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VIBRO-ACOUSTIC ANALYSIS OF UNCERTAIN COMPOSITE 

STRUCTURES USING EXPERIMENTAL TECHNIQUES 

 

ABSTRACT 

 

Vibro-acoustic experiments provide a basis for all predictive analysis methods and 

also provide more realistic predictions especially for very complex systems. They are 

also utilized for the verification purposes for numerical, semi-analytical and energy 

based methods.  

 

This thesis aims to give application procedures of various experimental 

techniques. The studies in the thesis are an important part of a national project 

aiming for developing an efficient mid and high frequency method. Here, 

comprehensive application procedures of experimental modal analysis, experimental 

power injection method (PIM), accelerance, receptance and mobility measurements 

for simple and more complex composite structures are presented.  

 

Beside this, experimental uncertainty analyses are performed and discussed in 

detail in the thesis. The effects of structural variations causing vibro-acoustic 

uncertainty are obtained via experimental Monte Carlo simulations from simple to 

very complex structures such as single plate to a cabinet.  

 

 

Keywords: Uncertainty, experimental Monte Carlo simulation, statistical energy 

analysis, finite element analysis, power injection method, laminated composite 

plates, acoustic cavity. 
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BELİRSİZ KOMPOZİT YAPILARIN DENEYSEL YÖNTEMLERLE VİBRO-

AKUSTİK ANALİZİ  

 

ÖZ 

 

Deneysel vibro-akustik analizler diğer tahminleme analiz yöntemlerine temel 

oluşturmaktadır. Ayrıca, karmaşık yapıların cevap tahminlerinde daha gerçekçi 

sonuçlar vermektedir. Bu analizler sayısal, yarı-analitik ve enerji tabanlı yöntemlerin 

doğrulama çalışmalarında da kullanılmaktadır.  

 

Bu tez, çeşitli deneysel tekniklerin uygulama usullerini göstermek amacıyla 

yazılmıştır. Tezde yapılan çalışmalar orta ve yüksek frekans bölgesinde etkili bir 

yöntem geliştirmeyi amaçlayan ulusal bir araştırma projesinin önemli bir parçasını 

oluşturmaktadır. Bu tezde, basit sistemlerden oldukça karmaşık sistemlere doğru 

gelişen deney düzeneklerine uygulanan deneysel modal analiz, deneysel güç 

enjeksiyon yöntemi, akselerans, reseptans, mobilite ölçümlerinin uygulama esasları 

sunulmuştur.  

 

Bunun yanı sıra, deneysel belirsizlik analizleri yapılmış ve tez içerisinde detaylıca 

tartışılmıştır. Yapısal değişkenliklerin neden olduğu vibro-akustik belirsizlik 

deneysel Monte Carlo simülasyonu yöntemiyle tek plakadan, bir kabin sistemine 

doğru gittikçe karmaşıklaşan deney yapılarına uygulanmıştır. 

 

Anahtar kelimeler: Belirsizlik, deneysel Monte Carlo simülasyonu, istatistiksel 

enerji analizi, sonlu elemanlar analizi, güç enjeksiyon yöntemi, katmanlı kompozit 

plakalar, akustik hacim. 
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CHAPTER ONE 
INTRODUCTION 

 

Composite structures and materials are extensively used in aerospace and 

automobile industry for a while, due to their mechanical advantages such as 

strength/weight ratio, corrosion resistance, high impact strength, electrical resistivity, 

etc. Therefore, investigation of vibro-acoustic behaviors of these materials has an 

important place in engineering studies.  

 

As it is well known, vibro-acoustic analyses are implemented in frequency 

domain generally. Also one can divide frequency domain into its three major parts; 

low, mid and high frequency regions. Conventional analysis methods are usually 

initiated for low frequency region. In this region resonated behavior dominates the 

response. For the determination of low frequency modal responses modal analysis 

can be used. Modal analysis applications were used extensively not only in 

mechanical engineering but also in different areas of engineering disciplines such as, 

civil, aeronautical, electronic, etc.    

 

For instance, Clemente et al. used experimental modal analysis in order to 

determine modal behavior of a cable-stayed bridge (Clemente, Marulo, Lecce, & 

Bifulco, 1998). 

 

Zhang et al. investigated modal response of a silicone sensor via modal analysis in 

order to validate the operation (Zhang, Tangi, Shan, Brandon, & Kwan, 1998).  

 

Liang et al. implemented modal analysis to a suspension bridge in an attempt to 

reveal modal behavior of this structure (Liang, Jun, & Jing, 2001).  

 

Also, Xu & Guo used experimental and numerical modal analysis  in order to 

determine modal behavior of hard disk drive (Xu, & Guo, 2003).  

 

By using recent technological developments researchers still use modal analysis 

techniques for modal behavior determinations of different kind of structures; 
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Chierichetti et al. used experimental modal data in order to monitor dynamic 

responses (Chierihetti, Grappasonni, Coppotelli, & McColl, 2014).  

 

Batou et al. used experimental modal data in order to identify stochastic dynamic 

responses of one-stage pump (Batou, Soize, & Audebert, 2015). 

 

Zhong et al. used optical coherence vibration tomography in order to determine 

low frequency vibrational behavior of structures which vibrates with nano scaled 

vibration displacements (Zhong, Zhong, & Zhang, 2016). 

 

Oliveira et al. implemented experimental modal analysis by using piezoelectric 

transducers in order to determine modal characterization of composite plate 

structures (Oliveira, Maia, Marto, Silva, Afonso, & Suleman, 2016) 

 

Hooper and Marco investigated modal behavior of Li-on cells which are widely 

used in hybrid vehicles (Hooper, & Marco, 2016). 

 

In high frequency region, frequency responses are getting smoother due to modal 

overlapping. Also the transition from the low to high frequencies is not linearly 

expressed, it exhibits a complex transition zone which is called as mid frequency 

region. Actually, there are no clear separations between these three regions. Only the 

threshold of high frequency region for simple structures can be approximately 

calculated via modal overlap factor (MOF) (Rabbiolo et al., 2004).    

 

Increase in the usage of light-weighted composite materials to reduce fuel 

consumption or range enhancement elicits a shift in vibro-acoustic response through 

mid and high frequency regions. Numerical analysis methods such as FEM are 

generally used in industrial applications, which is a valid method for the 

determination of low frequency responses. In order to maintain valid predictions by 

these deterministic techniques in higher frequencies, excessive number of elements 

are required. This leads to high solution time and large memory usage. Therefore, 

special analysis methods should be considered for these higher frequencies.   
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In high frequency region, statistical and energy based methods are generally used. 

Statistical energy analysis (SEA) (Fahy, 1994; Lyon & DeJong, 1998, Keane & 

Price, 1997) is the most commonly used method in engineering areas. This analysis 

technique requires vibro-acoustic parameters of structures. For the determination of 

SEA vibro-acoustic parameters various methods were developed;  

 

A steady state power input method called Power Injection Method (PIM) (Bies & 

Hamid, 1980; Langhe & Sas, 1996; Lalor, 1997; Manik, 1988) were widely 

implemented approach in order to determinate the loss factors of subsystems.  

 

Also, several other methods were emerged in order to achieve the same result;  

 

A FEM approach has been developed by Steel et al. for the investigation of 

structure-borne sound transmission (Steel & Craik, 1994). 

 

Fahy et al. have developed a different method called input power modulation 

technique in order to determine these coefficients (Fahy & Ruivo, 1997).  

 

A wave approach has been developed by McDaniel et al. for the estimation of 

frequency dependent loss factors in one dimensional structures (McDaniel, Dupont & 

Salvino, 2005).  

 

Since Fahy argued about the loss factors were not the best indicators of internal 

energy dissipation and transfer between subsystems for the determination of energy 

levels (Fahy, 1998); suggested an alternative parameter, which was proportional to a 

derived parameter from modal densities and loss factors.  

 

Ming experimentally investigated the parameter derived and the method 

developed by (Fahy, 1998) with such advantages; easier implementation and less 

measurement error (Ming, 2005). However, this method leads an approximate result 

due to its convenience. 
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Berthaut et al. have proposed a method called inhomogeneous wave correlation 

(IWC) for the identification of dispersion curves of two dimensional structures 

(Berthaut, Ichchou & Jezequel, 2005).  

 

Maxit et al. have developed a dual formulation method for determination of loss 

factors by using FEM modal information (Maxit, & Guyader, 2009).  

 

Also, for the estimation of loss factors of orthotropic two dimensional structures 

Cherif et al. proposed a method based on inhomogeneous wave correlation (Cherif, 

Chazot, & Atalla, 2015).  

 

Seçgin et al. have recently determined loss factors in-situ via PIM of point 

connected composite structures (Seçgin, Güler, & Kara, 2015).  

 

In mid frequency region, SEA and FEM could not individually provide efficient 

predictions. Therefore, researchers have focused on developing hybrid methods 

based on numerical and statistical methods;   

 

Langley et al., (1998) have presented a technique, which contains SEA, fuzzy 

structure theory and Belyaev smooth function approach.  

 

Vlahopoulos et al., (2001) have developed a hybrid Finite Element Analysis 

(FEA) technique for the demonstration of the importance of the resonance effects in 

mid frequency range.  

 

Shorter et al., (2005) have presented a hybrid method that estimate vibrational 

behavior of complex systems and also applicable for non-reverberant subsystems.  

 

Vanmaele et al., (2007) have developed a wave based method for mid frequency 

vibrations of plates.  
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Seçgin has developed a modal based approach for numerical determination of 

statistical energy analysis parameters of directly coupled composite structures 

(Seçgin, 2013).  

 

Seçgin et al. have proposed a hybrid technique called modal impedance technique 

used for high frequency analysis of uncertain stiffened composite plate (Seçgin, 

Kara, & Ozankan, 2015).  

  

Products that were manufactured in same production line may indicate different 

vibro-acoustical behavior due to uncertainty. This phenomenon may be emerged 

from small variations in geometry, material property, excitation characteristic, initial 

and boundary conditions of structures. Uncertainty incapacitates the traditional 

estimation techniques of response not only in low frequency region but mid and high 

frequency region too.  

 

For lower frequencies, effect of uncertainty can be simulated via Monte-Carlo 

Simulation (Evans & Swartz, 2000; Fahy, 1994; Hobenbichler & Rackwitz, 1998; 

Lewis & Böhm, 1984).  

 

However, energy based approaches such as SEA are capable of considering 

uncertainty effects in high frequency region. By these reasons energy based 

statistical approaches frequently used.  

 

SEA and its subsidiary methods will be explained in the following chapter. Also, 

experimental methods for the determination of vibro-acoustic behavior of composite 

structures are performed in the applications.  

 

Experimental methods take an important place for the prediction of vibro-

acoustical behavior. Experimental measurements provide a basis for all predictive 

analysis methods. It is utilized also for the verifications of various numerical and 

analytical methods. As mentioned above numerical deterministic techniques and 
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statistical energy based techniques are only valid in different frequency regions. This 

consequence leads a lack of information in other ranges.  

 

In this study, as a part of a national project aiming for developing an efficient mid 

and high frequency method, various experimental works were performed for 

verification purpose and also for providing the information to the other methods. In 

this regard, in this thesis, one can find comprehensive application procedures of 

experimental modal analysis, experimental power injection method (PIM), 

accelerance, receptance and mobility measurements for simple and more complex 

composite structures. Also, the study includes experimental Monte Carlo simulation 

to simulate mass uncertainty for simple to complex systems. In this study 

experimental vibro-acoustic analyses were made for simple and more complex 

composite structures in order to maintain a significant reference study for literature. 

 

Especially, structural-acoustics analyses made for cabinet structure which is 

produced by composite subsystems were submitted for the first time in literature. 

 

The thesis is organized as from six main chapters; 

 

First chapter begins with an introduction section.  

 

In Chapter 2, one can find the theoretical bases of various analytical, numerical 

and experimental methods. 

 

Chapter 3 presents numerical and experimental modal analysis of various 

structures from simple to complex ones together with verification studies.  

 

Chapter 4 concerns with experimental determination of statistical energy analysis 

parameters for several structures based on power injection method (PIM).  
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Chapter 5 is dedicated to the uncertainty analyses for several structures including 

a stiffened plate and a cabinet with acoustic volume by using numerical and 

experimental Monte Carlo analyses.  

 

Finally, Chapter 6 ends up with a conclusion of the thesis.  

 

This study is sponsored by the Scientific and Technological Research Council of 

Turkey (TÜBİTAK) with the project number 112M836. All the analytical and 

numerical data which compared with experimental results were taken from the report 

of this project. Also these data’s in figures were indicated with the label "Tübitak 

Project Report, 112M836, 2015" in their annotations.  

 

 

Symbol list:

 

    k   : stiffness constant 

c   : damping constant 

m   : mass 

f   : frequency 

t   : time 

   : angular frequency 

   : period 

   : phase angle 

h : hysteretic damping 

coefficient 

  : receptance  

   : structural damping loss factor 

   : damping ratio 

0  : natural frequency 

j   : 1   

A   : modal constant 

 

0   : mean mass density 

   : Poisson ratio 

D   : rigidity matrix 

, ,a b h  : dimensions of a rectangular  

plate 

   : dimensionless natural 

frequency parameter 

P   : power input 

E   : vibration energy 

if  : average modal spacing 

corr  : modal coupling factor 

   : power transmission 

,i net  : modal factor 

kZ   : infinite system impedance 
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cL   : length of the connection 

cA   : Area of the connection 

,   : incidence angles 

( )
,
line area
i jI

 : integral factor  

yE
  : Young modulus 

G   : shear modulus 

   : Poisson ratio (in Table 2.1) 

   : density 

   : radius of gyration 

L   : length 

A   : area 

V   : volume 

J   : torsional rigidity 

,x yI I
 : area moments of inertia 

about x and y axis 

pI
 : summation of moments of 

inertia 

,Lx Lyc c
 : longitudinal wave speed 

towards x and y axis 

Lc  : geometrical mean of the 

speed of waves 

0Y   : driving point mobility 

( ), ( )F M    : frequency 

dependent force and moment 

Lc   : longitudinal wave speed (in 

Table 2.2) 

bc  : bending wave speed 

Lk  : longitudinal stiffness 

bk  : bending stiffness 

r   : radius of excitation 

iE
 : time, spatial, frequency 

average of energy 

iP
 : time, spatial, frequency 

average of pressure 

iv
 : time, spatial, frequency 

average of velocity 

totE  : total energy 
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CHAPTER TWO 
THEORY 

 

In this section, methods used in this thesis, are explained. In this regard, 

experimental modal analysis and statistical energy analysis (SEA) which is used for 

high frequency vibro-acoustic analysis are given. Here, a power injection method to 

determine the SEA parameters is also briefly presented. Chapter finalizes by 

experimental uncertainty simulation for vibro-acoustic structures.  

 

2.1 Modal Analysis 

 

Modal analysis is simply the process of determining the essential vibration 

characteristics, i.e, natural frequency, damping ratio, modal constant and mode 

shape, to compose the mathematical model indicating dynamical behaviour of a 

vibrating structure. This test can be performed analytically for simple structures such 

as beams and plates. However, there no analytical solution is available for 

complicated structures. In these cases, numerical or experimental modal analyses 

should be performed.  

 

2.1.1 Experimental Modal Analysis 

 

Experimental modal analysis systems are composed of contact (accelerometers, 

load cells etc.) or non-contact transducers (laser vibrometers, stereophotogrammetric 

cameras), data acquisition systems, analog to digital converters (ADC) and 

computers.   

 

Mechanical systems can be modeled as single degree of freedom (SDOF) or multi 

degree of freedom (MDOF) systems. MDOF system can be modeled as superposition 

of several SDOF systems via linear vibration theory. In experimental modal analysis 

complex systems can be analyzed by both SDOF and MDOF approach methods. In 

this study SDOF Peak Selection Method was used in the analyses. Peak selection 

method and Circle fit method are generally used for SDOF approach whereas curve 

fitting method is the most common for MDOF approach. 
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 In SDOF approach, peak selection is mostly preferred method since it leads to 

immediate evaluation of response with an easy application. This method is also 

known as half power method. Modal parameters can be obtained by an analysis of 

sufficiently wide band of the receptance peak at the resonance frequency. In circle 

fitting method, modal parameters are determined from composed circular relation by 

plotting real and imaginary part of the receptance (Nyquist diagram). In the thesis, 

peak selection method is used in modal analyses works, (He & Fu, 2001). In curve 

fitting, frequency response function (FRF) curve of the receptance approximately 

defined as various mathematical functions. In this process, fracture polynomials or 

complex exponential curve forms are generally used. 

There are three widely used FRF parameters exists. Receptance is the ratio of the 

displacement over the force. Mobility is the ratio of the velocity over the force. 

Accelerance is ratio of the acceleration over the force. Here, it is worthy to point out 

that, in measurements performed in studies, all these parameters were selected to be 

measured for following reasons: Accelerance was measured in the modal analysis of 

a beam, since acceleration data can be easily measured and there was no comparison 

required. Receptances were measured for comparison purpose of some structures, 

since those structures already have analytical displacement responses. Mobilities 

were measured for the comparison studies with SEA, since SEA parameters are 

generally obtained from impedances which are the inverse of mobilities.  

For modal analyses, SDOF approach is used in easy and quick evaluation of the 

modal information for low damped systems. However, MDOF approach can be used 

at all damped systems and more complex structures for determination of more 

reliable modal information.  

 

2.1.1.1 Single Degree of Freedom Approach 

 

SDOF systems can be modeled as a spring with a stiffness constant k, a damper 

with a damping constant c and an element with a mass m. For harmonic force 

excitation at frequency   ,     j tf t F e   the response of the system can be 
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assumed as     j tx t X e  , where    is phase between force and response. 

Receptance response of the system can be represented as; (He, & Fu, 2001) 

 

For viscous damping: 

2

( ) 1

( )

X

F k m j c


  


 

 .     (2.1) 

 

For structural damping: 

2

( ) 1

( )

X

F k m jh


 


 

 .     (2.2) 

 

Here, h c  is hysteretic damping coefficient. Receptance ( ) is the ratio of 

displacement over force that applied to the system. Equation (2.1) and (2.2) can be 

rewritten with modal parameters as; (He, & Fu, 2001) 

 

For viscous damping: 

 

2 2
0 0

1 /
( )

2

m

j
 

   


  .   (2.3)
 

 

For structural damping; 

 

2 2 2
0 0

1
( )

m

j
 

   


 
.                             (2.4) 

 

In these formulas, 0  
is the natural frequency,  is the excitation frequency,   is 

damping ratio and   is structural damping loss factor of the SDOF system, given as 

/h k .   
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2.1.1.1.1. Peak Selection Method 

 

Frequency response function of a system having several modes can be determined 

by using Equation (2.3) as follows; 

 

2 2
1

( )
2

N
n

n n n n

A

j
 

   


  .    (2.5) 

 

And for small damped systems; 

 

2 2
1

( )
N

n

n n

A 
 


 .    (2.6) 

     

Modal parameters can be calculated as; 

Frequency response function value at the peak is expressed as max 22
n

n n

A
 

 . Here 

the modal constant nA  , indicating that the amount of response contribution of nth 

mode, can be estimated as 

 

2
max2n n nA       , 2

max( )n n         (2.7) 

 

Viscous damping ratio can be derived from modal bandwidth (quality factor). 

Quality factor is a dimensionless parameter of the bandwidth frequency values which 

is 3 dB less than the peak value (Figure 2.1). 
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Figure 2.1 Quality factor 

 

Viscous damping ratio; 

 

2 1

02n

f f

f
 

 .    (2.8) 

 

Structural damping ratio; 

 

2 1

0
n

f f

f
 

 .    (2.9) 

 

Peak value: 

 

max max( )n n  
 
 .    (2.10)  

 

In Equations (2.8) - (2.10) 1f  and 2f  are lower and higher frequency of modal 

bandwidth respectively where 0f  center frequency of the band.  

 

 

 



 14

2.1.1.1.2. Circle Fit Method 

 

Circle Fit method is one of the most used SDOF modal analysis method. It is 

based on the circularity of the Nyquist diagram of an SDOF system. With the effect 

of structural damping, receptance FRF traces a circle on Nyquist diagram having 

form of  (He & Fu, 2001) : 

 

2 2
2 1 1

(Re( )) Im( )
2 2h h

         
   

   .   (2.11) 

  

2.1.2 Bending Vibrations of a Thin Composite Plate 

 

Deflection in Cartesian coordinates for time independent equation of motion of a 

thin symmetrically layered composite plate can be written as (Whitney, 1987).  

  

 
4 4 4

11 16 12 664 3 2 2

( , ) ( , ) ( , )
4 2( 2 )

w x y w x y w x y
D D D D

x x y x y

  
  

    
 

 
4 4

2
26 22 03 4

( , ) ( , )
( , ) 0.n

w x y w x y
D D h w x y

x y y
  

   
  

 (2.12) 

 

Here, a and b are plate dimensions, h is total thickness, 0  
is mean mass density,   

is Poisson ratio, D11, D12, D22 and D66 are bending rigidities in the principle direction 

of material, D16  and D26 are the rigidities of the bending-torsion pair.  

 

Boundary conditions for simply-supported system (SSSS) can be given as 

(Whitney, 1987). 

 

At x=0, a; 0w  : 
2 2 2

11 16 122 2
2 0,

w w w
D D D

x x y y

  
   

   
        (2.13a) 

At y=0, b; 0w  :  
2 2 2

12 26 222 22 0
w w w

D D D
x x y y

  
   

   
,     (2.13b) 
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Equation (2.12) can be rewritten, through dimensionless parameters represented 

as: /X x a , /y Y b , /W w a , /a b  , 11 22( / )D D D  , 

  226612 /2 DDDD  , 16 22( / )D D D  , 26 22( / )D D D  . 

             

     
4 4 4

2 4
4 2 2 4

( , ) ( , ) ( , )
2

W X Y W X Y W X Y
D D

X X Y Y    
 

   
 

 
4 4

3 2
3 3

( , ) ( , )
4( ) ( , ) 0,

W X Y W X Y
D D W X Y

X Y X Y   
   

   
        (2.14) 

 

In this formula, 2
0 22/a h D   is dimensionless natural frequency parameter. 

Equation (2.14) can be simplified for special orthotropic and isotropic plates 

depending on two features; 

 

1- For special orthotropic plates: Symmetrically 0° and 90° orientation angle 

layered plates; rigidities become D D   and 0D D    ( 16 26 0D D  ). 

2- For isotropic plates; rigidities become 1D D    and 0D D    

( 3 2
11 22 / 12(1 )D D D Eh      and 16 26 0D D  ). 

 

Analytical dimensionless natural frequency parameter for plates, which have 

simply supported boundary condition, can be defined as;  

 

 2 2 4 2 2 2 4 40
, ,

22

2p q p q

h
a p D p q D q

D  
        where  p,q=1,2,…   (2.15) 

 

2.2 Statistical Energy Analysis (SEA)  

 

Statistical energy analysis (SEA) is a high frequency dynamic analysis method 

developed by R.H. Lyon (SEA) (Fahy, 1994; Lyon & DeJong, 1998) in early 1960s. 

In this method complex structures are divided into subsystems and then power 

balance is provided between these subsystems. Mean energy values are calculated for 

these subsystems and dynamic responses such as velocity, acceleration and pressure 
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can be evaluated from these mean energy values. Analytical SEA has many 

limitations and assumptions such as high modal density, non-localized damping, and 

having equal energy magnitude for each vibration resonance.  

Since SEA calculates the statistical parameters (mean, standard deviation) of 

response, it can automatically take uncertainties into account. However, in this 

method each subsystem should have sufficient number of vibro-acoustic modes to 

define accurately the system.  The success of SEA also depends on the accurate 

prediction of its parameters, i.e, coupling loss factor (CLF), damping loss factor 

(DLF), average modal spacing (AMS) and power input.  

 

2.2.1 Coupling Loss Factor (CLF) and Damping Loss Factor (DLF) 

 

CLF and DLF present the amount of power transmission between subsystems and 

power absorption of subsystems, respectively. CLF can be evaluated with analytical 

methods for simple structures by using finite/semi-infinite system impedances (Lyon 

& DeJong, 1998) or dual modal formulation (Maxit & Guyader, 2009a, 2009b) but it 

can be evaluated by numerical/experimental power injection method for complex 

structures whereas DLF is determined via some experimental methods such as 

logarithmic decrement, quality factor (Lyon & DeJong, 1998; Rao, 1995), decay rate 

method (Bloss & Rao 2005; Lyon & DeJong, 1998) and power injection method 

(PIM) (Bies & Hamid, 1980; Langhe & Sas, 1996).  

SEA equations are written by setting power balance between subsystems. A 

subsystem dissipates energy as: 

 

i i iP E  .     (2.16) 

 

where   is angular frequency of vibration, i  is damping loss factor (DLF), iE  is 

vibration energy of ith  subsystem. Power transmission from ith subsystem to jth 

subsystem is expressed as: 
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ij ij iP E .     (2.17) 

where
 ij , coupling loss factor (CLF) between ith subsystem to jth subsystem. 

Analytical CLF is determined using power transmission coefficient which can be 

derived either wave approach or modal approach. In wave approach incident, 

reflection and transmission at a joint is considered for the computational CLF. 

However, in modal approach, average energies obtained from modal information are 

used in computations. In the thesis, wave approach formulas are used. CLF can be 

expressed as (Lyon & DeJong, 1998): 

 

2
iji

ij corr
ij

f

f

 
 




.                                (2.18) 

 

In this formula, if , average modal spacing (AMS), corr , modal coupling factor, 

 ij , power transmission coefficient between ith and jth subsystem. Beside that,  

 

Average Modal Spacing (AMS) can be used in the calculation of the CLF for two 

connected structures (Lyon & DeJong, 1998):  

 

2
iji

ij corr
ij

f

f

 
 




 .        (2.19) 

 

Here, if  is average modal spacing of subsystem i and modal coupling factor can be 

given as (Lyon & DeJong, 1998): 

 

 

1
8 4

1, 2,

1

1
1

2

corr

net net



  


  
       

     .                          (2.20) 

 

Modal factor 1,net  can be calculated as , /i net if f   in terms of net loss factor of 

subsystem i. Iteration is used for more accurate determination of coupling loss factor 



 18

CLF. In the iteration procedure, firstly, DLF is selected as initial CLFs and then by 

iteration, net loss factors are determined for each substuctures.  

 

Transmission coefficient can be represented in terms of infinite system 

impedances (Lyon & DeJong, 1998): 

 

2

1

4
(0) i j

ij
m

k
k

R R

Z

  




 



 .                                  (2.21) 

 

Here, kZ   is infinite subsystem impedances at junction points, iR  and iR  are 

real parts of those impedances.  

 

Transmission coefficient varies in accordance with the junction type; point, line 

and area connections.  

 

For point connection junctions, Equation (2.20) should be used. However, 

transmission coefficient (and CLF) are affected by the angle of incidence wave for 

line and area connections (Lyon & DeJong, 1998):  

 

    ,

,

( )cos

2 2 ( )
iji cline i

ij
ij

k Lf

f

  
  








                               (2.22) 

 

   
    ,

,

( )cos

2 2 ( )
iji carea i

ij
ij

k Af

f

  
   








  .                          (2.23) 

 

Here, cL indicates length of connection between subsystems, cA, area of connection 

between subsystems. Mean of the CLF along all incidence angle must be known to 

obtain frequency dependent CLF. 

 

This situation depends on the assumption of the energy is homogenized along the 

incidence angles (Lyon & DeJong, 1998): 
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 
/2

0

2
ij ij d




   


   ,                                     (2.24) 

 

and 

 

   
/2

0

sinij ij d



       ,                               (2.25) 

 

Equation (2.24) and (2.25) can be rewritten independently from the incidence 

angle (Lyon & DeJong, 1998): 

 

   
 

( ) 0
,

2 0
ijline areai

ij corr ij i j
ij

f
I k k

f

 
 

  


 .                     (2.26) 

 

In this formula, ( )line area
ijI represents the integral factor of the connection and 

 0ij  is the transmission loss when the incidence angle of the wave to the junction. 

Besides, impedance of the Eq. (2.4) must be written for unit length and area in the 

expression of CLF for line and area connections. 

 

Integral factor of line and area connection of plate and acoustic cavity were 

represented respectively (Lyon & DeJong, 1998): 

 

2
0

2 2
0

2

2

p sline
p c

p

k k L
I

k k
 
   
 

,                               (2.27) 

 

6
0
4

2 2
2 4
0 0
2 4

8

2
1 1

p

parea
p c

p p p p

A k

k
I

k k

k k k A



 

 
   
        

   

                              (2.28) 
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2.2.1.1 Average Modal Spacing (AMS) 

 

Average modal spacing (AMS, f ) shows average distance of two modes in 

terms of Hertz of a subsystem as shown in Figure 2.2. In Table 2.1, AMSs of some 

subsystems are compiled for several waveguides. 

 

 
Figure 2.2 Modal spacing representation of a frequency response function (Seçgin & Sarıgül, 2009) 

 

In table 2.1, yE represents Young Modulus, G is Shear Modulus,   is Poisson 

Ratio,  is density,   is radius of gyration, L  is the length of the bar, A  is the area 

of the plate, V is the volume of the acoustic cavity and  4 x y x yJ I I I I   is 

torsional rigidity, p x yI I I  , xI  and yI  are the summation of area moments of 

inertia. Speed of wave can be obtained by the geometrical mean of the speed of 

waves towards at least 2 different directions ( L Lx Lyc c c  ) for orthotropic 

structures 
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Table 2.1 AMS for some different subsystems, compiled from (Lyon & DeJong, 1998) 

Structure Wave Guide Average Modal Spacing Speed of Wave 

Bar 

Longitudinal 
2

Lc

L
 

L yc E   

Torsional 
2

Tc

L
 

T pc GJ I  

Bending Bc

L
 2B Lc f c   

Plate 

Longitudinal 
2

2
Lc

fA


  21L yc E      

Shear 
2

2
Sc

fA
 

Sc G   

 2(1 )yG E    

Bending 2 Lc

A

    21L yc E      

Acoustical  

Cavity 
--- 

3

24
airc

Vf
 20.05 273.15o

airc C   

 

2.2.1.2 Power Input 

 

Spectral power input ( ,i inP ) of the subsystem can be determined as superposition 

of force and moment excitations: 

 

         2 2

0 0Re Retot F M F M
in in inP P P F Y M Y      .            (2.29) 

 

Here, 0Y , driving point mobility is the inverse of the system impedance. 

 F  and  M   are frequency dependent force and moments respectively.  

2.2.1.3 Infinite System Impedance 

 

Impedance can be defined as the ratio force over velocity. In Table 2.2, driving 

point impedances are given for basic waveguides. In Table 2.2, r represents radius of 

excitation and h denotes thickness of plate. However, for torsional and flexural 
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waveguides moment impedances are also exist.  This impedance expression can be 

used in high frequency region, by the reason of vibrational wave reflections at the 

boundaries of the system are neglected. Since the energy of the higher frequency 

waves are relatively low, these waves absorbed by internal damping of the system 

and could not reflect.  

 

In order to calculate transmission coefficients, impedances have to be adjusted 

according to boundary conditions. For example, point impedances for plate must be 

reduced by factor 2 for each free boundary and for beams by factor 4 under force 

excitation. Beside that acoustic impedance is reduced by factor 2 for each rigid 

boundary. For each pinned boundary, moment impedances are reduced by factor 2 

(Lyon & DeJong, 1998). 

 

Table 2.2 Driving point impedance of structures (Lyon & DeJong, 1998) 

Subsystem, Waveguide Force Impedance Moment Impedance 

Thin beam, flexural  2 1 1BAc j    2

2
1B

B

Ac
j

k


   

Thin plate, flexural 8 Lh c     

216

11 4 ln

L B

B

h c k

j k r

 

    
 

 

Bar, longitudinal 2 LAc  --- 

Plate, inplane 28 1
j

hfr
kr

   
 

 --- 

Bar, torsional --- 2 p LI c   

Acoustic space 
2

1
f j

c kr

   
 

  --- 

 

2.2.2 Modal Overlap Factor (MOF) 

 

Structures should have high modal density for SEA applicability. In other words, 

demonstration of the vibration of the structure at high frequency region relies on a 
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statistical parameter called Modal Overlap Factor (MOF) (Lyon & DeJong, 1998). 

MOF is basically defined as the modal density in a modal bandwidth ( nf ) (Figure 

2.2). Beside that, MOF can be expressed as:  

 

2

f
MOF

f

 


                                                (2.30) 

 

Determination of MOF can be quite exhausting for complex structures. However, 

it can be approximately determined by experimental and statistical methods. 

Rabbiolo et. al. (2004) defined MOF as a high frequency indicator and relates MOF 

and high frequency threshold as 1 for bars, 2.5 for plates and 3 for acoustical 

cavities. 

2.2.3 Power Balance In SEA Analysis 
 

In Figure 2.3 an example SEA model of 2 connected subsystems is shown.  

 

 
Figure 2.3 A SEA model of two connected subsystems 

 

Power balance equations for each subsystem can be given as; 

 

 
 

11 12 12 21 211, 1

2, 212 12 22 21 21

1
line area line area

in

line area line area
in

P E

P E

    

     

                     .
                       (2.31) 

 

Here, the matrix including CLFs and DLFs of subsystem is called as SEA matrix. 

One can evaluate the energies of each subsystem by multiplying inverse of SEA 

Subsystem 1 Subsystem 2 
1,inP 2,inP  

1, 11 1dissP E   2, 22 2dissP E  

12 12 1P E  

21 21 2P E  
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matrix by power vector. Then dynamic parameters such as velocity for vibrating 

structures and pressure for acoustical subsystems can be determined as: 

 

/i i iv E m ,                                    (2.32) 

2 /i i i i ip E c V
 
.                           (2.33) 

 

Here, im  is the mass of subsystem i , iV is the volume of acoustic space, i is the 

density of air and ic  is the speed of sound. 

 

2.3 Power Injection Method (PIM) 
 

Power Injection Method (Bies & Hamid, 1980; Langhe & Sas, 1996) is generally 

applied to coupled structures to determine the DLF of subsystems and CLF between 

connected subsystems by measuring input power and energy amount of system. In 

this method; 

 

1) Power input is applied to first subsystem and energy values are measured from 

all subsystems. In this case SEA equation (Bies & Hamid, 1980; Langhe & Sas, 

1996) becomes, 

 

0 0 0
111 11 12 1

0 0
2121 22

0 0
11

0

0

n

kk kn

EP

E

E
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 



 

    
    

                    


 

    
 

,                                    (2.34) 

 

where ijE  is energy of ith  subsystem when jth subsystem excited, jP is power input 

of jth subsystem, Equation (2.34) can also be rewritten in the form of: 
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0 0 0
11 12 1 11
0 0
21 22 21

0 0
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E
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    
    

                     


 
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,                                    (2.35)

 
 

where n
ijE   is normalized energy of vibration and can stated as: 

 

ijn
ij

j

E
E

P


 .                                                     (2.36) 

 

2) Afterwards second subsystem is excited and equation below can be obtained by 

measuring input power, energies of subsystems: 

 

12

0 22

2

0

1

0

n

n

n
k

E

E

E



  
  

        
   
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Respectively this procedure is applied to all subsystems from subsystem 3 to 

subsystem k and this set of equation can be obtained: 
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 .          (2.38) 

 

4) SEA matrix can be obtained by taking inverse of normalized energy matrix. 

CLF and DLF can be found by rearranging SEA matrix as: 
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If there is a single subsystem DLF can be obtained with PIM since there is no 

coupling to other subsystems. In this case, 

 

in

tot

P

E



 ,                                                      (2.40) 

 

where, 2
totE m v is energy of vibrating subsystem, m is subsystem mass, 2v  

is spatial mean square velocity of subsystem, inP  is power input. Power input for 

each individual frequency is stated as (Lyon & DeJong, 1998): 
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.                                            (2.41) 

 

In Equation (2.41),  0Re Y  shows the real part of excitation point mobility, F  is 

excitation force. Accordingly, Equation (2.41) can be obtained by substituting 

Equation (2.41) to Equation (2.40). 
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Here, N  is the number of measurement point. In this method spatial averaging of 

subsystem energy is necessary. In the case of trying to find broad band DLF, 

implementing the same procedure on multiple excitation points gives more accurate 

results. As a result of power injection method that is based on SEA, the results are 

more accurate at high frequency region of the subsystems.  
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2.4 Monte Carlo Simulation 

 

Monte Carlo method is relying on random sampling to obtain numerical results. It 

is generally used in engineering problems especially when it is difficult or impossible 

to use other mathematical methods. Monte Carlo method is mainly used in 

optimization, numerical integration with a probability distribution. It is efficiently 

used in many different areas such as statistical stock exchange modeling, weather, 

earthquake forecasting, and dynamic analyses of uncertain systems. This method is 

based on an estimation of outputs with specified input functions which are modeled 

as particular distribution functions like Gaussian, Rayleigh distribution, etc..  

 

For uncertainty analyses, Monte Carlo simulation is especially used together with 

low frequency deterministic techniques such as FEM, BEM. However, using these 

techniques at mid and high frequency region on uncertain systems, especially for the 

structures having over one million degree of freedoms (DOF) leads to at least tenfold 

increase on solution time.  
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CHAPTER THREE 
MODAL ANALYSIS 

 

In this chapter, modal analyses of an aluminum hollow beam, a single composite 

plate and a T-type composite structure are performed. Here, only for the single plate, 

a mathematical model is constructed. For the other structures except beam, natural 

frequencies are numerically and experimentally obtained. The details of 

measurement setup are given in Appendix A. It is noted that the numerical analyses 

results were taken from (Tübitak Project Report, 112M836, 2015) and used for 

comparison here in this chapter. Modal analysis was made only experimentally for 

the beam in order to determine the modal behavior of the simple structure.  

  

3.1 Modal Analysis of a Beam 
 

In this part of the study, modal analysis was implemented to a 50x50x2 aluminum 

hollow beam (Figure 3.1). Mechanical properties of the beam are given in Table 3.1. 

 

 
Figure 3.1 Aluminum hollow beam 

 

Table 3.1 Mechanical properties of the beam   

Property name Beam 

Density [ 3/kg m ] 2700 

Modulus of Elasticity [MPa] 69000 

Poisson ratio 0.33 

External dimensions [m x m x m] 1 x 50e-3 x 50e-3 

Internal dimensions [m x m x m] 1 x 46e-3 x 46e-3 

Structural damping () 0.0168 

 

1 2 3 
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In order to maintain free boundary condition in experimental analyses, beam was 

hanged from two ends with flexible strings. Input excitation was provided with 

impact hammer. In Figure 3.1, all three labeled points are used for both response and 

excitation.  

 

The beam was tested with Native Instruments Signal Express software. Selected 

three points on the beam were excited and measured in order. Verification of the 

experimental analysis can be examined in Figure 3.2 via symmetry test and anti node 

tracing. Here the spectra are given in terms of accelerance which is the ratio of 

acceleration to the force. Responses from the same excitation and response points are 

reciprocally similar which shows that the analyses have been made properly.  

 

 
Figure 3.2 Accelerance response of the aluminum hollow beam with predicted natural frequencies 

 

3.2 Modal Analysis of a Composite Plate 
 

Modal analysis of 8-layered symmetric composite plate was performed 

experimentally and numerically in this chapter of the study. Experimental modal 

analysis was performed for the composite plate in order to obtain low-frequency 

348 Hz 695 Hz 914 Hz 
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modal parameters. In experimental modal analysis SDOF approach (Peak selection) 

method was used. 

 

3.2.1 The Composite Plate 
 

Here, dynamic analysis of a composite plate shown in Figure 3.3, was performed.  

 

 Figure 3.3 Experimental modal analysis setup 

 

The glassfibre epoxy plate was produced in Dokuz Eylül University Composite 

Manufacturing Laboratory as having (0-90-0-90-90-0-90-0) orientation angles. 

Physical and mechanical properties of the plate are tabulated in Table 3.2. The plate 

contains glass fibers and epoxy resin. 

 

Table 3.2 Mechanical and physical properties of plate 

Property Value 

Length along direction of x [m] 0.5 

Length along direction of y [m] 0.6 

Thickness [m] 2.50E-03 

Young modulus along direction of x [GPa] 21.3 

Young modulus along direction of y [GPa] 21.1 

Shear modulus along direction of x [MPa] 3003 

Poisson ratio along direction of x ( 12 ) 0.161 
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3.2.2 Experimental Modal Analysis  
 

The composite plate with the setup is shown in Figure 3.3. The plate was excited 

from its eight different points with an impact hammer. Vibration receptance 

frequency responses were obtained from the same points. Reliability of the modal 

analysis can be examined in Figure 3.4.  

 

In Figure 3.4, symmetric responses from the same excitation and response points 

are reciprocally similar, which show that analyses have been made properly.  

 

Natural frequencies, damping ratios and modal constants can be derived from one 

of the receptance results by using peak selection method as given in Section 2.1.1. 

The modal parameters are indicated in Table 3.3.  
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Figure 3.4 Modal analysis results of the composite plate 

 

 

 

 

 



 32

 

Table 3.3 Natural frequencies, damping ratios, modal constants of the composite plate 

Numerical Natural 

Frequencies [Hz] 

Experimental Modal Analysis 

 [Hz]nf  n  nA   ,maxn  [m/N]  

10.206 12.4 0.093 2.282 0.00236 

21.647 21.5 0.055 0.852 0.000629 

30.082 27.3 0.047 0.713 0.000303 

31.782 32 0.047 0.237 6.76E-05 

37.562 37 0.038 0.204 5.33E-05 

 

The mathematical five-DOF model of frequency response function of the plate 

can be written by using parameters obtained from first five modes, as  
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and it is displayed in Figure 3.5.  
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Figure 3.5 Frequency response function of the five-DOF composite plate model 

 

3.3 Modal Analysis of a T-type Structure 
 

In this part of the study, numerical and experimental modal analyses are 

performed for a T-type structure as shown in Figure 3.6. The structure consists of 

three composite plates having the same mechanical properties with the previous plate 

and three corner irons. The structure was hanged with flexible string in order to 

maintain free boundary condition as shown in Figure 3.6. 
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Figure 3.6 T-type structure with point connections 

 

3.3.1 Numerical Modal Analysis 
 

As it is mentioned before all numerical results are taken from (Tübitak Project 

Report, 112M836, 2015).  The structure was modeled by ANSYS APDL and 

ANSYS Workbench and is given in Figure 3.7. Predicted natural frequencies are 

tabulated in Table 3.4. 
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Figure 3.7 Numerical model of the T-type structure (Tübitak Project Report, 112M836, 2015) 

 
3.3.2 Experimental Modal Analysis 
 

Here the T-type complex structure shown in Figure 3.6 was excited from 

randomly selected two points of each plate, and vibration responses were measured 

from these points. The measurement setup is shown in Figure 3.8. Here, receptance 

response, which is the ratio of vibration velocity over force, was measured for each 

excitation. 

 

The label “zimojn” at Figure 3.9 indicates that excitation is applied at nth point of 

ith plate and measurements are taken from mth point of jth plate. Note that, here, 

when im jn  is called as driving point whereas im jn  denotes transfer 

receptances. 

 

Receptance responses are given in Figure 3.9. Symmetry test and anti node 

observation state the accuracy of the measurements. Natural frequencies obtained 

from peak selection method are compared with those of numerical predictions in 

Table 3.4. It is shown that natural frequencies predicted by experiments are very 

consistent with those predicted by finite element method.  
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Figure 3.8 Experimental modal analysis setup of the T-type structure  
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a) 

Figure 3.9 Transfer receptances of composite structure a) first half, b) second half 
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b) 

Figure 3.9 Transfer receptances of composite structure a) first half, b) second half (continued)
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Table 3.4 Experimental and numerical (Tübitak Project Report, 112M836, 2015) natural frequencies 

obtained from Peak Selection Method  

Mode 

Number 

Frequency [Hz] 

Experimental Numerical 

1 3 3.6254 

2 4 4.2689 

3 5 5.1924 

4 6 6.7058 

5 7 7.2539 

6 14 14.7940 

7 21 21.5140 

8 21 21.5910 

9 23 23.2420 

10 25 26.2050 

11 25 26.5150 

12 33 33.1800 

13 33 33.6240 

14 33 33.6310 

15 46 46.4380 

16 48 48.6560 

17 48 49.3550 

18 48 49.3780 

19 53 53.3610 

20 60 60.2970 
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CHAPTER FOUR 

DETERMINATION OF SEA PARAMETERS OF STRUCTURES 

 

For the high frequency analyses purpose, SEA, a very common method was 

considered in the study. Here it is necessary to determine SEA parameters such as 

coupling loss factor (CLF) and damping loss factor (DLF) of subsystems. In the 

determinations, Power Injection Method (PIM) as given in Section 2.3 was used. 

 

Here, only DLFs of aluminum hollow beam and single plate were obtained since 

there is no coupling with other structures. However, for I-, L- and T-type structures, 

CLFs and DLFs were predicted. The details of measurement setup are given in 

Appendix B. It is noted that the numerical analyses and analytical results were taken 

from (Tübitak Project Report, 112M836, 2015) and used for comparison here in this 

chapter. 

 

4.1 Determination of the DLF of an Aluminum Beam  
 

Here, experimental Power Injection Method (PIM) is applied. An aluminum beam 

was excited via a vibration exciter from its randomly selected three points as shown 

in Figure 4.1 and total energies were measured from its randomly selected seven 

points but including those three driving points. Then energies are spatially averaged 

to present the single energy level of the beam.  

 

 
Figure 4.1 Aluminum hollow beam 

 

Calculated damping loss factor (DLF) was averaged over 1/3 octave band of each 

single frequency and shown in Figure 4.2. Averaged damping throughout the entire 

spectrum is calculated as 0.0198. 
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Figure 4.2 Damping loss factor of the beam 

 

4.2 Determination of the DLF of a Single Composite Plate  
 

Here, experimental setup for Power Injection Method (PIM) is shown in Figure 

4.3a. A single composite plate was excited from its three different points, as shown 

in Figure 4.3b, and energy measurements were taken from randomly selected eight 

different points but including those three driving points. Then energies of these eight 

points are spatially averaged to present the single energy level of the plate. The plate 

is the same plate which is considered in the previous analyses. 

 

1/3 octave band averaged DLF results are given in Figure 4.4. Approximate high 

frequency threshold of this plate is calculated in terms of MOF as given in Section 

2.2.2. The threshold is found as 630 Hz when MOF equals to 2.5 for plates. 
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a)                              b) 

Figure 4.3 Experimental setup for the determination of damping loss factor 
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Figure 4.4 Damping loss factor of the plate 

 

4.3 Calculation of SEA Parameters of I-, L-,T- Type Structures  
 

Here, experimental and numerical PIM was implemented to I-, L-, T-type 

structures with point connections as schematically given in Figure 4.5 in order to 

obtain SEA parameters.  



 43

    

a)                                        b) 

 

c) 

Figure 4.5 Composite structures a) I-type, b) L-type, c) T-type 

 

Experimental PIM measurement setup is given in Figure 4.6. All structures were 

hanged by flexible strings in order to provide free boundary condition. Power 

injection was then applied to the plates as broadband noise by a vibration exciter, and 

finally mobility responses were measured from these plates. Here, for each plate, 

their two points were excited and twenty points were measured with including 

excitation points.  

 

In numerical PIM analysis, for each plate, again their two points were excited 

however, in this time, two-hundred measurement points are considered to contribute 

to single energy levels for each individual plate by spatial averaging. Computed loss 

factors of the I-, L- and T-type structures are presented in Figures 4.7-4.9, 

respectively. Besides that, analytical CLFs computed by infinite impedances of 

substructures are also given as comparison. DLFs of structures are also compared 

with those of single plate which was studied in the previous section. 
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Figure 4.6 Experimental setup for power injection method,  
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Figure 4.7 Loss factors of I-type composite structure (blue line: experimental, dashed: numerical 

(Tübitak Project Report, 112M836, 2015), grey: single plate (from Figure 4.4), dotted: SEA (Tübitak 

Project Report, 112M836, 2015))  



 45

10 100 1000 5000
10

-4

10
-2

10
0

D
L

F
1

1

10 100 1000 5000
10

-4

10
-2

10
0

C
L

F
1

2
10 100 1000 5000

10
-4

10
-2

10
0

Frequency [Hz]

C
L

F
2

1

10 100 1000 5000
10

-4

10
-2

10
0

Frequency [Hz]

D
L

F
2

2

 
Figure 4.8 Loss factors of L-type composite structure (blue line: experimental, dashed: numerical 

(Tübitak Project Report, 112M836, 2015), grey: single plate (from Figure 4.4), dotted: SEA (Tübitak 

Project Report, 112M836, 2015)) 

 

As seen in Figures 4.7-4.9, DLF results of composite plate in I-, L- ,T-type 

structures are coherent with single plate results in lower frequencies. However, it is 

observed that considerable discrepancies exist by increasing frequency. This is 

probably caused by the indirect coupling of each plates.  

 

As far as CLFs are considered, although relatively small discrepancies exist, 

especially for higher frequencies, very good correlation was obtained.  
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CHAPTER FIVE 
UNCERTAINTY ANALYSES OF COMPOSITE STRUCTURES 

 

In this chapter, uncertainty analyses were made for several structures from simple to 

complicated ones. Table 5.1 shows a brief representation of the analyses performed 

in the study. The details of measurement setup are given in Appendix C. It is noted 

that the numerical analyses results were taken from (Tübitak Project Report, 

112M836, 2015) and used for comparison here in this chapter. 

 

5.1 Uncertainty Analysis of A Single Composite Plate 
 

In this part of the study, numerical and experimental uncertainty analyses were 

performed. The effect of the uncertainty on the natural frequency and vibration 

response are examined. For the effect of uncertainty on the natural frequencies, 

numerical Monte Carlo simulation was performed for thickness uncertainty. 

 

The change in the mass of the plate was chosen as an uncertainty parameter in 

numerical and experimental analyses. It is altered by random normal (Gaussian) 

distribution with 5% of standard deviation. During analyses plate was excited from 

its three different points as shown in Figure 5.1. 

 

 
Figure 5.1 Driving points of the plate
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5.1.1 Effect of Uncertainty on Natural Frequencies  
 

Here, numerical analyses were implemented for random distribution of the plate 

thickness with 5% standard deviation to represent the mass variability. 100 samples 

of plate thicknesses are given in Figure 5.2. Numerical Monte Carlo simulation of 

natural frequencies at first 150 modes was obtained. The results are presented in 

Figure 5.3.   
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Figure 5.2 Thickness samples of the plate (Tübitak Project Report, 112M836, 2015) 
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Figure 5.3 Uncertainty effect on natural frequencies (Tübitak Project Report, 112M836, 2015) 

 

The results clearly show that the uncertainty effects on natural frequencies 

considerably increases at higher modes. This states that for reliable analyses 

uncertainty effect should be taken into consideration, especially for mid and high 

frequency analyses.  

 

5.1.2 Effect of Uncertainty on Frequency Response Function  
 

Experimental Monte Carlo simulations were performed here in this part of the 

study for the effect of uncertainty on the frequency response function. Plate mass 

variability was selected as uncertainty parameter; however, in this case, several small 

masses are used to simulate the mass variability for simplicity. In this regard, as 

shown in Figure 5.4, 20 small masses (not exceeding 5% of the total mass of the 

plate) were attached on the plate.  

 

The composite plate was hanged by flexible strings to provide free boundary 

condition and excited from its three different points as shown in Figure 5.5 and 5.4, 

respectively. Here it is also small mass distribution and measurement points were 

altered randomly in each measurement. In total, sixty measurements (twenty points 

corresponding to three different excitation points) were performed.  
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Figure 5.4 Schematic representation of driving points and locations of added masses (o: driving 

points, ∆: randomly located measurement points) 

 

 

 
Figure 5.5 Experimental setup of uncertainty analysis 

 

Driving point mobilities and transfer mobilities of 60 experiments are shown in 

Figure 5.6. and 5.7, respectively.  
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Figure 5.6 Experimental driving points mobilities of the plate (grey: uncertain result of 60; dashed 

dot: mean experimental result of driving points; dashed line: infinite system mobility (Tübitak Project 

Report, 112M836, 2015)) 
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Figure 5.7 Experimental transfer mobilities of the plate (grey: uncertain result of 60; dashed dot: mean 

experimental result of transfer points) 

 

Figure 5.6 also indicates analytical (infinite) mobility of the orthotropic plate.  It 

is noted that analytical expression that given in Chapter 2.2.1.3 about infinite system 

mobility is valid only for high frequency region because of its theoretical limitations. 
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The harmony of measurements with the analytical results shows that experiments 

were accurately made and reliably used in further analyses.  

 

5.2 Uncertainty Analysis of T-type Structure  
 

In this section, mass of T-type structure was selected as uncertainty parameter and 

each plate’s mass was altered as doing not to exceed its 5% mass in order to create 

20 samples. Here the excitation was applied to only plate 1 shown in Figure 4.5c. 

 

Experimental mobilities of the plates with uncertain results were given together 

with numerical mean mobilities in Figure 5.8. Although their simulation parameters 

are different, since uncertainty parameter (mass) is the same for both numerical and 

experimental studies, the results can be comparable. It is seen that experimental 

uncertainty makes small effects in entire spectrum. When comparing with numerical 

mean predictions, only in a limited range there is consistency between results. The 

discrepancy in general can be due to the boundary condition inconsistency, however, 

in higher frequencies, experiments can not be performed successfully due to the fact 

that excitation power is not enough to excite the higher modes of the system due to 

its mass.  

 

In Figure 5.9-5.11, mean values of experimental SEA whose parameters are found 

via PIM, analytical SEA whose parameters are found via infinite system impedances, 

direct measurements and numerical results are shown for plates 1-3 in Figures 5.9-

5.11, respectively.  
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b) 

Figure 5.8 Experimental and numerical uncertainty results of T-Type structure a) subsystem 1 b) 

subsystem 2 c) subsystem 3 (grey: experimental uncertainty results, blue line: mean experimental 

uncertainty results, red line: mean numerical uncertainty results  (Tübitak Project Report, 112M836, 

2015)) 
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c) 

Figure 5.8 Experimental and numerical uncertainty results of T-Type structure a) subsystem 1 b) 

subsystem 2 c) subsystem 3 (grey: experimental uncertainty results, blue line: mean experimental 

uncertainty results, red line: mean numerical uncertainty results (Tübitak Project Report, 112M836, 

2015)) (continued) 
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a) 

Figure 5.9 Response comparison of subsystem 1 in T-type structure  a) 10-1000 Hz, b) 1000-5000 Hz 

(blue line: experimental Monte Carlo mean, dashed: experimental SEA(Tübitak Project Report, 

112M836, 2015), red: FEM-Monte Carlo mean (Tübitak Project Report, 112M836, 2015), dotted: 

analytical SEA (Tübitak Project Report, 112M836, 2015)) 
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b) 

Figure 5.9 Response comparison of subsystem 1 in T-type structure  a) 10-1000 Hz, b) 1000-5000 Hz 

(blue line: experimental Monte Carlo mean, dashed: experimental SEA (Tübitak Project Report, 

112M836, 2015), red: FEM-Monte Carlo mean (Tübitak Project Report, 112M836, 2015), dotted: 

analytical SEA (Tübitak Project Report, 112M836, 2015)) (continued) 
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a) 

Figure 5.10 Response comparison of subsystem 2 in T-type structure  a) 10-1000 Hz, b) 1000-5000 

Hz (blue line: experimental Monte Carlo mean, dashed: experimental SEA (Tübitak Project Report, 

112M836, 2015), red: FEM-Monte Carlo mean (Tübitak Project Report, 112M836, 2015), dotted: 

analytical SEA (Tübitak Project Report, 112M836, 2015)) 
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b) 

Figure 5.10 Response comparison of subsystem 2 in T-type structure  a) 10-1000 Hz, b) 1000-5000 

Hz (blue line: experimental Monte Carlo mean, dashed: experimental SEA (Tübitak Project Report, 

112M836, 2015), red: FEM-Monte Carlo mean (Tübitak Project Report, 112M836, 2015), dotted: 

analytical SEA (Tübitak Project Report, 112M836, 2015)) (continued) 
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a) 

Figure 5.11 Response comparison of subsystem 3 in T-type structure  a) 10-1000 Hz, b) 1000-5000 

Hz (blue line: experimental Monte Carlo mean, dashed: experimental SEA (Tübitak Project Report, 

112M836, 2015), red: FEM-Monte Carlo mean (Tübitak Project Report, 112M836, 2015), dotted: 

analytical SEA (Tübitak Project Report, 112M836, 2015)) 
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b) 

Figure 5.11 Response comparison of subsystem 3 in T-type structure  a) 10-1000 Hz, b) 1000-5000 

Hz  (blue line: experimental Monte Carlo mean, dashed: experimental SEA (Tübitak Project Report, 

112M836, 2015), red: FEM-Monte Carlo mean (Tübitak Project Report, 112M836, 2015), dotted: 

analytical SEA (Tübitak Project Report, 112M836, 2015)) (continued) 

 

As seen in Figures 5.9-5.11 FEM-Monte Carlo responses are diverged from 

experimental results soon after 1000 Hz. As it is noted in the evaluation of Figure 

5.8, this situation can be caused due to the fact that exciter could not sufficiently 

provoke the system after 1000 Hz properly. Besides that, SEA results converges 

FEM-Monte Carlo results at high frequency region as expected. 

 

5.3 Uncertainty Analysis of Stiffened Plate 
 

In this part of the study, a stiffened plate composed of one composite plate and 

two aluminum hollow beams was produced. Mechanical properties of the 

components are given in Table 5.2. Vibration velocity responses of each structure 

were predicted by SEA, FEM-Monte Carlo and experimental Monte Carlo 

simulation.  Here the excitation force is applied as 1N for each method.  
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Table 5.2 Mechanical properties of the plate and beam 

Property Plate Beam 

Density [ 3/kg m ] 1771.21 2700 

Modulus of Elasticity [MPa] 
xE : 21.30 

69000 
yE : 21.10 

Poisson Ratio xy : 0.161 0.33 

External Dimensions [m x m x m] 1 x 1 x 2.2e-3 1 x 50e-3 x 50e-3 

Internal Dimensions [m x m x m] --- 1 x 46e-3 x 46e-3 

Structural Damping ( )  0.0286 0.0168 

 

 
Figure 5.12 Stiffened plate 

 

5.3.1 MOF values and High Frequency Thresholds 
 

High frequency thresholds were approximately determined through Modal 

Overlap Factor (MOF) (Figure 5.13).  

 

Composite plate 

Beams 

0.3 m 0.2 m 
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Figure 5.13 MOF values of structures and high frequency thresholds 

 

As shown in Figure 5.13, high frequency threshold of the plate is 250 Hz at which 

the MOF is 2.5. However, the frequency range of the study could not reach the high 

frequency threshold for the beam. In this context, high frequency threshold was 

defined as 250 Hz for the stiffened plate.  

 

5.3.2 Vibration Velocity Response of Uncertain Stiffened Plate 
 

In experimental setup, stiffening beams were bolted to the plate as shown in 

Figure 5.14. This connection maintains a point connection for the structure. 

Experimental uncertainty simulation was implemented only to the plate during the 

analysis through adding small masses. Additional mass is 5% of the total mass of the 

plate. This additional mass was implemented to the structure by using 30 small 

lumped masses. 

 

During the experiments masses were attached randomly to a hundred predefined 

points. The randomized spatial distribution of the added masses was generated via 

computer in advance. Accordingly, 20 distributions were generated and these 

distributions are presented in Table 5.3. The distribution was repeated for two 
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different excitation points. In each distribution, added masses were attached to the 

same points as indicated as light blue points in Table 5.3.  

 

 
Figure 5.14 Stiffened plate and added mass distribution sample 

 

Table 5.3 Experimental uncertainty distribution 
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b) 

Figure 5.15 Frequency response function of the plate a) 10-500 Hz, b) 500-5000 Hz 
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b) 

Figure 5.16 Frequency response function of the 1st beam a) 10-500 Hz, b) 500-5000 Hz 
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b) 

Figure 5.17 Frequency response function of the 2nd beam a) 10-500 Hz, b) 500-5000 Hz 

 

Here, in Figures 5.15-5.17 experimental results show the similar levels with the 

numerical results, however, for very high frequencies, after 1000Hz, it does not 

accurately predict the response. It can be caused by the insufficient number of 

measurement points. Since 250 Hz is approximately defined as the high frequency 
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threshold. Therefore, going beyond 250Hz, namely 1000Hz can be regarded as 

sufficient for such an analysis. 

 

The discrepancies between experimental and numerical results, although their 

levels are seen as similar in certain areas, may be caused by improper application of 

practical uncertainty via adding small masses. 

 

5.4 Uncertainty Analysis of Structural-Acoustic System: Cabinet 

 

In this part of the study, a chassis was produced by using aluminum beams; these 

beams constitute a frame for the cabinet as shown in Figure 5.18a. Beams were 

bolted to each other thus it maintains point connection. Plates were glued only to the 

beams by epoxy resin (Figure 5.18). This attachment implies linear connection 

between beams and plates. Also the enclosed cabinet includes an acoustic cavity of 

air. This cavity interacts with the structure by the surfaces of the plates; through this 

the cavity is coupled to the structure providing area connection. The dimensions of 

the cabinet are shown in Figure 5.19.  

 

a) 

Figure 5.18 Design of the cabinet a) chassis, b) chassis + plates 
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b) 

Figure 5.18 Design of the cabinet a) chassis, b) chassis + plates (continued) 

 

 
Figure 5.19 Dimensions of the cabinet design 

 

The total length of beams and total area of plates are given in Table 5.4. 
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Table 5.4 Total mass of beam and plate used to construct the cabinet model  

 Total amount of use 
Unit dimension 

mass 
Total mass 

50 x 50 x 2mm 

Aluminum hollow beam 
21 m 1,075 kg/m 22,575 kg 

8 layered composite plate 5,82 m2 3,89 kg/ m2 22,639 kg 

  Total 45,214 kg 

 

5.4.1 Manufacturing of the Cabinet 

 

Here, manufactured cabinet is shown in Figure 5.20a. Inside the cabinet 30x90 

cm2 glass wool was placed to provide cabin sound absorption due to inner materials 

as shown in Figure 5.20b. For the constitution of excitation, a vibration motor with a 

constant frequency of 50 Hz was connected to the structure, as seen in Figure 5.20b. 

 

 

 

a) 

Figure 5.20 Manufactured cabinet model a) cabinet, b) position of vibration motor and damping 

material 
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b) 

Figure 5.20 Manufactured cabinet model a) cabinet, b) position of vibration motor and damping 

material (continued) 

 

Beside this an SEA model for the cabinet was constructed in the project and given 

in Figure 5.21.  
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Figure 5.21 Structural SEA model of the cabinet SEA (Tübitak Project Report, 112M836, 2015) 
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5.4.2 Free Vibration Analysis of the Cabinet 
 

In the supported project, numerical free vibration analysis was performed for four 

different cases; 1-Chassis, 2-Chassis+plate (without cavity), 3-Only acoustical 

cavity, 4-Entire system (Cabinet).  First 30 natural frequencies were obtained and the 

results are tabulated in Table 5.5. 

 

Since structural analyses were performed for free boundary condition, first 6 

frequencies calculated as zero, as expected. The natural frequencies of the chassis + 

plate (Case 2) are obtained as higher than those of cabinet. Therefore it can be said 

that acoustical cavity shift the entire system to lower frequencies because the cavity 

creates a viscous damping effect to the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71

Table 5.5 Natural frequencies of the parts of the structure (Tübitak Project Report, 112M836, 2015) 
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1 0,0000 0,0000 0,0000 0,0000 22 231,298 44,9699 434,1795 33,4913 

2 0,0000 0,0000 125,0444 0,0001 23 242,902 45,5731 443,3845 33,9806 

3 0,0002 0,0000 179,0704 0,0001 24 246,645 46,0864 451,3092 34,4097 

4 0,0003 0,0000 185,7045 0,0002 25 255,153 46,1296 470,2514 36,4234 

5 0,0007 0,0000 218,5245 0,0002 26 262,191 46,8787 478,3228 38,1055 

6 0,0011 0,0003 222,0511 0,0000 27 264,036 49,2242 485,7900 38,5899 

7 65,2624 15,3739 258,1917 9,3388 28 268,112 54,4583 504,7224 39,9650 

8 76,4682 17,1512 272,0195 11,7591 29 270,514 56,6011 511,4808 40,7159 

9 84,7680 17,4088 285,5275 13,2487 30 287,075 57,1375 512,3602 41,0497 

10 86,2334 17,9347 325,3568 14,7012      

11 95,6441 22,0042 326,0144 15,5419 

12 116,8790 25,3502 358,8563 15,7434 

13 120,3191 27,4662 363,6114 17,1652 

14 143,3988 34,1980 371,8395 17,4309 

15 155,0860 34,7005 377,2050 18,7528 

16 167,5094 40,9535 380,2919 22,0379 

17 174,6696 42,7070 404,5984 25,9705 

18 201,4588 44,1960 405,0293 27,1989 

19 209,7874 44,2365 405,8328 28,3557 

20 210,1449 44,5766 418,1030 30,5502 

21 211,0948 44,7539 422,7278 31,0042 
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5.4.3 Frequency Response Function of the Cabinet 
 

Here, a beam on the floor of the cabinet (Subsystem 21) was excited by a 

vibration motor as shown in Figure 5.20b. Frequency response functions were 

obtained due to this excitation. Experimental results were compared with numerical 

and SEA results which are obtained from the project. Excitation characteristic of the 

vibration motor were revealed from the measurement as given in Figure 5.22, and fed 

to the numerical model. Here, excitation force was calculated by the multiplication of 

the acceleration and mass of the beam and connected vibration motor.   
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Figure 5.22 FRF of the excitation implemented to the cabinet a) acceleration, b) force 

 

5.4.4 Uncertainty Analysis of the Cabinet 
 

After the determination of the excitation characteristics, uncertainty 

characteristics of the system were investigated. Mass of the left side plate 

(Subsystem 28) was selected as the uncertainty parameter. Measurements were 

performed for 10 mass distributions. In each distribution, 10 fixed points on the plate 
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and 3 points in acoustical cavity are utilized. Therefore, 100 acceleration, and 30 

sound pressure data are used for average responses. Experimental setup of this 

uncertainty measurement can be seen in Figure 5.23. Results of these analyses are 

presented for acceleration response in Figure 5.24 and for sound pressure level (SPL) 

in Figure 5.25. 

 

 
Figure 5.23 Experimental uncertainty setup of the cabinet 

     

As seen in Figure 5.24 and 5.25 response functions are in harmony. It leads to 

numerical and analytical models are accurately constructed. As the frequency 

increases, numerical and experimental results are getting much closer in this 

considered frequency of interest (0-350 Hz).  This can be because of decreasing the 

effect of boundary conditions in low frequencies.  
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Figure 5.24 Acceleration responses of the uncertain plate (28th subsystem) (grey: uncertainty results, 

blue line: experimental uncertainty mean, black dashed: FEM results (Tübitak Project Report, 

112M836, 2015), red dotted: analytical SEA (Tübitak Project Report, 112M836, 2015)) 

 

50 100 150 200 250 300 350
10

-6

10
-4

10
-2

10
0

10
2

Frequency [Hz]

S
P

L 
[P

a
]

 

 

 
Figure 5.25 Sound pressure levels of the acoustical cavity (grey: uncertainty results, blue line: 

experimental uncertainty mean, black dashed: FEM results (Tübitak Project Report, 112M836, 2015), 

red dotted: analytical SEA (Tübitak Project Report, 112M836, 2015)) 
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Figure 5.24 and 5.25 showed that numerical and experimental predictions very well 

converge. This leads that, application of small masses to simulate uncertainties can 

be reliably used in complex structural acoustic systems.  
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CHAPTER SIX 
CONCLUSION 

 

Increasing application of composite materials and structures in engineering 

industries for their preferred advantages leads a shifting in vibro-acoustic response 

through mid and high frequency region due to their light weight. In order to achieve 

accurate results in these regions with conventional methods require high solution 

time and memory usage, which makes them inefficient. Notwithstanding, some 

statistical energy based methods can predict accurate results solely in high frequency 

region. As a consequence of that situation an unclear region, mid frequency region 

constitutes.   

 

In the study, various types of composite structures made of plates and isotropic 

beams were used. The structures were connected to each other by point and line 

connections via bolts and epoxy based adhesives, respectively.  

 

Analyses started with an experimental modal analysis for the following structures; 

an aluminum hollow beam, a single composite plate, T-Shaped composite plate.  

Experimental results were utilized in the verification of numerical predictions.   

 

Secondly, determination of statistical energy analysis parameters such as coupling 

and damping loss factors of the structures were successfully made via experimental 

power injection method (PIM) for the following structures; an aluminum hollow 

beam, a single composite plate, I-, L- and T-type composite plate structures. These 

factors were used in statistical energy analysis (SEA) method in order to predict mid 

and high frequency responses.  

 

In the final part of the study, experimental uncertainty analysis based on 

numerical and experimental Monte Carlo analysis was considered for the following 

structures; A single composite plate, a T-type structure, a stiffened composite plate 

and  a cabinet structure having acoustic volume.  
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All these studies with verifications in the thesis clearly showed that the 

experimental techniques used in this study can be reliably applied from simple to 

very complex structures. However, for higher frequencies, experimental techniques 

are not as accurate as it is in lower frequencies. Beside this, composite systems can 

be also treated by using these experimental techniques, especially having uncertain 

parameters.  
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APPENDIX A 
MODAL ANALYSIS TEST SETUP 

 

Sensors: 
 
3- Impact Hammer: 
 Model: PCB Piezotronics 086C03 
 Sensitivity: 2.416 mV/N 
 
3- Accelerometer 1: 
 Model: PCB Piezotronics 352C33 
 Sensitivity: 101.6 mV/g 
 
3- Accelerometer 2: 
 Model: PCB Piezotronics 352C33 
 Sensitivity: 103 mV/g 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DAQ system: 
 
1- Analog Input Card: 
 Model: National Instruments 
NI9234  
 Input: 4 channel BNC 
 ADC resolution: 24 bits 
  
2- DAQ Chasis: 
 Model: National Instruments 
NI9174 
 Slots: 4 slots 
 Connection: USB 
 

 

  

 

 

DAQ system 

Accelerometer 
Impact Hammer 

Specimen 

Figure A.1 Modal analysis system setup 
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APPENDIX B 
FREQUENCY RESPONSE ANALYSIS TEST SETUP 

 
Sensors: 
 
1-  Impedance Head: 
 Model: PCB Piezotronics 288D01 
 Sensitivity Force: 22.18 mV/N 
 Sensitivity Acceleration: 98.3 mV/g 
 
2-  Accelerometer 1: 
 Model: PCB Piezotronics 352C33 
 Sensitivity: 101.6 mV/g 
 
3-  Accelerometer 2: 
 Model: PCB Piezotronics 352C33 
 Sensitivity: 103 mV/g 
 
DAQ system: 
 
1- Analog Input Card: 
 Model: National Instruments 
NI9234  
 Input: 4 channel BNC 
 ADC resolution: 24 bits 
  
2- DAQ Chasis: 
 Model: National Instruments 
NI9174 
 Slots: 4 slots 
 Connection: USB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Excitation System:  
 
1- Signal Generator: 
 Model: Agilent 33210A 10MHz 
Function/Arbitrary Waveform 
Generator 
  
2- Power Amplifier: 
 Model: Brüel & Kjær Type 2706 
Power Amplifier 
 
3- Vibration Exciter:  
 Model: Brüel & Kjær Type 4809 
Vibration Exciter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Signal Generator Power 
Amplifier 

Exciter 

DAQ system 

Impedance Head 
Accelerometer 

Specimen 

Figure B.1 Frequency response analysis system setup 
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APPENDIX C 

UNCERTAINTY ANALYSIS SETUP 

 

Sensors: 
 
1- Laser Vibrometer: 
 Model: Polytec PDV 100  
 Sensitivity: 200 mV/mm/s, 40 
mV/mm/s, 8 mV/mm/s 
 
2- Microphone 1: 
 Model: G.R.A.S. 46BD ¼” 
Pressure Microphone 
 Sensitivity: 1.99 mV/Pa 
 
3- Microphone 2: 
 Model: G.R.A.S. 46BD ¼” 
Pressure Microphone 
 Sensitivity: 1.98 mV/Pa 
 
4- Microphone 3: 
 Model: G.R.A.S. 46BD ¼” 
Pressure Microphone 
 Sensitivity: 1.53 mV/Pa 
 
5-  Accelerometer 1: 
 Model: PCB Piezotronics 352C33 
 Sensitivity: 101.6 mV/g 
 
6-  Accelerometer 2: 
 Model: PCB Piezotronics 352C33 
 Sensitivity: 103 mV/g 
 
 
DAQ system: 
 
1- Analog Input Card: 
 Model: National Instruments 
NI9234  
 Input: 4 channel BNC 
 ADC resolution: 24 bits 
  
2- DAQ Chasis: 
 Model: National Instruments 
NI9174 
 Slots: 4 slots 
 Connection: USB 
 
 

Excitation System:  
 
1- Vibration Motor: 
 Model: Kem-P MV – 2M Vibration 
Motor 
 Frequency: 3000 RPM (50 Hz) 
 Dynamic Force: 3.485 N 
 
2- Signal Generator: 
 Model: Agilent 33210A 10MHz 
Function/Arbitrary Waveform 
Generator 
  
3- Power Amplifier: 
 Model: Brüel & Kjær Type 2706 
Power Amplifier 
 
4- Vibration Exciter:  
 Model: Brüel & Kjær Type 4809 
Vibration Exciter 
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DAQ system 

Specimen 
Vibration Motor 
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Figure C.1 Uncertainty analysis with vibration motor system setup  

Figure C.2 Uncertainty analysis with vibration exciter system setup  




