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DEĞİŞİK BURULMA SINIR ŞARTLARINA VE ASILI KÜTLE YAY 

SİSTEMLERİNE SAHİP KARMAŞIK YAPILARIN TİTREŞİM ANALİZİ 

 

ÖZ 

 

Karmaşık yapılar, mühendislik uygulamalarında önemli bir role sahiptir. Eğri 

çubuklar da bu karmaşık elemanlardan birisidir. Bu çalışmada, değişik burulma sınır 

şartlarına ve asılı kütle yay sistemlerine sahip bir eğri çubuğun düzlem içi doğal 

frekansları araştırılmıştır.Çubuk Euler kiriş kabul edilerek sonlu elemanlar metodu 

kullanılarak modellenmiştir. Asılı kütle yay sistemlerinin sadece düşey doğrultuda 

titreşim hareketi yaptıkları kabul edilmiştir. Değişik koşullar altında düzlem içi doğal 

frekanslar, ANSYS Multiphysics 14.0 ve sonlu eleman programı geliştirilerek 

çözümünde MATLAB bilgisayar programı kullanılarak hesaplanmış bulunan sonuçlar 

birbiri ile karşılaştırılmıştır. Kesit alanının, eğrilik açısının, asılı kütle yay 

sistemlerinin ve burulma sınır şartlarının çubuğun düzlem içi doğal frekansları 

üzerine olan etkileri araştırılmıştır. Sonuçlar, tablo ve grafikler halinde verilmiş olup 

sonuçlar arasında iyi uyum olduğu gözlenmiştir.  

 

Anahtar kelimeler: Karmaşık yapılar, asılı kütle yay, titreşim,eğri çubuk 
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VIBRATION ANALYSES OF COMPLEX STRUCTURAL MEMBERS WITH 

VARIOUS TORSIONAL SPRING FOUNDATIONS AND SUSPENDED 

SPRING MASS SYSTEMS  

 

ABSTRACT 

 

Complex structural members like curved beams have an important role in 

engineering applications. One of the complex members is a curved beam. In this 

study, in-plane natural frequencies of curved beams with various torsional spring 

foundations and suspended spring mass systems are investigated. The curved beam is 

assumed to be an Euler beam and modeled by using the Finite Element Method. The 

suspended spring mass system vibrating only in the vertical direction is considered. 

In plane natural frequencies of curved beam under different conditions are calculated 

with using  ANSYS Multiphysics 14.0 and MATLAB computer programmes. The 

results are compared with each other. The effects of cross sectional area, subtended 

angle, suspended spring-mass systems and rotational spring foundations on the in-

plane frequencies of curved beams are investigated. The results of this investigation 

are given in the tables and graphics and good agreement is found.  

 

Keywords: Complex structural members, suspended spring mass system, vibration, 

curved beam 
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CHAPTER ONE 

INTRODUCTION  

 

1.1 Introduction
 

 

Complex structural members are used in many structures. One of them is a curved 

beam. Curved beams have significant importance in engineering applications and 

used in structural members such as bridges, industrial structures. Moreover curved 

beams are also widely used in turbine blade packets in aerospace industries. Thus, 

static and dynamic characteristics become a popular topic for many researchers. For 

this reason, the static and dynamic stability analysis of curved beams have been 

investigated in recent years.  Vibration analysis of curved beams having torsional 

spring foundations and suspended spring mass systems is carried out in this study.  

 

The vibration analyses of curved beams which have been studied by other 

investigators can be summarized as below: 

 

Timoshenko and Gere (1961) used analytical method for buckling analysis of 

hinged-hinged Bernoulli-Euler curved beams. Rao and Sundararaian (1969) 

investigated the fundamental frequecies of the clamped circular arcs with various 

subtended angles and found lowest four natural frequencies of complete ring by 

using analytical method. Sabir and Aswell (1971) used different shape functions for 

the natural frequency analysis of circular ring.  Petyt and Fleischer (1971) 

investigated free vibration of curved beam for different boundary conditions. 

Sabuncu (1978) has worked on the natural frequency analysis of thin curved beams 

by using different displacement functions and investigated the effects on natural 

frequencies. Bazalt and Cedolin (1991) worked on buckling analysis of curved 

beams by using analytical and energy methods.  
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Kawakami et al.(1995)  investigated in- plane and out-of-plane free vibrations of 

curved beams. They studied the effect of arbitrary shapes and variable cross sections 

on free vibrations of curved beams. Wu and Chen (2011) analyzed the out-of plane 

free vibrations of horizontal circular curved beams carrying arbitrary set of 

concentrated elements. Wu, Lin and Shaw (2013) worked on free in-plane vibration 

analysis of a curved beam (arch) with arbitrary various concentrated elements. In 

those studies, the exact and FEM solutions are obtained for 'bare' (without any 

attachments) and 'loaded' (with radial, tangential, rotational springs and lumped 

masses) curved beams. 

 

Guo et al. (2014) investigated out-of-plane buckling analysis of circular arches 

with elastic end restraints under other loading conditions with using approximate 

analytical solutions and the finite element method.  

 

This study presents the in-plane vibration analysis of uniform curved beams with 

various torsional spring foundations and suspended spring-mass systems. The effects 

of the variation of the cross-section, subtended angle of curved beam, stiffness 

parameter of torsional spring foundation  and mass parameter of suspended spring-

mass systems on the natural frequencies are examined by using ANSYS Multiphysics 

14.0 (2011) and MATLAB (2011) computer programmes.  The results are compared 

with each other and given in tables and graphics. 
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CHAPTER TWO 

THE FINITE ELEMENT METHOD 

 

2.1 The Finite Element Method
 

 

The finite element method is a numerical method in order to deal with the 

problems of engineering and physics. This approach is a very practical analysis 

method for engineering challenges such as; complex geometry, loading type and 

material characteristics. It has developed for aerospace industry analyses at the 

beginning. Moreover, in following years the method is found out to be applicable to 

the solution of other applied sciences and engineering.  

 

At the present time, it is realized that obtaining approximate numerical solutions 

to problems is more essential than exact closed-form solutions. For example, if we 

want to perform stress analysis of engine part that has complicated shape and 

material properties, we can find out the governing equations and boundary conditions 

for this problem, but we see immediately that no simple analytical solution can be 

found. In this point, the finite element method presents us the most effective 

solutions.  

 

In the finite element method, we can obtain an approximate solution instead of 

exact solution due to the problem reduced to simpler main engineering one and 

results obtained are much closer to the exact results obtained by spending more effort 

to solve analytical equations. Lack of available conventional mathematical tools for 

solving complicated engineering problems shows us that the finite element method is 

the only method can be used in these problems.  
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In this method, the whole structure is replaced by several pieces or elements 

which is assumed to behave as a continious structural member called a finite 

element. The finite elements are assumed to be interrelated at certain points known 

as joints or nodes. For example, the circumference is calculated easily by dividing 

circle to polygonal elements by former mathematicians as shown in Figure 2.1. With 

today's statement, each side of polygon is called as a finite element. The connection 

between polygon sides is named as a node that used to compose algebraic equations. 

Stress analysis of systems is done by using the equations of equilibrium of these 

nodes exemplary. Depending on complexity of engineering structure and the 

increasing of the number of finite elements, too many equations are obtained. In this 

point, the digital computers must be used.   

  

  

  

 

 

 

 

 

   

 

Figure 2.1 Circumference with the Finite Element Approach 

 

2.2 Solution Steps of the Finite Element Method 

 

The solution of a engineering problem by the finite element method follows a path          

as shown below. 
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(a) Discretization of a continuum region  

The continuum region is divided into elements in this step. Figure 2.2 presents 

nodes and elements located on the model. These triangular and other type elements 

might be used to find out the stress distribution over the model. However, the 

selection of the number and types of elements must be performed with an intense 

care owing to the geometry, loading condition and etc.  

 

Figure 2.2 Nodes and elements in the Finite Element Method 

 

(b) Interpolation function selection 

 

In the following phase the elements must be assigned to the defined nodes and 

additionally selection of interpolation function which stands for the field variable 

over the element must be performed. Field variable might be scalar, vector or a 

higher order tensor. Interpolation functions for field variable are generally preferred 

as polynomials since it is straightforward to integrate and differentiate.  

 

The degree of polynomials varies owing to some criteria and these are: assigned 

nodes, quantity of unknowns at each node and continuity requirements which are 

imposed at the nodes and the boundaries of element. The magnitude of the field 

variable and its derivatives might be unknowns at the nodes.    

 



 

6 

 

 

(c) Determination of element properties:  

 

After elements and their interpolation functions are selected or in other words the 

FE model has been set up matrix equations which state the properties of the 

individual elements can be obtained. For this purpose it is possible to use one of the 

four approaches and these are: the direct approach, the variational approach, the 

weighted residual approach or the energy balance approach. The variational approach  

generally fits well with most of the challenges. However, the selection of approach is 

directly effected by problem characteristics.  

 

(d) Constitue the element properties to obtain the system equations  

 

Properties of whole system which is modeled by network of elements is a 

combination all elements properties. For this purpose matrix equations must be 

assembled and created which states the behavior of the overall region of system. The 

matrix equations of entire system have the similar form with an individual element 

but with a difference of including more terms due to existance of all nodes. 

Basically, assembly procedure comes from the equallity of field variable value for 

every element that shares the node in which elements are interconnected. Element 

equation assembly procedure is an easy challenge in the FE analysis and generally 

performed by a computer. Additionally, system equations must also consider the 

boundary conditions of the problem before the solution of system equation set.    

 

(e) Solution of system equations 

 

Assembly process results with an equation set which can be solved to obtain 

unknowns values at nodes.  
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2.3 Advantages of the Finite Element Method 

 

The advantages of the finite element method is given below list respectively:  

 

 The geometry of structures can be described by the way of diversity of 

shape and size of finite elements. 

 The area which has difficulties like holes and corners can be analyzed 

easily. 

 The boundary conditions of system is specified easily. 

 The structures which have different material and shape can be 

examined easily. 

 

2.4 The Finite Element Method Applications 

 

The range of the finite element method extends to all engineering applications 

such as engineering of mechanical, aerospace, civil, automotive or etc. Generally the 

finite element method can be divided into three categories. These categories are 

arranged time-independent problems, eigenvalue problems and time-dependent  

problems respectively.  

 

The majority of the finite element applications is time-independent problems or  

in other words equilibrium problems. The displacement or stress distribution under 

different loading conditions of mechanical systems can be found easily by using the 

finite element method.  

 

The finite element method can be used to find natural frequencies and mode 

shapes of vibration of solids and fluids also. This type of analyses is called as 

eigenvalue problems.  

 

The last category of the finite element method is time dependent problems. This 

category is consist of the problems that result when the time parameter is added to 

the problems. 
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CHAPTER THREE 

DEFINITION OF THE PROBLEM AND THEORETICAL 

CONSIDERATION OF CURVED BEAMS 

 

3.1 Definition of the Problem 

 

The curved beam used in the study is shown in Figure 3.1. It carries different 

number of suspended spring-mass systems. All analyses of curved beams are 

performed by using "The Euler beam assumption" and "The Finite Element Method" 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Curved beam with suspended mass-spring systems 

 

3.2 Theoretical Analysis of Curved Beams 

 

This part presents the theoretical consideration with geometrical shape of the 

curved beams considered in this thesis. 

 



 

9 

 

 

Figure 3.2 Displacements of a curved beam finite element  

 

As shown in Figure 3.2 a curved finite element has six degrees of freedom. Nodal 

displacement functions used in the analysis of curved beam are given by   Sabir & 

Ashwell (1971) as, 

    6421 )sin()cos( aaaaw                                        (3.1) 

   2

65321
2

1
)cos()sin(  aaaaav  ,

R

y
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y
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                                                                            (3.3) 

Radial, axial displacements and rotation of a curved beam element are shown 

w , v  and i respectively in Figure 3.2. 

 

      111  iiiiii

T
iwviwvq                                      (3.4) 

 

3.2.1 Kinetic Energy of In-Plane Vibration of a Curved Beam 

 

The kinetic energy of a curved beam element is given by Belek, (1977) as below. 
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where  is density and A  is cross sectional area of curved beam.  

 

 The Eq.(3.5) can be written in a closed form as 
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where, 
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The mass matrix  m  is; 

 

 

 

 

                   (3.8) 

 

where, 

 

 2sin2
2

cos)4( 2

0 


 


C , 


cos2
2

sin)4( 2

1 


C            (3.9)  

 

 

 

 































3/20/3/

2/0

6/2/0

1sincoscos1sin

sincossin1cos0

35

2

32

1

0













C

C

ARm



 

11 

 

Transformation matrix   C  is; 
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3.2.2 Strain Energy of In-Plane Vibration of a Curved Beam 

 

Elastic potential energy of a curved beam element in vibrating in its own plane is 

given by Belek, (1977) as 

 

  dyEA
R

w
vEI

R

v
wU

shl

xx
















































0

2

'

2
'

''

2

1
                                     (3.15) 

 

where E  is Young's modulus and xxI  is moment of inertia of area about x axis of 

a curved beam. 
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The Eq.(3.15) can be written in a closed form as 
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Curved beam element elastic stiffness matrix  ek  and mass matrix  em  are 

obtained by using the finite element method. Then the global elastic stiffness matrix 

 eK   and mass matrix  M   are constituted by individual stiffness and mass matrices 

of each curved beam element. Stiffness matrices and mass matrices of suspended 

spring mass systems are placed into the nodal location of global elastic stiffness and 

global mass matrix individually. The natural frequencies of curved beams are 

obtained from the solution of the equation given below. 

 

          02  qMKe                                               (3.19) 
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3.2.3 Transfer Matrix For Suspended Spring Mass Systems 

 

Each of the suspended spring mass system has three degree of freedom in our 

analysis. This coordinate system is called a local coordinate system and it is shown x, 

y and θ. The curved beam coordinate system is also shown in Figure 3.2 as w, v and i 

are called global coordinate system. It is shown that w is axial, v is radial 

displacement and i is rotation. In order to organize to a single coordinate system,  the 

transformation matrix is used. The local coordinate system can be converted into 

global coordinate system by using the Eq.(3.20). 
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Here L is called transformation matrix and shown in Equation (3.20). 
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Global mass and stiffness matrices of suspended spring mass systems are, 
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 CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

 

In this chapter, the effects of cross sectional area, subtended  angle, suspended 

spring-mass systems and rotational spring foundations on the in-plane frequencies of 

the curved beams are investigated. A curved beam without suspended spring mass 

systems is shown in Figure 4.1.  

 

 

Figure 4.1 Curved beam with rotational spring ends. 

 

The main physical properties of curved beam used throughout in this chapter are 

as follows: b=0.02 m, t=0.01 m, R=1 m, E=2.069x10
11

 N/m², =0.3,                     

ρ=7836.8 kg/m3 The foundation stiffnesses of rotational spring are  ki1 =5 Nm/rad 

and ki 2 =5 Nm/rad. Other parameters used in the modeling of the system are given in 

the table and figure legends. The numerical results are obtained by the Finite 

Element Method (FEM) using ANSYS Multiphysics 14.0 and MATLAB computer 

programmes are compared. 
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In order to determine the sufficient number of elements, first three natural 

frequencies are found for a curved beam without suspended spring mass systems and 

obtained results are presented in Figures 4.2, 4.3 and 4.4. 

 

It is clear from Figures 4.2, 4.3 and 4.4 that the first three natural frequencies do 

not vary significantly after the number of element n el =6. Therefore, n el =48 is 

selected for all of the cases to obtain a better approximation. 
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Figure 4.2 The effect of number of elements on the first natural frequency. (b=0.02 m, t=0.01 m,    

R=1 m, θ=180º, ρ=7836.8 kg/m³, E=2.069x10
11

 N/m², =0.3) 
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Figure 4.3 The effect of number of elements on the second natural frequency.(b=0.02 m, t=0.01 m, 

R=1 m, θ=180º, ρ=7836.8 kg/m³, E=2.069x10
11

 N/m², =0.3) 
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Figure 4.4 The effect of number of elements on the third natural frequency. (b=0.02 m, t=0.01 m,  

R=1 m, θ=180º, ρ=7836.8 kg/m³, E=2.069x10
11

 N/m², =0.3) 

 

Figure 4.5 shows the variation of the first five mode shapes of a curved beam. The 

curved beam's physical properties are also given in Figure 4.2.  
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   First mode    Second mode 

 

   Third mode    Fourth  mode 

 

     Fifth mode 

Figure 4.5 Mode shapes of in plane vibrations. 

 

Table 4.1 shows the effect of foundation stiffness with rotational spring on the in-

plane natural frequencies. As seen from the table that when the stiffness parameter 

increases the natural frequencies of the curved beam increases.   
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Table 4.2 shows the effect of thickness variation of curved beams on the in-plane 

natural frequencies. When the t/b ratio increases the natural frequencies of the curved 

beam increases this is due to increase in rigidity. 

 

Table 4.3 shows the variation of subtended angle of a curved beam on the in-plane 

natural frequencies. When the subtended angle increases, the natural frequencies 

decrease this is because of the flexibility of the curved beam increases. 

 

Table 4.1 The effect of stiffness of rotational spring foundations on the natural frequencies.      

(b=0.02 m, t=0.01 m, R=1 m, θ=180º, ρ=7836.8 kg/m³, E=2.069x10
11

 N/m², =0.3,  nel=48) 

Frequency (Hz) 

  f1 f2 f3 f4 f5 
Stiffness of 
Rotational 

Spring 
Foundation 
(Nm/rad) 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

5  5.378 5.374 16.375 16.361 33.038 33.015 53.915 53.882 80.139 80.110 

500  6.877 6.873 17.751 17.738 34.651 34.620 55.507 55.477 81.864 81.840 

1000 7.673 7.669 18.650 18.638 35.813 35.794 56.728 56.701 83.244 83.224 

 

 

Table 4.2 The effect of  t/b ratio on the natural frequencies. (b=0.02 m, R=1 m, θ=180º, ρ=7836.8 

kg/m³, E=2.069x10
11

 N/m², =0.3, nel=48) 

Frequency (Hz) 

  f1 f2 f3 f4 f5 

t/b Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0,5 5.378 5.374 16.375 16.361 33.038 33.015 53.915 53.882 80.139 80.110 

1 10.714 10.707 32.699 32.684 65.979 65.984 107.620 107.687 159.910 160.137 

1,5 16.059 16.052 48.995 49.006 98.807 98.940 160.990 161.411 239.040 240.073 

2 21.398 21.398 65.234 65.310 131.450 131.863 213.840 214.990 317.190 319.847 
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Table 4.3 Frequencies obtained for different subtended angles of curved beams. (b=0.02 m, t=0.01 m, 

R=1 m, ρ=7836.8 kg/m³, E=2.069x10
11

 N/m², =0.3, nel=48) 

Frequency (Hz) 

  f1 f2 f3 f4 f5 

Subtended 
Angle(º) 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

90 32.534 32.533 76.472 76.480 145.500 145.616 227.060 227.325 333.690 334.395 

135 12.129 12.124 31.870 31.855 62.046 62.039 98.871 98.872 145.830 145.896 

180 5.378 5.374 16.375 16.361 33.038 33.015 53.915 53.882 80.139 80.110 

270 1.142 1.140 5.608 5.597 12.662 12.639 21.927 21.889 33.442 33.389 

 

Figures 4.6, 4.7 and 4.8 show curved beams with three different suspended spring 

mass systems. 

 

Figure 4.6 Curved beam carrying one suspended spring mass system(θ 1S =45º) 

 

Figure 4.7 Curved beam carrying two suspended spring mass systems(θ 1S =45º, θ 2S =90º ) 
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Figure 4.8 Curved beam carrying three suspended spring mass systems.(θ 1S =45º, θ 2S =90º, θ 3S =135) 

 

Added suspended spring mass system is shown in Figure 4.9. The exact natural 

frequency of a fixed-free spring mass system that is placed to the different locations 

on the curved beam is found by using 
m

k s  formulation and for three different 

mass values (m=1 kg, m=3 kg and m=5 kg) and the same value of stiffness of spring 

(ks=5x10
3
N/m) gave 11.254 Hz, 6.497 Hz and 5.032 Hz values. 

 

 

 

Figure 4.9 A suspended spring mass system 
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Tables 4.4, 4.5 and 4.6  show the effect of variation of suspended spring mass 

systems on the first five natural frequencies of curved beams for θ=180º. The exact 

natural frequency of spring mass systems appears in these tables clearly. 

   

Curved beams having one, two and three suspended spring masses are seen in 

Figures 4.6., 4.7 and 4.8 respectively. As it can be seen from Tables 4.4, 4.5 and 4.6 

that for a single suspended spring mass system, the first natural frequency of the 

system decreases, the second natural frequency is stable but the third natural 

frequency increases slightly. Secondly, the curved beam has two suspended spring 

masses as shown in Figure 4.7, the first and third natural frequencies of the system 

are stable, but the second natural frequency increases. Thirdly, the curved beam has 

three suspended spring masses as shown in Figure 4.8, the first natural frequency of 

system decreases again, the second natural frequency is stable but the third frequency 

also increases slightly. 

  

All those phenomenon mentioned for subtended angle of 180º are related with the 

positions of spring-mass systems and mode shapes of curved beams. If the spring-

mass system is suspended on the nodes of vibrational modes of curved beams, it has 

no effect on the frequencies. If the suspended spring mass is fixed on the vibrating 

portion of curved beams, it has a mass effect and decreases the frequency of 

fundamental mode. For the higher modes of curved beams, this type of positioning 

stiffens the curved beam as a result increases the frequency slightly. 

 

Table 4.4 The effect of different number of suspended spring mass systems on the lowest five natural 

frequencies for m n =1 kg. (θ=180º, ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number 
of Spring 

Mass 
System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 5.378 5.374 16.375 16.361 33.038 33.015 53.915 53.882 80.139 80.110 

1 5.281 5.277 11.312 11.310 16.375 16.361 33.164 33.143 54.204 54.172 

2 5.281 5.277 9.503 9.500 11.312 11.310 19.176 19.166 33.164 33.143 

3 5.191 5.187 9.503 9.499 11.115 11.114 11.501 11.499 19.177 19.167 
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Table 4.5 The effect of different number suspended spring mass systems on the lowest five natural  

frequencies for m n =3 kg. (θ=180º, ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number 
of Spring 

Mass 
System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 5.378 5.374 16.375 16.361 33.038 33.015 53.915 53.882 80.139 80.110 

1 4.879 4.895 7.046 7.043 16.375 16.361 33.154 33.133 54.195 54.164 

2 4.879 4.895 5.680 5.679 7.047 7.043 18.527 18.515 33.154 33.133 

3 4.617 4.615 5.679 5.678 6.420 6.420 7.471 7.467 18.527 18.516 

 

 

Table 4.6 The effect of different number suspended spring mass systems on the lowest five natural 

frequencies for m n =5 kg. (θ=180º, ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 
Number of 

Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 5.378 5.374 16.375 16.361 33.038 33.015 53.915 53.882 80.139 80.110 

1 4.296 4.296 6.222 6.217 16.375 16.361 33.153 33.131 54.194 54.162 

2 4.296 4.295 4.426 4.425 6.222 6.217 18.423 18.411 33.153 33.131 

3 3.996 3.995 4.424 4.423 4.973 4.973 6.688 6.682 18.424 18.412 
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Figure 4.10 shows the variation of the first five frequencies of a curved beam 

carrying different number of suspended spring mass systems for m n =1 kg. 
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Figure 4.10 Comparisons of the lowest five natural frequencies of the curved beam carrying different 

number of suspended spring mass systems.  (θ=180º, ki 1 =5 Nm/rad, ki 2 =5 Nm/rad, ks n =5x10
3

N/m, 

m n =1 kg) 

 

Tables 4.7, 4.8 and 4.9 show the effect of subtended angle of curved beams 

carrying different number of spring mass systems on the first five natural frequencies 

for different subtended angle (θ=90º). In these tables, the curved beam having 

subtended angle θ=90º shows different behaviour than the one with subtended angle 

θ=180º. As mentioned before, if the subtended angle decreases, the natural 

frequencies of curved beam increases. This explains that the curved beam with θ=90º 

is more rigid than the one with θ=180º. When the suspended spring mass systems are 

fixed on the system in sequence, the first and second natural frequencies of curved 

beam increases because of stiffness effect of suspended spring mass system. 

However increasing of the value of masses, the raising ratio of first and second 

natural frequencies decreases because of the mass effect of the suspended masses. 

The third natural frequency increases slightly for the same amount with different 

spring mass systems. 
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Table 4.7 The effect of different number of suspended spring mass systems on the lowest five natural 

frequencies for θ=90º and m n =1 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number of 
Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 32.534 32.533 76.472 76.480 145.500 145.616 227.060 227.325 333.690 334.395 

1 10.890 10.890 33.541 33.539 76.538 76.546 145.510 145.623 227.230 227.493 

2 10.882 10.883 11.099 11.099 33.541 33.539 77.565 77.573 145.510 145.623 

3 10.598 10.598 11.066 11.066 11.238 11.238 34.510 34.508 77.628 77.646 

 

Table 4.8 The effect of different number of suspended spring mass systems on the lowest five natural 

frequencies for θ=90º and m n =3 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number of 
Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 32.534 32.533 76.472 76.480 145.500 145.616 227.060 227.325 333.690 334.395 

1 6.302 6.302 33.464 33.462 76.537 76.545 145.510 145.623 227.230 227.493 

2 6.297 6.297 6.410 6.410 33.464 33.463 77.550 77.558 145.510 145.623 

3 6.144 6.144 6.391 6.391 6.488 6.488 34.370 34.368 77.612 77.620 

 

Table 4.9 The effect of different number of suspended spring mass systems on the lowest five natural 

frequencies for θ=90º and m n =5 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number of 
Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 32.534 32.533 76.472 76.480 145.500 145.616 227.060 227.325 333.690 334.395 

1 4.884 4.884 33.450 33.448 76.537 76.545 145.510 145.623 227.230 227.493 

2 4.880 4.880 4.965 4.965 33.450 33.448 77.547 77.555 145.510 145.623 

3 4.762 4.763 4.950 4.950 5.026 5.026 34.344 34.342 77.609 77.616 
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Tables 4.10, 4.11 and 4.12 show the effect of subtended angle of curved beams 

carrying different number of spring mass systems on the first five natural frequencies 

for a subtended angle θ=135º.  In these tables, the curved beam shows similar 

vibrational characteristics with the one having subtended angle θ=90º. 

 

Table 4.10 The effect of different number suspended spring mass systems on the lowest five natural 

frequencies for θ=135º and m n =1 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 
Number 

of 
Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 12.129 12.124 31.870 31.855 62.046 62.039 98.871 98.872 145.830 145.896 

1 9.656 9.655 14.050 14.044 31.905 31.890 62.086 62.079 99.104 99.107 

2 9.652 9.651 10.653 10.653 14.052 14.047 33.561 33.548 62.086 62.079 

3 8.981 8.981 10.618 10.618 11.202 11.201 15.132 15.126 33.589 33.576 

 

Table 4.11 The effect of  different number suspended spring mass systems on the lowest five natural 

frequencies for θ=135º and m n =3 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 
Number 
of Spring 

Mass 
System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 12.129 12.124 31.870 31.855 62.046 62.039 98.871 98.872 145.830 145.896 

1 5.982 5.982 13.094 13.088 31.902 31.887 62.085 62.078 99.102 99.105 

2 5.972 5.972 6.183 6.182 13.095 13.088 33.434 33.421 62.085 62.078 

3 5.630 5.630 6.154 6.154 6.468 6.467 13.937 13.930 33.461 33.447 
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Table 4.12 The effect of different number suspended spring mass systems on the lowest five natural 

frequencies for θ=135º and m n =5 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number of 
Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 12.129 12.124 31.870 31.855 62.046 62.039 98.871 98.872 145.830 145.896 

1 4.671 4.671 12.990 12.984 31.901 31.886 62.085 62.078 99.102 99.105 

2 4.661 4.661 4.795 4.794 12.991 12.984 33.411 33.397 62.085 62.078 

3 4.413 4.413 4.770 4.770 5.010 5.010 13.775 13.767 33.437 33.767 

 

Tables 4.13, 4.14 and 4.15 show the effect of subtended angle of curved beam 

carrying different number of spring mass systems on the first five natural frequencies 

for a subtended angle θ=270º.  In these tables, the curved beam shows the different 

behaviour  from the one with subtended angle θ=180º. When the suspended spring 

mass systems are fixed on the system, the first and second natural frequencies of 

curved beam decrease but the third natural frequency increases. This phenomenon 

explains the importance of mode shapes of curved beams and the positioning of 

spring mass systems.  

 

Table 4.13 The effect of different number suspended spring mass systems on the lowest five natural 

frequencies for θ=270º and m n =1 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 
Number of 

Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 1.142 1.140 5.608 5.597 12.662 12.639 21.927 21.889 33.442 33.389 

1 1.136 1.134 5.468 5.457 10.406 10.394 13.798 13.789 22.310 22.276 

2 1.136 1.134 4.723 4.715 10.152 10.141 12.524 12.516 14.009 14.004 

3 1.131 1.129 4.654 4.645 9.801 9.787 10.581 10.576 13.303 13.304 
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Table 4.14 The effect of different number suspended spring mass systems on the lowest five natural 

frequencies for θ=270º and m n =3 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 

Number of 
Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 1.142 1.140 5.608 5.597 12.662 12.639 21.927 21.889 33.442 33.389 

1 1.125 1.123 4.925 4.916 7.072 7.068 13.193 13.176 22.237 22.203 

2 1.125 1.123 3.571 3.566 6.159 6.155 9.836 9.831 13.218 13.202 

3 1.109 1.107 3.484 3.478 6.141 6.135 6.176 6.173 10.256 10.255 

 

Table 4.15 The effect of different number suspended spring mass systems on the lowest five natural 

frequencies for θ=270º and m n =5 kg.(ks n =5x10
3

N/m)  

Frequency(Hz) 

  f1 f2 f3 f4 f5 
Number of 

Spring 
Mass 

System 

Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab Ansys Matlab 

0 1.142 1.140 5.608 5.597 12.662 12.639 21.927 21.889 33.442 33.389 

1 1.113 1.111 4.251 4.244 6.444 6.440 13.136 13.118 22.226 22.191 

2 1.113 1.111 2.953 2.949 4.837 4.834 9.242 9.237 13.153 13.136 

3 1.087 1.085 2.873 2.868 4.792 4.790 4.888 4.884 9.635 9.633 

 

As we know that by increasing the subtended angle decreases the rigidity as a 

result decreases frequencies of curved beams but positioning and number of 

suspended spring mass systems cause variation in frequencies of curved beam. This 

effect depends on the modes of curved beams as discussed before. 

 

Figures 4.11, 4.15 and 4.19 show variation in first three natural frequencies for 

different subtended angles of curved beams. 
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Figure 4.11 The effect of different number suspended spring mass systems on the lowest three natural 

frequencies for θ=90º and m n =1 kg. (ks n =5x10
3

N/m)  
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Figures 4.12, 4.13 and 4.14 show the first three mode shapes of a curved beam for 

θ=90º.  

 

 

Figure 4.12 First mode shape of a curved beam. (θ=90º , ks n =5x10
3

N/m, m n =1 kg) 

 

 

 

 

Figure 4.13 Second mode shape of a curved beam. (θ=90º , ks n =5x10
3

N/m, m n =1 kg) 
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Figure 4.14 Third mode shape of a curved beam. (θ=90º, ks n =5x10
3

N/m, m n =1 kg) 
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Figure 4.15 The effect of different number suspended spring mass systems on the lowest three natural 

frequencies for θ=135º and m n =1 kg. (ks n =5x10
3

N/m)  
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Figures 4.16, 4.17 and 4.18 show the first three mode shapes of a curved beam for 

θ=135º. 

 

 

Figure 4.16 First mode shape of a curved beam. (θ=135º, ks n =5x10
3

N/m, m n =1 kg) 

 

 

 

Figure 4.17 Second mode shape of a curved beam. (θ=135º, ks n =5x10
3

N/m, m n =1 kg) 
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Figure 4.18 Third mode shape of a curved beam. (θ=135º, ks n =5x10
3

N/m, m n =1 kg) 
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Figure 4.19 The effect of different number suspended spring mass systems on the lowest three natural 

frequencies for θ=270º and m n =1 kg.(ks n =5x10
3

N/m)  
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Figures 4.20, 4.21 and 4.22 show the first three mode shapes of curved beam for 

θ=270º. 

 

 

Figure 4.20 First mode shape of a curved beam. (θ=270º, ks n =5x10
3

N/m, m n =1 kg) 

 

 

 

Figure 4.21 Second mode shape of a curved beam. (θ=270º, ks n =5x10
3

N/m, m n =1 kg) 
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Figure 4.22 Third mode shape of a curved beam. (θ=270º, ks n =5x10
3

N/m, m n =1 kg) 
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CHAPTER FIVE 

CONCLUSIONS  

 

In this study the analysis of in-plane vibration of the curved beam having 

suspended spring mass systems and rotational spring foundation is carried out by 

using the Finite Element Method via ANSYS and MATLAB computer programmes.  

 

The results obtained by both computer programmes using an equal number of 

elements gave very good accuracy when compared with each other. 

 

The conclusions obtained from these analyses are summarized below: 

 

1. When the stiffness of rotational spring foundation increases, the in-plane 

natural frequencies of the curved beam increase.    

 

2. The increase of t/b ratio of curved beams also increases the natural 

frequencies of curved beams.   

 

3. The subtended angle of curved beams increases, the in-plane natural 

frequencies decrease as the flexibility of the curved beam increases. 

 

4 Number and position of suspended spring mass systems are also important 

parameters in our analyses. This is pointed out in our analyses for different 

subtended angles(θ=180º and θ=270º). When the spring mass system is suspended on 

the vibrational nodes of curved beams, there is no effect on the natural frequencies. It 

can be seen that when the first spring mass system is fixed on curved beams for 

θ=180º, the second natural frequency has no change. For the lower modes, the 

suspended spring mass system decreases the natural frequencies of curved beams 

because of mass effect whereas for higher modes, the natural frequencies increase 

because suspended spring mass system stiffens the curved beam. However, this 

phenomenon changes for subtended angle of θ=270º due to the change in mode 

shapes.  
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5. The variation of subtended angles of curved beams and masses of suspended 

systems show that the rigidity of curved beam is important parameter for the coupled 

vibration of spring mass systems. It can clearly seen that suspended spring mass 

systems increase the rigidity of curved beams for subtended angle θ=90º and θ=135º. 

As a result the natural frequencies of systems increase, the increase ratio of the 

natural frequencies decreases when the mass of suspended spring increases. This is 

due to the mass effect.  However it can also be noticed that there is different behavior 

of the system for θ=180º and θ=270º subtended angles for the same conditions.  
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