

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OBJECT DETECTION AND MAPPING USING

LIDAR FOR A MOBILE ROBOT

by

Başak YILDIZ

August, 2016

İZMİR

OBJECT DETECTION AND MAPPING USING

LIDAR FOR A MOBILE ROBOT

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Mechatronics Engineering Program

by

Başak YILDIZ

August, 2016

İZMİR

iii

ACKNOWLEDGEMENTS

I would like to thank to my thesis consultant Assist. Prof. Dr. Aytaç GÖREN

helping me in completing my Master Thesis with his guidance during the

development of this study. I would also like to thank to my family for standing by me

throughout my life.

Başak YILDIZ

iv

OBJECT DETECTION AND MAPPING USING LIDAR FOR A MOBILE

ROBOT

ABSTRACT

Autonomous mobile robots should effectively complete tasks and be able to adapt

to changing environmental conditions. In addition, mobile robots are required to

explore their environment without colliding with any objects and obstacles. For

meeting the needs of mobile robots, first step is creating a comprehensive map to

model the environment. Then the objects in the environment should be detected in

the created map. This study focuses on these two steps that are the essential parts of

the automation process for mobile robots. The aims of this research are getting

reliable data from LIDAR sensor, LIDAR based map building and object detection in

indoor environments.

Keywords: Mapping, LIDAR, object detection

v

MOBİL ROBOT İÇİN LİDAR KULLANARAK NESNE ALGILAMA VE

HARİTALAMA

ÖZ

Otonom mobil robotlar verimli bir şekilde görevlerini tamamlamalı ve değişen

çevre koşullarına uyum sağlayabilmelidir. Ayrıca çevrelerini nesnelere ve engellere

çarpmadan keşfetmelidir. Mobil robotların ihtiyaçlarını karşılamak için ilk adım

ortamın detaylı bir haritasını çıkarmaktır. Sonrasında ortamdaki nesneleri ve

engelleri algılayıp haritada göstermektir. Bu çalışma, mobil robotların otonom olarak

çalışması için gereken bu temel iki adıma odaklanmıştır. Bu çalışmanın amaçları

LIDAR sensöründen güvenilir veri alınması, iç ortamlarda LIDARa dayalı

haritalama ve nesne algılama yapılmasıdır.

Anahtar kelimeler: Haritalama, LIDAR, nesne algılama

vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. ix

LIST OF TABLES ... xii

CHAPTER ONE - INTRODUCTION ... 1

CHAPTER TWO - METHODOLOGY ... 2

2.1 Lidar Technology .. 2

2.1.1 Lidar Types According to the Operating Principles 2

2.1.2 Applications of LIDAR ... 4

 2.1.2.1 Airborne Laser Scanning ... 4

 2.1.2.2 Terrestrial Laser Scanning ... 5

2.1.3 LIDAR Applications for Mobile Robots ... 6

2.2 Mapping ... 7

2.2.1 Robotic Mapping ... 7

2.2.2 Map Represantation ... 8

 2.2.2.1 Metric Map .. 8

 2.2.2 Topographical Map ... 10

2.3 Filtering (Estimation) Theory .. 11

2.3.1 Kalman Filter ... 11

 2.3.1.1 Extended Kalman Filter ... 14

 2.3.1.2 Unscented Kalman Filter ... 15

2.3.2 Particle Filter ... 16

 2.3.2.1 Rao-Blackwellized Particle Filter .. 19

2.4 Object Detection .. 21

2.4.1 Costmap ... 22

vii

2.5 Robot Operating System (ROS) .. 22

CHAPTER THREE - EXPERIMENTAL SETUP ... 25

CHAPTER FOUR - EXPERIMENTAL WORK .. 33

4.1 Getting Reliable LIDAR Data ... 33

4.2 Mapping and Experimental Work in ROS Environment 42

4.2.1 Required Fundamental Knowledge for Creating System in ROS 42

 4.2.1.1 Coordinate Frames for Mobile Platforms ... 42

4.2.1.2 Relations between Frames .. 43

 4.2.1.3 The Transformation Library (tf) and tf Transforms 44

4.2.2 Mapping via Hector SLAM Algorithm ... 44

4.2.2.1 Theory of Hector SLAM Algorithm ... 45

 4.2.2.2 Implementation of Hector SLAM and Experimental Work 48

4.2.2.3 Mapping Results with Hector SLAM ... 50

4.2.3 Mapping via Gmapping Algorithm ... 54

4.2.3.1 Theory of Gmapping Algorithm ... 54

 4.2.3.2 Implementation of Gmapping and Experimental Work 60

 4.2.3.3 Mapping Results with Gmapping .. 63

4.2.4 Comparison of Gmapping and Hector SLAM for Mapping 66

4.3 Object Detection & Costmaps ... 66

4.3.1 Theory of Costmap .. 67

4.3.2 Implementation of Costmap_2d and Experimental Work 71

CHAPTER FIVE - CONCLUSION ... 82

REFERENCES ... 83

APPENDICES .. 88

APPENDIX-1: Technical Specifications of LMS ... 88

APPENDIX-2: Hector_mapping_default.launch File ... 93

viii

APPENDIX-3: Gmapping_params.yaml File ... 95

ix

LIST OF FIGURES

Page

Figure 2.1 Principles of operating for purpose propagation time measurement 3

Figure 2.2 Airborne laser scanner system .. 4

Figure 2.3 Terrastrial laser scanning (TLS) ... 5

Figure 2.4 Represantation of occupancy grid map... 9

Figure 2.5 Distinction between metric map and topographical map 10

Figure 2.6 Operation of Kalman filter.. 14

Figure 2.7 The operation of the extended Kalman filter .. 15

Figure 2.8 The operation of the unscented Kalman filter .. 16

Figure 2.9 Concept of ROS .. 23

Figure 3.1 Technical drawing of mobile robot... 25

Figure 3.2 Top view of the mobile robot ... 25

Figure 3.3 Technical drawing of modified mobile robot ... 26

Figure 3.4 Experimental mobile robot ... 27

Figure 3.5 LMS100 from LMS1xx family ... 27

Figure 3.6 Scanning range of LMS100 .. 28

Figure 3.7 Maximum instant area for map building with LMS100 29

Figure 3.8 Configuration of LIDAR .. 29

Figure 3.9 VirtualBox as a virtual machine ... 30

Figure 3.10 The area of the study, Automatic Control Laboratory of Mechanical

Engineering Department, DEU ... 31

Figure 3.11 The area of the study, main corridor ... 31

Figure 3.12 The layout of the study area ... 32

Figure 4.1 Overview of the process for autonomous mobile robots 33

Figure 4.2 Monitoring laser data from LMS100 LIDAR ... 34

Figure 4.3 Real area and the observed area.. 34

Figure 4.4 Coordinate system transformation .. 35

Figure 4.5 Basic map of the corridor from one data set ... 36

Figure 4.6 Calculating RMSE .. 38

Figure 4.7 Root mean square errors (RMSE) of LIDAR ... 38

x

Figure 4.8 Root mean square errors (RMSE) of LIDAR with own mean filter......... 39

Figure 4.9 Control scheme of mobile robot ... 40

Figure 4.10 Calculating system resolution with DC motor 40

Figure 4.11 Scenario for calculating errors .. 41

Figure 4.12 Overview of mapping system with hector_slam 47

Figure 4.13 Original frame scheme of hector_slam ... 48

Figure 4.14 Modified frame scheme of hector_slam for our study 49

Figure 4.15 Graph of our hector_slam implementation ... 50

Figure 4.16 Built map of laboratory corridor ... 51

Figure 4.17 Measurements in the built map ... 52

Figure 4.18 Escape of laser beams while mapping of laboratory corridor 52

Figure 4.19 Built map of laboratory corridor and the main corridor 53

Figure 4.20 Built map of DEU Automatic Control Laboratory and its corridor........ 54

Figure 4.21 Graph of our gmapping implementation .. 63

Figure 4.22 Early stage of map building process ... 63

Figure 4.23 Built map of laboratory corridor ... 64

Figure 4.24 Built map of the Automatic Control Laboratory 65

Figure 4.25 Built map of the Automatic Control Laboratory and its corridor 65

Figure 4.26 Comparison of gmapping and hector slam ... 66

Figure 4.27 Representing mobile robot in an environment with obstacles 67

Figure 4.28 Cell types .. 69

Figure 4.29 Update algorithm Costmap layers .. 70

Figure 4.30 Mobile robot and obstacle interaction .. 71

Figure 4.31 Graph of our costmap implementation ... 74

Figure 4.32 tf tree of our implementation .. 74

Figure 4.33 Static layer .. 75

Figure 4.34 Obstacle layer ... 75

Figure 4.35 Inflation layer also it can be called master layer 76

Figure 4.36 Costmap while robot is exploring between tables in the laboratory 77

Figure 4.37 Dynamic objects and clearing function of costmap 78

Figure 4.38 Costmap of Automatic Control Laboratory .. 78

Figure 4.39 Mobile robot while passing the doorway.. 79

xi

Figure 4.40 Costmap while mobile robot is passing the doorway 79

Figure 4.41 Minimum detectable object .. 80

Figure 4.42 Minimum detectable object in costmap .. 81

xii

LIST OF TABLES

Page

Table 3.1 Measures of the mobile robot... 26

Table 3.2 Functional specifications of LMS100 .. 28

Table 4.1 Errors of the mobile robot .. 41

Table 4.2 Distance traveled errors in the scenario ... 41

1

CHAPTER ONE

INTRODUCTION

Nowadays with the help of the technological developments and accumulating

knowledge, mobile robots are widely used in numerous fields. Especially demand for

autonomous mobile robots is increasing. In order to achieve autonomous operation of

a mobile robot, in indoor and outdoor environments, some real-time systems must

integrate with each other. These systems are environment perception, localization,

planning, and control. In addition, a robust mobile robot platform with convenient

sensors, computational hardware, networking, and software base is important.

Autonomous mobile robots should effectively complete tasks and be able to adapt

to changing environmental conditions. In addition, mobile robots are required to

explore their environment without colliding with any objects and obstacles. For

meeting the needs of robot, first step is creating a comprehensive map to model the

environment. Then the objects in the environment should be detected in the created

map. This study focus on these two steps that are the essential parts of the further

automation process for mobile robots.

In this study, LIDAR based mapping and object detection are aimed. LIDAR

transmits signals to target objects as a series of laser pulses. The range is estimated

when any solid object reflects back the emitted beam. Environment is represented

with Occupancy gridmap, an approach which uses a probabilistic tessellated

representation method. The occupancy grids maintain probabilistic estimates of the

occupancy state of the cells on a world frame. For building a sensor derived map of

the environment, the cell state estimates are obtained by interpreting the incoming

range readings using probabilistic sensor models. After representing the environment

with a map, object in environment is detected in an occupancy map which is called

costmap. At the end of the study, the state of achievements is observed and

interpreted.

2

CHAPTER TWO

METHODOLOGY

2.1 LIDAR Technology

LIDAR is an acronym for Light Detection and Ranging. It is basically a system

for measuring range with laser. LIDAR is one of the remote sensing technologies.

According to Siegwart and Nourbakhsh (2004), a LIDAR “consists of a

transmitter which illuminates a target with a collimated beam (e.g., laser), and a

receiver capable of detecting the component of light which is essentially coaxial with

the transmitted beam” (p. 108). LIDARs generate a range estimate based on the time

required for the light beam to reach the object and turn back. A mechanism consists

of a mirror that sweeps the light beam to cover the required scene in a plane or even

in three dimensions, using a rotating, nodding mirror (Siegwart & Nourbakhsh,

2004).

2.1.1 LIDAR Types According to the Operating Principles

LIDARs can be categorized into two types for operating principles.

Continuous wave (CW) LIDAR, transmits a continuous signal and ranging is

carried out by modulating the intensity of the laser light. Travel time is directly

proportional to the phase difference between the received and transmitted sinusoidal

signal. CW LIDARs are generally used in wind measurement.

Pulse LIDAR which can be called flash laser, is most commonly used for ranging

applications. It transmits signal consist of a series of laser pulses. The range is

estimated base on the time taken by the transmitted pulse to the target and back.

(Marcoe, 2007; Nayegandhi, 2007). Principle of operation for purpose propagation

time measurement is shown in Figure 2.1.

3

Figure 2.1 Principle of operation for purpose propagation time measurement

Range and range resolution formulas are given in the following equations for

pulse laser and CW laser.

Pulse laser:

𝑅 = 𝑐
𝑡

2
 ; ∆𝑅 = 𝑐

∆𝑡

2
 (2.1)

Where R is the range distance between sensor and object; ∆𝑅 is the range

resolution, c is the speed of light (approximately 3.00×108 m/s), t is the time interval

between sending and receiving a pulse (ns), ∆𝑡 is the time resolution of time

measurement (ns).

CW laser:

𝑅 =
1

4𝜋

𝑐

𝑓
𝜑 ;𝛥𝑅 =

1

4𝜋

𝑐

𝑓
∆𝜑 (2.2)

Where f is frequency (Hz); 𝜑 is the phase (rad); and ∆𝜑 is the phase resolution

(rad) (Baltsavias, 1999).

4

2.1.2 Applications of LIDAR

There are various applications of LIDAR systems. It can be divided into two

which are terrestrial and airborne.

2.1.2.1 Airborne Laser Scanning

Airborne laser scanning (ALS) was first demonstrated in 1993 and was

introduced to the mapping industry in Australia in 1998. ALS is a system when a

laser scanner attached to a plane during flight. It creates a 3D point cloud model of

the landscape. Beside the main part of system which is LIDAR, this system has two

more components. GPS is required for determining the position of aircraft. Inertial

navigation or measuring system (INS/IMU) is required for monitoring the altitude of

aircraft (Crowe & Riley, 2006).

An example of ALS is shown in Figure 2.2.

Figure 2.2 Airborne laser scanning system (Kao, Kramer, Luo, Dungan & Pang, 2005)

5

2.1.2.2 Terrestrial Laser Scanning

It is a ground based system. Locating laser scanner on the ground provides some

specific advantages for apprehending discrete objects from various angles.

Terrestrial laser scanning is most useful for capturing small (relative to those

captured from an aircraft) irregular objects such as buildings, earthworks and

landforms such as cliff faces (Crowe & Riley, 2006).

These systems can be mobile or stationary. An example of stationary terrestrial

laser scanning is shown in Figure 2.3.

Figure 2.3 Terrestrial Laser Scanning (TLS) (Kandrot, 2013)

 Terrestrial laser scanning applications are various. In a study about assessing

forest metrics, the bottom and top points of trees are trees are extracted by ground-

based scanning LIDAR. With help of these points, measures of tree location, tree

height and stem density can be more comparable than traditional techniques

(Hopkinson, Chasmer, Young-Pow & Treitz, 2004).

6

2.1.3 LIDAR Applications for Mobile Robots

Nowadays, LIDAR technology is widely used in autonomous systems. Mobile

robots equipped with LIDARs can obtain to perform automatic acquisition and 3-D

reconstruction of terrain, buildings, large infrastructures or using this information to

safely navigate through unknown environments.

LIDAR sensors are used for mapping and localization when GPS signals are weak

or don’t exist in the urban areas.

BigDog is a well-known rough-terrain quadruped robot which developed by

Boston Dynamics. LIDAR is integrated onto BigDog. The LIDAR is being used to

allow BigDog to follow a human leader, without requiring the operator to drive

continuously (Raibert, Blankespoor, Nelson, Playter & BigDog Team, 2008).

In another study which is about plant detection and mapping for agricultural

robots, indicates that 3D LIDAR sensors are more accurate than the other sensors for

working under variable weather conditions (Weiss & Biber, 2011).

LIDARs are commonly used in autonomous vehicle competitions such as

DARPA. The third driverless car competition of the DARPA Grand Challenge was

commonly known as the DARPA Urban Challenge. Tartan racing team’s vehicle,

Boss was named as a winner of this challenge. In Boss, LIDARs are mounted on the

roof of the robot to evaluate the terrain around the vehicle. The following roles is

filled by LIDARs; determining safe to cross/merge at intersection, determining safe

to pass in oncoming traffic, detection & localize vehicles for separation, estimating

road shape and lane locations, detection of static obstacles in the road (Urmson et al.,

2007).

7

2.2 Mapping

The term of mapping in general is the process of making a map which represents

the significant features of a piece of the surface of the Earth.

2.2.1 Robotic Mapping

Robotic mapping is a disciple which deals with the study and application of

creating map or floor plan by the robot and to localize itself in it.

Robot has two sources of information; idiothetic and allothetic information.

Idiothetic information source which corresponds odometry in robotics, supplies

internal information about the movements of robot. It may concern wheel rotation for

robots. In dead reckoning approach, by tracking the number of revolutions of its

wheels, data can be gathered and robot’s position can be known. Allothetic

information source which corresponds perception and sensor data, supplies external

information about the environment. The information may be derived from laser

sensors, sonar or vision for robots (Filliat & Meyer, 2003).

In mobile robots, various sensors can define the surroundings. Ultrasonic sensors,

LIDARs, radars and vision sensors like cameras are the common types. Most sensors

have range limitations. For instance, sound and light are not able to go through walls.

These range limitations make it necessary for a robot to navigate in its environment

when creating a map (Thrun, 2002).

Accuracy of map depends on accuracy of sensor data. Sensors have errors which

can be called as measurement noise. Especially in multi-sensor systems measurement

noise escalates by multiple sensors.

A crucial challenge in robotic mapping appears from the nature of the

measurement noise. Problems caused by measurement noise are generally easy to

solve if the noise in various measurements is statistically independent. In that case,

8

for eliminating the effects of the noise, a robot could take more measurements.

Unfortunately, the measurement noises are statistically dependent in robotic

mapping. This is due to errors in control accumulate over time so they affect the way

forthcoming sensor measurements are interpreted. Dealing with such systematic

errors is key to building maps successfully (Thrun, 2002).

Sensors can be used individually or combined with each other for more robust

systems. Mapping via camera is a high level application. Cameras provide data with

color and high resolution. Because of these characteristics, modeling surroundings is

superior then the lower resolution LIDAR. On the other hand, mapping via camera is

related with image processing algorithms and they are required high processing

performance.

All state-of-the-art algorithms for robotic mapping in the literature have one

common feature: They are probabilistic.

2.2.2 Map Representations

The internal representation of the map can be topological or metric.

2.2.2.1 Metric Map

The environment is represented as a group of objects with coordinates in a two-

dimensional space in the metric framework. Metric maps display the layout of the

environment in a way similar to an architectural sketch, which is less demanding to

comprehend for people. This objective view of the environment, which is rather

independent of any given robot, likewise makes it easy for various robots to reuse

such maps. Metric maps are easier to create than topological maps as a result of the

unquestionable definition of locations managed by their coordinates (Filliat &

Meyer, 2003; Thrun, 1999).

9

In the map, rather than utilizing a group of features to represent objects, it is likely

to represent the part of the environment which is approachable to the robot. This

method can be called Occupancy grid map. In that method, the metric map represents

the environment with fixed resolution grids. Information of the observed

environment is hold by these grids. Each grid cell represents some amount of space

in the real world. For building map, objects and obstacles are detected by sensors and

the collected sensor data are used to determine the occupancy value of each grid. An

example of occupancy map is shown in Figure 2.4 (Filliat & Meyer, 2003; Habib,

2007).

Figure 2.4 Representation of occupancy grid map (Filliat & Meyer, 2003)

Metric maps are uncomplicated to build since grids recreate explicitly the metrical

structure of the environment. In addition, the grid cells geometry corresponds

directly to the real environment, so that the robot orientation and position within its

model can be determined by its orientation and position in the real world. Metric

maps have the advantage of its high resolution and of being well suited for robot

navigation tasks.

There are some disadvantages of using solely metric maps such as being exposed

to errors in both map-making and dead-reckoning abilities of the robot. In large scale

environments, odometry drifts cause problems for map maintenance. It makes the

global stability of the map hard to sustain. Metric maps are containing no

information about the various types of objects or places in the environment (Habib,

2007).

10

Illustration of distinction between metric map and topographical map is shown in

Figure 2.5.

Figure 2.5 Distinction between metric map and topographical map (Filliat & Meyer, 2003)

2.2.2.2 Topographical Map

In the topographical framework, the environment represented by a group of

peculiar places and relations between them. Topographical maps define the

connectivity of various places and it can be automatically extracted while creating

metric maps. These maps can also be enhanced by geometrical relations between

places to support tasks such as planning and navigation.

Advantages of topographical maps are that they are less sensitive to measurement

noises, less complex and enable more efficient planning than metric maps.

Nonetheless, they are incompetence to describe individual objects in the

environment. Moreover, topographical maps are usually difficult to learn and

maintain in large scale environments (Habib, 2007).

11

2.3 Filtering (Estimation) Theory

Filtering theory which is also known as estimation theory, has gained a lot of

attention as a result of its practical importance in solving problems in scientific and

engineering fields. Due to the combined research attempts of many scientists, various

algorithms have been developed. These algorithms can be divided into two main

categories which are linear and nonlinear filtering algorithms, corresponding to linear

or linearized dynamic models with Gaussian noise and to nonlinear or non-Gaussian

models.

Recursive Bayesian estimation which can be called as a Bayes filter, is a

stochastic method for estimating unknown density of a continuous random variable

or probability density function (PDF) recursively over time using arriving

measurements and a mathematical model.

State estimation problems can be dealt with the Bayesian filters. In state

estimation problems, the available measurement data is used along with prior

knowledge about the physical phenomena and the measuring devices, in order to

consecutively generate estimates of the demanded dynamic variables. This is

succeeded in such approach that the error is statistically minimized.

Kalman filter and particle filter are the two well-known Bayes estimation

applications.

2.3.1 Kalman Filter

The Kalman filter is a group of mathematical equations that supplies an efficient

computational means to estimate the state of a process, in a way that minimizes the

mean of the squared error. The Kalman filter is very effective in several perspectives.

The filter provides estimations of present, past, and even future states. It can do so

even when the precise character of the system model is unknown (Welch & Bishop,

1995).

12

Kalman filters focus on the general problem of trying to estimate the state 𝑥 ∈ 𝑅𝑛

of a discrete time controlled process that is administrated by linear probabilistic

difference equation with a measurement 𝑧 ∈ 𝑅𝑚.

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘
(2.3)

The random variables and represent the process and measurement noise. They are

assumed to be independent of each other and with normal probability distributions

𝑝(𝑤)~𝑁(0, 𝑄), 𝑝(𝑣)~𝑁(0, 𝑅). (2.4)

In practice, the process noise covariance and measurement noise covariance

matrices might change with each time step or measurement, however here it is

assumed that they are constant.

It is defined to be a priori state estimate at step k given knowledge of the process

prior to step k, and to be a posteriori state estimate at step k given measurement. A

priori and a posteriori estimate errors can be defined as

𝑒𝑘
− ≡ 𝑥𝑘 − 𝑥̂𝑘

−, 𝑎𝑛𝑑

𝑒𝑘 ≡ 𝑥𝑘 − 𝑥̂𝑘.
(2.5)

a priori estimate error covariance is then,

𝑃𝑘
− = 𝐸[𝑒𝑘

−𝑒𝑘
−𝑇] (2.6)

and a posteriori estimate error covariance is

𝑃𝑘 = 𝐸[𝑒𝑘𝑒𝑘
𝑇] (2.7)

13

In deriving the equations for the Kalman filter, it is begun with the goal of finding

an equation that computes an a posteriori state estimate as a linear combination of an

a priori estimate and a weighted difference between an actual measurement and a

measurement prediction as shown in Eq. (2.8). Some justification for Eq. (2.8) is

given in “The Probabilistic Origins of the Filter” found below.

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾(𝑧𝑘 − 𝐻𝑥̂𝑘

−) (2.8)

The difference (𝑧𝑘 − 𝐻𝑥̂𝑘
−) in Eq. (2.8) is called the measurement innovation, or

the residual. The residual reflects the discrepancy between 𝐻𝑥̂𝑘
− the predicted

measurement and the actual measurement 𝑧𝑘. A residual of zero means that the two

are in complete agreement.

The n x m matrix K in Eq. (2.8) is chosen to be the gain or blending factor that

minimizes the a posteriori error covariance Eq. (2.7). This minimization can be

accomplished by first substituting Eq. (2.8) into the above definition for 𝑒𝑘,

substituting that into Eq. (2.7), performing the indicated expectations, taking the

derivative of the trace of the result with respect to K, setting that result equal to zero,

and then solving for K. One form of the resulting K that minimizes Eq. (2.7) is given

by

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 =
𝑃𝑘
−𝐻𝑇

𝐻𝑃𝑘
−𝐻𝑇 + 𝑅

 (2.9)

In Figure 2.6, a complete picture of the operation of the Kalman filter is shown.

Notice how the time update equations in Figure 2.6 project the state and covariance

estimates forward from time step k-1 to step k. A and B are from Eq. (2.3), while Q is

from Eq. (2.4). The first task during the measurement update is to compute the

Kalman gain, 𝐾𝑘. It is from Eq. (2.9). The next step is to actually measure the

process to obtain 𝑧𝑘, and then to generate an a posteriori state estimate by

incorporating the measurement as simply Eq. (2.8) repeated here for completeness.

The final step is to obtain an a posteriori error covariance estimate via

𝑃𝑘 = (1 − 𝐾𝑘𝐻)𝑃𝑘
− (Welch & Bishop, 1995).

14

Figure 2.6 Operation of Kalman filter (Welch & Bishop, 1995)

The Kalman Filter widely used in linear systems with Gaussian noise. The first

application that publicly known was done at NASA Ames Research Center during

Apollo program in early1960s (McGee and Schmidt, 1985; Schmidt, 1981).

The fields in which the Kalman filter is widely used include not only aerospace

engineering but also robotics, economics, mechanical engineering, electrical

engineering, chemical engineering, biology and many others.

The applications of the Kalman filter are limited to linear models with Gaussian

noises. The Kalman filter extensions were developed for less limiting cases by using

linearization methods.

2.3.1.1 Extended Kalman Filter (EKF)

Extended Kalman filter can be referred as nonlinear Kalman filter. When the

process to be estimated or the measurement relationship to the process is non-linear,

Kalman filter cannot deal with it. For these non-linear problems, another approach is

required. According to Welch and Bishop, “A Kalman filter that linearizes about the

15

current mean and covariance is referred to as an extended Kalman filter or EKF”

(Welch & Bishop, 1995, p. 7).

The extended Kalman filter process is shown in Figure 2.7.

Figure 2.7 The operation of the extended Kalman filter (Welch & Bishop, 1995)

2.3.1.2 Unscented Kalman Filter (UKF)

Kalman Filter with the Unscented transformation can be called as Unscented

Kalman Filter.

Unscented Kalman Filter was introduced in 1997 by Julier and Uhlmann. They

indicated that “Using the principle that a set of discretely sampled points can be used

to parameterise mean and covariance, the estimator yields performance equivalent to

the KF for linear systems yet generalises elegantly to nonlinear systems without the

linearisation steps” which is required by the Extended Kalman filter (Julier &

Uhlmann, 1997, p. 182).

The process of unscented Kalman filter is shown in Figure 2.8 which is composed

of two main parts, similar to the Kalman Filter. Time update is the first part of this

process, in where the initial state estimate is computed via selecting sigma points,

16

solving for its mean and covariance. Also, the observation is propagated in this step

and its mean and covariance are also calculated. The measurement update is the

second part of this process. The Kalman gain and cross-covariance of the propagated

state and the propagated observation are calculated. They used to update the state and

states covariance. Difference from Kalman Filter is that the initial state estimate is

obtained from the sigma (particle) propagation (Causeo et al., 2010).

Figure 2.8 The operation of the unscented Kalman filter (Causeo et al., 2010)

If the system nonlinearities are severe the extended Kalman filter can be difficult

to tune and often gives unreliable estimates. So, in those applications, unscented

Kalman filter can be preferred (Simon, 2006).

Despite the fact the unscented Kalman filter is a relatively recent development, it

is quickly finding applications in areas such as aircraft model estimation, neural

network training, financial forecasting and motor state estimation.

2.3.2 Particle Filter

Particle filters are also known as Sequential Monte Carlo (SMC) methods. Particle

filter was introduced as a numerical approximation for the nonlinear Bayesian

filtering problem.

17

According to Salmond and Gordon, “the particle filter is not another variant of the

EKF: it does not stem from linear-Gaussian or least-squares theory” (Salmond &

Gordon, 2005, p.22).

Main concept of particle filter is finding an approximate solution using a complex

model instead of an exact solution using a simplified model.

Particle filter is an implementation of the recursive Bayesian filter using

sequential Monte Carlo approach. Instead of portraying the required probability

density function as a functional form, in this approach it is represented approximately

as a group of random samples of the probability density function. These random

samples are the particles of the filter which are propagated and updated in

accordance with the dynamics and measurement models. In contrast to the Kalman

filter, this method is not limited by linear Gaussian assumptions. So, various

extending the range of problems can be succeeded. The basic form of the particle

filter is very simple. Computationally tractable for large or high dimensional

problems. However, it can be computationally expensive (Salmond & Gordon,

2005).

The particle filter can be summarized as follows. The system and measurement

equations are given as:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑤𝑘)

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘)
(2.10)

where {𝑤𝑘} and {𝑣𝑘} are independent white noise processes with known pdf’s.

Assuming that the pdf 𝑝(𝑥0) of the initial state 𝑝(𝑧0) is known, randomly

generate N initial particles on the basis of the pdf 𝑝(𝑧0). These particles are denoted

𝑥0,𝑖
+ (𝑖 = 1,… ,𝑁). The parameter N is chosen by the user as a trade-off between

computational effort and estimation accuracy.

18

For k = 1,2, . . ., the following is done.

(a) Performing the time propagation step to obtain a priori particles 𝑥𝑘,1
− using the

known process equation and the known pdf of the process noise:

𝑥𝑘,1
− = 𝑓𝑘−1(𝑥𝑘−1

+ , 𝑤𝑘,1
+)(𝑖 = 1,… ,𝑁) (2.11)

(b) Computing the relative likelihood 𝑞𝑖 of each particle 𝑥𝑘,1
− conditioned on the

measurement 𝑦𝑘. This is done by evaluating the pdf 𝑝(𝑦𝑘|𝑥𝑘,1
−) on the basis of the

nonlinear measurement equation and the pdf of the measurement noise.

(c) Scaling the relative likelihoods obtained in the previous step as follows:

𝑞
𝑖
=

𝑞
𝑖

∑ 𝑞
𝑗

𝑁
𝑗

 (2.12)

Now the sum of all the likelihoods is equal to one.

(d) Generating a set of a posteriori particles 𝑥𝑘,1
− on the basis of the relative

likelihoods 𝑞𝑖. This is called the resampling step.

(e) Now that we have a set of particles 𝑥𝑘,1
− that are distributed according to the

pdf 𝑝(𝑥𝑘|𝑦𝑘), any desired statistical measure of this pdf can be computed. We

typically are most interested in computing the mean and the covariance.

Particle filters are used in various fields especially wherever there is a necessity to

estimate the state of a probabilistic evolving system using ambiguous and noisy

measurement data. These fields can be mentioned as robotics, computer vision,

econometrics, numerical weather prediction etc.

In robotics, some of the applications can be mentioned as robot fault diagnosis,

robot localization, SLAM, tracking with non-standard sensors, tracking and

19

navigation with a bounded support, multiple object tracking and association

uncertainty.

In localization, particle filters are also known as Monte Carlo Localization

(MCL). This method represents the probability density involved by maintaining a

group of samples which are randomly drawn from it. Localization approach which

can represent arbitrary distributions is obtained via a sampling-based representation.

The resulting method is capable to competently localize mobile robots without

knowing of their starting location. In comparison with prior approaches such as

Markov localization, this method is more accurate, less memory-intensive and easier

to implement due to sampling based representation (Dellaert, Fox, Burgard, & Thrun,

1999; Thrun, 2002).

2.3.2.1 The Rao-Blackwellized or Marginalized Particle Filter

Rao-Blackwellized particle filter is an extension of the particle filter that uses

Rao-Blackwellization approach. Rao-Blackwellization is a technique that

marginalize out some of the variables.

In some cases, it is possible to divide the problem into two parts; linear-Gaussian

and non-linear parts. Assume that the state vector may be partitioned as 𝑥𝑘 = (
𝑥𝑘
𝐿

𝑥𝑘
𝑁)

so the required posterior may be factorized into Gaussian and non-Gaussian terms:

𝑝(𝑥𝑘|𝑍𝑘) = 𝑝(𝐶, 𝑥𝑘
𝑁|𝑍𝑘) = 𝑝(𝑥𝑘

𝐿|𝑥𝑘
𝑁 , 𝑍𝑘) 𝑝(𝑥𝑘

𝑁| 𝑍𝑘) (2.13)

where 𝑝(𝑥𝑘
𝐿 , 𝑥𝑘

𝑁|𝑍𝑘) is Gaussian (conditional on 𝑥𝑘
𝑁) and 𝑝(𝑥𝑘

𝑁| 𝑍𝑘) is non-

Gaussian. In other words, the linear component of the state vector 𝑥𝑘
𝐿 can be

“marginalized out”. Essentially, the term 𝑝(𝑥𝑘
𝐿 , 𝑥𝑘

𝑁|𝑍𝑘) may be obtained from a

Kalman filter while the non-Gaussian part 𝑝(𝑥𝑘
𝑁| 𝑍𝑘) is given by a particle filter.

The scheme requires that a Kalman filter update be performed for each 𝑥𝑘
𝑁 particle.

20

Rao-Blackwellized particle filter has a major advantage that the dimension of the

particle filter state 𝑥𝑘
𝑁 is smaller than the full state vectors dimension. Therefore, less

particles are needed for satisfying filter performance. That comes at the amount of a

more complicated algorithm, in spite of the operation count of the marginalized filter

for a given number of particles can really be less than that of the regular algorithm

(Salmond & Gordon, 2005).

Rao-Blackwellized particle filters have a big role to play in computer vision

where mixtures of Gaussians arise commonly, robotics dynamic factor analysis

(Doucet, De Freitas, Murphy & Russel, 2000).

Gmapping which is used in this study, is an improved implementation of Rao-

Blackwellized Particle Filter. This approach uses a particle filter in which each

particle carries an individual map of the environment.

Gmapping was presented as an improved method for learning grid-maps with the

help of Rao-Blackwellized particle filters. This method computes an immensely

accurate proposal distribution based on the observation possibility of the most recent

sensor information, a scan-matching process and the odometry. This allows us to

draw particles in a more precise way that really lessens the quantity of required

samples. In addition, selective resampling strategy based on the effective sample size

was applied. This way lessens the quantity of unnecessary resampling actions in the

particle filter and so substantially decrease the risk of particle depletion. Gmapping

approach has been implemented and evaluated on data acquired with different mobile

robots that equipped with LIDARs. Tests performed with gmapping algorithm in

various large scale environments have demonstrated its robustness and the capability

of creating maps with high quality. In gmapping experiments, the quantity of

particles needed by gmapping method often was one order of magnitude smaller

compared to previous approaches (Grisetti, Stachniss & Burgard, 2005, 2007).

21

2.4 Object Detection

In autonomous systems, path planning is a crucial task to accomplish. Generally,

both in indoor or outdoor environment, obstacles are existed. While mobile robots

are fulfilling the given tasks, obstacles in the environment are required to avoid or

overcome.

Object detection is the key part of the obstacle avoidance task. For detection two

main method is available; image-based detection and range-based detection. Various

sensors can be used for this purpose. LIDAR, infrared sensors, ultrasonic sensors can

be used in range-based detection. Vision sensors such as camera or kinect sensor can

be used in image-based detection.

Obstacles in environment represent a fundamental hindrance as natural hazards.

They can prevent mobile robots from achieving specific tasks by abolishing path

plans. As a worst case, they may do physical harm to the mobile robot. Nowadays,

obstacle avoidance systems are able to detect most of the obstacles by looking for

signs such as gradient of range.

LIDAR measures the exact distance to the object. However, it cannot able to

detect overhanging obstacles and low objects due to its constant, defined, scanning

angle and height. This problem can be accomplished by mechanic systems such as

tilting or moving LIDAR mechanisms. Also it can be dealt with a similar case of us,

a mobile robot which can overcomes some defined-height obstacles with its

mechanical design.

In Tartan racing team’s vehicle which was the winner of DARPA Urban

Challenge 2007, detection algorithm for static obstacles uses LIDARs mounted on

the roof of the vehicle evaluate the field around the vehicle. For representing the

traversability of the field, a costmap is computed by this algorithm. The root of the

algorithm based on comparisons of couples of laser points. Each arriving laser point

is compared to its neighbours which contain points. The maximum cost is registered

22

as the cost of that point. The maximum cost for all points in a cell is maintained and

placed in a cost map. The obstacle placement accuracy is apparently dependent on

the cost map resolution and the sensor calibration. Tartan racing team indicated that,

“algorithm properly places cones within 25 [cm] of their location. In most cases this

is sufficient to navigate through obstacle fields with cones and walls” (Urmson et al.,

2007, p. 15).

2.4.1 Costmap

Costmap is a 2D occupancy grid map which includes information about

objects/obstacles. This approach is generally used for avoiding obstacles and

performs precise path-planning.

Various navigation systems perform obstacle avoidance in path-planning stage, on

a single costmap. In a single costmap, larger part of data is stored in a single grid.

Layered Costmaps method is efficient at creating collision-free paths of minimal

length. However, this approach may trouble in dynamic environments when the

values in the costmap expand beyond occupied or free space (Lu, Hershberger &

Smart, 2014).

2.5 Robot Operating System (ROS)

Robot operating system which is mostly known as ROS is a framework for

writing robot software. ROS is an open source environment. It has large ecosystem

of developers and existing code.

For understanding and working in ROS environment, the basic definitions should

be known. The fundamental concepts of the ROS are nodes, topics, messages and

services. This concept is shown in Figure 2.9 (ROS concepts, n.d.).

23

Figure 2.9 Concept of ROS

Nodes are processes that perform computation. A node is an executable that uses

ROS to communicate with other nodes. Each node performs a single task. Nodes use

a publish-subscribe model for communicating with other nodes on a named topic.

Messages are simple data structures. Nodes communicate with each other by

passing massages.

Topics are streams of data. Topics publish streams of structured messages,

supplying standardized interfaces for frequently used data structures. Nodes can

publish data to a topic or subscribe to data published onto it. Data can come

consistently such as laser scans or intermittently such as email.

Services are like a function call or an RPC (remote procedure call). The publish-

subscribe model is a very flexible communication paradigm but its many-to-many,

one-way transport is not appropriate for request / reply interactions, which are often

required in a distributed system. Request / reply is done via services, which are

defined by a pair of message structures: one for the request and one for the reply. A

providing node offers a service under a name and a client uses the service by sending

the request message and awaiting the reply. ROS client libraries generally present

this interaction to the programmer as if it were a remote procedure call.

24

ROS Master is a program that stores information about the network. Nodes

register themselves with the Master on startup and nodes ask the Master where to

find other nodes after that, nodes established peer-to-peer communication with each

other. The ROS Master provides name registration and lookup to the rest of the

Computation Graph. Without the Master, nodes would not be able to find each other,

exchange messages or invoke services.

Bags are a format for saving and playing back ROS message data. Bags are an

important mechanism for storing data, such as sensor data, that can be difficult to

collect but is necessary for developing and testing algorithms.

25

CHAPTER THREE

EXPERIMENTAL SETUP

The mobile robot has seven wheels, a steering wheel in the front, two wheels are

arranged on a bogie mechanism (parallel arm) on each side and two wheels in the

rear. Five DC motors are used for propulsion. They are located in the wheels of bogie

mechanisms and the front arm. In addition, the mobile robot has a servo motor which

angular position changes depending on the angle of the front wheels. It is located in

wheel of front arm. This arm has a spring suspension to guarantee optimal ground

contact of all wheels at any time. The technical drawings of mobile robot are shown

in Figure 3.1 and 3.2 (Yıldız & Gören, 2012).

Figure 3.1 Technical drawing of mobile robot

Figure 3.2 Top view of the mobile robot

26

Essential measures of the mobile robot are given in the Table 3.1.

Table 3.1 Measures of the mobile robot

Parameter Value [mm]

Height 465

Distance between bogies 175

Distance between the rear wheel and the bogie wheel 155

Distance between the front wheel and the bogie wheel 190

Distance between the middle of the rear wheels 235

Distance between the middle of the bogie wheels 340

Diameter of front wheel 108

Diameter of rear wheel 80

Diameter of bogie wheel 60

Maximum width dimension 380

Maximum length dimension 620

The mobile robot is modified for this study which is shown in Figure 3.4. The

LIDAR is built in mobile robot as a main part of the perception system. The

modified technical drawing of the mobile robot is given Figure 3.3.

Figure 3.3 Technical drawing of modified mobile robot

27

Figure 3.4 Experimental mobile robot

LMS is an electro-optical laser measurement system that scans the perimeter of its

surroundings in a plane with the help of laser beams. The LMS measures its

surroundings in two-dimensional polar coordinates. When a beam of laser is

occurrence on an object, the position is decided in the form of direction and distance

(SICK AG, 2010).

For this study, LMS100 from SICK AG LMS1xx laser scanner family is used.

LMS100 is shown in Figure 3.5.

Figure 3.5 LMS100 from LMS1xx family

28

Data acquisition is performed using this LMS100 LIDAR that features a range

between 0.5 m and 20 m. Functional specification of the laser scanner LMS100 is

shown in the Table 3.2 and the scanning range of LMS100 is shown in Figure 3.6.

For further information about LMS1xx, Appendix-1 can be examined.

Table 3.2 Functional specifications of LMS100 (Sick AG, 2010)

Parameter Value

Scanning frequency 25 Hz – 50 Hz

Scan angle 270°

Distance measuring range 0.5 m – 20 m

Angular resolution with 25 Hz 0.25° –0.5°

Angular resolution with 50 Hz 0.5°

Measuring error:

Systematic error ±30 mm (max ±50 mm)

Statistical error (1 σ) 12 mm (max 20 mm)

Figure 3.6 Scanning range of LMS100 (SICK AG, 2010)

As seen above the LMS100 has a maximum range which is 20 meters. So that,

maximum area that can be built in map for an instant, can be calculated as 28 m x 28

m. This area can be seen as blue in Figure 3.7.

29

Figure 3.7 Maximum instant area for map building with LMS100

Configuration of LMS100 should be adjusted in SICK’s own program SOPAS

Engineering Tool (SOPAS ET). Angular resolution, scanning frequency and scan

angles can be modified within limits of LMS100. This configuration screen is shown

in Figure 3.8.

Figure 3.8 Configuration of LIDAR

The host computer has Windows operating system and ROS only has

experimental Windows support. Due to that reason, Linux operating system based

Ubuntu which is officially supported by ROS is decided to use. Virtual machines are

adequate to run different operating systems at one computer. A virtual machine

30

program called VirtualBox is installed. It is shown in Figure 3.9. Via this application

Ubuntu could be installed and work properly.

Figure 3.9 VirtualBox as a virtual machine

It is only possible to output all measured values of a scan in real-time using the

Ethernet interface. So in this study, connection between LIDAR and the host

computer is provided via Ethernet interface that has a data transmission rate of

10/100 MBit. The interface is a TCP/IP interface. The host computer has 2.3 GHz

Intel Core processor and located on the mobile robot.

The area of study is the Automatic Control and Robotics Laboratory of

Mechanical Engineering building at Dokuz Eylül University.

Automatic Control and Robotics Laboratory is shown in Figure 3.10. Part of the

study area, the main corridor is shown in Figure 3.11. Layout of the study area is

shown in Figure 3.12.

31

Figure 3.10 The area of the study, Automatic Control Laboratory of Mechanical Engineering

Department, DEU

Figure 3.11 The area of the study, main corridor

32

Figure 3.12 The layout of the study area

33

CHAPTER FOUR

EXPERIMENTAL WORK

As mentioned before, for operating autonomously in mobile robots, some steps

should be achieved. In Figure 4.1, it is shown the process of an autonomous mobile

robot. This thesis is aimed to examine the process from LIDAR data acquisition to

creating costmaps for further parts of the automation for mobile robots.

Figure 4.1 Overview of the process for autonomous mobile robots

4.1 Getting Reliable LIDAR Data

Robotic mapping addresses the problem of obtaining spatial models of the

physical environments. For this problem reliable data acquisition is essential.

Robustness of the control depends on the reliability of the sensor measurement.

In the early state of this study with LIDAR, laser scanner data are monitored in

SOPAS ET. Monitor screen is shown in Figure 4.2. Via this monitor screen, other

than regular laser scan data, mirrored laser scan data can be shown, also scanning

angle can be changed. Desired point’s distance from the origin and its coordinates

also can be shown in this monitor.

34

Figure 4.2 Monitoring laser data from LMS100 LIDAR

 A small and basic experimental area is created. The area is compared with the

scan data from LIDAR. The results are shown in Figure 4.3.

Figure 4.3 Real area and the observed area

SOPAS ET allows monitoring the laser scan data in real time. For further studies,

proper data understanding is required. For understanding LIDAR data further, data

are examined in Excel. For this part of experiments laser data are recorded in own

program of LMS100, SOPAS ET. When recording scan data, a few points should be

kept in mind. Configuration parameters and desired file extension should be chosen

properly. After this configuration and data recording procedure, recorded data are

35

transferred to Excel framework. In our case, ScanData is chosen as a recorded

parameter.

Usually each measurement is expressed in the polar coordinates (r, theta) as

mentioned before. Also, the laser scan can be expressed in its equivalent Cartesian

form (x, y). For this, a transformation needs to be done. It is shown in Figure 4.4.

Transformation formulas are given in the following equations.

𝑥 = 𝑟 ∗ 𝐶𝑜𝑠(𝜃 ∗
𝜋

180
) (4.1)

𝑦 = 𝑟 ∗ 𝑆𝑖𝑛(𝜃 ∗
𝜋

180
) (4.2)

Figure 4.4 Coordinate system transformation

As given in Table 3.2 before, LIDAR’s angular resolution with 50 Hz, is 0.5° and

scan angle is 270°. So, for one LIDAR measurement we have 541 range values (r).

These 541 data correspond to -45° to 225° with 0.5° interval. Since it is more easier

to understand and examined data in Cartesian coordinates, transformation is applied

and for a one LIDAR measurement, we have 541 (x,y) values of range.

One data set from transformed data is plotted in MatLab. This is shown in Figure

4.5.

r

Ɵ
X

Y

y

x

36

Figure 4.5 Basic map of the corridor from one data set

Statistical error means that when sensor performs several measurements, it will

not output the same value every time. This is similar to when a measuring tape is

used to measure two points several times, the result may not be exactly same value

every time. For minimizing the statistical error, to obtaining several measurements

together and build a mean value over these scans is the easiest solution.

LMS of SICK has a filter called a mean filter. When this mean filter is initiated, a

number of scans can be adjusted. These scans are taken together and from those

scans, a mean value from every scan degree over all the scans will be calculated.

Then, one data string is given out with these mean values. This also implies that there

is a reduction of data throughput, because only every 10th or 100th scan is provided.

To eliminate the statistical error, a recommended number of scans is 100 (Alexander,

2015).

This formula is shown as following equations,

37

𝑥̅ =
1

𝑁
∑𝑥𝑖

𝑁

İ=1

 (4.3)

where N is sampling quantity of scan; 𝑥 is the range of a scan (mm); and 𝑥̅ is the

average scan value (mm).

Root Mean Square Error (RMSE) which also known as Root Mean Square

Deviation is one of the most commonly used statistics while considering accuracy.

RMSE measures how much error there is between two sets of data. RMSE generally

compares an observed value and a predicted value. Square of RMSE shows the

Quadratic Error also known as Mean Square error (MSE).

For our case, known measures as predicted value might be compared with LIDAR

data as observed value. Root mean square error takes the difference for each known

value and LIDAR value. After that, divide the sum of all values by the number of

observations. This is how RMSE is calculated. Formulation of RMSE is given in

(4.4),

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑖

𝑁

İ=1

− 𝑥̂𝑖)2 (4.4)

where N is sampling quantity of scan; 𝑥𝑖 is LIDAR scan data (mm); and 𝑥̂𝑖 is known

measures (mm).

For calculating RMSE, an experimental stage is created. Figure 4.6 which is given

below, shows how RMSE is calculated in the created stage. LIDAR is placed with a

known distance from the wall. The known distance is measured before with both the

ultrasonic range sensor and tape measure. LIDAR scan data are recorded and

transferred to Excel framework. After the coordinate frame transformation is applied,

sub data set from transformed Y values selected as a LIDAR data.

38

Figure 4.6 Calculating RMSE

Root mean square errors are calculated in MatLab by implementing the RMSE

formula which is given in equation (4.4) above. Where Ɵ1 is 73.5°, Ɵ𝑛 is 114.5° and

N is 83.

While recording LIDAR scan data, sampling rate is chosen as 1000 [ms]. The

graph of RMSE is shown in Figure 4.7.

Figure 4.7 Root mean square error (RMSE) of LIDAR

6

7

8

9

10

11

12

13

0 5000 10000 15000 20000 25000 30000 35000 40000

R
M

SE
(m

m
)

Time (ms)

wall

𝑟1 𝑟2

𝑟𝑛

 𝑦𝑛

𝑦1

Ɵ1

Ɵ𝑛

𝑦2

LIDAR

Known

distance

39

Process is repeated with the mean filter of LMS100 activated. In the mean filter,

scan number is chosen as 100. The results of RMSE graph is shown in Figure 4.8.

Figure 4.8 Root mean square error (RMSE) of LIDAR with own mean filter

As seen above, root mean square error of LIDAR changes in the range of 8-12

[mm] with a minimum value of 8 [mm] (Pls. see Fig. 4.7). When the mean filter is

activated the root mean square error drops to minimum 3 [mm]. Root mean square

error changes in the range of 3-11 [mm] (Pls. see Fig. 4.8). It is seen that, without

mean filter average RMSE value of the sensor data is 10 [mm] whereas with mean

filter activated average RMSE value of the sensor data decreases to 6 [mm]. On the

other hand because of the mean filter process, sampling period increases up to twice

of the unfiltered sampling period.

Robustness of the control depends on the reliability of the sensor measurement.

Measurement quality should be increased and the error of the system should be

decreased. The control scheme of the mobile robot is shown in the Figure 4.9.

2

3

4

5

6

7

8

9

10

11

12

0 10000 20000 30000 40000 50000 60000

R
M

SE
(m

m
)

Time (ms)

40

Figure 4.9 Control scheme of the mobile robot

Distance traveled by the mobile robot can be sensed by encoders, however this

information is not reliable. For instance, wheels may slip on slippery surfaces so that

mobile robot will travel less than the distance that encoders indicate. These errors are

cumulative. They will grow while the mobile robot keeps moving. For eliminating

those kind of errors, various sensors can be used depending on the working

environment. Calculating error of the system resolution is shown in the Figure 4.10

below.

Figure 4.10 Calculating system resolution with DC motor

Gear ratio is 36, speed of dc motor is 102 RPM, α is 60°, diameter of the rear

wheel, R is 60 [mm]. When a mobile robot is travelling for a one straight line, the

system resolution error of the mobile robot is calculated as 1.75 [mm]. For the total

traveled distance which is shown in the scenario below, system resolution error is

calculated as 5.24 [mm].

α

Encoder
Wheel

R

DC Motor

41

In an outdoor environment includes grass has 0.32 optimal slip ratio. In a scenario

where the mobile robot is travelling in three straight lines that makes totally 10 [m],

the dead reckoning position error became 3.2 [m]. The scenario for calculating errors

is shown in the Figure 4.11 (Kim & Lee, 2013).

Figure 4.11 Scenario for calculating errors

Table 4.1 Errors of the mobile robot

 Error (mm)

Raw Data from LIDAR
+10

-26

LIDAR Data with Mean Filter Activated -15

System Resolution ±1.75

Table 4.2 Errors in distance traveled in the scenario

Distance Traveled Error via Dead

Reckoning (Encoder) Technique

(mm)

Distance Traveled

Error via LIDAR

Data (mm)

Distance Traveled

Error via Mean

Filtered LIDAR Data

(mm)

10000± (0.32*10000 ± 5.24) 6000±26 6000±15

3 m

4 m

3 m

3 m

6 m

42

In the Table 4.1, the errors from LIDAR, LIDAR with mean filter and system

resolution are shown. In the Table 4.2 above, errors in the distance traveled in the

scenario are shown. Horizontally distance is considered when calculating the

distance travelled errors via LIDAR. As seen in the tables, without any external

source like LIDAR, the error associated with odometry and encoder is excessive and

grows unbounded as the mobile robot moves. So that some sort of external

localization like LIDAR is required for accurate control of the mobile robot.

4.2 Mapping and Experimental Work in ROS Environment

This study builds upon the ROS. This open source environment is maintained by a

large community of individuals and even companies. Content of ROS is highly

adaptable, reusable and it’s open to developments. This system provides us

practicable solutions.

With ROS, a lot of application can be made such as simultaneous mapping and

localization (SLAM), navigation, working with various sensors, face recognition and

many other.

This section aims map building with two different algorithms with the help of the

ROS.

4.2.1 Required Fundamental Knowledge for Creating System in ROS

Before starting to work with mobile robots in ROS and creating our system in it,

there are some fundamental things to be understood thoroughly.

4.2.1.1 Coordinate Frames for Mobile Platforms

Map is a world fixed frame with its Z axis pointing upwards. The pose of a mobile

platform, relative to the map frame, should not significantly drift over time. The map

frame is not continuous, meaning the pose of a mobile platform in the map frame can

43

change in discrete jumps at any time. In a typical setup, a localization component

constantly re-computes the robot pose in the map frame based on sensor

observations, therefore eliminating drift, but causing discrete jumps when new sensor

information arrives. The map frame is useful as a long-term global reference, but

discrete jumps make it a poor reference frame for local sensing and acting.

Odom is a world-fixed frame. The pose of a mobile platform in the odom frame

can drift over time, without any bounds. This drift makes the odom frame useless as a

long-term global reference. However, the pose of a robot in the odom frame is

guaranteed to be continuous, meaning that the pose of a mobile platform in the odom

frame always evolves in a smooth way, without discrete jumps. In a typical setup the

odom frame is computed based on an odometry source, such as wheel odometry,

visual odometry or an inertia measurement unit. The odom frame is useful as an

accurate, short-term local reference, but drift makes it a poor frame for long-term

reference.

base_link is rigidly attached to the mobile robot base. The base_link can be

attached to the base in any arbitrary position or orientation; for every hardware

platform there will be a different place on the base that provides an obvious point of

reference (Meeussen, 2010).

4.2.1.2 Relationship between Frames

A tree representation is chosen to attach all coordinate frames in a robot system to

each other. Therefore, each coordinate frame has one parent coordinate frame, and

any number of child coordinate frames. The frames described are attached as

follows:

map --> odom --> base_link

44

The map frame is the parent of odom, and odom is the parent of base_link.

Although intuition would say that both map and odom should be attached to

base_link, this is not allowed because each frame can only have one parent.

4.2.1.3 The Transformation Library (tf) and tf Transforms

According to Foote (2013), “The tf library was designed to provide a standard

way to keep track of coordinate frames and transform data within the entire system.”

As robotic systems are becoming more complicated, being able to focus on the

task frame and only the relevant coordinate frames become crucial. The tf library

was developed as ROS package to provide this capability (Foote, 2013).

tf maintains the relationship between coordinate frames in a tree structure buffered

in time, and lets the user transform points, vectors, etc. between any two coordinate

frames at any desired point in time.

Broadcaster and Listener are the two standard modules which exist in the tf

library. Listening for transforms module is responsible for receiving and buffering all

coordinate frames that are broadcasted in the system and query for specific

transforms between frames. Broadcasting transforms module is responsible for

sending out the relative pose of coordinate frames to the rest of the system. A system

can have many broadcasters that each provides information about a different part of

the robot.

4.2.2 Mapping via Hector SLAM Algorithm

In this section, building map via hector slam algorithm is aimed. Before the

experimental work, theory of hector slam is investigated and implementation is

applied to our case.

45

4.2.2.1 Theory of Hector SLAM

Hector SLAM method is based on optimization of the alignment of beam

endpoints with the map learnt so far. The basic idea using a Gauss-Newton approach

was inspired by work in computer vision. The work was Lucas and Kanade’s “An

iterative image registration technique with an application to stereo vision” which

issued in 1981 at DARPA Image Understanding Workshop. Using this approach,

there is no need for a data association search between beam endpoints or an

exhaustive pose search. As scans get aligned with the existing map, the matching is

implicitly performed with all preceding scans (Kohlbrecher, von Oskar, Meyer &

Klingauf, 2011; Lucas, 1981).

In Hector SLAM method, only filtering based on the endpoint z coordinate is

used, so that only endpoints within a threshold of the intended scan plane are used in

the scan matching proceeding. The following equations are taken from Kohlbrecher,

von Oskar, Meyer & Klingauf for understanding the hector slam algorithm better.

Given a continuous map coordinate 𝑃𝑚, the occupancy value 𝑀(𝑃𝑀) as well as

gradient 𝛻𝑀(𝑃𝑀) = (
𝜕𝑀

𝜕𝑥
(𝑃𝑀),

𝜕𝑀

𝜕𝑦
(𝑃𝑀)) can be approximated by using the

fourclosest integer coordinates 𝑃00..11. Linear interpolation along the x and y-axis

then yields

𝑀(𝑃𝑚) ≈
𝑦 − 𝑦0
𝑦1 − 𝑦0

(
𝑥 − 𝑥0
𝑥1 − 𝑥0

 𝑀(𝑃11) +
𝑥1 − 𝑥

𝑥1 − 𝑥0
𝑀(𝑃01))

+
𝑦1 − 𝑦

𝑦1 − 𝑦0
(
𝑥 − 𝑥0
𝑥1 − 𝑥0

 𝑀(𝑃10) +
𝑥1 − 𝑥

𝑥1 − 𝑥0
𝑀(𝑃00))

(4.5)

The derivatives can be approximated by:

𝜕𝑀

𝜕𝑥
(𝑃𝑚) ≈

𝑦 − 𝑦0
𝑦1 − 𝑦0

(𝑀(𝑃11) + 𝑀(𝑃01)) +
𝑦1 − 𝑦

𝑦1 − 𝑦0
(𝑀(𝑃10) + 𝑀(𝑃00)) (4.6)

46

𝜕𝑀

𝜕𝑦
(𝑃𝑚) ≈

𝑥 − 𝑥0
𝑥1 − 𝑥0

(𝑀(𝑃11) + 𝑀(𝑃10)) +
𝑥1 − 𝑥

𝑥1 − 𝑥0
(𝑀(𝑃01) +𝑀(𝑃00) (4.7)

This method pursues to find the rigid transformation ξ = (𝑝𝑥, 𝑝𝑦 , ψ)
𝑇 that

minimizes

𝜉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛⏟
𝜉

∑[1 − 𝑀(𝑆𝑖(𝜉))]
2

𝑛

𝑖=1

 (4.8)

that is, finding the transformation that gives the best alignment of the laser scan with

the map is wanted. Here, 𝑆𝑖(𝜉) are the world coordinates of scan endpoint

𝑠𝑖 = (𝑠𝑖,𝑥, 𝑠𝑖,𝑦)
𝑇
. They are a function of ξ, the pose of the robot in world coordinates:

𝑆𝑖(𝜉) = (
cos(𝜓) −sin(𝜓)
sin(𝜓) cos(𝜓)

) (
𝑠𝑖,𝑥
𝑠𝑖,𝑦
) + (

𝑝
𝑥
𝑝𝑦
) (4.9)

The function 𝑀(𝑆𝑖(𝜉)) returns the map value at the coordinates given by 𝑆𝑖(𝜉).

Given some starting estimate of ξ, it is wanted to be estimated ∆ξ which optimizes

the error measure according to

∑[1−𝑀(𝑆𝑖(𝜉 + Δ𝜉))]
2

𝑛

𝑖=1

→ 0. (4.10)

By first order Taylor expansion of 𝑀(𝑆𝑖(𝜉 + Δ𝜉)) we get:

∑[1 −𝑀(𝑆𝑖(𝜉))−𝛻𝑀(𝑆𝑖(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
Δ𝜉]

2𝑛

𝑖=1

→ 0. (4.11)

This equation is minimized by setting the partial derivative with respect to ∆ξ to

zero:

47

2∑[𝛻𝑀(𝑆𝑖(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
]

𝑇𝑛

𝑖=1

[1 − 𝑀(𝑆𝑖(𝜉))− 𝛻𝑀(𝑆𝑖(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
Δ𝜉] = 0 (4.12)

Solving for ∆ξ yields the Gauss-Newton equation for the minimization problem:

Δ𝜉 = 𝐻−1∑[𝛻𝑀(𝑆𝑖(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
]

𝑇𝑛

𝑖=1

[1 − 𝑀(𝑆𝑖(𝜉))] (4.13)

with

H = [𝛻𝑀(𝑆𝑖(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
]

𝑇

[𝛻𝑀(𝑆𝑖(𝜉))
𝜕𝑆𝑖(𝜉)

𝜕𝜉
] (4.14)

An approximation for the map gradient 𝛻𝑀(𝑆𝑖(𝜉))is provided in previous

formulas. With equation (4.9) we get,

𝜕𝑆𝑖(𝜉)

𝜕𝜉
= (

1 0 − sin(𝜓)
𝑠𝑖,𝑥
− cos(𝜓)

𝑠𝑖,𝑦

0 1 cos(𝜓)
𝑠𝑖,𝑥
− sin(𝜓)

𝑠𝑖,𝑦

) (4.15)

Using 𝛻𝑀(𝑆𝑖(𝜉)) and
𝜕𝑆𝑖(𝜉)

𝜕𝜉
, the Gauss-Newton equation (4.13) can now be

evaluated, yielding a step ∆ξ towards the minimum.

Overall mapping process is shown in Figure 4.12.

Figure 4.12 Overview of mapping system with hector_slam

48

All the coordinate frames which can be included in hector_slam are given in

Figure 4.13.

Figure 4.13 Original frame scheme of hector_slam

4.2.2.2 Implementation of Hector SLAM and Experimental Work

For adaptation of hector_slam algorithm to our study, modifications are made in

hector_slam.

Odom frame is not supplied by our system, so odom is rearranged as base_link

and also base_footprint is also rearranged as base_link. A transformation from map

to base_link is directly published. Modified frame scheme of hector_slam for our

study is shown in Figure 4.14.

<param name="map_frame" value="map" />

<param name="base_frame" value="base_link" />

<param name="odom_frame" value="base_link" />

49

Figure 4.14 Modified frame scheme of hector_slam for our study

Main launch file is written and shown below. For sub-launch file which is

hector_mapping_default.launch, Appendix-2 can be examined.

<launch>

connect to lms100 LIDAR######################################

<param name="/use_sim_time" value="false"/>

<node pkg="lms1xx" name="lms1xx" type="LMS1xx_node"

output="screen">

<param name="host" value="169.254.10.200" />

</node>

run the visualizer: rviz ####################################

<node pkg="rviz" type="rviz" name="rviz"

 args="-d $(find hector_slam_launch)/rviz_cfg/mapping_demo.rviz"/>

publishing static transformation ############################

<node pkg="tf" type="static_transform_publisher"

name="map_baselink_broadcaster" args="0 0 0 0 0 0 map base_link

100"/>

<node pkg="tf" type="static_transform_publisher"

name="baselink_laser_broadcaster" args="0 0 0 0 0 0 base_link laser

100"/>

<include file="$(find bsk)/launch/hector_mapping_default.launch"/>

</launch>

50

After running the launch file, mapping building process is started. While map

building process is proceeding, the system is checked whether everything is

operating appropriately. For displaying the operation of the system, rqt_graph is

used. rqt_graph is tool which creates a dynamic computation graph of what's going

on in the system. Graph of our hector_slam implementation is shown in the Figure

4.15.

Figure 4.15 Graph of our hector_slam implementation

4.2.2.3 Mapping Results with Hector SLAM Algorithm

For first application, we built map of Automatic control laboratory’s corridor.

While map building process is proceeding, whenever the map is thought as enough, it

can be saved with map_saver command-line utility of map_server tool. Map_saver

allows dynamically generated maps to be saved to image file as pgm and data file as

yaml.

51

Yaml format of the saved map is shown below.

image: hectormap1.pgm

resolution: 0.025000

origin: [-25.612499, -25.612499, 0.000000]

negate: 0

occupied_thresh: 0.65

free_thresh: 0.196

where image is path the image file containing the occupancy data, origin is the 2-D

pose of the lower left pixel in the map as (x, y, yaw) with yaw as counterclockwise

rotation (yaw=0 means no rotation), occupied_thresh is pixels with occupancy

probability greater than this threshold are considered completely occupied,

free_thresh is pixels with occupancy probability less than this threshold are

considered completely free, negate is whether the white/black free/occupied

semantics should be reversed. Resolution points out there solution of the built map in

meters/pixel, it also corresponds to meters/cell.

The built map of laboratory corridor is shown in Figure 4.16.

Figure 4.16 Built map of laboratory corridor

52

In a map building process, the desirable measurements or distances can be

estimated by the algorithm. With help of the visualizer interface rviz in ROS,

measurements are shown in Figure 4.17. All the shown distances are from real time

sensor measurements.

Figure 4.17 Measurements in the built map

While the map building process is continuing, the door is opened. As can be seen

in Figure 4.18, laser beams escaped from doorway. While the mobile robot is not

exploring the outside of the area which in it, robot cannot know what is in the outside

of the explored area.

Figure 4.18 Escape of laser beams while mapping of laboratory corridor

53

After passing the doorway to explore the main corridor, now mobile robot could

build the map of the new area. Built map can be seen in the Figure 4.19.

Figure 4.19 Built map of laboratory corridor and the main corridor

Map of corridors is smooth since they are not including numerous objects in it.

But in real life scenarios, mobile robots can be required to evaluate complex indoor

environments.

For the complex environments just like the Automatic Control Laboratory of

Mechanical Engineering Department, DEU, the mapping results are not smooth as

the empty corridor. It is shown in Figure 4.20. Also it can be seen that the laser

beams escapes from windows.

54

Figure 4.20 Built map of DEU Automatic Control Laboratory and its corridor

4.2.3 Mapping via Gmapping Algorithm

In this section, building map via gmapping algorithm is aimed. Before the

experimental work, theory of gmapping is investigated and implementation is applied

to our case.

4.2.2.1 Theory of Gmapping

Gmapping is the most popular and publicly known simultaneous localization and

mapping algorithm which was developed by Giorgia Grisetti, Wolfram Burgard and

Cyrill Stachniss. Gmapping method is using Rao-Blackwellized particle filter to keep

track of the likely positions of the robot, based on its sensor data and the parts of the

map that have already been built.

Each particle = sample of history of robot poses + posterior over maps given the

sample pose history; approximate posterior over maps by distribution with all

probability mass on the most likely map whenever posterior is needed.

55

The main idea of Rao-Blackwellized particle filter for

SLAM is to estimate a posterior 𝑝(𝑥1:𝑡, 𝑚 |𝑧1:𝑡, 𝑢1:𝑡−1) about 𝑥1:𝑡 potential

trajectories of the mobile robot given its observations 𝑧1:𝑡 and its odometry

measurements 𝑢1:𝑡−1, for using this posterior to calculate a posterior over maps and

trajectories:

𝑝(𝑥1:𝑡, 𝑚 |𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑝(𝑚|𝑥1:𝑡, 𝑧1:𝑡)𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡−1) (4.16)

Rao-Blackwellized sampling importance resampling filter for mapping

incrementally processes the sensor observations and the odometry readings as they

are available. It updates the set of samples that represents the posterior about the map

and the trajectory of the vehicle. The process can be summarized by the following

four steps:

1) Sampling: The next generation of particles {𝑥𝑡
(𝑖)

} is obtained from the

generation 𝑥𝑡−1
(𝑖) by sampling from the proposal distribution π. Often, a

probabilistic odometry motion model is used as the proposal distribution.

2) Importance Weighting: An individual importance weight 𝑤𝑡
(𝑖)

 is assigned to

each particle according to the importance sampling principle

𝑤𝑡
(𝑖)
=
p(𝑥1:𝑡

(𝑖)|𝑧1:𝑡, 𝑢1:𝑡−1)

𝜋(𝑥1:𝑡
(𝑖)|𝑧1:𝑡, 𝑢1:𝑡−1)

 (4.17)

The weights account for the fact that the proposal distribution π is in general

not equal to the target distribution of successor states.

3) Resampling: Particles are drawn with replacement proportional to their

importance weight. This step is necessary since only a finite number of

particles is used to approximate a continuous distribution. Furthermore,

resampling allows us to apply a particle filter in situations in which the target

56

distribution differs from the proposal. After resampling, all the particles have

the same weight.

4) Map Estimation: For each particle, the corresponding map estimate

𝑝(𝑚𝑡
(𝑖)

| 𝑥1:𝑡
(𝑖)

, 𝑧1:𝑡) is computed based on the trajectory 𝑥1:𝑡
(𝑖)

 of that sample and

the history of observations 𝑧1:𝑡

The implementation of this schema requires to evaluate the weights of the

trajectories from scratch whenever a new observation is available. We obtain a

recursive formulation to compute the importance weights by restricting the proposal

π to fulfill the following assumption

𝜋(𝑥1:𝑡
(𝑖) | 𝑧1:𝑡, 𝑢1:𝑡−1 = 𝜋(𝑥𝑡|𝑥1:𝑡−1, 𝑧1:𝑡, 𝑢1:𝑡−1) . 𝜋(𝑥1:𝑡−1 | 𝑧1:𝑡−1, 𝑢1:𝑡−2) (4.18)

Based on Equations (4.17) and (4.18), the weights are computed as

𝑤𝑡
(𝑖)
=
p(𝑥1:𝑡

(𝑖)|𝑧1:𝑡, 𝑢1:𝑡−1)

𝜋(𝑥1:𝑡
(𝑖)|𝑧1:𝑡, 𝑢1:𝑡−1)

 (4.19)

=
ηp (𝑧𝑡|𝑥1:𝑡

(𝑖), 𝑧1:𝑡−1) 𝑝(𝑥𝑡
(𝑖)|𝑥1:𝑡−1

(𝑖) , 𝑢𝑡−1)

𝜋(𝑥𝑡
(𝑖)|𝑥1:𝑡−1

(𝑖) , 𝑧1:𝑡, 𝑢1:𝑡−1)

∙ 𝑤𝑡
(𝑖) =

p(𝑥1:𝑡
(𝑖)|𝑧1:𝑡, 𝑢1:𝑡−1)

𝜋(𝑥1:𝑡
(𝑖)|𝑧1:𝑡, 𝑢1:𝑡−1)

(4.20)

∝
p(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡
(𝑖)) 𝑝(𝑥𝑡

(𝑖)|𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

𝜋(𝑥𝑡|𝑥1:𝑡−1
(𝑖)

, 𝑧1:𝑡, 𝑢1:𝑡−1)
∙ 𝑤𝑡−1

(𝑖)
 (4.21)

57

Here η = 1/𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡−1) is a normalization factor resulting from Bayes’

rule that is equal for all particles. Most of the existing particle filter applications rely

on the recursive structure of Eq. (4.21).

The importance weights are then computed according to the observation model

p(𝑧𝑡|𝑚, 𝑥𝑡) . This becomes clear by replacing π in Eq. (4.21) by the motion model

p(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)

𝑤𝑡
(𝑖) = 𝑤𝑡−1

(𝑖)
ηp(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡
(𝑖)) 𝑝(𝑥𝑡

(𝑖)|𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

𝑝(𝑥𝑡
(𝑖)|𝑥𝑡−1

(𝑖) , 𝑢𝑡−1)
 (4.22)

∝ 𝑤𝑡−1
(𝑖) ⋅ 𝑝(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡
(𝑖)) (4.23)

This proposal distribution, however, is suboptimal especially when the sensor

information is significantly more precise than the motion estimate of the robot based

on the odometry, which is typically the case if a robot equipped with a laser range

finder.

The most recent sensor observation 𝑧𝑡 when generating the next generation of

samples. By integrating 𝑧𝑡 into the proposal one can focus the sampling on the

meaningful regions of the observation likelihood. According to Doucet (1998), the

distribution

𝑝(𝑥𝑡|𝑚𝑡−1
(𝑖) , 𝑥𝑡−1

(𝑖) , 𝑧𝑡 , 𝑢𝑡−1) =
𝑝(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡) 𝑝(𝑥𝑡|𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

𝑝(𝑧𝑡|𝑚𝑡−1
(𝑖) , 𝑥𝑡−1

(𝑖) , 𝑢𝑡−1)
 (4.24)

is the optimal proposal distribution with respect to the variance of the particle

weights. Using that proposal, the computation of the weights turns into

𝑤𝑡
(𝑖) = 𝑤𝑡−1

(𝑖)
ηp(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡
(𝑖)) 𝑝 (𝑥𝑡

(𝑖)
| 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

𝑝(𝑥𝑡|𝑚𝑡−1
(𝑖) , 𝑥𝑡−1

(𝑖) , 𝑧𝑡 , 𝑢𝑡−1)
 (4.25)

58

∝ 𝑤𝑡−1
(𝑖)
𝑝(𝑧𝑡|𝑚𝑡−1

(𝑖)
, 𝑥𝑡
(𝑖)
) 𝑝(𝑥𝑡

(𝑖)
|𝑥𝑡−1
(𝑖)
, 𝑢𝑡−1)

𝑝(𝑧𝑡|𝑚𝑡−1
(𝑖)

,𝑥𝑡) 𝑝(𝑥𝑡|𝑥𝑡−1
(𝑖)

,𝑢𝑡−1)

𝑝(𝑧𝑡|𝑚𝑡−1
(𝑖)

,𝑥𝑡−1
(𝑖)

,𝑢𝑡−1)

 (4.26)

= 𝑤𝑡−1
(𝑖) ⋅ 𝑝(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1) (4.27)

= 𝑤𝑡−1
(𝑖) ⋅ ∫ 𝑝(𝑧𝑡|𝑥

′)𝑝(𝑥′|𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)𝑑 𝑥

′ (4.28)

𝐿(𝑖) = {𝑥| 𝑝(𝑧𝑡|𝑚𝑡−1
(𝑖) , 𝑥) > 𝜖} (4.29)

The Gaussian parameters are estimated as

𝜇𝑡
(𝑖) =

1

𝜂(𝑖)
∙ ∑𝑥𝑗

𝐾

𝑗=1

∙ 𝑝 (𝑧𝑡| 𝑚𝑡−1
(𝑖) , 𝑥𝑗) ∙ 𝑝(𝑥𝑗| 𝑥𝑡−1

(𝑖) ,𝑢𝑡−1) (4.30)

Σ𝑡
(𝑖)
=

1

𝜂(𝑖)
∙ ∑𝑝(𝑧𝑡| 𝑚𝑡−1

(𝑖) , 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗| 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1) ∙ (𝑥𝑗 − 𝜇𝑡

(𝑖))(𝑥𝑗 − 𝜇𝑡
(𝑖))

𝑇
 (4.31)

with the normalization factor

𝜂(𝑖) =∑𝑝(𝑧𝑡| 𝑚𝑡−1
(𝑖) , 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗| 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1) (4.32)

In this way, we obtain a closed form approximation of the optimal proposal which

enables us to efficiently obtain the next generation of particles. Using this proposal

distribution, the weights can be computed as

𝑤𝑡
(𝑖) = 𝑤𝑡−1

(𝑖) ⋅ 𝑝(𝑧𝑡| 𝑚𝑡−1
(𝑖) , 𝑥𝑡−1

(𝑖) , 𝑢𝑡−1)

= 𝑤𝑡−1
(𝑖) ⋅ ∫ 𝑝(𝑧𝑡|𝑥

′)𝑝(𝑥′|𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)𝑑 𝑥

′

≅ 𝑤𝑡−1
(𝑖) ⋅∑𝑝(𝑧𝑡| 𝑚𝑡−1

(𝑖) , 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗| 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

(4.33)

59

= 𝑤𝑡−1
(𝑖) ⋅ 𝜂(𝑖) (4.34)

We compute this quantity according to the formulation of Doucet et al. (2001) as

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤(𝑖))2𝑁
𝑖=1

 , (4.35)

where 𝑤(𝑖) refers to the normalized weight of particle i.

The overall process is summarized in Algorithm: Map Learning with RBPF

below. The algorithm is taken from the works of Giorgia Grisetti, Wolfram Burgard

and Cyrill Stachniss.

Algorithm: Map Learning with RBPF

Require:

𝑆𝑡−1, the sample set of the

previous time step

𝑧𝑡, the most recent laser scan

𝑢𝑡−1, the most recent odometry

measurement

Ensure:

𝑆𝑡, the new sample set

𝑆𝑡= {}

for all 𝑆𝑡−1
(𝑖)
∈𝑆𝑡−1 do

<𝑥𝑡−1
(𝑖)

, 𝑤𝑡−1
(𝑖)
, 𝑚𝑡−1

(𝑖)
>= 𝑆𝑡−1

(𝑖)

// scan-matching

𝑥𝑡−1
′(𝑖)

 = 𝑥𝑡−1
(𝑖)
⊕𝑢𝑡−1

𝑥̂𝑡
(𝑖)
=𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑝(𝑥𝑡 | 𝑚𝑡−1

(𝑖) , 𝑧𝑡 , 𝑥𝑡
′(𝑖)
)

if 𝑥̂𝑡
(𝑖)
= failure then

𝑥𝑡
(𝑖)
 ~ 𝑝(𝑥𝑡 | 𝑥𝑡−1

(𝑖) , 𝑢𝑡−1)

𝑤𝑡
(𝑖)
= 𝑤𝑡−1

(𝑖)
∙ 𝑝(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑡
(𝑖)
)

Else

// sample around the mode

for k = 1, . . . , K do

𝑥𝑘∼ {𝑥𝑗| |𝑥𝑗 −𝑥̂
(𝑖)| < ∆}

end for

// compute Gaussian proposal

µ
𝑡

(𝑖)
= (0, 0, 0)𝑇

𝜂(𝑖) = 0

for all 𝑥𝑗∈ {𝑥1, . . . , 𝑥𝑘} do

µ
𝑡

(𝑖)
=µ

𝑡

(𝑖)
+𝑥𝑗·𝑝(𝑧𝑡 | 𝑚𝑡−1

(𝑖) , 𝑥𝑗) ·

𝑝(𝑥𝑡 | 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

𝜂(𝑖)= 𝜂(𝑖)+ · 𝑝(𝑧𝑡 | 𝑚𝑡−1
(𝑖) , 𝑥𝑗) ·

𝑝(𝑥𝑡 | 𝑥𝑡−1
(𝑖) , 𝑢𝑡−1)

end for

µ
𝑡

(𝑖)
 = µ

𝑡

(𝑖)
/𝜂(𝑖)

60

Σ(i)t = 0

for all 𝑥𝑗∈{𝑥1, . . . , 𝑥𝐾} do

𝛴𝑡
(𝑖)
 = 𝛴𝑡

(𝑖)
+ (𝑥𝑗 − µ

(𝑖))(𝑥𝑗 −

µ
𝑡

(𝑖)
)𝑇·𝑝(𝑧𝑡|𝑚𝑡−1

(𝑖) , 𝑥𝑗
(𝑖)
) · 𝑝(𝑧𝑡|𝑥𝑡−1

(𝑖) , 𝑢𝑡−1)

end for

𝛴𝑡
(𝑖)
= 𝛴𝑡

(𝑖)
 /𝜂(𝑖)

// sample new pose

𝑥𝑡
(𝑖)
∼Ɲ(µ

𝑡

(𝑖)
, 𝛴𝑡

(𝑖)
)

// update importance weights

𝑤𝑡
(𝑖)
 = 𝑤𝑡−1

(𝑖)
 · 𝜂(𝑖)

end if

// update map

𝑚𝑡
(𝑖)
=integrateScan(𝑚𝑡−1

(𝑖)
, 𝑥𝑡

(𝑖)
, 𝑧𝑡)

// update sample set

𝑆𝑡= 𝑆𝑡∪ {<𝑥𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
=, 𝑚𝑡

(𝑖)
= >}

end for

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤(𝑖))2𝑁
𝑖=1

if 𝑁𝑒𝑓𝑓< T then

𝑆𝑡= resample(𝑆𝑡)

end if

4.2.2.2 Implementation of Gmapping and Experimental Work

Before implenting gmapping for our case, requirements of gmapping should be

considered. Gmapping has some crucial requirements to fulfill; a horizontally-

mounted, fixed LIDAR and something to provides odometry data. Unlikely the

hector_slam algorithm, gmapping cannot tractable without odometry data. Since we

don’t have reliable odometry, another solution is applied. With combination

gmapping and laser scan matcher, SLAM can be implied. Laser scan matcher process

supplies the odometry data for gmapping.

Laser scan matcher allows to scan match between consecutive

sensor_msgs/LaserScan messages and publish the estimated position of the laser as a

geometry_msgs/Pose2D or a tf transform.

The package can be used without any odometry estimation suplied by other

sensors. Therefore, this package can serve as a stand alone odometry estimator.

61

Alternatively, you can provide several types of odometry input to improve the

registration speed and accuracy. The laser_scan_matcher can operate using

sensor_msgs/LaserScan messages or sensor_msgs/PointCloud2 messages. In our

case, LaserScan messages are used.

In the classical frame-to-frame laser odometry, each laser scan is compared to the

previous scan. The transformation between the two is aggregated over time to

calculate the position of the robot in the fixed frame. Some noise in the scans is

inevitable. Thus, even for a robot standing still, the incremental transformations

might be non-zero. This could result in a slow drift of the pose of the robot. To

alleviate this, laser scan matcher implement keyframe-based matching. The change

in pose is calculated between the current laser scan and a "keyframe" scan. The

keyframe scan is updated after the robot moves a certain distance. Thus, if the robot

is standing still, the keyframe scan will not change, and the pose will remain more

drift free.

After understanding requirements of gmapping, a proper launch file is written.

The launch file of our gmapping implementation is given below.

<launch>

 #### connect to lms100 LIDAR ###################################

<param name="/use_sim_time" value="false"/>

<node pkg="lms1xx" name="lms1xx" type="LMS1xx_node">

<param name="host" value="169.254.10.200" />

</node>

 #### publish base_link -> laser transform ######################

<node pkg="tf" type="static_transform_publisher"

name="base_link_to_laser"

 args="0.0 0.0 0.0 0.0 0.0 0.0 /base_link /laser 40" />

 #### start rviz ##

<node pkg="rviz" type="rviz" name="rviz"

 args="-d $(find laser_scan_matcher)/demo/demo_gmapping.rviz"/>

62

 #### start the laser scan_matcher ##############################

<node pkg="laser_scan_matcher" type="laser_scan_matcher_node"

 name="laser_scan_matcher_node" output="screen">

<param name="fixed_frame" value = "odom"/>

<param name="max_iterations" value="10"/>

</node>

 #### start gmapping ##

<node pkg="gmapping" type="slam_gmapping" name="slam_gmapping"

output="screen">

<rosparam command="load" file="$(find

bsk)/launch/gmapping_params.yaml" />

</node>

</launch>

Parameters of gmapping is written in another file which is gmappin_params.yaml.

YAML is a lightweight markup language that supports all parameter types. It is a

human-readable data serialization language that takes concepts from programming

languages such as C and Python, and ideas from XML and the data format of

electronic mail. Configuration can be saved in YAML files. For further detail and

parameters of gmapping which is in gmapping_params.yaml file, Appendix-3 can be

examined.

After running the launch file, mapping building process is started. While map

building process is proceeding, the system is checked with rqt_graph. Graph of our

gmapping implementation is shown in the Figure 4.21.

63

Figure 4.21 Graph of our gmapping implementation

4.2.3.3 Mapping Results with Gmapping

Map building initialized and the mobile robot is just at the beginning of the

exploration the environment. Early stage of map building process is shown in Figure

4.22.

Figure 4.22 Early stage of map building process

64

As previously done in hector SLAM, map of Automatic Control Laboratory’s

corridor is built with gmapping algorithm this time. It is shown in Figure 4.23.

Figure 4.23 Built map of laboratory corridor

After the laboratory corridor, map of Automatic Control Laboratory is built. The

map is successful but as seen in Figure 4.24, there is an irregularity that stands out.

The shown axis is dislocated. Drifts like this are happened when mobile robot is

turning. If it’s not that obvious dislocation like this example, scan match algorithm of

Gmapping can fix the minor dislocation problems while map is still building.

65

Figure 4.24 Built map of the Automatic Control Laboratory

Built map of the Automatic Control Laboratory and its corridor is shown in the

Figure 4.25.

Figure 4.25 Built map of the Automatic Control Laboratory and its corridor

66

4.2.4 Comparison of Gmapping and Hector SLAM for Mapping

Both algorithms are well known and widely used. Advantages and disadvantages

are always existed. The important point is that choosing most suitable one for the

system. This choice depends on what our system and environment consists of. For

instance, if the robotic system has not a reliable odometry data, hector slam should

be considered, on contrary the robotic system has a reliable odometry data most well-

known gmapping can be used. As seen in the Figure 4.26, both algorithms have

sufficient results in modeling the environment for mobile robots.

Figure 4.26 Comparison of hector slam and gmapping: a) hector slam b) gmapping

4.3 Object Detection & Costmaps

After getting reliable LIDAR data and building map successfully in previous

sections, lastly we will focus on obstacle detection and costmaps in this part of the

study.

For a successful navigation process in autonomous systems, path planning is a

crucial process to accomplish. Path planning process includes obstacle avoidance

task. Generally, both in indoor or outdoor environment, obstacles are existed. While

mobile robots are fulfilling the given tasks, obstacles in the environment are required

to avoid or overcome.

a. b.

67

As mentioned before, object detection is the key part of the obstacle avoidance for

creating tractable path planning. Object detection systems are able to detect most of

the obstacles by looking for signs such as gradient of range.

In this study, for detection, range-based detection specifically LIDAR-based

detection approach was implied. Detection algorithm for objects, employs LIDAR

that mounted in mobile robot to evaluate the mobile robot’s environment. For mobile

robots, traversability is essential term to understand. This term indicates passable

area of the mobile robot’s surroundings. Traversability can be represented via

costmaps that is computed. A representation is shown in Figure 4.27.

Figure 4.27 Representing mobile robot in an environment with obstacles

4.3.1 Theory of Costmap

Costmap is a two dimensional grid that represents the environment of the robot,

where each cell has a cost for traveling through that area of the environment. In its

simplest form, the costmap only has two values in it: a high value that represents

cells which the robot cannot be in, and a low value for cells which the robot can be

in. Since the high values will result in a collision between the robot and an obstacle,

such values are often called lethal in the costmap. Throughout this dissertation, we

will discuss how the values in the costmap are calculated and additional schemes for

what the values can represent.

68

Costmap includes information about objects/obstacles. It consists of grid cells

where each grid cell has a value 𝑓(𝑥, 𝑦). Values above some predefined threshold are

designated as lethal values, representing states that must be avoided like those

resulting in collisions (Lu, 2014).

Focusing on the frequently employed two dimensional Gaussian distribution,

defined as

𝑓(𝑥, 𝑦) = 𝐴 exp (−
𝑥2 + 𝑦2

2𝜎2
) (4.36)

The cost in each cell under the Gaussian depends on both the amplitude, A, and

the variance, σ.

There are at least three different pieces of knowledge that the robot needs to be

able to store in a cell:

1. No knowledge corresponding to unknown

2. Obstacle corresponding to lethal cell

3. No obstacle corresponding to free space

These cell types are shown in Figure 4.28. Gray cells are representing unknown

spaces, black cells are representing lethal spaces and white cells are representing free

space.

69

Figure 4.28 Cell types

In general, the planning algorithms need to avoid collisions between the robot and

the lethal cells, primarily by staying in free space.

Layered Costmaps: Instead of storing obstacles data directly in the grid, the

layered costmap maintains an ordered list of layers. These layers track the data

related to a specific functionality. The data for each of the layers is then assembled

into the master costmap in two distinct passes.

In the first pass, the updateBounds method, every individual layer is polled to

conclude how much of the costmap it needs to update. The layers are iterated over, in

order, providing each layer with the bounding box that the previous layers need to

update. Every individual layer can expand the bounding box as necessary. This first

pass results in a bounding box that determines how much of the master costmap

needs to be updated.

During the second pass, the updateValues method is called, during which each

consecutive layer will update the values within the master costmap’s area of

70

bounding box. Figure 4.29 shows the update algorithm using a set of layers that

replicate the behavior of a basic monolithic costmap (Lu, 2014).

Figure 4.29 Update algorithm Costmap layers (Lu, 2014)

The cost function is computed as follows for all cells in the costmap further than

the inscribed radius distance and closer than the inflation radius distance away from

an actual obstacle:

𝑒−𝑐𝑠𝑓∗(𝑋−𝑅𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑) *(costmap_2d::INSCRIBED_INFLATED_OBSTACLE – 1) (4.37)

where costmap_2d::INSCRIBED_INFLATED_OBSTACLE is currently 254, X is

distance from obstacle (mm), 𝑅𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑 is the inscribed radius of the mobile robot

(mm), csf is the cost scaling factor. It is shown in Figure 4.30.

71

Figure 4.30 Mobile robot and obstacle interaction

4.3.2 Implementation of Costmap_2d and Experimental Work

Costmap_2d package supplies an implementation of a 2D costmap that takes in

sensor data from LIDAR and creates a 2D occupancy grid of the data and inflates

costs in a 2D costmap based on the occupancy grid and adjustable inflation radius.

Costmap_2d also provides support for map_server based initialization of a costmap,

rolling window based costmaps, and parameter based subscription to and

configuration of sensor topics.

The costmap automatically subscribes to sensors topics and updates itself

accordingly. Each sensor is used to either mark, clear or both. Marking means

inserting obstacle information into the costmap and clearing means remove obstacle

information from the costmap. The clearing operation, performs raytracing through

the grid from the origin of the sensor outwards for each observation reported.

For implementing costmap_2d which is a layered costmap as mentioned before, a

few requirements should be met. These requirements are range sensor data and the

static map, which correspond to our case as LIDAR data and the built or building

map from hector_slam or gmapping.

𝑅inscribed

𝑋

72

For employing costmap_2d object, there are a few ways. One of them is providing

built map via map_server and after localization with amcl (Adaptive Monte Carlo

Localization) and seen obstacles in costmap_2d. For being able to employ the built

map as static layer, map_server tool is needed. Map_server is a ROS node that reads

a map from disk and offers it via a ROS service. The current implementation of the

map_server converts color values in the map image data into ternary occupancy

values: free (0), occupied (100), and unknown (-1). Future versions of this tool may

use the values between 0 and 100 to communicate finer gradations of occupancy.

The second one is building map of the environment via hector_slam, gmapping or

etc. and detection obstacles and representing them in costmap simultaneously.

For our case, the implementation in which map building process and the obstacles

detection are proceeding at the same time method is chosen. After managing to

successfully building maps with hector_slam and gmapping previous sections, one of

the costmap requirements is supplied. The other requirement is sensor data that we

already have and be able use in mapping process.

A new launch file is written. This launch file includes gmapping launch file that

used in the previous section and the costmap node. After running the launch file map

building initialized. While robot is exploring the environment, map building and

object detection is proceeding and costmap is being created.

<launch>

<!-- Run the implementation of gmapping launch -->

<include file="$(find bsk)/launch/gmapping_lms.launch"/>

<!-- Run the costmap node -->

<node name="costmap_node" pkg="costmap_2d" type="costmap_2d_node"

>

<rosparam file="$(find bsk)/launch/params.yaml" command="load"

ns="costmap" />

</node>

</launch>

73

The params.yaml file incudes the parameters that we arranged. One of the

important points is that static map parameter should be set true for our case. This

parameter indicates external map which is supplied other than navigation stack in

which costmap exists. In our case gmapping is supplying the external map. Footprint

is a projection of the mobile robot which is used.

global_frame: /map

robot_base_frame: base_link

update_frequency: 5.0

publish_frequency: 1.0

static_map: true

rolling_window: false

width: 10.0

height: 10.0

resolution: 0.02

transform_tolerance: 0.3

obstacle_range: 2.5

max_obstacle_height: 2.0

raytrace_range: 3

footprint: [[-0.20, -0.19], [-0.20, 0.19], [0.25, 0.19], [0.4,

0.0], [0.25, -0.19]]

footprint_padding: 0.01

inflation_radius: 0.2

cost_scaling_factor: 10.0

lethal_cost_threshold: 100

observation_sources: base_scan

base_scan: {data_type: LaserScan, sensor_frame: /laser, topic:

/scan, expected_update_rate: 0.4,

observation_persistence: 0.0, marking: true, clearing: true,

max_obstacle_height: 0.5, min_obstacle_height: 0}

74

After running the launch file, while process is proceeding, the system is checked

with rqt_graph. Graph of our costmap implementation is shown in the Figure 4.31

below.

Figure 4.31 Graph of our costmap implementation

Transformation tree (tf tree) is shown in Figure 4.32 below.

Figure 4.32 tf tree of our implementation

75

Static map layer represents a largely unchanging portion of the costmap, like

those generated by SLAM. Figure 4.33 shows the map built with hector_slam.

Figure 4.33 Static layer

Obstacle layer tracks the obstacles as read by the sensor data. The

ObstacleCostmapPlugin marks and raytraces obstacles in two dimensions. Sensor

data is shown in blue and the footprint of the mobile robot is shown in red in Figure

4.34.

Figure 4.34 Obstacle layer

76

Inflation layer is an optimization that adds new values around lethal obstacles. It

means it inflates the obstacles in order to make the costmap represent the

configuration space of the robot. The inflation layer exists for keeping the robot out

of range of obstacles. This is shown in Figure 4.35.

Figure 4.35 Inflation layer also it can be called master layer

While mobil robot is exploring between tables, the object in same the plane with

where LIDAR’s measurement is done, can be seen. In the experiment below, mobile

robot cannot see tables but can see the table legs and chair legs. These objects are

represented in the costmap. This can be seen in Figure 4.36.

77

Figure 4.36 Costmap while robot is exploring between tables in the laboratory

When dynamic objects or a person is coming into mobile robot’s sight, object

detection is done and represented in the costmap. Whenever the object or the person

is disappeared from the sight of mobile robot, costmap clearing function does its job

and update the costmap its current stage. This experiment can be seen in Figure 4.37.

78

Figure 4.37 Dynamic objects and clearing function of costmap

Costmap of Automatic Control Laboratory is shown in Figure 4.38. LIDAR data

can be seen as blue.

Figure 4.38 Costmap of Automatic Control Laboratory

79

For mobile robots, one of the important things to watch out while exploring an

indoor environment is a doorway. The inflation function of costmaps shows its

necessity clearly in this experiment. Inflation prevents mobile robot from possible

collisions and interactions with objects. This experiment is shown in Figure 4.39 and

Figure 4.40.

Figure 4.39 Mobile robot while passing the doorway

Figure 4.40 Costmap while mobile robot is passing the doorway

80

For detecting an object in the environment, it is not enough to have knowledge

only the properties of the LIDAR, but also knowledge of the system based on the

distance and orientation of the object relative to the mobile robot. Object detection

with LIDAR is shown in Figure 4.41.

Figure 4.41 Minimum detectable object

𝐷𝑚𝑖𝑛 is the detectable minimum diameter of the obstacle (mm), 𝑟1 and 𝑟2 are

range values (mm) of the two consecutive LIDAR beams, α is the angle between two

consecutive LIDAR beams. With the law of cosines, 𝐷𝑚𝑖𝑛 can be calculates as

following equation,

𝑫𝒎𝒊𝒏 = √𝒓𝟏
𝟐 + 𝒓𝟐

𝟐 − 𝟐𝒓𝟏𝒓𝟐 𝐜𝐨𝐬𝜶 (4.38)

As indicated in Table 3.2 in previous chapter, LIDAR with 50 Hz, has an angular

resolution 0.5°. So that, for a known two consecutive range data, detectable

minimum object can be calculated. For instance, in a scenario where 𝑟1 is 2003 [mm]

and 𝑟2 is 1997 [mm], diameter of the minimum detectable object can be estimated as

18.45 [mm].

In the Figure 4.42, the object detection experiment is shown. The target object is

the leg of the table which has a 40 [mm] diameter. Distance between the LIDAR

mounted on the mobile robot and the target object is 𝑅′, 4300 [mm], by using the Eq.

81

(4.38) diameter of the minimum detectable object is calculated as 37.8 [mm]. As

seen in Figure 4.42, even the sensor is stationary an object which has a diameter

greater than the minimum value mentioned above can be detected definitely.

However, since the robot, so the LIDAR is mobile, objects which have diameters

smaller than the calculated minimum diameter can be also detected.

Figure 4.42 Minimum detectable object in costmap

After obstacle detection is achieved and represented in costmaps, precise obstacle

avoidance, path planning steps of autonomous navigation can be provided.

82

CHAPTER FIVE

CONCLUSION

In this research, one of the most fundamental problems for mobile robots,

achieving reliable sensor data in operation of mobile robots in unknown

environments is discussed. The characteristics of a LIDAR sensor are examined.

Distance traveled by the mobile robot can be sensed by encoders, however this

information is not reliable for positioning the robot since wheels may slip even on

indoor floor surfaces so that mobile robot may travel less than the distance encoders

or other internal sensors indicate (e.g. internal odometry error). For eliminating

cumulative errors like those, different types of environmental reference sensors

might be used depending on the working environment. Even this method reduces the

errors, for improving the data reliability, filters, mean value calculations and

combining different sensor data of the same moment might be implemented to the

feedback value of the control. Errors occurred because of resolution of sensors

(encoders) are analyzed. Robustness of the control depends on the reliability of the

sensor measurement. Measurement quality is examined with raw LIDAR data and

with filters.

2D map building of the unknown indoor environment via LIDAR data is

discussed and map building is achieved using simultaneous localization and mapping

(SLAM) algorithms such as Gmapping and Hector SLAM. Built maps are

represented in 2D occupancy grid maps. Object detection is studied in order to

perform tasks adequately in an environment with obstacles. It is provided with

LIDAR-based detection and represented in costmaps.

As a future work, sensor fusion of various sensors such as Internal Measurement

Unit (IMU), Kinect and camera, may be applied for more robust automation systems.

For the control of the mobile robot and further automation process may be studied

and accomplished. Also with hardware modifications of our system, 3D maps of the

unknown environments might be built.

83

REFERENCES

Alexander, D. (2015). How to minimize the systematic and the statistical error of

SICK LMS sensors. Retrieved May 11, 2016, from http://sickusablog.com/how-to-

minimize-the-systematic-and-statistical-error-of-sick-lms-devices.

Baltsavias, E.P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS

Journal of Photogrammetry & Remote Sensing, 54, 199-214.

Causo, A., Takemura, K., Takamatsu, J., Ogasawara, T., Ueda, E., & Matsumoto, Y.

(2010). Predictive tracking in vision-based hand pose estimation using Unscented

Kalman Filter and multi-viewpoint cameras. D. Chugo, (Ed.), Human-Robot

Interaction. (155-170). Croatia: Intech.

Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo Localization for

mobile robots. In Robotics and Automation, 1999. Proceedings. 1999 IEEE

International Conference on, 2, 1322-1328). IEEE.

Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellised

particle filtering for dynamic Bayesian networks. In Proceedings of the Sixteenth

conference on Uncertainty in artificial intelligence (pp. 176-183). Morgan

Kaufmann Publishers Inc.

Doucet, A. (1998). On sequential simulation-based methods for Bayesian filtering.

Technical report, Signal Processing Group, Department of Engineering,

University of Cambridge.

Doucet, A.,De Freitas, N., & Gordan, N. (2001). Sequential Monte Carlo methods in

practice. Springer Verlag.

84

Filliat, D., & Meyer. J.A. (2003). Map-based navigation in mobile robots – I. A

review of localization strategies. Journal of Cognitive System Research, 4 (4),

243-282.

Foote, T. (2013). tf: The transform library. In Technologies for Practical Robot

Applications (TePRA), 2013 IEEE International Conference on (pp. 1-6). IEEE.

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid

mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics,

23(1), 34-46.

Grisetti, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based SLAM with

Rao-Blackwellized particle filters by adaptive proposals and selective resampling.

In Proceedings of the 2005 IEEE International Conference on Robotics and

Automation (pp. 2432-2437). IEEE.

Habib, M.K. (2007). Robot mapping and navigation by fusing sensory information.

In S. Kolski, (Ed.), Mobile robots: Perception & navigation (571-594). Germany:

Plv/ARS.

Hopkinson, C., Chasmer, L., Young-Pow, C., & Treitz, P. (2004). Assessing forest

metrics with a ground-based scanning lidar. Canadian Journal of Forest

Research, 34 (3), 573-583.

Julier, S. J.,& Uhlmann, J. K. (1997). A new extension of the Kalman Filter to

nonlinear systems. In AeroSense'97 (pp. 182-193). International Society for

Optics and Photonics.

Kandrot, S.M. (2013). Coastal monitoring: A new approach. Retrieved March 12,

2016, from http://research.ucc.ie/journals/chimera/2013/00/kandrot/09/en.

http://research.ucc.ie/journals/chimera/2013/00/kandrot/09/en

85

Kao, D., Kramer, M., Luo, A., Dungan, J., & Pang, A. (2005). Visualizing

distributions from multi-return LIDAR data to understand forest structure. The

Cartographic Journal, Special Issue on GeoVisualization, 42 (1), 35-47.

Kim, J., & Lee, J. (2013). Real-time estimation of maximum friction and optimal slip

ratio based on material identification for a mobile robot on rough terrain.

 In Control, Automation and Systems (ICCAS), 13th International Conference on

(pp.1708-1713). IEEE.

Kohlbrecher, S., Oskar von, S., Meyer, J., & Klingauf, U. (2011). A flexible and

scalable SLAM system with full 3D motion estimation. In 2011 IEEE

International Symposium on Safety, Security, and Rescue Robotics (pp. 155-160).

IEEE.

Lu, D. V., Hershberger, D., & Smart, W. D. (2014). Layered costmaps for context-

sensitive navigation. In 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 709-715). IEEE.

Lu, D. V. (2014). Contextualized robot navigation. Ph.D Thesis, Washington

University in Saint Louis, Missouri.

Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique

with an application to stereo vision (darpa), in DARPA Image Understanding

Workshop, (121–130).

Marcoe, K. (2007). Lidar ~ An introduction and overview. Retrieved April 30, 2016,

from

http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Marcoe_LiDAR

.pdf.

Maybeck, P. S. (1982). Stochastic models, estimation, and control (Vol. 3).

Academic Press.

http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Marcoe_LiDAR.pdf
http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Marcoe_LiDAR.pdf

86

McGee, L. A., & Schmidt, S. F. (1985). Discovery of the Kalman filter as a practical

tool for aerospace and industry. NASA Technical Memo 86847.

Meeussen, W. (2010). REP 105: Coordinate frames for mobile platforms. Retrieved

March 12, 2016, from http://www.ros.org/reps/rep-0105.html.

Nayegandhi, A. (2007). Lidar technology overview. Retrieved April 30, 2016, from

http://lidar.cr.usgs.gov/downloadfile2.php?file=Nayegandhi_Lidar_Technology_

Overview.pdf.

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., & theBigDog Team (2008).

Bigdog, the rough-terrain quadruped robot. In Proceedings of the 17th World

Congress, 17(1), 10822-10825. Proceedings Seoul, Korea.

Riley, P., & Crowe, P. (2006). Airborne and terrestrial laser scanning – Applications

for Illwarra Coal. Coal Operators’ Conference, 266-275.

ROS concepts. (n.d). Retrieved April 12, 2016, from

http://wiki.ros.org/ROS/Concepts.

Rudan, J., Tuza, Z., & Szederkenyi, G. (2010). Using LMS-100 laser rangefinder for

indoor metric map building. In 2010 IEEE International Symposium on Industrial

Electronics (pp. 525-530). IEEE.

Salmond, D., & Gordon, N. (2005). An introduction to particle filters. Retrieved

September 14, 2015, from

 http://dip.sun.ac.za/~herbst/MachineLearning/ExtraNotes/ParticleFilters.pdf.

Schmidt, S. F. (1981). The Kalman filter - Its recognition and development for

aerospace applications. Journal of Guidance, Control, and Dynamics, 4(1), 4-7.

http://lidar.cr.usgs.gov/downloadfile2.php?file=Nayegandhi_Lidar_Technology_Overview.pdf
http://lidar.cr.usgs.gov/downloadfile2.php?file=Nayegandhi_Lidar_Technology_Overview.pdf
http://dip.sun.ac.za/~herbst/MachineLearning/ExtraNotes/ParticleFilters.pdf

87

SICK AG (2010). Laser measurement systems of the LMS1xx product family.

Retrieved August 15, 2015, from http://www.sick.com.

Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robots.

Cambridge, MA: The MIT press.

Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear

approaches. John Wiley & Sons.

Thrun, S. (2002). Robotic mapping: A survey. Retrieved May 1, 2016, from

http://reports-archive.adm.cs.cmu.edu/anon/2002/abstracts/02-111.html.

Thrun, S. (2002). Particle filter in robotics. In Proceedings of Uncertaintiy in AI.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Dolan, J., et al. (2007).

Tartan racing: A multi-modal approach to the DARPA urban challenge.

Retrieved March 19, 2016, from

 http://archive.darpa.mil/grandchallenge/TechPapers/Tartan_Racing.pdf.

Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter.Technical

Report. University of North Carolina at Chapel Hill Chapel Hill, NC, USA.

Yıldız, B., & Gören, A. (2012). Engebeli arazide ilerleyebilen gezgin robot tasarımı

ve imalatı. Endüstri Otomasyon Dergisi, (189), 22-27.

http://www.sick.com/
http://reports-archive.adm.cs.cmu.edu/anon/2002/abstracts/02-111.html
http://archive.darpa.mil/grandchallenge/TechPapers/Tartan_Racing.pdf

88

APPENDICES

APPENDIX-1: Technical specifications of LMS100 LIDAR

89

90

91

92

93

APPENDIX-2: Hector_mapping_default.launch File

<launch>

<arg name="tf_map_scanmatch_transform_frame_name"

default="scanmatcher_frame"/>

<arg name="base_frame" default="base_footprint"/>

<arg name="odom_frame" default="nav"/>

<arg name="pub_map_odom_transform" default="true"/>

<arg name="scan_subscriber_queue_size" default="5"/>

<arg name="scan_topic" default="scan"/>

<arg name="map_size" default="2048"/>

<node pkg="hector_mapping" type="hector_mapping"

name="hector_mapping" output="screen">

<!-- Frame names -->

<param name="map_frame" value="map" />

<param name="base_frame" value="base_link" />

<param name="odom_frame" value="base_link" />

<!-- Tf use -->

<param name="use_tf_scan_transformation" value="true"/>

<param name="use_tf_pose_start_estimate" value="false"/>

<param name="pub_map_odom_transform" value="$(arg

pub_map_odom_transform)"/>

<!-- Map size / start point -->

<param name="map_resolution" value="0.0250"/>

<param name="map_size" value="$(arg map_size)"/>

<param name="map_start_x" value="0.5"/>

<param name="map_start_y" value="0.5" />

<param name="map_multi_res_levels" value="2" />

<!-- Map update parameters -->

<param name="update_factor_free" value="0.4"/>

<param name="update_factor_occupied" value="0.9" />

94

<param name="map_update_distance_thresh" value="0.4"/>

<param name="map_update_angle_thresh" value="0.06" />

<param name="laser_z_min_value" value = "-1.0" />

<param name="laser_z_max_value" value = "1.0" />

<!-- Advertising config -->

<param name="advertise_map_service" value="true"/>

<param name="scan_subscriber_queue_size" value="$(arg

scan_subscriber_queue_size)"/>

<param name="scan_topic" value="$(arg scan_topic)"/>

<param name="tf_map_scanmatch_transform_frame_name" value="$(arg

tf_map_scanmatch_transform_frame_name)" />

</node>

<!--<node pkg="tf" type="static_transform_publisher"

name="map_nav_broadcaster" args="0 0 0 0 0 0 map nav 100"/>-->

</launch>

95

APPENDIX-3: gmapping_params.yaml File

map_udpate_interval: 1.0

maxUrange: 5.0

sigma: 0.1

kernelSize: 1

lstep: 0.15

astep: 0.15

iterations: 1

lsigma: 0.1

ogain: 3.0

lskip: 1

srr: 0.1

srt: 0.2

str: 0.1

stt: 0.2

linearUpdate: 1.0

angularUpdate: 0.5

temporalUpdate: 0.4

resampleThreshold: 0.5

particles: 10

xmin:-5.0

ymin: -5.0

xmax: 5.0

ymax: 5.0

delta: 0.02

llsamplerange: 0.01

llsamplestep: 0.05

lasamplerange: 0.05

lasamplestep: 0.05

