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REALIZING METAHEURISTIC ALGORITHMS IN MULTI-AGENT 

BASED MODELLING ENVIRONMENTS 

 

ABSTRACT 

 

Derivative-based numerical methods are generally insufficient for solving difficult 

computational optimization problems. Therefore, most of the researchers devoted 

their research efforts towards developing metaheuristic algorithms for solving 

complex/difficult computational optimization problems. Researchers are usually tried 

to imitate some natural phenomenon while developing metaheuristic algorithms.  

Although many effective metaheuristic algorithms were evolved for problem solving, 

very few of them truthfully realize dynamic characteristics of the phenomenon. We 

believe that an agent based modeling/design environment will be more useful and 

natural way for a better realization of the inspired phenomenon. It is possible to 

model various behaviors such as entering and leaving of agents, group forming etc. 

Additionally, purposeful inter-agent communications for goal seeking can be 

achieved easily by making use of the power of agent based system modeling and 

algorithm platforms. 

 

 In this research we implemented a metaheuristic algorithm which is known as 

Stochastic Diffusion Search (SDS) as a truly dynamic optimization algorithm by 

using the multi-agent modelling and programming approach. In the proposed SDS 

algorithm, solution vectors, ie, agents can communicate with each other for 

determining search direction. They can decide to disappear and new agents can 

appear. Thus the population size is not fixed. In other words, the proposed algorithm 

has an inherent dynamic structure so it can be more easily adapted to dynamic 

optimization problems. The proposed algorithm is developed in JACK multi-agent 

development environment. Single machine scheduling problem is modelled and 

solved as a test case. 

 

Keywords: Stochastic diffusion search algorithm, multi-agent based modeling, 

single machine scheduling problem. 
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METASEZGİSEL ALGORİTMALARIN ÇOKLU ETMEN BENZETİM 

ORTAMINDA GERÇEKLEŞTİRİLMESİ 

 

ÖZ 

 

Türeve dayalı nümerik yöntemler zor optimizasyon problemlerinin çözülmesinde 

genellikle yetersiz kalmaktadır. Bu nedenle, bir çok araĢtırmacı çalıĢmalarını 

kompleks ve zor optimizasyon problemlerin çözümü için metasezgisel algoritmalar 

geliĢtirmeye adamıĢtır. AraĢtırmacılar genellikle metasezgisel algoritmalarında doğa 

olaylarını taklit etmeye çalıĢmaktadırlar. Birçok etkili metasezgisel algoritma 

geliĢtirilse de çok azı taklit ettikleri doğal olayın dinamiklerini gerçekten realize 

etmektedir. Ġnanıyoruz ki, etmen bazlı modelleme ortamı ilham alınan doğa olayının 

gerçeklenmesinde daha kullanıĢlı ve doğal bir yoldur. Etmenlerin sisteme giriĢ çıkıĢı, 

gruplaĢma gibi davranıĢları modelleme, maksatlı etmen iletiĢimleri gibi aktiviteler 

etmen tabanlı modelleme ve algoritma geliĢtirmenin kullanımıyla mümkün hale 

gelmektedir.   

 

Bu çalıĢmada, dinamik bir metasezgisel optimizasyon algoritması olan Stokastik 

Yayılım Arama Agoritmasının(SYA) çoklu etmen modelleme ortamında 

gerçeklenmesi realize edilmeye çalıĢılmıĢtır. Önerilen SYA algoritmasında çözüm 

vektörleri(etmenler) kendi aralarında arama yönünün belirlenmesi konusunda 

iletiĢime geçebilmekte, etmenler sistemden çıkmaya karar verebilmekte, yeni 

etmenler sisteme girebilmektedir. Bir diğer deyiĢle, önerilen algoritma doğal  bir 

dinamik yapıya sahip olduğundan, dinamik optimizasyon problemlerine kolayca 

adapte edilebilmektedir. Önerilen algoritma JACK çoklu-etmen modelleme 

ortamında geliĢtirilmiĢtir. Tek makine çizelgeleme problemi modellenmiĢ ve 

çözülmüĢtür.  

 

Anahtar kelimeler: Stokastik yayılım arama algoritması, çoklu-etmen tabanlı 

benzetim, tek makine çizelgeleme problemi 
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CHAPTER ONE 

INTRODUCTION 

 

Nowadays, combinatorial problems appear in many applications of human‟s life 

such as routing, packing, assignment, scheduling, cutting, transportation network 

design, protein alignment and other research areas of extreme economic, industrial 

and scientific importance (Sorensen and Glover,2013). Scientists use different 

methods to solve these combinatorial problems. We can categorize these methods 

into two groups namely, heuristic and exact methods. Exact algorithms are adequate 

for solving small size combinatorial problems and they guarantee optimal solution in 

a timely manner. On the other hand, if the problem size increases, run time of the 

algorithm also increases dramatically. In other words, exact algorithms can only 

solve small size instances practically. For this reason, researchers generally use 

heuristic algorithms for larger size instances. At that point, there is a trade of 

between reasonable run-time and optimality.  

 

Dynamic programming, branch-and-bound (B&B), Langrangian relaxation based 

methods, and linear, integer programming based methods (branch-and-cut, branch-

and-price, and branch-and-cut-and price) are some exact methods for combinatorial 

optimization problems (Laporte and Nobert, 1987).   

 

Local search mechanisms and independently developed solutions are called as 

metaheuristic algorithms (Sorensen and Glover,2013). Metaheuristic algorithms can 

be classified into two groups as single solution metaheuristics and population based 

metaheuristics. Greedy randomized adaptive search procedure (GRASP), simulated 

annealing (SA), variable neighborhood search (VNS) are some examples of single 

solution metaheuristics. On the other hand, ant colony optimization (ACO), 

evolutionary algorithms (EAs), scatter search (SS) are some of the popular instances 

of population based metaheuristics (Gendreau and Potvin, 2005). 

 

Many of the researchers try to mimic some natural phenomena in their 

mataheuristic algorithms which are independent from the group of metaheuristic 
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algorithm. For example, researchers imitate food-searching mechanism in ant colony 

optimization. Also gene cloning, crossover operations between genes are imitated 

through evolutionary algorithms. Moreover, events in the nature are dynamic and 

their states changes in time. In addition, living organisms interact with each other in 

many of the natural events. They communicate and share information about their 

thoughts and beliefs. Additionally, they try to solve their problems by sharing 

information about their states. 

 

 It is impossible to imitate natural phenomena and communication among the 

organisms via classical algorithm procedures. In order to represent phenomena and 

interaction between organisms, dynamic methods such as multi-agent based 

modeling environments should be used instead of procedural programming 

approaches.  

 

There exist many different definitions of an agent because of agent based systems 

is a very new area of research (Padgham and Winikoff, 2004). According to 

definition of Wooldridge and Jennings (1995), an agent is a computer system which 

is able act autonomously in some environment for reaching goals. The agents are 

used for meeting their aims. Agents have many capabilities such as being mobile, 

truthful and rational. They have also ability of learning (Woolridge, 2001). 

Moreover, agents are social; they can interact with agents and human-beings  for 

meeting their goals. They are also reactive; they are aware of changes in their 

environment and respond these changes in a timely fashion. In addition, they are 

proactive; they are able to display initiative behavior to meet their purposes 

(Bellifemine et al., 2007). 

 

There are some characteristics of agents that make them different from classical 

software approaches;  

 The first characteristic of an agent is being autonomous. By this 

characteristic, agents have the ability of making self-decisions. They are 

capable of taking actions in order to satisfy their desires. This 

characteristic differs agents from objects of object-oriented programming. 
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When we consider a system including many agents, system tends to be 

decentralized because of the agents‟ autonomous characteristic (Padgham 

and Winikoff, 2004). 

 

 The second characteristic of an agent is situatedness. According to this 

characteristic, agents adapted to challenging environments more easily. 

Through this characteristic, agents are suitable for dynamic, unpredictable 

and unreliable environments. 

 

 The third characteristic of an agent is being reactive. Agents are usually 

took place in dynamic environments where changes are occurred very 

quickly. Agents must give reactions to these rapid changes in its 

environment simultaneously. In other words, agents have to be reactive for 

responding these changes in a timely manner (Padgham and Winikoff, 

2004). 

 

 Fourth characteristic of an agent is being proactive. An agent should 

continue to seek its goal even if its plan fails. It has to be robust for 

tolerating failures easily. Therefore, they must be flexible for being robust. 

Moreover, an agent should not only give reactions to its environmental 

changes; but also show behavior by taking initiative. It should make 

alternative plans for different situations. 

 

 Lastly, an agent has to be social for communicating with other agents in its 

environment. In addition to send messages to other agents within the 

environment, an agent should engage all other social activities of human 

beings such as cooperation, coordination, negotiation etc. (Woolridge, 

2001). 

 

The selection of the programming environment where the imitation will be 

programmed is as important as choosing natural phenomena or human behavior that 

will be imitated. Programmers will obtain better results, when the structure of the 
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environment and natural phenomena fits. For instance, Stochastic Diffusion Search 

(SDS) algorithm fits well with multi-agent based environment with its distributed 

structure (Bishop, 1989).In SDS; programmers are able to mimic gold searching 

process of a group of miners (Bishop, 1989). They divide mountain in different hills 

and distribute each miners to these hills. Moreover, all of the miners show some 

human behaviors such as communicating, negotiating, and cooperating. In addition 

to these, different strategies such as passive-recruitment mode, active-recruitment 

mode, dual-recruitment mode, context-sensitive mechanism and context-free 

mechanism can easily be modeled through SDS (Myatt et al., 2006). Through all of 

these strategies, it is possible to see different types of human behavior like getting 

other ideas, self-reasoning, manipulating people etc. By all of these features, SDS 

and multi-agent based environments fit well for realizing metaheuristic algorithms in 

multi-agent based modeling environments. 

 

1.1 Aim of the Study 

 

This thesis is conducted to realize a metaheuristic algorithm in a multi-agent 

based modeling environment. SDS is selected for implementation. To the best of our 

knowledge, this will be the first study in the literature which SDS algorithm is 

realized in a multi-agent based environment. Moreover, we can say that realization of 

other metaheuristics in multi-agent environments is very rare. An agent based 

modeling/design environment will be more beneficial and natural way for a better 

realization of the miners‟ movements, communication, and gold seeking process in 

SDS algorithm. It is possible to model various behaviors easily such as, going to hill, 

turning back to saloon, leaving the system, group forming of agents, manipulating 

other agents‟ ideas etc. by making use of the power of agent based system modeling 

and algorithm development. Through realization of SDS algorithm, dynamic nature 

of a human behavior can be mimicked truthfully. In addition, with the help of agents‟ 

being proactive and reactive, searching for the best solution never ends. Moreover, 

the proposed algorithm can be easily adapted to the dynamic optimization problems 

due to its inherent dynamic structure. Hence, both of the dynamic and classic 

combinatorial optimization problems can be designated easily by realizing the SDS 
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algorithm in a multi-agent based environment. In addition, eclipse JAVA platform 

and JACK multi agent-based modeling environment can be connected and 

cooperated with each other for a possible implementation. Dynamic structure of 

JACK multi agent-based environment and the programming flexibility of eclipse 

JAVA platform can be combined and a hybrid way of implementation can be 

utilized. Finally, the proposed algorithm in this thesis is tested against single machine 

scheduling problems. According to computational experiments, results are very 

promising. Furthermore, our proposed system can be adapted for solving many other  

problems in the literature by the help of modular structure of the agent systems. 

 

1.2 Framework of the Study 

 

We can summarize the framework of the thesis as follow: 

 A specific multi-agent model is generated through JACK multi agent-based 

environment. 

 Procedural applications such as neighborhood mechanisms, crossover 

mechanisms, and system management are performed in eclipse JAVA 

platform. 

 

There are four different kinds of the agents in the proposed models. These agents 

can be defined as: 

1. Manager Agent 

2. Position Update Agent 

3. Trigger Agent 

4. Solution Agent 

 

Many plans and events are developed to connect these agents and model their 

interactions. Additionally, all agents are modeled for several different duties. 

Moreover, system is controlled and all of the agents and solution data, and problems 

instances are kept through eclipse JAVA platform.  
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The main steps of the SDS algorithm to model scenarios can be summarized as 

follows: 

1. Initializing system 

2. Updating miners positions  

3. Triggering miners to interact with each other 

4. Determining the agents‟ next move after communication with other agents 

5. Deciding the agents‟ action for  entering and leaving the system 

 

Developed model is tested on a combinatorial optimization problem which is 

known as single machine scheduling problem. The problem is solved for minimizing 

total tardiness. 

 

1.3 Outline of the Study 

 

The study contains six chapters. The following chapter includes concept of multi 

agent-based modeling environments. In that chapter, detailed information about the 

properties of multi-agent based modeling environments and JACK are given.  

 

Chapter three mainly focuses on SDS algorithm. In this chapter, detailed 

information about the natural phenomena of SDS algorithm is presented. In addition, 

chapter three includes some other information about the different strategies and 

specifications of agents‟ duties for each strategy. Moreover, procedural flow of the 

SDS algorithm is also given in this chapter.  

    

Chapter four focuses on the implementation of the proposed model and realization 

of SDS algorithm in a multi-agent based modeling environment. The first part of the 

chapter four describes agent specifications. The second part is constituted by 

describing plans and events of each agent. The third part of that chapter focuses on 

the connection between JACK and eclipse JAVA platform and operations that are 

held in eclipse JAVA platform. Flow chart of the proposed model is also explained 

and several model designs are illustrated in the last part of that chapter.  
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In chapter five, the developed model is tested on the minimizing total tardiness in 

a single machine scheduling problem. Detailed information about the chosen test 

problems are also presented in that chapter. Moreover, the reason behind the 

selection of this combinatorial optimization problem is explained in that chapter. 

Experimental results and comparative results their ranks in the literature are also 

depicted by the help of figures.  

 

Finally, in addition to summary of the thesis, the contribution of this thesis and 

future works are discussed in the conclusion chapter. 
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CHAPTER TWO 

MULTI-AGENT BASED SYSTEMS 

 

In recent years, all systems tend to be intelligent and people try to design 

intelligent system. Agent technology is one of the main approaches for developing 

intelligent systems. Multi-agent based systems are becoming more useful than the 

other approaches in terms of developing intelligent systems for solving complex 

problems. 

 

A multi-agent system consists of organized intelligent agents that work or 

compete for the same goal that is very difficult to by the other single software 

components. The most appropriate way of solving a problem whose domain is 

particularly complex, large or unpredictable is to develop a multi-agent based system 

(Sycara, 1998). 

 

There are many applications of multi-agent based systems in broad range of areas 

and disciplines. In economic sciences, Arthur et al. (1997) modeled agent behavior in 

stock markets. Axtell (2000) investigated transient states that are encountered along 

the way to equilibrium. These fields of interests affected other researchers in 

economic sciences and agent based computational systems spreaded among 

economists. Tesfatsion (2002) and Tesfatsion and Judd (2006) modeled agents 

situations in their researches for getting information about how the people make 

decisions in real studies. 

 

Moreover, many scientists utilized agent-based models to analyze existing and 

hypothetical markets. Charania et al. (2006) modeled agents to guess possible futures 

for a market in space tourism. In their research, agents represent each stakeholder in 

the space industry. Through this research, tourism companies can seek to maximize 

profits when they compete with other companies for sales. Lopez Sanchez et al. 

(2005) proposed a multi agent based simulation for investigating market dynamics. 

Kuhn et al. (2010) develop a model to determine market share of a consumer airline. 
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Testa et al. (2012) developed a model for predator-prey link among other marine 

mammals and transient killer whales. In addition, Menges et al. (2008) employed 

agent-based modeling approach for establishing email-based social networks. 

Moreover, Aleman et al. (2009) used agent systems for modeling pandemic disease 

accounting for individual behavior and demographics. Malleson (2010) applied 

agent-based models for crime analysis. In fact, a virtual urban environment populated 

with virtual burglar agents was developed.  

 

For better understanding on multi-agent based systems, it is vital to declare agents 

and their characteristics. Therefore, before the agent based dynamic optimization 

solution strategies detailed information about agents is given in this chapter. In 

addition, the proposed multi-agent based system coded and implemented in JACK
TM

 

agent software. Moreover, properties of JACK Intelligent Agents
TM

 software are also 

mentioned in this chapter. 

 

2.1 Agents 

 

 Despite of the several definitions for agents in the literature, researchers do not 

have concurrence of agent description. Wooldridge and Jennings (1995), defined the 

term agent as a computer system which has the ability of autonomous action in its 

environment to aim its pre-determined goals. According to the definition of Padgham 

and Winikoff (2004), an intelligent agent is a part of a computer program that has 

following properties. 

 

 Situated – reside in an environment 

 Autonomous – independent and cannot be controlled from outside 

 Reactive –reacts changes in its environment in a timely manner 

 Proactive – insistently chases aims 

 Flexible – has many ways of acquiring its aims 

 Robust – recoup its mistakes 

 Social – negotiate with the other agents 
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All of the mentioned characteristics above can be described by different terms in 

multi-agent based design environment. Designed and built system should have these 

characteristics. For instance, for being proactive, an agent should have aims. 

Therefore, scope of the aim is a very crucial point for designing and constructing 

proactive agents.  

 

The first property is defined by Padgham and Winikoff (2004) for an agent who is 

situated in an environment. While designing a multi-agent system, this property is 

associated with two terms as actions and percepts. According to Howden et al. 

(2001), interface among its environment and agent is called as percepts. Actions can 

be described as the events which are performed by the agents, for effecting its 

environment. In other words, percepts are signals that an agent receives from its 

environment and actions are agent‟s reaction to these percepts. Relationship between 

percepts and actions are illustrated as in the Figure 2.1 

 

 

Figure 2.1 Relationships between percept and actions (Padgham and Winikoff, 2004) 
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The second and the third properties are being proactive and reactive. The term of 

goal is implied through agent‟s proactiveness. According to definition of Padgham 

and Winikoff (2004), a goal is something that the agent is working on or towards to 

it. It is very important to balance agent‟s proactive and reactive behavior. Besides, an 

agent should give reactions to changes in its environment while seeking its goal. At 

that point, the event is another essential term. Padgham and Winikoff (2004) defined 

the event as an important case which the agent must react. Relationship between 

agents‟ goals and events is depicted in Figure 2.2. 

 

 

Figure 2.2 Relationships between goals and events (Padgham and Winikoff, 2004) 

The fourth and fifth properties are being flexible and robust. These two properties 

are related to the terms plan and beliefs. Winikoff and Padgham (2004) defined the 

belief as some view of the agent‟s knowledge related with its environment, itself and 

other agents. On the other hand, plan is a method of reaching an aim.  Goals can be 

achieved by acting different plans. An agent selects a plan to achieve a goal. Then, 

agent tries to apply the selected plan. If the plan fails, the agent can implement 

another plan. Through this mechanism, agents gain the characteristic of flexibility, 
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since they may have variety of plans to achieve a goal. Moreover, they also gain the 

characteristic of robustness; goals are still achievable even failures of a plan. 

Relationship between plans and beliefs is demonstrated as in Figure 2.3.  

 

 

Figure 2.3 Relationships between plans and beliefs (Padgham and Winikoff, 2004) 

     The last but the most important characteristic of an agent is being social. By this 

characteristic, agents are able to interact with other agents. Agents can send 

messages to other agents via pre-determined protocols. Throughout this messaging 

mechanism, agents can work for the same goal.  

      

     Main concepts of an agent design procedure can be summarized as follows: 

 Percepts – Related knowledge about the environment 

 Events – Related knowledge about a change in the situation 

 Goals – Aims to be  achieved 

 Beliefs – Knowledge related to the environment (unchanged) 

 Plans – Expressed as accomplishing certain future world states. 

 Actions – Ways of operations on the environment by agents 
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 Messages – Way of agents to negotiate 

 Protocols – Descriptions of interaction rules 

 

2.2 An Overview of JACK Intelligent Agents
TM

 

 

JACK Intelligent Agents
TM

 is evolved by Agent Oriented Software Pty. Ltd. 

(AOS) for multi-agent system modeling. Developers integrated JACK Intelligent 

Agents
TM 

  with JAVA. Therefore, JAVA codes can be easily embedded into any 

place of JACK
TM 

Agent Language (JAL). Throughout the embedding process, the 

developers can gain the advantage of big flexibility.  All of the JACK
TM 

 source 

codes are compiled into regular JAVA code before their execution. 

 

JACK Intelligent Agents
TM

 is one of the major multi agent-based development 

environments for building and deploying autonomous systems. Developers have the 

following design aims for JACK Intelligent Agents
TM

 (Howden et al., 2001); 

 To ensure a robust, stable and light-weight product to programmers 

 To meet many of practical application requirements 

 Technology transfer between the theory and industrial applications 

 To provide more applied studies 

 

Moreover, JACK Intelligent Agents
TM

 is stand on the BDI paradigm 

(Beliefs/Desires/Intensions). It provides a mature implementation environment of the 

BDI paradigm to the developers. Throughout this implementation environment, 

developers have the chance of designing the model graphically. A general view of 

JACK Intelligent Agents
TM

 is demonstrated by the following Figure 2.4.  
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Figure 2.4 A general view of JACK Intelligent AgentsTM 

In addition, JACK Intelligent Agents
TM

 incorporates three main extensions to 

JAVA. These extensions can be expressed as follows (Howden et al., 2001): 

 To define agent‟s basic elements, some keywords (such as agent, plan and 

event); 

 A group of statements to define attributes and other characteristics of the 

system elements  

 A group of statements for the declaration of non-dynamic links  

 A group of statements for changing the state of agents. 

  

As mentioned previously the syntactic additions are converted into only JAVA 

statements and classes by making use of second extension to JAVA compiler. Then, 

it can be loaded with and named by another JAVA code. Moreover, the code of plans 

are transformed by the compiler for getting proper semantics of the BDI architecture. 

 

Lastly, a group of classes which are named as kernel satisfies the needed run-time 

supporting the produced code. This also contains: 
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 Automatic management of concurrency between the tasks which are  

pursued in parallel; 

 Set agent behavior related to events, failure of actions and tasks and so 

on; 

 Native lightweight and highly performed negotiations infrastructure for 

multi-agent applications. 

 

BDI paradigm is extended for dealing with inter-agent coordination by JACK 

Intelligent Agents
TM

. In addition, new tools and developments that guide recent 

software engineering applications are also included. JACK Intelligent Agents
TM

 „s 

key constructs are tabulated in Table 2.1.  

 

Table 2.1 JACK Intelligent Agents
TM

 „s key constructs (Howden et al., 2001) 

Programming Construct Description 

Event Events are the main factor of motivation for 

agents. Without events, the agents lose the 

ability of acting. Events are demonstrated 

after an internal stimulus. Events trigger 

operations for computational operations. 

Plan Plans are small computational operations that 

are the ways of agents‟ reactions to the 

different events. JACK calculates all of the 

possible alternative and applicable plan 

results and chooses one of them. Plans have a 

body that declared the stages to be computed 

in related to the event. Agent have different 

plans for reaching its aims. 

Beliefset Beliefsets are used to show the agent‟s 

indicative knowledge about its environment 

and itself. 

Agent Agents are computational pieces that has 

unique characteristic and states 

independently.  
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JACK Intelligent Agents
TM

 has several tool and components. JACK Intelligent 

Agents
TM

 is composed of the following modules (Howden et al., 2001): 

 

 JACK Runtime Environment: The kernel that contains a communication 

layer with a simple agent calling service assists the execution of JACK.  

 JACK Compiler: It is a tool that compiles codes into JAVA codes and reach 

JAVA compiler for producing executable programs. 

 BDI Agent Model: In addition to the language syntax and the runtime kernel, 

BDI agent model adds assistance for BDI reasoning.  

 SimpleTeam Model: This gives assistance for team-based reasoning, 

through additions of kernel and extensions of languages.  

 Agent Development Environment: It  is a Graphical User Interface (GUI)  

development environment for seeing and making changes on JACK 

applications.  

 Agent Debugging Environment: It includes an agent interaction display for 

seeing messages among agents through the changes to the kernel by 

displaying internal execution states.  

 JACOB: It is an effective object modeling toolkit to assist transportation of 

objects and application interactions in C++ and JAVA compilers. It provides 

flow of the objects in a user readable textual format, a fast binary format in 

XML. 

 

2.3 Agent Based Solution Strategies for Dynamic Optimization Problems  

 

There exist a lot of studies that is based on agent-based modeling approaches in 

the literature for dynamic optimization. It is not possible to cover all of these papers 

in this thesis, but some relevant papers some of them are also covered by Baykasoğlu 

and DurmuĢoğlu (2014) are summarized in this section. 

   

Team Teams are used to contain coordination views 

of different behavior of agents. 

Table 2.1 JACK Intelligent Agents
TM

 „s key constructs (Howden et al., 2001)(continue) 
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Pelta et al. (2009 a,b) proposed a multi-agent decentralized cooperative strategy 

(MAD-COS) for solving dynamic problems. In their study, cooperative agents try to 

find solutions by moving over a grid. Different communication mechanisms and 

methods for preserving explicit diversity are investigated and tested via moving 

peaks as a benchmark problem. In their research, they tried to find how different 

communication strategies affect the search space. Moreover, they proved that their 

proposed agent model is sufficient for the test problems by applying diversity 

strategies. 

 

Wang and Liu (2010) solved dynamic travelling salesman problem by using an 

agent-based evolutionary search algorithm (AES). In their research, an agent refers 

for an alternative point in the search space. Agents are positioned in a lattice-like 

environment. They combined perturbation learning strategy and local updating 

procedure. They tested AES on dynamic version of KroA100TSP. The results show 

that AES has very outstanding findings on the tested problems. It surpasses standard 

genetic algorithm (SGA) under the performance measures of convergence duration 

and recording optimum points in dynamic environments. 

 

Billiau and Ghose (2008) presented a novel approach for solving distributed 

constrained optimization problems (DCOPs). They suggested an algorithm named as 

Support Based Distributed Optimization (SBDO). SBDO differs from other DCOP 

algorithms by its using agent goals instead of weighted or soft constraints. They 

make a comparison on success of their proposed algorithm with asynchronous 

distributed optimization (ADOPT) and distributed pseudo tree optimization 

procedure (DPOP) with 120 meeting scheduling test problem. The results revealed 

that their proposed algorithm outperformed ADOPT and showed relatively faster 

convergence than DPOP. 

 

Mahr et al. (2010) made a comparison about variety of  planning methods, such as 

on-line optimization method and agent based solution approach for drayage 

operations in an uncertain environment. For comparing performance of different 

planning methods they dealt with dynamic vehicle routing problem associated with 
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two kinds of uncertainty, i.e.,  service and arrival time. Results showed that agents‟ 

flexibility brought them additional benefits.  

 

Voos (2009) studied on dynamic resource allocation problems. He proposed a 

multi agent based strategy that divides problem into single optimization problems. In 

that research, agents took the duty of local optimizing and canalized self-findings to 

a total proper solution. Test experimental results indicated that the proposed multi 

agent based strategy are applicable to deal with dynamic resource allocation 

problems. 

 

Li and Li (2009) presented a method which was called as intercommunication job-

sharing hybridization to deal with hard problems. The proposed method decomposed 

complex optimization problems into smaller sub-problems and through the 

cooperation and intercommunication of agents, these problems were solved as a 

piece of the complex problem. First, they designed a pre-model that named as Agent 

International, to improve decision-making process of international marketing. 

Preliminary results were promising. 

 

Tang et al. (2004) proposed a dynamic optimization system.  The presented model 

was used for solving automobile load makeup planning problem. System was 

composed of three kinds of agents. The first one is load agent, the second one is yard 

agents and the third one the truck scheduled agent. These three agents represented by 

different actors in the system. For example, yard agents represented the transferring 

yard and the truck-scheduled agent referred to the shipping firm. Lastly, load agent 

represented the truck during the planning state. They implemented three heuristic 

namely empirical method (EM), minimum spanning tree (MST) and vehicle routing 

optimization (VRO). They also combined MST and dynamic optimization system 

and evolved a new method called as MST Dyn. For testing the success of the 

developed algorithm, all algorithms have run on the same scenario for 120 days. The 

results displayed that EM produced the worst result and MST Dyn generated the 

most proper results. 
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Berro and Duthen (2001) proposed an approach for optimization in dynamic 

environments. In that approach, agents seek good solutions and give reactions 

changes in the state of the problem in a timely manner. The proposed approach tested 

on multimodal and multi-objective functions. The experimental findings were 

compared with Genetic algorithm based methods. The experimental results revealed 

that proposed method were competitive in terms of  time and accuracy. 

 

Jiang and Han (2008) proposed a simulated annealing (SA) based algorithm with 

multiple agents for solving real-time decision-making problem. Since there were no 

test instances before, a random generator was used for generating test problems. The 

success of the presented method was compared with variable elimination (VE) 

algorithm in terms of scalability and relative payoff. Results showed that SA was a 

more proper method to select actions selection in complex cooperative and 

autonomous systems.  

 

Zhou et al. (2008) presented a method for simulating a real time job shop by 

combining multi agent systems (MAS) and discrete event systems. In the proposed 

method, agents are referred elements of a job shop. All agents had different duties 

and followed up these duties. The proposed system tested in terms of some 

performance criteria machine utilization, average and maximum number in queue, 

average time in system, average daily throughput and total time in queues, and 

maximal size of work in process. The results illustrated that the proposed system had 

the benefits of the its distributed structure. 

 

Garcia et al. (2010) proposed a new centralized cooperative strategy based on 

taboo search to solve DOPs. In their study, there were many solvers for 

implementing different resolution algorithms for the examined problem. There was 

also a coordinator which was responsible for processing information. There were 

three main steps in the proposed strategy. First, every solver sent its information 

related to the performance to the coordinator, then coordinator processed this 

information and finally directives were sent to the solvers by the coordinator. 

Moving peaks benchmark problem and three mostly applied multimodal real test 
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functions were used for testing the performance of proposed model. Performance of 

the proposed strategy evaluated according to offline error. The presented study 

outperformed other methods.  

 

  Lepagnot et al. (2010) proposed a novel approach based on agent‟s exploration 

of search space for multi agent dynamic optimization (MADO). There were three 

main modules namely, agent manager, the coordinator, and memory module. The 

Number of agents changed in time but not exceed the predefined value. To determine 

the success of the considered model, moving peaks benchmark problem was chosen 

and offline error with standard deviation was chosen as success criteria. The results 

showed that MADO was a usable model for dynamic optimization problems. 

 

Yan et al. (2010) presented an agent based evolutionary search (AES) approach. 

Agents represented the potential solutions. The researchers applied two diversity 

acquiring strategies namely random immigrants and adaptive dual mapping, for 

improving the success of AES for DOPs. Dynamic 0-1 optimization problems that 

were produced by XOR generator were selected as test problems. The researchers 

generated variety of test instances. The solution environment was integrally altered 

in each pre-specified iteration. Success of the AES was compared with SGA, primal 

dual GA, and the GA with random immigrant according to the best mean generation 

fitness. Obtained results revealed that AES had better performance than the other 

approaches. The researchers also stated that dynamic characteristic of the 

environment can influence the success of the presented method. 

 

  Hanna and Cagan (2009) proposed a new method called as evolutionary multi-

agent system (EMAS) for adaptive optimization. Agents represented ways of 

generating solutions. Solution generation strategies were recombined, altered, and 

removed through genetic operations of genetic and evolutionary methods. EMAS 

differs from other approaches by its property of cooperation dimension. Cooperation 

was satisfied by employing all of the strategies in an autonomous agent and 

communication of agents. Travelling salesman problem was used for testing the 

success of the considered method. The experimental findings indicated that EMAS 
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had better solutions than other approaches in terms of closeness to the optimal 

solution. The researchers stated that the reason behind the EMAS‟ better solutions 

was its ability of evolving the best team of agents dynamically. Moreover, they also 

indicated that utilizing EMAS in the presented way was leaded to lower duration 

while acquiring high qualified results. 

 

Xian and Lee (2008) presented an agent-based dynamic scheduling method, 

which   depends on ant colony intelligence (ACI) through local agent coordination. 

The aim of proposed research was to develop a dynamic manufacturing system by 

MAS. Agents were modeled via knowledge of their aims and functions. Through 

MAS, parallel execution of commands was provided. Agents also negotiated for 

enhancing system performance. Foraging and division of labor of an ant colony 

inspired the agent coordination mechanism. There were mainly five types of agents 

namely order agents, job agents, shop floor agents, work center agents, and machine 

agents. They stated that, their study differs from other researches in terms of a 

making realistic assumptions and producing more general manufacturing. For 

solving task scheduling problems and task allocation problems in a separate way, 

ACI was combined job and machine agents together. Method based on ACI 

(MAS+ACI) and FIFO dispatching rule (MAS+FIFO) were compared according to 

success criteria namely, average flow time, average tardiness, throughput, buffer 

size, and machine utilization. Results revealed that MAS+ACI perform well than 

MAS+FIFO. 

 

Wang and Usher (2002) proposed an agent-based approach that uses contract-net 

protocol for negotiation of agents. Machine cell agents and job agents were used 

within a hierarchical control environment. They tested the presented model on a job 

shop scheduling problem with variety of simulation levels in terms of mean flow and 

queue time. The experiments showed that when the system was light, collaboration 

element did not have significant influence on the performance. Hence, in the heavily 

loaded system, collaborative factor provide dramatic decreases in the mean flow 

time. Moreover, when they evaluated average queue time when the system was 

heavily loaded, it is stated that negotiation mechanism prevented the high WIP levels 
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of the bottleneck machine. According to experimental findings, it is stated that 

collaboration element had positive effect on the success of the contract net-based 

negotiation scheme for agent-based scheduling problems.  

 

Wang et al. (2008) presented a multi-agent based method for scheduling problems 

in dynamic environments. The considered approach is cooperated with filtered beam 

search (FBS). In order to provide dynamism in the system, new jobs arrivals were 

generated. The system consisted of two kinds of agents namely system optimal agent 

(SOA) and cell coordinated agents (CCAs) and five different modules called as 

cooperation and coordination, human interface, execution and monitoring, human 

interface, and FBS for the decision-making process. The proposed approach was 

compared with two different dispatching rules according to the weighted quadratic 

tardiness values. The presented method outperformed dispatching rules. According to 

results, researchers stated that the presented system was applicable for real life 

problems.  

 

Sghir et al. (2015) presented an agent based optimization method for solving 

quadratic assignment problem. Their proposed model includes different types of 

cooperated agents namely “crossover agent”, “local search agents” and “perturbation 

agents”. In their algorithm, they evolved a system which based on reinforcement 

learning. According to the test results, the presented model performed well on the 

tested benchmark instances in terms of solution quality. 

 

Barenji et al. (2016) developed a multi-agent based dynamic scheduling system 

for manufacturing flow lines. Their proposed system is evolved for rescheduling 

manufacturing lines by considering dynamic customer demands and internal 

disturbances. The model is applicable for dynamic and static manufacturing lines. 

According to the simulation results, the presented model could increase the 

production rate and uptime productivity of flexible flow line manufacturing systems. 

 

Erol et al. (2012) proposed a multi-agent based model for simultaneous and 

dynamic scheduling of machines and AGVs in manufacturing systems. In their study, 
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AGVs and machines are scheduled simultaneously first time in the literature. 

Moreover, the proposed model is tested against dispatching rules. The results 

indicated that the proposed MAS model outperformed all of the classical dispatching 

rules. 

 

Baykasoğlu and Kaplanoğlu (2011) presented a multi-agent based system for load 

consolidation. In their proposed model, agents are responsible for load consolidation 

decisions for the less-than-truckload orders. Negotiation mechanism is used for 

assigning the less-than-truckload orders to the trucks. In addition, the developed 

model includes load acceptance/rejection, load assignment, reassignment, routing 

and scheduling decisions.  

 

Baykasoğlu et al. (2011) introduced a multi-agent based model for load 

consolidation problems of third-party logistic companies. Their proposed system 

composed of three different types of agents namely “order agent”, “truck agent” and 

“regional load consolidation agent”. They modeled the system against different 

scenarios. Agents make variety of consolidation decisions in order to meet customer 

demands in these scenarios.  

 

Kaplanoğlu et al. (2015) proposed a multi-agent based scheduling approach that 

considers AGV breakdowns for AGVs and machines within a manufacturing system. 

The presented model was developed for solving problems in a manufacturing system 

without stopping the manufacturing process. In their model, real-time problems were 

solved throughout bidding and negotiating mechanisms between agents.  

 

ġahin et al. (2015) proposed a multi-agent based system for simultaneously 

scheduling of flexible machine groups and material handling system working under a 

dynamic manufacturing environment. They designed the presented model by 

Prometheus methodology and programmed it in JACK. In their model, they used 

negotiation mechanism for problem solving. Each agent in the system had the ability 
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of negotiating. The proposed model tested on dynamic and static environments. The 

results indicated that proposed model is effective on both environments. 

 

Baykasoğlu and Görkemli (2015) presented an agent-based dynamic part family 

formation for cellular manufacturing applications. In their study, they evolved a 

novel agent-based clustering algorithm that deals with dynamic demand changes. 

Their presented model composed of three cooperated agents namely “part”, 

“manager” and “part family”. Since there were no data for dynamic benchmark data 

for part family problems in the literature, they tested their proposed algorithm on 

static problems. Despite the proposed model was not an optimization algorithm, the 

results showed that the algorithm has promising results. 

 

Baykasoğlu and Görkemli (2016) developed a new dynamic virtual manufacturing 

approach through agent-based modeling. The presented method could able to carry 

out part family formation, virtual cell formation and scheduling simultaneously. The 

experimental results indicated that the proposed approach is able to manage dynamic 

part demand arrivals besides providing promising solutions. 
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CHAPTER THREE 

STOCHASTIC DIFFUSION SEARCH (SDS) ALGORITHM 

 

In this chapter, detailed information related to SDS algorithm is presented. Firstly, 

origins of SDS algorithm are given. Then, the natural phenomenon which this 

metaheuristic algorithm inspires is mentioned. In addition, this chapter includes 

information about different strategies and specifications of agents‟ duties for each 

strategy of SDS algorithm. Moreover, procedural flow of the SDS algorithm is also 

displayed in this chapter. 

 

3.1 Origins of Stochastic Diffusion Algorithm 

 

Origins of SDS depend on two methods for invariant pattern recognition, pattern 

identification within a larger data structure. The first method is a sequential 

algorithm namely Template Matching and the second one is a connectionist model 

called Hinton Mapping. SDS was introduced in and subsequently applied to a variety 

of real-world problems: locating eyes in images of human faces (Bishop et al, 1992); 

lip tracking in video films (Grech-Cini, 1995); self-localization of an autonomous 

wheelchair (Beattie and Bishop, 1998) and site selection for wireless networks 

(Hurley and Whitakar, 2002) . Furthermore, a neural network model of SDS using 

Spiking Neurons has been proposed (Nasuta et al, 1999).  

 

3.1.1 Template Matching 

 

Template Matching is most widely used in the context of 2D image matching. A 

template image is available and needs to be identified within a larger input image. 

The correlation among the transformed template and the corresponding region of the 

input image is computed. The solution is specified with the transformation which 

yields the highest correlation. 
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3.1.2 Hinton Mapping 

    

A Hinton Mapping network contains two sets of detectors. These are canonical and 

retinocentric, respectively. In these methods, retinocentric feature patterns are 

mapped into canonical feature patterns.  

 

3.2 Stochastic Diffusion Search 

 

Stochastic Diffusion Search algorithm is first proposed in 1989 and can be seen as 

the member of swarm intelligence algorithms (Bishop, 1989). Opposed to other 

nature-inspired algorithms, it has a powerful mathematical structure defining its 

behavior and convergence. Moreover, it is a multi-agent optimization and global 

search algorithm based on some iterative actions among the agents. Each agent has a 

hypothesis about a feasible solution and tests its hypothesis individually. Successful 

agents implement this hypothesis testing procedure repeatedly while canalizing the 

unsuccessful agents by communicating directly. Throughout this mechanism, fast 

convergence of agents to the valuable solutions in the solution space can be ensured.  

 

3.2.1 Mining Game 

 

In order to simplify the explanation of SDS algorithm, Al-Rifaie and Bishop 

(2010) introduced a metaphor which is called “Mining Game” (Al-Rifaie and 

Bishop, 2010). A group of miners desire to obtain the information for finding gold on 

the hills of a mountain range but they do not have knowledge about its distribution. 

They divide the mountain into discrete hills and each hill contains different amount 

of mine. Miners try to dig the best seam that has the maximum amount of gold. At 

hand, they do not know the best seam. For solving this problem they apply SDS. The 

steps of SDS procedure can be shown as in Table 3.1.  
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Table 3.1 The steps of SDS procedure (Al-Rifaie and Bishop, 2010) 

 In the beginning, all miners are allocated a hill to mine randomly. 

 In each day every miner is allocated to selected seam on his hill to mine randomly. 

  At the end of each day, the probability of a miner‟s happiness is related with the amount of 

gold he finds in that day. 

 At the end of each day, all miners get together and unhappy miners select one of the other 

miners randomly to negotiate. If the negotiated miner is happy, he shares the information 

of hill that he dig. On the other hand, if the selected miner is unhappy, miner does not share 

information to other miner and the original miner selects randomly a hill for the following 

day. 

 

3.3 Stochastic Diffusion Search Architecture  

 

SDS algorithm includes three stages. Initial stage is initialization phase. In this 

phase, all of the agents get their first solutions. After this phase, iterative steps will 

begin. There are two new phases in these iterative steps. One of them is test phase 

and the other one is diffusion phase. In the test phase, agents are evaluated through 

their fitness function values. According to their fitness values, their states are 

determined (active or passive). After the test phase, diffusion phase will start. In 

diffusion phase, agents are recruited for matching other agents for communication. 

Throughout the different recruitment strategies, agents diffuse their solutions to other 

agents. The basic SDS architecture is demonstrated in Table 3.2. 

 

Table 3.2 The basic SDS architecture 

Initialize (Agents); 

Repeat 

Test (Agents); 

Diffuse (Agents); 

Until (Terminating Criteria) 
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3.4 Recruitment Strategies in Stochastic Diffusion Search 

 

Different recruitment strategies can be applied in diffusion stage of SDS 

algorithm (Myatt et al., 2006).  An agent can be in the form of two states. The first 

state as named as active state, If agent achieve success in the test stage, it will be in 

the form of active state. On the other hand, if agent fails in the test stage, it will be 

the form of inactive. It is engaged if it is communicated with an agent. Five different 

recruitment strategies namely “passive recruitment mode”, “active recruitment 

mode”, “dual recruitment mode”, “context sensitive mechanism”, “context free 

mechanism” are applicable in diffusion phase (Myatt et al., 2006). 

3.4.1 Passive recruitment mode 

 

The basic SDS algorithm (Bishop,1989) uses passive recruitment mode. In this 

mode, if the agent is inactive, other agent is randomly chosen and if randomly chosen 

agent is active, passive agent get other agent‟s hypothesis and changes its state as 

active. Besides, if the chosen agent is passive, the agent produces new hypothesis 

(Myatt et al., 2006) 

 

Table 3.3 Passive recruitment mode 

For agent = 1 to No_of_agents  

            If ( agent.activity()==passive )  

                 random_agent = choose a random agent()  

                    If ( random_agent.activity()==active )  

                    agent.setHypothesis( random_agent.getHypothesis() )  

                    Else 

                    agent.setHypothesis( randomHypothesis() )  

                    End If/Else  

            End If  

End For 
 

3.4.2 Active recruitment mode 

In active recruitment mode, active agents are responsible for negotiation. They are 

on duty in diffusion phase. An active agent randomly chooses an agent if the chosen 

agent is inactive and unengaged with other active agent, then there will be 

information flow through active agent to inactive one and inactive agent is flagged as 
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engaged. All active agents repeat the same process. If there is still unengaged 

inactive agent, these agents will produce new hypothesis (Myatt et al., 2006). 

 

Table 3.4 Active recruitment mode 

For agent = 1 to No_of_agents  

 If ( agent.activity()==active )  

  random_agent = choose a random agent()  

   If (random_agent.activity()==passive && random_agent.getEngaged()==false)  

                   random_agent.setHypothesis(agent.getHypothesis())  

                   random_agent.setEngaged(true) 

    End If 

  End If  

End For 

 

3.4.3 Dual recruitment mode 

 

In dual recruitment mode, both active and passive agents choose another agent 

randomly. If the chosen agent is inactive and unengaged, the hypothesis of active 

agent is passed through inactive one. Besides, if the agent is not active, it also 

chooses other agent randomly, if the chosen agent is active, agents will negotiate and 

active agent shares its knowledge with the inactive agent and inactive agent is 

flagged as engaged. If there is still unengaged and inactive agent, these agents choose 

randomly new hypothesis (Myatt et al., 2006). 

 

Table 3.5 Dual recruitment mode 

For agent = 1 to No_of_agents  

  If ( agent.activity()==active )  

    random_agent = choose a random agent()  

    If(random_agent.activity()==passive && random_agent.getEngaged()==false)  

                   random_agent.setHypothesis(agent.getHypothesis())  

                   random_agent.setEngaged(true) 

 

        End If 

Else 

        random_agent= choose a random agent() 

 

           If (random_agent==active && agent.getEngaged()==false) 

                  

               agent.setHypothesis(random_agent.getHypothesis()) 

 

               agent.setEngaged(true) 
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           End If 

 

 End If/Else 

 

End For 

 

For agent=1 to No_of_agents 

 

  If (agent.activity==passive &&  agent.getEngaged()==false) 

 

      agent.setHypothesis(randomHypothesis) 

 

  End If 

 

End For 

 

3.4.4 Context Sensitive Mechanism 

 

In active recruitment mode, robustness and greediness of the algorithm will 

decrease. Fortunately, in dual recruitment mode, these two attributes increases. 

Hence, greediness of the dual recruitment mode decreases the robustness of the 

algorithm. In order to prevent this reduction, context sensitive mechanism can be 

useful. In other words, context sensitive mechanism provides the global search 

exploration. In this mechanism, if an active agent chooses an agent randomly. If the 

chosen agent is also active and has the same hypothesis with the active agent, this 

agent changes its state to inactive and chooses another hypothesis randomly (Myatt 

et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5 Dual recruitment mode (continue) 
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Table 3.6 Context sensitive mechanism 

For agent = 1 to No_of_agents  
 

  If ( agent.activity() )  
 

   random_agent = choose a random agent ()  
 

       If (random_agent.activity()==active 
 

           If (agent.getHypothesis()==random_agent.getHypothesis()) 
  
               agent.setActivity ( false )  
 

               agent.setHypothesis ( randomHypothesis() )  
 

           End If  

 

       End If 

 

  End If 

 

End For 

 

3.4.5 Context Free Mechanism 

 

The context free mechanism has almost the same structure with the context 

sensitive mechanism. Differently from the context sensitive mechanism, if the 

chosen agent is active; choosing agent changes its state to inactive and chooses 

another hypothesis randomly regardless of selected agent‟s hypothesis (Myatt et al., 

2006). 

 

Table 3.7 Context free mechanism 

For agent = 1 to No_of_agents  

If ( agent.activity() )  

   random_agent = choose a random agent ()  

       If (random_agent.activity()==active 

               agent.setActivity ( false )  

               agent.setHypothesis ( randomHypothesis() )  

       End If 

  End If 

End For 
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CHAPTER FOUR 

REALIZING STOCHASTIC DIFFUSION SEARCH ALGORITHM IN JACK 

MULTI-AGENT ENVIRONMENT 

 

In this chapter, the design of the proposed multi-agent based SDS algorithm is 

performed. This chapter of the thesis explains agent types, their interactions, plans, 

events and how these components of the multi agent systems are implemented into 

JACK platform. 

 

4.1 Agent Types and Agent Specifications 

 

The proposed system is composed of four main types of agents namely “Manager 

Agent”, “Position Update Agent”, “Trigger Agent” and “Solution Agent”. Each of 

the agent types has special duties and is appointed for different plans and events.  

 

4.1.1 Manager Agent 

 

Manager agent is responsible for initializing the system, keeping all of the 

solution agent data and displaying solution agents‟ solutions. Manager agent‟s 

descriptors are summarized in Table 4.1.  

 

Table 4.1 Manager agent‟s descriptors 

Name: Manager agent 

Description: Initializes the simulation process, keeps all the solution agent data. 

Lifetime: Initialized when a run command reaches to the system from JAVA. 

Demised when simulation finishes. 

Initialization: Obtains the run command from JAVA. 

Demise: Finishes all of the simulation process. 

Functionalities included: System initialization functionality, keeping data 

functionality. 

Uses data: Solution agent data 
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Produces data: Solution agents‟ solutions report data 

Goals: Initialize system, display results of the simulation.  

Percepts responded to: Arrival of a new run command to the system. 

Actions: Change in the persistent database of solution agents.  

Protocols and interactions:  Start request with solution agents. 

 

The simulation process will begin with the manager agent‟s start request to the 

solution agents. This method is illustrated in Figure 4.1. 

 

public agent ManagerAgent extends Agent { 

    #posts event StartRequest startRequestET; 

    #handles event StartRequest; 

    #sends event Start ev; 

    #posts event DisplayRequest displayRequestET; 

    #handles event DisplayRequest; 

    #uses plan SendStartRequest; 

    #uses plan Display; 

 

    public ManagerAgent(String name) 

    { 

        super(name); 

    } 

 

 

    public void submitStartRequest(){ 

            String solutionAgentName=null; 

             

            for(int i=0;i<Main.vector.size();i++){ 

                 

                solutionAgentName=Main.returnSolutionAgents().get(i).toString(); 

                postEvent(startRequestET.request(solutionAgentName,1)); 

                 

        } 

        postEvent(displayRequestET.request()); 

    } 

 

} 

Figure 4.1 Manager agent start request 

 

Table 4.1 Manager agent‟s descriptors (continue) 
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4.1.2 Position Update Agent 

 

Position update agent is responsible for determining and changing solution agents‟ 

positions. A solution agent may take place in saloon where it is ready to negotiate 

and may be in hill for searching new solutions. Position update agent calls each 

solution agent to the saloon, in order to negotiate with the other solution agents. It 

also sends match agents command to the trigger agent. Its descriptors are 

summarized in Table 4.2 and its update request method is depicted in Figure 4.2. 

 

Table 4.2 Position update agent descriptors 

Name: Position update agent 

Description: Changes solution agents‟ states. 

Lifetime: Initialized when a run command reaches to the system from JAVA. Demised 

when simulation finishes. 

Initialization: Obtains run command from JAVA. 

Demise: Finishes all the simulation process. 

Functionalities included: Changing solution agents‟ states functionality. 

Uses data: Solution agent name data 

Produces data: Solution agents‟ state data 

Goals:  Call solution agents back to the saloon.  

Percepts responded to: Arrival of a new run command to the system. 

Actions: Change states of solution agents.  

Protocols and interactions: Update  with solution agents. 

 

public agent PositionUpdateAgent extends Agent { 

    #posts event UpdateRequest updateRequestET; 

    #sends event Update ev; 

    #handles event UpdateRequest; 

    #uses plan SendUpdateRequest; 

    public PositionUpdateAgent(String name) 

    { 

        super(name); 

    } 

    public void submitUpdateRequest() 

              { 

                  postEvent(updateRequestET.request()); 

              } 

} 

Figure 4.2 Position update agent‟s update request 
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4.1.3 Trigger Agent 

 

Trigger agent is responsible for matching solution agents for communicating and 

triggering solution agents so as to negotiate their solutions during the communication 

period. Trigger agent selects a solution agent, then, match it with another solution 

agent that is not in communication at that moment. Its descriptors are summarized in 

Table 4.3 and its definition on JACK is depicted in Figure 4.3. 

 

Table 4.3 Trigger agent descriptors 

Name: Trigger agent 

Description: Matches solution agents. 

Lifetime: Initialized when a run command reaches to the system from JAVA. 

Demised when simulation finishes. 

Initialization: Obtains run command from JAVA. 

Demise: Finishes all the simulation process. 

Functionalities included: Matching solution agents functionality. 

Uses data: Solution agent name data, solution agent negotiation lock data. 

Produces data: Matched pairs of solution agents data. 

Goals:  Match solution agents.  

Percepts responded to: Go to saloon and negotiate plan. 

Actions: Match solution agents.  

Protocols and interactions:  Trigger with solution agents. 

 

public agent TriggerAgent extends Agent { 

    #handles event TriggerEvent; 

    #sends event SendPositionUpdateEvent ev; 

    #uses plan TriggerPlan; 

 

    public TriggerAgent(String name) 

    { 

        super(name); 

    } 

 

} 

Figure 4.3 Trigger agent 
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4.1.4 Solution Agent 

 

Solution agents are main actors of the simulation process. Each solution agent 

represents a feasible solution in the system. These solution agents try to find optimal 

solution of the given problem through negotiating with each other and searching the 

solution area by themselves. Solution agents desire to find a negotiable solution 

agent (solution agent that is not making a conversation at that moment) during 

negotiating process. After negotiating process, solution agents either do crossover (it 

means that the solution agent communicate with an agent which has a better solution) 

or do local search (it means that the agent could not find an agent which has a better 

solution). Its descriptors are summarized in Table 4.4 and its definition on JACK  is 

depicted in Figure 4.4. 

 

Table 4.4 Solution agent descriptors 

Name: Solution agent 

Description: Represents a single solution of the given problem. 

Lifetime: Initialized when start request reaches to it from manager agent. Demised 

when simulation finishes. 

Initialization: Start request command from manager agent. 

Demise: Finishes all the simulation process. 

Functionalities included: Searching solution area functionality, negotiating 

functionality. 

Uses data: Self solution data, fitness and solution data of its pair. 

Produces data: New solution of the given problem. 

Goals:  Finding optimal solution of the given problem.  

Percepts responded to: Initialize agents plan, do crossover plan, negotiate with 

others plan and go to hill after self-reasoning plan. 

Actions: Find possible solutions of the given problem through communicating other 

agents or self-reasoning.  

Protocols and interactions: --- 
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public agent SolutionAgent extends Agent { 

    #posts event Update ev; 

    #handles event Update; 

    #handles event Start; 

    #handles event SendPositionUpdateEvent; 

    #posts event TriggerEvent ev1; 

    #handles event TriggerEvent; 

    #uses plan GoToHillWithSelfReasoning; 

    #uses plan GoToSaloonAndNegotiate; 

    #uses plan InitializeAgents; 

    #uses plan NegotiateWithOtherAgents; 

    #uses plan GoToHillSelfReasoningAfterSaloon; 

    #uses plan DoCrossOver; 

 

    public SolutionAgent(String name, SolutionE eclipseS) 

     

    { 

        super(name); 

        solution=eclipseS; 

         

    } 

Figure 4.4 Solution agent  

4.2 Plans and Events 

 

Each type of agents in the system has several duties.  These agents carry out these 

duties through plans and events. In this part of the chapter, plans and events of each 

agent are listed. 

 

4.2.1 Manager Agent’s Plans and Events 

 

Manager agent is responsible for two plans and three events. By handling these 

plans and events, manager agent sends start request to the solution agents and display 

solution agent data.  

a. Manager Agent’s Plans: Manager agent has the following plans: 

 

i. Send start request plan: Manager agent sends the command of start to the 

solution agents through this plan. 

ii. Display plan: Manager agent shows solution agents‟ solution via display 

plan. 
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b. Manager Agent’s Events: Manager agent has the following events: 

 

i. Start request event: It is the event of specifies the manager agent‟s 

request functionality. 

ii. Display request event: It is the event of specifies the manager agent‟s 

display functionality. 

iii. Start event: It is the event of specifies the manager agent‟s start 

functionality. 

 

4.2.2 Position Update Agent’s Plans and Events 

 

Position update agent is responsible for making a plan and two events. By 

handling these plan and events, position update agent sends the message of 

comeback to saloon to the solution agents.  

a. Position Update Agent’s Plans: Position update agent has the following 

plan: 

 

i. Send update request plan: Position update agent sends the command of 

update position to the solution agents through this plan. 

 

b. Position Update Agent’s Events: Position update agent has the following 

events: 

 

i. Update request event: It is the event of specifies the position update 

agent‟s update request functionality. 

ii. Update event: It is the event of specifies the position update agent‟s 

update functionality. 

 

4.2.3 Trigger Agent’s Plans and Events 

 

Trigger agent is responsible for a plan and two events. By handling these plan and 

events, trigger agent matches solution agents with each other for negotiating their 

solutions.  
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a. Trigger Agent’s Plans: Trigger agent has the following plan: 

 

i. Trigger plan: Trigger agent matches the solution agents for negotiating 

through this plan. 

 

b. Trigger Agent’s Events: Trigger agent has the following events: 

 

i. Trigger event: It is the event of specifies the trigger agent‟s triggering 

solution agents for matching functionality. 

ii. Send match event: It is the event of specifies the manager agent‟s 

match functionality. 

 

4.2.4 Solution Agent’s Plans and Events 

 

Solution agent is responsible for six plans and three events. Through handling 

these plans and events, solution agents search solution space and try to find the 

optimal solution for the present problem.  

 

a. Solution Agent’s Plans: Solution agent has the following plans. 

 

i. Initialize agents plan: Solution agents initialize themselves and get 

their first solutions through this plan. 

ii. Go to saloon and negotiate plan: Solution agents come back to saloon 

and get ready for matching through this plan. 

iii. Go to hill with self-reasoning plan: Solution agents try to find new 

solutions after initialization through this plan. 

iv. Negotiate with other agents plan: Solution agents negotiate with other 

solution agents and share their best solutions through this plan.  

v. Do crossover plan: Solution agents implement lox-crossover with a 

better solution agent through this plan. 

vi. Go to hill self-reasoning after saloon plan: Solution agents implement 

local search through this plan. 
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b. Solution Agent’s Events: Solution agent has the following events. 

 

i. Start event: It is the event of specifies solution agent‟s get the 

message of start functionality. 

ii. Update event: It is the event of specifies solution agent‟s get the 

message of update functionality. 

iii. Trigger event: It is the event of specifies solution agent‟s get the 

message of trigger functionality. 

 

4.3 Connection between JACK and Eclipse JAVA Platform 

 

JACK multi-agent based simulation platform and Eclipse Java platform can be 

cooperated and get connected. Design of the proposed model is implemented in 

JACK and agent‟s procedural applications are implemented in Java.  

 

4.3.1 JACK and Eclipse JAVA Platform Connection Steps 

 

In order to connect JACK and Java the following steps should be applied: 

i. In JACK, compiler utility tab on the tools menu should be clicked and 

class path of the Java project should be added on the options tab project 

class path area on the pop-up screen as it is illustrated in Figure 4.5.  

ii. In Eclipse Java platform, class path of the JACK project should be added 

as an external class file on the java build tab on properties menu as it is 

depicted in Figure 4.6.  
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Figure 4.5 Connection operations in JACK side 

 

Figure 4.6 Connection operations in JAVA side 
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4.3.2 Operations on JAVA Platform for the Proposed Model 

 

The following operations of the proposed model are carried out on JAVA 

platform. 

 

i. Creating solution agent‟s constructor: Solution agent‟s constructor is 

defined on JAVA. Solution agent constructor is demonstrated in Figure 

4.7. 

 

public class SolutionE implements Serializable { 

public String solutionName; 

public Status agentStatus; 

public boolean NegotiationLock; 

public int fitness; 

public int bestFitness; 

public Vector<Operation> solution = new Vector<Operation>(); 

public Vector<Operation> temporarySolution = new Vector<Operation>(); 

public Vector<Operation> bestSolution = new Vector<Operation>(); 

public Vector<Operation> crssolutions = new Vector<Operation>(); 

            public boolean isLast; 

public SolutionE(String solutionName1, boolean 

agentNegotiationLock, 

int agentFitness,boolean agentisLast) { 

solutionName = solutionName1; 

NegotiationLock = agentNegotiationLock; 

fitness = agentFitness; 

isLast=agentisLast; 

} 

Figure 4.7 Solution agent constructor 

ii. Determining solution representation: Operation class is defined on JAVA 

for solution representation. Each solution agent has a solution operation 

type solution vector. Operation class constructor is shown in Figure 4.8. 
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public class Operation implements Serializable { 

public int No; 

public int ptime; 

public int ddate; 

public int weight; 

public boolean check; 

public Operation(int OperationNo,int Operationptime,int Operationweight,int 

Operationddate){ 

No=OperationNo; 

ptime=Operationptime; 

weight=Operationweight; 

ddate=Operationddate; 

                          } 

} 

 Figure 4.8 Operation class 

iii. Crossover Operation: Lox-crossover operation (Falkenauer and 

Bouffouix, 1991) is coded on JAVA. By the help of connection between 

JACK and JAVA, solution agents call crossover function on JACK. In 

other words, all functions that are coded on JAVA are executable on 

JACK. Crossover operation is shown below in Figure 4.9. For more details 

on Lox-crossover mechanism one can see Falkenauer and Bouffouix‟s 

study (Falkenauer and Bouffouix, 1991). 

 

public Vector<Operation> crossOver(Vector<Operation> parent1, 

Vector<Operation> parent2) { 

int sayi1 = 0; 

int sayi2 = 0; 

while(sayi2<=sayi1){ 

sayi1=1+Main.RandomNumber(parent1.size()-1); 

sayi2=1+Main.RandomNumber(parent1.size()-1); 

} 

for (int i = sayi1; i <= sayi2; i++) { 

parent1.get(i).check = true; 

for (Operation element : parent2) { 

if (element.getNo() == parent1.get(i).getNo()) { 

element.check = true; 

}  

} 

} 

 Figure 4.9 Crossover operation 
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Vector<Operation> offSpring = new Vector<Operation>(); 

for (Operation element : parent1) { 

if (!element.check) { 

for (Operation element2 : parent2) { 

if (!element2.check) { 

offSpring.add(element2); 

element2.check = true; 

break; 

} 

} 

} else 

offSpring.add(element); 

} 

 

System.out.println("offSpring"); 

for (Operation element : offSpring) { 

System.out.print(element.getNo()); 

 

} 

 

for (Operation element : parent1) { 

 

element.check = false; 

} 

 

for (Operation element : parent2) { 

 

element.check = false; 

} 

parent2 = offSpring; 

System.out.println("parent2"); 

for (Operation element : parent2) { 

System.out.print(element.getNo()); 

 

} 

offSpring = null; 

 

System.out.println(); 

return parent2; 

 

} 

Figure 4.9 Crossover operation (continue) 
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iv. Local Search Mechanisms: Solution agents‟ local search mechanisms are 

also coded on JAVA. Five different local search mechanisms namely 

“one-block swap”, “two-block swap”, “three-block swap”, “one-block 

insertion” and “two-block insertion” are executable by solution agents in 

JACK throughout the connection between JACK and JAVA. For more 

details on these local search mechanisms see the following reference 

(Anderson, 1996).  

 

v. Overall Control of the System: System operations such as creating agent 

instances, output reports, entering problem data are implemented via 

JAVA. Simulation runs are also controlled on JAVA.  Implementation of 

these operations is also illustrated  in Figure 4.10. 

 

public static void main(String[] args) { 

 

int numberOfAgents=50; 

String solutionAgentName; 

for (int i=0;i<numberOfAgents;i++){ 

solutionAgentName="SolutionAgent"+i; 

SolutionE v=new SolutionE(solutionAgentName,false,10000,false); 

v.setName(solutionAgentName); 

SolutionAgent sA=new SolutionAgent(v.getName(),v); 

sA.deneme(); 

Main.vector.add(v); 

} 

//Main.returnSolutionAgents(); 

 

TriggerAgent triggerAgent=new TriggerAgent("trigger"); 

ManagerAgent managerAgent=new ManagerAgent("Manager Agent"); 

managerAgent.submitStartRequest(); 

PositionUpdateAgent updateAgent=new PositionUpdateAgent("Position 

Agent"); 

updateAgent.submitUpdateRequest(); 

} 

 

Figure 4.10 Implementation of system operations 
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4.4 Flow of the Proposed Simulation Model 

 

In this section, overall model of the proposed simulation model is explained in 

detail. Agent‟s types, agent plans and events, interactions between the different 

agents and implementation of SDS algorithm in JACK are expressed in a detailed 

manner. The general overview of the proposed model is illustrated below in Figure 

4.11 

 

Figure 4.11 General overview of the proposed model 

4.4.1 Initialization of the System  

 

The proposed simulation model is initialized by the manager agent and solution 

agents. The general overview of initialization process and interaction between 

manager and solution agents are illustrated in Figure 4.12. 
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Figure 4.12 General overview of initialization process 

An instance of manager agent is created on JAVA and this agent send start request 

to the solution agents through “SendStartRequest” plan which is illustrated in Figure 

4.13.  

 

public plan SendStartRequest extends Plan { 

 

    #handles event StartRequest startRequestET; 

    #sends event Start startET; 

     

    static boolean relevant(StartRequest ev) 

    { 

        return true; 

    } 

    context() 

    { 

        true; 

    } 

    #reasoning method 

    body() 

    { 

        @send(startRequestET.solution,startET.startMethod(startRequestET.planNo)); 

        } 
} 

Figure 4.13 “SendStartRequest” plan 
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In this plan, request method which is defined in “StartRequest” event is executed 

and manager agent sends start message to the all of the solution agents within the 

system. The details of request method can be seen in Figure 4.14. 

 

public event StartRequest extends BDIGoalEvent { 

public String solution; 

public int planNo; 

 

#posted as 

request(String s, int p) 

{ 

solution=s; 

planNo=p; 

} 

 

} 

Figure 4.14 Request method 

Solution agents that received the start message, generate their first solutions by 

implementing “InitializeAgents” plan. Throughout this plan, solution agents execute 

“setSolution” and “calculateFitness” procedures on JAVA. By making use of these 

procedures, initialization of system process is completed. Moreover, throughout 

“Output” class on JAVA, all of the solution agents‟ findings are also recorded. This 

plan is shown in Figure 4.15.  

 

package solution; 

import elements.Main; 

import elements.Output; 

public plan InitializeAgents extends Plan { 

    #handles event Start ev; 

    #uses interface SolutionAgent self;   

    static boolean relevant(Start ev) 

    { 

        return true; 

    }   

Figure 4.15 “InitializeAgents” plan 
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    context() 

    { 

        true; 

    } 

    #reasoning method 

    body() 

    { 

        System.out.println(self.solution.getName()); 

         int best=999999;        

            for (int i=0;i<1;i++){  

                self.solution.solution.clear(); 

                self.solution.setSolution();       

                self.solution.setSolution(); 

                self.solution.showSolution(self.solution.solution); 

                int fit=self.solution.CalculateFitness(self.solution.solution); 

                System.out.println(fit); 

                if (best>fit){ 

                    self.solution.bestSolution=self.solution.solution; 

                    best=fit; 

                    self.solution.bestFitness=best;      

            } 

      }  

      Main.statistics.add(new 

Output(self.solution.getName(),self.solution.bestSolution,self.solution.bestFitness)); 

    } 

} 

Figure 4.15 “InitializeAgents” plan (continue) 

4.4.2 Position Update Mechanism 

 

Position update mechanism is under the responsibility of position update agent 

and trigger agent. A general overview of position update mechanism is illustrated in 

Figure 4.16. 
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Figure 4.16 General overview of position update mechanism 

Position update agent sends update request to solution agents through 

“SendUpdateRequest” plan which is shown in Figure 4.17.   

 

public plan SendUpdateRequest extends Plan { 

    #handles event UpdateRequest updateRequestET; 

    #sends event Update updateET; 

    static boolean relevant(UpdateRequest ev) 

    { 

        return true; 

    }    

    context() 

    { 

        true; 

    } 
 

Figure 4.17 “SendUpdateRequest” plan 
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    #reasoning method 

    body() 

    {      

              int numberOfSolutionAgent=Main.vector.size(); 

              String solutionAgentName; 

                      int j=0;  

                      int time=0; 

                      int ctime=0; 

                      Main.numberOSolutionAgentsInSaloon=numberOfSolutionAgent; 

                       while (j<20) 

                       { 

                           

                              time=0; 

                              while (time<15){ 

                                   for (int i=0;i<numberOfSolutionAgent;i++) 

                          { 

                             solutionAgentName="SolutionAgent"+i; 

                             

@send(solutionAgentName,updateET.updateMethod(2,"trigger",solutionAgentName

)); 

    

                          ctime=1+Main.RandomNumber(3); 

                          time=time+ctime; 

                          @sleep(ctime); 

                        } 

                        } 

                            for (int i=0;i<numberOfSolutionAgent;i++) 

                          { 

                             SolutionE ssagent=(SolutionE)Main.returnSolutionAgents().get(i); 

                             ssagent.isLast=true; 

                             ssagent.NegotiationLock=false; 

                             solutionAgentName="SolutionAgent"+i; 

                             

@send(solutionAgentName,updateET.updateMethod(2,"trigger",ssagent.getName())

); 

                          }  

                           j++; 

                           Main.numberOSolutionAgentsInSaloon=0; 

                       }   

    } 

Figure 4.17 “SendUpdateRequest” plan (continue) 

After taking the message of position update (comeback to the saloon) via update 

method of “Update” event, all of the solution agents discontinue their solution 

searching process and get ready for communication and negotiation with other 

solution agents. Detailed information of update method is illustrated in Figure 4.18.  
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public event Update extends BDIMessageEvent { 

    public int planNo; 

    public String trigger; 

    public String solutionAgentName; 

 

    #posted as 

    updateMethod(int p, String t, String s) 

    { 

      planNo=p;  

      trigger=t; 

      solutionAgentName=s; 

       

    } 

 

} 

Figure 4.18 Update event 

This communication and negotiation process is carried on for a certain time 

period. During this period, all of the solution agents try to find a negotiable solution 

agent (solution agent that is not communicating with another solution agent at that 

specific moment) via help of trigger agent. If a solution agent finds another solution 

agent to talk, communication time proceeds for minimum time of ongoing 

conversations. The solution agents that take update message, executes trigger method 

of “Trigger” event on “GoToSaloonAndNegotiate” plan. Detailed information of 

“GoToSaloonAndNegotiate” plan and trigger method are illustrated in Figure 4.19 

and 4.20 respectively.  

 

public plan GoToSaloonAndNegotiate extends Plan { 

    SolutionE crossOverSolutionAgent; 

    #handles event Update updateET; 

    #sends event TriggerEvent triggerEventET; 

    static boolean relevant(Update ev) 

    { 

        return true; 

    } 

    context() 

 Figure 4.19 “GoToSaloonAndNegotiate” plan 
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    { 

        updateET.planNo==2; 

    } 

    #reasoning method 

    body() 

    {     

        for(int i=0;i<5;i++){ 

            if (self.solution.NegotiationLock==false) 

            { 

@send(updateET.trigger,triggerEventET.triggerMethod((SolutionE)Main.returnSolut

ionAgents().get(i), self.solution)); 

        } 

        } 

    } 

} 

Figure 4.19 “GoToSaloonAndNegotiate” plan (continue) 

public event TriggerEvent extends BDIMessageEvent { 

    public SolutionE crossOverSolutionAgent; 

    public SolutionE solutionSenderObject; 

    #posted as 

    triggerMethod(SolutionE s, SolutionE ss) 

    { 

        crossOverSolutionAgent=s; 

        solutionSenderObject=ss;  

    } 

 

} 

Figure 4.20 Trigger method 

When the communication process is completed, all solution agents‟ “isLast” area 

are marked as true for denoting the end of the conversations. The last message is sent 

to the solution agents for making decisions about the next move (All solution agents 

go their rooms for deciding the next move). 
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4.4.3 Negotiation and Determining Next Move Mechanism 

 

Trigger agent has the duty of matching negotiable solutions agents and triggering 

matched solution agents to get ready for negotiation.  Solution agents that is matched 

and triggered for negotiation begin to negotiate. General overview of the negotiation 

and determination of the next move mechanism is illustrated in Figure 4.21.  

 

 
 

Figure 4.21 General overview of negotiation and next move mechanism 

At this point, trigger agent executes trigger plan which is depicted in Figure 4.22. 

 

public plan TriggerPlan extends Plan { 
    #handles event TriggerEvent triggerEventET; 
    #sends event SendMatchEvent sendPositionUpdateEventET; 
    static boolean relevant(TriggerEvent ev) 
    { 
        return true; 
    } 
    context() 
    { 
        true; 
    } 
    #reasoning method 
    body() 
    {     
send(triggerEventET.solutionSenderObject.getName(),sendPositionUpdateEventET.send
Method(triggerEventET.crossOverSolutionAgent, 
triggerEventET.solutionSenderObject)); 
    } 
} 

Figure 4.22 Trigger plan 
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In context of trigger plan, trigger agent uses send request method of 

“SendMatchEvent”. Throughout this method, solution agents learn their negotiation 

partner‟s name. In this method, “solutionSenderObject” represents the matched pair 

of solution agent that named as “crossOverSolutionAgent”. Details of the send 

request method is shown in Figure 4.23.  

 

public event SendMatchEvent extends BDIMessageEvent { 

    public SolutionE crossOverSolutionAgent; 

    public SolutionE solutionSenderObject; 

    #posted as 

    sendMethod(SolutionE s, SolutionE ss) 

        { 

            crossOverSolutionAgent=s;     

            solutionSenderObject=ss; 

      } 

} 

Figure 4.23 Send method 

This negotiation process depends on some conditions. If these conditions are 

satisfied, solution agents execute “NegotiateWithOtherAgents” plan. In order to 

execute this plan, the following three conditions must be satisfied. 

 

1. Both of the agents “crossOverSolutionAgent” and 

“solutionSenderObject”, must be ready to negotiate. In other words, both 

of the agents‟ negotiation locks must be marked as false. 

 

2. Conversation among the “crossOverSolutionAgent” and 

“solutionSenderObject” agents must be held at specified negotiation time 

interval. In other words, “crossOverSolutionAgent” ‟s  “isLast” area must 

be marked as false. Because, after the negotiation time completion, all 

solution agents‟ “isLast “ area marked as true in order to clarify the end of 

negotiation time. 

 

3. Another issue is that, “solutionSenderObject” agent‟s best fitness must be 

better than “crossOverSolutionAgent” agent‟s one. In other words, a 
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solution agent does not gain anything by negotiating with a less 

successful agent than it. 

After providing these three conditions, negotiation between the solution agents 

can be begun. At this point, “crossOverSolutionAgent” may face one of the 

following three cases. 

 

i. Case 1 “crossOverSolutionAgent” has not negotiated with a better 

solution agent until that time: In this case, “crossOverSolutionAgent”‟s 

“crssolution” area is null. So that “crossOverSolutionAgent” copies 

“solutionSenderObject”‟s best solution directly to its “crssolution” area. 

 

ii. Case 2 “solutionSenderObject”’s best solution is better than the 

solution of “crossOverSolutionAgent”’s “crssolution”: In this case, 

“crossOverSolutionAgent” „s “crssolution” area is not null. Thus 

“crossOverSolutionAgent” should clear its “crssolution” area before 

copying “solutionSenderObject”‟s best solution to its “crssolution” area. 

Because it is not meaningful to keep a worse solution of the pre-negotiated 

solution agent after negotiating a better solution agent. 

 

iii. Case 3 “solutionSenderObject”’s best solution is worse than the 

solution of “crossOverSolutionAgent”’s “crssolution” area : In this 

case, “crossOverSolutionAgent”‟s “crssolution” is better than 

“solutionSenderObject”‟s best solution. 

Therefore,“crossOverSolutionAgent” ends the conversation process and 

do nothing. Because, it is not meaningful to 

copy“solutionSenderObject”„s best solution, if “crossOverSolutionAgent” 

has already negotiated a better solution agent than “solutionSenderObject” 

agent. 

 

All of these pre-conditions for negotiation and solution agents‟ options are 

illustrated in Figure 4.24 and Figure 4.25 respectively. 
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public plan NegotiateWithOtherAgents extends Plan { 

    #handles event SendMatchEvent sendPositionUpdateEventET; 

    #uses interface SolutionAgent self;     

    static boolean relevant(SendMatchEvent ev) 

    { 

        return true; 

    } 

    context() 

    { 

    (sendPositionUpdateEventET.crossOverSolutionAgent.getBestFitness()< 

       self.solution.getBestFitness()        &&  

  sendPositionUpdateEventET.crossOverSolutionAgent.NegotiationLock== false 

&& self.solution.NegotiationLock==false &&  

         self.solution.isLast==false); 

    } 

Figure 4.24 Negotiation conditions 

if (self.solution.crssolutions.size()==0){   

self.solution.crssolutions.addAll(self.solution.getcrssolutions(sendPositionUpdateEv

entET.crossOverSolutionAgent.getBestSolution())); 

      System.out.println(self.solution.crssolutions.size()); 

       }else if (self.solution.CalculateFitness(self.solution.crssolutions) > 

self.solution.CalculateFitness(self.solution.getcrssolutions(sendPositionUpdateE

ventET.crossOverSolutionAgent.getBestSolution()))) 

       { 

           self.solution.crssolutions.clear(); 

self.solution.crssolutions.addAll(self.solution.getcrssolutions(sendPositionUpdateEv

entET.crossOverSolutionAgent.getBestSolution())); 

        }else { 

            System.out.println("ajan daha iyi bir ajanla konuĢmuĢ"); 

        } 

Figure 4.25 Negotiation cases 
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When the time for negotiation ends, all of the solution agents‟ “isLast” area 

marked as true and all solution agents get ready for determining their next moves. In 

detail, miners should decide for the next hill for digging. 

 

Solution agents have two plans namely “DoCrossOver” and 

“GoToHillSelfReasoningAfterSaloon” to execute for determining their next moves. 

Solution agents select a plan according to their findings to execute during the 

negotiation period. Solution agents record their findings “crssolutions” area. After 

negotiation process, if a solution agent‟s “crssolutions” area is null, it means that, 

solution agent has not communicated with another solution agent with a better 

solution than its solutions. In this case, solution agent executes 

“GoToHillSelfReasoningAfterSaloon” plan and determines its next move by 

applying one of the following local search mechanisms.  

 

i. One-Block Swap: One-block swap-move tswp (Vector<Operation> X) 

swaps the positions of two elements in the current vector X which is given 

in Figure 4.26. Element    at position i is exchanged with element    at 

position j. The other elements all other positions are unaffected by this 

move. Assume that the randomly chosen positions are i=3 and j=7. 

      

i j

 

Figure 4.26 One-block swap 

ii. Two-Block Swap: Two-block swap is based on replacing two different 

blocks. The positions are chosen randomly for two blocks. The most 

important point is that the chosen block‟s lengths must be equal. Figure 

4.27 demonstrates an example of this neighborhood generation model. For 

instance, if the randomly chosen positions are 2 and 5, it explains that the 
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two framed blocks (7,5) and (3,6) which are depicted in Figure 4.27 are 

randomly chosen. Then, these chosen blocks are replaced to generate a 

new solution vector. 

 

1 87 3 6 2

1 83 7 5 26

5 4

4

 

Figure 4.27 Two-block swap 

iii. Three-Block Swap: Three-block swap is based on replacing two different 

blocks with an equal length three. The positions of the blocks are 

randomly chosen. Figure 4.28 illustrates an instance of this neighborhood 

mechanism. For example, if the chosen positions are 2 and 6, it explains 

that the two framed blocks (5,7,8) and (1,3,2), which are depicted in 

Figure 4.28. Then, these two blocks are replaced to generate a new 

solution. 

 

4 5 7 38 6 1 2

4 1 3 72 6 5 8

 

Figure 4.28 Three-block swap 
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iv. One-Block Insertion: One-block insertion tinsertion (Vector<Operation> 

X) inserts a selected element in the current vector X in to a randomly 

selected position, which is depicted in Figure 4.29. Element    at position i 

is inserted at position j. Assume that the randomly chosen positions are i=3 

and j=7 respectively. 

 

1 82 7 5 3 6

1 82 75 3 6

4

4

 

Figure 4.29 One-block insertion 

v. Two-Block Insertion: Two-block insertion is aimed at inserting a block 

with a length two in the solution. The position of the block is randomly 

selected. Figure 4.30 shows an example of this neighborhood structure.  

 

1 87 5 3 6

1 58 73 4 6

42

2

 

Figure 4.30 Two-block insertion  

On the other hand, if a solution agent‟s “crssolutions” area is not null, it means 

that, solution agent have communicated with another solution agent with a better 

solution than its solutions. In this case, solution agent executes “DoCrossOver” plan 

and determines its next move by applying LOX-Crossover with the solution that is 

recorded in “crssolutionsarea”.   
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The steps of crossover LOX which was firstly developed by Falkenauer and 

Bouffouix (1991) can be listed as in the following way 

 

Step 1. Choose randomly a subsequence of operations from one parent. 

Step 2. Generate a proto-offspring by duplicating the subsequence into the related 

positions of it. 

Step 3. Erase the operations that exist in the subsequence from the second parent.  

Step 4. Put the operations into the unfixed positions of the proto-offspring from left 

to right related to the rank of the sequence to generate an offspring. This method is 

demonstrated in Figure 4.31. It also shows an instance of producing one offspring.  

 

Crossover LOX tries to protect both the relative positions between genes and the 

absolute positions according to the extremities of parents as much as possible. The 

extremities correspond to the high- and low-priority operations. 

 

3

51 2 3 4 6 7 8 9Parent 1

14 8 9 6 5 7 2Parent 2

58 9 3 4 6 1 7 2Offspring

 

Figure 4.31 Lox crossover move 
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CHAPTER FIVE  

MULTI AGENT-BASED STOCHASTIC DIFFUSION SEARCH 

ALGORITHM FOR OPTIMIZATION PROBLEMS: THE SINGLE 

MACHINE TOTAL WEIGHTED TARDINESS CASE 

 

In this chapter, the presented algorithm is tested on the single machine total 

weighted tardiness problem (SMTWT). SMTWT can be defined as in the following 

way: a group of independent n jobs is to be completed on a single machine that is 

able to process only a job at the same time without any interruption. Every job has a 

processing time   , a due date   , and a positive weight   . All the jobs are ready for 

processing at the beginning. According to order of the jobs, the completion time 

   and tardiness    =max {0,       } can be calculated for every job. If a job i is 

completed after its due date, then a weighted tardiness penalty       will occur. The 

goal is to find a job order S to minimize the sum of the weighted penalties: ∑   
 
      

(Ding et al., 2016). 

The problem is very easy to understand. Despite the easy understanding of the 

problem, the problem has high computational complexity and can be stated as NP-

hard (Lenstra et al., 1977). In other words, there is no algorithm to solve this problem 

in a polynomial time. Most of the researchers acquired good performance of 

SMTWT as a proof of the algorithm‟s usefulness. 

 

5.1 Test Instances and Experimental Protocol 

 

To evaluate the success of the developed multi agent-based SDS algorithm, 

experiments are conducted on two sets of test problems. The problem instances 

which are easily solved by Geiger (Geiger, 2009) are taken as the first set from the 

OR-library. The first benchmark set includes three different problems namely 

“40”,”50”, and “100” with different sizes. Each size involves 125 instances, so the 

proposed algorithm is tested on 375 different problems totally. Optimal solutions of 

each instance are obtained from Pan and Shi‟s study (Pan and Shi, 2007).  
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The second set of the test problems contains larger size problems. There are 250 

instances with two different sizes 150 and 200 respectively. According to the 

available literature, these instances are solved optimally Tanaka et al. (2009). 

 

The primary experiments are conducted on the first problem instance. In detail, 20 

independent runs are applied for each instance. According to the existing literature, 

the following values are reported in Table 5.1 for the performance parameters of the 

proposed algorithm. 

 

Table 5.1 Reported performance values 

pd: The percentage relative deviation of a solution value found by an algorithm 

from the optimal or best-known solution value. 

pd=100(Obtained-Optimum)/Optimum (When Optimum=0; pd=100 Obtained is 

used) 

ad: The average pd value for a sample of 125 instances in 20 independent runs. 

md: The maximum pd out of a sample of 125 instances in 20 independent runs. 

no:The number of optimal or best-known solution values found out of a sample of 

125 instances. 

    = The average hit ratio to the optimal or best-known solution for a sample of 

125 instances in 20 independent runs. 

 

 

There are several metaheuristic algorithms available in the literature for SMTWT 

problem. For comparing the success of the developed algorithm some of the state of 

art algorithms is chosen. The selected algorithms for performance comparison are 

depicted in Table 5.2. 
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Table 5.2 Selected algorithms 

Article Utilized Algorithm 

Besten et al. (2001) Iterated Local Search (ILS) 

Avci et al. (2003) Problem Space Genetic Algorithm 

(PSGA) 

Bilge et al. (2007) Tabu Search (TS) 

Tasgetiren et al. (2006) Variable Neighborhood Search (VNS) 

Tasgetiren et al. (2006) Particle Swarm Optimization (PSO) 

Tasgetiren et al. (2006) Differential Evolution (DE) 

Wang and Tang (2009) Population-based Variable Neighborhood 

Search (PVNS) 

Geiger (2010) Variable Neighborhood Descent (VND) 

Grosso et al. (2004) Iterated Enhanced Dynasearch (GPI-DS) 

Ding et. al. (2016) Breakout Dynasearch (BDS) 

 

According to the experimental results, multi agent-based stochastic diffusion 

search algorithm (MAB-SDS) shows competitive performance in comparison to the 

selected algorithms. In problem set of 40 Jobs, all of the problem instances are 

solved optimally by the proposed algorithm. The other algorithms except ILS, VNS 

and VND, also solve all instances optimally. ILS, VNS and VND have high values of 

ad. This shows that ILS, VNS and VND are inferior to the other algorithms in terms 

of solution quality. The proposed algorithm found optimal results for every sample of 

125 instances with 20 independent runs.  MAB-SDS outperforms VNS and PVNS 

with hit ratio of 1 respectively. Experimental results are depicted in Table 5.3.  

 

Table 5.3 Experimental results of 40 Job set 

Algorithm ad md      no 

ILS 0.13 - - 125 

PSGA 0.000 0.000 - 125 

TS 0.000 - - 125 

VNS 0.21 - 0.95 125 

PSO 0.000 0.000 1 125 

DE 0.000 0.000 1 125 

PVNS 0.000 0.000 0.9971 125 

VND 0.99 - - 125 

GPI-DS 0.000 0.000 1 125 

BDS 0.000 0.000 1 125 

MAB-SDS 0.000 0.000 1 125 

 



65 

  

In problem set of 50 Jobs, MAB-SDS is able to solve all instances optimally. It 

surpasses ILS, TS, VNS, and VND algorithms and shows competitive performance 

with the other algorithms in terms of ad. In terms of md, maximum pd out, the 

proposed algorithm outperforms PSGA. Moreover, when the  

      values of the selected algorithms are compared, VNS and PVNS are inferior to 

the other algorithms with the ratio of 0.91 and 0.9965 respectively. Summary of the 

results for 50 Jobs set is illustrated in Table 5.4.  

 

Table 5.4 Experimental results of 50 Job set 

Algorithm ad md      no 

ILS 0.86 - - 125 

PSGA 0.000 0.020 - 125 

TS 0.001 - - 125 

VNS 0.20 - 0.91 125 

PSO 0.000 0.000 1 125 

DE 0.000 0.000 1 125 

PVNS 0.000 0.000 0.9965 125 

VND 1.45 - - 125 

GPI-DS 0.000 0.000 1 125 

BDS 0.000 0.000 1 125 

MAB-SDS 0.000 0.000 1 125 
 

In problem set of 100 Jobs, MAB-SDS can obtain optimal solutions for all the 

problem instances. The proposed algorithm is much better than ILS, PSGA, TS, VNS 

and VND with 0.000 value of ad. The results for 100 Jobs are also summarized in 

Table 5.5. 

Table 5.5 Experimental results of 100 Job set 

Algorithm ad md      no 

ILS 14.50 - - 125 

PSGA 0.020 0.300 - 125 

TS 0.007 - - 125 

VNS 0.11 - 0.90 125 

PSO 0.000 0.000 1 125 

DE 0.000 0.000 1 125 

PVNS 0.000 0.000 - 125 

VND 0.98 - - 125 

GPI-DS 0.000 0.000 1 125 

BDS 0.000 0.000 1 125 

MAB-SDS 0.000 0.000 1 125 
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In order to better assess the performance of the MAB-SDS, larger sized instances 

that is solved by Tanaka et al.(2009)‟s exact algorithm are also considered. The test 

results are compared with the GPI-DS and BDS algorithms that is proposed by Ding 

et al. (2016). 

 

In 150 Jobs set, the MAB-SDS algorithm is able to solve the selected problems 

with an ad value of 0.043 from the optimal solutions respectively. In addition, the 

proposed algorithm solved problems in 200 Jobs set with an ad value of 0.127. The 

proposed algorithm is able to provide comparable and acceptable solutions. The 

detailed results of 150 and 200 Jobs sets are depicted in Table 5.6 and 5.7 

respectively.  

 

Table 5.6 Experimental results of 150 Jobs set 

Algorithm ad md      no 

GPI-DS 0.001 0.031 0.9553 125 

BDS 0.000 0.047 0.9897 125 

MAB-SDS 0.043 0.265 0.9047 125 

 

Table 5.7 Experimental results of 200 Job set 

Algorithm ad md      no 

GPI-DS 0.068 0.867 0.9064 125 

BDS 0.032 0.885 0.9281 125 

MAB-SDS 0.127 0.932 0.8435 125 
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CHAPTER SIX  

CONCLUSION 

 

6.1 Summary 

 

This dissertation is conducted to model a metaheuristic algorithm, namely SDS, in 

a multi-agent based modeling environment. To the best of our knowledge, this is the 

first study that a metaheuristic algorithm specifically, SDS is truly realized in a 

multi-agent based environment. The algorithm is not modeled as classic procedural 

algorithms. It is modeled as an ongoing vivid system. All agent movements, their 

interactions are modeled in flowing time axis. While realizing the SDS algorithm in 

JACK multi agent-based modeling environment, dynamic nature of the algorithm is 

mimicked truthfully.  

 

We firstly have defined the agent types and their specifications. Then, each type 

of agents‟ events and plans are modeled. In order to handle static vector operations, 

JACK multi agent-based modeling environment and eclipse JAVA platform are 

connected and cooperated.  Throughout this connection, all of the agents kept their 

personal information such as agent name, solution vector, agent status, fitness etc. on 

pre-defined fields in eclipse JAVA platform.  In addition, the proposed model is also 

controlled on eclipse JAVA platform. 

 

SMTWT is selected for testing the performance of the proposed multi-agent based 

SDS algorithm. Although the main goal in this thesis is not to provide the best 

possible results but to realize a metaheuristic algorithm truthfully, however the 

proposed algorithm provides comparable and acceptable solutions.  

 

6.2 Contribution of the Study and Future Works 

 

In most of the real-life applications, the environment changes continuously, 

actually the number of static problems is very few in real-life cases. Despite of the 

dynamic structure of the real-life settings, most of the researchers try to solve these 
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problems by evolving static methods.  It is very hard to produce appropriate solutions 

of these dynamic problems by applying static methods. For this reason, most of the 

researchers fail while solving the real-life optimization problems, optimally in 

dynamic environments.  

 

In this thesis, a dynamic method is evolved for solving a static problem. In further 

researches, it is planned to apply this dynamic method to the dynamic optimization 

problems. The modification of the proposed algorithm for the dynamic problems can 

also be scheduled as a future work with the help of the proposed algorithm‟s inherent 

structure.  
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