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RESIDUAL VIBRATION CONTROL OF MANIPULATORS WITH 

TRAPEZOIDAL VELOCITY PROFILE ACTUATIONS 

 

ABSTRACT 

 

Nowadays, flexible systems are more desirable than the rigid systems in 

industrial. Flexible and light mechanical systems are more advantageous than rigid 

and heavy ones. The most current examples of flexible mechanical systems are robot 

manipulators. Flexible manipulators have smaller driving actuators and consume 

lower energy. However, residual vibrations occur due to the flexibility. Elimination 

or suppression of these vibrations by using different control strategies is a 

challenging problem for researchers. 

 

This thesis deals with different aspects of modeling and control of flexible 

systems. Mechanical systems can be modeled by commercial programs such as 

ANSYS, by using finite element method theory or by using lumped mass-spring-

damper systems. Obtaining mathematical model of the systems are important in 

order to observe the dynamic responses of the systems under different input profiles. 

In this study, different methods have been used to perform vibration analysis such as 

Runge-Kutta, Newmark, and ANSYS to reduce the residual vibrations of different 

systems.  

 

Vibrations caused after finishing the motion are called as residual vibrations. 

Residual vibrations significantly affect positioning achievement of the end point in 

flexible systems. To control the residual vibrations of the mechanical system, 

different velocity profiles are applied with open loop control and both experimental 

and simulation results are compared to validate the accuracy of the proposed control 

strategies.  

 

Keywords: Vibration control, mechanical systems, finite element analysis, residual 

vibrations. 
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TRAPEZ HIZ PROFİLİ İLE HAREKET ETTİRİLEN 

MANİPÜLATÖRLERDE ARTIK TİTREŞİMLERİN KONTROLÜ 

 

ÖZ 

 

Günümüzde, esnek sistemler rijit sistemlere göre endüstride daha çok tercih 

edilmektedir. Esnek ve hafif mekanik sistemler, rijit ve ağır olanlara göre daha 

avantajlıdır. Esnek mekanik sistemlerin en geçerli örneği robot manipülatörlerdir. 

Esnek manipülatörler düşük güçte aktüatörlere sahiptir ve daha az enerji harcarlar. 

Bununla birlikte, esneklikten dolayı artık titreşimler meydana gelir. Farklı kontrol 

stratejileri ile bu titreşimlerin yok edilmesi ya da azaltılması, araştırmacılar için ciddi 

bir problem olmaktadır.   

Bu tez, esnek sistemlerin farklı modellenmesi ve kontrol yönleri ile ilgilenir. 

Mekanik sistemler ANSYS gibi ticari programlar ile, sonlu elemanlar teorisi ile ya da 

topaklanmış kütle-yay-sönüm elemanı sistemleri ile modellenebilir. Sistemlerin 

matematik modellerini elde etmek, farklı girdi profilleri altında dinamik cevaplarını 

gözlemlemek için oldukça önemlidir. Bu çalışmada, farklı mekanik sistemlerin artık 

titreşimlerini azaltmak için Runge-Kutta, Newmark ve ANSYS gibi farklı 

yöntemlerle titreşim analizi gerçekleştirilmiştir.  

 

Hareket sonrası oluşan titreşimler artık titreşimler olarak adlandırılmaktadır. Artık 

titreşimler, esnek sistemlerde uç nokta konumlandırılmasında oldukça etkilidir. 

Mekanik sistemlerin artık titreşimlerini kontrol etmek için açık kontrol ile farklı hız 

profileri uygulanmış ve önerilen kontrol stratejilerinin hassasiyetini doğrulamak için 

simülasyon ve deneysel sonuçlar karşılaştırılmıştır.  

 

Anahtar kelimeler: Titreşim kontrolü, mekanik sistemler, sonlu elemanlar analizi, 

artık titreşimler. 
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Introduction 

 

     Flexible and light mechanical systems are more advantageous than rigid and 

heavy ones. The most current examples of flexible mechanical systems are robot 

manipulators. Flexible manipulators have smaller driving actuators and consume 

lower energy. However, residual vibrations occur due to the flexibility. This affects 

the settling time and accuracy at the end point while operating with high speeds. 

Elimination or suppression of these vibrations by using different control strategies is 

a challenging problem for researchers. 

 
 
1.2 Literature Survey 

 

     The mathematical model of manipulators can be constructed by the finite element 

method or analytical methods (Benosman & LeVey, 2004). The governing 

differential equations of dynamic systems can be solved by using numerical methods 

(Fung, 1997; Owren & Simonsen, 1995; Zhang et al., 1999) or commercial 

engineering programs (Karagülle & Malgaca, 2004).  

 

     One link flexible robot arm can be modeled with linear models, and multi-link 

manipulators can be modeled with nonlinear models. Basic spring-mass discrete 

models, linear Euler-Bernoulli partial differential equations, generalized Newton-

Euler algorithms, Lagrangian equations, associated to a Rayleigh-Ritz elastic field 

decomposition method and finite element decomposition or modal decomposition 

have been used to analyze multi-body flexible manipulators (Benosman & LeVey, 

2004). Fung (1997) presented a sub-stepping procedure to construct unconditionally 

stable higher-order accurate algorithms based on the Newmark method. Owren and 

Simonsen (1995) used Runge-Kutta Method for the time integration of the equations 

of motion in structural dynamics. Zang et al. (1999) developed a stochastic Newmark 

algorithm which is appropriate for earthquakes and sea waves.  Karagulle and 
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Malgaca (2004) studied on the effect of the flexibility on the trajectory of a planar 

two-link manipulator using integrated computer-aided design/analysis (CAD/CAE) 

procedures. They also presented a work to analyze active vibration control in smart 

structures by ANSYS (Karagülle et al., 2004). 

 

     Residual vibration amplitudes of flexible robot manipulators can be suppressed by 

using passive or active control. Passive control, which deals with the open loop 

system, can be achieved by motion commands (Meckl & Seering, 1985; Jayasuriya 

& Choura, 1991; Shan et al., 2005; Shin & Brennan, 2008; Singhose et al., 1994). 

Active control requires the closed loop model and an external actuator. Piezoelectric 

elements are widely used for the vibration control of flexible structures (Gaudenzi et 

al., 2000; Hassan et al., 2007; Xianmin et al., 2002).  

 

     A brief summary of the vibration control strategies of flexible systems are given 

here. Meckl and Seering (1985) investigated open loop control of such systems by 

using “bang bang” control function and another control function to avoid resonance. 

They also examined the performance of a control function for a ramp input. This 

study was expanded by Singhose and et al. (1994), who used input shaping with 

impulse series. They showed that negative input shapers yield much faster rise time 

than positive input shapers. Jayasuriya and Choura (1991) developed an open loop 

force function which demolishes the residual vibrations due to minimum energy law 

while reducing the system response time. Shan et al. (2005) developed the modified 

input shaping method for multimode vibration suppression. The method is applied on 

a single link flexible manipulator and the researchers proposed the modified input 

shaping to get much better performance than the traditional input shaping method. 

On the other hand, Shin and Brennan (2008) considered a cantilever beam and 

suggested two methods for suppressing the residual vibration of a single degree of 

freedom system without any control. They proved that the second method which is 

similar to the input shaping method can control both position and time 

simultaneously. 
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     Numerical simulations were carried out for active control of a 4-bar linkage 

mechanism with piezoelectric actuators and sensors using the reduced modal 

controller, the classical and the robust H controller (Xianmin et al., 2002). 

Simulation and experimental studies were conducted for vibration suppression of a 

flexible one-link manipulator using piezoceramic actuators with of model-based 

predictive controller (Hassan et al., 2007). Gaudenzi et al. (2000) studied on the 

vibration reduction for an active cantilever beam by using piezo-patches. They used a 

single-input single-output feedback closed loop control system for control strategy. 

 

     A literature review of vibration control techniques of composite beams are given 

in references (Bandopadhya et al., 2008; Gandhi & Mevada, 2013; Ji et al., 2009; 

Kang et al., 2002; Raja et al., 2002; Zoric et al., 2013).  Gandhi and Mevada (2013) 

presented a finite element model based on the third order theory for the active 

vibration control of composite beams. They used piezoelectric sensor to provide a 

damping effect on the composite beam with a negative velocity feedback in a closed 

loop control. Raja et al. (2002) used two different type of piezoelectric actuators for 

active vibration control of composite sandwich beams: extension-bending and shear 

actuators. They developed a control scheme based on the linear quadratic 

regulator/independent modal space control method and provided the shear actuator is 

more efficient that the extension-bending actuator for the same control strategy. 

Zoric et al. (2013) presented the optimized fuzzy logic controller for vibration 

control of thin-walled composite beams. They modeled the composite beam by using 

finite element method and suggested the applied fuzzy logic control with adjusting 

the input scaling factor. They compared the results with the fuzzy logic control 

method with constant input scaling to provide the efficiency of their method. 

Bandopadhya et al. (2008) used ionic polymer metal composite (IPMC) as an active 

damper to control a single-link flexible manipulator. They proposed the suitable 

positions to fix two IPMC actuators based on modal approach to suppress vibrations 

efficiently. Ji et al. (2009) improved synchronized switch damping on voltage 

(SSDV) approach to control the vibrations of a composite beam. The proposed 

approach adjusted the voltage coefficient which controls the damping efficiency 

adaptively and they showed that the improved SSDV approach is the most stable 
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compared with previous SSDV techniques. In control techniques, passive control is 

used as changing the damping ratio by using different orientation angles. Kang et al. 

(2002) investigated the interaction between active and passive vibration control 

characteristics on laminated composite beams. They used velocity feedback control 

as an active vibration and different orientation angles with different layers as a 

passive control to use modal damping. 

 

     The dynamic model of robot manipulators can be considered as a lumped multi 

degree of freedom system (Connor & Lang, 1998; Vincent et al., 1989). A position 

control algorithm using mechanical waves for the lumped parameter system was 

developed (Connor & Lang, 1998). Vincent et al. (1989) designed a two-stage 

control algorithm for concentric parameter systems. The first stage of this algorithm 

is open loop high speed positioning and the second stage is closed loop damping. The 

lumped-parameter methods are also used for rigid footings models (Andersen, 2010). 

 

     The problem of vibration control in lumped parameter systems also has a popular 

research area for different engineering areas, such as automotive (Priyondoko et al., 

2009; Sun et al., 2011; Yang et al., 2014) and construction (Muresan et al., 2014; 

Wang & Lin, 2007). In civil engineering, active and passive vibration control with 

tuned mass damper, active tuned mass damper, viscoelastic damper are proposed for 

seismic mitigation and earthquake excitation.  

 

1.3 Scope of the Thesis 

 

In industrial, flexible systems have begun to take place of rigid systems. Rigid 

systems become unwieldy compared to flexible systems. Therefore, flexible and light 

mechanical systems are more advantageous than rigid and heavy ones. The most 

commonly examples of flexible mechanical systems are robot manipulators. Flexible 

manipulators have smaller driving actuators, can reach high speeds due to being light 

and thus consume lower energy.  Since flexible systems are more desirable, residual 

vibrations occur due to the flexibility. Elimination or suppression of these vibrations 

by using different control strategies is a challenging problem for researchers. 
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The main idea of this thesis is to develop modeling and control of flexible systems 

with different approaches. Some mechanical systems can be idealized as one-degree-

of-freedom mass-spring-damper systems. But the system becomes more complex, it 

is difficult to establish mathematical model. Therefore, it is required to construct the 

finite element models based on finite element theory or use the commercial programs 

such as ANSYS to define the mathematical models of the mechanical systems. In 

this thesis, different methods have been used to perform vibration analysis and 

different passive control techniques have been applied to different systems to reduce 

the residual vibrations of different systems.  

 

Different systems are investigated in this thesis such as four-degree-of freedom 

mass-spring damper system, single-link composite manipulator with different 

orientations and six axis serial robot. The mathematical model of these systems are 

obtained with different methods and passive vibration control strategies are applied. 

Both experimental and simulation results are compared to validate the accuracy of 

the proposed control strategies.  

 

1.4 Organization of the Thesis 

 

This thesis consists of seven chapters (including the introducing and the 

conclusions) and the appendices. 

 

Chapter 1 presents the literature survey, scope, and organization of the thesis. 

 

 Chapter 2 presents two different method for modeling four-degree-of-freedom 

system: Newton’s Second Law and Lagrange. Dynamic analysis of the multi-degree-

of-freedom system are performed with Runge-Kutta and Newmark method and 

compared the results. A Passive vibration control based on the fundamental 

frequency of the system is presented and compared the results with Runge-Kutta and 

Newmark solutions. An active vibration is integrated into Newmark solution for four 

degree-of-freedom system, cantilever flexible beam and rotating flexible 

manipulator. The results of Newmark solution is compared with analytical solutions. 
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The systems whose mathematical models cannot be established analytically such as 

cantilever flexible beam and rotating flexible manipulator can be analyzed with the 

numerical methods. The active vibration control of cantilever flexible beam and 

rotating flexible manipulator is also presented with Newmark solution.  

 

Chapter 3 presents the vibration control of a single-link flexible composite 

manipulator with [0/90] and [45/-45] lay-ups using the trapezoidal and triangular 

motion profiles. Theoretical vibration results are obtained using the finite element 

method and experiments are conducted to verify the finite element vibration results. 

Satisfactory reduction ratios are achieved theoretically and experimentally in the 

residual vibration amplitudes of the composite manipulator with a passive control 

approach.         

 

Chapter 4 presents a vibration control of a six-axis serial robot. For the study of 

the robot, the members are modeled in ANSYS with ANSYS Parametric Design 

Language (APDL) based on the finite element theory. The simulation results 

obtained in ANSYS are compared with the experimental results.  

 

Finally, in Chapter 5, the conclusions and the suggestions for the future works for 

mechanical systems are presented.  
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CHAPTER TWO 

VIBRATION CONTROL OF A MULTI-DEGREE-OF-FREEDOM  

SYSTEM 

 

2.1 Introduction 

 

     Many engineering systems undergo undesirable vibrations. Vibration control in 

mechanical systems is an important problem, by means of which vibrations are 

suppressed or at least attenuated. In this direction it has been common the use of 

passive and active vibration control such as improving various control algorithms, 

using active and passive dampers, active, semi-active actuators. 

 

     Hoshichima and Ikeda (1998) considered a vibration suppression problem for a 

mechanical transfer system, where the work is connected with the hand of a transfer 

machine by a spring and a damper. They introduced state equation including the jerk 

and acceleration of the hand to compute a state feedback gain using the Linear 

Quadratic Control theory.  Karagülle and Malgaca (2003) examined a closed loop 

control on three degrees of freedom mechanical system by using Runge-Kutta 

Method. 

 

     Benosman & LeVey (2004) presented a survey on control of residual vibrations at 

robots and flexible structures. Dynamic analysis of flexible robots investigated with 

classification of one axis, two axis and multi axis (Dwivedy & Eberhard, 2006). 

Active and passive control can apply for controlling of the residual vibrations 

(Preumont, 2002). Residual vibrations of flexible structures can decrease by 

changing motion commands with open loop control (Pereira et al., 2012; Mimmi and 

Pennacchi, 2001; Shan et al., 2005). Diken and Alghamdi (2003) applied the control 

for controlling the residual vibrations on rotating an aluminum beam by using motion 

profile. 
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2.2 Mathematical Model of the System 

 

   The system in Figure 2.1 is considered as an example to obtain the mathematical 

model. 

 

 

Figure 2.1 4-DOF mass-damper-spring system (m1=m2=m3=m4=1 kg, c1=1.5 Ns/m, c2=1.2 Ns/m, 

c3=c4=0.8 Ns/m, k1=600 N/m, k2=400 N/m, k3=k4=200 N/m). 

 

     The parameters in the figure m1, m2, m3, m4 and c1, c2, c3, c4 and k1, k2, k3, k4 are 

the masses, the dampers and the spring constants, respectively. The parameters x1(t), 

x2(t), x3(t) and x4(t) are the displacement of each mass. z(t) is the base excitation as 

the input of the open loop system. t is the time. The displacement x4(t) of the end 

mass is evaluated as the open loop system response. 

           

     In this chapter, two different methods will be used to derive the equation of 

motion of the system: Newton’s Second Law and Lagrange’s Equation. Newton 

method needs to draw free-body diagram of the masses or rigid body diagram and 

indicate all the active and reactive forces acting on the masses or rigid body. 

Lagrange’s equation uses kinetic energy, potential energy and virtual work of the 

system to obtain equation of motion.  

 

2.2.1 Newton’s Second Law of Motion 

 

     Newton’s second law of motion can be stated as follows: The rate of change of 

momentum of a mass is equal to the force acting on it (Rao, 2011). 
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Figure 2.2 Free-body diagram of the system 

 

      If mass m is displaced a distance )(tx  when acted upon by a resultant force 

)(tF


 in the same direction, Newton s second law of motion gives 

 

                                                         )()( txmtF




                                               (2.1) 

 

     Applying Equation 2.1 to each masses for the static equilibrium  

 

           111221221111 )()()()( xmxxcxxkzxczxk          (2.2) 

         
22233233122122 )()()()( xmxxcxxkxxcxxk     (2.3) 

         
33344344233233 )()()()( xmxxcxxkxxcxxk     (2.4)  

                                 
44344344 )()( xmxxcxxk                                 (2.5) 

 

     Equations 2.2-2.5 can be arranged as 

                                  

           zczkxkxkkxcxccxm  11221212212111 )()(            (2.6) 

       0)()( 3323212332321222  xkxkkxkxcxccxcxm   (2.7) 

      0)()( 4434323443432333  xkxkkxkxcxccxcxm   (2.8)  

                                 04434443444  xkxkxcxcxm                           (2.9) 

 

2.2.2 Lagrange’s Equation 

 

     The equations of motion of a vibrating system can often be derived in terms of 

generalized coordinates by using Lagrange’s equations. Lagrange’s equations can be 

stated, for a n-degree-of freedom, as 
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                               njQ
q
L

q
L

dt
d

j
jj

,...,2,1, 


















                         (2.10) 

 

where, q is generalized coordinate for j, tqq jj  /  is the generalized velocity, 

Qj is the generalized force corresponding to the generalized coordinate qj. The forces 

represented by generalized force Qj may be damping forces or external forces acting 

on the system. L is the Lagrangian which is given by 

 

                                                                  L=T-V                                                 (2.11) 

 

     Here, T is kinetic energy and V is potential energy of the system. The terms of 

kinetic energy, potential energy and virtual work are derived to obtain the equations 

of motion of the system.  

 

     For the system in Figure 2.1, q1=x1, q2=x2, q3=x3 and q4=x4.  The kinetic energy of 

the system is given by 

 

                             2
44

2
33

2
22

2
11 2

1
2
1

2
1

2
1 xmxmxmxmT                        (2.12) 

 

     The potential energy of the system can be written as 

 

 

2
344

2
233

2
122

2
11 )(

2
1)(

2
1)(

2
1)(

2
1 xxkxxkxxkzxkV     (2.13) 

      

     And the final term, virtual work of the system is given by 

 
                         )()()()( 12122111 xxxxczxzxcW       

                                    )()()()( 3434423233 xxxxcxxxxc               (2.14) 
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     Since z(t) is the base excitation as the input, this term cannot be taken as 

generalized coordinate. So, Equation 2.14 can be arranged as follows 

 
           

223232121221211 ))(())(( xxcxccxcxxcxcczcW     

 
                          

4443434434323 )())(( xxcxcxxcxccxc          (2.15) 

 
     Since there is no term of x  in the potential energy and x in the kinetic energy, 

these terms tend to zero. Equation 2.10 can be arranged for this sytem as  

 

                              njQ
q
E

q
E

dt
d

j
jj

,...,2,1,21 

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














                          (2.16) 

 
     By differentiating the expressions of kinetic energy and potential energy required 

by Equation 2.16 and substituting Equation 2.15 into resulting generalized force for 

each generalized coordinates, the equation of motion of the system can be obtained. 

The equation of motion of the system for the generalized coordinate x1 can be written 

as  
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221211 )( xcxcczc                                                                                   (2.17) 

 
     Derivating the first terms in the bracket with respect to 1x  and the second term 

with respect to x1 

 
           xcxcczcxxkzxkxm

dt
d

 212111221111 )()()(     (2.18)      

 
 
     Derivating the terms in the first bracket with respect to t 
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                xcxcczcxxkzxkxm  212111221111 )()()(       (2.19) 
 
     So, the mathematical model of the system for the generalized coordinate x1 can be 

represented as  

 
               zczkxkxkkxcxccxm  11221212212111 )()(     (2.20) 

 

     The same processes are applied to the other generalized coordinates x2, x3 and x4 

along Equation 2.17-2.19, the equations of motion of the system are found as follows 

 
    0)()( 3323212332321222  xkxkkxkxcxccxcxm   (2.21) 

    0)()( 4434323443432333  xkxkkxkxcxccxcxm   (2.22)  

                                 04434443444  xkxkxcxcxm                         (2.23) 
 
 
 
     The equation of motion for the multi-degrees of freedom vibrating system is given 

as  

                                              uKqqCqM                                           (2.24) 

 

where M, C, and K are the mass, damping, and rigidity square matrices, respectively.                    

q=[x1, x2, x3, x4]T where T stands for the transpose. u is the input column vector. The 

following matrices are found:  
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and 

                                                  T
11 (t),0,0,0]zcz(t)[k u .                                    (2.25) 

 
2.2.3 Eigenvalue Problem 

 
    The following eigenvalue equation is solved to find undamped natural frequencies, 

ω, (Kuo & Golnaraghi, 2003). 

                                                          0 KM2                                           (2.26) 

The undamped natural frequencies are found as 1.042, 2.738, 3.899 and 5.652 Hz. 

 

2.3 Passive Vibration Control of 4-DOF Mechanical System 

 

     In this section, passive control of residual vibrations will be evaluated on four 

degrees of freedom flexible mechanical system with base excitation which has 

existing analytical solution. The system is indicated in Figure 2.1.  

 

     To model of the input, the trapezoidal profile which is taken into account for the 

instantaneous values of z is shown in Figure 2.3. 

 

 

Figure 2.3 Trapezoidal velocity profile 
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     Here, ta is rising acceleration time, tc is passing time with constant speed, td is 

deceleration time, maxz  is maximum velocity and tm is the motion time. In 

trapezoidal velocity profile, maxz  and tm are determined  

                                                

dam ttt
dz

5.05.0
0

max 


                                      (2.27) 

                                                             
dcam tttt                                            (2.28) 

At the calculation of the maximum velocity, d0 is replaced which belongs to 

ground input. Two different velocity profile is considered for residual vibrations 

control: 

 

1. Triangular velocity profile 

2. Trapezoidal velocity profile 

 

Equations (2.27) and (2.28) are the equations for calculating trapezoidal velocity 

profiles. In Equation (2.28), in the case of tc=0 the velocity profile shown in Figure 

2.3 becomes the triangular velocity profile. In triangular velocity profile, maxz  and tm 

are determined 

                                                   
da tt

dz
5.05.0

0
max 

                                            (2.29) 

                                                            dam ttt                                                 (2.30) 

In the literature, residual vibrations are reduced with the motion control of mostly 

one link robot manipulators. In the studies, it is emphasized that the vibration control 

is established when td is chosen equal to the multiples of the period of the first 

natural frequency of the system for triangular and cycloid velocity profiles. 

 

Controlling residual vibrations of the vibration system can be reduced by 

arranging the calculation of time parameters of these velocity profiles based on the 

knowledge of the system dynamics. 
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In this instance, one of the time parameters can be determined with the equations 

as shown below according to Equation (2.28) in trapezoidal velocity profile or 

Equation (2.30) in triangular velocity profile. 

                                                            

jd
jh f

t
2

1


                                                (2.31) 

     Here fjd is damped natural frequency corresponding to the jth natural frequency in 

Hz of the vibration system shown in Figure 2.1. tjh is the calculated time by 

considering the jth natural frequency of the system. In velocity profiles, the values of 

time parameters can be obtained as the multiples of t1h, t2h, t3h or t4h. 

 

     Let the time parameters belongs to velocity profile be ti=[ ta,tc,,td,tm]. Assume that 

the displacement (d0) and motion time (tm) are known. tc=0 for triangular velocity 

profile and for example the deceleration time is determined as td=t1h. In this case, ta 

can be calculated from the Equation (2.30). Accordingly, velocity profile parameters 

are arranged as ti=[*,0,t1h,tm]. Maximum velocity is calculated from the Equation 

(2.29). If trapezoidal velocity profile is applied, velocity profile can be arranged as 

ti=[*,t1h,,t1h,tm]. Here tc=t1h, td=t1h, ta can be calculated from the Equation (2.28) and 

maximum velocity can be calculated from the Equation (2.27). 

 

     Natural frequencies of the system are determined by taking the motion inputs z=0 

and 0z in Equation (2.26). Undamped natural frequencies of the system are 

determined as fn1=1.042 Hz, fn2=2.738 Hz, fn3=3.899 Hz and fn2=5.652 Hz. The 

damping ratio corresponding to the first natural frequency is 0.011, the damping ratio 

corresponding to the second natural frequency is 0.029, the damping ratio 

corresponding to the third natural frequency is 0.041 and the damping ratio 

corresponding to the fourth natural frequency is 0.052.  Accordingly, damped natural 

frequencies of the system are calculated as fd1=1.042 Hz, fd2=2.737 Hz, fd3=3.894 Hz 

and fd4=5.644 Hz, respectively. 

 

     Let the numerical values belong to motion inputs of the system be d0=0.05 m and 

tm=2 s. In the case of the system input is triangular profile, velocity and displacement 

graphics are shown in Figure 2.4. 
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Figure 2.4 Triangular velocity profile ti=[1.5202,0,0.4798,2] 

 

     The residual vibrations of the vibration system can be solved numerically such as 

Runge-Kutta and Newmark method. Thus, desired displacement and acceleration 

responses of the end point can be obtained based on time. In Runge-Kutta method, 

the equations of motion of the system are arranged as state variable. In Newmark 

method, the equations of motion of the system are written as matrix form.  

 

2.3.1 Runge-Kutta Method 

 

     Until about 1970, the most Runge-Kutta method has probably been the original 

classical formula that is a generalization of Simpson’s rule (Atkinson, 1989). The 

method is  

 

                                    43211 22
6

VVVVhyy nn 
                                 (2.32) 

                      ),(1 nn ytfV                 )
2
1,

2
1( 12 hVyhtfV nn   

              )
2
1,

2
1( 23 hVyhtfV nn          ),( 34 hVyhtfV nn                (2.33)  
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     Here yn+1 is the Runge-Kutta approximation of y(tn+1), and the next value (yn+1) is 

determined by the present value yn plus the weighted average of four increments, 

where each increment is the product of the size of the interval, h, and an estimated 

slope specified by function f on the right-hand side of the differential equation. 

 

     The mathematical model of the system given in Equations (2.6-2.9) can be written 

as state-space form. 
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     The state-space form can be arranged as matrix form. 
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     Here, x1(t), x2(t), x3(t) and x4(t) denote the displacements of the masses, v1(t), 

v2(t), v3(t) and v4(t) denote the velocity of the masses. These equations can be solved 

by Runge-Kutta method. Instantaneous values of x1(t), x2(t), x3(t), x4(t), v1(t), v2(t) 

v3(t)and v4(t) are determined with Δt interval starting from t=0. Instantaneous values 

of z and z  at the right hand side of the equation is necessary. In base excitation 

system,  z  is the velocity of the input and z is displacement input which is the 

integral of the velocity input. 

 

     In the solution of Runge-Kutta method, displacements and velocity inputs are 

prepared to evaluate residual vibrations as shown in Figure 2.4. The time signal is 

arranged as t=tm+4, so residual vibrations are determined for 4 s. Vibration response 

of x4(t) of the end point of the system obtaining by Runge-Kutta method are shown 

in Figure 2.5. 

 

     As seen in Figure 2.5, the end point of the system reaches 0.05 m in 2 s. In order 

to observe the residual vibrations better, displacement value (d0) is subtracted from 

the response and the response between 2-6 s obtained after motion is shown in Figure 

2.6. 

 

     Applying the motion input as triangular velocity profile, it is observed that the 

residual vibration levels are high for td=t1h, and residual vibration levels are 

significantly decreased for td=2t1h. The reduction in vibration levels can be given 

numerically by calculating RMS values of residual vibration signals. RMS values of 

residual vibration signals reduced from 0.0078 m for td=t1h to 2.6462e-4 m for td=2t1h 

and 99.66% reduction in vibration level has been achieved. 

 

The results are given in Table 2.1 for the different time parameters.  
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a) 

 
b) 

Figure 2.5 Time response of the end point for the triangular velocity profile a) Displacement and b) 

Acceleration 
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a) 

 
b) 

Figure 2.6 Residual vibrations of the end point for triangular velocity profile a) Displacement and b) 

Acceleration 

 

     Arranging motion inputs as ti=[*,0,2t1h,tm] to reduce the residual vibrations, the 

response is shown in Figure 2.7. The calculated value is indicated with “*” in ti. 
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(a) 

 
b) 

Figure 2.7 Residual vibrations of the end point for the triangular velocity profile a) Displacement, b) 

Acceleration and c) Input profile 
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c) 

Figure 2.7 Residual vibrations of the end point for the triangular velocity profile a) Displacement, b) 

Acceleration and c) Input profile (cont.) 

 

Table 2.1 Motion input 

Motion ti=[*,0,t1h,tm] maxz  
(m/s) 

RMS (m) Reduction 
% 

RMS 
(m/s2) 

Case1_a [*,0, t1h,tm] 0.05 0.0078 - 0.2856 
Case1_b [*,0, 2t1h,tm] 0.05 2.6462e-04 99.66 0.0336 
Case1_c [*,0, 3t1h,tm] 0.05 0.0066 15.82 0.2081 
Case1_d [*,0, 4t1h,tm] 0.05 0.0019 97.56 0.06 

      
Case2_a [*,0, t2h,tm] 0.05 0.0049 - 0.0575 
Case2_b [*,0, 2t2h,tm] 0.05 0.0085 - 0.4052 
Case2_c [*,0, 3t2h,tm] 0.05 0.0066 - 0.2237 
Case2_d [*,0, 4t2h,tm] 0.05 0.0028 - 0.1298 

      
Case3_a [*,0, t3h,tm] 0.05 0.0033 - 0.0123 
Case3_b [*,0, 2t3h,tm] 0.05 0.0069 - 0.2160 
Case3_c [*,0, 3t3h,tm] 0.05 0.0086 - 0.4015 
Case3_d [*,0, 4t3h,tm] 0.05 0.0072 - 0.2481 

      
Case4_a [*,0, t4h,tm] 0.05 0.0022 - 0.0045 
Case4_b [*,0, 2t4h,tm] 0.05 0.0047 - 0.05 
Case4_c [*,0, 3t4h,tm] 0.05 0.0071 - 0.2396 
Case4_d [*,0, 4t4h,tm] 0.05 0.0085 - 0.4016 
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     Analyzing the results of motion inputs, it is observed that the even multiples of t1h 

has more effective reduction compared to odd multiples of t1h. 

 

     Arranging the motion input as choosing f1d, the reduction of vibration levels is 

%99.66, arranging the motion input as choosing f2d, f3d or f4d, there is no reduction of 

vibration level between cases. Evaluating RMS values of residual vibrations, it is 

observed that the first natural frequency f1d is more effective for vibration control. 

 

2.3.2 Newmark Method 

 
     The Newmark solution (Newmark, 1959) is given below. A time step, ∆t, is 

chosen for the solution as ∆t<1/(20fmax) , where fmax is the highest natural frequency 

considered. ∆t is taken as 0.0088 s.  Knowing the solution at a time step, the solution 

at the subsequent time step is found by the numerical integration. tn and tn+1 are the 

successive values for the time, and ∆t=tn+1–tn.  The solution is given as  

 
 1n10 )aa( qKCM                     

              )aaa()aaa( n5n4n1n3n2n0 qqqCqqqMu                    (2.36) 

n3n2n1n01n aa)(a qqqqq   
   ,    

1n7n6n1n aa   qqqq            (2.37) 
 
where    
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     ,

t
1a 2 

    ,1
2
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

     ,1a 4 



                      

 

,2
2
ta5 






 



    ),1(ta6       ,ta7    

,)1(
4
1 2      

2
1                                                                                 (2.38) 

 
γ is the amplitude decay factor.  

 

     Mass M, damping C and stiffness K matrices are defined for Newmark method. 

System matrices M, C and K are n x n square matrices. For the system shown in 

Figure 2.1, n=4, because the system has four degrees of freedom. Input matrix u 

wich has nx1 column matrix is also defined.  
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     Using the Equations (2.36-2.38), same triangular velocity profile given in Figure 

2.4 is applied into Newmark solution and the results are compared with the results 

obtained by Runge-Kutta Method. The superposed results are given in Figure 2.8. 

 
(a) 

 
b) 

Figure 2.8 Newmark and Runge-Kutta superposed for [*,0,t1h,2] a) Displacement and b) Acceleration 
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a) 

 
b) 

Figure 2.9 Residual vibrations of Newmark and Runge-Kutta superposed for [*,0,t1h,2] a) 

Displacement and b) Acceleration 

 

     As shown in Figure 2.8 and Figure 2.9, the time responses obtained by Newmark 

and Runge-Kutta method are in good agreement. It is shown that dynamic responses 
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of the systems can be solved with numerical analysis such as Newmark or Runge-

Kutta.  

 

     To emphasize the effect of multiples of t1h in vibration control, the trapezoidal 

velocity input is also studied. Unlike the triangular velocity profile, different 

parameters can be considered for trapezoidal velocity input such as the acceleration 

time (tacel), the deceleration time (tdecel) and the constant velocity time (tcon).  The 

system can be reached the desired displacement with different time parameters in the 

same time duration. 

 

      Let the numerical values belong to motion inputs of the system be d0=0.05 m, 

tcon=t1h, tdecel=t1h and tm=4 s. Acceleration time tacel is determined as given in Equation 

(2.28). In the case of the system input is trapezoidal profile, velocity and 

displacement graphics are shown in Figure 2.10. 

 

 

Figure 2.10 Trapezoidal velocity profile ti=[3.0403,0.4798,0.4798,4] 

 

     Arranging motion inputs as ti=[*,t1h,t1h,tm] and ti=[*,t1h,2t1h,tm] to reduce the 

residual vibrations, the responses are shown in Figure 2.11. 
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(a) 

 
b) 
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c) 

Figure 2.11 Residual vibrations of the end point for the trapezoidal velocity profile a) Displacement, 

b) Acceleration and c) Input profile 

 

As seen in Figure 2.11 a) and b), for trapezoidal velocity profile, it is also 

observed that the residual vibration levels are high for td=t1h, and residual vibration 

levels are significantly decreased for td=2t1h. RMS values of residual vibration 

signals reduced from 0.00326 m for td=t1h to 3.4567e-4 m for td=2t1h and 86.70% 

reduction in vibration level has been achieved. 

 

The results of different cases are given in Table 2.2 and Table 2.3 for the different 

time parameters.  

 

Table 2.2 Motion input for Case-5 

Motion ti=[*,t1h,t1h,tm] maxz  
(m/s) 

RMS (m) Reduction 
% 

RMS 
(m/s2) 

Case5_a [*,t1h, t1h,tm] 0.0223 0.00326 - 0.0882 
Case5_b [*,t1h, 2t1h,tm] 0.0223 3.4567e-04 86.70 0.0065 
Case5_c [*,t1h, 3t1h,tm] 0.0223 7.2362e-04 72.17 0.0294 
Case5_d [*,t1h, 4t1h,tm] 0.0223 5.3773e-04 79.32 0.0179 
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Table 2.3 Motion input for Case-6 

Motion ti=[*,2t1h,t1h,tm] maxz  
(m/s) 

RMS (m) Reduction 
% 

RMS 
(m/s2) 

Case6_a [*,2t1h, t1h,tm] 0.0202 0.0027 - 0.1005 
Case6_b [*,2t1h, 2t1h,tm] 0.0202 1.4489e-04 94.63 0.0153 
Case6_c [*,2t1h, 3t1h,tm] 0.0202 0.0013 51.85 0.0511 
Case6_d [*,2t1h, 4t1h,tm] 0.0202 2.106e-04 92.20 0.0116 
 

     Evaluating the results of Case-5 and Case-6, vibration reductions can be achieved 

for 2t1h and 4t1h as given in Table 2.2 and Table 2.3. It is seen that double times of t1h 

is more effective to control vibration amplitudes. The reductions in Case-5 are 

86.70% and 79.32% for 2t1h and 4t1h, respectively. The reductions in Case-6 are 

94.63% and 92.20% for 2t1h and 4t1h, respectively. The response spectrum via the 

deceleration time for Case-5 and Case-6 is given in Figure 2.12. 

 

 

Figure 2.12 Change of the RMS values of the residual vibration signals versus the deceleration time 

for Case-3 and Case-4 
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2.4 Active Vibration Control of 4-DOF Mechanical System 

 

2.4.1 Newmark Solution for Closed Loop Control 

 
     The block diagram for the integration of active vibration control action into the 

Newmark solution is shown in Figure 2.13. xr(t) is the reference input signal. xrm, x1n, 

x2n, x3n and x4n are the values of xr(t), x1(t), x2(t), x3(t), and x4(t) at the time step n, 

respectively. xan is the average at the time step n as given in Figure 2.13. xem is the 

error value at the time step m, where m=n+1. Kp, Ki, and Kd are the proportional, 

integral, and derivative control action constants, respectively. zrm is the value of z(t) 

at the time step m. Knowing the initial values of  {q} at the time step 1, the values of 

{q} are found at the subsequent time steps as given below. Δt is the time interval 

between the time steps. {q}m is the value of {q} at the time step m. 

 

 

Figure 2.13 Block diagram for integration of closed loop control action into Newmark solution 

 

     A step function is considered for the input xr. rx  is then an impulse function. 
rx is 

approximated with a trapezoidal velocity profile as shown in Figure 2.14 (b). The 

area under the profile equals to 1. Then, the samples of xr and 
rx are found as in 

Figure 2.14 (a), and (c), respectively. 

 
            (a)                                           (b)                                           (c) 

 Figure 2.14 Approximate model of the step input, (a) displacement, (b) velocity and (c) acceleration. 
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     The uncontrolled and controlled responses obtained by the Newmark method are 

shown in Figure 2.15 as an example result. The control action constants are selected 

by inspection. Here, the damping is ignored by taking C=0, to observe the 

effectiveness of the active vibration control. 

 

Figure 2.15 Solution by the Newmark method for undamped system, (Kp=10, Ki=5, Kd=0.5) 

 

2.4.2 Analytical Solution  

 
     The analytical solution using the Laplace transform method is given in this 

section to verify the numerical results. The solution is found by using 

Q(s)=H(s)U(s), where Q(s) and U(s) are the Laplace transforms of q(t), and u(t), 

respectively. H(s) is the transfer function square matrix with a size of 4x4. Hij(s) is 

the element of ith row and jth column of H(s). The following is found by using 

Equation (2.24) and the definition of the transfer function (Kuo & Golnaraghi, 2003): 

 

                                                    H(s)=[s2M+sC+K]-1.                                         (2.39) 

 Then,  

                                                Q(s)=H(s)[c1s+k1,0,0,0]TZ(s),                                (2.40) 
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where Z(s) is the Laplace transform of z(t). 

 

     The block diagram of the closed loop control system for the analytical solution is 

given in Figure 2.16. G1(s) is the transfer function of the control action, and it is 

taken as G1(s)=Kp+Ki/s+Kds.  

 

 
Figure 2.16 Block diagram of the system 

 

Taking C=0, the transfer functions in Figure 2.16 can be found as 

 

   
D(s)

16000000360000s1200ss(s)H
246

11


  

   
D(s)

16000000240000s400s(s)H
24

21


                

    
D(s)

1600000080000s(s)H
2

31


                

D(s)
16000000(s)H41                                                                                               (2.41) 

 

where D(s)=s8 + 2200s6 + 1400000s4 + 280000000s2 + 9600000000.  

 

     Utilizing the block diagram given in Figure 2.16, the transfer function of the 

closed loop system HCL(s) is found as,  
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  4/)s(H)s(H)s(H)s(H)s(G)ksc(1
)s(G)s(H)ksc(

)s(X
)s(X)s(H

41312111111

14111

r

4
CL 


           (2.42) 

 

     Substituting Xr(s)=1/s for the step input and the numerical values into the closed 

loop transfer function, by taking c1=0, the Laplace transform of the displacement of 

the end mass can be found as 
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                     (2.43) 

 

     The controlled response of x4(t) can be found by taking the inverse Laplace 

transform of X4(s). The uncontrolled and controlled responses of x4(t) are shown in 

Figure 2.17.     

 

Figure 2.17 Analytic solution for the undamped system, (Kp=10, Ki=5, Kd=0.5) 
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     The controlled responses obtained from the numerical and analytical solutions are 

shown on the same plot in Figure 2.18. It is observed from the figure that the 

numerical and analytical solutions are in good agreement. 

 

 

Figure 2.18 Comparison of the Control-ON results (Kp=10, Ki=5, Kd=0.5) 

 

2.4.3 Effect of Damping and Effectiveness of Controller Gains 

 
     The system given in Figure 2.1 is considered to investigate the effect of damping 

on the active control problem. Analytical closed loop solution for the damped system 

can be done by considering the damping matrix C, and the transfer functions 

indicated in Figure 2.16 are given as 
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)s(D
4000000000s44000000s160000s192)s(H

23

41


                                        (2.44) 

where 

 
210384856678 10016.710074.710524.310333.25538101775250)( sxsxsxsxssssD      

          1210 104.21024.3 xsx                                                                               (2.45) 

 

     By using the controller gains Kp=10, Ki=5, Kd=0.5, the Laplace transform of the 

tip mass X4(s) for the damped system can be found by utilizing the block diagram 

given in Figure 2.16.    

 

)3.6x10 + s4.56x10+s8.296x10 +s7.989x10 + s3.825x10 +s2.438x10+s572560 +  s1775 +  ss(250
10x2.1s10x62.1s110.8s177600s144)s(X 1010210384856678

12102734

4


 

                                                                                                                               (2.46) 

 

     The time response of x4(t) can be found by taking the inverse Laplace transform 

of X4(s). The uncontrolled and controlled responses obtained with the analytical and 

numerical methods for the damped system are good agreement as shown in Figure 

2.19.  

 
 

Figure 2.19 Comparison of controlled results for damped system. (Kp=10, Ki=5, Kd=0.5) 
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2.4.4 Setting Control Parameters 

 
     The effectiveness of the controller can be evaluated in terms of the performance 

parameters (Kuo & Golnaraghi, 2003). The performance parameters such as the 

settling time ts, the steady state error ess, the overshoot, and RMS (root mean square) 

can be found for different PID control gains, which are listed below in Tables 2.4-

2.5. The RMS can be used for the indication of the energy level in a vibration signal 

(Kelly, 1993). Analytical and numerical results for the damped system are given in 

Table 2.4. The comparison of the results for the undamped system is also given in 

Table 2.5. The closed loop responses of the damped and undamped systems obtained 

with analytical and numerical methods for the selected gains listed in the tables are 

compared in Figures 2.20-2.21. 

 

     For the calculation of the settling time, it is assumed that the response decreases 

and stays within a 2 percent of its final value. The average of amplitudes in the last 5 

s is also considered to find the final value or steady state value. 

 

Table 2.4 Closed loop results for damped system 
Control gains ts  ess RMS Overshoot % 

Kp Ki Kd Newmark Analytic Newmark Analytic Newmark Analytic Newmark Analytic 

0 0 0 57.62 57.62 -7.38e-4 -7.47e-4 1.0483 1.0484 147.77 147.85 

0.05 0 0 57.51 56.58 0.9523 0.9523 0.050 0.0499 - - 

0.5 0 0 54.78 50.64 0.6666 0.666 0.3511 0.3498 - - 

0.5 0 0.01 20.76 19.95 0.6667 0.6667 0.3406 0.3404 - - 

0.5 0 0.2 2.13 2.12 0.6667 0.6667 0.3414 0.3414 143.00 142.80 

0.5 1 0.2 5.05 5.04 9.27e-14 5.66e-15 0.9880 0.9880 78.47 78.21 

0.5 3 0.2 1.63 1.63 2.80e-13 -2.22e-16 0.9973 0.9973 82.80 82.43 

 
 
Table 2.5 Closed loop results for undamped system 

Control gains ts  ess RMS Overshoot % 

Kp Ki Kd Newmark Analytic Newmark Analytic Newmark Analytic Newmark Analytic 

0 0 0 - - - - 1.3959 1.3999 182.88 184.06 

0.05 0 0.01 35.59 36.60 0.9524 0.9524 0.0521 0.0521 - - 

0.5 0 0.01 35.24 34.82 0.6667 0.6667 0.3465 0.3459 69.47 69.21 

0.5 0 0.2 3.465 3.465 0.6667 0.6667 0.3436 0.3435 162.25 162.02 

0.5 1 0.2 5.096 5.097 -5.91e-14 5.77e-15 0.9887 0.9887 97.77 97.49 

0.5 3 0.2 2.632 2.636 -1.63e-13 -2.22e-16 0.9979 0.9979 102.21 101.81 
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(a) 

 
(b) 

Figure 2.20 Comparison of open loop and closed loop results for the damped system, a) Kp=0.5, Ki=0, 

Kd=0, b) Kp=0.5, Ki=0, Kd=0.2, c) Kp=0.5, Ki=3, Kd=0.2. 

 



 
 

38 
 

 
(c) 

Figure 2.20 Comparison of open loop and closed loop results for the damped system, a) Kp=0.5, Ki=0, 

Kd=0, b) Kp=0.5, Ki=0, Kd=0.2, c) Kp=0.5, Ki=3, Kd=0.2. (cont.) 

 

 
(a) 

Figure 2.21 Comparison of closed loop results for undamped system, a) Kp=0.05, Ki=0, Kd=0.01, b) 

Kp=0.5, Ki=0, Kd=0.2, c) Kp=0.5, Ki=3, Kd=0.2. 
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 (b) 

 
(c) 

Figure 2.21 Comparison of closed loop results for undamped system, a) Kp=0.05, Ki=0, Kd=0.01, b) 

Kp=0.5, Ki=0, Kd=0.2, c) Kp=0.5, Ki=3, Kd=0.2. (cont.) 
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     As indicated in Table 2.4 for damped system and Table 2.5 for undamped system, 

the performance parameters obtained by the Newmark method match well those 

obtained by the analytical method. 

 

     As seen from Figure 2.20 (a) and Table 2.4, the control action starts with the 

proportional (P) control in the damped system. The proportional control decreases 

the values of the settling time and RMS of the signal as the gain increases. However, 

there is a large steady state error in the P control. The settling time decreases from 

57.62 s to 2.13 s in the Newmark method and from 57.62 s to 2.12 s in the analytical 

solution, by adding differential (D) control. The PD control causes a large overshoot 

as shown in Figure 2.20 (b) although there is no change in the steady state error. The 

steady state error can be eliminated by adding the integral control. A better solution 

can be obtained with the PID control by selecting the gains Kp=0.5, KI=3, KD=0.2 as 

shown in Figure 2.20 (c).        

 

     As seen from Table 2.5, the P control is not sufficient for the reduction of the 

vibration amplitudes. The control actions start with the PD control in the undamped 

system as shown in Figure 2.21 (a). The value of the settling time decreases from 

35.59 s to 3.465 s in the Newmark method and from 36.60 s to 3.465 s in the 

analytical solution, significantly as shown in Figure 2.21 (b) as the differential gain 

increases. The PID control eliminates the steady state error in undamped system as 

shown in Figure 2.21 (c). 

 

     The same controller gains are used in the closed loop solutions. The PID control 

can be successfully applied to both of the undamped and damped systems. Adding 

the damping to the open loop system affects the settling time and overshoot results in 

the closed loop system.  

 

     The settling time is the one of the key parameters in the evaluation of the 

controller effectiveness if the subject is the analysis of active vibration control. The 

overshoot limits the maximum vibration amplitudes. The existence of the damping 

decreases the value of the settling time from ts=2.632 s to ts=1.63 s in the Newmark 
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method and from 2.636 s to 1.63 s in the analytical solution, the damping reduces the 

value of the overshoot from 102.21 % to 82.80 % in the Newmark method and from 

101.81 % to 82.43 % in the analytical solution. 

 

2.5 Active Vibration Control of a Flexible Cantilever Beam by Newmark 

Method 

 
The finite element models of complex mechanical systems can be established with 

computer programs, responses of the systems can be achieved with analytical or 

numerical methods. In this study, active vibration control of a flexible cantilever 

beam is analyzed with Newmark method. The finite element model of a flexible 

beam is obtained by Euler-Bernoulli theorem. An impulse input is applied to the end 

point of the flexible beam and also the open- and closed loop dynamic responses of 

the end point are found with Newmark solution. The values of the input are defined 

for the time intervals. PID control is applied to the error signal, which is calculated 

by subtracting the instantaneous value of displacement of the end point from the 

instantaneous reference value, to reduce the vibrations of the flexible system. This 

process is continued with the time step until steady state value is reached. In order to 

observe the effectiveness of the active vibration control, the damping is ignored.  The 

effect of different PID control parameters and the element size in finite element 

method on active vibration control is studied. 

 

2.5.1 Modelling of Flexible Beam 

 
     In this study, Euler-Bernoulli beam model is discussed. Considered beam model 

is shown in Figure 2.22. Here, FD is input force, FC is applied control force, yr is 

reference input signal and LC is the distance of the applied control force from the 

root-point of the beam. The material of the beam is aluminum. The material and 

geometrical properties of the beam are given in Table 2.6. 
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Figure 2.22 The model of cantilever beam 

 

Table 2.6 Properties of the beam 

 Aluminum Beam 

Modulus of Elasticity, E (N/m2) 68 x 109 

Density, ρ (kg/m3) 2800 

Length, L (mm) 504 

Height of the cross section, h (mm) 0.8 

Width of the cross section, b (mm) 25.4 

 

 

     The finite element model of a flexible beam is obtained by Euler-Bernoulli 

theorem. The finite element model shown schematically in Figure 2.23 is divided 

into three elements and an impulse input is applied to the end point of the model, 

then control force is applied to the determined point to control the end point 

vibrations. Each elements of the flexible beam divided by finite elements have 2 

nodes, and each nodes have translational degrees of freedom on x and y directions 

and rotational degree of freedom about z axis. As shown in Figure 2.23, the degrees 

of freedoms on nodes 10, 11 and 12 are zero due to having fixed boundary conditions 

of point A.  
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Figure 2.23 The finite element model of flexible beam 

 
     The mass and stiffness matrices for each finite element can be constructed in local 

coordinates.  The mass and stiffness matrices in the local coordinates of a flexible 

beam having longitudinal and bending vibrations are given in Eq. 2.47. Here, len, An, 

En, In and ρn  are the length, cross section area, the modulus of elasticity, the bending 

moment of inertia of the cross section and the density for each finite element, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                               (2.47) 
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     The natural frequencies of a cantilever beam can be calculated analytically as 

given in Eq 2.48. 

 

                                                                  
A

EI
L

zzn
n 


 2 (rad/s)                                           (2.48) 

    

     Here, βn, L, E, Izz, ρ and A are the frequency parameter, the length of the beam, 

the modulus of elasticity, the bending moment of inertia of the cross section and the 

cross section area, respectively. For the cantilever beam, the frequency parameter βn 

for first three natural frequency is 3.516, 22.03 and 61.7. The first three natural 

frequencies of the bending vibrations of the cantilever beam are calculated as 2.507 

Hz, 15.71 Hz and 43.99 Hz, respectively. 

 

2.5.2 Active Vibration Control with Newmark Method 

 
     In the flexible structures, high vibrations occur because of having low rigidity. In 

the literature, it is very important to reduce or eliminate residual vibrations. In this 

section, vibration control of a flexible beam by Newmark method is discussed. 

MATLAB is used to construct the finite element models of the system and to 

integrate the control strategy into Newmark method. The closed loop block diagram 

of the impulse input acting on the beam and the applying control force integrated into 

Newmark method is shown in Figure 2.24.  

 

 

   Figure 2.24 Closed loop block diagram 

 

     Here, yrm is the reference input signal. The instantaneous impulse input is applied 

to the end point of the flexible beam and the displacement at the y-direction of the 

end point is taken as the feedback signal. The displacement yan at the y-direction of 

the end point taken as the feedback signal is defined as the displacement at the y-
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direction on the node related to the finite element number of the beam at the time 

step n. For the flexible beam divided into three finite elements as shown in Figure 

2.23, yan is the displacement at the y-direction on node-4 at the time step n. yem is the 

error signal at the time step m and m=n+1. Kp, Ki, and Kd are the proportional, 

integral and derivative control action constants, respectively. An impulse input is 

applied to the end point of the flexible beam and the instantaneous displacement of 

the end point is subtracted from the reference input to find the error signal value at a 

time step in the Newmark solution. The PID control action is applied to find the 

actuator signal value in the time step. This input value is used to find the 

displacement of the end point for the subsequent time step. The process is continued 

with the time interval Δt until the steady-state value is approximately reached. After 

applying the impulse input, the reference value is taken as zero for each time interval 

in vibration control.  A time step, ∆t, is chosen for the solution as ∆t<1/(20f1) , where 

f1 is the first natural frequency considered. {q}m is the value of the translations at x 

and y directions and the rotation about z axis for each nodes at the time step m. Um is 

the control input at the time step m.  

 

     Newmark method is the most preferred method among the numerical methods in 

the finite element analysis to achieve the system response by using the mass, 

stiffness and damping matrices. The displacements of the end point of the flexible 

beam obtained by Newmark method are shown in Figure 2.25 for open- and closed 

loop system. The control action constants are selected by inspection. Here, the 

damping is ignored by taking C=0, to observe the effectiveness of the active 

vibration control. The effectiveness of the vibration control can be evaluated in terms 

of the performance parameters such as the settling time ts, the steady state error ess, 

the overshoot, and RMS (root mean square).  
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Figure 2.25 Control-OFF and Control-ON responses (Lc=168mm, Kp=8, Ki=0.5, Kd=0.5,) 

 

    The steady-state time, overshoot and RMS values obtained for different control 

gains are given in Table 2.7. 

 

Table 2.7 Closed loop results for different control gains 

Control gains ts  RMS Overshoot % 

Kp Ki Kd    

3 0 0.3 1.421 0.029 13.49 

5 0 0.4 1.116 0.0247 12.39 

8 0.5 0.5 0.985 0.0223 11.42 

 

     As shown in Table 2.7, the steady-state time, the overshoot and the amplitudes of 

the displacement of the end point of the flexible beam are changed for different 

control gains. It is observed that the best results are achieved by applying PID 

control.  

 

     The dynamic behavior of the end point is investigated when changing the number 

of element in finite element model and the results are given in Table 2.8. 
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Table 2.8 The effect of the number of element on dynamic behavior   

The number of element Lc (mm) ts RMS Overshoot 

3 168 0.985 0.0223 0.114 
4 126 1.77 0.0307 0.1332 
9 112 2.229 0.035 0.1393 

84 126 1.77 0.0307 0.1332 
84 168 0.985 0.0223 0.1142 
504 126 1.77 0.0307 0.1332 
504 168 0.985 0.0223 0.1142 
504 197 0.72 0.0192 0.1069 

 

     The results in Table 2.8 show that, as the point that the control force is applied 

changes, the steady-state time, the overshoot and the amplitudes of the displacement 

of the end point of the flexible beam also changes for the same control gains. It is 

observed that the number of element does not effect on the dynamic analysis as long 

as the distance at which the control force is applied. Based on these informations, it 

is intended to find optimal distance by changing the applying point of the control 

force on the flexible beam and the finite element program written in MATLAB is 

developed to optimize the distance at which the control force is applied by changing 

the number of element. The number of element is chosen as 504 to find the exact 

point of the distance.  The point at which the control force is applied is increased by 

1 mm from the distance of 1mm to 504 mm and the steady-state times and RMS 

values are obtained for each point by the program. It is requested from the developed 

program to suggest the optimum distance Lc. It is seen that, if the distance Lc which 

is suggested by the program is 197 mm, the end point vibration of the flexible beam 

is damped as soon as possible. When the control force is applied at the distance 

suggested by the program, the end point of the flexible beam reaches the steady-state 

time at 0.72 s.  

 

2.6 Active Vibration Control of a Single Link Flexible Manipulator by 

Newmark Method 

 

     Residual vibrations occur after stopping the movement of flexible manipulators. 

Accuracy at the end-point positioning decreases if residual vibration amplitudes 

increase. Productivity decreases in the high speed applications since the settling time 
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required for this residual vibration delays subsequent operations. In this study, the 

active vibration control of a single-link flexible steel manipulator with a payload is 

studied numerically. The mathematical model of a manipulator is established by the 

finite element method (FEM). The FEM results in modal analysis are verified by the 

experimental results. Then, the transient analysis is realized by the Newmark 

method. Two different velocity profiles such as triangular and trapezoidal are applied 

to the manipulator. For active vibration control, the control action is integrated into 

Newmark solution. The proportional control gain is applied. Active control is 

activated after motion is done. The root mean square values calculated from the 

residual vibration signals, and reduction ratios are presented for the cases. It is 

observed from the results that the residual vibration amplitudes of the manipulators 

are successfully suppressed by the proportional control gain.  

 

2.6.1 Modeling of Single Link Manipulator Based on Finite Element Method  

 
     A MATLAB code is developed based on the theory of the finite element method 

(FEM) (Bathe, 2014). The model of the single-link planar manipulator under study is 

shown in Figure 2.26 (a). Member-2 is the OB-beam. There is a revolute joint at O 

between Member-2 and the frame (Member-1). Member-2 is actuated by Motor-2 at 

O. The mass of Motor-2 is on the frame at O. There is a payload on Member-2 at B. 

The payload mass has a translational inertia of mL and rotational inertia of IL. 

     The instantaneous angular position of Member-2 is θ2(t), where t is the time. The 

length of the link is L2=OB. The global origin is at O. The global Cartesian 

coordinates are x, y and z.  

 
 

Figure 2.26 (a) Model, (b) FE model,  (c) starting and stopping locations of the manipulator. 
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     The finite element (FE) model of the system is shown in Figure 2.26 (b). The 

number of finite elements for Member-2 is ne2. For Figure 2.26 (b), ne2=3. The 

number for ne2 has been chosen as 3 for explanation. The model can be extended to 

different number of finite elements. The MATLAB code has been developed for any 

given ne2. 

 

     The node numbers are shown in circles. The FE identification numbers are shown 

in squares. The plane frame analysis is considered and each node has 3 degrees of 

freedom. The identification numbers of 3 displacements for each node are given in 

the parentheses. For example, FE-2 has Node-3 at its origin and Node-4 at the far 

end. The displacements for Node-3 are ds2, ds3, and, ds4, respectively. The local 

Cartesian coordinates of FE-2 are x2, y2 and z2. The local origin of FE-2 is at Node-3 

and x2 axis is towards Node-4. The planar motion is considered, and thus z2 axis is 

always parallel to z axis. The displacements in x and y directions for Node-3 are ds2 

and ds3, respectively. The flexural rotation of the cross-section for Node-3 is rs4 and 

ds4=h2rs4, where h2 is the length of FE-2. The instantaneous angle of orientation for x2 

is γ3, γ3= θ2. Beam FE’s and their parameters are shown in Table 2.9. 

 

Table 2.9 Beam FE’s on the system   

FE-  On 

Member- 

FE 

Nodes 

Length γn Identification numbers 

 for displacements at nodes 

1 2 2,3 L2/ne2 θ2 11,12,1,2,3,4 

2 2 3,4 L2/ne2 θ2 2,3,4,5,6,7 

3 2 4,5 L2/ne2 θ2 5,6,7,8,9,10 

 

     The theory of the FE analysis is given in many textbooks (Bathe, 2014). The 

displacement (deln), force (feln), stiffness (keln), and mass (meln) matrices in local 

coordinates of a finite element (FE-n) are given below (Bathe, 2014). The node 

numbers are j at the local origin, and k at the far end of FE-n. Flexural bending is 

about the z axis.  
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                                                                                                                               (2.50)         

 

     Here, hn is the length of FE-n. It has a uniform cross section and An is the cross-

sectional area. The nodal displacement at Node-m in the xn direction is umn, where 

m=j or k. The nodal displacement in the yn direction is vnm. The flexural rotation of 

the cross section at Node-m is rmn. The external load forces at Node-m in the xn and 

yn directions are Fmnx’ and Fmny’, respectively. The external bending moment at Node-

m is Tmn. The distributed external loads on the FE-n in the xn and yn directions are 

qnx’ and qny’, respectively. The modulus of elasticity is En, In is the bending moment 

of inertia of the cross section and ρn is the density.  

     The displacement (degn), force (fegn), stiffness (kegn), and mass (megn) matrices in 

global coordinates of FE-n are given below (Bathe, 2014). 

 

          elnnegn dTd    neln
T
negn TkTk     elnnegn fTf      neln

T
negn TmTm            (2.51) 
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     where, Tn is the transformation matrix and Tn
T is the transpose of Tn. The 

transformation matrix is given as 

 

                                                                                        

                                                                                                                               (2.52) 

      

    

 

 

      Node-1 and Node-2 are coincident in Figure 2.26 (b), but their flexural rotations 

are different due to the revolute joint at O. There is a rotational spring between 

Node-1 and Node-2 (Km2). The rotational spring Km2 is for Motor-2. There is a mass 

representing the payload at Node-5. The Node-1 is fixed. So, ds11=0, ds12=0, and 

ds13=0. The reaction torque required to fix the rotation is provided by Motor-2.  

 

    The mathematical model of the system is obtained as 

      

                                             sssssss fdkdcdm  
                                   (2.53)                     

 

     Here, ms is the system mass matrix, cs is the system damping matrix, ks is the 

system stiffness matrix, ds is the system displacement matrix, and fs is the system 

force matrix.  The sizes of ds and fs are 10x1, and the sizes of ms, cs, and ks are 

10x10 for the configuration in Figure 2.26 (b). For example, ds(6,1)=ds6, which is the 

displacement of Node-4 in the y direction. fs(6,1)=fs6, which is the external force at 

Node-4 in the y direction.  

     Global FE matrices with a size of 6x6 are assembled to obtain the system stiffness 

(ks) and the mass (ms) matrices. For example, 

 

     ks(6,5) = keg2(5,4) + keg3(2,1)       and         ms(6,5) = meg2(5,4) + meg3(2,1)   (2.54)     
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    The combination of (6,5) exists in FE-2 and FE-3 as observed in Table 2.9. The 

combination of (6,5) is the combination of (5,4) for the FE-2 matrix, and the 

combination of (2,1) for FE-3 matrix. 

 

     Considering the kinetic energy, mL and IL are added to the system mass matrix as 

the following 

 

     ms(8,8)=meg3(4,4)+mL,   ms(9,9)=meg3(5,5)+mL,  ms(10,10)=meg3(6,6)+IL      (2.55)              

 

     Considering the potential energy, Km2 is added to the system stiffness matrix as 

the following  

 

                                                   ks(1,1)=keg1(3,3)+Km2                                        (2.56)    

 

2.6.2 Damping  

 

     The Rayleigh damping is considered as 

 

                                                     sss kmc                                                 (2.57)               

 

     where, η and β are damping coefficients (Rao, 2011). 

 

2.6.3 Motion 

 

     The trapezoidal motion profile for the manipulator is considered as shown in 

Figure 2.26 (c). The manipulator moves from a starting position (OB1) at t=0 to an 

end position (OB2) at t=tm, where tm is the motion time. The initial angular position is 

given as θ2=φ2s at t=0. The angular position at the stopping time is given as θ2= φ 2s+ 

φ 2m at t=tm.  

 

     The motor follows the trapezoidal velocity profile. The area under the velocity 

curve gives the corresponding the motor rotation, φ2m. 
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Figure 2.27 The angular trapezoidal velocity profile of the motor. 

           

     The accelerations of the mid-points of the FE’s are calculated to consider the 

distributed inertia forces. The rigid body kinematics is considered for the calculation. 

Let Lnm be the distance of a mid-point of FE-n on Member-2 from the point O. Then, 

the position vector of the mid-point is written with complex numbers as 
2i

nmnm eL R , where 1i   . The real part of Rnm is the x component and the 

imaginary part is the y component. The second derivative of Rnm gives the 

acceleration as 2iθ
nm

2
22nm e)Lθθ(i  a . The real part of anm is anmx, and the imaginary 

part of anm is anmy.  

 

     Considering the velocity profile of the motor, the following equations can be 

obtained. 

 

                                                   )0.5tt(0.5t
ω

decconacc

2m
02 




                              (2.58) 

          

                           m

02
2 t

tωθ 

              acc

02
2 t

ωθ 

               for 0 ≤ t  < tacc                  (2.59) 

 

                            022                   02                  for tacc ≤ t  < tm-tdec           (2.60) 

 

           )t(t
t)(tωθ

decm

m02
2 




          dec

02
2 t

ωθ 

             for tm -tdec≤ t  <tm                                   (2.61) 
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                                  022                 for  t ≥ tm                                              (2.62)   

 

2.6.4 Forces 

 
     There are distributed inertia and gravity forces. Let qnx, and qny be the distributed 

forces for FE-n. The following can be written: 

 

qnx=  -(ρnAnhn)anmx   and qny=  -(ρnAnhn)(anmy+g)        where g=9.81 m/s2.                (2.63) 

 

     For example, the nodal forces for Node-6 are formed due to the distributed forces 

for FE-2 and FE-3. So, the following can be written for the elements of the nodal 

force vector, fs, corresponding to Node-6. 

 

fs(5,1)=q2xh2/2+ q3xh3/2, fs(6,1)=q2yh2/2+ q2yh2/2, fs(7,1)=q2yh2
2/12+ q3yh3

2/12.  (2.64) 

 

     The inertia forces due to the payload mass are added for fs(8,1), fs(9,1) and 

fs(10,1).  

 
2.6.5 Vibration Signals 

 
     The vibration at the sensor point is analyzed. The vibration direction 

perpendicular to the line-BC in the x-y plane (motion plane) is considered. Let the 

displacement of the receiving point in the vibration direction be dR. The second 

derivative of dR is the acceleration signal and denoted by aR. The gravity is in the z 

direction, and thus is not included. 

 

2.6.6 Modal Analysis 

 
     In order to find the undamped natural frequencies of the manipulators, modal 

analyses are performed by MATLAB. The following eigenvalues equation obtained 

from the mathematical model based on the FEM is solved by MATLAB for the 

single link manipulator. 
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                                                      0ss
2  km                                             (2.65) 

 

      The values of eigenvalues i are found by MATLAB in rad/s. Let f1 be the first 

natural frequency of the manipulators. Then, the period T1 corresponding to the first 

natural frequency is calculated as T1 = 1/f1. The half of the period, T1h= 0.5T1, is 

used to define the motion parameters tacc, tcon, tdec. 

 

2.6.7 Numerical Values 

 
     A revolute joint is defined at O for the manipulators. The global origin is at O. 

The manipulators are actuated by a servo motor, which is used in the experiments 

and rotates around z axis, which is the global coordinate of the link. Since the servo-

motor has a joint flexibility, its rotational spring constant Km is defined for the 

revolute joint at O. The value of Km is provided as given in Table 2.10. The wireless 

accelerometer sensor which will be introduced in the experimental system is 

considered as a pay-load at B, where vibration responses are obtained from.  

 

     The FE model of the planar manipulator has 100 elements and 301 nodes. The 

material and geometrical properties of the manipulators are given in Table 2.10. 

 

Table 2.10 Properties of the manipulator   

Description Value Description Value 
Modulus of elasticity  E = 200 GPa Density ρ =7800 kg/m3 
Length L = 500 mm Width  b = 20 mm 
Thickness h=3.2 mm Cross section area A = 64 mm2 
Distance of the payload from the 
end point dpayload =15 mm Inertia of cross 

section 
I = 54.61 mm4 

Distance of the receiving point 
from the center of the payload dsensor =55 mm Newmark amplitude 

decaying factor γ =0.005 

Number of finite elements ne=100 Rayleigh damping 
coefficient β=3.8 x10-4  

Motor rotational spring constants Km2 = 16000 Nm/rad Time step ∆t =0.005 s 

Weight of the sensor ms = 0.054 kg Weight of the 
payload mL=0.62 kg 
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2.6.8 Experimental System 

 
     The experimental system used in this study is shown in Figure 2.28.  

 

   
(a)                                                              (b) 

Figure 2.28 Experimental system, (a) planar manipulator, (b) pc-based motion and measurement 

system. 

 
     The manipulator is produced for the experiments. The experimental set-up 

consists of single-link flexible manipulator, a servo motor and a driver, a motion 

control card, a wireless accelerometer sensor (WAS), a wireless data acquisition 

system (WDA) and a PC. The WAS is located at the end of the manipulators in the 

experiments. The WAS is also modeled as another payload in the simulations since it 

affects the dynamic behavior of the manipulators.     

 

       Mitsubishi Electric servo motor and driver with 200 W, Model HC-KFS23B/ 

MR-J2S-20A, are used. Harmonic Drive gearbox with the gear ratio of 100, Model 

HFUC-32-100/100 is used for the motor. A PC-based motion control card, Adlink 

PCI-8366 is used. The motion control card and driver are connected in serial by 

SSCNET network. The driver is programmed by Visual Basic commands using 

Adlink-ActiveX component. The motion control units which produce pulses 

according to the profile given in Figure 2.27 are readily available in the market.  

 

     MicroStrain WDA is used to measure acceleration signals at the end point of the 

manipulators. The WDA system uses three main components; the WAS, the USB 

base station to receive and pass the data to a host, and software which operates the 
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system and records the data. The WAS combines triaxial accelerometers and 

measures vibrations in three directions with their embedded accelerometers. The 

sampling rate is set as 617 Hz. The low-pass filter is set as and 5 Hz in case of the 

planar manipulator. 

 

2.6.9 Simulation and Experimental Results 

 

     The single-link flexible manipulator is considered in the numerical and 

experimental analyses. The natural frequencies of the manipulators corresponding to 

the first three modes are listed in Table 2.11.  

 

Table 2.11 Natural frequencies of the manipulator   

Order of Frequency 
Planar manipulator 

FEM (Hz) Experiment (Hz) 

1. 3.166 3.163 

2. - 17.850 

3. 48.250 43.080 

 

     The second natural frequencies of the planar manipulator obtained by the 

simulation and experiment correspond to the mode in out of plane. Since the solution 

by FEM gives the results in plane, the value of its second mode is not listed in the 

table. 

 

     Different stopping positions of the manipulators, which are defined by the vector 

qp=[s, m] are studied with the trapezoidal and triangular velocity motion profiles. s 

is always taken as zero since their value indicates starting position and is not 

important at rest position. m indicates incremental value of the angular position. 

Time parameters of the trapezoidal velocity profile is defined by the vector qm=[tacc, 

tcon, tdec, tm]. Three time parameters are chosen and the other time parameter is 

calculated by the equation below. 

 

                                                              tm= tacc + tcon + tdec                                    (2.66) 
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     The calculated parameter is indicated with “*” in qm. The units are degree for 

angles and second for the time parameters unless otherwise stated. The triangular 

velocity profile, which can be assumed as a special case of a trapezoidal motion 

profile, is defined by the vector, qm=[tacc, 0, tdec, tm]. The constant time parameter is 

tcon=0 for the triangular velocity profile. The manipulator moves from a rest position 

(OB1) at t=0 to a stopping position (OB2) at t=tm.   

 

2.6.10 Active Vibration Control of the Manipulator 

 
     It is known that, flexibility causes residual vibrations after motion is done. The 

aim of this study is to reduce the end point vibrations of the beam with active control 

action. MATLAB is used to construct the finite element models of the system and to 

integrate the control strategy into Newmark method. The closed loop block diagram 

is shown in Figure 2.29.  

 

 

   Figure 2.29 Closed loop block diagram 

 
     Since the flexible beam is driven by a servo motor in velocity mode, average 

velocity feedback is used in the closed loop block diagram. Here, rmy  is the 

reference velocity signal at the time step m. It is desired to reduce the residual 

vibrations of the flexible beam, therefore reference velocity signal is taken as zero at 

each step. The average velocity defined as any  at the y-direction of all nodes is 

taken as the velocity feedback signal at the time step n. ermy  is the error velocity 

signal at the time step m and m=n+1. Kp is the proportional control action constant. 

Trapezoidal and triangular velocity profiles are applied to the flexible beam. Closed 

loop control is activated after motion is done and the instantaneous average velocity 

of all nodes is subtracted from the reference velocity input to find the error signal 
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value at a time step in the Newmark solution. The proportional control action is 

applied to find the actuator signal value in the time step. This input value is used to 

find the acceleration of the end point for the subsequent time step. The process is 

continued with the time interval Δt until the steady-state value is approximately 

reached. A time step, ∆t, is chosen for the solution as ∆t<1/(20f1) , where f1 is the 

first natural frequency considered. {q}m is the value of the translations at x and y 

directions and the rotation about z axis for each nodes at the time step m. m2  is the 

control input at the time step m.  

 

     Arbitrary trapezoidal and triangular velocity profiles with the stopping position 

m= 90o are applied to the flexible beam and the effect of proportional gain is 

investigated in active vibration control. Examples signals of vibration responses 

obtained by Newmark are shown in Figure 2.30 and 2.31. 

 
Figure 2.30 Vibration responses for m= 90o and qm = [*,0, 0.1, 1] 
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Figure 2.31 Vibration responses for m= 90o and qm = [*,0.1, 0.1, 1] 

 

     The window of the vibration signals for tm<t<tm+tres is considered to analyze 

residual vibrations, where tres is the chosen time for residual vibrations. The time 

value is taken as tres= 4s for the window. The root mean square (RMS) value of the 

windowed signal is computed for the cases. The computed RMS values for the cases 

are listed in Table 2.12.      

 

Table 2.12 Case results for the manipulator   

Motion 
parameters Kp RMS (m/s2) 

Control-OFF 
RMS (m/s2) 
Control-ON 

Reduction 
% 

[*, 0,0.1, 1] 
10 

12.5301 
9.8642 21.28 

30 7.0428 43.79 
45 5.9737 52.33 

[*, 0, 0.05, 1] 
10 

14.4543 
11.2576 22.12 

30 7.8813 45.47 
45 6.5966 54.36 

[*, 0.1, 0.1, 1] 
10 

6.2974 
4.9633 21.18 

30 3.4890 44.60 
90 2.1187 66.36 

[*, 0.05, 0.1, 1] 
10 

3.4 
2.6681 21.53 

30 1.8563 45.40 
90 1.0972 67.73 
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     In case of the triangular velocity profile with qm=[*, 0, 0.1, 1]; the RMS value for 

Control-OFF result is 12.5301 and the reductions are 21.28 %, 43.79 % and 52.33 % 

for Kp= 10, 30 and 45, respectively. In case of the triangular velocity profile with 

qm=[*, 0, 0.05, 1]; the RMS value for Control-OFF result is 14.4543 and the 

reductions are 22.12 %, 45.47 % and 54.36 % for Kp= 10, 30 and 45, respectively. 

 

     In case of the trapezoidal velocity profile with qm=[*, 0.1, 0.1, 1]; the RMS value 

for Control-OFF result is 6.2974 and the reductions are 21.18 %, 44.60 % and 66.36 

% for Kp= 10, 30 and 90, respectively. In case of the trapezoidal velocity profile with 

qm=[*, 0.1, 0.05, 1]; the RMS value for Control-OFF result is 3.4 and the reductions 

are 21.53 %, 45.40 % and 67.73 % for Kp= 10, 30 and 90, respectively. 

 

     The response spectrum via the deceleration time for triangular and trapezoidal 

cares is given in Figure 2.32-2.33.  

 
Figure 2.32 Change of the RMS values of the residual vibration signals versus the proportional gain 

for qm=[*, 0, 0.1, 1]. 

 



 
 

62 
 

 
Figure 2.33 Change of the RMS values of the residual vibration signals versus the proportional gain 

for qm=[*, 0.1, 0.1, 1]. 

 

 

2.7 Conclusion 

 
     Flexible robot manipulators have smaller actuators and consume less energy. 

Active vibration control is important to control the vibrations due to the flexibility. 

Robot arms and flexible mechanical systems in general can be modeled as a multi-

degree of freedom vibratory system. The mathematical model of such systems can be 

solved by the Runge-Kutta and Newmark method.  

 

     In this chapter, the modeling and dynamic analysis of the multi-degree-of-

freedom system are performed and the dynamic responses are obtained with Runge-

Kutta and Newmark method. Passive vibration control is applied to the system and 

the results are compared with both numerical methods. It is observed that both 

numerical methods are in good agreement. 

  

     For the other study of this chapter, a procedure is developed to integrate 

proportional-integral-derivative (PID) control action into the Newmark solution for 

four-degree-of-freedom system. The numerical control action is applied to the error 
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signal value at a time step to find the actuator signal value and the Newmark 

algorithm is applied to find the output values at the subsequent time step. A step 

function is considered as the reference input signal for the closed loop system. An 

approximate model for the samples of the step function is used to obtain bounded 

derivatives. The numerical results are compared with analytical solutions obtained by 

the Laplace transform method.  Various results are given for undamped or damped 

system by setting PID parameters. It is observed that the numerical and analytical 

results are in good agreement. The results of this study can be used to simulate the 

active vibration control of flexible mechanical systems which are more complex and 

have their finite element models. 

 

     Finite element model of a cantilever flexible beam is created in MATLAB by 

Euler-Bernoulli beam theorem. Active vibration control by Newmark method is 

achieved by applying a control force to a determined distance from the created 

model’s end point under impulse input. Effect of various controller parameters on 

end-point vibrations is examined. When the number of elements in the finite element 

model of the flexible beam is increased, it is observed that dynamic behavior does 

not change as long as the feedback point and the point that the control force is 

applied stayed the same. The distance which the control force has to be applied for 

damping the end point vibrations of the finite element model of the flexible beam in 

the least amount of time is optimized in MATLAB. With this approach more 

complex systems can be modelled and actively controlled. 

 

     The finite element model of a rotating flexible manipulator can also be created in 

MATLAB and transient results can be observed by the Newmark method. In this 

study, triangular and trapezoidal velocity profiles are applied to the manipulator. The 

proportional control gain is applied which is integrated into Newmark solution. 

Active control is activated after motion is done. The root mean square values 

calculated from the residual vibration signals, and reduction ratios are presented for 

the cases. It is observed from the results that the residual vibration amplitudes of the 

manipulators are successfully suppressed by the proportional control gain. 
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CHAPTER THREE 

VIBRATION CONTROL OF SINGLE-LINK FLEXIBLE COMPOSITE 

MANIPULATOR 

 

     The use of lighter manipulators reduces the power consumption and increases 

payload-to-weight ratio. Composite manipulators can be preferred for this aim due to 

their properties such as light weight and high strength. Using lighter manipulators 

causes vibrations due to their flexibility. Flexibility affects the end-point positioning 

accuracy and repeatability of manipulators in high speed engineering applications. In 

this section, a single-link flexible composite manipulator is considered to analyze in 

ANSYS and reduce end-point vibrations. The finite element vibration analysis is 

performed and an experimental system is introduced to verify simulation results. 

[0/90] and [45/-45] lay-ups, trapezoidal and triangular velocity profiles are studied 

by creating cases for different stopping positions and motion times. The time 

intervals of the motion profiles are determined from the natural frequency of the 

composite manipulator. Residual vibrations which are occurred after stopping the 

movement of the manipulator are obtained and the root mean square (RMS) values of 

these signals are calculated. It is observed from the results that the first vibration 

mode dominates to reduce the residual amplitudes. The lowest RMS values are 

achieved for various cases if the time interval is selected so that the deceleration time 

equals to the inverse of the first natural frequency.  

 

 

3.1 Introduction 

 

     Manipulators having lighter arms, lower power consumption and higher payload-

to-weight ratio are currently in demand in industry. Manipulators can be produced 

with composite materials for these demands. However, the use of lightweight arms 

causes flexibility and vibrations. Vibrations affect the accuracy of the end point and 

repeatability of the flexible manipulators. There are challenging problems in design, 

modeling, analysis and control due to the nature of the flexible manipulators (Gao et 

al., 2012).  
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     Suppressing the vibrations with active or passive control techniques become 

important to increase productivity of the flexible manipulators. Passive control 

techniques do not require additional equipment and hardware in practice while active 

control techniques require a closed loop control with additional equipment in 

practice.    

 

     The vibration control of single-link metal manipulators is studied extensively with 

active or passive techniques. Limited studies on the passive vibration control of 

flexible composite manipulators have been observed and literature survey of the 

single-link flexible manipulators composed of metal and composite materials are 

summarized here.  

 

      A survey on control of flexible manipulators is presented in (Benosman & 

LeVey, 2004). Control objectives for the flexible manipulators are classified as end 

effector regulation problem, end effector to rest motion in a desired fixed time, joint-

trajectory tracking, and end-effector trajectory tracking. Studies related to four 

control objectives are cited. 

 

     A literature review for dynamic analysis of flexible manipulators is given in the 

reference (Dwivedy & Eberhard, 2006). Modeling, control, and experimental studies 

on single link flexible manipulators are reviewed in detail. The studies related to the 

modeling of single flexible manipulators are grouped as assumed mode method, 

finite element method, lumped parameter models and other studies. One of the 

conclusions of the review is that the necessity of more experimental investigations to 

validate the simulation modeling. 

 

     Residual vibrations of flexible manipulators are reduced by changing the motion 

commands. In references (Mimmi & Pennachi, 2001; Pereira et al., 2012; Shan et al., 

2005; Yang et al., 2006) input shaping control is applied to single flexible 

manipulators. Simulation and experiments are performed by planning motion of a 

flexible single link with a piezoelectric actuation in the reference (Reis & da Costa, 

2012). Free vibration of a rotating beam with nonlinear spring-mass system is 
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investigated and natural frequency results are given in the reference (Das et al., 

2007).Two methods based on the shock response spectrum is presented in the 

reference (Shin & Brennan, 2008) for suppressing of the residual vibrations of a 

rotating flexible beam without considering any control algorithms. The procedure is 

summarized to eliminate residual vibration. The results have showed that the residual 

response is zero if the duration of the pulse is appropriately chosen. Vibration control 

of residual vibration of an elastic manipulator is performed using the mode 

summation techniques in the reference (Ankarali & Diken, 1997). Zero residual 

vibration results are obtained for certain values of the cycloidal motion input. The 

study is extended by Diken and Alghamdi (2003) conducting experiments to verify 

the simulation results for a rotating aluminum beam. A response spectrum obtained 

from residual vibrations of a flexible shaft-beam for a cycloidal motion input is 

presented by Ankaralı et al. (2012) using the same method in the reference (Ankarali 

& Diken, 1997).     

 

     Although there are many studies on vibration analysis of composite beams in the 

literature, limited works has included vibration control of composite structures. In 

references (Abramovic, 1992; Abramovic & Livshits, 1994; Kapania & Raciti, 1989; 

Singh & Abdelanser, 1992), vibration analysis has been studied on stationary 

composite beams by reasearchers. For rotating composite structures, different 

methods have been used to analyze the vibrations (Aksencer & Aydogdu, 2015; 

Arvin & Lacarbonara, 2014; Arvin & Nejad, 2013; Arvin et al., 2013; Chandiramani 

et al., 2002; DeValve & Pitchumani, 2014; Jiang et al., 2014; Ozdemir & Kaya, 

2006; Rand, 1995; Yoo et al., 2005). In control techniques, passive control is used as 

changing the damping ratio by using different orientation angles (Kang et al., 2002). 

Bandopadhya et al. (2008) have used ionic polymer metal composite (IPMC) as an 

active damper to control a single-link flexible manipulator. They proposed the 

suitable positions to fix two IPMC actuators based on modal approach to suppress 

vibrations efficiently. Ji et al. (2009) have improved synchronized switch damping 

on voltage (SSDV) approach to control the vibrations of a composite beam. The 

proposed approach adjusted the voltage coefficient which controls the damping 
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efficiency adaptively and they showed that the improved SSDV approach is the most 

stable compared with previous SSDV techniques.  

 

     In the present work, the vibration control of a single-link flexible composite 

manipulator with [0/90] and [45-45 lay-ups] is studied using the trapezoidal and 

triangular motion profiles. Theoretical vibration results are obtained using the FE 

method and experiments are conducted to verify the FE vibration results. Cases are 

created for different stopping positions and motion times of the composite 

manipulator. The effect of the time intervals such as the acceleration time, the 

constant velocity time, and especially the deceleration time on the residual vibration 

of the end point is analyzed. The deceleration time based on the fundamental 

frequency of the manipulator is effective to reduce vibrations as the proposed studies 

in the references (Ankarali & Diken, 1997; Ankarali et al., 2012; Diken & Alghamdi, 

2003). Satisfactory reduction ratios are achieved theoretically and experimentally in 

the residual vibration amplitudes of the composite manipulator with a passive control 

approach. 

 

3.2 Finite Element Vibration Analysis 

 

     The system under study is shown in Figure 3.1. The manipulator is the OB beam. 

There is a revolute joint at O. The manipulator is actuated by a servo motor, which is 

used in the experiments and rotates around z axis, which is the global coordinate of 

the link. The global origin is at O. The mass of the servo motor is on the frame at O. 

Since the servo-motor has a joint flexibility, its rotational spring constant Km is 

defined for the revolute joint at O. The value of Km is given by the manufacturer as 

16000 Nm/rad. The wireless accelerometer sensor which will be introduced in the 

experimental system is considered as a pay-load. The pay-load is defined at the 

distance of 320 mm from O.  

 

     The FE model the manipulator is created using shell elements in 

ANSYS/Workbench.  The FE model has 80 elements and 123 nodes as shown in 

Figure 3.1.  
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Figure 3.1 The FE model of the composite manipulator. 

 
     The composite link consists of eight layers and the orientations are defined for 

each layer. Two lay-ups such as [0/90] and [45/-45] are considered for the composite 

manipulator. The material and geometrical properties of the composite manipulators 

are given in Table 3.1. 
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Table 3.1 Properties of the composite manipulator 

Description Value Description Value 
Longitudinal 
Modulus 

E1 = 23800 
MPa 

Manipulator Length  L=400 mm 

Transverse Modulus E2 = 22900 
MPa 

Rectangular Cross 
Section 

b=20 mm, h=2 
mm 

Poison ratio ν12 = 0.16 Cross Section Area  A=40 mm2 
Shear Modulus G1=3400 MPa 

G2 = 3250 
MPa 

Inertia of Cross Section I=13.33 mm4 

Density ρ = 1.78 g/cm3 Wight of pay-load mp=54 g 
 

     After modeling the composite manipulator, modal analysis is performed to find 

natural frequencies. Then transient analysis is realized for the FE vibration analysis 

of the single-link manipulator. The motion is assigned to the revolute joint in the FE 

model. 

 

    The servo motor is derived by the trapezoidal velocity profile as shown in Figure 
3.2. 

 

Figure 3.2 Trapezoidal velocity profile. 

 

The maximum angular velocity for this profile can be calculated with the equation 

below. 

 

                                              

dca

m

ttt 5.05.0
180

0 





                                         (3.1) 
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     where tacc is the acceleration time, tcon is the constant time, tdec is the deceleration 

time, tm is motion time, m is the angular displacement in rad and ω0 is the angular 

velocity in rad/s.  

 

     In simulations, the time step is chosen as 0.001 s by considering first three natural 

frequencies of the system. Rayleigh damping is used to take into account the 

damping of composite manipulator. The Rayleigh damping coefficient (β) is taken as 

0.0004. 

 

3.3 Experimental System 

 

The experimental system used in this study is shown in Figure 3.3.      

 

 

Figure 3.3 Experimental system 
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Figure 3.3 Experimental system (cont.) 

 
 
     The experimental set-up consists of a single-link flexible composite manipulator, 

a servo motor and a driver, a motion control card, a wireless accelerometer sensor 

(WAS), a wireless data acquisition system (WDA) and a PC. The WAS is fixed with 

bolts to the manipulator in the experiments. The WAS is considered as a pay-load in 

the simulations as explained in section 2 since it affects the dynamic behavior of the 

composite manipulator.   

   

    The composite manipulators with [0/90] and [45/-45] lay-ups are produced from a 

woven glass fiber/epoxy composite plate. The area density of woven fabric glass 

fibers is 500 g/m2. An epoxy system consisted of Araldite LY 564 and Aradur 3487 

BD is used as matrix material. For the curing process, the laminated plates are kept at 

80 oC for 8 h.  

 

    Mitsubishi Electric servo motor and driver with 200 W, Model HC-KFS23B/ MR-

J2S-20A, are used. Harmonic Drive gearbox with the gear ratio of 100, Model 

HFUC-32-100/100 is used for the motor. A PC-based motion control card, Adlink 

PCI-8366 (Adlink Technology Inc, 2015) is used. The motion control card and driver 

are connected in serial by SSCNET network. The driver is programmed by Visual 

Basic commands using Adlink-ActiveX component.  
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     MicroStrain WDA (MicroStrain Inc., 2015) is used to measure acceleration 

signals at the end point of the composite manipulator. The WDA system uses three 

main components; the WAS, the USB base station to receive and pass the data to a 

host, and software which operates the system and records the data. The WAS 

combines triaxial accelerometers and measures vibrations in three directions with 

their embedded accelerometers. The sampling rate and low-pass filter are set as 617 

Hz and 5 Hz in the software, respectively. 

 

3.4 Simulation and Experimental Results 

 

Two different lay-ups such as [0/90] and [45/-45] for the single-link composite 

manipulator are considered in simulation and experimental analyses. The natural 

frequencies of the composite manipulator corresponding to the first three modes are 

found and listed in Table 3.2. 

 

Table 3.2 Natural frequencies of the composite manipulator 

Order of Frequency 
[0/90] [45/-45] 

Simulation (Hz) Experiment (Hz) Simulation (Hz) Experiment (Hz) 

1. 3.2283 3.2386 2.6351 2.5608 

2. 32.08 30.88 24.812 23.5743 

3. 45.27 43.68 34.997 57.3165 

 
 

     It is observed from the table that ply orientations affect the dynamic properties of 

the manipulator and the natural frequencies of [0/90] lay-up are higher than those of 

[45/-45] lay-up. The composite manipulator becomes more flexible as the first 

natural frequency decreases. The first natural frequencies for the two lay-ups are 

considered in the transient analyses since the effect of the higher frequency modes is 

very small. So, it is expected that their first vibration modes are dominated for 

vibration reduction.  

 

     Different stopping positions of the composite manipulator, which are defined by 

the vector qp=[s, m] are studied with the trapezoidal and triangular velocity motion 
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profiles. s is always taken as zero since their value indicates starting positon and is 

not important at rest position. m indicates incremental value of the angular position. 

Time parameters of the trapezoidal velocity profile is defined by the vector qm=[tacc, 

tcon, tdec, tm]. Three time parameters are chosen and the other time parameter is 

calculated by the equation below. 

 

                                                    tm= tacc + tcon + tdec                                                (3.2)                                                                               

                                                            

The calculated parameter is indicated with “*” in qm. The units are degree for 

angles and second for the time parameters unless otherwise stated. The triangular 

velocity profile, which can be assumed as a special case of a trapezoidal motion 

profile, is defined by the vector, qm=[tacc, 0, tdec, tm]. The constant time parameter is 

tcon=0 for the triangular velocity profile. The manipulator moves from a rest position 

(OB1) at t=0 to a stopping position (OB2) at t=tm.  Five cases with the trapezoidal 

and triangular velocity motion profiles are considered for different stopping positions 

and motion times of the composite manipulator as given in Table 3.3. 
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Table 3.3 Motion cases 

Cases 
[ϴs, 

ϴm] 
tm Pictorial 

[0/90] [-45/45] 

T1h for 

simulationa 

T1h for 

experimenta 

T1h for 

simulationa 

T1h for 

experimenta 

Case-

1 
[0,90] 2 

 

1/3.2283/2 1/3.2386/2 1/2.6351/2 1/2.5608/2 

Case-

2 
[0,60] 2 

 

1/3.2283/2 1/3.2386/2 1/2.6351/2 1/2.5608/2 

Case-

3 
[0,30] 2 

 

1/3.2283/2 1/3.2386/2 1/2.6351/2 1/2.5608/2 

Case-

4 
[0,60] 1 

 

1/3.2283/2 1/3.2386/2 1/2.6351/2 1/2.5608/2 

Case-

5 
[0,60] 4 

 

1/3.2283/2 1/3.2386/2 1/2.6351/2 1/2.5608/2 

a T1h is determined from the value of the fundamental frequency of the manipulator. 

 

     The effect of m is studied in Case-1, Case-2 and Case-3. The effect of tm is 

studied in Case-4, Case-5. The stopping positions and motion time are taken as 

m=90, m=60, m=60 and tm=2 s for Case-1, Case-2 and Case-3, respectively. The 

stopping position and motion time are taken as m=60, and tm=1 s for Case-4. The 

stopping position and motion time are taken as m=60, and tm=4 s for Case-5. 
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     Examples signals of vibration responses obtained by simulation and experimental 

analyses are shown in Figure 3.4 and Figure 3.5. 

 

 
(a) 

 
(b) 

Figure 3.4 Vibration responses for Case-1 for [0/90 ] lay-up (a) qm = [*,0, t1h,tm], (b) qm = [*,2t1h, 

t1h,tm] and [45/-45 ] lay-up (c) qm = [*,0, t1h,tm], (d) qm = [*,2t1h, t1h,tm]. 
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(c) 

 
(d) 

Figure 3.4 Vibration responses for Case-1 for [0/90 ] lay-up (a) qm = [*,0, t1h,tm], (b) qm = [*,2t1h, 

t1h,tm] and [45/-45 ] lay-up (c) qm = [*,0, t1h,tm], (d) qm = [*,2t1h, t1h,tm]. (cont.) 
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(a) 

 
(b) 

Figure 3.5 Vibration responses for Case-1 for [0/90 ] lay-up (a) qm = [*,0,2t1h,tm], (b) qm = [*,2t1h, 

2t1h,tm] and [45/-45 ] lay-up (c) qm = [*,0, 2t1h,tm], (d) qm = [*,2t1h, 2t1h,tm]. 
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(c) 

 
(d) 

Figure 3.5 Vibration responses for Case-1 for [0/90 ] lay-up (a) qm = [*,0,2t1h,tm], (b) qm = [*,2t1h, 

2t1h,tm] and [45/-45 ] lay-up (c) qm = [*,0, 2t1h,tm], (d) qm = [*,2t1h, 2t1h,tm]. (cont.) 

 

     Residual vibrations are important to discuss the effect of vibration control and 

observe especially the reduction in the amplitudes. The window of the vibration 
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signals for tm<t<tm+tres is considered to analyze residual vibrations, where tres is the 

chosen time for residual vibrations. The time value is taken as tres= 4s for the 

window. The root mean square (RMS) value of the windowed signal is computed for 

the cases. The computed RMS values for the five cases are listed in Table 3.4-3.8.      

   

     It is observed from the figures that simulation and experimental result matches 

well each other. The RMS value is the highest when deceleration time equals to T1h. 

The constant velocity time parameter is chosen as tcon=2T1h for the trapezoidal 

motions in all cases. 

 
Table 3.4 RMS and reduction ratios for Case-1.  

Lay-
up 

Motion 
parameters 

max 
(rad/s) 

RMS (m/s2) 
Experiment 

Reduction 
% 

RMS 
(m/s2) 

Simulation 

Reduction 
% 

[0/90] 

[*,0, t1h,tm] 1.5708 3.3822 - 3.4070 - 
[*,0, 2t1h,tm] 1.5708 0.3660 89.18 0.3302 90.31 
[*,0, 3t1h,tm] 1.5708 1.2713 62.41 1.3157 61.38 
[*,0, 4t1h,tm] 1.5708 0.4681 86.16 0.3973 88.34 
[*,0, 5t1h,tm] 1.5708 0.7882 76.70 0.7870 76.90 
[*,0, 6t1h,tm] 1.5708 0.5904 82.54 0.5029 85.24 

[*, 2t1h, t1h, tm] 1.3607 3.2170 - 3.4082 - 
[*, 2t1h, 2t1h, tm] 1.3607 0.4214 86.90 0.3483 89.78 
[*, 2t1h, 3t1h, tm] 1.3607 1.1183 65.24 1.1377 66.62 
[*, 2t1h, 4t1h, tm] 1.3607 0.5103 84.14 0.4408 87.07 
[*, 2t1h, 5t1h, tm] 1.3607 0.6911 78.52 0.6791 80.07 
[*, 2t1h, 6t1h, tm] 1.3607 0.6409 80.08 0.6053 82.24 

[45/-45] 

[*,0, t1h,tm] 1.5708 3.0127 - 3.2621 - 
[*,0, 2t1h,tm] 1.5708 0.1988 93.40 0.1579 95.19 
[*,0, 3t1h,tm] 1.5708 1.1638 61.37 1.2348 62.15 
[*,0, 4t1h,tm] 1.5708 0.2324 92.29 0.1920 94.11 
[*,0, 5t1h,tm] 1.5708 0.8859 70.59 0.9344 71.36 
[*,0, 6t1h,tm] 1.5708 0.3041 89.91 0.2618 91.97 

[*, 2t1h, t1h, tm] 1.3142 2.5769 - 2.6775 - 
[*, 2t1h, 2t1h, tm] 1.3142 0.2133 91.72 0.2356 91.20 
[*, 2t1h, 3t1h, tm] 1.3142 1.0539 59.10 1.1543 56.87 
[*, 2t1h, 4t1h, tm] 1.3142 0.2680 89.60 0.2547 90.48 
[*, 2t1h, 5t1h, tm] 1.3142 0.9313 63.86 1.0683 60.09 
[*, 2t1h, 6t1h, tm] 1.3142 0.4265 83.45 0.4420 83.49 
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Table 3.5 RMS and reduction ratios for Case-2 

Lay-
up 

Motion 
parameters 

max 
(rad/s) 

RMS (m/s2) 
Experiment 

Reduction 
% 

RMS 
(m/s2) 

Simulation 

Reduction 
% 

[0/90] 

[*, 0, t1h, tm] 1.0472 2.4853 - 2.6208 - 
[*, 0, 2t1h, tm] 1.0472 0.2797 88.75 0.2214 91.55 
[*, 2t1h, t1h, tm] 0.9071 1.9615 - 2.1339 - 
[*, 2t1h, 2t1h, tm] 0.9071 0.2885 85.29 0.2335 89.06 

[45/-45] 

[*, 0, t1h, tm] 1.0472 2.0408 - 2.1767 - 
[*, 0, 2t1h, tm] 1.0472 0.1323 93.52 0.1055 95.15 
[*, 2t1h, t1h, tm] 0.8761 1.6815 - 1.8415 - 
[*, 2t1h, 2t1h, tm] 0.8761 0.1336 92.05 0.1130 93.86 

 
 
Table 3.6 RMS and reduction ratios for Case-3 

Lay-
up 

Motion 
parameters 

max 
(rad/s) 

RMS (m/s2) 
Experiment 

Reduction 
% 

RMS 
(m/s2) 

Simulation 

Reduction 
% 

[0/90] 

[*, 0, t1h, tm] 0.5236 1.2369 - 1.3081 - 
[*, 0, 2t1h, tm] 0.5236 0.1454 88.24 0.1126 91.39 
[*, 2t1h, t1h, tm] 0.4536 0.9709 - 1.0646 - 
[*, 2t1h, 2t1h, tm] 0.4536 0.1493 84.62 0.1183 88.89 

[45/-45] 

[*, 0, t1h, tm] 0.5236 1.0476 - 1.0888 - 
[*, 0, 2t1h, tm] 0.5236 0.0657 93.73 0.0532 95.11 
[*, 2t1h, t1h, tm] 0.4381 0.8846 - 0.9211 - 
[*, 2t1h, 2t1h, tm] 0.4381 0.0626 92.92 0.0568 93.83 

 
 

Table 3.7 RMS and reduction ratios for Case-4 

Lay-
up 

Motion 
parameters 

max 
(rad/s) 

RMS (m/s2) 
Experiment 

Reduction 
% 

RMS 
(m/s2) 

Simulation 

Reduction 
% 

[0/90] 

[*, 0, t1h, tm] 2.0944 5.0065 - 5.2005 - 
[*, 0, 2t1h, tm] 2.0944 0.7907 84.21 0.7361 85.85 
[*, 2t1h, t1h, tm] 1.6003 3.9831 - 3.8011 - 
[*, 2t1h, 2t1h, tm] 1.6003 1.0641 73.28 1.0164 73.26 

[45/-45] 

[*, 0, t1h, tm] 2.0944 3.9405 - 4.0680  
[*, 0, 2t1h, tm] 2.0944 1.2206 69.02 1.2491 69.29 
[*, 2t1h, t1h, tm] 1.5062 3.0008 - 3.1908 - 
[*, 2t1h, 2t1h, tm] 1.5062 2.1651 27.85 2.4422 23.46 
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Table 3.8 RMS and reduction ratios for Case-5 

Lay-
up 

Motion 
parameters 

max 
(rad/s) 

RMS (m/s2) 
Experiment 

Reduction 
% 

RMS 
(m/s2) 

Simulation 

Reduction 
% 

[0/90] 

[*, 0, t1h, tm] 0.5236 1.2568 - 1.3295 - 
[*, 0, 2t1h, tm] 0.5236 0.0459 96.37 0.0222 98.33 
[*, 2t1h, t1h, tm] 0.4681 1.0508 - 1.0707 - 
[*, 2t1h, 2t1h, tm] 0.4681 0.045 95.72 0.0218 97.96 

[45/-45] 

[*, 0, t1h, tm] 0.5236 1.0118 - 1.0422 - 
[*, 0, 2t1h, tm] 0.5236 0.0711 92.97 0.0629 93.96 
[*, 2t1h, t1h, tm] 0.4770 0.9158 - 0.9487 - 
[*, 2t1h, 2t1h, tm] 0.4770 0.0821 91.04 0.0635 93.31 

 

     The results of Case-1 show that vibration reductions can be achieved for 2T1h, 

4T1h, 6T1h as given in Table 4. It is seen that double times of T1h is more effective to 

control vibration amplitudes.  

 

     In case of the lay-up [0/90] and triangular velocity profile; the reductions are 

90.31 %, 88.34 % and 85.24 % for 2T1h, 4T1h and 6T1h in the simulation, respectively 

and the reductions are 89.18 %, 88.34 % and 82.54 % for 2T1h, 4T1h and 6T1h in the 

experiment, respectively. 

 

     In case of the lay-up [0/90] and trapezoidal velocity profile; the reductions are 

89.78 %, 87.07 % and 82.24 % for 2T1h, 4T1h and 6T1h in the simulation, respectively 

and the reductions are 86.90 %, 84.14 % and 80.08 % for 2T1h, 4T1h and 6T1h in the 

experiment, respectively.  

 

     In case of the lay-up [45/-45] and triangular velocity profile; the reductions are 

95.19 %, 94.11 % and 91.97 % for 2T1h, 4T1h and 6T1h in the simulation, respectively 

and the reductions are 93.40 %, 92.29 % and 89.91 % for 2T1h, 4T1h and 6T1h in the 

experiment, respectively.   

 

     In case of the lay-up [45/-45] and trapezoidal velocity profile; the reductions are 

91.20 %, 90.48 % and 83.49 % for 2T1h, 4T1h and 6T1h in the simulation, respectively 

and the reductions are 91.72 %, 89.60 % and 83.45 % for 2T1h, 4T1h and 6T1h in the 

experiment, respectively. The response spectrum via the deceleration time for Case-1 

is given in Figure 3.6. 
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(a) 

 
(b) 

Figure 3.6 Change of the RMS values of the residual vibration signals versus the deceleration time for 

Case-1 (a) [0/90] and (b) [45/-45]. 
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     The reduction ratios for the simulation and experiment are very close as seen in 

Table 4. It is also observed from the table that the deceleration time for tdec= 2T1h is 

the most effective parameter to reduce vibration amplitudes. The other cases are 

studied by taking the deceleration time as tdec= 2T1h. The results show that better 

reduction ratios are achieved when the flexibility of composite manipulator 

increases. So, the reduction ratios of the lay-up [45/-45] are higher than those of the 

lay-up [0/90].  

 

     Table 3.4, 3.5 and 3.6 reveals that the RMS values decrease when the stopping 

position of the composite manipulator decreases for the same motion times. Higher 

reduction ratios are achieved for the lay-up [45/-45].   

 

     The effect of the motion time on the vibration control for the same stopping 

positions is investigated in Case 4 and 5. The results for these cases are given in 

Tables 3.7 and 3.8. The composite manipulator moves same stopping positions at 

different motion times in Cases 2, 4 and 5. When the results in Tables 3.5, 3.7 and 

3.8 are compared, the best reduction ratios are achieved when the composite 

manipulator moves slowly. On the contrary, the lowest reduction ratios are achieved 

when the composite manipulator moves rapidly. Better reduction ratios are obtained 

for the triangular motion even if it is not always useful in practice.  

 

     The results in all tables reveal that the vibration control is achieved for 

different stopping positions, motion times, motion velocity profiles and lay-ups. The 

experimental results encourage that the method can be used for practical 

implementations of composite manipulators in case of high speed applications. 

 

3.5 Conclusion 

 
     Passive control of flexible systems has been studied in the literature extensively. 

Command input pre-shaping has been used to control the residual vibrations. The use 

of pulse sequence superimposed on the motion input by considering the system 

frequency and damping reduces the end point vibrations. Another approach is to 
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select the deceleration time in the velocity profile considering the natural frequency 

of the system. This approach was developed for a one-link flexible manipulator. The 

vibration control of single-link flexible manipulators was explored in the literature. It 

was observed that the deceleration time of the cycloidal velocity profile was 

important to suppress the residual vibration of the single-link. However, there are 

very limited studies on the passive control of composite manipulators. 

 

      This study presents the vibration control of a single-link flexible composite 

manipulator using motion profiles. The trapezoidal and triangular velocity profiles 

are considered for the motion commands. The time intervals of the trapezoidal 

motion input such as the acceleration time, the constant time, and the deceleration 

time are expressed in relation to the fundamental frequency of the composite 

manipulator. The constant time is taken as zero for the triangular motion input since 

the triangular motion can be assumed as a special case of the trapezoidal motion. The 

finite element vibration analyses are performed and the experiments are realized to 

verify simulation results. The residual vibration results are given as the acceleration 

signals. The RMS values of these signals are calculated to evaluate the effectiveness 

of the vibration control. It is observed that simulation and experimental results for 

the composite manipulator are in good agreement. The residual vibrations of single-

link flexible composite manipulators can be controlled by selecting an appropriate 

deceleration time in the trapezoidal and triangular motion inputs.        

 

       The trapezoidal motion inputs are widely used to drive servo motors of industrial 

and manufactured robots. The results obtained in this study encourage that the 

proposed method can be used in practice, especially in pick and place applications to 

control residual vibrations. It is expected that the proposed method can be successful 

in the vibration control of complex and realistic composite manipulators.   
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CHAPTER FOUR 

MODELING AND VIBRATION CONTROL OF SIX-AXIS SERIAL ROBOT 

WITH ANSYS APDL AND EXPERIMENTAL RESULTS  

 

     In this chapter, vibration control is applied to a six-axis serial robot. First, the six-

axis robot with rigid members is considered. The robot is modeled as beam model in 

ANSYS by using APDL (Ansys Parametric Design Language). The end point 

vibration signals are simulated by transient analysis performing in ANSYS based on 

the finite element theory. Experimental results are also presented and compared with 

simulation results. Second, vibration control is applied to a six-axis serial robot and 

experimental results are presented. Triangular and trapezoidal velocity profiles for 

the actuating motors are used. The acceleration, constant velocity and deceleration 

time intervals of the trapezoidal velocity profile are selected by considering the 

lowest natural frequency of the manipulator structure at the stopping position. 

Arbitrary starting and stopping positions are considered. The root mean square 

(RMS) acceleration values of the vibration signals after stopping are calculated. It is 

observed that the residual vibration is sensitive to the deceleration time.  The RMS 

values are lowest if the inverse of the deceleration time equals to the first natural 

frequency.  It is highest if the inverse of the deceleration time equals to the half of 

the first natural frequency. It is observed that simulation and experimental results are 

in good agreement.  

 

4.1 Introduction 

 

     Flexibility of robot manipulators depends on the parameters such as the weight, 

the dimension, the payload and speed of manipulators. The effect of flexibility in 

manipulators is observed as vibrations both during the motion and after the motion 

has finished. Vibrations caused after finishing the motion are called as residual 

vibrations. Residual vibrations also affect the accuracy and settling time at the end 

point. The performance of such manipulators or repeatability decreases in high speed 

engineering applications. Suppressing residual vibrations are important and possible 

by applying different control strategies such as passive or active.  
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     The first step is to develop the mathematical models of manipulators. The 

mathematical models of manipulators can be constructed by the finite element 

method or analytical methods. Control of multi-link flexible manipulators reviewed 

in reference (Benosman & LeVey, 2004) by considering the control objectives of 

end-effector position and trajectory tracking. The governing differential equations of 

dynamic systems can be solved by using numerical methods (Fung, 1997; Owren & 

Simonsen, 1995; Zhang et al., 1999) or commercial engineering programs (Karagülle 

and Malgaca, 2004). Dynamic analysis of flexible manipulators reviewed in detail by 

classifying single-link, two-link, and multi-link manipulators in (Dwivedy & 

Eberhard, 2006). 

 

     Active or passive control techniques can be applied to flexible robot manipulators 

to suppress their residual vibrations. A passive control technique can be carried out 

with motion commands without using any additional hardware while an active 

control technique requires an actuator, a sensor and a control system. A passive 

control can be achieved as open loop while an active control can be achieved as 

closed loop. 

 

     Active control of flexible manipulator with both single-link and two-link has been 

studied in the literature (Shin & Choi, 2001; Gurses et al., 2009, Mirzaee et al., 

2010). Most of these studies used piezoelectric (PZT) actuators to reduce the 

vibration amplitudes of flexible manipulators. Shin and Choi (2001) studied position 

control of a two-link flexible manipulator with PZT actuators and sensors. They 

established a nonlinear model including inertial effects by using Lagrange’s equation 

and a sliding mode controller.  Gurses et al. (2009) studied vibration control of 

single-link flexible manipulator with PZT actuators based on the finite element 

theory. They proposed PD based hub and velocity control techniques providing a 

feedback with a fiber optic sensor. Mirzaee et al. (2010) investigated active control 

of a two-link manipulator with PZT actuator and sensor by using Lyupunov based 

controller for maneuver tracking.    
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     Some studies are related to designing and selecting appropriate trajectories to 

reduce residual vibrations. Park (2004) studied control of residual vibration of two-

link manipulator by designing and optimizing a path under torque constraints. Abe 

(2009) also proposed an optimal trajectory planning for residual suppression of a 

two-link rigid-flexible link by using the Lagrangian approach and the assumed 

modes method.  Green and Sasiadek (2004) presented control methods such as LQR 

and fuzzy logic for end point tracking of a trajectory by a two-link manipulator.    

 

     The passive control of flexible systems was studied in the literature extensively 

(Singhose, 2009). Command input pre-shaping has been used to control the residual 

vibration. The use of pulse sequence superimposed on the motion input by 

considering the system frequency and damping reduces the end point vibration. 

Singer and Seering (1990) applied this method to the aerospace field and improved 

the robustness of the method by increasing the number of pulses. Command shaping 

research advancements and application examples are reviewed in detail by Singhose 

(2009).  

 

     The passive control of single-link flexible manipulators was studied in the 

literature extensively (Ankarali & Diken, 1997; Mimmi and Pennacchi, 2001; Shan 

et al., 2005; Shin & Brennan, 2008). However, there are limited studies regarding the 

passive control of two-link or multi-link manipulators. Özer and Semercigil (2008) 

demonstrated the effectiveness of the variable stiffness control technique on a two-

link manipulator with passive components to implement control action. 

 

     In the references (Ankaralı & Diken, 1997; Shin and Brennan, 2008), it was 

shown that by selecting an appropriate deceleration time, the residual vibrations of 

single-link manipulators can be controlled. Ankaralı and Diken (1997) solved the 

transient vibration problem of a single elastic link, which was modeled by using 

Euler-Bernoulli beam theory and mode summation techniques. They drove the link 

with a cycloidal motion to eliminate its residual vibrations. Shin and Brennan (2008) 

proposed two simple methods to control residual vibrations of translating or rotating 
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Euler-Bernoulli beam reducing the problem to the base excitation of a single-

freedom system without considering any control algorithms.  

 

     In this chapter, vibration control is applied to the six-axis serial robot. First, a 

Karagulle et al. (2015) have studied on the vibration control of two-link flexible 

manipulator. They have simulated the end point vibration signals by developing a 

MatLAB code based on the finite element theory and Newmark solution. Differently, 

the end point vibration of the robot is simulated by using ANSYS (Ansys, 2016). The 

simulation results are compared with experimental. Triangular velocity profile inputs 

for the three actuators are used. The effect of the acceleration, constant velocity, and 

deceleration time intervals on the residual vibration of the end point is studied 

simulation and experimentally.  

 

4.2 Analysis by ANSYS APDL Code based on Finite Element Theory 

 
4.2.1 Finite Element Model 

 
     The six-axis serial robot is modeled in ANSYS by using APDL which allows you 

typing commands in text file and running analysis without using graphical interface. 

In graphical interface study, it is very difficult to fix when there is a mistake on the 

model. Therefore, APDL is much easier and faster way to create a model and make 

changes on the model. BEAM188 element is used as a flexible beam. BEAM188 

element is based on Timoshenko beam theory. The element has six degrees of 

freedom at each node: translations in the nodal x, y and z directions and rotations 

about the nodal x, y and z-axis. The element is defined by two nodes, the cross-

sectional area, the dimensions of the cross-section, the area moment of inertia, the 

height, and the material properties. The materials of the links are steel and the 

properties of the links are given in Table 4.2.  

 

The easiest way of FE analysis after constructing solid model of the system is 

using solid finite elements. ANSYS uses SolidWorks models, considers contacting 

surfaces, and performs meshing to generate solid finite elements. The user defines 

the boundary conditions and obtains the solution.  
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The disadvantages of this approach for complex systems are the resulting number 

of elements and degrees of freedom are very large, meshing problems may arise, 

solution times are long, high performance computers are necessary, solutions may 

not be obtained, and analysis may not be practical. Considering the disadvantages of 

the solid FE modeling, beam finite elements are used. In this approach, lines are 

assigned for beams, first. Section attributes are defined for the lines. The solid model 

and line model of the six-axis robot are shown in Figure 4.1.  

 

             

Figure 4.1 (a) Solid model and (b) line model of the robot. 

 

     The six-axis robot shown in the figure has six servo motors, first three motors 

define the location of the end-point in the global x, y and z axis, other three motors 

define the orientations of the end-point about x, y and z axis. The axes which define 

the locations are important for the vibration control, thus the robot is modeled as 

three degree of freedom. Member-1 is the OA1A2A3A4-beam, Member-2 is the BC-

beam and Member-3 is D1D2D5-beam. There are revolute joints at O, A4-B and C-D1. 

Member-1 is actuated by Motor-1 at O, Member-2 is actuated by Motor-2 at B and 

Member-3 is actuated by Motor-3 at C. The mass of Motor-1 is on the frame 
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(Member-1) at O. The mass of Motor-2 is on Member-1 at B. The mass of Motor-3 is 

on Member-3 at D1.  The mass of Motor-4 is on Member-3 at D2. The mass of 

Motor-5 is on Member-3 at D3. The mass of Motor-6 is on Member-3 at D4. The end 

point is at D5. The instantaneous angular positions of Member-1, Member-2 and 

Member-3 are θ1, θ2 and θ3, respectively. The lengths of the links are L2=OB and 

L3=BC. The global origin is at O. The global Cartesian coordinates are x, y and z. 

The instantaneous position of the manipulator is defined by θ1, θ2 and θ3. 

 

     The node numbers are defined in APDL as parametric. The number of finite 

elements for Member-1, Member-2 and Member-3 are ne1, ne2 and ne3, respectively. 

For Member-1, Member 2 and Member-3, the element size is chosen 1 mm to 

coincide the nodes with the located mass points, thus ne2, ne2 and ne3 are changed 

related to the member lengths. The numbers which are chosen for analysis can be 

extended to different number of finite elements.  

 

Figure 4.2 Beam model of the robot in ANSYS 

 
     Different cross-sections are defined in APDL, because Member-1, Member-2 and 

Member-3 have different cross-sections as given in Table 4.1. Beam188 elements 
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with different cross-sections are assigned between nodes related to Member-1, 

Member-2 and Member-3. 

 
Table 4.1 Cross-sections of the members 

 

     Since there are three revolute joints at the points O, B and D1 corresponding to 

Motor-1, Motor-2 and Motor-3, respectively, pilot nodes are defined and assigned at 

these points with TARGE170 elements. TARGE170 is used to represent various 3-D 

target surfaces for the associated contact elements. It can be imposed any 

translational or rotational displacements on the target segment elements. Each target 

segment of a rigid surface is a single element with a specific shape or segment type. 

The segment types are defined by several nodes and a target shape code TSHAP. The 

TSHAP command indicates the geometry (shape) of the element. Eight different 

segment types are supported for TARGE170 element by changing TSHAP 

definition:  3 node triangle, 4 node quadrilateral, 6 node triangle, 8 node 

quadrilateral, cylinder, cone, sphere and pilot node. Only pilot nodes have rotational 

degrees of freedom about the x, y and z axis.  The detailed information can be found 

in ANSYS Theory Reference.  

     The other element type used in APDL is MPC184 element to define revolute 

joint. The MPC184 family of elements serves to connect the flexible and rigid 

 
Section Member 

Dimensions Area 
(cm2) 

Moment of inertia 

Ix (cm4) Iy (cm4) 

 

 
 

Member-11 

R0=13.25 cm 
R1=15 cm 

 
 

155.3 

 
 

15553 

 
 

15553 

 

 
Member-13 

 

 
8.75x4.8 cm 

 
42 

 
80.64 

 
267.97 

 

 
Member-2 12x8.54x1 cm  

37.08 
 

389.7 
 

684.76 

 
 

Member-31 13.75x4.5 cm  
61.3 

 
101.62 

 
965.34 

 
Member-32 10x10x0.6 cm 22.56 333.59 333.59 
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component to each other in a multibody mechanism. An MPC184 joint element is 

defined by two nodes with six degrees of freedom at each node. The relative motion 

between the two nodes is characterized by six relative degrees of freedom. 

Depending on application, different kinds of joint elements can be configured by 

imposing appropriate kinematic constraints on any or some of these six relative 

degrees of freedom. For example, to simulate a revolute joint, the three relative 

displacement degrees of freedom and two relative rotational degrees of freedom are 

constrained, leaving only one relative rotational degree of freedom available. Some 

joint types of MPC184 elements are given in Table 4.2. 
 

Table 4.2 Properties of MPC184 element 

Joint Element Type Keyoption (1) Keyoption (4) Constraints 
Revolute 6 - 5 
Z-axis Revolute 6 1 5 
Universal 7 - 4 
Translational 10 - 5 
Spherical 5 - 3 
Cylindrical 11 - 4 
Z-axis Cylindrical 11 1 4 
 
     MPC184 element allows to rotate the beam on the x-axis by defining this element 

type as a revolute joint with Keyoption (1) as 6 and Keyoption (4) as 1. Thus, 

MPC184 elements are assigned between two pilot nodes which are assigned to the 

nodes related to the points O and B. Due to having joint flexibility of the motor, 

motor rotational spring constant is defined as 28000 Nm/rad. 
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     The flow chart for the analysis in ANSYS is summarized below. 

  

Figure 4.3 The flow chart for the analysis in ANSYS. 

4.2.2 Damping 

 

     The Rayleigh damping is considered as 

                                                   
sss kmc                                                     (4.1)               

     where, η and β are damping coefficients (Thomson and Dahleh, 1988). 

 

4.2.3 Motion 

 

     The motion of the six-axis robot is considered as shown in Figure 4.8. The 

manipulator moves from a starting position (Figure 4.8 (a)) at t=0 to an end position 

(Figure 4.8 (b)) at t=tm, where t is time and tm is the motion time. The initial angular 

positions are given as θ2=ϕ2s, and θ3= ϕ2s + ϕ3s at t=0. The angular positions at the 
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stopping time are given as θ1=ϕ1s+ ϕ1m, θ2=ϕ2s+ ϕ2m and θ3= ϕ2s+ ϕ2m + ϕ3s+ ϕ3m at 

t=tm.  

 

     The motors follow the trapezoidal velocity profile given in Figure 4.4. The motion 

control units which produce pulses according to the profile given in Figure 4.4 are 

readily available in the market. The area under the velocity curve gives the 

corresponding motor rotations, ϕ1m, ϕ2m and ϕ3m. 

 

 

Figure 4.4 The angular velocity profile of motors. 

 

4.2.4 Vibration Signals 

 

     The vibration of the receiving point located at a distance of dsensor from the end-

point, C, is analyzed. The vibration direction perpendicular to the line-BC in the x-y 

plane (motion plane) is considered. Let the displacement of the receiving point in the 

vibration direction be dR. The second derivative of dR is the acceleration signal and 

denoted by aR. The gravity is in the z direction, and thus is not included. 

 

4.2.5 Modal Analysis 

 

     The following eigenvalue equation is solved for the modal analysis. 

 

                                                    0ss
2  km                                             (4.2)
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     The values of ω are the un-damped natural frequencies of the system. Let ω1 be 

the first natural frequency in rad/sec and T1 be the period corresponding to the first 

natural frequency. Then, ω1T1=2π and T1=1/f1, where f1 is the first natural frequency 

in Hz. The half of the period, T1h=0.5T1, will be used to define tacc, tcon, or tdec below. 

 

     It is noted that the angles θ1, θ2 and θ3 are changing during the motion of the two-

link system, and thus the natural frequencies are changing depending on the position 

of the system. 

 

4.2.6 Numerical Values 

 
     The values given in Table 4.3 are taken for the simulation results obtained by 

ANSYS in this study. The experimental system given in Section 4.2.7 is considered 

for assigning the numerical values. The material, geometric, inertia and rotational 

spring values approximately correspond to the experimental system. 
 

Table 4.3 Properties of experimental system 

Description Value Description Value 
Elasticity Module 210 GPa Density ρ11 = 9217 kg/m3 
Density ρ12 = 1 kg/m3 Density ρ13 = 9884 kg/m3 
Density ρ2 = 12783 kg/m3 Density ρ31 = 7861 kg/m3 
Density ρ32 =4556 kg/m3 Number of finite elements ne11=267, ne13=230   
Number of finite elements ne2=616 Number of finite elements ne31=119, ne32=625   
Rayleigh Damping 
Coefficient 

η=0 (mass matrice 
coefficient) 

Rayleigh Damping 
Coefficient 

β=0.001 (stiffness 
matrice coefficient) 

Member Length L11=267 mm Member Length  L12=125 mm 
Member Length L13=230 mm Member Length  L2=616 mm 
Member Length L31=119 mm Member Length  L32=625 mm 
Weight of the Motor-1 m3=13.94 kg Weight of the Motor-2 m3=5.34 kg 
Weight of the Motor-3 m3=2.42 kg Weight of the Motor-4 m3=3.48 kg 
Weight of the Motor-5 m3=1.53 kg Weight of the Motor-6 m3=3.29 kg 
Motor rotational spring 
constants 

Km1=Km2=Km3= 
28000 Nm/rad 

Time interval ∆t =0.0025 s 

 

     The time interval where the residual vibration is observed after the stopping time 

is denoted by tres. The time until which the simulation results are obtained in the 

transient analysis is denoted by ts. Then, ts=tm+tres. For the transient results given 

below, tres is taken as 1 s.  
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4.3 Experimental Results of Vibration Control of Six-Axis Serial Robot 

 
The photo of the experimental system of the six axis serial robot is shown in 

Figure 4.5. The experimental set-up consists of a six servo motors. Mitsubishi 

Electric servo motors and drivers with 1 kW, Model HC-KFS053B/ MR-J2S-100A, 

750 W, Model HC-KFS13B/ MR-J2S-70A, 400 W, Model HC-KFS43B/ MR-J2S-

40A, 200 W, Model HC-KFS23B/ MR-J2S-20A, 100 W Model HC-KFS7B/ MR-

J2S-10A, 50 W Model HC-SFS102B/ MR-J2S-10A are used for Motor-1, Motor-2, 

Motor-3, Motor-4, Motor-5 and Motor-6, respectively. Harmonic Drive gearboxes, 

Model HFUC-32-100/100 (gear ratio: 100), Model HFUC-32-100/100 (gear ratio: 

100), Model HFUC-32-100/100 (gear ratio: 100), Model HFUC-32-100/100 (gear 

ratio: 100), Model HFUC-32-100/100 (gear ratio: 100) and HFUC-20-80/80 (gear 

ratio: 80) are used for Motor-1, Motor-2, Motor-3, Motor-4, Motor-5 and Motor-6, 

respectively. The six axis are driven with ADLINK/PCI-8366 control card. The 

velocity profile is given to servomotors with a developed VisualBASIC program 

which is used ADLINK-ActiveX components (ADLINK Technology Inc., 2015).  

 

 

Figure 4.5 Experimental system of the robot. 

 
     The measurement system for obtaining experimental results are shown in Figure 

4.6. 
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Figure 4.6 Measurement system. 

 
     MicroStrain wireless data acquisition (WDA) system is used to get the 

experimental acceleration signals at the receiving point. 

 

     A motion case is examined for the vibration control where the robot moves from 

rigid to flexible position. Motion parameters are shown in Figure 4.7. 

 

         

  
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 Motion parameters. 

 

     The motion is given to three axis which represent the location of the end-point of 

the robot in the workspace.  The motion parameters of the robot can be described in 

the text box and the motion of the six axis robot is provided by the VisualBASIC. 

The starting position is written under “initial position” label and the motion is written 

under “move” label in the text box. Let the starting position of the robot be qs=[0,-

30,-30] and the stopping position of the robot be qf=[60,30,50]. So, the axis of the 

robot rotate 0, -30 and -30 degrees from rest position for Motor-1, Motor-2 and 

Motor-3, respectively. Then, the robot moves 60, 60 and 80 degrees for Motor-1, 

Motor-2 and Motor-3 from starting position to reach rest position after waiting 1 s. 

The starting position and stopping position of the robot are shown in Figure 4.8.  

initial position 
axis1,0 
axis2,-30 
axis3,-30 
 
wait,1 
 
move 
axis,tacel,tdecel,td,disp 
axis1,1.3929, 0.1071,1.5000,60 
wait,0 
axis2,1.3929,0.1071,1.5000,60 
wait,0 
axis3,1.3929,0.1071,1.5000,80 
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                                   (a)                                                                    (b) 

Figure 4.8 (a) The starting position and (b) the stopping position. 

 

     For example motion, motion time is selected as 1.5 s and the residual vibration is 

examined for 1 s after motion is done. Triangular velocity profile is applied to the 

servo motors. Acceleration and deceleration time are determined by the program 

based on multiples of half the period of the first natural frequency of the system 
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where the motion is done. The results are given in Table 4.4 for different time 

parameters.  

Table 4.4 RMS and reduction ratios for Case-1.  

Motion F1d (Hz) 
Experiment 

F1d (Hz) 
ANSYS ti=[*,0,t1h,tm] RMS 

Experiment 
Reduction 

(%) 
RMS 

ANSYS 
Reduction 

(%) 

M1_a 

9.03 9.20 

[*,0,t1h,tm] 6.2764 - 6.4215 - 

M1_b [*,0,2t1h,tm] 0.69 79.18 0.8215 87.21 

M1_c [*,0,3t1h,tm] 1.1806 75.75 1.35 79.78 

M1_d [*,0,4t1h,tm] 0.7239 88 0.8503 86.76 

M1_e [*,0,5t1h,tm] 1.3699 83.2 1.5412 76 

M1_f [*,0,6t1h,tm] 0.4928 87.16 0.6137 90.44 

      

     Example signals obtained by the simulation in ANSYS and experiment presented 

in the paper are shown in Figure 4.9 and Figure 4.10. Since vibration signals are 

given in ANSYS with respect to the global coordinates, transformation matrices are 

used to obtain the desired vibration signal with respect to the measured point of the 

robot. 

 

 
(a)                                                             (b) 

Figure 4.9 Example signals for [ tacc, tcon, tdec, tm ]=[*,0,T1h,1] (a) Simulation, (b) Experiment 
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(a)                                                             (b) 

Figure 4.10 Example signals for [ tacc, tcon, tdec, tm ]=[*,0,2T1h,1] (a) Simulation, (b) Experiment 
 
     Increasing multiples of half the period of the first natural frequency of the system, 

vibration levels decreases. As seen in the table even multiples of t1h has more 

effective reduction compared to odd multiples of t1h. The comparison is given in 

Figure 4.11. The theory is achieved for the six axis rigid robot.    

 

 
Figure 4.11 Change of rms values of residual vibration signals versus the deceleration time for M1. 
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     It is observed from the figures and tables given above that the simulation results 

obtained by the transient analysis in ANSY are in good agreement with experimental 

results. The RMS value is the highest when the deceleration time equals to T1h. 

 

     It is observed from Table 4.4 and Figure 4.10-4.11 that vibration suppressions can 

be achieved at all stopping positions of the robot for 2T1h, 4T1h and 6T1h. For 2T1h, 

the reduction is 94.16 % in the simulation obtained in ANSYS while the reduction is 

90.33 % in the experiment. For 4T1h, the reduction is 86.32 % in the simulation 

obtained in ANSYS while the reduction is 83.33 % in the experiment. The similar 

reductions can be provided for 4T1h. The deceleration time of 2T1h is better than 4T1h 

for shorter motion times of the robot manipulator such as high speed applications in 

case of trapezoidal motion profiles. The experimental results encouraged that the 

approach can be successful for robot manipulators in practical engineering 

applications. 

 
 

4.4 Conclusion 

 
     The residual vibration of flexible systems can be suppressed by command input 

pre-shaping technique. Pulse sequences considering the system frequency and 

damping estimation are used. This method has been studied extensively for various 

structures. Another approach is to select the deceleration time in the velocity profile 

considering the natural frequency of the system. This approach was developed for 

one-link flexible manipulator. The vibration control of single-link flexible 

manipulators was explored in the literature. It was observed that the deceleration 

time of the cycloidal velocity profile is important to suppress the residual vibration of 

the single-link. The natural frequencies do not change as it moves in single-link 

manipulators.   

 

      In this study, the vibration control of a six-axis serial robot is presented. The six-

axis robot is modeled in ANSYS and simulation results are given by using ANSYS 

APDL code. An experimental system is used to verify the simulation results. 

Arbitrary starting and stopping position for the end point is considered with 



 
 

102 
 

triangular motion profiles. The idea of the selecting an appropriate deceleration time 

based on the natural frequency is extended to the six-axis serial robot. The natural 

frequency of the six-axis robot changes as it moves. It is observed that the 

deceleration time of the triangular velocity profile based on the natural frequency of 

the six-axis robot at the stopping point is important to suppress the residual vibration. 

Comparison of the simulation obtained by ANSYS and experimental results shows 

that they are in good agreement.  

 
     The modeling procedure for the simulation and vibration control approach given 

in this study can be used for the dynamic analysis of multi-body flexible systems 

such as multi-link serial robots or Cartesian robots. The results of this study can be 

used in pick and place applications to control residual vibrations. 
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CHAPTER FIVE 

CONCLUSION 
 

     In this study, the modeling and dynamic analysis of the multi-degree-of-freedom 

system are performed as first and the dynamic responses are obtained with Runge-

Kutta and Newmark method. Passive vibration control using motion profiles is 

applied to the system and the results are compared with both numerical methods. It is 

observed that both numerical methods are in good agreement. 

  

     For the active vibration control, a procedure is developed to integrate 

proportional-integral-derivative (PID) control action into the Newmark solution. The 

numerical control action is applied to the error signal value at a time step to find the 

actuator signal value and the Newmark algorithm is applied to find the output values 

at the subsequent time step. A step function is considered as the reference input 

signal for the closed loop system. An approximate model for the samples of the step 

function is used to obtain bounded derivatives. The numerical results are compared 

with analytical solutions obtained by the Laplace transform method.  Various results 

are given for undamped or damped system by setting PID parameters. It is observed 

that the numerical and analytical results are in good agreement. The results of this 

study can be used to simulate the active vibration control of flexible mechanical 

systems which are more complex and have their finite element models. 

 

     PID controllers are widely used in control systems. Classical theory of PID 

control of closed loop control systems were developed before the developments in 

digital electronics and computers. The controllers were analog. Graphical methods 

were used for simple systems. The effect of P, I, and D control actions were explored 

well. The P, I, and D parameters were determined by the trial and error method for 

complex systems considering the effects of the control actions. This approach is 

called as the PID tuning. The PID tuning method is still used today, if the 

mathematical model of the system is not available. The developments in the 

computers and computer aided engineering (CAE) software enable engineers to 

generate the virtual models of systems. The users of CAE programs define the 
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system by using graphical user interfaces (GUI), and the programs generate the 

mathematical model, solve them and give simulation results.  

 

    It is proposed that PID control actions can be integrated to the numerical solutions 

of the mathematical models where the solutions are found step by step. The output 

value of the control system is subtracted from the reference value to calculate the 

error value at one step, and the input value of the control action is calculated by 

applying the control action to the error value numerically at the subsequent step, as 

given in this study. A numerical model for the step input is also introduced. The 

proposed integration of PID control action into the numerical solution have been 

tested on a four degree of freedom system, and the results have been compared with 

the well-known analytical solutions obtained by the Laplace transform method. The 

results are in good agreement.  

 

     The results of this study show that PID control actions can be integrated to CAE 

programs. Then, the users can generate virtual experimental approach to evaluate the 

closed loop control of complex systems. The users can decide about the feedback and 

PID parameters and design the control system by PID tuning. The passive or active 

vibration control of rigid-flexible or flexible multi-link manipulators whose finite 

element models are generated by CAE programs can be studied with the proposed 

approach. Simulation results may be verified by the experiments for future works. 

Decreasing the residual vibrations of multi-link flexible manipulators is important in 

practice especially in pick and place applications.   

 
     Passive control of flexible systems has been studied in the literature extensively. 

Command input pre-shaping has been used to control the residual vibrations. The use 

of pulse sequence superimposed on the motion input by considering the system 

frequency and damping reduces the end point vibrations. Another approach is to 

select the deceleration time in the velocity profile considering the natural frequency 

of the system. This approach was developed for a single-link flexible manipulators. 

The vibration control of single-link flexible manipulators was explored in the 
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literature. It was observed that the deceleration time of the cycloidal velocity profile 

was important to suppress the residual vibration of the single-link manipulators.  

 
      For passive vibration control, different manipulators has been studied with 

different methods. Single-link flexible composite manipulators with different lay-ups 

and six-axis serial robot are considered in this thesis. Motion profiles are used to 

reduce the residual vibrations of the manipulators. The trapezoidal and triangular 

velocity profiles are considered for the motion commands. The time intervals of the 

trapezoidal motion input such as the acceleration time, the constant time, and the 

deceleration time are expressed in relation to the fundamental frequency of the 

manipulators. The constant time is taken as zero for the triangular motion input since 

the triangular motion can be assumed as a special case of the trapezoidal motion. The 

vibration analyses are performed and the experiments are realized to verify 

simulation results. The residual vibration results are given as the acceleration signals. 

The RMS values of these signals are calculated to evaluate the effectiveness of the 

vibration control. It is observed that simulation and experimental results for the 

manipulators are in good agreement. 

 

     A single-link flexible composite manipulator is considered to analyze in ANSYS 

and reduce end-point vibrations. The finite element vibration analysis is performed 

and an experimental system is introduced to verify simulation results. [0/90] and 

[45/-45] lay-ups, trapezoidal and triangular velocity profiles are studied by creating 

cases for different stopping positions and motion times. The time intervals of the 

motion profiles are determined from the natural frequency of the composite 

manipulator. Residual vibrations which are occurred after stopping the movement of 

the manipulator are obtained and the root mean square (RMS) values of these signals 

are calculated. It is observed from the results that the first vibration mode dominates 

to reduce the residual amplitudes.  

 

      Finally, the vibration control of a six-axis serial robot is presented. For the six-

axis robot, simulation results are given by using ANSYS APDL code. An 

experimental system is used to verify the simulation results. Arbitrary starting and 
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stopping position for the end point is considered with triangular motion profiles. The 

idea of the selecting an appropriate deceleration time based on the natural frequency 

is extended to the six-axis serial robot. The natural frequency of the six-axis robot 

changes as it moves. It is observed that the deceleration time of the velocity profile 

based on the natural frequency of the six-axis robot at the stopping point is important 

to suppress the residual vibration. Comparison of the simulation obtained by ANSYS 

and experimental results shows that they are in good agreement. It is observed that 

the passive control approach is applicable to multi-degree of freedom systems. 

 

       The trapezoidal motion inputs are widely used to drive servo motors of industrial 

and manufactured robots. The results obtained in this study encourage that the 

proposed method can be used in practice, especially in pick and place applications to 

control residual vibrations. It is expected that the proposed method can be successful 

in the vibration control of complex and realistic manipulators. 

 

     The future works in order to extend this study can be summarized as follows, 

 

 The active vibration control integrated into the Newmark solution can be 

realized to verify with the experimental system.  

 

 The active vibration control integrated into the Newmark solution can be 

realized for the flexible manipulators whose finite element models exist. 

 
 The passive vibration control can be applied to realistic composite box 

manipulators. 

 
The active control can be integrated into ANSYS APDL and so complex 

systems such as six-axis robot can be controlled with hybrid control. 
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