
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

REALIZING METAHEURISTIC ALGORITHMS

IN MULTI-AGENT BASED MODELLING

ENVIRONMENTS

by

Mümin Emre ŞENOL

January, 2017

İZMİR

REALIZING METAHEURISTIC ALGORITHMS

IN MULTI-AGENT BASED MODELLING

ENVIRONMENTS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Industrial Engineering, Industrial Engineering Program

by

Mümin Emre ŞENOL

January, 2017

İZMİR

M.Sc THESIS EXAMINATION RESULT FORM

we have read the thesis entitled "REALTZING METAHEURTSTIC

ALGORITHMS IN MULTI.AGENT BASED MODELLING

ENVIRONMENTS" completed by MUMiN EMRE $ENOL under supervision of
PROF. DR. ADiL BAYKASOCI,U and we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Supervisor

Doq D- S"=l.r 7t>e 4tv

Jury MemberJuryMernber

Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGMENT

Firstly, I would like to thank my supervisor, Prof. Dr. Adil BAYKASOĞLU for

his support; advice and encouragement that helped me overcome challenges

throughout the my M.Sc. thesis.

I would like to present thanks to Assoc. Prof. Dr. Vahit KAPLANOĞLU for his

guidance, suggestions and contribution to this study.

I would like to thank, everyone who have helped me throughout the progress of

my M.Sc. thesis, my colleagues and all staff member in department of Industrial

Engineering. Especially I am grateful to my friends, Burcu KUBUR, B.Meltem

KAYHAN, Nurhan DUDAKLI and F. Selen KARASLAN for their helpfulness, and

encouragement. In addition, a special thanks to my friend H. Yağız MERSĠN for

making this period easier and funny.

Finally, I would like to express my deep thankfulness to my family, who have

loved and supported me whole my life, Bahaattin ġENOL, Fatma ġENOL and twin

sister Merve ġENOL.

Mümin Emre ġENOL

 iv

REALIZING METAHEURISTIC ALGORITHMS IN MULTI-AGENT

BASED MODELLING ENVIRONMENTS

ABSTRACT

Derivative-based numerical methods are generally insufficient for solving difficult

computational optimization problems. Therefore, most of the researchers devoted

their research efforts towards developing metaheuristic algorithms for solving

complex/difficult computational optimization problems. Researchers are usually tried

to imitate some natural phenomenon while developing metaheuristic algorithms.

Although many effective metaheuristic algorithms were evolved for problem solving,

very few of them truthfully realize dynamic characteristics of the phenomenon. We

believe that an agent based modeling/design environment will be more useful and

natural way for a better realization of the inspired phenomenon. It is possible to

model various behaviors such as entering and leaving of agents, group forming etc.

Additionally, purposeful inter-agent communications for goal seeking can be

achieved easily by making use of the power of agent based system modeling and

algorithm platforms.

 In this research we implemented a metaheuristic algorithm which is known as

Stochastic Diffusion Search (SDS) as a truly dynamic optimization algorithm by

using the multi-agent modelling and programming approach. In the proposed SDS

algorithm, solution vectors, ie, agents can communicate with each other for

determining search direction. They can decide to disappear and new agents can

appear. Thus the population size is not fixed. In other words, the proposed algorithm

has an inherent dynamic structure so it can be more easily adapted to dynamic

optimization problems. The proposed algorithm is developed in JACK multi-agent

development environment. Single machine scheduling problem is modelled and

solved as a test case.

Keywords: Stochastic diffusion search algorithm, multi-agent based modeling,

single machine scheduling problem.

 v

METASEZGİSEL ALGORİTMALARIN ÇOKLU ETMEN BENZETİM

ORTAMINDA GERÇEKLEŞTİRİLMESİ

ÖZ

Türeve dayalı nümerik yöntemler zor optimizasyon problemlerinin çözülmesinde

genellikle yetersiz kalmaktadır. Bu nedenle, bir çok araĢtırmacı çalıĢmalarını

kompleks ve zor optimizasyon problemlerin çözümü için metasezgisel algoritmalar

geliĢtirmeye adamıĢtır. AraĢtırmacılar genellikle metasezgisel algoritmalarında doğa

olaylarını taklit etmeye çalıĢmaktadırlar. Birçok etkili metasezgisel algoritma

geliĢtirilse de çok azı taklit ettikleri doğal olayın dinamiklerini gerçekten realize

etmektedir. Ġnanıyoruz ki, etmen bazlı modelleme ortamı ilham alınan doğa olayının

gerçeklenmesinde daha kullanıĢlı ve doğal bir yoldur. Etmenlerin sisteme giriĢ çıkıĢı,

gruplaĢma gibi davranıĢları modelleme, maksatlı etmen iletiĢimleri gibi aktiviteler

etmen tabanlı modelleme ve algoritma geliĢtirmenin kullanımıyla mümkün hale

gelmektedir.

Bu çalıĢmada, dinamik bir metasezgisel optimizasyon algoritması olan Stokastik

Yayılım Arama Agoritmasının(SYA) çoklu etmen modelleme ortamında

gerçeklenmesi realize edilmeye çalıĢılmıĢtır. Önerilen SYA algoritmasında çözüm

vektörleri(etmenler) kendi aralarında arama yönünün belirlenmesi konusunda

iletiĢime geçebilmekte, etmenler sistemden çıkmaya karar verebilmekte, yeni

etmenler sisteme girebilmektedir. Bir diğer deyiĢle, önerilen algoritma doğal bir

dinamik yapıya sahip olduğundan, dinamik optimizasyon problemlerine kolayca

adapte edilebilmektedir. Önerilen algoritma JACK çoklu-etmen modelleme

ortamında geliĢtirilmiĢtir. Tek makine çizelgeleme problemi modellenmiĢ ve

çözülmüĢtür.

Anahtar kelimeler: Stokastik yayılım arama algoritması, çoklu-etmen tabanlı

benzetim, tek makine çizelgeleme problemi

 vi

CONTENTS

Pages

M.Sc THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGMENT .. iii

ABSTRACT ... iv

ÖZ .. v

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

CHAPTER ONE - INTRODUCTION ... 1

1.1 Aim of the Study ... 4

1.2 Framework of the Study .. 5

1.3 Outline of the Study .. 6

CHAPTER TWO-MULTI-AGENT BASED SYSTEMS 8

2.1 Agents .. 9

2.2 An Overview of JACK Intelligent Agents
TM

 .. 13

2.3 Agent Based Solution Strategies for Dynamic Optimization Problems 16

CHAPTER THREE-STOCHASTIC DIFFUSION SEARCH (SDS)

ALGORITHM .. 25

3.1 Origins of Stochastic Diffusion Algorithm ... 25

3.1.1 Template Matching .. 25

3.1.2 Hinton Mapping ... 26

3.2 Stochastic Diffusion Search .. 26

3.2.1 Mining Game ... 26

3.3 Stochastic Diffusion Search Architecture ... 27

vii

3.4 Recruitment Strategies in Stochastic Diffusion Search 28

3.4.1 Passive recruitment mode .. 28

3.4.2 Active recruitment mode ... 28

3.4.3 Dual recruitment mode .. 29

3.4.4 Context Sensitive Mechanism ... 30

3.4.5 Context Free Mechanism ... 31

CHAPTER FOUR-REALIZING STOCHASTIC DIFFUSION SEARCH

ALGORITHM IN JACK MULTI-AGENT ENVIRONMENT 32

4.1 Agent Types and Agent Specifications ... 32

4.1.1 Manager Agent .. 32

4.1.2 Position Update Agent ... 34

4.1.3 Trigger Agent... 35

4.1.4 Solution Agent ... 36

4.2 Plans and Events .. 37

4.2.1 Manager Agent‟s Plans and Events ... 37

4.2.2 Position Update Agent‟s Plans and Events .. 38

4.2.3 Trigger Agent‟s Plans and Events ... 38

4.2.4 Solution Agent‟s Plans and Events .. 39

4.3 Connection between JACK and Eclipse JAVA Platform 40

4.3.1 JACK and Eclipse JAVA Platform Connection Steps 40

4.3.2 Operations on JAVA Platform for the Proposed Model 42

4.4 Flow of the Proposed Simulation Model ... 46

4.4.1 Initialization of the System .. 46

4.4.2 Position Update Mechanism .. 49

4.4.3 Negotiation and Determining Next Move Mechanism 54

CHAPTER FIVE-MULTI AGENT-BASED STOCHASTIC DIFFUSION

SEARCH ALGORITHM FOR OPTIMIZATION PROBLEMS: THE SINGLE

MACHINE TOTAL WEIGHTED TARDINESS CASE 62

viii

5.1 Test Instances and Experimental Protocol .. 62

CHAPTER SIX-CONCLUSION .. 67

6.1 Summary ... 67

6.2 Contribution of the Study and Future Works .. 67

 ix

LIST OF FIGURES

Pages

Figure 2.1 Relationships between percept and actions .. 10

Figure 2.2 Relationships between goals and events ... 11

Figure 2.3 Relationships between plans and beliefs .. 12

Figure 2.4 A general view of JACK Intelligent AgentsTM 14

Figure 4.1 Manager agent start request .. 33

Figure 4.2 Position update agent‟s update request ... 34

Figure 4.3 Trigger agent ... 35

Figure 4.4 Solution agent ... 37

Figure 4.5 Connection operations JACK side .. 41

Figure 4.6 Connection operations JAVA side.. 41

Figure 4.7 Solution agent constructor .. 42

Figure 4.8 Operation class.. 43

Figure 4.9 Crossover operation .. 43

Figure 4.11 General overview of the proposed model ... 46

Figure 4.12 General overview of initialization process ... 47

Figure 4.13 “SendStartRequest” plan .. 47

Figure 4.14 Request method .. 48

Figure 4.15 “InitializeAgents” plan ... 48

Figure 4.16 General overview of position update mechanism 50

Figure 4.17 “SendUpdateRequest” plan .. 50

Figure 4.18 Update event ... 52

Figure 4.19 “GoToSaloonAndNegotiate” plan .. 52

Figure 4.20 Trigger method ... 53

Figure 4.21 General overview of negotiation and next move mechanism 54

Figure 4.22 Trigger plan .. 54

Figure 4.23 Send method ... 55

Figure 4.24 Negotiation conditions .. 57

Figure 4.25 Negotiation cases .. 57

Figure 4.26 One-block swap .. 58

Figure 4.27 Two-block swap ... 59

x

Figure 4.28 Three-block swap ... 59

Figure 4.29 One-block insertion .. 60

Figure 4.30 Two-block insertion .. 60

Figure 4.31 Lox crossover move .. 61

xi

LIST OF TABLES

Pages

Table 2.1 JACK Intelligent Agents
TM

 „s key constructs .. 15

Table 3.1 The steps of SDS procedure ... 27

Table 3.2 The basic SDS architecture .. 27

Table 3.3 Passive recruitment mode .. 28

Table 3.4 Active recruitment mode .. 29

Table 3.5 Dual recruitment mode... 29

Table 3.6 Context sensitive mechanism ... 31

Table 3.7 Context free mechanism .. 31

Table 4.1 Manager agent‟s descriptors .. 32

Table 4.2 Position update agent descriptors ... 34

Table 4.3 Trigger agent descriptors ... 35

Table 4.4 Solution agent descriptors .. 36

Table 5.1 Reported performance values... 63

Table 5.2 Selected algorithms .. 64

Table 5.3 Experimental results of 40 Job set ... 64

Table 5.4 Experimental results of 50 Job set ... 65

Table 5.5 Experimental results of 100 Job set ... 65

Table 5.6 Experimental results of 150 Jobs set .. 66

Table 5.7 Experimental results of 200 Job set ... 66

1

CHAPTER ONE

INTRODUCTION

Nowadays, combinatorial problems appear in many applications of human‟s life

such as routing, packing, assignment, scheduling, cutting, transportation network

design, protein alignment and other research areas of extreme economic, industrial

and scientific importance (Sorensen and Glover,2013). Scientists use different

methods to solve these combinatorial problems. We can categorize these methods

into two groups namely, heuristic and exact methods. Exact algorithms are adequate

for solving small size combinatorial problems and they guarantee optimal solution in

a timely manner. On the other hand, if the problem size increases, run time of the

algorithm also increases dramatically. In other words, exact algorithms can only

solve small size instances practically. For this reason, researchers generally use

heuristic algorithms for larger size instances. At that point, there is a trade of

between reasonable run-time and optimality.

Dynamic programming, branch-and-bound (B&B), Langrangian relaxation based

methods, and linear, integer programming based methods (branch-and-cut, branch-

and-price, and branch-and-cut-and price) are some exact methods for combinatorial

optimization problems (Laporte and Nobert, 1987).

Local search mechanisms and independently developed solutions are called as

metaheuristic algorithms (Sorensen and Glover,2013). Metaheuristic algorithms can

be classified into two groups as single solution metaheuristics and population based

metaheuristics. Greedy randomized adaptive search procedure (GRASP), simulated

annealing (SA), variable neighborhood search (VNS) are some examples of single

solution metaheuristics. On the other hand, ant colony optimization (ACO),

evolutionary algorithms (EAs), scatter search (SS) are some of the popular instances

of population based metaheuristics (Gendreau and Potvin, 2005).

Many of the researchers try to mimic some natural phenomena in their

mataheuristic algorithms which are independent from the group of metaheuristic

2

algorithm. For example, researchers imitate food-searching mechanism in ant colony

optimization. Also gene cloning, crossover operations between genes are imitated

through evolutionary algorithms. Moreover, events in the nature are dynamic and

their states changes in time. In addition, living organisms interact with each other in

many of the natural events. They communicate and share information about their

thoughts and beliefs. Additionally, they try to solve their problems by sharing

information about their states.

 It is impossible to imitate natural phenomena and communication among the

organisms via classical algorithm procedures. In order to represent phenomena and

interaction between organisms, dynamic methods such as multi-agent based

modeling environments should be used instead of procedural programming

approaches.

There exist many different definitions of an agent because of agent based systems

is a very new area of research (Padgham and Winikoff, 2004). According to

definition of Wooldridge and Jennings (1995), an agent is a computer system which

is able act autonomously in some environment for reaching goals. The agents are

used for meeting their aims. Agents have many capabilities such as being mobile,

truthful and rational. They have also ability of learning (Woolridge, 2001).

Moreover, agents are social; they can interact with agents and human-beings for

meeting their goals. They are also reactive; they are aware of changes in their

environment and respond these changes in a timely fashion. In addition, they are

proactive; they are able to display initiative behavior to meet their purposes

(Bellifemine et al., 2007).

There are some characteristics of agents that make them different from classical

software approaches;

 The first characteristic of an agent is being autonomous. By this

characteristic, agents have the ability of making self-decisions. They are

capable of taking actions in order to satisfy their desires. This

characteristic differs agents from objects of object-oriented programming.

3

When we consider a system including many agents, system tends to be

decentralized because of the agents‟ autonomous characteristic (Padgham

and Winikoff, 2004).

 The second characteristic of an agent is situatedness. According to this

characteristic, agents adapted to challenging environments more easily.

Through this characteristic, agents are suitable for dynamic, unpredictable

and unreliable environments.

 The third characteristic of an agent is being reactive. Agents are usually

took place in dynamic environments where changes are occurred very

quickly. Agents must give reactions to these rapid changes in its

environment simultaneously. In other words, agents have to be reactive for

responding these changes in a timely manner (Padgham and Winikoff,

2004).

 Fourth characteristic of an agent is being proactive. An agent should

continue to seek its goal even if its plan fails. It has to be robust for

tolerating failures easily. Therefore, they must be flexible for being robust.

Moreover, an agent should not only give reactions to its environmental

changes; but also show behavior by taking initiative. It should make

alternative plans for different situations.

 Lastly, an agent has to be social for communicating with other agents in its

environment. In addition to send messages to other agents within the

environment, an agent should engage all other social activities of human

beings such as cooperation, coordination, negotiation etc. (Woolridge,

2001).

The selection of the programming environment where the imitation will be

programmed is as important as choosing natural phenomena or human behavior that

will be imitated. Programmers will obtain better results, when the structure of the

4

environment and natural phenomena fits. For instance, Stochastic Diffusion Search

(SDS) algorithm fits well with multi-agent based environment with its distributed

structure (Bishop, 1989).In SDS; programmers are able to mimic gold searching

process of a group of miners (Bishop, 1989). They divide mountain in different hills

and distribute each miners to these hills. Moreover, all of the miners show some

human behaviors such as communicating, negotiating, and cooperating. In addition

to these, different strategies such as passive-recruitment mode, active-recruitment

mode, dual-recruitment mode, context-sensitive mechanism and context-free

mechanism can easily be modeled through SDS (Myatt et al., 2006). Through all of

these strategies, it is possible to see different types of human behavior like getting

other ideas, self-reasoning, manipulating people etc. By all of these features, SDS

and multi-agent based environments fit well for realizing metaheuristic algorithms in

multi-agent based modeling environments.

1.1 Aim of the Study

This thesis is conducted to realize a metaheuristic algorithm in a multi-agent

based modeling environment. SDS is selected for implementation. To the best of our

knowledge, this will be the first study in the literature which SDS algorithm is

realized in a multi-agent based environment. Moreover, we can say that realization of

other metaheuristics in multi-agent environments is very rare. An agent based

modeling/design environment will be more beneficial and natural way for a better

realization of the miners‟ movements, communication, and gold seeking process in

SDS algorithm. It is possible to model various behaviors easily such as, going to hill,

turning back to saloon, leaving the system, group forming of agents, manipulating

other agents‟ ideas etc. by making use of the power of agent based system modeling

and algorithm development. Through realization of SDS algorithm, dynamic nature

of a human behavior can be mimicked truthfully. In addition, with the help of agents‟

being proactive and reactive, searching for the best solution never ends. Moreover,

the proposed algorithm can be easily adapted to the dynamic optimization problems

due to its inherent dynamic structure. Hence, both of the dynamic and classic

combinatorial optimization problems can be designated easily by realizing the SDS

5

algorithm in a multi-agent based environment. In addition, eclipse JAVA platform

and JACK multi agent-based modeling environment can be connected and

cooperated with each other for a possible implementation. Dynamic structure of

JACK multi agent-based environment and the programming flexibility of eclipse

JAVA platform can be combined and a hybrid way of implementation can be

utilized. Finally, the proposed algorithm in this thesis is tested against single machine

scheduling problems. According to computational experiments, results are very

promising. Furthermore, our proposed system can be adapted for solving many other

problems in the literature by the help of modular structure of the agent systems.

1.2 Framework of the Study

We can summarize the framework of the thesis as follow:

 A specific multi-agent model is generated through JACK multi agent-based

environment.

 Procedural applications such as neighborhood mechanisms, crossover

mechanisms, and system management are performed in eclipse JAVA

platform.

There are four different kinds of the agents in the proposed models. These agents

can be defined as:

1. Manager Agent

2. Position Update Agent

3. Trigger Agent

4. Solution Agent

Many plans and events are developed to connect these agents and model their

interactions. Additionally, all agents are modeled for several different duties.

Moreover, system is controlled and all of the agents and solution data, and problems

instances are kept through eclipse JAVA platform.

6

The main steps of the SDS algorithm to model scenarios can be summarized as

follows:

1. Initializing system

2. Updating miners positions

3. Triggering miners to interact with each other

4. Determining the agents‟ next move after communication with other agents

5. Deciding the agents‟ action for entering and leaving the system

Developed model is tested on a combinatorial optimization problem which is

known as single machine scheduling problem. The problem is solved for minimizing

total tardiness.

1.3 Outline of the Study

The study contains six chapters. The following chapter includes concept of multi

agent-based modeling environments. In that chapter, detailed information about the

properties of multi-agent based modeling environments and JACK are given.

Chapter three mainly focuses on SDS algorithm. In this chapter, detailed

information about the natural phenomena of SDS algorithm is presented. In addition,

chapter three includes some other information about the different strategies and

specifications of agents‟ duties for each strategy. Moreover, procedural flow of the

SDS algorithm is also given in this chapter.

Chapter four focuses on the implementation of the proposed model and realization

of SDS algorithm in a multi-agent based modeling environment. The first part of the

chapter four describes agent specifications. The second part is constituted by

describing plans and events of each agent. The third part of that chapter focuses on

the connection between JACK and eclipse JAVA platform and operations that are

held in eclipse JAVA platform. Flow chart of the proposed model is also explained

and several model designs are illustrated in the last part of that chapter.

7

In chapter five, the developed model is tested on the minimizing total tardiness in

a single machine scheduling problem. Detailed information about the chosen test

problems are also presented in that chapter. Moreover, the reason behind the

selection of this combinatorial optimization problem is explained in that chapter.

Experimental results and comparative results their ranks in the literature are also

depicted by the help of figures.

Finally, in addition to summary of the thesis, the contribution of this thesis and

future works are discussed in the conclusion chapter.

8

CHAPTER TWO

MULTI-AGENT BASED SYSTEMS

In recent years, all systems tend to be intelligent and people try to design

intelligent system. Agent technology is one of the main approaches for developing

intelligent systems. Multi-agent based systems are becoming more useful than the

other approaches in terms of developing intelligent systems for solving complex

problems.

A multi-agent system consists of organized intelligent agents that work or

compete for the same goal that is very difficult to by the other single software

components. The most appropriate way of solving a problem whose domain is

particularly complex, large or unpredictable is to develop a multi-agent based system

(Sycara, 1998).

There are many applications of multi-agent based systems in broad range of areas

and disciplines. In economic sciences, Arthur et al. (1997) modeled agent behavior in

stock markets. Axtell (2000) investigated transient states that are encountered along

the way to equilibrium. These fields of interests affected other researchers in

economic sciences and agent based computational systems spreaded among

economists. Tesfatsion (2002) and Tesfatsion and Judd (2006) modeled agents

situations in their researches for getting information about how the people make

decisions in real studies.

Moreover, many scientists utilized agent-based models to analyze existing and

hypothetical markets. Charania et al. (2006) modeled agents to guess possible futures

for a market in space tourism. In their research, agents represent each stakeholder in

the space industry. Through this research, tourism companies can seek to maximize

profits when they compete with other companies for sales. Lopez Sanchez et al.

(2005) proposed a multi agent based simulation for investigating market dynamics.

Kuhn et al. (2010) develop a model to determine market share of a consumer airline.

9

Testa et al. (2012) developed a model for predator-prey link among other marine

mammals and transient killer whales. In addition, Menges et al. (2008) employed

agent-based modeling approach for establishing email-based social networks.

Moreover, Aleman et al. (2009) used agent systems for modeling pandemic disease

accounting for individual behavior and demographics. Malleson (2010) applied

agent-based models for crime analysis. In fact, a virtual urban environment populated

with virtual burglar agents was developed.

For better understanding on multi-agent based systems, it is vital to declare agents

and their characteristics. Therefore, before the agent based dynamic optimization

solution strategies detailed information about agents is given in this chapter. In

addition, the proposed multi-agent based system coded and implemented in JACK
TM

agent software. Moreover, properties of JACK Intelligent Agents
TM

 software are also

mentioned in this chapter.

2.1 Agents

 Despite of the several definitions for agents in the literature, researchers do not

have concurrence of agent description. Wooldridge and Jennings (1995), defined the

term agent as a computer system which has the ability of autonomous action in its

environment to aim its pre-determined goals. According to the definition of Padgham

and Winikoff (2004), an intelligent agent is a part of a computer program that has

following properties.

 Situated – reside in an environment

 Autonomous – independent and cannot be controlled from outside

 Reactive –reacts changes in its environment in a timely manner

 Proactive – insistently chases aims

 Flexible – has many ways of acquiring its aims

 Robust – recoup its mistakes

 Social – negotiate with the other agents

10

All of the mentioned characteristics above can be described by different terms in

multi-agent based design environment. Designed and built system should have these

characteristics. For instance, for being proactive, an agent should have aims.

Therefore, scope of the aim is a very crucial point for designing and constructing

proactive agents.

The first property is defined by Padgham and Winikoff (2004) for an agent who is

situated in an environment. While designing a multi-agent system, this property is

associated with two terms as actions and percepts. According to Howden et al.

(2001), interface among its environment and agent is called as percepts. Actions can

be described as the events which are performed by the agents, for effecting its

environment. In other words, percepts are signals that an agent receives from its

environment and actions are agent‟s reaction to these percepts. Relationship between

percepts and actions are illustrated as in the Figure 2.1

Figure 2.1 Relationships between percept and actions (Padgham and Winikoff, 2004)

11

The second and the third properties are being proactive and reactive. The term of

goal is implied through agent‟s proactiveness. According to definition of Padgham

and Winikoff (2004), a goal is something that the agent is working on or towards to

it. It is very important to balance agent‟s proactive and reactive behavior. Besides, an

agent should give reactions to changes in its environment while seeking its goal. At

that point, the event is another essential term. Padgham and Winikoff (2004) defined

the event as an important case which the agent must react. Relationship between

agents‟ goals and events is depicted in Figure 2.2.

Figure 2.2 Relationships between goals and events (Padgham and Winikoff, 2004)

The fourth and fifth properties are being flexible and robust. These two properties

are related to the terms plan and beliefs. Winikoff and Padgham (2004) defined the

belief as some view of the agent‟s knowledge related with its environment, itself and

other agents. On the other hand, plan is a method of reaching an aim. Goals can be

achieved by acting different plans. An agent selects a plan to achieve a goal. Then,

agent tries to apply the selected plan. If the plan fails, the agent can implement

another plan. Through this mechanism, agents gain the characteristic of flexibility,

12

since they may have variety of plans to achieve a goal. Moreover, they also gain the

characteristic of robustness; goals are still achievable even failures of a plan.

Relationship between plans and beliefs is demonstrated as in Figure 2.3.

Figure 2.3 Relationships between plans and beliefs (Padgham and Winikoff, 2004)

 The last but the most important characteristic of an agent is being social. By this

characteristic, agents are able to interact with other agents. Agents can send

messages to other agents via pre-determined protocols. Throughout this messaging

mechanism, agents can work for the same goal.

 Main concepts of an agent design procedure can be summarized as follows:

 Percepts – Related knowledge about the environment

 Events – Related knowledge about a change in the situation

 Goals – Aims to be achieved

 Beliefs – Knowledge related to the environment (unchanged)

 Plans – Expressed as accomplishing certain future world states.

 Actions – Ways of operations on the environment by agents

13

 Messages – Way of agents to negotiate

 Protocols – Descriptions of interaction rules

2.2 An Overview of JACK Intelligent Agents
TM

JACK Intelligent Agents
TM

 is evolved by Agent Oriented Software Pty. Ltd.

(AOS) for multi-agent system modeling. Developers integrated JACK Intelligent

Agents
TM

 with JAVA. Therefore, JAVA codes can be easily embedded into any

place of JACK
TM

Agent Language (JAL). Throughout the embedding process, the

developers can gain the advantage of big flexibility. All of the JACK
TM

 source

codes are compiled into regular JAVA code before their execution.

JACK Intelligent Agents
TM

 is one of the major multi agent-based development

environments for building and deploying autonomous systems. Developers have the

following design aims for JACK Intelligent Agents
TM

 (Howden et al., 2001);

 To ensure a robust, stable and light-weight product to programmers

 To meet many of practical application requirements

 Technology transfer between the theory and industrial applications

 To provide more applied studies

Moreover, JACK Intelligent Agents
TM

 is stand on the BDI paradigm

(Beliefs/Desires/Intensions). It provides a mature implementation environment of the

BDI paradigm to the developers. Throughout this implementation environment,

developers have the chance of designing the model graphically. A general view of

JACK Intelligent Agents
TM

 is demonstrated by the following Figure 2.4.

14

Figure 2.4 A general view of JACK Intelligent AgentsTM

In addition, JACK Intelligent Agents
TM

 incorporates three main extensions to

JAVA. These extensions can be expressed as follows (Howden et al., 2001):

 To define agent‟s basic elements, some keywords (such as agent, plan and

event);

 A group of statements to define attributes and other characteristics of the

system elements

 A group of statements for the declaration of non-dynamic links

 A group of statements for changing the state of agents.

As mentioned previously the syntactic additions are converted into only JAVA

statements and classes by making use of second extension to JAVA compiler. Then,

it can be loaded with and named by another JAVA code. Moreover, the code of plans

are transformed by the compiler for getting proper semantics of the BDI architecture.

Lastly, a group of classes which are named as kernel satisfies the needed run-time

supporting the produced code. This also contains:

15

 Automatic management of concurrency between the tasks which are

pursued in parallel;

 Set agent behavior related to events, failure of actions and tasks and so

on;

 Native lightweight and highly performed negotiations infrastructure for

multi-agent applications.

BDI paradigm is extended for dealing with inter-agent coordination by JACK

Intelligent Agents
TM

. In addition, new tools and developments that guide recent

software engineering applications are also included. JACK Intelligent Agents
TM

 „s

key constructs are tabulated in Table 2.1.

Table 2.1 JACK Intelligent Agents
TM

 „s key constructs (Howden et al., 2001)

Programming Construct Description

Event Events are the main factor of motivation for

agents. Without events, the agents lose the

ability of acting. Events are demonstrated

after an internal stimulus. Events trigger

operations for computational operations.

Plan Plans are small computational operations that

are the ways of agents‟ reactions to the

different events. JACK calculates all of the

possible alternative and applicable plan

results and chooses one of them. Plans have a

body that declared the stages to be computed

in related to the event. Agent have different

plans for reaching its aims.

Beliefset Beliefsets are used to show the agent‟s

indicative knowledge about its environment

and itself.

Agent Agents are computational pieces that has

unique characteristic and states

independently.

16

JACK Intelligent Agents
TM

 has several tool and components. JACK Intelligent

Agents
TM

 is composed of the following modules (Howden et al., 2001):

 JACK Runtime Environment: The kernel that contains a communication

layer with a simple agent calling service assists the execution of JACK.

 JACK Compiler: It is a tool that compiles codes into JAVA codes and reach

JAVA compiler for producing executable programs.

 BDI Agent Model: In addition to the language syntax and the runtime kernel,

BDI agent model adds assistance for BDI reasoning.

 SimpleTeam Model: This gives assistance for team-based reasoning,

through additions of kernel and extensions of languages.

 Agent Development Environment: It is a Graphical User Interface (GUI)

development environment for seeing and making changes on JACK

applications.

 Agent Debugging Environment: It includes an agent interaction display for

seeing messages among agents through the changes to the kernel by

displaying internal execution states.

 JACOB: It is an effective object modeling toolkit to assist transportation of

objects and application interactions in C++ and JAVA compilers. It provides

flow of the objects in a user readable textual format, a fast binary format in

XML.

2.3 Agent Based Solution Strategies for Dynamic Optimization Problems

There exist a lot of studies that is based on agent-based modeling approaches in

the literature for dynamic optimization. It is not possible to cover all of these papers

in this thesis, but some relevant papers some of them are also covered by Baykasoğlu

and DurmuĢoğlu (2014) are summarized in this section.

Team Teams are used to contain coordination views

of different behavior of agents.

Table 2.1 JACK Intelligent Agents
TM

 „s key constructs (Howden et al., 2001)(continue)

17

Pelta et al. (2009 a,b) proposed a multi-agent decentralized cooperative strategy

(MAD-COS) for solving dynamic problems. In their study, cooperative agents try to

find solutions by moving over a grid. Different communication mechanisms and

methods for preserving explicit diversity are investigated and tested via moving

peaks as a benchmark problem. In their research, they tried to find how different

communication strategies affect the search space. Moreover, they proved that their

proposed agent model is sufficient for the test problems by applying diversity

strategies.

Wang and Liu (2010) solved dynamic travelling salesman problem by using an

agent-based evolutionary search algorithm (AES). In their research, an agent refers

for an alternative point in the search space. Agents are positioned in a lattice-like

environment. They combined perturbation learning strategy and local updating

procedure. They tested AES on dynamic version of KroA100TSP. The results show

that AES has very outstanding findings on the tested problems. It surpasses standard

genetic algorithm (SGA) under the performance measures of convergence duration

and recording optimum points in dynamic environments.

Billiau and Ghose (2008) presented a novel approach for solving distributed

constrained optimization problems (DCOPs). They suggested an algorithm named as

Support Based Distributed Optimization (SBDO). SBDO differs from other DCOP

algorithms by its using agent goals instead of weighted or soft constraints. They

make a comparison on success of their proposed algorithm with asynchronous

distributed optimization (ADOPT) and distributed pseudo tree optimization

procedure (DPOP) with 120 meeting scheduling test problem. The results revealed

that their proposed algorithm outperformed ADOPT and showed relatively faster

convergence than DPOP.

Mahr et al. (2010) made a comparison about variety of planning methods, such as

on-line optimization method and agent based solution approach for drayage

operations in an uncertain environment. For comparing performance of different

planning methods they dealt with dynamic vehicle routing problem associated with

18

two kinds of uncertainty, i.e., service and arrival time. Results showed that agents‟

flexibility brought them additional benefits.

Voos (2009) studied on dynamic resource allocation problems. He proposed a

multi agent based strategy that divides problem into single optimization problems. In

that research, agents took the duty of local optimizing and canalized self-findings to

a total proper solution. Test experimental results indicated that the proposed multi

agent based strategy are applicable to deal with dynamic resource allocation

problems.

Li and Li (2009) presented a method which was called as intercommunication job-

sharing hybridization to deal with hard problems. The proposed method decomposed

complex optimization problems into smaller sub-problems and through the

cooperation and intercommunication of agents, these problems were solved as a

piece of the complex problem. First, they designed a pre-model that named as Agent

International, to improve decision-making process of international marketing.

Preliminary results were promising.

Tang et al. (2004) proposed a dynamic optimization system. The presented model

was used for solving automobile load makeup planning problem. System was

composed of three kinds of agents. The first one is load agent, the second one is yard

agents and the third one the truck scheduled agent. These three agents represented by

different actors in the system. For example, yard agents represented the transferring

yard and the truck-scheduled agent referred to the shipping firm. Lastly, load agent

represented the truck during the planning state. They implemented three heuristic

namely empirical method (EM), minimum spanning tree (MST) and vehicle routing

optimization (VRO). They also combined MST and dynamic optimization system

and evolved a new method called as MST Dyn. For testing the success of the

developed algorithm, all algorithms have run on the same scenario for 120 days. The

results displayed that EM produced the worst result and MST Dyn generated the

most proper results.

19

Berro and Duthen (2001) proposed an approach for optimization in dynamic

environments. In that approach, agents seek good solutions and give reactions

changes in the state of the problem in a timely manner. The proposed approach tested

on multimodal and multi-objective functions. The experimental findings were

compared with Genetic algorithm based methods. The experimental results revealed

that proposed method were competitive in terms of time and accuracy.

Jiang and Han (2008) proposed a simulated annealing (SA) based algorithm with

multiple agents for solving real-time decision-making problem. Since there were no

test instances before, a random generator was used for generating test problems. The

success of the presented method was compared with variable elimination (VE)

algorithm in terms of scalability and relative payoff. Results showed that SA was a

more proper method to select actions selection in complex cooperative and

autonomous systems.

Zhou et al. (2008) presented a method for simulating a real time job shop by

combining multi agent systems (MAS) and discrete event systems. In the proposed

method, agents are referred elements of a job shop. All agents had different duties

and followed up these duties. The proposed system tested in terms of some

performance criteria machine utilization, average and maximum number in queue,

average time in system, average daily throughput and total time in queues, and

maximal size of work in process. The results illustrated that the proposed system had

the benefits of the its distributed structure.

Garcia et al. (2010) proposed a new centralized cooperative strategy based on

taboo search to solve DOPs. In their study, there were many solvers for

implementing different resolution algorithms for the examined problem. There was

also a coordinator which was responsible for processing information. There were

three main steps in the proposed strategy. First, every solver sent its information

related to the performance to the coordinator, then coordinator processed this

information and finally directives were sent to the solvers by the coordinator.

Moving peaks benchmark problem and three mostly applied multimodal real test

20

functions were used for testing the performance of proposed model. Performance of

the proposed strategy evaluated according to offline error. The presented study

outperformed other methods.

 Lepagnot et al. (2010) proposed a novel approach based on agent‟s exploration

of search space for multi agent dynamic optimization (MADO). There were three

main modules namely, agent manager, the coordinator, and memory module. The

Number of agents changed in time but not exceed the predefined value. To determine

the success of the considered model, moving peaks benchmark problem was chosen

and offline error with standard deviation was chosen as success criteria. The results

showed that MADO was a usable model for dynamic optimization problems.

Yan et al. (2010) presented an agent based evolutionary search (AES) approach.

Agents represented the potential solutions. The researchers applied two diversity

acquiring strategies namely random immigrants and adaptive dual mapping, for

improving the success of AES for DOPs. Dynamic 0-1 optimization problems that

were produced by XOR generator were selected as test problems. The researchers

generated variety of test instances. The solution environment was integrally altered

in each pre-specified iteration. Success of the AES was compared with SGA, primal

dual GA, and the GA with random immigrant according to the best mean generation

fitness. Obtained results revealed that AES had better performance than the other

approaches. The researchers also stated that dynamic characteristic of the

environment can influence the success of the presented method.

 Hanna and Cagan (2009) proposed a new method called as evolutionary multi-

agent system (EMAS) for adaptive optimization. Agents represented ways of

generating solutions. Solution generation strategies were recombined, altered, and

removed through genetic operations of genetic and evolutionary methods. EMAS

differs from other approaches by its property of cooperation dimension. Cooperation

was satisfied by employing all of the strategies in an autonomous agent and

communication of agents. Travelling salesman problem was used for testing the

success of the considered method. The experimental findings indicated that EMAS

21

had better solutions than other approaches in terms of closeness to the optimal

solution. The researchers stated that the reason behind the EMAS‟ better solutions

was its ability of evolving the best team of agents dynamically. Moreover, they also

indicated that utilizing EMAS in the presented way was leaded to lower duration

while acquiring high qualified results.

Xian and Lee (2008) presented an agent-based dynamic scheduling method,

which depends on ant colony intelligence (ACI) through local agent coordination.

The aim of proposed research was to develop a dynamic manufacturing system by

MAS. Agents were modeled via knowledge of their aims and functions. Through

MAS, parallel execution of commands was provided. Agents also negotiated for

enhancing system performance. Foraging and division of labor of an ant colony

inspired the agent coordination mechanism. There were mainly five types of agents

namely order agents, job agents, shop floor agents, work center agents, and machine

agents. They stated that, their study differs from other researches in terms of a

making realistic assumptions and producing more general manufacturing. For

solving task scheduling problems and task allocation problems in a separate way,

ACI was combined job and machine agents together. Method based on ACI

(MAS+ACI) and FIFO dispatching rule (MAS+FIFO) were compared according to

success criteria namely, average flow time, average tardiness, throughput, buffer

size, and machine utilization. Results revealed that MAS+ACI perform well than

MAS+FIFO.

Wang and Usher (2002) proposed an agent-based approach that uses contract-net

protocol for negotiation of agents. Machine cell agents and job agents were used

within a hierarchical control environment. They tested the presented model on a job

shop scheduling problem with variety of simulation levels in terms of mean flow and

queue time. The experiments showed that when the system was light, collaboration

element did not have significant influence on the performance. Hence, in the heavily

loaded system, collaborative factor provide dramatic decreases in the mean flow

time. Moreover, when they evaluated average queue time when the system was

heavily loaded, it is stated that negotiation mechanism prevented the high WIP levels

22

of the bottleneck machine. According to experimental findings, it is stated that

collaboration element had positive effect on the success of the contract net-based

negotiation scheme for agent-based scheduling problems.

Wang et al. (2008) presented a multi-agent based method for scheduling problems

in dynamic environments. The considered approach is cooperated with filtered beam

search (FBS). In order to provide dynamism in the system, new jobs arrivals were

generated. The system consisted of two kinds of agents namely system optimal agent

(SOA) and cell coordinated agents (CCAs) and five different modules called as

cooperation and coordination, human interface, execution and monitoring, human

interface, and FBS for the decision-making process. The proposed approach was

compared with two different dispatching rules according to the weighted quadratic

tardiness values. The presented method outperformed dispatching rules. According to

results, researchers stated that the presented system was applicable for real life

problems.

Sghir et al. (2015) presented an agent based optimization method for solving

quadratic assignment problem. Their proposed model includes different types of

cooperated agents namely “crossover agent”, “local search agents” and “perturbation

agents”. In their algorithm, they evolved a system which based on reinforcement

learning. According to the test results, the presented model performed well on the

tested benchmark instances in terms of solution quality.

Barenji et al. (2016) developed a multi-agent based dynamic scheduling system

for manufacturing flow lines. Their proposed system is evolved for rescheduling

manufacturing lines by considering dynamic customer demands and internal

disturbances. The model is applicable for dynamic and static manufacturing lines.

According to the simulation results, the presented model could increase the

production rate and uptime productivity of flexible flow line manufacturing systems.

Erol et al. (2012) proposed a multi-agent based model for simultaneous and

dynamic scheduling of machines and AGVs in manufacturing systems. In their study,

23

AGVs and machines are scheduled simultaneously first time in the literature.

Moreover, the proposed model is tested against dispatching rules. The results

indicated that the proposed MAS model outperformed all of the classical dispatching

rules.

Baykasoğlu and Kaplanoğlu (2011) presented a multi-agent based system for load

consolidation. In their proposed model, agents are responsible for load consolidation

decisions for the less-than-truckload orders. Negotiation mechanism is used for

assigning the less-than-truckload orders to the trucks. In addition, the developed

model includes load acceptance/rejection, load assignment, reassignment, routing

and scheduling decisions.

Baykasoğlu et al. (2011) introduced a multi-agent based model for load

consolidation problems of third-party logistic companies. Their proposed system

composed of three different types of agents namely “order agent”, “truck agent” and

“regional load consolidation agent”. They modeled the system against different

scenarios. Agents make variety of consolidation decisions in order to meet customer

demands in these scenarios.

Kaplanoğlu et al. (2015) proposed a multi-agent based scheduling approach that

considers AGV breakdowns for AGVs and machines within a manufacturing system.

The presented model was developed for solving problems in a manufacturing system

without stopping the manufacturing process. In their model, real-time problems were

solved throughout bidding and negotiating mechanisms between agents.

ġahin et al. (2015) proposed a multi-agent based system for simultaneously

scheduling of flexible machine groups and material handling system working under a

dynamic manufacturing environment. They designed the presented model by

Prometheus methodology and programmed it in JACK. In their model, they used

negotiation mechanism for problem solving. Each agent in the system had the ability

24

of negotiating. The proposed model tested on dynamic and static environments. The

results indicated that proposed model is effective on both environments.

Baykasoğlu and Görkemli (2015) presented an agent-based dynamic part family

formation for cellular manufacturing applications. In their study, they evolved a

novel agent-based clustering algorithm that deals with dynamic demand changes.

Their presented model composed of three cooperated agents namely “part”,

“manager” and “part family”. Since there were no data for dynamic benchmark data

for part family problems in the literature, they tested their proposed algorithm on

static problems. Despite the proposed model was not an optimization algorithm, the

results showed that the algorithm has promising results.

Baykasoğlu and Görkemli (2016) developed a new dynamic virtual manufacturing

approach through agent-based modeling. The presented method could able to carry

out part family formation, virtual cell formation and scheduling simultaneously. The

experimental results indicated that the proposed approach is able to manage dynamic

part demand arrivals besides providing promising solutions.

25

CHAPTER THREE

STOCHASTIC DIFFUSION SEARCH (SDS) ALGORITHM

In this chapter, detailed information related to SDS algorithm is presented. Firstly,

origins of SDS algorithm are given. Then, the natural phenomenon which this

metaheuristic algorithm inspires is mentioned. In addition, this chapter includes

information about different strategies and specifications of agents‟ duties for each

strategy of SDS algorithm. Moreover, procedural flow of the SDS algorithm is also

displayed in this chapter.

3.1 Origins of Stochastic Diffusion Algorithm

Origins of SDS depend on two methods for invariant pattern recognition, pattern

identification within a larger data structure. The first method is a sequential

algorithm namely Template Matching and the second one is a connectionist model

called Hinton Mapping. SDS was introduced in and subsequently applied to a variety

of real-world problems: locating eyes in images of human faces (Bishop et al, 1992);

lip tracking in video films (Grech-Cini, 1995); self-localization of an autonomous

wheelchair (Beattie and Bishop, 1998) and site selection for wireless networks

(Hurley and Whitakar, 2002) . Furthermore, a neural network model of SDS using

Spiking Neurons has been proposed (Nasuta et al, 1999).

3.1.1 Template Matching

Template Matching is most widely used in the context of 2D image matching. A

template image is available and needs to be identified within a larger input image.

The correlation among the transformed template and the corresponding region of the

input image is computed. The solution is specified with the transformation which

yields the highest correlation.

26

3.1.2 Hinton Mapping

A Hinton Mapping network contains two sets of detectors. These are canonical and

retinocentric, respectively. In these methods, retinocentric feature patterns are

mapped into canonical feature patterns.

3.2 Stochastic Diffusion Search

Stochastic Diffusion Search algorithm is first proposed in 1989 and can be seen as

the member of swarm intelligence algorithms (Bishop, 1989). Opposed to other

nature-inspired algorithms, it has a powerful mathematical structure defining its

behavior and convergence. Moreover, it is a multi-agent optimization and global

search algorithm based on some iterative actions among the agents. Each agent has a

hypothesis about a feasible solution and tests its hypothesis individually. Successful

agents implement this hypothesis testing procedure repeatedly while canalizing the

unsuccessful agents by communicating directly. Throughout this mechanism, fast

convergence of agents to the valuable solutions in the solution space can be ensured.

3.2.1 Mining Game

In order to simplify the explanation of SDS algorithm, Al-Rifaie and Bishop

(2010) introduced a metaphor which is called “Mining Game” (Al-Rifaie and

Bishop, 2010). A group of miners desire to obtain the information for finding gold on

the hills of a mountain range but they do not have knowledge about its distribution.

They divide the mountain into discrete hills and each hill contains different amount

of mine. Miners try to dig the best seam that has the maximum amount of gold. At

hand, they do not know the best seam. For solving this problem they apply SDS. The

steps of SDS procedure can be shown as in Table 3.1.

27

Table 3.1 The steps of SDS procedure (Al-Rifaie and Bishop, 2010)

 In the beginning, all miners are allocated a hill to mine randomly.

 In each day every miner is allocated to selected seam on his hill to mine randomly.

 At the end of each day, the probability of a miner‟s happiness is related with the amount of

gold he finds in that day.

 At the end of each day, all miners get together and unhappy miners select one of the other

miners randomly to negotiate. If the negotiated miner is happy, he shares the information

of hill that he dig. On the other hand, if the selected miner is unhappy, miner does not share

information to other miner and the original miner selects randomly a hill for the following

day.

3.3 Stochastic Diffusion Search Architecture

SDS algorithm includes three stages. Initial stage is initialization phase. In this

phase, all of the agents get their first solutions. After this phase, iterative steps will

begin. There are two new phases in these iterative steps. One of them is test phase

and the other one is diffusion phase. In the test phase, agents are evaluated through

their fitness function values. According to their fitness values, their states are

determined (active or passive). After the test phase, diffusion phase will start. In

diffusion phase, agents are recruited for matching other agents for communication.

Throughout the different recruitment strategies, agents diffuse their solutions to other

agents. The basic SDS architecture is demonstrated in Table 3.2.

Table 3.2 The basic SDS architecture

Initialize (Agents);

Repeat

Test (Agents);

Diffuse (Agents);

Until (Terminating Criteria)

28

3.4 Recruitment Strategies in Stochastic Diffusion Search

Different recruitment strategies can be applied in diffusion stage of SDS

algorithm (Myatt et al., 2006). An agent can be in the form of two states. The first

state as named as active state, If agent achieve success in the test stage, it will be in

the form of active state. On the other hand, if agent fails in the test stage, it will be

the form of inactive. It is engaged if it is communicated with an agent. Five different

recruitment strategies namely “passive recruitment mode”, “active recruitment

mode”, “dual recruitment mode”, “context sensitive mechanism”, “context free

mechanism” are applicable in diffusion phase (Myatt et al., 2006).

3.4.1 Passive recruitment mode

The basic SDS algorithm (Bishop,1989) uses passive recruitment mode. In this

mode, if the agent is inactive, other agent is randomly chosen and if randomly chosen

agent is active, passive agent get other agent‟s hypothesis and changes its state as

active. Besides, if the chosen agent is passive, the agent produces new hypothesis

(Myatt et al., 2006)

Table 3.3 Passive recruitment mode

For agent = 1 to No_of_agents

 If (agent.activity()==passive)

 random_agent = choose a random agent()

 If (random_agent.activity()==active)

 agent.setHypothesis(random_agent.getHypothesis())

 Else

 agent.setHypothesis(randomHypothesis())

 End If/Else

 End If

End For

3.4.2 Active recruitment mode

In active recruitment mode, active agents are responsible for negotiation. They are

on duty in diffusion phase. An active agent randomly chooses an agent if the chosen

agent is inactive and unengaged with other active agent, then there will be

information flow through active agent to inactive one and inactive agent is flagged as

29

engaged. All active agents repeat the same process. If there is still unengaged

inactive agent, these agents will produce new hypothesis (Myatt et al., 2006).

Table 3.4 Active recruitment mode

For agent = 1 to No_of_agents

 If (agent.activity()==active)

 random_agent = choose a random agent()

 If (random_agent.activity()==passive && random_agent.getEngaged()==false)

 random_agent.setHypothesis(agent.getHypothesis())

 random_agent.setEngaged(true)

 End If

 End If

End For

3.4.3 Dual recruitment mode

In dual recruitment mode, both active and passive agents choose another agent

randomly. If the chosen agent is inactive and unengaged, the hypothesis of active

agent is passed through inactive one. Besides, if the agent is not active, it also

chooses other agent randomly, if the chosen agent is active, agents will negotiate and

active agent shares its knowledge with the inactive agent and inactive agent is

flagged as engaged. If there is still unengaged and inactive agent, these agents choose

randomly new hypothesis (Myatt et al., 2006).

Table 3.5 Dual recruitment mode

For agent = 1 to No_of_agents

 If (agent.activity()==active)

 random_agent = choose a random agent()

 If(random_agent.activity()==passive && random_agent.getEngaged()==false)

 random_agent.setHypothesis(agent.getHypothesis())

 random_agent.setEngaged(true)

 End If

Else

 random_agent= choose a random agent()

 If (random_agent==active && agent.getEngaged()==false)

 agent.setHypothesis(random_agent.getHypothesis())

 agent.setEngaged(true)

30

 End If

 End If/Else

End For

For agent=1 to No_of_agents

 If (agent.activity==passive && agent.getEngaged()==false)

 agent.setHypothesis(randomHypothesis)

 End If

End For

3.4.4 Context Sensitive Mechanism

In active recruitment mode, robustness and greediness of the algorithm will

decrease. Fortunately, in dual recruitment mode, these two attributes increases.

Hence, greediness of the dual recruitment mode decreases the robustness of the

algorithm. In order to prevent this reduction, context sensitive mechanism can be

useful. In other words, context sensitive mechanism provides the global search

exploration. In this mechanism, if an active agent chooses an agent randomly. If the

chosen agent is also active and has the same hypothesis with the active agent, this

agent changes its state to inactive and chooses another hypothesis randomly (Myatt

et al., 2006).

Table 3.5 Dual recruitment mode (continue)

31

Table 3.6 Context sensitive mechanism

For agent = 1 to No_of_agents

 If (agent.activity())

 random_agent = choose a random agent ()

 If (random_agent.activity()==active

 If (agent.getHypothesis()==random_agent.getHypothesis())

 agent.setActivity (false)

 agent.setHypothesis (randomHypothesis())

 End If

 End If

 End If

End For

3.4.5 Context Free Mechanism

The context free mechanism has almost the same structure with the context

sensitive mechanism. Differently from the context sensitive mechanism, if the

chosen agent is active; choosing agent changes its state to inactive and chooses

another hypothesis randomly regardless of selected agent‟s hypothesis (Myatt et al.,

2006).

Table 3.7 Context free mechanism

For agent = 1 to No_of_agents

If (agent.activity())

 random_agent = choose a random agent ()

 If (random_agent.activity()==active

 agent.setActivity (false)

 agent.setHypothesis (randomHypothesis())

 End If

 End If

End For

32

CHAPTER FOUR

REALIZING STOCHASTIC DIFFUSION SEARCH ALGORITHM IN JACK

MULTI-AGENT ENVIRONMENT

In this chapter, the design of the proposed multi-agent based SDS algorithm is

performed. This chapter of the thesis explains agent types, their interactions, plans,

events and how these components of the multi agent systems are implemented into

JACK platform.

4.1 Agent Types and Agent Specifications

The proposed system is composed of four main types of agents namely “Manager

Agent”, “Position Update Agent”, “Trigger Agent” and “Solution Agent”. Each of

the agent types has special duties and is appointed for different plans and events.

4.1.1 Manager Agent

Manager agent is responsible for initializing the system, keeping all of the

solution agent data and displaying solution agents‟ solutions. Manager agent‟s

descriptors are summarized in Table 4.1.

Table 4.1 Manager agent‟s descriptors

Name: Manager agent

Description: Initializes the simulation process, keeps all the solution agent data.

Lifetime: Initialized when a run command reaches to the system from JAVA.

Demised when simulation finishes.

Initialization: Obtains the run command from JAVA.

Demise: Finishes all of the simulation process.

Functionalities included: System initialization functionality, keeping data

functionality.

Uses data: Solution agent data

33

Produces data: Solution agents‟ solutions report data

Goals: Initialize system, display results of the simulation.

Percepts responded to: Arrival of a new run command to the system.

Actions: Change in the persistent database of solution agents.

Protocols and interactions: Start request with solution agents.

The simulation process will begin with the manager agent‟s start request to the

solution agents. This method is illustrated in Figure 4.1.

public agent ManagerAgent extends Agent {

 #posts event StartRequest startRequestET;

 #handles event StartRequest;

 #sends event Start ev;

 #posts event DisplayRequest displayRequestET;

 #handles event DisplayRequest;

 #uses plan SendStartRequest;

 #uses plan Display;

 public ManagerAgent(String name)

 {

 super(name);

 }

 public void submitStartRequest(){

 String solutionAgentName=null;

 for(int i=0;i<Main.vector.size();i++){

 solutionAgentName=Main.returnSolutionAgents().get(i).toString();

 postEvent(startRequestET.request(solutionAgentName,1));

 }

 postEvent(displayRequestET.request());

 }

}

Figure 4.1 Manager agent start request

Table 4.1 Manager agent‟s descriptors (continue)

34

4.1.2 Position Update Agent

Position update agent is responsible for determining and changing solution agents‟

positions. A solution agent may take place in saloon where it is ready to negotiate

and may be in hill for searching new solutions. Position update agent calls each

solution agent to the saloon, in order to negotiate with the other solution agents. It

also sends match agents command to the trigger agent. Its descriptors are

summarized in Table 4.2 and its update request method is depicted in Figure 4.2.

Table 4.2 Position update agent descriptors

Name: Position update agent

Description: Changes solution agents‟ states.

Lifetime: Initialized when a run command reaches to the system from JAVA. Demised

when simulation finishes.

Initialization: Obtains run command from JAVA.

Demise: Finishes all the simulation process.

Functionalities included: Changing solution agents‟ states functionality.

Uses data: Solution agent name data

Produces data: Solution agents‟ state data

Goals: Call solution agents back to the saloon.

Percepts responded to: Arrival of a new run command to the system.

Actions: Change states of solution agents.

Protocols and interactions: Update with solution agents.

public agent PositionUpdateAgent extends Agent {

 #posts event UpdateRequest updateRequestET;

 #sends event Update ev;

 #handles event UpdateRequest;

 #uses plan SendUpdateRequest;

 public PositionUpdateAgent(String name)

 {

 super(name);

 }

 public void submitUpdateRequest()

 {

 postEvent(updateRequestET.request());

 }

}

Figure 4.2 Position update agent‟s update request

35

4.1.3 Trigger Agent

Trigger agent is responsible for matching solution agents for communicating and

triggering solution agents so as to negotiate their solutions during the communication

period. Trigger agent selects a solution agent, then, match it with another solution

agent that is not in communication at that moment. Its descriptors are summarized in

Table 4.3 and its definition on JACK is depicted in Figure 4.3.

Table 4.3 Trigger agent descriptors

Name: Trigger agent

Description: Matches solution agents.

Lifetime: Initialized when a run command reaches to the system from JAVA.

Demised when simulation finishes.

Initialization: Obtains run command from JAVA.

Demise: Finishes all the simulation process.

Functionalities included: Matching solution agents functionality.

Uses data: Solution agent name data, solution agent negotiation lock data.

Produces data: Matched pairs of solution agents data.

Goals: Match solution agents.

Percepts responded to: Go to saloon and negotiate plan.

Actions: Match solution agents.

Protocols and interactions: Trigger with solution agents.

public agent TriggerAgent extends Agent {

 #handles event TriggerEvent;

 #sends event SendPositionUpdateEvent ev;

 #uses plan TriggerPlan;

 public TriggerAgent(String name)

 {

 super(name);

 }

}

Figure 4.3 Trigger agent

36

4.1.4 Solution Agent

Solution agents are main actors of the simulation process. Each solution agent

represents a feasible solution in the system. These solution agents try to find optimal

solution of the given problem through negotiating with each other and searching the

solution area by themselves. Solution agents desire to find a negotiable solution

agent (solution agent that is not making a conversation at that moment) during

negotiating process. After negotiating process, solution agents either do crossover (it

means that the solution agent communicate with an agent which has a better solution)

or do local search (it means that the agent could not find an agent which has a better

solution). Its descriptors are summarized in Table 4.4 and its definition on JACK is

depicted in Figure 4.4.

Table 4.4 Solution agent descriptors

Name: Solution agent

Description: Represents a single solution of the given problem.

Lifetime: Initialized when start request reaches to it from manager agent. Demised

when simulation finishes.

Initialization: Start request command from manager agent.

Demise: Finishes all the simulation process.

Functionalities included: Searching solution area functionality, negotiating

functionality.

Uses data: Self solution data, fitness and solution data of its pair.

Produces data: New solution of the given problem.

Goals: Finding optimal solution of the given problem.

Percepts responded to: Initialize agents plan, do crossover plan, negotiate with

others plan and go to hill after self-reasoning plan.

Actions: Find possible solutions of the given problem through communicating other

agents or self-reasoning.

Protocols and interactions: ---

37

public agent SolutionAgent extends Agent {

 #posts event Update ev;

 #handles event Update;

 #handles event Start;

 #handles event SendPositionUpdateEvent;

 #posts event TriggerEvent ev1;

 #handles event TriggerEvent;

 #uses plan GoToHillWithSelfReasoning;

 #uses plan GoToSaloonAndNegotiate;

 #uses plan InitializeAgents;

 #uses plan NegotiateWithOtherAgents;

 #uses plan GoToHillSelfReasoningAfterSaloon;

 #uses plan DoCrossOver;

 public SolutionAgent(String name, SolutionE eclipseS)

 {

 super(name);

 solution=eclipseS;

 }

Figure 4.4 Solution agent

4.2 Plans and Events

Each type of agents in the system has several duties. These agents carry out these

duties through plans and events. In this part of the chapter, plans and events of each

agent are listed.

4.2.1 Manager Agent’s Plans and Events

Manager agent is responsible for two plans and three events. By handling these

plans and events, manager agent sends start request to the solution agents and display

solution agent data.

a. Manager Agent’s Plans: Manager agent has the following plans:

i. Send start request plan: Manager agent sends the command of start to the

solution agents through this plan.

ii. Display plan: Manager agent shows solution agents‟ solution via display

plan.

38

b. Manager Agent’s Events: Manager agent has the following events:

i. Start request event: It is the event of specifies the manager agent‟s

request functionality.

ii. Display request event: It is the event of specifies the manager agent‟s

display functionality.

iii. Start event: It is the event of specifies the manager agent‟s start

functionality.

4.2.2 Position Update Agent’s Plans and Events

Position update agent is responsible for making a plan and two events. By

handling these plan and events, position update agent sends the message of

comeback to saloon to the solution agents.

a. Position Update Agent’s Plans: Position update agent has the following

plan:

i. Send update request plan: Position update agent sends the command of

update position to the solution agents through this plan.

b. Position Update Agent’s Events: Position update agent has the following

events:

i. Update request event: It is the event of specifies the position update

agent‟s update request functionality.

ii. Update event: It is the event of specifies the position update agent‟s

update functionality.

4.2.3 Trigger Agent’s Plans and Events

Trigger agent is responsible for a plan and two events. By handling these plan and

events, trigger agent matches solution agents with each other for negotiating their

solutions.

39

a. Trigger Agent’s Plans: Trigger agent has the following plan:

i. Trigger plan: Trigger agent matches the solution agents for negotiating

through this plan.

b. Trigger Agent’s Events: Trigger agent has the following events:

i. Trigger event: It is the event of specifies the trigger agent‟s triggering

solution agents for matching functionality.

ii. Send match event: It is the event of specifies the manager agent‟s

match functionality.

4.2.4 Solution Agent’s Plans and Events

Solution agent is responsible for six plans and three events. Through handling

these plans and events, solution agents search solution space and try to find the

optimal solution for the present problem.

a. Solution Agent’s Plans: Solution agent has the following plans.

i. Initialize agents plan: Solution agents initialize themselves and get

their first solutions through this plan.

ii. Go to saloon and negotiate plan: Solution agents come back to saloon

and get ready for matching through this plan.

iii. Go to hill with self-reasoning plan: Solution agents try to find new

solutions after initialization through this plan.

iv. Negotiate with other agents plan: Solution agents negotiate with other

solution agents and share their best solutions through this plan.

v. Do crossover plan: Solution agents implement lox-crossover with a

better solution agent through this plan.

vi. Go to hill self-reasoning after saloon plan: Solution agents implement

local search through this plan.

40

b. Solution Agent’s Events: Solution agent has the following events.

i. Start event: It is the event of specifies solution agent‟s get the

message of start functionality.

ii. Update event: It is the event of specifies solution agent‟s get the

message of update functionality.

iii. Trigger event: It is the event of specifies solution agent‟s get the

message of trigger functionality.

4.3 Connection between JACK and Eclipse JAVA Platform

JACK multi-agent based simulation platform and Eclipse Java platform can be

cooperated and get connected. Design of the proposed model is implemented in

JACK and agent‟s procedural applications are implemented in Java.

4.3.1 JACK and Eclipse JAVA Platform Connection Steps

In order to connect JACK and Java the following steps should be applied:

i. In JACK, compiler utility tab on the tools menu should be clicked and

class path of the Java project should be added on the options tab project

class path area on the pop-up screen as it is illustrated in Figure 4.5.

ii. In Eclipse Java platform, class path of the JACK project should be added

as an external class file on the java build tab on properties menu as it is

depicted in Figure 4.6.

41

Figure 4.5 Connection operations in JACK side

Figure 4.6 Connection operations in JAVA side

42

4.3.2 Operations on JAVA Platform for the Proposed Model

The following operations of the proposed model are carried out on JAVA

platform.

i. Creating solution agent‟s constructor: Solution agent‟s constructor is

defined on JAVA. Solution agent constructor is demonstrated in Figure

4.7.

public class SolutionE implements Serializable {

public String solutionName;

public Status agentStatus;

public boolean NegotiationLock;

public int fitness;

public int bestFitness;

public Vector<Operation> solution = new Vector<Operation>();

public Vector<Operation> temporarySolution = new Vector<Operation>();

public Vector<Operation> bestSolution = new Vector<Operation>();

public Vector<Operation> crssolutions = new Vector<Operation>();

 public boolean isLast;

public SolutionE(String solutionName1, boolean

agentNegotiationLock,

int agentFitness,boolean agentisLast) {

solutionName = solutionName1;

NegotiationLock = agentNegotiationLock;

fitness = agentFitness;

isLast=agentisLast;

}

Figure 4.7 Solution agent constructor

ii. Determining solution representation: Operation class is defined on JAVA

for solution representation. Each solution agent has a solution operation

type solution vector. Operation class constructor is shown in Figure 4.8.

43

public class Operation implements Serializable {

public int No;

public int ptime;

public int ddate;

public int weight;

public boolean check;

public Operation(int OperationNo,int Operationptime,int Operationweight,int

Operationddate){

No=OperationNo;

ptime=Operationptime;

weight=Operationweight;

ddate=Operationddate;

 }

}

 Figure 4.8 Operation class

iii. Crossover Operation: Lox-crossover operation (Falkenauer and

Bouffouix, 1991) is coded on JAVA. By the help of connection between

JACK and JAVA, solution agents call crossover function on JACK. In

other words, all functions that are coded on JAVA are executable on

JACK. Crossover operation is shown below in Figure 4.9. For more details

on Lox-crossover mechanism one can see Falkenauer and Bouffouix‟s

study (Falkenauer and Bouffouix, 1991).

public Vector<Operation> crossOver(Vector<Operation> parent1,

Vector<Operation> parent2) {

int sayi1 = 0;

int sayi2 = 0;

while(sayi2<=sayi1){

sayi1=1+Main.RandomNumber(parent1.size()-1);

sayi2=1+Main.RandomNumber(parent1.size()-1);

}

for (int i = sayi1; i <= sayi2; i++) {

parent1.get(i).check = true;

for (Operation element : parent2) {

if (element.getNo() == parent1.get(i).getNo()) {

element.check = true;

}

}

}

 Figure 4.9 Crossover operation

44

Vector<Operation> offSpring = new Vector<Operation>();

for (Operation element : parent1) {

if (!element.check) {

for (Operation element2 : parent2) {

if (!element2.check) {

offSpring.add(element2);

element2.check = true;

break;

}

}

} else

offSpring.add(element);

}

System.out.println("offSpring");

for (Operation element : offSpring) {

System.out.print(element.getNo());

}

for (Operation element : parent1) {

element.check = false;

}

for (Operation element : parent2) {

element.check = false;

}

parent2 = offSpring;

System.out.println("parent2");

for (Operation element : parent2) {

System.out.print(element.getNo());

}

offSpring = null;

System.out.println();

return parent2;

}

Figure 4.9 Crossover operation (continue)

45

iv. Local Search Mechanisms: Solution agents‟ local search mechanisms are

also coded on JAVA. Five different local search mechanisms namely

“one-block swap”, “two-block swap”, “three-block swap”, “one-block

insertion” and “two-block insertion” are executable by solution agents in

JACK throughout the connection between JACK and JAVA. For more

details on these local search mechanisms see the following reference

(Anderson, 1996).

v. Overall Control of the System: System operations such as creating agent

instances, output reports, entering problem data are implemented via

JAVA. Simulation runs are also controlled on JAVA. Implementation of

these operations is also illustrated in Figure 4.10.

public static void main(String[] args) {

int numberOfAgents=50;

String solutionAgentName;

for (int i=0;i<numberOfAgents;i++){

solutionAgentName="SolutionAgent"+i;

SolutionE v=new SolutionE(solutionAgentName,false,10000,false);

v.setName(solutionAgentName);

SolutionAgent sA=new SolutionAgent(v.getName(),v);

sA.deneme();

Main.vector.add(v);

}

//Main.returnSolutionAgents();

TriggerAgent triggerAgent=new TriggerAgent("trigger");

ManagerAgent managerAgent=new ManagerAgent("Manager Agent");

managerAgent.submitStartRequest();

PositionUpdateAgent updateAgent=new PositionUpdateAgent("Position

Agent");

updateAgent.submitUpdateRequest();

}

Figure 4.10 Implementation of system operations

46

4.4 Flow of the Proposed Simulation Model

In this section, overall model of the proposed simulation model is explained in

detail. Agent‟s types, agent plans and events, interactions between the different

agents and implementation of SDS algorithm in JACK are expressed in a detailed

manner. The general overview of the proposed model is illustrated below in Figure

4.11

Figure 4.11 General overview of the proposed model

4.4.1 Initialization of the System

The proposed simulation model is initialized by the manager agent and solution

agents. The general overview of initialization process and interaction between

manager and solution agents are illustrated in Figure 4.12.

47

Figure 4.12 General overview of initialization process

An instance of manager agent is created on JAVA and this agent send start request

to the solution agents through “SendStartRequest” plan which is illustrated in Figure

4.13.

public plan SendStartRequest extends Plan {

 #handles event StartRequest startRequestET;

 #sends event Start startET;

 static boolean relevant(StartRequest ev)

 {

 return true;

 }

 context()

 {

 true;

 }

 #reasoning method

 body()

 {

 @send(startRequestET.solution,startET.startMethod(startRequestET.planNo));

 }
}

Figure 4.13 “SendStartRequest” plan

48

In this plan, request method which is defined in “StartRequest” event is executed

and manager agent sends start message to the all of the solution agents within the

system. The details of request method can be seen in Figure 4.14.

public event StartRequest extends BDIGoalEvent {

public String solution;

public int planNo;

#posted as

request(String s, int p)

{

solution=s;

planNo=p;

}

}

Figure 4.14 Request method

Solution agents that received the start message, generate their first solutions by

implementing “InitializeAgents” plan. Throughout this plan, solution agents execute

“setSolution” and “calculateFitness” procedures on JAVA. By making use of these

procedures, initialization of system process is completed. Moreover, throughout

“Output” class on JAVA, all of the solution agents‟ findings are also recorded. This

plan is shown in Figure 4.15.

package solution;

import elements.Main;

import elements.Output;

public plan InitializeAgents extends Plan {

 #handles event Start ev;

 #uses interface SolutionAgent self;

 static boolean relevant(Start ev)

 {

 return true;

 }

Figure 4.15 “InitializeAgents” plan

49

 context()

 {

 true;

 }

 #reasoning method

 body()

 {

 System.out.println(self.solution.getName());

 int best=999999;

 for (int i=0;i<1;i++){

 self.solution.solution.clear();

 self.solution.setSolution();

 self.solution.setSolution();

 self.solution.showSolution(self.solution.solution);

 int fit=self.solution.CalculateFitness(self.solution.solution);

 System.out.println(fit);

 if (best>fit){

 self.solution.bestSolution=self.solution.solution;

 best=fit;

 self.solution.bestFitness=best;

 }

 }

 Main.statistics.add(new

Output(self.solution.getName(),self.solution.bestSolution,self.solution.bestFitness));

 }

}

Figure 4.15 “InitializeAgents” plan (continue)

4.4.2 Position Update Mechanism

Position update mechanism is under the responsibility of position update agent

and trigger agent. A general overview of position update mechanism is illustrated in

Figure 4.16.

50

Figure 4.16 General overview of position update mechanism

Position update agent sends update request to solution agents through

“SendUpdateRequest” plan which is shown in Figure 4.17.

public plan SendUpdateRequest extends Plan {

 #handles event UpdateRequest updateRequestET;

 #sends event Update updateET;

 static boolean relevant(UpdateRequest ev)

 {

 return true;

 }

 context()

 {

 true;

 }

Figure 4.17 “SendUpdateRequest” plan

51

 #reasoning method

 body()

 {

 int numberOfSolutionAgent=Main.vector.size();

 String solutionAgentName;

 int j=0;

 int time=0;

 int ctime=0;

 Main.numberOSolutionAgentsInSaloon=numberOfSolutionAgent;

 while (j<20)

 {

 time=0;

 while (time<15){

 for (int i=0;i<numberOfSolutionAgent;i++)

 {

 solutionAgentName="SolutionAgent"+i;

@send(solutionAgentName,updateET.updateMethod(2,"trigger",solutionAgentName

));

 ctime=1+Main.RandomNumber(3);

 time=time+ctime;

 @sleep(ctime);

 }

 }

 for (int i=0;i<numberOfSolutionAgent;i++)

 {

 SolutionE ssagent=(SolutionE)Main.returnSolutionAgents().get(i);

 ssagent.isLast=true;

 ssagent.NegotiationLock=false;

 solutionAgentName="SolutionAgent"+i;

@send(solutionAgentName,updateET.updateMethod(2,"trigger",ssagent.getName())

);

 }

 j++;

 Main.numberOSolutionAgentsInSaloon=0;

 }

 }

Figure 4.17 “SendUpdateRequest” plan (continue)

After taking the message of position update (comeback to the saloon) via update

method of “Update” event, all of the solution agents discontinue their solution

searching process and get ready for communication and negotiation with other

solution agents. Detailed information of update method is illustrated in Figure 4.18.

52

public event Update extends BDIMessageEvent {

 public int planNo;

 public String trigger;

 public String solutionAgentName;

 #posted as

 updateMethod(int p, String t, String s)

 {

 planNo=p;

 trigger=t;

 solutionAgentName=s;

 }

}

Figure 4.18 Update event

This communication and negotiation process is carried on for a certain time

period. During this period, all of the solution agents try to find a negotiable solution

agent (solution agent that is not communicating with another solution agent at that

specific moment) via help of trigger agent. If a solution agent finds another solution

agent to talk, communication time proceeds for minimum time of ongoing

conversations. The solution agents that take update message, executes trigger method

of “Trigger” event on “GoToSaloonAndNegotiate” plan. Detailed information of

“GoToSaloonAndNegotiate” plan and trigger method are illustrated in Figure 4.19

and 4.20 respectively.

public plan GoToSaloonAndNegotiate extends Plan {

 SolutionE crossOverSolutionAgent;

 #handles event Update updateET;

 #sends event TriggerEvent triggerEventET;

 static boolean relevant(Update ev)

 {

 return true;

 }

 context()

 Figure 4.19 “GoToSaloonAndNegotiate” plan

53

 {

 updateET.planNo==2;

 }

 #reasoning method

 body()

 {

 for(int i=0;i<5;i++){

 if (self.solution.NegotiationLock==false)

 {

@send(updateET.trigger,triggerEventET.triggerMethod((SolutionE)Main.returnSolut

ionAgents().get(i), self.solution));

 }

 }

 }

}

Figure 4.19 “GoToSaloonAndNegotiate” plan (continue)

public event TriggerEvent extends BDIMessageEvent {

 public SolutionE crossOverSolutionAgent;

 public SolutionE solutionSenderObject;

 #posted as

 triggerMethod(SolutionE s, SolutionE ss)

 {

 crossOverSolutionAgent=s;

 solutionSenderObject=ss;

 }

}

Figure 4.20 Trigger method

When the communication process is completed, all solution agents‟ “isLast” area

are marked as true for denoting the end of the conversations. The last message is sent

to the solution agents for making decisions about the next move (All solution agents

go their rooms for deciding the next move).

54

4.4.3 Negotiation and Determining Next Move Mechanism

Trigger agent has the duty of matching negotiable solutions agents and triggering

matched solution agents to get ready for negotiation. Solution agents that is matched

and triggered for negotiation begin to negotiate. General overview of the negotiation

and determination of the next move mechanism is illustrated in Figure 4.21.

Figure 4.21 General overview of negotiation and next move mechanism

At this point, trigger agent executes trigger plan which is depicted in Figure 4.22.

public plan TriggerPlan extends Plan {
 #handles event TriggerEvent triggerEventET;
 #sends event SendMatchEvent sendPositionUpdateEventET;
 static boolean relevant(TriggerEvent ev)
 {
 return true;
 }
 context()
 {
 true;
 }
 #reasoning method
 body()
 {
send(triggerEventET.solutionSenderObject.getName(),sendPositionUpdateEventET.send
Method(triggerEventET.crossOverSolutionAgent,
triggerEventET.solutionSenderObject));
 }
}

Figure 4.22 Trigger plan

55

In context of trigger plan, trigger agent uses send request method of

“SendMatchEvent”. Throughout this method, solution agents learn their negotiation

partner‟s name. In this method, “solutionSenderObject” represents the matched pair

of solution agent that named as “crossOverSolutionAgent”. Details of the send

request method is shown in Figure 4.23.

public event SendMatchEvent extends BDIMessageEvent {

 public SolutionE crossOverSolutionAgent;

 public SolutionE solutionSenderObject;

 #posted as

 sendMethod(SolutionE s, SolutionE ss)

 {

 crossOverSolutionAgent=s;

 solutionSenderObject=ss;

 }

}

Figure 4.23 Send method

This negotiation process depends on some conditions. If these conditions are

satisfied, solution agents execute “NegotiateWithOtherAgents” plan. In order to

execute this plan, the following three conditions must be satisfied.

1. Both of the agents “crossOverSolutionAgent” and

“solutionSenderObject”, must be ready to negotiate. In other words, both

of the agents‟ negotiation locks must be marked as false.

2. Conversation among the “crossOverSolutionAgent” and

“solutionSenderObject” agents must be held at specified negotiation time

interval. In other words, “crossOverSolutionAgent” ‟s “isLast” area must

be marked as false. Because, after the negotiation time completion, all

solution agents‟ “isLast “ area marked as true in order to clarify the end of

negotiation time.

3. Another issue is that, “solutionSenderObject” agent‟s best fitness must be

better than “crossOverSolutionAgent” agent‟s one. In other words, a

56

solution agent does not gain anything by negotiating with a less

successful agent than it.

After providing these three conditions, negotiation between the solution agents

can be begun. At this point, “crossOverSolutionAgent” may face one of the

following three cases.

i. Case 1 “crossOverSolutionAgent” has not negotiated with a better

solution agent until that time: In this case, “crossOverSolutionAgent”‟s

“crssolution” area is null. So that “crossOverSolutionAgent” copies

“solutionSenderObject”‟s best solution directly to its “crssolution” area.

ii. Case 2 “solutionSenderObject”’s best solution is better than the

solution of “crossOverSolutionAgent”’s “crssolution”: In this case,

“crossOverSolutionAgent” „s “crssolution” area is not null. Thus

“crossOverSolutionAgent” should clear its “crssolution” area before

copying “solutionSenderObject”‟s best solution to its “crssolution” area.

Because it is not meaningful to keep a worse solution of the pre-negotiated

solution agent after negotiating a better solution agent.

iii. Case 3 “solutionSenderObject”’s best solution is worse than the

solution of “crossOverSolutionAgent”’s “crssolution” area : In this

case, “crossOverSolutionAgent”‟s “crssolution” is better than

“solutionSenderObject”‟s best solution.

Therefore,“crossOverSolutionAgent” ends the conversation process and

do nothing. Because, it is not meaningful to

copy“solutionSenderObject”„s best solution, if “crossOverSolutionAgent”

has already negotiated a better solution agent than “solutionSenderObject”

agent.

All of these pre-conditions for negotiation and solution agents‟ options are

illustrated in Figure 4.24 and Figure 4.25 respectively.

57

public plan NegotiateWithOtherAgents extends Plan {

 #handles event SendMatchEvent sendPositionUpdateEventET;

 #uses interface SolutionAgent self;

 static boolean relevant(SendMatchEvent ev)

 {

 return true;

 }

 context()

 {

 (sendPositionUpdateEventET.crossOverSolutionAgent.getBestFitness()<

 self.solution.getBestFitness() &&

 sendPositionUpdateEventET.crossOverSolutionAgent.NegotiationLock== false

&& self.solution.NegotiationLock==false &&

 self.solution.isLast==false);

 }

Figure 4.24 Negotiation conditions

if (self.solution.crssolutions.size()==0){

self.solution.crssolutions.addAll(self.solution.getcrssolutions(sendPositionUpdateEv

entET.crossOverSolutionAgent.getBestSolution()));

 System.out.println(self.solution.crssolutions.size());

 }else if (self.solution.CalculateFitness(self.solution.crssolutions) >

self.solution.CalculateFitness(self.solution.getcrssolutions(sendPositionUpdateE

ventET.crossOverSolutionAgent.getBestSolution())))

 {

 self.solution.crssolutions.clear();

self.solution.crssolutions.addAll(self.solution.getcrssolutions(sendPositionUpdateEv

entET.crossOverSolutionAgent.getBestSolution()));

 }else {

 System.out.println("ajan daha iyi bir ajanla konuĢmuĢ");

 }

Figure 4.25 Negotiation cases

58

When the time for negotiation ends, all of the solution agents‟ “isLast” area

marked as true and all solution agents get ready for determining their next moves. In

detail, miners should decide for the next hill for digging.

Solution agents have two plans namely “DoCrossOver” and

“GoToHillSelfReasoningAfterSaloon” to execute for determining their next moves.

Solution agents select a plan according to their findings to execute during the

negotiation period. Solution agents record their findings “crssolutions” area. After

negotiation process, if a solution agent‟s “crssolutions” area is null, it means that,

solution agent has not communicated with another solution agent with a better

solution than its solutions. In this case, solution agent executes

“GoToHillSelfReasoningAfterSaloon” plan and determines its next move by

applying one of the following local search mechanisms.

i. One-Block Swap: One-block swap-move tswp (Vector<Operation> X)

swaps the positions of two elements in the current vector X which is given

in Figure 4.26. Element at position i is exchanged with element at

position j. The other elements all other positions are unaffected by this

move. Assume that the randomly chosen positions are i=3 and j=7.

i j

Figure 4.26 One-block swap

ii. Two-Block Swap: Two-block swap is based on replacing two different

blocks. The positions are chosen randomly for two blocks. The most

important point is that the chosen block‟s lengths must be equal. Figure

4.27 demonstrates an example of this neighborhood generation model. For

instance, if the randomly chosen positions are 2 and 5, it explains that the

59

two framed blocks (7,5) and (3,6) which are depicted in Figure 4.27 are

randomly chosen. Then, these chosen blocks are replaced to generate a

new solution vector.

1 87 3 6 2

1 83 7 5 26

5 4

4

Figure 4.27 Two-block swap

iii. Three-Block Swap: Three-block swap is based on replacing two different

blocks with an equal length three. The positions of the blocks are

randomly chosen. Figure 4.28 illustrates an instance of this neighborhood

mechanism. For example, if the chosen positions are 2 and 6, it explains

that the two framed blocks (5,7,8) and (1,3,2), which are depicted in

Figure 4.28. Then, these two blocks are replaced to generate a new

solution.

4 5 7 38 6 1 2

4 1 3 72 6 5 8

Figure 4.28 Three-block swap

60

iv. One-Block Insertion: One-block insertion tinsertion (Vector<Operation>

X) inserts a selected element in the current vector X in to a randomly

selected position, which is depicted in Figure 4.29. Element at position i

is inserted at position j. Assume that the randomly chosen positions are i=3

and j=7 respectively.

1 82 7 5 3 6

1 82 75 3 6

4

4

Figure 4.29 One-block insertion

v. Two-Block Insertion: Two-block insertion is aimed at inserting a block

with a length two in the solution. The position of the block is randomly

selected. Figure 4.30 shows an example of this neighborhood structure.

1 87 5 3 6

1 58 73 4 6

42

2

Figure 4.30 Two-block insertion

On the other hand, if a solution agent‟s “crssolutions” area is not null, it means

that, solution agent have communicated with another solution agent with a better

solution than its solutions. In this case, solution agent executes “DoCrossOver” plan

and determines its next move by applying LOX-Crossover with the solution that is

recorded in “crssolutionsarea”.

61

The steps of crossover LOX which was firstly developed by Falkenauer and

Bouffouix (1991) can be listed as in the following way

Step 1. Choose randomly a subsequence of operations from one parent.

Step 2. Generate a proto-offspring by duplicating the subsequence into the related

positions of it.

Step 3. Erase the operations that exist in the subsequence from the second parent.

Step 4. Put the operations into the unfixed positions of the proto-offspring from left

to right related to the rank of the sequence to generate an offspring. This method is

demonstrated in Figure 4.31. It also shows an instance of producing one offspring.

Crossover LOX tries to protect both the relative positions between genes and the

absolute positions according to the extremities of parents as much as possible. The

extremities correspond to the high- and low-priority operations.

3

51 2 3 4 6 7 8 9Parent 1

14 8 9 6 5 7 2Parent 2

58 9 3 4 6 1 7 2Offspring

Figure 4.31 Lox crossover move

62

CHAPTER FIVE

MULTI AGENT-BASED STOCHASTIC DIFFUSION SEARCH

ALGORITHM FOR OPTIMIZATION PROBLEMS: THE SINGLE

MACHINE TOTAL WEIGHTED TARDINESS CASE

In this chapter, the presented algorithm is tested on the single machine total

weighted tardiness problem (SMTWT). SMTWT can be defined as in the following

way: a group of independent n jobs is to be completed on a single machine that is

able to process only a job at the same time without any interruption. Every job has a

processing time , a due date , and a positive weight . All the jobs are ready for

processing at the beginning. According to order of the jobs, the completion time

 and tardiness =max {0, } can be calculated for every job. If a job i is

completed after its due date, then a weighted tardiness penalty will occur. The

goal is to find a job order S to minimize the sum of the weighted penalties: ∑

(Ding et al., 2016).

The problem is very easy to understand. Despite the easy understanding of the

problem, the problem has high computational complexity and can be stated as NP-

hard (Lenstra et al., 1977). In other words, there is no algorithm to solve this problem

in a polynomial time. Most of the researchers acquired good performance of

SMTWT as a proof of the algorithm‟s usefulness.

5.1 Test Instances and Experimental Protocol

To evaluate the success of the developed multi agent-based SDS algorithm,

experiments are conducted on two sets of test problems. The problem instances

which are easily solved by Geiger (Geiger, 2009) are taken as the first set from the

OR-library. The first benchmark set includes three different problems namely

“40”,”50”, and “100” with different sizes. Each size involves 125 instances, so the

proposed algorithm is tested on 375 different problems totally. Optimal solutions of

each instance are obtained from Pan and Shi‟s study (Pan and Shi, 2007).

63

The second set of the test problems contains larger size problems. There are 250

instances with two different sizes 150 and 200 respectively. According to the

available literature, these instances are solved optimally Tanaka et al. (2009).

The primary experiments are conducted on the first problem instance. In detail, 20

independent runs are applied for each instance. According to the existing literature,

the following values are reported in Table 5.1 for the performance parameters of the

proposed algorithm.

Table 5.1 Reported performance values

pd: The percentage relative deviation of a solution value found by an algorithm

from the optimal or best-known solution value.

pd=100(Obtained-Optimum)/Optimum (When Optimum=0; pd=100 Obtained is

used)

ad: The average pd value for a sample of 125 instances in 20 independent runs.

md: The maximum pd out of a sample of 125 instances in 20 independent runs.

no:The number of optimal or best-known solution values found out of a sample of

125 instances.

 = The average hit ratio to the optimal or best-known solution for a sample of

125 instances in 20 independent runs.

There are several metaheuristic algorithms available in the literature for SMTWT

problem. For comparing the success of the developed algorithm some of the state of

art algorithms is chosen. The selected algorithms for performance comparison are

depicted in Table 5.2.

64

Table 5.2 Selected algorithms

Article Utilized Algorithm

Besten et al. (2001) Iterated Local Search (ILS)

Avci et al. (2003) Problem Space Genetic Algorithm

(PSGA)

Bilge et al. (2007) Tabu Search (TS)

Tasgetiren et al. (2006) Variable Neighborhood Search (VNS)

Tasgetiren et al. (2006) Particle Swarm Optimization (PSO)

Tasgetiren et al. (2006) Differential Evolution (DE)

Wang and Tang (2009) Population-based Variable Neighborhood

Search (PVNS)

Geiger (2010) Variable Neighborhood Descent (VND)

Grosso et al. (2004) Iterated Enhanced Dynasearch (GPI-DS)

Ding et. al. (2016) Breakout Dynasearch (BDS)

According to the experimental results, multi agent-based stochastic diffusion

search algorithm (MAB-SDS) shows competitive performance in comparison to the

selected algorithms. In problem set of 40 Jobs, all of the problem instances are

solved optimally by the proposed algorithm. The other algorithms except ILS, VNS

and VND, also solve all instances optimally. ILS, VNS and VND have high values of

ad. This shows that ILS, VNS and VND are inferior to the other algorithms in terms

of solution quality. The proposed algorithm found optimal results for every sample of

125 instances with 20 independent runs. MAB-SDS outperforms VNS and PVNS

with hit ratio of 1 respectively. Experimental results are depicted in Table 5.3.

Table 5.3 Experimental results of 40 Job set

Algorithm ad md no

ILS 0.13 - - 125

PSGA 0.000 0.000 - 125

TS 0.000 - - 125

VNS 0.21 - 0.95 125

PSO 0.000 0.000 1 125

DE 0.000 0.000 1 125

PVNS 0.000 0.000 0.9971 125

VND 0.99 - - 125

GPI-DS 0.000 0.000 1 125

BDS 0.000 0.000 1 125

MAB-SDS 0.000 0.000 1 125

65

In problem set of 50 Jobs, MAB-SDS is able to solve all instances optimally. It

surpasses ILS, TS, VNS, and VND algorithms and shows competitive performance

with the other algorithms in terms of ad. In terms of md, maximum pd out, the

proposed algorithm outperforms PSGA. Moreover, when the

 values of the selected algorithms are compared, VNS and PVNS are inferior to

the other algorithms with the ratio of 0.91 and 0.9965 respectively. Summary of the

results for 50 Jobs set is illustrated in Table 5.4.

Table 5.4 Experimental results of 50 Job set

Algorithm ad md no

ILS 0.86 - - 125

PSGA 0.000 0.020 - 125

TS 0.001 - - 125

VNS 0.20 - 0.91 125

PSO 0.000 0.000 1 125

DE 0.000 0.000 1 125

PVNS 0.000 0.000 0.9965 125

VND 1.45 - - 125

GPI-DS 0.000 0.000 1 125

BDS 0.000 0.000 1 125

MAB-SDS 0.000 0.000 1 125

In problem set of 100 Jobs, MAB-SDS can obtain optimal solutions for all the

problem instances. The proposed algorithm is much better than ILS, PSGA, TS, VNS

and VND with 0.000 value of ad. The results for 100 Jobs are also summarized in

Table 5.5.

Table 5.5 Experimental results of 100 Job set

Algorithm ad md no

ILS 14.50 - - 125

PSGA 0.020 0.300 - 125

TS 0.007 - - 125

VNS 0.11 - 0.90 125

PSO 0.000 0.000 1 125

DE 0.000 0.000 1 125

PVNS 0.000 0.000 - 125

VND 0.98 - - 125

GPI-DS 0.000 0.000 1 125

BDS 0.000 0.000 1 125

MAB-SDS 0.000 0.000 1 125

66

In order to better assess the performance of the MAB-SDS, larger sized instances

that is solved by Tanaka et al.(2009)‟s exact algorithm are also considered. The test

results are compared with the GPI-DS and BDS algorithms that is proposed by Ding

et al. (2016).

In 150 Jobs set, the MAB-SDS algorithm is able to solve the selected problems

with an ad value of 0.043 from the optimal solutions respectively. In addition, the

proposed algorithm solved problems in 200 Jobs set with an ad value of 0.127. The

proposed algorithm is able to provide comparable and acceptable solutions. The

detailed results of 150 and 200 Jobs sets are depicted in Table 5.6 and 5.7

respectively.

Table 5.6 Experimental results of 150 Jobs set

Algorithm ad md no

GPI-DS 0.001 0.031 0.9553 125

BDS 0.000 0.047 0.9897 125

MAB-SDS 0.043 0.265 0.9047 125

Table 5.7 Experimental results of 200 Job set

Algorithm ad md no

GPI-DS 0.068 0.867 0.9064 125

BDS 0.032 0.885 0.9281 125

MAB-SDS 0.127 0.932 0.8435 125

67

CHAPTER SIX

CONCLUSION

6.1 Summary

This dissertation is conducted to model a metaheuristic algorithm, namely SDS, in

a multi-agent based modeling environment. To the best of our knowledge, this is the

first study that a metaheuristic algorithm specifically, SDS is truly realized in a

multi-agent based environment. The algorithm is not modeled as classic procedural

algorithms. It is modeled as an ongoing vivid system. All agent movements, their

interactions are modeled in flowing time axis. While realizing the SDS algorithm in

JACK multi agent-based modeling environment, dynamic nature of the algorithm is

mimicked truthfully.

We firstly have defined the agent types and their specifications. Then, each type

of agents‟ events and plans are modeled. In order to handle static vector operations,

JACK multi agent-based modeling environment and eclipse JAVA platform are

connected and cooperated. Throughout this connection, all of the agents kept their

personal information such as agent name, solution vector, agent status, fitness etc. on

pre-defined fields in eclipse JAVA platform. In addition, the proposed model is also

controlled on eclipse JAVA platform.

SMTWT is selected for testing the performance of the proposed multi-agent based

SDS algorithm. Although the main goal in this thesis is not to provide the best

possible results but to realize a metaheuristic algorithm truthfully, however the

proposed algorithm provides comparable and acceptable solutions.

6.2 Contribution of the Study and Future Works

In most of the real-life applications, the environment changes continuously,

actually the number of static problems is very few in real-life cases. Despite of the

dynamic structure of the real-life settings, most of the researchers try to solve these

68

problems by evolving static methods. It is very hard to produce appropriate solutions

of these dynamic problems by applying static methods. For this reason, most of the

researchers fail while solving the real-life optimization problems, optimally in

dynamic environments.

In this thesis, a dynamic method is evolved for solving a static problem. In further

researches, it is planned to apply this dynamic method to the dynamic optimization

problems. The modification of the proposed algorithm for the dynamic problems can

also be scheduled as a future work with the help of the proposed algorithm‟s inherent

structure.

69

REFERENCES

Al-Rifaie, M. M., & Bishop, M. J. (2010). The mining game: a brief introduction to

the stochastic diffusion search metaheuristic. Q: The magazine of AISB, (130), 8-

9.

Aleman, D. M., Wibisono, T. G., & Schwartz, B. (2009). Accounting for individual

behaviors in a pandemic disease spread model. In Winter Simulation Conference,

1977-1985.

Anderson, E. J. (1996). Mechanisms for local search. European Journal of

Operational Research, 88(1), 139-151.

Avci, S., Akturk, M. S., & Storer, R. H. (2003). A problem space algorithm for

single machine weighted tardiness problems. IIE Transactions, 35(5), 479–486.

Axtell, R. (2000). Why agents?: on the varied motivations for agent computing in the

social sciences. In Workshop on Agent Simulation: Applications, Models, and

Tools, 3.

Barenji, A. V., Barenji, R. V., Roudi, D., & Hashemipour, M. (2016). A dynamic

multi-agent-based scheduling approach for SMEs. The International Journal of

Advanced Manufacturing Technology, 1-15.

Baykasoglu, A., & Gorkemli, L. (2015). Agent-based dynamic part family formation

for cellular manufacturing applications. International Journal of Production

Research, 53(3), 774-792.

Baykasoglu, A., & Gorkemli, L. (2016). Dynamic virtual cellular manufacturing

through agent-based modelling. International Journal of Computer Integrated

Manufacturing, 1-16.

70

Baykasoglu, A., & Kaplanoglu, V. (2011). A multi-agent approach to load

consolidation in transportation. Advances in Engineering Software, 42(7), 477-

490.

Baykasoğlu, A., & Kaplanoğlu, V. (2015). An application oriented multi-agent based

approach to dynamic load/truck planning. Expert Systems with

Applications, 42(15), 6008-6025.

Baykasoglu, A., Kaplanoglu, V., Erol, R., & Sahin, C. (2011). A multi-agent

framework for load consolidation in logistics. Transport, 26(3), 320-328.

Baykasoglu, A., & Durmusoglu, Z. D. (2014). A classification scheme for agent

based approaches to dynamic optimization. Artificial Intelligence Review, 41(2),

261-286.

Beattie, P. D., & Bishop, J. M. (1998). Self-localisation in the „senario‟autonomous

wheelchair. Journal of Intelligent and Robotic Systems, 22(3-4), 255-267.

Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent

systems with JADE (Vol. 7). Liverpool: John Wiley & Sons.

Berro, A., & Duthen, Y. (2001). Search for optimum in dynamic environment: a

efficient agent-based method. In GECCO'2001 Workshop on Evolutionary

Algorithms for Dynamic Optimization Problems, San Francisco, California, 51-

54.

Bilge, Ü., Kurtulan, M., & Kıraç, F. (2007). A tabu search algorithm for the single

machine total weighted tardiness problem. European Journal of Operational

Research, 176(3), 1423-1435.

71

Billiau, G., & Ghose, A. (2008). Robust, flexible multi-agent optimisation using

SBDO. Decision Systems Lab/Center for Software Engineering, Report, Report

No: 2008–TR03.

Bishop J. (1989). Anarchic techniques for pattern classification. PhD thesis,

University of Reading, Reading, UK.

Bishop, J. M., & Torr, P. (1992). The stochastic search network. In Neural networks

for vision, speech and natural language (pp. 370-387). Amsterdam:Springer

Netherlands.

DePasquale, D., Charania, A. C., & Olds, J. R. (2006). Agent-based economic

modeling of commercial transportation services to the international space station.

In Space 2006, 7226.

Ding, J., Lü, Z., Cheng, T. C. E., & Xu, L. (2016). Breakout dynasearch for the

single-machine total weighted tardiness problem. Computers & Industrial

Engineering, 98, 1-10.

Erol, R., Sahin, C., Baykasoglu, A., & Kaplanoglu, V. (2012). A multi-agent based

approach to dynamic scheduling of machines and automated guided vehicles in

manufacturing systems. Applied Soft Computing, 12(6), 1720-1732.

Falkenauer, E., & Bouffouix, S. (1991). A genetic algorithm for job shop. In

Robotics and Automation, 1991. Proceedings., 1991 IEEE International

Conference, 824-829.

Farahvash, P., & Boucher, T. O. (2004). A multi-agent architecture for control of

AGV systems. Robotics and Computer-Integrated Manufacturing, 20(6), 473-

483.

72

Geiger, M. J. (2009). The single machine total weighted tardiness problem – Is it (for

metaheuristics) a solved problem? In Proceedings of the 8th Metaheuristics

International Conference MIC 2009, 141.1–141.10.

Gendreau, M., & Potvin, J. Y. (2005). Metaheuristics in combinatorial

optimization. Annals of Operations Research, 140(1), 189-213.

González, J. R., Masegosa, A. D., & García, I. J. (2011). A cooperative strategy for

solving dynamic optimization problems. Memetic Computing, 3(1), 3-14.

Grech-Cini, E. (1995). Locating facial features. Phd Thesis, University of

Reading,Reading.

Grosso, A., Della Croce, F., & Tadei, R. (2004). An enhanced dynasearch

neighborhood for the single-machine total weighted tardiness scheduling problem.

Operations Research Letters, 32(1), 68–72.

Hanna, L., & Cagan, J. (2009). Evolutionary multi-agent systems: an adaptive and

dynamic approach to optimization. Journal of Mechanical Design, 131(1), 110-

120.

Howden, N., Rönnquist, R., Hodgson, A., & Lucas, A. (2001). JACK intelligent

agents-summary of an agent infrastructure. In 5th International Conference on

Autonomous Agents.

Hurley, S., & Whitaker, R. M. (2002). An agent based approach to site selection for

wireless networks. In Proceedings of the 2002 ACM symposium on Applied

Computing. 574-577.

Jayatilleke, G. B., Padgham, L., & Winikoff, M. (2004). Towards a component-based

development framework for agents. In German Conference on Multiagent System

Technologies, 183-197.

73

Jiang, D. & Han, J. (2008). Real time multi-agent decision making by simulated

annealing, Simulated Annealing, Cher Ming Tan (Ed.), InTech, Retrieved

December 21, 2016, from:

http://www.intechopen.com/books/simulated_annealing/real_time_multiagent_de

cision_making_by_simulated_annealing

Kaplanoğlu, V., ġahin, C., Baykasoğlu, A., Erol, R., Ekinci, A., & DemirtaĢ, M.

(2015). A multi-agent-based approach to dynamic scheduling of machines and

automated guided vehicles (agv) in manufacturing systems by considering agv

breakdowns. International Journal of Engineering Research & Innovation, 32.

Kuhn, J. R., Courtney, J. F., Morris, B., & Tatara, E. R. (2010). Agent-based analysis

and simulation of the consumer airline market share for Frontier

Airlines. Knowledge-Based Systems, 23(8), 875-882.

Laporte, G., & Nobert, Y. (1987). Exact algorithms for the vehicle routing

problem. North-Holland Mathematics Studies, 132, 147-184.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling

problems. Annals of Discrete Mathematics, 1, 343-362.

Lepagnot, J., Nakib, A., Oulhadj, H., & Siarry, P. (2010) .A multi-agent based

algorithm for continuous dynamic optimization. International Journal of Applied

Metaheuristic Computing 1(1):16–38

Li, S., & Li, J. Z. (2009). A multi‐agent‐based hybrid framework for international

marketing planning under uncertainty. Intelligent Systems in Accounting, Finance

and Management, 16(3), 231-254.

74

Lopez-Sanchez, M., Noria, X., Rodríguez, J. A., & Gilbert, N. (2005). Multi-agent

based simulation of news digital markets. International Journal of Computer

Science & Applications, 2(1), 7-14.

Máhr, T., Srour, J., De Weerdt, M., & Zuidwijk, R. (2010). Can agents measure up?

A comparative study of an agent-based and on-line optimization approach for a

drayage problem with uncertainty. Transportation Research Part C: Emerging

Technologies, 18(1), 99-119.

Malleson, N., Heppenstall, A., & See, L. (2010). Crime reduction through

simulation: An agent-based model of burglary. Computers, Environment and

Urban Systems, 34(3), 236-250.

Menges, F., Mishra, B., & Narzisi, G. (2008). Modeling and simulation of e-mail

social networks: a new stochastic agent-based approach. In Proceedings of the

40th Conference on Winter Simulation, 2792-2800.

Myatt, D., Nasuto, S., & Bishop, J. (2006). Alternative recruitment strategies for

stochastic diffusion search. Artificial Life X, Bloomington USA. Colorado:

Bradford Publishing.

Nasuto, S. J., Dautenhahn, K., & Bishop, M. (1999). Communication as an emergent

metaphor for neuronal operation. In Computation for metaphors, analogy, and

agents (pp. 365-379). Berlin: Springer Berlin Heidelberg.

Padgham, L., & Winikoff, M. (2005). Developing intelligent agent systems: A

practical guide (Vol. 13). Liverpool: John Wiley & Sons.

Pan, Y., & Shi, L. (2007). On the equivalence of the max-min transportation lower

bound and the time-indexed lower bound for single-machine scheduling problems.

Mathematical Programming, 110(3), 543–559

75

Pelta, D., Cruz, C., & González, J. R. (2009a). A study on diversity and cooperation

in a multiagent strategy for dynamic optimization problems. International Journal

of Intelligent Systems, 24(7), 844-861.

Pelta, D., Cruz, C., & Verdegay, J. L. (2009b). Simple control rules in a cooperative

system for dynamic optimisation problems. International Journal of General

Systems, 38(7), 701-717.

Sahin, C., Demirtas, M., Erol, R., Baykasoğlu, A., & Kaplanoğlu, V. (2015). A

multi-agent based approach to dynamic scheduling with flexible processing

capabilities. Journal of Intelligent Manufacturing, 1-19.

Sghir, I., Hao, J. K., Jaafar, I. B., & Ghédira, K. (2015). A multi-agent based

optimization method applied to the quadratic assignment problem. Expert Systems

with Applications, 42(23), 9252-9262.

Sörensen, K., & Glover, F. W. (2013). Metaheuristics. In Encyclopedia of

Operations Research and Management Science, 960-970.

Sycara, K. P. (1998). Multiagent systems. AI magazine, 19(2), 79.

Tanaka, S., Fujikuma, S., & Araki, M. (2009). An exact algorithm for single-machine

scheduling without machine idle time. Journal of Scheduling, 12(6), 575–593.

Tang, K., Kumara, S. R., Yee, S. T., & Tew, J. (2004). Wireless-based dynamic

optimization for load makeup using auction mechanism. In IIE Annual

Conference. Proceedings, 1. Institute of Industrial Engineers-Publisher.

Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2006). Particle

swarm optimization and differential evolution for the single machine total

weighted tardiness problem. International Journal of Production

Research,44(22), 4737-4754.

76

Tesfatsion, L. (2002). Agent-based computational economics: Growing economies

from the bottom up. Artificial Life, 8(1), 55-82.

Tesfatsion, L., & Judd, K. L. (Eds.). (2006). Handbook of Computational

Economics: Agent-Based Computational Economics (Vol. 2). Amsterdam:

Elsevier.

Testa, J. W., Mock, K. J., Taylor, C., Koyuk, H., Coyle, J. R., & Waggoner, R.

(2012). Agent-based modeling of the dynamics of mammal-eating killer whales

and their prey. Marine Ecology Progress Series, 466, 275-291.

Voos, H. (2009). Agent-based distributed resource allocation in continuous dynamic

systems, 1-21. I-Tech Education and Publishing, Jan. 2009.

Wang, D., & Liu, S. (2010). An agent-based evolutionary search for dynamic

traveling salesman problem. In International Conference on Information

Engineering Vol. 1, 111-114.

Wang, X., & Tang, L. (2009). A population-based variable neighborhood search for

the single machine total weighted tardiness problem. Computers & Operations

Research, 36(6), 2105–2110.

Wang, S. J., Xi, L. F., & Zhou, B. H. (2008). FBS-enhanced agent-based dynamic

scheduling in FMS. Engineering Applications of Artificial Intelligence, 21(4),

644-657.

Wang, Y. C., & Usher, J. M. (2002). An agent-based approach for flexible routing in

dynamic job shop scheduling. In IIE Annual Conference. Proceedings, 1.

Wooldridge, M. (2001). Intelligent agents: The key concepts. In ECCAI Advanced

Course on Artificial Intelligence, 3-43.

77

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and

practice. The Knowledge Engineering Review, 10(02), 115-152.

Xiang, W., & Lee, H. P. (2008). Ant colony intelligence in multi-agent dynamic

manufacturing scheduling. Engineering Applications of Artificial

Intelligence, 21(1), 73-85.

Yan, Y., Yang, S., Wang, D., & Wang, D. (2010). Agent based evolutionary dynamic

optimization. In Agent-Based Evolutionary Search, 97-116.

Zhou, R., Lee, H. P., & Nee, A. Y. (2008). Simulating the generic job shop as a

multi-agent system. International Journal of Intelligent Systems Technologies and

Applications, 4(1-2), 5-33.

