithm and at the same time can improve the range of a 

learning rate. We experimented momentum value to back-propagation algorithm for 

proving the best accuracy for the learning system. 

 

There are many different varieties of learning algorithms, the majority of them 

including the popular back-propagation learning algorithm are of the gradient 

descent type. For a given network architecture, one usually starts with an error 

function which is parameterized by the weights (the connection strengths between 

units) in the network. The gradient of the error function with respect to each weight 

is then computed and the weights are modified along the downhill direction of the 
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gradient in order to reduce the error. Let E(w) be the error function, where w is a 

vector representing all the weights in the network, the simplest gradient descent 

algorithm known as the steepest descent, modifies the weights at time step t 

according to: 

                                                                                              (2.8) 

 

where  w  represents the gradient operator with respect to the weights and e is a 

small positive number known as the learning rate. 

 

It is well known that such a learning scheme can be very slow. The inclusion of a 

momentum term has been found to increase the rate of convergence dramatically 

(Rumelhart et al., 1986). 

 

                                                                                      (2.9) 

     

     Where p is the momentum parameter. That is, the modification of the weight 

vector at the current time step depends on both current gradient and the weight 

change of the previous step. Intuitively, the rationale for the use of the momentum 

term is that the steepest descent is particularly slow when there is a long narrow 

valley in the error function surface. In this situation, the direction of the gradient is 

almost perpendicular to the long axis of the valley. The system thus oscillates back 

and forth in the direction of the short axis, and only moves very slowly along the 

long axis of the valley. The momentum term helps average out the oscillation along 

the short axis while at the same time adds up contributions along the long axis 

(Rumelhart et al., 1986). 
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Table 2.2  Momentum results (Nil et al., 2014). 

 

Momentum 

Kappa 

Statistic 

Mean 

Absolute 

error 

Root 

mean 

squared 

error 

Relative 

absolute 

error 

Root 

relative 

sq. Error 

0.01 0.9961 0.0053 0.0341 1.6836 % 8.6234 % 

0.03 0.9961 0.0052 0.0341 1.6577 % 8.6058 % 

0.04 0.9961 0.0052 0.0341 1.6447 % 8.5971 % 

0.05 0.9961 0.0051 0.0341 1.6317 % 8.5801 % 

0.06 0.9961 0.0051 0.0341 1.6188 % 8.5886 % 

0.07 0.9961 0.005 0.0339 1.6058 % 8.5917 % 

0.08 0.9961 0.005 0.0339 1.5928 % 8.6035 % 

0.09 0.9961 0.005 0.0339 1.5798 % 8.6053 % 

0.1 0.9961 0.0049 0.0338 1.5668 % 8.6152 % 

0.5 0.9961 0.0032 0.0333 1.0361 % 8.6195 % 

1 0 0.1945 0.441 62.0277 

% 

111.4207 

% 

 

2.4.1.5 Hidden Layer  

 

Neural network consists of three layers with neurons. Layer which are referred as 

inputs, hidden layer neurons and output. 

 

Each neuron in the entrance layer is connected with all neurons in the output layer 

over the weight coefficients. With input and hidden neurons ANN architecture also 

includes a bias nodes with given value size +1 in the input and hidden layer.  

 

On the other side, the number of hidden neurons subject to adjustment depending 

on the number of elements, such as desired approximation and the possibility of 

generalization of the model. 

 

For deciding the number of hidden layers and nodes in a hidden layer, we need to 

use cross-validation for testing the accuracy on the training set. Because there is no 

rule or formula for deciding the number of hidden layers like number of neurons in 

the hidden layer. 

 

                                       
                                  

 
        (3.0) 
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We decide to experiment different number of hidden layers with different number 

of neurons in each hidden layer (results will be explained in result chapter). We were 

aware that our ANN architecture needs more than one hidden layer and actually 

results proved it.  

 

Figure 2.9 Shows neural network with 15 neurons in 3 hidden layers 
 

2.4.2 K-Fold Cross Validation 

 

 K-fold cross-validation is a statistical technique used to estimate the 

generalization and prediction of the model. Actually, how will the results of the 

model predict the new generalized set of data. 

 

 The input data is divided into subsets complementary with the data set to train 

one subset to build a model to predict, and the subset of model is a test data for 
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validation in k-fold cross validation. Input data set is dividing by the principle of 

random selection in the subset to a variable parameter and the most commonly used 

testing is 10-fold cross validation, but sometimes depends on number of instances in 

related dataset. For modeling the subsets, one subset is using for model validation 

that is test data set and the remaining k-1 subset is using to build the model for data 

set for training. 

 

Process for cross validation is repeating k-times, where in each of the subsets is 

using only once for model validation. Results of k-fold cross validation is the 

average value of individual k-results. The advantage of this technique is that in the 

same time all instances in the subset are used for the construction of the model and 

for validation of the model. 

2.4.3 LibSVM 

  

 LibSVM method is an efficient implementation of a Support vector machines for 

classification, regression and distribution estimation. LibSVM supports multi-class 

classification. 

LibSVM method includes: 

 Efficient multi-class classification 

 Cross-validation for model selection 

 Probability estimates 

 Various kernels 

 Weighted SVM for unbalanced data 

 

     In this experiment will be used radial basis function (RBF) because the analyzing 

produces good results where can be used more complex kernel type functions: 

 Linear function 

 Polynomial 

 Radial basis function 
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 Sigmoid 

 

For finding the ideal parameters coef0 and gamma is written in programming 

language Python (Support Vector Machines 2011). Script for finding the ideal 

parameters is doing a very easy process where script runs LibSVM with default 

values for coef0 and gamma. It performs a process of cross-validation(see section 

Cross-validation)  where in input data selects a number of instances that are used as a 

test set and the rest of the instances for training set. After that it is performing cross-

validation and training of the set. When the process is completed from the total set it 

is selecting the second test set, same size as the previous test set but with new 

variables.  

 

The number of the process iterations is depending on cross-validation. After 

completing the process of cross-validation it is obtaining certain results. After that it 

is changing parameters for coef0 and gamma with and is performing again cross-

validation for the new obtained results for parameters coef0 and gamma. The 

obtained results are compared with the old ones, if the results obtained are better than 

the oldest obtained results better parameters used in this process are taken as ideal 

parameters. 

 

     The difference is that for learning and testing with ideal parameters may not result 

the best obtained, but when is testing trained data set with ideal parameters and with 

new input variables can be obtained best results. 

2.4.4 SPegasos 

  

Implements the stochastic variant of the Pegasos (Primal Estimated sub-Gradient 

Solver for SVM) method of Shalev-Shwartz. This implementation globally replaces 

all missing values and transforms nominal attributes into binary ones. It also 

normalizes all attributes, so the coefficients in the output are based on the normalized 

data (Hall, 2011). 
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2.4.5 Sequential Minimal Optimization (SMO) 

 

     In this experiment we used the new SVM‟s implemented training algorithm called 

Sequential Minimal Optimization.  

Differences between the standard SVM training algorithms and the SMO: 

 

 Conceptually simple 

 Faster 

 Better scaling properties 

 

As an inner loop that use standard SVM algorithms (numerical quadratic 

programming), SMO uses analytic quadratic programming. 

 

 SMO can very fast solve SVM‟s quadratic problem, where SMO optimizes the 

large quadratic programming (QP) problem into smaller QP problems. A very big 

advantage of SMO is that can solve the Lagrange multipliers to optimize then finds 

the optimal values and updates the SVM to reflect the new variables. 

 

SMO solves effectively: 

 Two Lagrange multipliers 

 Heuristic for choosing which multipliers to optimize 

 

Osuna‟s theorem states that the global training problem can be broken down into a 

sequence of smaller sub-problems (Platt, 1998). 

 

As long as SMO always optimizes and alters two Lagrange multipliers at every 

step and at least one of the Lagrange multipliers violated the KKT conditions before 

the step, then each step will decrease the objective function according to Osuna‟s 

theorem (Freund, 1997). 

 

So far, of the SVM training methods have the same flavor: since solving the 

underlying QP problem outright is inefficient, they break down the problem in one 
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way or another, and then solve the QP tasks of these carefully chosen subproblems. 

In doing so there is a balance. The more sophisticated our decomposition algorithm 

(resulting in smaller subproblems), themore time is spent iterating over subproblems, 

and the less assurance we have of good convergence rates. The benefit, of course, is 

that less memory is required in solving the QP subproblems, and that we can worry 

less about the numerical instability of QP packages. On the other hand, the less 

“fiddling” we do in the way of decomposition, the more “intact” our problem 

remains, and the more assurance we have in the program‟s outputting a global 

optimum. Indeed, the reliance on QP packages is bothersome. As mentioned before, 

numerical instability is a concern for QP solvers. And it is a little unsettling knowing 

that most QP routines are too complex and difficult to be implemented “on the fly” 

by the user. For this reason, the method of Sequential Minimal Optimization (SMO), 

given in (Platt, 1999), is very appealing. 

 

Platt takes decomposition to the extreme by only allowing a working set of size 2. 

Solving a QP problem of size 2 can be done analytically, and so this method avoids 

the use of a numerical QP solver altogether. The tradeoff, naturally, is that pairs of 

examples optimized in this way must be iterated over many times. The claim, 

however, is that since the heart of the algorithm is just a simple analytic formula, the 

overall runtime is reduced. The biggest advantage of this method is that the 

derivation and implementation are astoundingly simple. 

 

It should be noted that SMO, while introduced as a method for training SVM 

classifiers, has also been extended to SVM regression (Flake, Lawrence, 2000). Also, 

(Keerthi et al. 1999) argue that Platt‟s method of computing the threshold in SMO is 

inefficient, and give modifications to his pseudocode that make the algorithm much 

faster (Bosswell, 2002). 
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CHAPTER THREE 

RESULTS 

 

3.1 Biochemistry Test Results 

 

How we explained before for the training and testing data sets were achieved from 

the ANN experiment, which data sets were deeply analyzed by biochemistry 

specialists and assistants. For making best decisions analyzing and experimenting the 

predicted values which can directly effect our learning models were choosing critical 

values. 

 

 For validation of blood test results we used typical binary classification, with 

values -1 and +1 respectively. Determination of Gray Zone is important part of this 

experiment, with limit values from -0.3650 to +0.6833. Predicted values which are 

smaller than -0.3650 biochemistry specialists can accept as invalid test result 

otherwise if predicted values are greater than +0.6833 the results are acceptable. 

 

 
Figure 3.1 Shows gray zone for prediction of values. 

 

3.2 ANN for Hidden Layer Results 

 

In this experiment we experimented the various of combination of neurons in 

hidden layers, more clearly we wanted to find out if we use more neurons in different 

hidden layers or more neurons in a single layer in to our learning system how will 

respond to accuracy and to statistic metrics. We were aware that if we increase the 
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number of  hidden layers and neurons, execution times of the model would be 

slower, where in the beginning of the experiment since the model was experimented 

with just five neurons and one hidden layer time taken for it was just for 7.2 seconds. 

Increasing the number of hidden layers and neurons up to three hidden layers and 

twenty-five neurons time taken for execution was 23.11 seconds for cross-validation.  

 

Table 3.1 Results of ANN with hidden layers 

Hidden Layers Neurons Kappa 

statistic 

Mean 

absolute 

error 

Root mean 

squared 

error 

Correctly Class. 

Instances 

              1 5 0.828 0.0808 0.2104 94.0852 % 

              2 10 0.8771 0.0529 0.1936 95.7017 % 

              3 15 0.8609 0.0708 0.2008 95.1874 % 

              3 20 0.8682 0.0535 0.1934 95.4078 % 

              3 25 0.8744 0.0621 0.1897 95.3711 % 

      

 

 Because of in the first layer of the network input data variables are multiplied by 

the weights and is adding the bias, if the input data variables are large amount 

weights must be very small. Therefore before applying the input variables to a 

network it is using normalization to the input data variables. Generally normalization 

is applied to the input and to the target vectors. In this way the results of the network 

is always in normalized range. The data set is entered with 1635 instances for 

training and 2585 for testing with 25 attributes for both sets. 

 

  In this experiment it is used 0.05 value for learning and momentum and 12cross-

validation. In the Table 4 results shows that with two hidden layers and ten neurons 

our learning model obtained best accuracy, where and kappa statistic is very high 

close to one with 0.8771 percentage. 
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Table 3.2 Results of ANN with hidden layers 

Hidden Layers Neurons Kappa 

statistic 

Mean 

absolute 

error 

Root mean 

squared 

error 

Correctly 

Class. Instances 

              1 5 0.0233 0.2032 0.4408 79.9458 % 

              2 10 0.0614 0.1953 0.4388 80.4491 % 

              3 15 0.0381 0.204 0.4349 80.1394 % 

              3 20 0.0598 0.1977 0.4387 80.3717 % 

              3 25 0.077 0.1983 0.4358 80.6039 % 

      

 

Table 3.2 shows that with increasing the number of hidden layers and neurons the 

accuracy is increasing (purely not with three hidden layers and fifteen neurons 

network). 

 

3.3 SVM Results 

 

3.3.1 Cross-Validation Results 

 

 During training of SVM algorithms for optimal training is necessary to perform 

the process of cross-validation. 

Cross Validation divides data into three parts: 

 Training  

 Validation 

 Test sets 

 

After dividing to three parts Cross Validation finds the optimal model on the 

training set. That optimal training model uses the test set for determining its optimal 

competence. 
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 For estimating the model was used 10 Cross-Validation, model data was 

separated into 10 samples for matching the model to the training model in order to 

use trained model for using the test model. 

 

Table 3.3, 3.4, 3.5 shows the results of cross-validation for SVM algorithms. 

 

Table 3.3  Experiment results of cross-validation in LibSVM model 

Correctly Classified Instances 

 

Incorrectly Classified 

Instances  

                  1367 

 

                  268 

 

 

83.6086 % 

 

16.3914 % 

 

Kappa statistic 

 

                           

                  0.2365 

  

Mean absolute error 

 

                   0.1639   

Root mean squared error 

 

                   0.4049   

Relative absolute error 

 

                  52.2706 %   

Root relative squared error 

   

                102.2864 %   

Coverage of cases (0.95 level)                 83.6086 %  

 

 

 

Mean rel. reg size (0.95 level)                     50      % 

Total Number of Instances                     1635   

 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recall F-

Measur

e 

MCC  Roc 

Area 

 PRC  

Area 

Clas

s 

 

 0.164 0.002 0.963 0.164 0.280 0.359 0.581 0.320 -1  

 0.998 0.836 0.832 0.998 0.908 0.359 0.581 0.832 1  

Avg. 0.836 0.674 0.857 0.836 0.785 0.359 0.581 0.732   

 

To demonstrate the accuracy of the methods and how the results are predicted by 

the methods we need to take care of measuring of how close a fitted data is to data 

points. With (Mean Absolute Error, Root Mean Squared Error) and Root relative 

squared error for values that indicate a schema greater or lower than 100. 

 

LibSVM  model for measuring the average of the squares of the error (Mean 

Absolute Error) we got 0.1639, for differences between predicted values and the 

values that was observed (Root Mean Squared Error) we got 0.4049, root relative 
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squared error is 102.2864 percent. Classification with 83.6086 percent of correctly 

classified 1367 instances and 16.3914 percent of incorrectly classified 268 instances. 

 

Table  3.4  Results for SMO with 10cross-validation 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

                  1592 

 

                      43 

 

 

97.37      % 

 

   2.63      % 

 

Kappa statistic 

 

 

0.9131 

  

Mean absolute error 

 

0.0263   

Root mean squared error 

 

0.1622   

Relative absolute error 

 

8.3867 %   

Root relative squared error 

   

40.9718  %   

Coverage of cases (0.95 level) 97.37      %  

 

 

 

Mean rel. region size (0.95 level)                    50      % 

Total Number of Instances                    1635   

 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MC

C 

 Roc 

Area 

 

PRC 

Area 

Class  

 0.887 0.005 0.092 0.887 0.929 0.915 0.941 0.89 -1  

 0.995 0.113 0.973 0.995 0.984 0.915 0.941 0.97 1  

Avg. 0.974 0.092 0.974 0.974 0.973 0.915 0.941 0.96   

 

 Experiment based on SMO (Sequential Minimal Optimization) method we got 

better result in order to LibSVM and SPegasos methods, where for Mean Absolute 

Error we got 0.0263, for Root Mean Squared Error 0.1622 and for Root Relative 

squared Error 40.9718 percent. Classification with 97.37 percent of correctly 

classified 1592 instances and 2.63 percent of incorrectly classified 43 instances.  

 

 Experiment based on SPegasos model is quite relative with SMO experiment, 

Cross-Validation metrics. Where mean absolute error is 0.0294, Root mean squared 

error 0.1713 and Root relative squared error 43.2884 percent. Classification with 

97.0642 percent of correctly classified 1587 Instances and 2.9358 percent of 

incorrectly classified 48 instances. 
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Table 3.5 Results for SPegasos with 10 cross-validation 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

                  1587 

 

                      48 

 

 

97.0642 % 

 

   2.9358 % 

 

Kappa statistic 

 

 

0.9026 

  

Mean absolute error 

 

0.0294   

Root mean squared error 

 

0.1713   

Relative absolute error 

 

9.3619 %   

Root relative squared error 

   

43.2884%   

Coverage of cases (0.95 level) 97.0642%  

 

 

 

Mean rel. region size (0.95 level) 50     % 

    

Total Number of Instances                    1635   

 

 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MCC  Roc 

Area 

 PRC 

Area 

Class  

 0.874 0.006 0.972 0.874 0.921 0.904 0.93 0.874 -1  

 0.994 0.126 0.970 0.994 0.982 0.904 0.93 0.969 1  

Avg. 0.971 0.103 0.971 0.971 0.970 0.904 0.93 0.951   

 

3.3.2 Training Results 

 

After a certain cross-validation to data sets obtained values can be used for a 

training the data sets in learning model. In this part we will focus on two classes that 

classifiers (LIBSVM, SMO, SPegasos) for approved and rejected results. Also rising 

of cross-validation metrics and prediction of performance measures. 

 

 Table 3.6 shows the experiment results of LibSVM classifier, where we can see 

that all the cross-validation metrics results are decreasing (Mean Absolute Error, 

Root Mean Squared Error, Root Relative squared error) also the percentage of 

correctly classified instances are increasing in the other side incorrectly classified 

instances are decreasing respectively. This are the main points how cross-validation 

effect our learning model in positive way. 
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Table 3.6 Shows training results for LibSVM 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

                  1381 

 

                  254 

 

 

84.4648 % 

 

15.5352 % 

 

Kappa statistic 

 

                           

0.2887 

  

Mean absolute error 

 

                      

0.1554 

  

Root mean squared error 

 

                      

0.3941 

  

Relative absolute error 

 

49.5442 %   

Root relative squared error 

   

 99.5793 %   

Coverage of cases (0.95 level)  84.4648 %  

 

 

 

Mean rel. region size (0.95 level)   50    % 

    

Total Number of Instances                     1635   

 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MCC  Roc 

Area 

PRC 

Area 

Class  

 0.201 0.000 1.000 0.201 0.335 0.411 0.60 0.357 -1  

 1.000 0.799 0.838 1.000 0.912 0.411 0.60 0.838 1  

 Avg. 0.845 0.643 0.870 0.845 0.800 0.411 0.60 0.745   

 

For prediction of performance measures we will focus on results where accuracy 

by class is predicted. From the table 9 MCC (Measure of the quality of binary 

classification) is for both classes 0.411 that is no better than the random prediction 

where in the next classifiers we can see the better predictions. Precision where for 

rejected (-1) class correctly classified positive instances and the classifier that 

classified as positives is very high with 1.000 precision and 0.838 for approved (+1) 

class. 
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Table 3.7 Shows training results for SMO 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

                  1634 

 

                      1 

 

 

99.939  % 

 

 0.0612  % 

 

Kappa statistic 

 

                                       

0.998 

  

Mean absolute error 

 

0.0006   

Root mean squared error 

 

 0.0247   

Relative absolute error 

 

 0.1951 %   

Root relative squared error 

   

 6.2482 %   

Coverage of cases (0.95 level) 99.9388 %  

 

 

 

Mean rel. region size (0.95 level)  50      % 

Total Number of Instances                    1635   

 
 TP 

Rate 

FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MC

C 

Roc 

Area 

PRC 

Area 

Class  

 0.997 0.000 1.000 0.997 0.998 0.998 0.998 0.997 -1  

 1.000 0.003 0.999 1.000 1.000 0.998 0.998 0.999 1  

Avg. 0.999 0.003 0.999 0.999 0.999 0.998 0.998 0.999   

 

Sequential Minimal Optimization (SMO) known as optimization algorithms 

results are quite impressing with 99.939 percent of correctly classified 1634 

instances and 0.0612 percent of incorrectly classified 1 instance. ROC area is also 

close to 1 with result of 0.998 where we explained in previous section for ROC area 

if the result is close to one (1) its describes that the method which we are using for 

the model is best implemented. 
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Table 3.8 Shows training results for SPegasos 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

                  1634 

 

                      1 

 

 

99.9388 % 

 

   0.0612% 

 

Kappa statistic 

 

                           

     0.998 

  

Mean absolute error 

 

0.0006                     

Root mean squared error 

 

 0.0247   

Relative absolute error 

 

0.1951 %   

Root relative squared error 

   

 6.2482%   

Coverage of cases (0.95 level) 99.9388%   

 

Mean rel. region size (0.95 level) 

 

   50% 

Total Number of Instances                    1635   

 

 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MC

C 

 Roc 

Area 

PRC 

Area 

Class  

 0.997 0.000 1.000 0.997 0.998 0.998 0.998 0.997 -1  

 1.000 0.003 0.999 1.000 1.000 0.998 0. 99 0.999 1  

Avg. 0.999 0.003 0.999 0.999 0.999 0.998 0.998 0.999   

 

3.3.3 Testing Results 

 

Testing set results was conducted on 2585 instances using 25 attributes same as in 

the training set. Increasing number of instances in the testing set does not affect 

accuracy on decreasing way on LibSVM and SPegasos models except on SMO 

model. 

We used default parameters for all models. LibSVM works with kernel type radial 

basis function, SMO works with polynomial kernel, where SPegasos with epochs and 

lambda parameters respectively. 

In the Table 3.9 we can see the LibSVM‟s test results with 95.8637 percent of 

correctly classified 2479 instances and 4.0263 percent of incorrectly classified 104 

instances with increased accuracy for 11.3989 percent and decreased 11.5089 percent 
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Table 3.9 Shows testing results for LibSVMI 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

   2479 

 

                 

104 

 

 

95.97  % 

4.026  % 

 

Kappa statistic 

 

 

0.8658 

  

Mean absolute error 

 

0.0403   

Root mean squared error 

 

0.2007   

Relative absolute error 

 

12.4263 %   

Root relative squared error 

   

49.8628 %   

Coverage of cases (0.95 level) 95.9737%  

 

 

 

Mean rel. region size (0.95 level) 50      % 

Total Number of Instances                    

2585 

  

 
 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MC

C 

 Roc 

Area 

PRC 

Area 

Class  

 0.802 0.000 1.000 0.802 0.890 0.874 0.901 0.842 -1  

 1.000 0.198 0.952 1.000 0.975 0.874 0.901 0.952 1  

           

Avg. 0.960 0.158 0.962 0.960 0.958 0.874 0.901 0.930   

 

In the Table 3.9 we can see the LibSVM‟s test results with 95.8637 percent of 

correctly classified 2479 instances and 4.0263 percent of incorrectly classified 104 

instances with increased accuracy for 11.3989 percent and decreased 11.5089 percent 
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Table 3.10 Shows testing results of SPegasos 

 

 

     In the table 3.10 we can see SPegasos test results where best results were 

obtained. With 99.9613 percent of correctly classified 2582 instances and 0.0387 

percent of incorrectly classified 1 instance. If we look in the results table 13 for MCC 

0.999, ROC area 0.999, F-Measure 0.999, Precision 1.000 we have the highest 

results that can obtain one SVM model.  

 

 

 

 

Correctly Classified Instances 

 

Incorrectly Classified Instances  

                  2582 

 

                      1 

 

 

99.9613  % 

 

  0.0387  % 

 

Kappa statistic 

 

                           

                     0.998 

  

Mean absolute error 

 

                     0.0004   

Root mean squared error 

 

                     0.0197   

Relative absolute error 

 

                   0.1195 %   

Root relative squared error 

   

                   4.8894 %   

Coverage of cases (0.95 level)                   99.9613 %  

 

 

 

Mean rel. region size (0.95 level)                     50      % 

Total Number of Instances                    2583   

 TP 

Rate  

 FP 

Rate 

Precisio

n 

Recal

l 

F-

Measure 

MC

C 

 Roc 

Area 

PRC 

Area 

Clas

s 

 

 0.998 0.000 1.000 0.998 0.999 0.999 0.999 0.998 -1  

 1.000 0.002 1.000 1.000 1.000 0.999 0.999 1.000 1  

 Avg. 1.000 0.002 1.000 1.000 1.000 0.999 0.999 0.999   
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CHAPTER FOUR 

CONCLUSION AND FUTURE WORK 

4.1 Conclusion  

 

     By completing this project it should be noted that it seems inevitable to mention 

as improvement of Artificial Neural Network (ANN) to Support Vector Machines 

(SVM) algorithm as a great success. The most deserving person for that i consider 

my supervisor Prof. Dr. Süleyman Sevinç, who gathered around him a group of 

young people assured the importance of this project and he always became interested 

in the problems also for the solutions. I was lucky and I was one of his students who 

was working in this area.  

 

     The implementation of the SVM classifier with using LibSVM library and for the 

training datasets SMO and SPegasos models finally is obtained qualitative measures.  

 

      I tried to make as many measurements and explain them as clearly as possible but 

there are still much more questions that have to be answered. 

 

 4.2 Future Work 

 

 This project focuses on detection of hemolytic laboratory patient blood test 

results, which is based on learning and educative system. We compared the 

effectiveness of Support Vector Machines (SVM) algorithms which first one is the 

multilayer perceptron (MLP) and the second one LibSVM model.  

 

 We got good results in both models with differences where for MLP the accuracy 

was 80.6 percent and for LibSVM was 95.97 percent with integrated SMO and 

SPegasos training models. By using experimented parameters for MLP which were 

momentum, learning rate, and cross-validation it is obtained 80.6 percent of 

accuracy, but with respect to C-SVM where we used just default parameters for       
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LibSVM with radial basis function (RBF) we obtained better results also our roc area 

was under 0.9984 in comparison with MLP.  

 

Since in both model our learning systems accuracy was very high the system can 

be integrated into biochemistry laboratory safely, with developed software for 

validating test results. To increase the accuracy of the model one idea can be 

experimenting the RBF parameters, or as we know how technology and the 

biochemistry departments are growing and updating very fast our future work can be 

implementing to the new models.  
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