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MODELLING AND FORECASTING TIME SERIES DATA USING ATA
METHOD

ABSTRACT

It is difficult to make predictions especially about the future and making good
predictions is not always easy. However, better predictions remain the foundation of
all science therefore the development of accurate, robust and reliable forecasting
methods is very important. Numerous number of forecasting methods have been
proposed and studied in the literature. There are still two dominant major forecasting
methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), methods are

derived or inspired from them.

After more than 50 years of widespread use, exponential smoothing is still one of
the most practically relevant forecasting methods available due to their simplicity,
robustness and accuracy as automatic forecasting procedures especially in the famous
M-Competitions. The well-known fact in these competitions is ES has a proven
success against more complex ARIMA models. Despite its success and widespread
use in many areas, ES models have some shortcomings that negatively affect the
accuracy of forecasts. Therefore, a new forecasting method in this thesis will be
proposed to cope with these shortcomings and it will be called ATA method. This
new method is obtained from traditional ES models by modifying the smoothing
parameters therefore both methods have same structural forms and ATA can be easily
adapted to all of the individual ES models. The two methods will be compared on
popular metrics that are commonly used for evaluating performance of forecasting
techniques. It will be shown that ATA models have better performance in terms of

accuracy, simplicity, speed and interpretability.

The performance of ATA method will be compared not only to ES but also to other
most successful competitors according to different performance criterions on the
famous M3-Competition data set since it is still the most recent and comprehensive

time-series data collection available.
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ATA YONTEMI KULLANILARAK ZAMAN SERIiSI VERILERININ
MODELLENMESI VE TAHMINLENMESI

0z

Ozellikle gelecege iliskin tahminlerde bulunmak ve iyi tahminler yapmak her
zaman kolay degildir. Bununla birlikte, daha iyi tahminler tiim bilimlerin temelini
olusturur, dolayisiyla dogru, dayanmkli ve gﬁvenilif tahmin ydntemlerinin
gelistirilmesi gok 6nemlidir. Literatiirde ¢ok sayida tahminleme ydntemi Snerilmis ve
caligtlmigtir.  Literatiirde hala Box-Jenkins ARIMA ve Ussel Diizlestirme (UD)
Yontemi olmak tizere iki temel yontem bulunmaktadir ve diger tahminleme
yontemleri de bu iki temel yontemden tiiretilen ya da onlardan ilham alan

yontemlerdir.

50 yildan uzun siiren yaygin kullanimdan sonra iissel diizlestirme, dzellikle iinlii
tahminleme yarigmalarinda (M-competition) otomatik tahmin prosediirleri gibi
basitlik, dayamiklilk ve dogruluklarindan dolayr mevcut en prestijli tahmin
yontemlerinden biridir. Bu yarismalardaki iyi bilinen gercek, UD'nin daha karmagik
ARIMA modellerine karsi kanitlanmig bir basarisi oldugudur. UD modellerinin
basarist ve yaygin kullanimi birgok alanda olmasina ragmen, tahminlerin dogrulugunu
olumsuz yonde etkileyen bazi eksikliklere sahiptir. Bu nedenle, bu eksikliklerin
iistesinden gelmek i¢in bu tezde yeni bir tahmin metodu énerilecektir ve buna ATA
metodu denilecektir. Bu yeni ydntem, diizlestirme parametrelerini degistirerek
geleneksel UD modellerinden elde edilir, bu nedenle her iki yontem de aym yapisal
formlara sahiptir ve ATA her UD modeline kolayca uygulanabilir. Her iki yéntem de,
tahmin tekniklerinin performansini degerlendirmek igin yaygin olarak kullanilan
popiiler metriklerde karsilastirilacaktir. ATA modellerinin dogruluk, basitlik, hiz ve

yorumlanabilirlik bakimindan daha iyi bir performansa sahip olduklari gésterilecektir.

ATA ybnteminin performanst, tinlit M3-Yarigsmasi veri setindeki farkl performans
kriterlerine gore yalmizca UD degil, aym‘zamanda diger en basarili rakiplerle

karsilagtirilacaktir ¢iinkii bu veri seti en yeni ve kapsamli zaman serisi veri
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koleksiyonudur.

Anahtar kelimeler: Ussel diizlestirme, zaman serisi, diizlestirme katsaysi, baslangic

degeri, optimizasyon, dogruluk, M3-yarismasi.
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CHAPTER ONE
INTRODUCTION

Exponential smoothing (ES) method is the most well-known tool in the field of
time series forecasting. In recent decades, numerous time series forecasting models
have been proposed. Forecasting is an essential activity in various branches of
science and in many areas of industrial, commercial and economic activity. Forecasts
can be obtained by using purely judgmental, explanatory and extrapolative methods
or any combination of these three but extrapolative methods are reliable, objective,
inexpensive, quick, and easily automated. Previous studies have demonstrated that
there are still two major univariate forecasting approaches: exponential smoothing
(ES) and ARIMA (De Gooijer & Hyndman (2005)). There are many forecasting
methods but the most successful forecasting methods are based on the concept of
exponential smoothing (ES). Exponential smoothing is inarguably one of the most
widely used forecasting methods available due to its simplicity, adaptiveness and
accuracy (Goodwinet al. (2010)). The formulation of the first ES method by Brown
in the late 1950s (Brown (1959)) was followed by Holt (1957) and Winters (1960) for
trended and seasonal data sets. Later, damped trend model was proposed Gardner Jr

& McKenzie (1985) to help deal with over-trending.

The main idea behind ES is to assign recent observations more weight compared to
the distant past when obtaining forecasts. Forecasts produced using ES methods are
weighted averages of past observations, with the weights decaying exponentially as
the observations get older. In other words, recent observations are given relatively
more weight in forecasting than the older observations. The popularity of exponential
smoothing can also be attributed to its proven record against more sophisticated
approaches (Makridakis et al. (1984); Makridakis & Hibon (2000); Koning et al.
(2005)).

ES models assume that the time series have up to three underlying data
components: level, trend and seasonality. Estimates for the final values of these

components are used to construct the forecasts. ES models can include one of the five



types of trend (none, additive, damped additive, multiplicative, or damped
multiplicative) and one of the three types of seasonality (none, additive, or
multiplicative). Pegels (1969) proposed a taxonomy of ES methods, which was
extended and modified later by Gardner Jr & McKenzie (1985); Hyndman et al.
(2002); Taylor (2003) and Hyndman & Athanasopoulos (2014). Thus, there are 15
different ES models, the best known of which are simple exponential smoothing
(SES) (no trend, no seasonality), Holt's linear model (additive trend, no seasonality)
and Holt-Winters' additive model (additive trend, additive seasonality) Goodwinet al.
(2010). For this reason we can say that ES is not a simple model but rather a family of

models.

There are many studies on the numerical and theoretical comparison of
Box-Jenkins and ES methods. For several decades, ES has been considered an ad hoc
approach to forecasting, with no proper underlying stochastic formulation. The state
space framework described by Hyndman et al. (2002) brings exponential smoothing
into the same class as ARIMA models. ES is widely applicable and has a sound
stochastic model behind the forecast therefore the "ad hoc approach" argument is no
longer true. Hyndman et al. (2002) introduced a state space framework that subsumes
all the exponential smoothing models and allows for the computation of prediction
intervals, likelihood and model selection criteria. They also proposed an automatic
forecasting strategy based on this model framework. The ETS state space models
(Hyndman et al. (2002); Hyndman et al. (2008); Hyndman & Athanasopoulos (2014))
brought exponential smoothing to a higher level by providing the method with a solid
theoretical background. They extended the earlier classifications so that now there are

30 potential ES models for various types of trend, seasonality and errors.

The implementation of ES requires the user to specify the type of the model, the
smoothing constants and initial values. In order to use any ES model for forecasting,
the forecaster has to provide the value of both the initial conditions, that is, the level,
trend and seasonal components at the start of the series and the smoothing and
damped parameters for each component; all of which are unknown. The performance

of any ES model depends mainly on the smoothing constant reflecting the relative



weight assigned to the most current observations and initial values. The weights
assigned to components of an ES model can take on values between 0 and 1.
Considerable effort has been focused on finding the appropriate values of smoothing
constants and initial values. The user must choose parameters, either fixed or
adaptive, as well as initial values and loss functions. The smoothing constants and
initial values for any ES method can be estimated by minimizing the sum of the
squared errors. Standard ES methods are usually fitted in two steps, by choosing fixed
initial values followed by an independent search for parameters. Chatfield & Yar
(1988) describe how the use of different approaches for the derivation of initial values
for the smoothed level, trend and seasonal components can give rise to substantially
different optimized parameter values which can lead to substantially different
forecasts. Makridakis & Hibon (1991) measured the effect of different initial values
and loss functions. In contrast, the new state-space methods are usually fitted using
maximum likelihood, a procedure that makes the choice of initial values less of a
concern because they are redefined simultaneously with the smoothing parameters
during the optimization process. Unfortunately, maximum likelihood may require
significant computation times, as discussed in Hyndman et al. (2002). For example, in
monthly seasonal models with a damped trend, there are 13 initial values and 4
parameters, so optimization is done in 17- dimensional space and this optimization is

not an easy task.

Appropriate choice of smoothing constants and initial values in any ES model play
key roles in successful forecasting. An extensive review and discussion of ES models
and initial value and smoothing constant selection for the various ES models is given by
Gardner (2006). Despite their success and popularity and large body of research on this
topic, there has never been a consensus among forecasters and there are no consistent
guidelines in the forecasting literature on how smoothing constants and initial values
should be selected. In this thesis, a new smoothing framework will be introduced as an

alternative to traditional ES methodogy to cope with these shortcomings.

The first serious empirical study of forecasting performance emerged in the 1969

by Reid. Several systematic studies have been published by Newbold & Granger



(1974), Makridakis & Hibon (1974). However, the main competition between these
two major forecasting methods is on their post-sample forecasting accuracy. The
1001 and 3003 time series used respectively in the M-competition (Makridakis et al.
(1982) and the M3-competition Makridakis & Hibon (2000)) have become
recognized collections of test data for the evaluation of forecasting methods. In the
M3 forecasting competition (Makridakis & Hibon (2000); Koning et al. (2005)), ES
methods obtained the best results in the competition. For the ETS models they used
the forecast package (Hyndman et al. (2008);Hyndman & Athanasopoulos (2014)) in
the programming language R (R Core Team, 2014), thus a fully automatic software
for fitting ETS models is available. The first conclusion of these competitions is that
“statistically sophisticated or complex methods did not provide more accurate
forecasts than simpler ones”. Some standard and simple combinations of ES methods
were used in these competitions and their performances verified this result. According
to statements by the participants of the M-competition, the Box-Jenkins methodology
(ARMA models) required the most time (on the average more than one hour per
series). To propose a simple, accurate, robust and automatic forecasting method as an
alternative to ES methods is not easy task after the results of Hyndman et al. (2002).
In this study, they applied an automatic forecasting strategy to the M-competition data
Makridakis et al. (1982) and the M3 competition data Makridakis & Hibon (2000).
The automatic forecasting procedure proposed in that paper tries each of the 24 state
space models on a given time series and selects the “best” method using the Akaike
Information Criterion. They showed that the methodology is particularly good at
short term forecasts (up to about 6 periods ahead), and especially accurate for

seasonal short-term series (beating all other methods in the competitions).

Several other studies that are based on the automatic forecasting procedures exist.
Particularly for seasonal time series the forecast package offers the TBATS model,
which was proposed by De Livera et al. (2011). TBATS uses a trigonometric
parsimonious representation of seasonality, instead of conventional seasonal indices,
and also incorporates ARMA errors. In addition, the function also automatically

performs Box-Cox transformation of the time series, if necessary.  Multiple



Aggregation Prediction Algorithm (MAPA) was suggested by Kourentzes et al.
(2014) and the model produces temporally aggregated versions of a time series by
first using statistical tests to identify the appropriate order of differencing. They
proposed a framework that mitigates the issue of model selection, while improving
the forecasting accuracy, by taking advantage of temporal aggregation and forecast
combination.  Another significant addition to the competition literature named
THETA, a decomposition based method proposed by Assimakopoulos &
Nikolopoulos (2000), later shown to be equivalent to a simple exponential model with
drift by Hyndman & Billah (2003), stood out in the M3-competition. Assimakopoulos
& Nikolopoulos (2000) removed the curvature of the original time series and called
the resulting series that maintained only the mean and slope of the original series
Theta-lines. They decomposed the original series into two or more Theta-lines and
extrapolated these lines separately to obtain forecasts that in the end are combined to
produce forecasts for the 3003 series in the M3-competition. As confirmed once
again in Assimakopoulos & Nikolopoulos (2000), it is well known that combining
forecasts (Bates & Granger (1969); Clemen (1989)) under certain circumstances
improves forecasting accuracy (Armstrong (1989); Armstrong (2001); Makridakis &
Winkler (1983); Makridakis et al. (1982)). Because of this, the research since the
beginning of this competition mainly focuses on certain transformations,
decompositions, rules and combinations of ES and ARIMA (a few examples are
Clemen (1989); Cleveland et al. (1990); Adya et al. (2000); Bergmeir et al. (2016)) to

improve the forecasting performance rather than proposing new forecasting methods.

To sum up, ES is popular since it is accurate, simple, fast and inexpensive compared
to the Box-Jenkins method. The main objective of this study is to introduce a new
forecasting method as an alternative to ES. The proposed method is developed from

ES models by modifying the smoothing parameters.



1.1 Research Scope and Objectives

For a model to be considered as an alternative method to ES, it should be simpler,
more accurate, faster than ES and should not be a special case of it. The main
objective of this thesis is to introduce a new forecasting method as an alternative to
ES methodology that has the best performance among the methods presented by the
intended competitors in Makridakis & Hibon (2000). This thesis is set out to propose
a new forecasting method to obtain the initial value and the smoothing parameter
simultaneously. The proposed method is named ATA, which is based on ES
methodology but the smoothed constant is modified. The proposed method can be

easily adapted for higher order ES models. It can be formulated as:

S= (%) X+ (%) (St +Tin)

ti
T, = (%) (S — Si—1) + (Tq> Ti
Xﬂ—i(h‘) = St 'Jr h‘ﬂ:

forpe {l,...,n},q€{0,1,...,p}landt >p>gq. Fort < pletS, = X;, fort < q
let T, = X; — X;_1 and let T} = 0, where X is the actual observation of the series,
S; denotes an estimate of the level of the series at time ¢, T; denotes an estimate of the
growth (trend) value of the series at time %, p is the smoothing parameter for the level
and g is the smoothing parameter for the trend. Even though ATA can be adapted to all
ES models, in this thesis we focus on just the ATA model with linear and exponential
trend components. Furthermore, for the sake of simplicity, the simplest form of the
proposed method will be given along with a comparison of its main features compared

to its counter ES models.

A competition has been organized by the International Institute of Forecasters (ITF)
to determine the best method of predicting the future. For this competition, there are
three types of data sets (https:/forecasters.org/resources/time-series-data/)

respectively named M-Competition (1001 series), M2-Competition and



M3-Competition (3003 series). In this thesis, the M3 competition data set is used
because the 3003 series is still the most recent, comprehensive time-series data
collection available. Moreover the data is still competitive and its results are verified.
24 forecasting methods have joined the contest and they obtained the forecasts for the
3003 series based on their own methodologies (Makridakis & Hibon (2000)). The
results have demonstrated that, the best performing methods in the competition are
based on ES and Box-Jenkins methodology, and the simple methods yield better
results than complex methods. Any forecasting method may have many desirable
futures but the ultimate goal is to predict future events accurately. Therefore, after the
method is proposed, the performance of the method will be tested empirically using

the same competition data sets mentioned above.



Table 1.1 Average symmetric MAPE across different forecast horizons: all 3003 series

Method Forecasting horizons Averages

1 2 3 4 5 6 8 12 15 18 1to4 1to6 1t08 1tol2 1tol5 1to18
Naive2 [ 10.5 11.3 13.6 151 151 159 145 160 193 207 1262 1357 13.76 1424 1481 1547

Single| 9.5 106 12.7 141 143 150 133 145 183 194 11.73 1271 1284 1313 1367 1432

Holt| 9.0 10.4 128 145 151 158 139 148 188 202 11.67 1293 1311 1342 1395 1460

Dampen| 8.8 10.0 12.0 135 13.7 143 125 139 175 189 11.05 12.04 1214 1244 1296 13.63
Winter [ 9.1 10.5 129 146 151 159 140 146 189 202 11.77 13.01 13.19 1348 1401 14.65

Comb S-H-D| 89 10.0 120 135 13.7 142 124 13.6 173 183 11.10 12.04 1213 1240 1291 13.52
B-J automatic | 9.2 104 122 13.9 14.0 148 13.0 141 178 193 11.42 12.41 1254 1280 1335 14.01
Autobox1 | 9.8 10.1 131 151 160 168 142 154 19.1 204 1230 13.67 13.78 1400 1456 1523
Autobox2 | 9.5 104 122 138 138 149 13.2 152 182 199 1148 1244 1263 1310 1370 1441
Autobox3 | 9.7 112 129 146 158 165 144 161 192 21.2 12,08 1343 1364 1401 1457 1533
Robust-trend | 10.5 11.2 132 147 150 159 151 17.5 222 243 1238 13.40 1373 1457 1542 1630
ARARMA | 9.7 109 126 142 146 156 139 152 185 203 11.83 1292 13.12 1354 1409 14.74
Automat ANN | 9.0 104 118 13.8 138 155 134 146 173 196 11.23 1238 1258 1296 1348 1411
Flores/Pearcel | 9.2 10.5 12.6 145 148 153 13.8 144 191 208 11.68 1279 13.03 1331 1392 1470
Flores/Pearce2 [ 10.0 11.0 12.8 14.1 141 147 129 144 182 199 1196 1277 1281 13.04 1361 1429
PP-autocast | 9.1 10.0 121 135 13.8 147 131 143 17.7 196 11.20 1221 1240 1280 1334 14.01
ForecastPro| 8.6 9.6 11.4 129 133 143 126 132 164 183 1064 11.69 11.86 1214 1260 13.19
SmartFes | 9.2 103 120 135 14.0 151 13.0 149 180 194 1123 1234 1249 1294 1348 1413
Theta-sm | 9.8 113 126 136 143 150 12,7 140 162 183 11.81 1276 12.77 13.04 1340 13.88
Theta| 84 96 113 126 138 147 120 132 165 185 1046 11.72 11.80 1211 1258 13.19

RBF| 9.9 105 124 134 132 142 128 141 173 178 1156 12.28 1242 1277 1325 1375
ForecastX | 87 9.8 11.6 13.1 132 139 126 139 178 187 10.82 11.73 11.89 1222 1281 1349
AAMI1 | 9.8 106 112 126 13.0 135 141 149 18.0 204 11.04 11.76 1243 13.04 1377 1463
AAM2|10.0 107 113 129 132 137 143 151 184 207 11.21 11.95 12.62 1321 1397 1485

ETS| 88 9.8 120 135 139 147 130 141 176 189 11.04 1213 1232 1266 13.14 13.77

ATAMethod| 84 94 111 125 128 133 11.7 13.0 163 173 1035 11.25 1136 1172 1221 1278

Rank|11111111111111il

The new forecasting method first appeared in Yapar (2016) where he proposed a
simple modification of the exponential smoothing model, generalized here as the ATA
method, which produces surprising results in terms of forecasting accuracy and
simplicity. The ATA method eliminates the initialization problem and is easier to
optimize compared to its counter ES models. This method is shown to have better
forecasting accuracy for the M-competition data when equivalent parameterizations
of simple exponential smoothing and ATA models are compared on post sample
forecasting powers. In this thesis, the ideas from Yapar (2016) will be extended to

handle different trend types and various model selection and forecast combination



options will be discussed for ATA. The best performance achieved by applying some
basic model selection and combination rules for ATA are given in Table 1.1 and it can
be seen that for the M3-competition data proposed approach outperforms all other
competitors consistently. This table alone underline underlines the importance of the
contribution made in this dissertation and the details on how these results were

obtained will be explained step by step in the following sections.

1.2 Research Qutline

In this thesis, the new forecasting method ATA will be proposed and its accuracy
performance will be given along with other properties. In addition, the results will be
compared to the benchmarks competition methods in forecasting literature. The thesis
consists of six chapters. In the first chapter, a review of the related literature of the time

series forecasting and the scope and aim of this thesis are given.

Existing forecasting methods from the literature one discussed in Cahpter 2 starting
from the simplest ones to more sofisticated approaches. In addition, metrics commonly
used in measuring forecasting accuracy and methods for combining forecasts are given

here. A brief introduction to the M-Competitions is made.

In the third chapter, the simple form of ATA is given and its features are discussed
in detail. These are the weights attached to the observations, the average age and the
variance, the weight of initial value, the smoothing parameters, its optimization and
parameter space. The simple form of the ATA and the SES method are compared based

on their perfromance on the M3-Competition data set and their features.

The trended ATA methods will be given for additive, multiplicative and damped
trend in the fourth chapter. An application of these methods will be explained with
a data set from the M3-Competitions. Also, the proposed models' accuracy will be
compared to its counter ES model using M3 competition data set in the last part of this

chapter.



In the fifth chapter, the best forecasting performance of ATA method is given. First
some, selection and combination rules are defined for various time intervals. Then, we
present our results for all series according to SMAPE and MASE error metrics. The
out sample performance of different types of series are calculated and discussed in the

following subsections.
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CHAPTER TWO
METHODOLOGY AND DATA

There are many different situations where forecasts are required in order to make
good decisions. Forecasting is a decision making tool used by many businesses to
help in budgeting, planning and estimating future growth. In the simplest term,
forecasting is the use of historic data to determine the direction of future patterns.
According to Armstrong (2001) forecasting is defined as the prediction of an actual
value in a future time period. Makridakis S. & Hyndman (1998) state that forecasting
supplies information of what may occur in the future. Thus, it is used to estimate
when an event is probable to happen so that proper action can be taken. Despite the
wide range of these situations that require forecasts, there are two broad types of
forecasting techniques qualitative (judgemental) and quantitative forecasting
(Makridakis S. & Hyndman (1998) and Armstrong (2001)). They are known as
objective and subjective techniques. According to Makridakis S. & Hyndman (1998)

quantitative forecasting can be applied under three conditions:

 Quantitative information availability about the past,
» Information can be expressed in numerical data,

* Assumption of continuity, which is the statement that characteristics of the past

patterns will continue in the future.

On the other hand, qualitative forecasting is applied in case of lack of quantitative
information, but sufficient qualitative knowledge and experience exists. Finally, when
neither quantitative information nor qualitative knowledge is available a satisfactory
forecast cannot be performed. Both quantitative and qualitative techniques differ
extensively in accuracy, cost and complexity. Quantitative techniques are divided in
to two categories: explanatory (causal) models and time series models. The first
category investigates the cause and effect relationship between the forecasted variable

and one or more independent variables. Time series models predict the future value of

11



a variable based upon its past values without attempting to estimate the external
factors that affect this behaviour. The most common forecasting techniques are

classified in the following figure (Armstrong (2001)).
ST

Krowledpe
urce

e

Judgrents! § Sratstiea

Chidiid A Unieande | Mullsveriate
Unstructures | Structurad Polz [Harde Data- | Theory-
hased {based
¥
: ; . Bt aoolei ¢
e Trtentione/ i apolation
Shrafated et modeis ==y
Lnaided Interaction expectatinng/ rodels Dsta miring/
judarent (Roslz oiayra) Sxperimeriation) Analvtios
; it U™
| Quartitative Ml ¢ Caussl
¥ armlogies ||| netwarks A\ methods
o A o
5
v B s
i Rudle-based / ik Urssr | slassfoaron
forecastigl 7
Fis
S 2t
i / ;f'
IORSTRN | ———— [
— g l
F s
i
Expet Stractwred | 4 Aadgmentat { Expet Resareasinn Tnci Segmentatio
i ey AT i S ek PEgrEaai) (gl 2 Segmentation
‘ forecasting ansiasies éDwnm;tun nantalrappirg | syslerrs Fhaysle g o
H ] N
| 1 Hathesadong; Tree for Fooecatting
| IR B T T o e

1. Botk Srvestrorg B Haden G, Grony
Orafieg by Hader Greea - 103 Cecarber 5634

Figure 2.1 The forecasting techniques and their interactions. Principles of Forecasting, Armstrong (2001)

If the series at hand is seasonal the seasonal component can be removed from the
original data. Then, the resulting values are called the “seasonally adjusted” or
"deseasonalized" data. The ATA method which is proposed in this thesis is applied to
non seasonal or deseasonalized time series, where the deseasonalisation is performed

via the multiplicative classical decomposition.

2.1 Some Basic Forecasting Techniques

Time series data arise in many different contexts including finance and industry,

whenever something is observed over time. The main purpose in these cases involves

12



using a sequence of observations on some variable to predict a future value of it. This
is achieved by using some aggregation of the past observations to predict the future
values. There are many studies in the literature dealing with this problem utilizing
forecasting and smoothing techniques. Let the observed values of a random variable
over time be denoted by X;, t = 1,...,n. The aim is then to obtain an estimate for
Xn11. For simplicity, it is assumed that the data do not display any clear trending
behavior or any seasonality, although the mean of the data may be changing slowly
over time. The method proposed later on can be easily adapted to handle data that
involve such components. For now, assume X; can be modeled using only a random
error component as below:

X;=a+ e, (2.1)

where e; is some random noise with mean zero and variance o2. Under the model
in (2.1), the aim is then reduced to finding a good estimator for the constant a so that it
can be used to forecast future values. The general form of this estimator should involve

some sort of an average of the observed values. It can be notated as:
a=F(X1,...,Xa) =) wX, (2.2)
t=1

where w; are a collection of weights called weighting vector such that w, € [0, 1] for
t =1,...,nand > 7, w; = 1. The estimators of form (2.2) will be unbiased. In
order to deal with sequential updating, the term a,, is sometimes used to indicate the

smoothed value at time n, therefore a,, and @ are synonyms.

Since there are a lot of ways to obtain estimators of form (2.2) and there is not an
estimator that will be universally satisfactory, researchers need a way to choose among
all these potential smoothing methods. When making a choice, some criteria to judge
the relative merits of each alternative that are important to the researchers are needed.
Most importantly, researchers have a preference for fresh data and therefore in practice
weighting vectors that assign more weight to recent observations are preferred. In other
words, weighting vectors with w; > w; for j > 4 are preferred. One popular metric that

is used for measuring a smoothing method's ability to utilize fresh data is the average

13



age (AA) of the data used:

AA@) =k=n-) tw. (2.3)

t=1

Another important metric to consider is the variance of the estimator at hand as usual.

Since the estimator in (2.2) is unbiased, its variance can be written as:

n 2 i
Var(a) = E (Z w X — a) = Z wio? = Vo (2.4)
t=1 t=1

The following paragraphs summarises the main findings of basic forecasting methods

as follows:

1. w, €[0,1] =T

2. Z?:lwt:].
3. wlﬁwzg...gwn

b4 AA(&.) = ]_C =n— Z?:l tu)t.

e Var(a)=F [(Z?:l wy Xy — a)z] =Y.y jide® =Va?.

Even though it is desirable to keep both of the metrics in (2.3) and (2.4) minimal
simultaneously, it is not an achievable goal. Consider two extreme weighting
schemes which will result in boundary values of these metrics. The first scheme is the
average method which assigns equal weights to all observations over time and the

second method is the naive method.
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2.1.1 Average Method

For the average method, the forecast for all future values is equal to the mean of

historical data { X, ..., X,} (Johnston et al. 1999).

i = X,(h) =X, t=1,...,n (2.5)
Lw=ws=...wp=1,
2. AA=k =121,
3. V=1

Here the estimator @ is simply the simple average and it is well known that for the
conditions w; € [0,1]and 3"} | w, = 1 the variance in (2.4) is minimized since V = =.
On the contrary, AA attains its largest value under this weighting scheme which is equal

n—1

to 3 -

2.1.2 Naive Method

Another approach is the simplest, but widely used forecasting approach which is
called the Naive method. For the naive method, the forecast is simply the last observed

value of the time series (Aaker and Jacobson, 1987).
a=X,h) =X, t=1...,n (2.6)

Under the naive weighting scheme where all the observations other than the latest one
are discarded, i.e. w, = land w; = 0 fort = 1,...,n — 1, the estimator is simply

equal to the latest observation.
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AA under this scenario will be equal to zero thus minimized but this time the
variance of the estimator will be maximized since V' now reaches its maximum value

which is equal to 1.

2.1.3 Moving Average Method

Even though average and naive weighting schemes are simple methods that work
remarkably well for many economic and financial time series, it is more realistic to use
weighting schemes that assign more weight to current observations without having to
give up all the remaining observations. One such parameterized method is the classic
moving average (MA) where for the parameter, the size of the window p, the model

can be written as:

p—1
a:Xn+Xn71+”.+Xn7p+l =}'2XH—J) (27)
P =0

P

for p < m. For this model the weights are w; = 0 for j < n — p and w; = %) for

n—p+l1<j<n.

Lw=wy=...=wnp=0 wnfp-&-l:...:wn:_]ﬁ
2. AA=k =12,
3. V=1

P
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The average age of the data used in a moving average is defined as below:

O+142+F. .. +p—~1 p—1
p 2

k= (2.8)
So, this model has AA = 3;—1 and V = % Brown (1962). The moving average for time
t is the mean of the p most recent observations. The constant number p is specified
at the outset. The smaller the number p, the more weight is given to recent periods.
The greater the number p, the less weight is given to more recent periods. A large p is
desirable when there are wide, infrequent fluctuations in the series. It is a disadvantage
to have to carry all the past data necessary to compute the moving average. A small p

is most desirable when there are sudden shifts in the level of series.

So far, this section has focused on some basic forecasting methods. Another classic
and well known forecasting approach that allows the researchers to utilize more data
is the ES. In this thesis, the ATA method, which is an extrapolative forecasting
method alternative to exponential smoothing methods, will be evaluated. Therefore,

the procedure and basic properties of ES will be discussed in the following section.

2.2 Simple Exponential Smoothing (SES)

Exponential smoothing methods originated from the works of Brown (1959), Holt
(1957) and Winters (1960). The method was independently developed by Brown and
Holt. Roberts G. Brown originated the exponential smoothing while he was working for
the US Navy during World War I (Gass & Harris, 2000). Brown was assigned to design
a tracking system for firecontrol information to compute the location of submarines.
Brown’s tracking model was essentially simple exponential smoothing of continuous
data. This model is still used in modern fire control equipment. During the early 1950s,
Brown extended simple exponential to discrete data and developed methods for trends
and seasonality. In 1956, Brown presented his work on exponential smoothing at a

conference and this formed the basis of Brown’s first book (Brown, 1959).
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The SES method is a classical and well-known approach where the smoothing
constant is denoted by a € [0, 1]. Let X} denote the observed value of a time series at
time t and @ = X’t(h) be the forecast for h periods ahead from origin ¢. The integer
h(> 0) is called the forecasting horizon or lead time. Therefore, the model can be

written as:

componentform : Sy = aX;+ (1 — a)S;_1, (2.9)
errorform: Sy = S;_1+ a(X: — Si-1), (2.10)
a=X,(h) =S, 2.11)

where .5; is the smoothed value at time ¢ which is as mentioned earlier in the previous
chapter a synonym for a. Substituting the model in (2.9) into itself successively, the

model can be re-written as:
Si=a) (1-a)X,+(1-0a)'S (2.12)

so S; represents a weighted moving average of all past observations with weights
decreasing exponentially, Sy is the initial value. It can be seen that for large o recent
observations get more weight. Taken together, the weights from SFES satisfy the

required conditions on weights similar to naive and average.

. we0,1 ¢t=1,...,n

2. Y we=1

Weights assigned by simple exponential smoothing are non-negative and sum to
unity. If o is small, more weight is given to observations from the more distant past.

If o is large, more weight is given to the more recent observations. In the exponential
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smoothing process, the weight given data k periods ago is a(1 — a)*. For different

smoothing levels, the weights are given to the Table 2.1.

Table 2.1 The weights of observations for different parameters

weight of X
Observation Formulation a=0.1 a=0.4 a=1038
X, o 0.1 0.4 0.8
Ko a(l—a) 0.1(0.9)! 0.4(0.6)! 0.8(0.2)"
¥ a(l-a)’ 0.1(0.9) 0.4(0.6)> 0.8(0.2)2
X3 a(l—a) 0.1(0.9)* 0.4(0.6)* 0.8(0.2)3
X, a(l-a)*", 0109  04(0.6)"1  0.8(0.2)""
X, a(l—a)” 0.1(0.9)" 0.4(0.6)" 0.8(0.2)"
Initial value (1—a)" (0.9)" (0.6)" (0.2)

The AA for SES is:

E = 0a+1lo(l—a)+20(l—a)®+...

= aik(l—a)k

_ e (2.13)

(0%

One way to define an exponential smoothing that is equivalent to a p period moving
average is to say that the smoothing constant is selected to give the same average age

of the data.

= or a=—-r (2.14)

Now, it is possible to calculate the expected value and variance of the smoothed
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value S;. For sufficiently large ¢, the expected value of S; is
E(S;) = E (o: Z(l —a)* X+ (1 - Ck)th) (1—a)lSe—0 when t—oo

= « 2(1 —~ @B, )

= aZlﬁak 0<a<l1
k=0

—

1—(1—&)
a

= a—
a

= a (2.15)

50 5; is unbiased estimator of the constant @ when t—o0. Therefore, S, can be used for

future forecasts. The variance of S, is

V(S) =V (ac i(l —a)* X+ (1 - a)th)

k=0
oo

= o®) V(Xix)

(o]

= V(X)) (-0, 0<ax<l
k=0

1
2 2
e (1—a)?
a? 2
200 —a? ¢
WU, . (2.16)

2—qa ¢

S; is an unbiased estimator since ) ;. , w; = 1. For large sample sizes, AA = k=
lea and V' = 3% have been defined Brown (1962). Table 2.2 shows the weights
attached to observations for three different values of o when forecasting using simple
exponential smoothing. In addition, the weights of initial value, average age and the
variance are shown in the table for 10 observations. The weight given to starting value

is 0.349 which is bigger than all weights given to other values when o = 0.1.
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Figure 2.2 Weights assigned to observations by various smoothing parameters of SES

Table 2.2 Weights assigned to observations by various smoothing parameters of SES

| weights by o for SES

Observation | a=0.1 a=03 a=05 a=2079
i 0.100 0.300 0.500 0.900
X; 0.090 0.210 0.250 0.090
Xg 0.081 0.147 0.125 0.009
% 0.073 0.103 0.063 0.001
X5 0.066 0.072 0.031 0.000
Xs 0.059 0.050 0.016 0.000
X4 0.053 0.035 0.008 0.000
X; 0.048 0.025 0.004 0.000
Xy 0.043 0.017 0.002 0.000
X 0.039 0.012 0.001 0.000
Weight of initial | 0349 0.028 0.001 0.000
Average Age (AA) | 9.000 2333 1.000 0.111
Sum of squared weights (V) | 0.046 0.176 0.333 0.818

The weight of last observation is much smaller than the weight given to the starting
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value which contradicts the main idea of exponential smoothing. When o = 0.1, the
weight given to starting value is too small as expected. The sum of the weights even
for small a will be approximately one for any reasonable sample size. For example,
sum of the weights attached to the most recent 10 observations are 0.999 respectively
and almost zero weight after tenth observation when a = 0.5. That’s why most of
practitioners recommend smoothing constant smaller than 0.3. As a matter of fact, if
we carry out a sequence of trials on some set of actual data and find that smoothing
constant is higher than 0.3, we should check the validity of using a constant model,
there may be a significant autocorrelation, a significant trend, seasonal pattern or level
shift. In order to filter out the major part of the noise in the input, it is customary to use
small v value. In general, the weight attached to observations must be small. However,
in the case that o is small or the time series is relatively short, the weight may be large
enough to have a noticeable effect on the resulting forecasts. When researchers use
a = (.1, the initial value has a weight of 0.349 after ten iterations, which means that it
is still given more weight than any other term even from the most current observation.
So small smoothing constant is desired but small smoothing constants put excessive
weight on the initial value. The weight on the initial value is (1 — «)* and therefore

will decrease faster if a higher value of « is used.

It can be seen from the table that SES for smaller o values assigns more weight to
fresher data points while assigning less weight to older data points. This can also be
seen from the row "AA" of the table which shows the average ages of the model under
different parameter settings. The sum of squared weights is expected to increase as a.

In contrast, the average age is decreasing.

N35 data set is a member of M3-competition which will be explained in section 2.10
and its time series plot is shown in Figure 2.3. As shown in graph above, the first 14
data is called "in sample" which is used for obtaining parameter estimation and also the

last six data is called "out sample" which is used for comparing forecast performance.
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Figure 2.3 Time series plot of N35 data set.

Table 2.3 presents the application of SES for four different smoothing parameters.
The last four columns show the smoothed values of data using the 0.1, 0.3, 0.5 and 0.99
alpha values for times ¢t = 1 to ¢t = 14 then the forecasts for h = 1,2, 3,4, 5, 6. For the
first row, the initial level S is set to X for different alpha values. In the last coloumn
both the smoothing parameter and the initial level are estimated. Using an optimization
tool, the optimum smoothing parameter o, is estimated by minimizing sum of squared
error (SSE). Additional, the accuracy measures are calculated and shown for both cases
(in and out sample), which help compare forecasting performance of the methods, then

again these measures will be explained in 2.8.
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Table 2.3 Forecasting data N35 (M3 competition) using simple exponential smoothing with four different
values for the smoothing parameter o

Data The smoothed values S,
Year t X, a=0.1 a=0.3 a=105 o = 0.99
- 0 - 1461.6 1461.6 1461.6 1461.6

1975 1 1461.6 1461.6 1461.6 1461.6 1461.6
1976 2 1692.5 1461.6 1461.6 1461.6 1461.6
1977 3 2193.8 1484.7 1530.8 1577.0 1692.5
1978 4 2459.7 1555.6 1729.7 1885.4 2193.8
1979 5 3246.8 1646.0 1948.7 2172.6 2459.7
1980 6 4748.9 1806.1 2338.1 2709.7 3246.8

1981 g 5559.5 2100.3 3061.4 37293 4748.9

1982 8 5292.4 2446.3 3810.8 4644 .4 5559.5

1983 9 5029.4 2730.9 42553 4968.4 52924

1984 10 4753.6 2960.7 4487.5 4998.9 5029.4

1985 11 4344.6 3140.0 4567.3 4876.2 4753.6

1986 12 2897.4 3260.5 4500.5 46104 4344.6

1987 13 3256.4 3224.2 4019.6 37539 2897.4

1988 14 35252 3227.4 3790.6 3505.2 3256.4

h Forecasts

1989 1 3070.2 3257.2 3711.0 35152 3525.2

1990 2 3601.6 3257.2 3711.0 3515.2 3525.2

1991 3 3407.4 3257.2 3711.0 35152 3525.2

1992 4 3500.6 3257.2 3711.0 3515.2 35252

1993 5 3437.8 3257.2 3711.0 3515.2 35252

1994 6 3007.0 3257.2 3711.0 3515.2 3525.2
Accuracy measures(in-sample)

SSE 42832494 20900520 13374282 6587505
RMSE 1749.1 1221.8 977.4 685.9
MAE 13344 943.4 720.2 527.7
MAPE 31.6 249 19.9 15.1
MASE 2.3 1.7 1.3 0.9
Accuracy measures(out-sample)

RMSE 234.7 433.8 283.2 289.6

MAE 2259 373.5 206.5 213.2
MAPE 6.7 11.6 6.6 6.8
MASE 0.39 0.65 0.36 0.37
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2.2.1 Initialization and Optimization Smoothing Parameter

Parameter selection is an important problem of the for all ES models. The value
of the smoothing constant and starting value must be initialized to start the recurrence
formula of S; . There are different methods for choosing both smoothing constant and

starting value but there is no proven evidence favoring any particular method.

First the smoothing constant should be chosen. It is certain that o value should
fall into the interval between 0 and 1. There are two extreme cases when « is zero or
one. If the coefficient a = 0, then the current observation is ignored entirely and next
period’s forecast will be the same as the last period’s forecast S; = S;_; (which in turn
is computed from the smoothed observation before it, and so on; thus all smoothed
values will be equal to the initial smoothed value Sy ), and if the coefficient is one
then the next period’s forecast will be the same as the current period’s data and all the
previous observations are ignored entirely, S; = X, (naive method). In-between values
will produce intermediate results. However, it is obvious that when « is close to 1 more
weights are put on the recent observations and when is close to 0 more weights are put

on the earlier observations. So it is crucial to choose a proper « value.

There are many theoretical and empirical arguments for selecting an appropriate
smoothing value (Gardner (1985)). Gardner reports that an o smaller than 0.30 is
usually recommended (Gardner (1985)). However, some studies recommend « values
above 0.30 since they frequently yielded the best forecasts (Montgomery & Johnson
(1976); Makridakis et al. (1982)). In practice, the smoothing parameter is often
chosen by a grid search of the parameter space; that is, different solutions for o are
tried starting, for example, from o = 0.1 to o = 0.9, with increments of 0.1. Then the
a value which produces the smallest sum of squares (or mean squares) for the
residuals is chosen as the smoothing constant. In addition, besides the ex post mean
squared error criterion, there are other statistical measures (for example mean
absolute error, or mean absolute percentage) that can be used to determine the

optimum a value.

25



After the smoothing parameter is determined the starting value should be chosen.
The weight of Sy may be quite large when a small « is chosen and the time series
relatively short. Then the choice of the starting value becomes more important. This is
known as the "initialization problem". Depending on the chosen value of « , starting

value can effect the quality of forecasts for many observations.
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Figure 2.4 SES results of N35 data set
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Figure 2.5 SES results of N137 data set

Figure 2.4 and Figure 2.5 compares the results obtained from the simple
exponential smoothing method of N35 and N137 data sets by different smoothing and
initial values. The smoothing values are "0.1", "0.3" and "optimal" and, the inital
values are "simple" and "optimal" which were described in "forecast" package of R.
The "black" line represents that the observations of data sets. The "blue", "red" and
"green" lines respectively demonstrate the smoothed values with alpha equal to 0.1,
0.3 and "optimal" and initial value determined by the option "simple" in R. In
addition, the "yellow" line illustrates the smoothed values with "optimal" alpha and
initial value. When forecasting with ES, first of all we identify the choice of initial
value. Then, we obtain fitted values with different smoothing parameters between 0
and 1. We obtain the optimum smoothing parameter according to accuracy measures
explained in section 2.8. If we want to select an alternative initial value, we must

apply this procedure again. It is obvious that the mentioned problems are confronted
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during the application.

We can see that the optimum smoothing parameter for N35 is equal to 0.99 in the
graph above. This means that the one step forecast is the same as the last period’s
observation and all the previous observations are ignored as done when using Naive
method. This is an undesirable situation and one of the major problems of the SES

method.

Another problem with this application is that the optimum smoothing parameter is
affected by the choice of the initial value. Looking at Figure 2.5, it is apparent that
optimum alpha for yellow line is equal to 0.085 and equal to zero for the green line.
This means that the forecasting performance of SES is therefore affected by the starting
value. Looking at the literature about forecasting, it's clear that the estimate of future
values are considered to be the average of historical values. Therefore, the weight given
to the optimal smoothing parameter being equal to zero as shown in Figure 2.5, means
that the future values are only tied to the initial value owing to implementation principle
of the model is not meaningful. In conclusion, its clear that this situation is contrary to

the procedure and concept of ES.

2.3 Holt's Linear Trend Method

Holt (1957) extended simple exponential smoothing to allow forecasting of data with
atrend. This method involves a forecasting equation and two smoothing equations (one

for the level and one for the trend):

St = O{Xt —+ (1 = (Jf)(St_l + T};-]), (217)
T, = B(S; — Sp-1) + (1 = B) T3, (2.18)
Xy(h) = S, + hT;, (2.19)
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where X is the actual observation, )A(t(h) is the h-step-ahead forecast, o and 3 are
smoothing parameters, 0 < «, 8 < 1. There are two smoothing parameters to estimate
and starting values for both the level and trend must be provided. The parameters and
initial values can be estimated by minimizing the one step MSE, MAE, MAPE or some

other criterion for measuring in-sample forecast error.

As with simple exponential smoothing, the level equation here shows that .S; is a
weighted average of observation X; and the with in-sample one-step-ahead forecast
for time ¢, here given by S;_; + T;_1. The trend equation shows that 7; is a weighted
average of the estimated trend at time ¢ based on S; — S;_; and T;_;, the previous
estimate of the trend. The weights & and 3 can be chosen by minimizing the value
of MSE or some other criterion. Optimization we could evaluate the MSE over a grid
of values of o and  and then select the combination of a and 5 which correspond to
the lowest MSE. The forecast function is no longer flat but trending. The h-step-ahead
forecast is equal to the last estimated level plus h times the last estimated trend value.

Hence the forecasts are a linear function of h.

One interesting special case of this method occurs when 5 = 0, which is known
as “SES with drift,” which is closely related to the “Theta method” of forecasting due
to Assimakopoulos and Nikolopoulos(2000). The connection between these methods

was demonstrated by Hyndman and Billah (2003). The method as follow:

Sg = OdXt + (1 - G{)(St_l + T), (220)
X;(h) = 8; + hT. (2.21)
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2.4 Exponential Trend Method

A variation of Holt’s linear trend method can be achieved by allowing the level and

the slope to be multiplied rather than added:

St =aXy+ (1 — a)(St—1 * Ti1), (2.22)
T, = B(S:/Si-1) + (1 — B)T;4, (2.23)
Xi(h) = Sy x T, (2.24)

where X; is the actual observation, }?t(h) is the h-step-ahead forecast, o and S are
smoothing parameters, 0 < «, f < 1. The local growth, T3, by smoothing successive

differences, (S;/S;—1) of the local level, S;

2.5 Damped Trend Method

Damped trend method was proposed by Gardner Jr & McKenzie (1985) with a
modification of Holt’s linear method to allow the “damping” of trends. The

formulation of this method as follows:

Sy =aX;, + (1 — a)(Sie1 + oTy_1), (2.25)
T, = ﬁ(Sz = S:—l) + (1 - ﬁ)@i’Tt—ly (2.26)
Xi(h) =S+ (p+ 8"+ +...+ ¢"T. (2.27)

The damped trend method can be applied with multiplicative trend factor. Taylor
(2003) suggested a damping parameter to the exponential trend method resulting in a

multiplicative damped trend method:

Sy =aX;+ (1 — o) (S * TE,), (2.28)
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T; = B(S:/Se—1) + (1 — B)TL 4, (2.29)
Xt(h,) - St + ﬂ(¢+¢2+¢3+...+¢h)- (230)

This method will produce less conservative forecasts than the additive damped trend

method when compared to Holt’s linear method.

2.6 A Taxonomy of Exponential Smoothing Method

The classification of ES models was proposed by Pegels (1969). It was later
extended by Gardner Jr & McKenzie (1985) to include methods with additive damped
trend and by Taylor (2003) to include methods with multiplicative damped trend.
There are fifteen exponetial smoothing methods which have five types of trend
components (none, additive, additive damped, multiplicative, multiplicative damped)
and three types of seasonal components (none, additive, multiplicative) which are

given in Table 2.4.

Table 2.4 Classification of ES methods.

Seasonal Component

Trend Component N (None) A (Additive) M (Multiplicative)
N (None) NN N,A N,M

A (Additive) AN AA AM

Ad (Additive damped) AdN AdA AdM

M (Multiplicative) M,N M,A MM

Md (Multiplicative damped) Md,N Md,A Md,M
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Some of these methods we have already seen:

Table 2.5 Formulae for recursive calculations and point forecasts.

(N, N)
(4,N)
(M, N)
(Ad, N)
(Md, N)
(A, 4)
(4, M)
(Ad, M)

stmple exponential

Holts

Exponential

linear method

smoothing

trend method

additive damped trend method

multiplicative

additive

damped trend method

Holt — Winters method

multiplicative Holt — Winters method

Holt — Winters

damped method

Trend Seasonal
N A M
Gernpe =4 Ganpp=Cb+s_ 4 Dignpe =8 e
N b =ay+ (1l —a) b =aly — s1—m) + (1 — a)li—; b= oy /se—m) + (1 —a)li1
st =y(y —bi-1) + (L —¥)st-m se="(w/l-1)+ (1 = ¥)s1-um
Gernpe = &+ hly Heanje = b+ hby + Sy minh Tegnpe = (€ + hbr)-‘i,_mM;
A b=oy + (1 —a) (-1 +bi1) b=aly —si—m)+ (1 —a) (b1 + bia) &= a(yifsi—m) + (1 —a) (b1 + b_y)
b= — ba)+ (1= B7)bi-y by =86 — 1)+ (1 - 5" )b b =86 —G-1)+ (1 — 4" )by
s¢ =y — b=y — be—1) + (1 — ¥)st—m st =y /(br—1 + bi-1)) + (1 = 7)st-m
Ginje = b + dnbe Geenje =be+abe+5,__ 0 Bepnpe = (b + dnbi)s, 404
Aa bo=ay + (1 —a)(fi-1 + dbi_1) & =caly —s1-m) + 1 —a)(li—y +¢bi1) & = a(y/si—m) + (L —a){lis + dbi-1)
by =" —ba)+ (1— B )by be =B (6 — Li1) + (1 — B )b by = (6 — &) + (1 — B% )by
st = —&—1 — dbe—1) + (1 —7)s1-m s1=7(y/ (-1 4 dbe=1)) + (1 —)s1-m
Jepnpe = Ebf Perne = 6bY + 8 _mahd Detap = E«bl's,_,,,“,;rn
M b=ay + (1 — a1, b= aly —st-m) + (1 — a)f—1bi—1 b= alye/st-m) + (1 —a)bi_1be—y
b= (&l 2)+(1— B )b by = B (beflia) + (1 — 5*)bea by =B (b fbia) + (1 — B )b
st =y — bi—1be—1) + (1 — 7)5t—m st =70/ (Cr=1be=1)) + (1 = 9510
Tipne = &b Penge = GF" + 8y mih Derne = b &) mihd,
Ma bo=ay + (1 —a)b-1b7_ & = aly — Si—m) + (1 — a)be_abi_, b = alyefsi-m) + (1 — a)b1b]_,

b= 7 (/i) + (1= ),

be = B (G /) + (1= 76,
st =y — b—ab ) + (1= 7)st-m

b= B"(& /1) + (1 - BB,
se = (e /(G—ab )+ (1= )S1omm

We note that the level, trend and seasonal components are respectively denoted by
symbols [, b, s instead of S, T, I in Table 2.5. Therefore, the observations at time ¢ are

denoted by ¥, instead of X;

Table 2.5 gives the recursive formulae for applying all possible fifteen exponential
smoothing methods (Hyndman & Athanasopoulos (2014)). Each cell includes the

forecasting equation for generating h-step-ahead forecasts and the smoothing

32



equations for applying the method. In each case, [; denotes the series level at time £, b,
denotes the slope at time ¢, s, denotes the seasonal component of the series at time t,
and m denotes the number of seasons in a year; «, §*, v and ¢ are smoothing

parameters and b = [(h—1)mod m]+ 1.

Hyndman & Athanasopoulos (2014) presents some strategies for selecting initial
values for some of the most commonly applied exponential smoothing methods, for

instance the method (N,N) uses Iy = y; and also the method (M,N) or (Md,N) [y =

=4
Y1, b0 = va

2.7 Innovation State Space Methods Underlying Exponential Smoothing

Hyndman et al. (2002) introduced a state space framework that subsumes all the
exponential smoothing models and allows for the computation of prediction intervals,
likelihood and model selection criteria. Hyndman et al. (2008) describe two possible
innovative state space models for each of the 15 exponential smoothing methods, one
corresponding to a model with additive errors and the other to a model with
multiplicative errors. Now, there are 30 potential models described in this
classification. = The notation ETS(*,*,*) is used to identify these exponential
smoothing models, where the triplet (*,*,*) stands for possible error (E), trend (T) and
seasonal (S) combinations respectively. All ETS models can be written in innovations

state space form Hyndman et al. (2002) and also shown in Table 2.6.
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Table 2.6 The state space models and their formulation

ADDITIVE ERROR MODELS

Trend
N

Seasonal

A

M

N n="b+&
b =l + ag

w=b_1+81-m+E
b = b1+ aer
St = 8l—m + VEL

Y =l 181-m + &
b =81+ oeifsi-m
8t = St + ’751/3171

Yo =41+ bi—1 + &
A b= +by +asg
by = b1 + Bey

o =bor A b1 + St &2
b=l + by + ag

by = by + Bee

8t = St—m + YEL

Yt = by +bi1)s1-m + &
=6 1+biy+asi/sim
by = by—1 + ﬁEq/.‘hfm

§¢ = 81—m +yEe /(b1 + bi—1)

g ="l +dbi-1 + &
Agq b =Eb1-1+ ¢bi—1 + o
be = dbi—1 + Ber

Y = b1 + Ppbi—1 + St—m + &
b =l + ¢bi-1 + e

by = @by—1 + Pey

5¢ = St—m + VE1

yt = (bi—1 4 @bi—1)81—m + &

b = b1 + Py +aci/si-m
by = dbi—1 + Bet/si-m

St = 8t—m +7E1/(Li—1 + Pbi_1)

Y =babi1 +e
M b =Li_abio1 + o
by =bio1 + Be /b1

wo=b_ibi_1+si_m+ e
b =t 1biy +ag
by =b—1 + ,551/61—1

8t = St—m +YEL

Yyt =Liabi151-m + 8¢
€=t abiy +ag/si-m
be = beo1 + Ber/(st-mbi-1)
st = St—m + 71/ (f1—1b1-1)

W= 31—15:?4 + &t
Mg b=4abf  +oag
b =8 +Beifli

e =b-1b ) + som + €0
4 = Ez-]bf'__l + g

b = 'f,i + BeJliq

St = S1—m + VEL

Y= fl—lbf_lé'z—m + &

b = £1_1bl¢g1 -+ CrEljS(Lm
b = b?.,l + Beif(8i—mbi-1)
§1 = St—m + ’TEi/(fi—]bf,])

MULTIPLICATIVE ERROR MODELS

Trend
N

Seasonal
A

M

N Yo =t 1(1+&)
b =41 (1 +ag)

Y= (bio1 + s1—m) (1 + &)
b=0-1+ i1+ si-m)e
81 = 81—m + Y(li-1 + 8t-m)Er

o =b-181-m (1l + &)
£ = fg_:l(l + ﬂfﬁ‘g)
8¢ = st—m (14 ver)

Yo = (lio1 + bioa)(1+ &) y =l +bh1+5_m)(1+e) = (b1 + bir)si—m(l + 1)
A b = (br—1 + bi1)(1 + agy) b=C1+b-1+a(li—y+bi—1+ S1—m)Er b= (Lo + 011 +I1€t.)
by = bi—1 + Bl + be—1)e by =bi—1 + Bl—1 + b1 + S1-m)e b =bi1+ Bl + bi—i)er
8t = S1—m + Y(li—1 + bi—1 + St—m)Es 8t = S1—m (1 +7ve1)
Y= (L1 + obia)(1 + &) Y= (le1+ Pbi1 + 8-m)(1 +e2) Y= (b1 +@dbe_1)si_m (1 + &)
Ag b = (b1 + b1 ) (1 + agy) b =8+ by +alli_y+dbiy +Si-m)er £o = (b1 + db—1)(1 + agy)
by = by + Bllicy + dli—r)er by = pbi—1 + Bllicr + Phi—1 + S1—m )& be = dhby—y + A1 + dby_1)es

5t = 8t—m(l + &)

Yt =€i—1bi—181—m(l +&1)
& = b_1bia1(1+ agy)

be = b1 (1 + Pee)

8t = Se-m (1 +7er)

w= ft—lb?ul“ir—m(l +e1)
b= 61 b"_ (1 + e

be = b{_y (1 + fer)

8t = Si—pu (1 + &)

8¢ = St + (b1 + @by + $i—m)Er

nw=~0_ab_1{l + &)
M b=t ab (14 o)
be = bi—1 (1 + fer)

Y = (éi—lbt—l + St-m)(l + E.‘.)

b =Liabe—y +albi_1bi—1 + st-m)er
by = b1+ B(liibi—1 + si—m)Er/ b1
8t = St—m + Y(€i—1bi-1 + st—m)er

ve = (le1b{ ) +si_m)(1+e1)

b= b abP | +a(l b+ simm)E
by = b7 + Bllab® | + si_m)er/ b
S{ = St—m +’}‘(fz—1bf’,1 + Si—m €L

o= babf_ (1 +&)
Ma b =0 10¢ (1 +ae)
b = bY_, (1 + e,)

Estimating ETS Models: An alternative to estimating the parameters by
minimizing the sum of squared errors, is to maximize the “likelihood”. The likelihood
is the probability of the data arising from the specified model. So a large likelihood is
associated with a good model. For an additive error model, maximizing the likelihood
gives the same results as minimizing the sum of squared errors. However, different

results will be obtained for multiplicative error models.
Model Selection: A great advantage of the ETS statistical framework is that
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information criteria can be used for model selection. The Akaike’s Information
Criterion (AIC) and Bayesian Information Criterion (BIC) can be used here to
determine which of the 30 ETS models is most appropriate for a given time series.

For ETS models, Akaike’s Information Criterion (AIC) is defined as:
AIC = —2log(Likelihood) + 2p 23D

where p = # the total number of parameters and initial states that have been estimated.
To sum up, Hyndman et al. (2008) proposed an automated procedure and the software

developed for ETS is available in the R "forecast” package.

2.8 Forecast Accuracy

The forecasting accuracy should be tested according to different perspectives. First
is the goodness of fit, which shows how well the model is able to reproduce the actual
known data. On the other hand, the out of sample perspective shows the predictive
accuracy to unknown data. In order to measure the out of sample accuracy, the full
amount of data is separated into a training and test set. The training set is used for the
estimating the parameters of the forecasting model. First, the model is formulated, then
the data of the training set are initialized and the parameters of the model are optimised
by the most appropriate method (depending on the model) and according to the values
of the data. Then, the model is ready to generate forecasts for the test data set. The
out of sample forecast accuracy is then determined by comparing the forecasts with the
actual data, which have not been used for the model development (Makridakis S. &
Hyndman (1998)).

The forecasting error can be calculated as:
e =Y, — F, (2.32)

with e, is the forecasting error, Y; the actual value and F; the forecast for period t.
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There are four types of forecast-error metrics: scale-dependent metrics such as the
mean absolute error (MAE or MAD); percentage-error metrics such as the mean
absolute percent error (MAPE); relative-error metrics, which average the ratios of the
errors from a designated method to the errors of a naive method; and scale-free error
metrics, which express each error as a ratio to an average error from a baseline

method.

Scale-dependent measures: Accuracy measures that are based on e; are therefore
scale-dependent and cannot be used to make comparisons between series that are on
different scales. These are useful when comparing different methods applied to the
same set of data. The most commonly used scale-dependent measures are based on the
absolute errors or squared errors:

Mean square error:

MSE = mean(e?) (2.33)
Root mean squared error:
RMSE =+MSFE (2.34)
Mean absolute error:
MAE = mean(|e;|) (2.35)
Median absolute error:
MdAE = median(|es|) (2.36)

RMSE and MSE have been popular, largely because of their theoretical relevance in
statistical modelling.  In performance of M-competition, MSE was used by
Makridakis et al. (1982). Inappropriate using of MSE was largely discussed
(Chatfield & Yar (1988); Armstrong & Collopy (1992)). It has been noted that they
are more sensitive to outliers than MAE or MdAE (Armstrong (2001)). When
comparing forecast methods on a single data set, the MAE is popular as it is easy to

understand and compute.
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Measures based on percentage errors: The percentage error is given by

p; = 100e;/Y;. (2:37)

Percentage errors have the advantage of being scale independent, so they are frequently
used to compare forecast performance between different data series. The most widely
used measures are:

Mean absolute percentage error:

MAPE = mean(|p|) (2.38)

Median absolute percentage error:

MAAPE = median(|p:|) (2.39)

But measurements based on percentage errors have the disadvantage of being infinite
or undefined if there are zero values in a series. Furthermore, measures can have an
extremely skewed distribution when actual values are close to zero (Hyndman &

Koehler (2006)).

The MAPE has another disadvantage: it puts a heavier penalty on positive errors
than on negative errors. This observation has led to the use of the “symmetric” MAPE
(sSMAPE) in the M3-competition (Makridakis & Hibon (2000)). It is defined as the

Symmetric mean absolute percentage error:

sMAPE = mean(200|Y, — E|/(Y, + F,)) (2.40)

Symmetric median absolute percentage error:

sMdAPE = median(200|Y; — Fi|/(Y: + F})). (2.41)

However, if the actual value is zero, the forecast is likely to be close to zero. Thus the

measurement will still involve division by a number close to zero. Also, the value of
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sMAPE can be negative, so it is not really a measure of "absolute percentage errors" at

all.

Measures based on relative errors: An alternative to percentages for the
calculation of scale independent measurements involves dividing each error by the

error obtained using some benchmark method of forecasting. Let

=g fe] (2.42)

denote the relative error where e; is the forecast error obtained from the benchmark
method. Usually the benchmark method is the naive method where Fj is equal to the
last observation. Then, the relative measures are:

Mean relative absolute error:

MRAPE = mean(|p;|) (2.43)

Median relative absolute error:

MARAPE = median(|p,|) (2.44)

These relative-error metrics were suggested in studies by Armstrong and Collopy
(1992) for evaluating forecast accuracy across multiple series. A serious deficiency of
relative error measures is that e} can be small. In fact, r, has infinite variance because
e; has positive probability density at 0. One common special case is when e; and e
are normally distributed, in which case 7, has a Cauchy distribution (Hyndman &

Koehler (2006)).

Scaled errors: Relative error measures have problems (Hyndman & Koehler
(2006)). One of the first problem is that relative errors have a statistical distribution
with undefined mean and infinite variance. Second, they can only be computed when
there are several forecasts on the same series, and so cannot be used to measure out of
sample forecast accuracy at a single forecast horizon. Scaled errors were proposed by

Hyndman and Koehler (2006) as an alternative to using percentage errors when
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comparing forecast accuracy across series on different scales. They proposed scaling
the errors based on the training MAE from a simple forecast method. For a

non-seasonal time series, a useful way to define a scaled error uses naive forecasts:

=

gt = n
' ﬁ Zi:lIYi - Eh1|

(2.45)

Because the numerator and denominator both involve values on the scale of the original
data, a scaled error is independent of the scale of the data. A scaled error is less than
one if it arises from a better forecast than the average naive forecast computed on the
training data. Conversely, it is greater than one if the forecast is worse than the average
naive forecast computed in sample. For seasonal time series, a scaled error can be

defined using seasonal naive forecasts:

€

q ==
' —1— E?:m+l|1/7: o Y;‘_m|

n—m

(2.46)

m is a seasonal period such as 4 for quarterly seasonality or 12 for monthly seasonality.

And so, the mean absolute scaled error is simply

MASE = mean|q| (2.47)

Similarly, the mean squared scaled error (MSSE) or the median absolute scaled error
(MdASE) can be defined where the errors (on the training data and test data) are squared
instead of using absolute values. In studies Hyndman (2003) recommended that the
MASE can be used to compare forecast methods on a single or multiple series and also

it never gives infinite or undefined values.

2.9 Combined Forecasting

Combinations of forecasts were introduced by Bates and Granger (1969) and it is a
very common way to improve the forecasting accuracy. The forecasts that are

combined can be based on different data or different techniques. The main idea of
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combining forecasts lies in the fact that different forecasting methods contain useful
and independent information. It is well known that combining forecasts (Bates &
Granger (1969); Clemen (1989)) under certain circumstances improves forecasting
accuracy (Armstrong (1989); Armstrong (2001); Makridakis & Winkler (1983);
Makridakis et al. (1982)). According to Armstrong (2001) the areas of expert
forecasting and econometric forecasting have proved good evidence about the
improvement of forecasting accuracy through combining individual forecasts.
Moreover, combining forecasts has been very useful when it is difficult to select the
most accurate forecasting method. It has been shown a good way of hedging the risk
in situations of very expensive forecasting errors (Armstrong (2001)). Makridakis
(1989) states that the accuracy of an individual forecast is sensitive to several factors

that may affect the accuracy.

The research since the beginning of M-competition mainly focuses on certain
transformations, decompositions, rules and combinations of ES and ARIMA to

improve the forecasting performance rather than proposing new forecasting methods.

Combining can be expressed mathematically as follows:

k
Fo(t) = wiFy(t) (2.48)
=1
k
with » w;=1 (2.49)
i=1

where there are k forecasts that are combined. F(t) is the combined forecast at time
t, F;(t) is the result of forecast 7 (0 < i < k) and w; is the weight of forecast i (0 <
w; < 1). Researchers (e.g. Newbold and Bos, 1994, Russel and Adam, 1987 and de
Menezez et al., 2000) agree that the most common methods to estimate the values of the
combining weights are simple average-equal weights, inversely proportional weights,
regression-based weights and weights based on the absolute error. In this thesis we will
focus on just the simple average-equal weights case.

Simple average equal weights case: The simplest way to combine individual forecasts
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is to assign them equal weights. Hence:

k
.o It
F‘ct Z;:]

k (2.50)

1
thus w; = T (2.51)

Note that, simple average combination will be used in this thesis to improve the

forecasting performance of the proposed method on the competition data set.

2.10 The Forecasting M-Competitions

There are many studies on the numerical and theoretical comparison of Box-Jenkins
and ES methods. Several empirical studies have been published in turn by Reid (1969);
Newbold & Granger (1974); Makridakis & Hibon (1979); Makridakis et al. (1982);
Makridakis et al. (1993); Makridakis & Hibon (2000).

Newbold & Granger (1974) compared the forecasting performance of three methods
over a large sample of economics time series. These methods are Box Jenkins, Holt-
Winters and stepwise autoregression. The study explored the possibility of combining
individual forecasts in the production of an overall forecast and presented empirical

results which indicated that such a procedure can frequently be profitable.

111 time series, were used for investigating why some methods achieve greater
accuracy than others for different types of the data (Makridakis & Hibon (1979)),
which is a subgroup selected from M1-competition (1001 series). Surprisingly, it has
been shown that for these simpler methods perform well in comparison to the more
complex and statistically sophisticated ARMA models. This study was the first large
scale empirical evaluation of time series forecasting methods and highly controversial

at the time.

Then, the M-Competition was established by Makridakis in 1982 in a paper which

studied the post-sample accuracy of several time series forecasting methods
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(Makridakis et al. (1982)). The number of series was increased to 1001 and the data
were subdivided into various categories (micro, macro, industry, demography,
finance, other.). The participants tested the accuracy of 24 methods on 1001 series
with various horizons which were six for yearly data, eight for quarterly data and
eighteen for monthly data. The objective of the competition was to investigate how
different techniques differ from each other and how information can be provided so
that forecasters can be able to make practical choices under different circumstances
(Makridakis et al. (1984)). According to Makridakis et al. (1984) the most significant

conclusions of the competition were the following:

= "Statistically sophisticated or complex methods do not necessarily provide more

accurate forecasts than simpler ones.

* The relative ranking of the performance of the various methods varies according

to the accuracy measure being used.

» The accuracy when various methods are being combined outperforms, on
average, the individual methods being combined and does very well in
comparison to other methods. Combined forecasting reduces the forecasting

error significantly.

» The accuracy of the various methods depends upon the length of the forecasting

horizon involved.

» The nature of the series, such as the period (e.g. monthly, yearly) and data
types (e.g. financial, demand) affects the forecasting accuracy of different

techniques."

The M2 Competition consisted of distributing 29 actual series (23 of these series
came from four companies and six were of macro economic nature) to five
forecasters. The purpose of the M2-Competition is to determine the post sample

accuracy of various forecasting methods. It is an empirical study organized in such a
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way as to avoid the major criticism of the M-Competition that forecasters in real
situations can use additional information to improve the predictive accuracy of
quantitative methods (Makridakis et al. (1993)). Although the forecasters had
additional information about the series being predicted the results show few or no
differences in post-sample forecasting accuracy when compared to those of the

M-Competition or the earlier Makridakis and Hibon empirical study.

In Makridakis & Hibon (2000), third competition was launched. It explains the
reasons for conducting the competition and summarizes its results and conclusions. In
addition, the paper compares such results / conclusions with those of the previous two
M-Competitions as well as with those of other major empirical studies. 3003 series
consist of 6 different types of series and 4 different time intervals between successive
observations. The time series are classified according to time interval in Table 2.7 and

types of the data in Table 2.8

Table 2.7 The classificaton of the 3003 time series data

Time interval Types of time series data

-befween successive -

: ; Micro Industry Macro Finance Demographic Other Total
observations

Yearly 146 102 83 58 245 11 645
Quarterly 204 33 336 76 57 756
Monthly 474 334 312 145 111 52 1428
Other 4 29 141 174
Total 828 519 731 308 413 204 3003

Table 2.8 Average size of the data

Types of time  Lime interval between successive observations

seres data  Yearly Quarterly  Monthly Other Total
Demographic 27 56 123 57
Finance 36 52 124 95 87
Industry 43 60 140 108
Macro 23 47 131 80
Micro 20 44 93 104 68
Other 37 83 72 73
Total 28 49 117 77 79
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Table 2.7 and Table 2.8 show that the series have been obtained on a quota basis:

 All time series are positive.
¢ 3003 series have different time intervals (yearly, quarterly, monthly, other).

» Forecasting results are examined for different six subgroup (seasonal,

non-seasonal, yearly, quarterly, monthly or other).
» 3003 series have various types of time series data (micro, macro, industry, etc.).
» Series length between 20 and 140.

 The time horizons of forecasting are 6 periods for yearly, 8 periods for quarterly,

18 periods for monthly, 8 periods for other data.

» For 3003 series, the 5 accuracy measures utilized.

The different methods as shown in Table 2.9 have been classified in the following

categories:

¢ Naive, simple methods

Explicit trend methods

* Decomposition

* ARIMA/ARARMA models
* Expert systems

e Neural networks

The results of this competition indicate that the THETA method obtained the best
forecasting performance among the other methods.  Moreover, ForecastPRO,
ForecastX, Comb S-H-D, Dampen, RBF, ETS, THETAsm and B-J automatic
respectively followed the performance of THETA.
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Table 2.9 A list of the 24 methods that have been used in the competition with competitors and a short

description

Method

Competitors

Description

Naive ~ /simple

1. Nawve2 M. Hibon Deseasonalized Naive (Random Walk)
2. Single M. Hibon Single Exponential Smoothing
Explicit trend models
3. Holt M. Hibon Automatic Holt’s Linear Exponential Smoothing (two parameter model)
4. Robust-Trend N. Meade Non-parametric version of
Holt’s linear model with median based estimate of trend
5. Winter M. Hibon Holt—Winter’s linear and
seasonal exponential smoothing (two or three parameter model)
6. Dampen M. Hibon Dampen Trend Exponential Smoothing
7. PP-autocast H. Levenbach Damped Trend Exponential Smoothing
8. Theta-sm V. Assimakopoulos Successive smoothing plus a set of rules for dampening the trend
9. Comb S-H-D M. Hibon Combining three methods: Single/Holt/Dampen

Decomposition

10. Theta V. Assimakopoulos Specific decomposition technique,
projection and combination of the individual components
ARIMA/ARARMA model
11. B-J automatic M. Hibon Box—Jenkins methodology of ‘Business Forecast System’ a
12. Autobox1 D. Reilly Robust ARIMA univariate Box—Jenkins a
13. Autobox2 with/without Intervention Detection a
14. Autobox3
15. AAMI1 G. Melard, Automatic ARIMA modelling with/without
16. AAM2 J.M. Pasteels intervention analysis
17. ARARMA N. Meade Automated Parzen’s methodology
with Auto regressive filter Expert system a
18. ForecastPro R. Goodrich, Selects from among several methods:

19, SmartFcs

20. RBF

21. Flores/Pearcel
22. Flores/Pearce2
23. ForecastX

24. Automat ANN

E. Stellwagen

C. Smart

M. Adya,

S. Armstrong,
F. Collopy,
M. Kennedy
B. Flores,

S. Pearce

J. Galt

K. Ord,S. Balkin

Exponential Smoothing/Box Jenkins/Poisson and

negative binomial models/Croston’s Method/Simple Moving Average
Automatic Forecasting Expert System which

conducts a forecasting tournament among four

exponential smoothing and two moving average methods
Rule-based forecasting: using three methods —

random walk, linear regression and Holt’s, to

estimate level and trend, involving corrections,

simplification, automatic feature identification and re-calibration
Expert system that chooses among four methods

based on the characteristics of the data a

Runs tests for seasonality and outliers and

selects from among several methods: Exponential Smoothing,
Box—Jenkins and Croston’s method Neural networks

Automated Artificial Neural Networks for forecasting purposes
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The aims of the M3-Competition were to clear up the accuracy issues of several
forecasting techniques and to extend the results of the previous competition. The
extension involved the use of additional techniques (mainly from the area of artificial
intelligence), more practitioners and more series (3003). The findings of the M3

confirmed the conclusions of the previous competitions. Particularly:

1. "Sophisticated techniques are slightly better than simpler techniques for time series
with limited variability.

II. The performance of a forecasting method differs according to the used accuracy
measure.

III. The accuracy of combined forecasting is usually as good as or better than the
accuracy of the individual methods that were combined as well as than the accuracy
of other methods.

1V. The best method for a series depends on the forecasting horizon, type of the data
and the category of the data.

V. Some specific new methods not used in the M- Compelition perform consistently
better than the others specific circumstances.

VI The performance of the different methods does not significantly differ for short,

medium an long term."

The three competitions have played a very important role in the forecasting
research the last three decades and the results of the M-competitions were similar to
those of the earlier Makridakis and Hibon study. Their results provided a basis for
future forecasting research. In September 2010, Makridakis et al. launched a fourth
competition. According to the competition team, the purpose of the M4 Competition
is to further study the accuracy and the utility of several forecasting techniques. For
this reason, the number of the series, the categories and the forecasting techniques are

increased. The results of the competition have not been published yet.
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CHAPTER THREE
ATA METHOD

The development of accurate and robust forecasting methods for univariate time
series is very important when large numbers of time series are involved in the
modelling and forecasting process. Despite the advantages of model selection
algorithms, there is still a need for accurate extrapolation methods. Forecasting
competition have played an important role in moving towards the forecasting of large
numbers of time series, with the objectives of identifying high performing methods.
The ATA method will attract a great deal of attention by simplicity, easy optimization
and surprisingly good performance. The ATA method can be applied to non-seasonal
or deseasonalized time series, where the deseasonalisation is performed via the
multiplicative classical decomposition. The simplest form of ATA method will be
introduced in this chapter but the higher order forms will be presented in the next

chapter.

The ATA method has similar form to ES but the smoothing parameters are modified
so that when obtaining a smoothed value at a specific time point the weights among the
observations are distributed taking into account how many observations can contribute
to the value being smoothed. Therefore the smoothing parameter for this method is a
function of ¢ unlike exponential smoothing where no matter where the value you are
smoothing resides on the time line, the observations receive weights only depending
on their distances from the value being smoothed. For the series X;, £ = 1,...,n, the
general additive ATA method which we will denote by AT A(p, ¢) throughout the thesis

can be written as:

8, = (%’) X+ (L‘_tp) (Gt Tys) (3.1)
t—

T, = (%) 65 — S (Tq) Ty (3.2)

Xi(h) = Sy + T, (3.3)
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forpe{1,...,n},q€{0,1,...,plandt >p>gq. Fort < pletS;, = X;, fort < gq
let T; = X; — X;_1 and let T7 = 0 where X; is the actual observation of the series,
S, denotes an estimate of the level of the series at time £, T; denotes an estimate of the
growth (trend) value of the series at time ¢, p is the smoothing parameter for the level
and g is the smoothing parameter for the trend. A multiplicative version of the same

model AT At (p, ¢) which can be given as:

t—
St = (?) Xt s (—Tp) (St—l X ﬂ_l) (34)
_ (9 Sy t—q
n- () () + (5 ™ e
Xy(h) = S x TP, (3.6)

forpe{l,...,n},qe {0,1,...,plandt >p>q. Fort < pletS; = Xy, fort < ¢
letT; = X;/X; 1and let Ty = 1.

Note that there are two smoothing parameter (p and g) to estimate but no initial
values are needed for level and trend, and also ATA methods can be adapted for each
of 30 different ES models classified by Hyndman et al. (2008). In this thesis the focus
will be on modelling the trend component for additive and multiplicative form of the
ATA method. The ATA method can be applied to non seasonal or deseasonalized time
series, where the deseasonalisation is usually performed via the multiplicative classical

decomposition.

3.1 Simplest Form of AT A(p,0)

It is worth pointing out that when ¢ = 0, AT'A(p, q) reduces to a simple model that

has similar form to SES, i.e. for ¢t > p:

st = (2) x,+ (tft—p) S, t>D, (3.7)

S5 = Xy, < p, (3.8)



a=Xi(h) =S, (3.9)

where p is the smoothing parameter and it regulates the smoothing process. The model
will be called simple form of AT A(p, 0) henceforth. \S; can be interpreted as a weighted
average of past observations. The model in (3.7) is applied recursively to all successive

observations in the series as below:

-

5= (B) %+ (2) (£22) % (B) (122) (252 %o
(D) () () e
B e (%’)Xt+ (%) G{L’l’) Xy +...

A () (52 ()

P

Therefore, the smoothed value S; can be written in the recursive form:

t—(p+1) (t—kfl)
Se= > “Ttm i+ xS (3.10)

= G (5)

where S, is the starting or initial value for AT A(p,0) which can be simply the pt*

1

observation or the average of the oldest p observations. It can now easily be seen that
the smoothed value at time ¢ is a weighted average of past observations and the initial
value S,,. Looking at equation (3.10), it is apparent that the initial value of S, depends
on the smoothing parameter of p. Hence, the smoothing parameter and initial value are
optimized simultaneously. This process will be examined in details section (3.1.6). In

the following sections, the features of AT'A(p, 0) will be examined comparatively with
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SES.

3.1.1 Weights of AT A(p,0)

We have already seen that simple exponential smoothing model is the appropriate
model to forecast a constant process. SES model has some desirable features such as
attaching exponentially decreasing weights to the observations. The weights must have

some significant properties such as below:

- w,; € [0,1] A=
cwp KWy ... LW,

@ Z?:l wy = I,

The smoothing parameter p is smaller or equal to ¢ so the first condition is satisfied.
The weights attached to observations are sequentially given in Table 3.1. It is clear that
w; S wj, 1K)

Table 3.1 The comparison of weights attached to the observations by SES and AT'A(p, 0)

weight of X,
AT A(p,0) SES
wn = (&) Wy = o
wor = (2) (22) | ot = (1 a)
w2 = (B) (3 (55) Wy = (1 — )2
s S50 molia,
W = ¢ ox == ply =0 w=a(l-a)"

Comparing both columns of Table 3.1, it can be seen that the second condition is

provided wy; < ws < ... < w,. It should be showed that the sum of the weights must
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and also the variance is

_ (N+1)(N - M) m
V(X)ﬁm(MH)(MH) (1—M+1>. (3.13)

Correspondingly, the weights given to the observations follow a Negative
Hyper-Geometric distribution with parameters (n,p, 1) instead of (N, M, m). From
the distribution we can see that the weighting scheme sum to unity and as a result last
condition is provided. The results in this section indicate that all desirable properties
of weights attached to observations are satisfied by ATA method like SES. The next
section, therefore, moves on to the discussion of other properties of ATA in

comparison to SES.

3.1.2 Average Age of AT A(p,0), (k)

The average age (k) of a model is the measure of the model's ability to utilize fresh
data and is a well known metric for comparing forecasting models. The smaller the
k the better. Brown (1959) defines the average age as in equation (2.3) where w; is
the weight given to the ¢ observation when trying to obtain the forecast. Utilizing
the expected value of the distribution shown in equation (3.11), the average age of
AT A(p,0) can then be easily found as:

n—p

AApT A = PR (3.14)

If SES and AT A are compared at the same « level (a = %), then kara < kggg since

n—p (l-a) n-p
< —
p+1 o P

Therefore, when the average age of data used from SES and AT A(p, 0) are compared
at the same « level, it is obvious that AT A(p,0) is always younger than SES at the

same smoothing constant.
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3.1.3 The Sum of the Squared Weights of AT A(p,0), V

The variance of the estimates, should be taken into account to compare forecasting
methods and the variance can be calculated as in equation (2.4) (Brown (1959)), which
is another well known metric like the average age of the model. In order to calculate
the variance of the ATA estimator, it is needed to calculate the sum of squared weights,
V, once again. With a slight re-arrangement of the numerators in the weights, the sum

can be written as:

Varapo = Zwi

) O () ()
(nj;) (=57 - 6)
S (2222

i=0 j=

- (;)

= (B sm(@p-np-n),1—n1-n),1) (3.15)

From equation (3.15) it can be seen that the variance of the AT A(p, () estimator

involves the Generalized Hyper-Geometric series:
3 ((1L,m—n,m—n),(1-n,1-n),1)

, (Bailey (1935)). This framework can be easily adapted to incorporate higher order
components when needed. Note that when
-p_(1-0o) _(p+1)

E‘ = rl_f', — —;
= = = 0 =
AT A SES D 1 o ( 1)1

and also we obtained that the average age of ATA is equivalent to average age of SES

(p+1)
(n+1)’

kara = ksps <= a =
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then the variance of AT A is always smaller than the variance of SES (Vara < Vsgs)
. When the same smoothing constant is used for both models, since ATA always has a

smaller AA, its V value will be greater than that of SE'S as shown by Yager (2008).

3.1.4 The Weight of the Initial Value of ATA(p,0)

ATA method does not need an initial value which from the formula below:

t—(p+1) (t—k—l) 1
So= )Xot S
k=0 (P) (p)

Sp:Xt tSp

where the smoothed values for time points before p are equal to the actual observations

themselves. However, the same recursive formula for SES is:

S, =a 3 (1-a)*X;+(1—a)'Sy
k=0
where Sy refers to the initial value. Weights attached to initial values S, and S at
time t are respectively equal to C%) for AT A(p,0) and (1 — «)* for SES. For SES,
most practitioners work with « values between 0.01 and 0.3. However, also known as
the "initialization problem", when either ¢ or a is small, SES attaches more weight to

initial value than even the most current observation. The choice of starting value then

becomes particularly important for SES.

It is conceptually wrong to treat the smoothing constant « alone without paying any
attention to the sample size ¢. As a matter of fact, there are two extreme forecasting
method. One treats all past observations equally (i.e. average method) and other one
attaches weight one only the last observation (i.e. naive method). ES conceptually
must be between these two by attaching more weight to most current observation and
exponentially decreasing appropriate weights to old observations. The main idea of

ES is to assign more weight to recent observations and therefore an ES model should
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assign the most recent observation at least a weight of % This can be achieved only if

the search for the smoothing parameter is limited to the interval [, 1].

To compare, the smoothing constant of SES as a = p/n is set to make the smoothing
constants of the two models equal. At the same smoothing constant level, AT A(p, 0)
assigns less weight to the initial value even for small . The weights assigned to the
initial values by these two models are (1 — a)™ and (¢ — p)!p!/n! respectively. To
visualize, the weights of initial values for both of these models for relatively short time
series are plotted in (Figure 3.1) for p = 2 and n = 20 resulting in « = p/n = 0.1.
It is obvious that the weight given to initial value for ATA method approaches to zero

faster than ES at any iteration.
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Figure 3.1 Weights of initial value when p = 2, = 20, = 2 = 0.1

3.1.5 Smoothing Parameter of AT A(p,0)

The main idea in SES is that the recent history is more representative of the near
future and therefore more emphasis should be given to recent observations. So,
intuitively, the starting point for a grid search should be weighting all past
observations equally (average method) and then giving greater emphasis to recent
observations gradually until ending up by weighting the last observation by 1 (naive
method). This would guarantee that the weight of the initial value stays less than or

equal to the weight of the most current observation. This can easily be achieved with
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an AT A model with p = 1 for any ¢ as below:
1 t—1
e (e ()50
1 1 1 i
&=(ﬂx;+G)&l+~-+&ngfG)&, (3.16)

where S; = X, since S, = X, when t < p and the h step forecast (X;(h) = X,) is
equal to the simple average of all past observations, in other words, all observations
contribute equally to the forecast. This very important estimator, which intuitively

should be the starting point for any method, can never be formed by SES.

For p = 2 the AT A smoothed value at time ¢ can be written as:

2 t—2
= (5) 2 (57) 5

2= 3) 2 2
Xt—l‘lf"g'(t_—l)thZ'f“' : ‘Jr;(ti 1)

ﬁ2 2(t—2)
S; = th+E(t— 1)

Xst3 52, (3.17)

2
-1
where Sz = X5. When p = 2, for any ¢ the AT'A model produces weights that decrease
linearly with slope 2/(t(¢ — 1)) and intercept 2 which again can never be achieved
by SES since it always assigns exponentially decreasing weights to observations no
matter the parameter choice. For p > 3 the weights start to decrease exponentially
as the observations get older as in SES but not exactly at the same rate. In this case,
AT A gives greater emphasis than SES to the most recent history and less emphasis

than SES to the more distant past at the same smoothing constant.

Not only is AT A(p, 0) more flexible but also it is more adaptive to the data hand. No
matter where along the time line smoothing is being carried out, the weights attached
to the observations by SES stay fixed for different sample sizes. The observations are
assigned the weights o, a(1 — o), (1 — )?, . .. regardless of the sample size at hand.
This is not the case for AT A as the weights change with respect to the sample size as

the weights are:

(®).(&) (2=5).(8) (3=5) (2225%)
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Figure 3.2 Weights attached to the observations by AT A for different p values.

respectively. See Figure Figure 3.2 for illustration of weights assigned to observations

for various p levels.

For the sake of simplicity and demonstration choose p = 3, then the smoothing

t—3

If we expand the formula iteratively, we get

formula will be

8, = (g)& n (%)83, (3.19)

5= Orr@Qx @0 om

=5+ ) O+ QOO Q@G5 oo

and so on. If we keep on going up to ¢t = 10 then we end up following smoothing
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equation with three digit calculation

Sio = 0.300X:p+0:233X, +0.175Xs + 0.125X7 + 0.083 X4
10.050X5 + 0.025X, + 0.00855 (3.22)

where S3 = X3. The weights attached to observations and initial value by AT' A and
SES fort =10, p = 3 and o = 0.3 are given in following table:

Table 3.2 Weights assigned to observations by AT A(p,0) and SES for an example data set for p =
3,a=03andn =10

Observation ATA SES Difference
X10 0.300 0.300 0.000
Xy 0.233 0.210 0.023
Xs 0.175 0.147 0.028
X 0.125 0.103 0.022
X 0.083 0.072 0.011
X5 0.050 0.050 0.000
X4 0.025 0.035 -0.010
X - 0.025

X - 0.017

X1 - 0.012

Weight of inital value 0.008 0.028

Average age (k) 1.692 1.985

Variance (V) 0.201 0.176

As it seen in Table 3.2, both methods give the same weight v = 0.3 to the most
current observation X;p but AT'A gives more weight to the recent observations
Xg, Xg, X7, Xg and same weight to X5 and less weight to X4 and zero weight to the
oldest three observation X3, X5, X7 and X3 is taken as the initial value with weight

0.008 while SES gives weight 0.028 for any selected initial value. In fact the average
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age of the data used in SES is 1.985 but 1.692 in AT A that means average age of the
data for AT A is younger than average age of the SES at the same « value. It can be
seen that exponentially decreasing weights are also achieved by AT'A and sum of the

weights given for observed observations and initial value is one.

To figure out the difference between SFE.S and AT'A according to attached weights
to the observations at the same smoothing constant v = p/n is given in the following
figures. In Figure 3.3, different p = (2,3,5,10) and n = (20,40, 60) values are
selected and then for each p and ¢ combination, @ = p/t is attached as a weight to
most current observation for both SES and AT'A. After the initialization of
smoothing constant, the weights attached to other observations are calculated
sequentially for both method and their differences are plotted. In Figure 3.4, four
different o = (0.1,0.2,0.3,0.5) values are selected for SES and their corresponding
p values for AT A are adjusted to obtain the same « for given n. The weights attached
to other observations are calculated same as in Figure 3.3 sequentially for both
methods and their differences are plotted. Both figures show that AT A attaches more
weight to the recent past observations than SES but less weight to old past
observations at the same smoothing parameter level. It is obvious that for any fix p
value the sharp distinction between the methods will decrease while the number of
observations is increased. Locations of the maximum variations are shifting to the

most current observation while p is increasing for any fix n value.
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Figure 3.4 Difference of weights for different & = (0.1, 0.2, 0.3, 0.5) values

As a result, the AT'A model is more flexible and intuitive compared to SES since
it allows for more meaningful weighting schemes when searching for an optimal

parameter while potentially reducing the number of iterations needed for reaching that
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optimal smoothing parameter.

3.1.6 Optimization of AT A(p, 0)

Even though both SES and AT A(p, 0) methods require smoothing constants, the
optimization process is easier for AT A(p,0). AT A(p,0) does not need an initial
value unlike SES. When the optimal smoothing parameter is found, the initial value
is found simultaneously. With AT'A there is no limitation on the number of
observations to forecast, only one observation is enough. The smoothing constants
and initial values for ES are commonly estimated by minimizing a predetermined
error measure like the mean squared error (MSE), the mean absolute error (MAE) or
the mean absolute percentage error (MAPE). Several solutions on the issue of finding
an initial value are suggested in the literature for SES (Brown (1962); Montgomery
& Johnson (1976); Makridakis & Wheelwright (1978); Bowerman & O'Connell
(1979)). After discussing various theoretical and empirical arguments for selecting an
appropriate smoothing constant, Gardner (1985) concludes that it is best to estimate
an optimum « from the data. This is generally done by a search of the parameter
space for where @ € [0,1]. In practice, various « values starting from 0.01 with
increments 0.01 are tried and the « value that produces the minimum error is chosen.
The number of iterations required to find the optimum smoothing constant for ES is
then 100 for any data set. The number of iterations for higher order smoothing models
(level, trend and season) to find the optimum smoothing constant combinations will
be huge (100%). On the other hand, for AT A(p,0), the search for the optimal
smoothing constant is much easier since the constant depends on the choice of p and
p € {1,2,...,n}. Therefore the total number of iterations needed is only n and it will
be n® for higher order smoothing models. If the predetermined initial values are not
optimum, the process must be applied again for ES unlike ATA. As a result, when the
data size is less than 100, the total number of iterations for AT A(p, 0) will always be

less than those for ES.

The process is easily implemented into computer, it does not require large amounts
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of historical data and new forecasts are easy to obtain. It is obvious that AT A satisfies

all these desirable properties besides being even computationally simpler than SES.

3.1.7 Parameter Space of AT A(p,0)

ATA(p,0) does not violate the concept of exponential smoothing since the smallest
weight attached to the last observation is % but SES may attain smoothing parameter

less than %

P
XATA — —
n
1
— < oaraxl
T
1
0<---< = £ osps<1 (3.23)
—— T

1MpProper Tegion

If the goal is to estimate the final value for a component and it is known that it is
changing in time, it makes sense to give greater emphasis to the most recent history
versus the more distant past, due to the fact that the component is changing and
therefore the recent history should more accurately reflect current conditions. For this
reason it is not surprising that AT A is more accurate than traditional ES methods.
Also philosophically, AT'A does never violate the concept of exponential weighting
scheme, from the point of view that the recent data is more representative of the
future therefore should be assigned more weight. This is guaranteed with AT'A since
the smallest weight attached to the most recent observation by AT'A is < but this is

not the case for SES.
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3.2 Comparison of AT A(p,0) and SES

While the functional forms of AT'A models are generally very similar to those of
exponential smoothing models, there are distinctive features of AT'A that separate it
from ES. AT A(p,0) can be thought of as an approach that lies in between moving
averages (M A) and simple exponential smoothing (SES). AT A(p, 0) attaches weights
to only the most recent (n— p) observations and zero weights to the other p observations
like M A and the weights decrease exponentially like SES for some p (p < 3). The

weighting scheme AT A(p, 0) , however, is more flexible and intuitive than SES.

In addition, the other important difference lies in the weights assigned to
observations by AT'A and SES. ATA(p,0) can be parameterized so that all past
observations receive equal weights while this is not possible for any SES model.
Also when the AT'A(p,0) and SES that assign equal weights to the most recent
observation are compared, it can be seen that AT'A(p, 0) tends to assign more weight
to the other recent observations while assigning less weight to the distant past
compared to SES. While all ES models require initialization and the initial values
affect the quality of forecasts especially for small values of n and a, AT'A does not
require initialization and the optimization of the other parameters are simpler and

faster since the parameter values are restricted to integers.

Forecasting models can also be compared on some well known metrics like the
average age of the method and the variance of the forecast. As summarized in
sections 3.1.2 and 3.1.3, at the same smoothing constant level, the average age of
AT A(p,0) is smaller than SES,

l—wm

- n—7p =
k = —— < kggs =
AT A p+1 SES o )

therefore AT A(p,0) should be preferred by researchers since it utilizes fresher data.

In order for the two models to have equal average ages the smoothing constant of SES

should be given the value o = %11. When smoothing constants for the two models

are chosen in this fashion to make the average ages equal, AT A(p, 0) is still preferable
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(04

since then Vg4 < Vogg = 7

To present the discussions about the features of ATA in a more organized way, the
weights that AT'A(p, 0), SES and M A assign to the observations when trying to obtain
one step forecasts are given in Table 3.3 and Table 3.4 for sample sizes 12 and 30
respectively. The tables also contain the average ages (k), variance (V) and the initial

values and weights assigned to observations.

Table 3.3 Weights assigned to observations by AT A, ES and M A for n = 12 to obtain X'lg

Observation p=1landa=1/12 p=2anda=2/12 p=3anda=3/12 p=6anda=6/12

ATA ES MA | ATA ES MA | ATA ES MA | ATA ES MA

¥ 0.083 0.083 0.083 | 0.167 0.167 0.167 [ 0.250 0.250 0.250 | 0.500 0.500 0.500
iy 0.083 0.076 0.083 [0.152 0.139 0.167 [ 0.205 0.188 0.250 | 0273 0250 0.500
s 0.083 0.070 0.083 [0.136 0.116 0.167 [0.164 0.141 0250 |0.136 0.125 -
X, 0.083 0.064 0.083 [0.121 0.096 0.167 [0.127 0.105 0.250 | 0.061 0.063 -
X 0.083 0.059 0.083 [0.106 0.080 0.167 [0.095 0.079 - |0.023 0031 -
X 0.083 0.054 0.083 [0.091 0.067 0.167 [0.068 0.059 - |0.006 0016 -
Xe 0.083 0.049 0.083 [0.076 0.056 - [0.045 0.044 - - 0008 -
X 0.083 0.045 0083 |0.061 0047 - [0.027 0033 - - 0004 -
Xy 0.083 0.042 0.083|0.045 0039 - |0.014 0025 - - 0002 -
Xa 0.083 0.038 0.083|0.030 0032 - [0000 0019 - - 0001 -
X, 0.083 0.035 0083| - 0027 - - 0014 - - 0000 -
Xy - 0032 0083 - 002 - - 0011 - - 0000 -
Initialvalue | X3 2 - | X 2 « &% 2 < |z 9 -
weight of initial | 0.083 0.352 - [0.015 0112 - [0.005 0032 - |0.001 0.000 -
AA 5500 6.776 5.500 | 3348 4327 2500|2259 2.873 1.500|0.863 1.000 0.500
\% 0.083 0.162 0.083 | 0.116 0.102 0.167 | 0.164 0.144 0250 | 0.347 0333 0.500
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Figure 3.5 Weights assigned to observations by AT A(p, 0), SES and M A for n = 12 and various p
values.
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Table 3.4 Weights assigned to observations by AT'A, ES and M A for n = 30 to obtain X3,

Observation p=1land o =1/30 p=2anda=2/30 p=3anda=3/30 p=15anda =6/30

ATA ES MA | ATA ES MA | ATA ES MA | ATA ES MA

X3 0.033 0.033 0.033 | 0.067 0.067 0.067|0.100 0.100 0.100 | 0.500 0.500 0.500

Xog 0.033 0.032 0.033 | 0.064 0.062 0.067|0.093 0.090 0.100|0.259 0250 0.500
Xog 0.033 0.031 0.033 | 0.062 0.058 0.067)|0.086 0.081 0.100|0.129 0.125 -
Koy 0.033 0.030 0.033 | 0.060 0.054 0.067 | 0.080 0.073 0.100 | 0.062 0.063 -
Xag 0.033 0.029 0.033 | 0.057 0.051 0.067|0.074 0.066 0.100 | 0.029 0.031 -
Kos 0.033 0.028 0.033 | 0.055 0.047 0.067 | 0.068 0.05% 0.100 | 0.013 0.016 -
X4 0.033  0.027 0.033 [ 0.053 0.044 0.067 | 0.062 0.053 0.100 | 0.005 0.008 -
Xog 0.033 0.026 0.033 [ 0.051 0.041 0.067 | 0.057 0.048 0.100 | 0.002 0.004 -
Xao 0.033 0025 0.033 | 0.048 0.038 0.067 [ 0.052 0.043 0.100 | 0.001 0.002 -
Xoy 0.033 0.025 0.033 [0.046 0.036 0.067 | 0.047 0.039 0.100 | 0.000 0.001 -
Xap 0.033 0.024 0.033 | 0.044 0.033 0.067 | 0.042 0.035 - 0.000 0.000 -
Xio 0.033  0.023 0.033 [ 0.041 0.031 0.067 [ 0.038 0.031 - 0.000 0.000 -
Xis 0.033 0.022 0.033 |0.039 0029 0067 |0.033 0.028 - 0.000 0.000 =
X7 0.033  0.021 0.033 [0.037 0.027 0.067 | 0.030 0.025 - 0.000 0.000 -
X6 0.033  0.021 0.033 [0.034 0.025 0.067 | 0.026 0.023 - 0.000 0.000 -
Xis 0.033  0.020 0.033 [0.032 0.024 - 0.022 0.021 - - 0.000 -
X4 0.033 0.019 0.033 | 0.030 0.022 - 0.019 0.019 - - 0.000 -
1Xi3 0.033 0.019 0.033 | 0.028 0.021 - 0.016 0.017 - - 0.000 -
X2 0.033 0.018 0.033 |[0.025 0.019 - 0.014 0.015 - - 0.000 -
X 0.033 0.018 0.033 |[0.023 0.018 - 0.011 0.014 - - 0.000 -
X10 0.033 0.017 0.033 |0.021 0.017 - 0.009 0.012 - - 0.000 -
Xg 0.033 0.016 0.033 [0.018 0.016 - 0.007 0.011 - - 0.000 -
Xs 0.033 0016 0.033 |0.016 0.015 - 0.005 0.010 - - 0.000 -
X 0.033 0015 0.033 [ 0.014 0.014 - 0.004 0.009 - - 0.000 -
X 0.033 0.015 0.033 | 0.011 0.013 - 0.002 0.008 - - 0.000 -
X5 0.033 0.014 0.033 |[0.009 0.012 - 0.001 0.007 - - 0.000 -
X4 0.033 0.014 0.033 |0.007 0011 - 0.001 0.006 - - 0.000 -
X3 0.033  0.013 0.033 [ 0.005 0.010 - - 0.006 - - 0.000 -
Xy 0.033  0.013 0.033 - 0.010 - - 0.005 - - 0.000 -
Xy - 0.012 0.033 - 0.009 - - 0.005 - - 0.000 -
Initial Value X1 ? - Xy 7 - X3 ? - Xi5 7 -
Weight of initial | 0.033  0.362 - 0.002 0.126 - 0.000 0.042 - - 0.000 -

AA 14.500 18.150 14.500 | 9.333 12.107 7.000 | 6.750 8.491 4.500 | 0.937 1.000 0.500

v 0.032  0.015 0.033 | 0.045 0.034 0.067 | 0.062 0.053 0.100|0.339 0.333 0.500
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Figure 3.6 Weights assigned to observations by AT A(p, 0), SES and M A for n = 12 and various p

values.
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From the tables it can be seen that for p = 1 the M A and AT A(p,0) models assign
the same weights to observations therefore they have equal average ages, however,
SES has larger average age with a slightly smaller variance. For p = 2 the weights of
the oldest two observations are zero for AT A(p, 0) and the average age and variance
of the model is now between those of M A and ES with ES having the largest. For
p = 3, now the weights of the oldest three observations are zero for AT A(p, 0) and the
average age and variance of the model are again between those of M A and ES with ES
having the largest. It is worth drawing attention to the differences between the weights
attached to the initial values by the E.S and AT A(p,0). For all smoothing levels ES
assigns a relatively much larger weight to the initial value compared to AT A(p, 0). The
fact that £S is not adaptive to the data can be seen by looking at the p = 6 columns of
Table 3.3 and the p = 15 columns of Table 3.3. Since a = 0.5 for both of these cases,
even though the weights should be distributed among 12 observations in the first case
and 30 observations in the second case, S assigns 0.5 to the most recent, 0.273 to the
second most recent etc., exactly the same weights for both data sets. even though we
have a much larger data set when n = 30 compared to n = 12, ES keeps assigning the
same weights to the most recent, the second most recent observations etc. AT A(p, 0)
on the other hand takes into account the amount of data that can be utilized and is able
to distribute the weights in a fashion that favors the recent observations. When the
tables are studied closely, it can be seen that AT A(p, 0) always assigns more weight to

recent observations and less weight to older observations.

3.2.1 M3 Competition Results

To compare AT A(p,0) and SES on their forecasting accuracies, both methods are
applied to the M3-competition data (Makridakis & Hibon (2000)) since this collection
is the most recent and comprehensive time-series data collection available with verified
results. This collection consists of 3003 data sets from various fields. Data sets are of
various lengths, with different kinds of trend and seasonality components and each data

set consists of in sample and out sample data points. When comparing the methods, the
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optimum smoothing parameters are obtained by minimizing an in-sample error measure
and then the forecasts up to 18 steps ahead (the number of steps as specified in the M3
competition) are computed to obtain the average out sample errors for both models.
The data sets are deseasonalized by the classical decomposition method of the ratio-to-
moving averages, if necessary and reseasonalized forecasts are produced for as many

steps ahead as required.

First, to stay consistent with the rest of the literature, the symmetric mean absolute
percentage errors (SMAPE) were used. For all data sets, the required numbers of
forecasts (for the pre-determined forecasting horizons) were computed and out
sample SMAPEs were averaged across all 3003 series for each forecasting horizon.

The results are given in Table 3.5.

Table 3.5 Average symmetric MAPE across different forecast horizons: all 3003 series

Forecasting horizons Averages

Method 1 2 4 5 6 8 12 15 18 14 1-6 1-8 1-12 1-15 1-18

[¥5]

SES 9.510.6 12.7 14.1 143 149 13.3 145183 19.4 11.73 12.68 12.82 13.12 13.66 14.31
ATA(p,0) 8.9 10.0 12.1 13.7 13.914.7 12.8 13.917.3 18.9 11.16 12.21 12.34 12.64 13.13 13.77

When the methods are compared based on SMAPE as in Table 3.5, it can be seen
that AT A(p, 0) produces smaller average errors for all individual forecasting horizons.
The errors are averaged for short and long term horizons on the right side of the table so
that the differences between the errors can be more clearly seen. Overall AT A(p,0)'s
average SMAPE is 13.77 compared to 14.31 for SES which is significantly larger.

Second comparison can be made based on the mean absolute scaled errors (MASE)
which were summurized for both models in Table 3.6. When the comparison is based
on this metric, AT A(p, 0) still performs better than SES on each forecasting horizon

and on average for both short and long term forecasting horizons.
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Table 3.6 Average MASE across different forecast horizons: all 3003 series

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-121-151-18

SES 0.78 1.03 1.36 1.63 1.82 2.05 1.49 0.97 1.25 1.38 1.20 1.45 1.44 1.35 1.32 1.33
AT A(p,0) 0.75 1.00 1.33 1.61 1.80 2.04 1.47 0.97 1.20 1.37 1.17 1.42 1.42 1.33 1.30 1.30

The results obtained from the forecasting analysis of M3 competition data set are
summarized in Table 3.7. That is, SES and AT A(p,0) have been applied to 3003
series and the optimal smoothing parameter values have been obtained. Simple
exponential smoothing methods have been performed in two different ways. The
initial values have been selected either as the first observation optimized in forecast
package of R programming. Then, it has been observed that when the initial value is
X, for SES, the value of the average optimal smoothing parameter is 0.7419. The
smoothing level « equals 0.7257, when the initial value is optimal. In addition, for
AT A(p,0) the average smoothing level is 0.6307 as shown in Table 3.7. When the
alpha values of the two models have been compared, one can see that AT'A has
smaller variance. As a result, AT A yields more efficient estimates than SE.S. To sum
up, when the simple versions of the two models are compared theoretically, AT A is
superior since it is simpler and has more desirable properties. Also, when compared
emprically AT Aoutperforms SES on the M3-Competition data sets on all forecasting

horizons for all the popular error metrics.
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Table 3.7 Average optimal smoothing parameter for SE.S and AT A(p, 0): all 3003 series

Average smoothing parameter ( &op )

Method SES SES ATA(p,0)
Initial value X Optimal X,
All 3003 series 0.7419 0.7257 0.6307
Yearly series 0.9177 0.9071 0.8266
Quarterly series 0.8713 0.8623 0.7582
Monthly series 0.5666 0.5421 0.4388
Other series 0.9628 0.9624 0.9226
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CHAPTER FOUR
THE TRENDED ATA METHODS

ES models consist of a family of models which assume that the time series has up
to three underlying data components: level, trend and seasonality. In ES the goal is to
obtain estimates for the level, trend and seasonal pattern and then to use these final
values to forecast the future. Each model contains one of the five types of trend
(none, additive, additive damped, multiplicative and multiplicative damped ) and one
of the three types of seasonality (none, additive and multiplicative). When different
combinations of trend and seasonality are considered, 15 different ES models can be
formed. The best known of these are SES (no trend, no seasonality), Holt’s linear
model (additive trend, no seasonality) and Holt-Winters’ additive model (additive
trend, additive seasonality). The ETS state space models underlying ES have been
proposed by Hyndman et al. (2008) which consider 30 different forecasting models
according to error, trend and seasonality components. In this thesis, we will not
consider seasonal models since Holt's additive method's performance for
deseasonalized data is better than Holt Winters' seasonal method. Therefore, we will
deal with trended (additive, multiplicative, additive damped and multiplicative
damped) models using ATA method with deseasonalized data. Most of the

competitors in the M3-competition cope with the seasonality problem by this fashion.

The forecasting methods that performed the best in Makridakis & Hibon (2000)
mostly use data after the data is deseasonalized by the classical decomposition
method. It is especially worth noting Holt's linear trend method on the deseasonalized
data performs better than Holt Winters' when the accuracies are compared on
empirical data. This itself proves that it is sufficient to use a decomposition method
on seasonal data instead of employing a complex method to deal wit seasonality.
Taking into account all of these, in this thesis the focus is on modeling the trend
component and handling seasonality patterns by utilizing classical decomposition.
Therefore, ATA method will be expanded to higher order ES methods for additive,

multiplicative and damped trend components. In the following sections the different
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trended ATA models will be introduced and demonstrated by using the series N96
from the M3 data set which is a yearly series. The data consists of 20 data points
where 14 of these are in sample (training) and the remainin 6 are considered as out
sample (test) observations. The proposed model's accuracy will be compared to its

counter ES model using M3 competition data set in the last part of this chapter.

4.1 ATA(p,q) with Additive Trend

For the trended series X, t = 1,...,n, the model which is denoted by AT A(p, q)
can be used AT A(p, q) corresponds to a Holt's linear model with some modifications
on level and trend parameters. This method can be given by a forecast equation and

two smoothing equations (one for the level (S;) and one for the trend (73):

Si=(5) X+ (ft—p) (8 +Fq) (4.1)
T = (%) (S — Si—1) + (ZZ—Q) 5 g (4.2)
X(h) = S, + hT,, (4.3)

forp € {1,...,n},qg € {0,1,...,p} andn > p > q. Forn < plet S, = X, for
n<gqgletT, = X; — X; 1 andlet T; = 0. 5, denotes an estimate of the level of the
series at time ¢, and T; denotes an estimate of the trend (slope) of the series at time .
It is worth pointing out that when ¢ = 0 AT'A(p, q) reduces to a simple model that has
similar form to simple ES, i.e. forn > p:

S(t) = (?) Xi+ (5—}”) S 1, 4.4)

and S(t) = X; forn < p.

As with simple exponential smoothing, the level equation in 4.1 shows that S; is a
weighted average of the observation at time ¢ and the with in-sample one-step-ahead

forecast for time ¢ — 1, here given by S;—1 + 7;-1. The trend equation shows that 7} is a
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Table 4.1 Parameter space for AT'A(p, g)

Level smoothing parameter (p)

Trend smoothing 1 2 3 e p T n
parameter(q)
0 (1,0) (2,0) (3,0) (4,0) - (p,0) . (n,0)
1 an @) @) @) . () e ()
2 (1,2) (2,2) (3,2) (42) e (p;2) o (n,2)
3 (1,3) (2,3) (3,3) (4,3) _— (p,3) - (n,3)
4 (1.4) (2,4) (3.4) (4,4) so (p:4) - (n,4)
(b*a*)
n G @ Gn @D . ew . )

weighted average of the estimated trend at time ¢ which is simply S; — S;_; and T;_,
the previous estimate of the trend. X;(h) denotes the h-step-ahead forecast which is

equal to the last estimated level plus A times the last estimated trend value.

The parameter space of ATA method, as shown in Table 4.1 allows for all possible
parameter value combinations to be considered as candidates. The value of p
represents level parameter and also the value of g represents trend parameter where
pe{l,...,n},q€{0,1,...,p} and n > p > q. However, (p*, gx) demonstrated in
Table 4.1 refers to optimal smoothing parameters for the procedure of ATA method.
From the Table 4.1, an algorithm can be obtained to estimate the smoothing

parameters. The algorithm can be summarized as follows:

Step 1 If needed the time series is deseasonalized via the classical decomposition

method, assuming a multiplicative relationship holds for seasonal component.

Step 2 Estimate p and g by minimizing the in-sample symmetric mean absolute one-

step-ahead forecast errors, i.e. SMAPE = — Znﬂ :§*+§*l 200 where X is the

actual value and X; is the one-step-ahead forecasted value assuming t > p < q.

Step 3 The forecasts are reseasonalized, if they were deseasonalized in Step 1.
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ATA(p=11,q=1)
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Figure 4.1 The fitted and forecast values of AT'A(p, ¢) with optimal smoothing parameters

Figure 4.1 presents the observed data, fitted and forecast values at the optimal p and
g smoothing levels. According to the graph, the red line refers to original series of N96
competition data set and the black line represents the one step forecast values obtained
from AT A(p, q). In addition, the six step ahead forecasts are calculated and market as
blue points. The optimal smoothing parameters were found to be 1 for the trend and 11
for the level parameters with the constraint p < g. The original data set has a slightly

increasing trend and the value of ¢ = 1 is suitable to represent this.

In Table 4.2 demonstrates the results that are obtained from applying AT A(p, ¢) on
the N96 competition data set. The smoothing parameters are estimated by minimizing

the in sample SMAPE one step forecast ahead.
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Table 4.2 An application of AT A(p, q) linear trend method on the N96 time series data set from the
M3-competition

Data The smoothed and forecast values
Year t X Level (S3) Trend (13) Forecast (X;)
1975 1 3709.24 3709.24 0.00
1976 2 3947.02 3947.02 118.89 3709.24
1977 3 4907.50 4907.50 399.42 4065.91
1978 4 5425.42 5425.42 429.05 5306.92
1979 5 5866.84 5866.84 431.52 5854.47
1980 6 6211.48 6211.48 417.04 6298.36
1981 7 6689.54 6689.54 425.76 6628.52
1982 8 6896.62 6896.62 398.42 7115.30
1983 9 6749.48 6749.48 337.80 7295.04
1984 10 6847.42 6847.42 313.82 7087.28
1985 11 6823.48 6823.48 283.11 7161.24
1986 12 6740.24 6770.77 255.13 7106.59
1987 13 7023.82 7024.14 254.99 7025.90
1988 14 7303.28 7298.11 256.35 7279.13
h Xi(h)
1989 1 7661.38 7554.45
1990 2 8816.56 7810.80
1991 3 9366.04 8067.15
1992 4 9715.20 8323.50
1993 5 9485.74 8579.84
1994 6 9974.00 8836.19
Accuracy measures

in-sample out-sample

MSE 110935 MSE 1127035

MAE 238 MAE 974

MAPE 4.31 MAFPE 11.76

sMAPE 4.19 sMAPE 10.99
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4.2 ATA(p,q) with Multiplicative Trend

For the series X;, t = 1,...,n, the model which we will denote by AT Az (p, q)
allows for smoothing and forecasting of data with an exponential trend. This method
can be given by the following a forecast equation and two smoothing equations (one

for the level (.S;) and one for the trend (7}):

5= () (472 e
() (B (e

Ti = (t) (St,l) + ( ; ) T, (4.6)

Xg(h) = St " ﬂh‘, (47)

forpe{1,...,n},q€{0,1,...,p}andn > p > q. Forn < plet 5, = X;,forn < g
let T; = X;/X; 1 and let T} = 1.

The trend equation shows that 7} represents an estimated growth rate (in relative terms
rather than absolute) which is multiplied rather than added to the estimated level. The
trend component now has an exponential effect on the forecast value rather than linear
such that X, (k) is equal to the final estimate of the level times the final estimate of the

trend to the power of h.

ATA(p=13,0=5)

Figure 4.2 The fitted and forecast values of AT A,..1(p, ¢) with optimal smoothing parameters
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Table 4.3 An application of AT A.,.1:(p, g) exponential trend method on the N96 time series data set
from the M3-competition.

Data The smoothed and forecast values
Year t X Level (S;) Trend (T}) Forecast (X;)
Year t X Level Trend Forecast
1975 | 3709.24 3709.24 1.00
1976 2 3947.02 3947.02 1.06 3709.24
1977 3 4907.50 4907.50 1.24 4200.04
1978 4 5425.42 5425.42 1.11 6101.71
1979 5 5866.84 5866.84 1.08 5998.00
1980 6 6211.48 6211.48 1.06 6344.17
1981 7 6689.54 6689.54 1.07 6599.78
1982 8 6896.62 6896.62 1.05 7176.77
1983 9 6749.48 6749.48 1.01 7218.42
1984 10 6847.42 6847.42 1.01 6809.45
1985 11 6823.48 6823.48 1.00 6927.52
1986 12 6740.24 6740.24 1.00 6856.17
1987 13 7023.82 7023.82 1.01 6724.82
1988 14 7303.28 7290.73 1.02 7127.59
h X:(h)
1989 1 7661.38 7458.92
1990 2 8816.56 7630.99
1991 3 0366.04 7807.03
1992 4 9715.20 7987.14
1993 5 0485.74 8171.39
1994 6 9974.00 8359.90
Accuracy measures

in-sample out-sample

MSE 115510 MSE 1866014

MAE 266 MAE 1267

MAPE 4.70 MAPE 15.87

sMAPE 4.65 sMAPE 14.54

The results that are obtained from applying AT A,,.u:(p, ¢) on the N96 competition

data set are given in Table 4.3. Otherwise, the smoothing parameters are estimated by
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minimizing the in sample one step ahead SMAPE. For demonstration purposes the
optimal smoothing parameters are set to p = 13 and ¢ = 5. Figure 4.2 presents the
results obtained from the application of AT'A,,..;:(p,¢) as it was done in previous
section for additive model. Nevertheless, it can be highlighted that the trend
parameter for the multiplicative model has a larger value compared to the trend
parameter for the additive model. The difference between the additive and
multiplicative trend to calculate in the column 7;. In the AT A(p, q) method with
additive trend, T} is added to the corresponding level term (5;_;) in the calculations;
in the AT A(p,q) method with multiplicative trend, 7; is multiplied with the

corresponding level term (S;_1) in the calculations.

4.3 Level Fixed Trended Methods

We have seen that ATA method can be adapted to all ES models. There are
numerous variations of standard exponential smoothing models that have been
proposed to increase their forecasting performance by defining some rules and putting
some constraints on the smoothing parameters. Although ES methods incorporate
five different types of trend and three different type of seasonal components what
determines the forecasting performance is the level of the series. Without knowing
the level of the series, finding the right trend and seasonal component does not mean
anything. Therefore, fixing the trend parameter to zero, we will first find the optimum
level and then using this optimum level we will search for the appropriate trend value.
Since, if a data set is not trended, the value of the trend parameter will be zero, this
approach gives us the opportunity of making a selection between a simple and a
trended model. For the fixed level parameter, the proposed models are described as

additive, multiplicative and damped trend in the following sections.
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4.3.1 Additive Forms of ATA(p*,q) with Fixed Level

In this section, a version of AT Awhich we denoted by AT A(p, q) will be given
as an alternative Holt's linear trend method. The goal is again to forecast future values
of a time series from its own current and past values. That is, given a series of equally
spaced observations, X;, t = 1,2,...,n on some quantity, forecasts for h = 1,2, ...
should be obtained. The method estimates the local growth, 7}, by smoothing
successive differences, (S; — S;—1) of the local level, S;. The forecast function is the
sum of level and projected growth. Now, Holt's linear trend method, which was

defined in equations (2.17)-(2.19), will be modified as below:

Stz(f)Xﬁ( t )(St i B i, (4.8)
ﬂ:(%)(st_st—l)"i'(t; )Tt LI>p=gq, (4.9)
X,(h) = S, + hT;, (4.10)

with constraint S; = X, fort < p, T} = X; — X;_; fort < g and T; = 0 where
p € {0,1,...,n}, ¢ € {0,1,...,n} and p > g. Note that there are two smoothing
parameters (p and q) to estimate but no starting values are needed for level and trend.
The parameters can be estimated by minimizing the one step ahead MSE, MAE, MAPE
or some other criterion for measuring the in-sample forecast error. Also notice that for

= 0 the AT A(p*,q) model defined in equations (4.8)-(4.10) reduces to an ATA
model with additive trend with no trend component which is an alternative to simple
exponential smoothing. The steps involved to obtain point forecasts for AT A(px, q)

are summarized below:

Step 1 Descasonalize the data by the classical decomposition method of the ratio-to-

moving averages, if necessary.

Step 2 Obtain the optimal value for the parameter p = p* by minimizing the in-sample

[ X=X th
1 |Xr,+Xr.

200 where X is the actual value and Xt is the one-step-ahead forecasted value

mean absolute one-step-ahead forecast errors, i.e. sSM APE = Et_
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assuming g = 0.

p* = argminp(sM APE|q = 0), pr=l, .. .0

Step 3 Using the optimal p* parameter found in Step 2, find an optimal value for the

parameter ¢ (¢ < p*) by minimizing the in-sample one-step-ahead sSMAPE again.

(p*,q).

Step 4 Produce reseasonalized forecasts using the proposed method with optimized

parameters (p*, ) for as many steps ahead as required.

Table 4.4 Parameter space of AT A(p*, q)

Level parameter (p)

Trend parameter(q) 1 2 3 P n

0 (1,0) 2,0) (3,0) ven (p*,0) e (n,0)
1 (1,1) (2,1) (3.1) (p*,1) (n,1)
2 (1,2) (2,2) (3,2) . (p*,2) e (n,2)
3 (1,3) (2,3) (3,3) (r*,3) (n,3)
q (p*aq)

n (1,n) (2,n) (3,n) s (p*,n) T (n,n)

The implementation of the algorithm and the parameter space of AT A(p*, ¢) is given
in Table 4.4.

81



ATA(p=14,q=1)
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Figure 4.3 The fitted and forecast values of AT A(p*, ¢) with optimal smoothing parameters

The smoothed values and optimum parameters obtained by modelling the N96 data
set by AT A(p*, q) are given in Table 4.5. The smoothing parameters are estimated
by minimizing the SMAPE for the within-sample one-step forecast errors. Also, the
level and trend parameters are found to be p = 14 and ¢ = 1. When AT A(p*, q) and
AT A(p, q) are compared, the difference of the level parameter can be clearly observed.
It is interpreted that a significant difference will occur due to the dramatical trend effects
in the long term. The advantage of this model is that it removes the misleading effect
that the trend component may have in determining the level of the model. Because, a

level that is not correctly determined will lead to errors in determining the slope.

Table 4.5 contains the results that are obtained from applying on the AT A(p*, q)
analysis for N96 competition data set. The table shows us the smoothed values for
trend and level components and also the fitted and the forecast values for training and

test sets respectively.
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Table 4.5 An application of AT A(p”, ¢) exponential trend method on the N96 time series data set from
M3-competition.

Data The smoothed and forecast values
Year t X Level (Sy) Trend (T}) Forecast (X;)
Year t X Level Trend Forecast
1975 1 3709.24 3709.24 0.00
1976 2 3947.02 3947.02 118.89 3709.24
1977 3 4907.50 4907.50 399.42 4065.91
1978 4 5425.42 5425.42 429.05 5306.92
1979 5 5866.84 5866.84 431.52 5854.47
1980 6 6211.48 6211.48 417.04 6298.36
1981 7 6689.54 6689.54 425.76 6628.52
1982 8 6896.62 6896.62 398.42 7115.30
1983 9 6749.48 6749.48 337.80 7295.04
1984 10 6847.42 6847.42 313.82 7087.28
1985 11 6823.48 6823.48 283.11 7161.24
1986 12 6740.24 6740.24 252.58 7106.59
1987 13 7023.82 7023.82 254.97 6992.82
1988 14 7303.28 7301.53 256.59 7278.79
h X, (h)
1989 1 7661.38 7558.12
1990 2 8816.56 7814.71
1991 3 9366.04 8071.31
1992 4 9715.20 8327.90
1993 5 0485.74 8584.49
1994 6 9974.00 8841.08
Accuracy measures

in-sample out-sample

MSE 111010 MSE 1118507

MAE 240 MAE 970

MAPE 4.34 MAPE 11.70

sMAPE 4.23 sMAPE 10.94
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4.3.2 Multiplicative Forms of AT A,..i:(p*, q) with Level Fixed

The multiplicative form of AT'A will be given in this section which can be called
AT A,z (p*, q) as an to alternative Holt's exponential trend method. The notation as
given in the previous section so Holt's exponential trend method, which was defined in

equations (2.22)-(2.24), will be modified as below:

==
Sy = (%) X, + (—t?) (Sp_1 % Ty1), (4.11)
q\ S t—q
_ (4 —4 >
= (2 + () tor2e @.12)
Xi(h) = S, + AT, (4.13)

with constraint Sy = X; fort < p, Ty = X;/X; 1 fort < gand Ty = 1 where
p € {0,1,...,n},q € {0,1,...,n} and p > g. Note that there are two smoothing
parameters (p and q) to estimate but no starting values are needed for level and trend.
The parameters can be estimated by minimizing the one step MSE, MAE, MAPE or
some other criterion for measuring the in-sample forecast error. Also notice that for
g = 0 the AT A (p”, ¢) model defined in equations (4.11)-(4.13) reduces to ATA
model with multiplicative trend with no trend component which is an alternative to
simple exponential smoothing. Point forecasts can be obtained by foillowing the same

process as was done for AT A(p*, q).
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ATA(p=14,q=5)
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Figure 4.4 The fitted and forecast values of AT A,,.1:(p", ¢) with optimal smoothing parameters

The smoothed and forecast values obtained by modeling the N96 data set by
AT A (p*, q) are given in Figure 4.4. The level and trend parameter are found to be
p = 14 and ¢ = 5. Moreover, the simple and trended versions of the multiplicative
model can be obtained from one single model and when optimization is carried out

the selection is done simultaneously.

Table 4.6 presents the results that are obtained from applying AT A, (p*, ) on the
N96 data set. The smoothing parameters are estimated by minimizing the in sample
one step ahead SMAPE. In addition to SMAPE, three different accuracy measures are

calculated for training and test sets.
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Table 4.6 An application of AT A,.+(p", g) exponential trend method on the N96 time series data set
from M3-competition.

Data The smoothed and forecast values
Year t X Level (Sy) Trend (T}) Forecast (X t)
Year t X Level Trend Forecast
1975 1 3709.24 3709.24 1.00
1976 2 3947.02 3947.02 1.06 3709.24
1977 3 4907.50 4907.50 1.24 4200.04
1978 4 5425.42 5425.42 1.11 6101.71
1979 5 5866.84 5866.84 1.08 5998.00
1980 6 6211.48 6211.48 1.06 6344.17
1981 7 6689.54 6689.54 1.07 6599.78
1982 8 6896.62 6896.62 1.05 7176.77
1983 9 6749.48 6749.48 1.01 7218.42
1984 10 6847.42 6847.42 1.01 6809.45
1985 11 6823.48 6823.48 1.00 6927.52
1986 12 6740.24 6740.24 1.00 6856.17
1987 13 7023.82 7023.82 1.01 6724.82
1988 14 7303.28 7303.28 1.02 7127.59
h Xi(h)
1989 1 7661.38 ] 7476.42
1990 2 8816.56 7653.67
1991 3 9366.04 7835.11
1992 4 9715.20 8020.86
1993 5 9485.74 8211.02
1994 6 9974.00 8405.68
Accuracy measures

in-sample out-sample

MSE 115510 MSE 1780932

MAE 266 MAE 1236

MAPE 4.70 MAPE 15.42

sMAPE 4.65 sMAPE 14.16
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4.3.3 Damped Form of AT Agamped(p*, @) with Level Fixed

The forecasts generated by Holt’s linear method display a constant trend
(increasing or decreasing) indefinitely into the future. Even more extreme are the
forecasts generated by the exponential trend method which include exponential
growth or decline.  Empirical evidence indicates that these methods tend to
over-forecast, especially for longer forecast horizons. Motivated by this observation,
Gardner & McKenzie (1985) introduced a parameter that “dampens” the trend to a flat
line some time in the future. Methods that include a damped trend have proven to be
very successful and are arguably the most popular individual methods when forecasts

are required automatically for many series (Hyndman & Athanasopoulos (2014)).

The damped form of AT'A will be given in this section which will be denoted by
AT Agampea(p*, @) as an alternative Additive damped trend method. Now, Additive
damped trend method, which was defined in equations (2.25)-(2.27), will be modified

as below:
g, = (Ig) - (ff—;—p) (Se1 + ¢To1), (4.14)
T, = (%) (S:— Si_1) + ("L_Tq) $Ti1, t>p>gq, (4.15)
Xi(h) =S;+ (¢ +¢* +4° + ...+ ¢")T3, (4.16)

with constraint S; = X; fort < p, T, = X; — X;—; fort < g and T; = 0 where
pe{0,1,...,n},qg€{0,1,...,n},0 < ¢ < 1and p > q. Note that there are three
smoothing parameters (p, ¢ and ¢) to estimate and no starting values are needed for
level and trend. Note that, the fixed damped parameter values are used in this thesis
as 0.80, 0.85, 0.9 or 0.95 as these values are commonly utilized by most researchers.
The parameters can be estimated by minimizing the one step MSE, MAE, MAPE or
some other criterion for measuring in-sample forecast error. Also notice that for
g = 0 the AT A(p*, ¢) model defined by equations (4.14)-(4.16) reduces to an additive
ATA trended model with no trend component which is an alternative to simple
exponential smoothing.  The steps involved to obtain point forecasts using

AT A(p*, q) are summarized below:
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Step 1 Deseasonalize the data by the classical decomposition method of the ratio-to-

moving averages, if necessary.

Step 2 Obtain the optimal value for the parameter p = p* by minimizing the in-sample

mean absolute one-step-ahead forecast errors, i.e. sSMAPE = Z o :;' jr;\("
i t

200 where X is the actual value and X, is the one-step-ahead forecasted value

assuming ¢ = ().

pr=opt p for q=0, p=1:::n
Step 3 Define the fixed damped parameter as ¢ = 0.90 where 0 < ¢ < 1.

Step 3 Using the optimal p* parameter found in Step 2, find an optimal value for the

parameter ¢ (¢ < p*) by minimizing the in-sample one-step-ahead SMAPE again.

(r*,9)-

Step 4 Produce reseasonalized forecasts using the proposed method with optimized

parameters (p*, ¢) for as many steps ahead as required.

ATA(p=14, q=1) with ¢=0.90
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Figure 4.5 The fitted and forecast values of AT Agampea(p”, ¢) with optimal smoothing parameters

In Figure 4.5 demonstrates the results from the model AT A q,,¢4(p%, q)- Itis clearly

observed that the model reduces the effect of the over trend.
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Table 4.7 An application of AT Agamped(p”, q) exponential trend method on the N96 time series data
set from M3-competition.

Data The smoothed and forecast values
Year t X Level (S;) Trend (T3) Forecast (X' t)
Year t X Level Trend Forecast
1975 1 3709.24 3709.24 0.00
1976 2 3947.02 3947.02 237.78 3709.24
1977 3 4907.50 4907.50 711.65 4161.02
1978 4 5425.42 5425.42 579.20 5547.99
1979 ] 5866.84 5866.84 489.34 5946.70
1980 6 6211.48 6211.48 408.48 6307.24
1981 7 6689.54 6689.54 399.18 6579.11
1982 8 6896.62 6896.62 321.22 7048.81
1983 9 6749.48 6749.48 192.16 7185.72
1984 10 6847.42 6847.42 157.94 6922.42
1985 11 6823.48 6823.48 111.95 6989.57
1986 12 6740.24 6740.24 70.09 6924.23
1987 13 7023.82 7023.82 97.00 6803.32
1988 14 7303.28 7303.28 114.75 7111.12
h Xi(h)
1989 1 7661.38 7406.56
1990 2 8816.56 7499.51
1991 3 9366.04 7583.16
1992 4 9715.20 7658.45
1993 L 9485.74 7726.21
1994 6 9974.00 7787.20
Accuracy measures

in-sample out-sample

MSE 78662 MSE 2847741

MAE 217 MAE - 1560

MAPE 3.75 MAPE 16.49

sMAPE 3.84 sMAPE 18.22
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4.4 Comparison of ATA Trended Methods

In this section, the forecasting performance of all ATA trended methods are
compared based on their predictive performance on the N96 data from the
M3-competition. The data spans the period 1975-1994. The data from the period of
1989-1994 is a test set, and the data up to and including the year 1988 is the training
set. The smoothed data and forecasts obtained from all trended methods are compared
at their optimal smoothing parameter levels in Figure 4.6. The parameters of the
methods are estimated for all methods by minimizing sSMAPE over the training set. In
Table 4.8 the estimation results and error measures over the training and the test sets

are presented.

For the simplest form of ATA method, the smoothing parameter is estimated to be
14 indicating that the last observed value is equal to the forecast value. This is expected
as the series is clearly trending over time and the method requires the largest possible

adjustment in each step to capture this trend.

Table 4.8 Optimum smoothing parameters and accuracy measures for different ATA models on the N96
data set

Method AT A(p,0) ATA(p,q) AT Anus(p,q) ATA(p",q) AT Amur(p®,0) AT Adempea(p”, q)

Parameter
P 14 11 14 14 14 14
q 0 1 5 1 5 |

in-sample
MSE 156124 110935 115510 111010 115510 78662
MAE 315.59 237.89 265.91 240.14 265.91 217
MAPE 6.11 431 4.70 4.34 4.70 3.75
sMAPE 5.78 4.19 4.65 4.23 4.65 3.84

out-sample
MSE 4139327 1127035 1866014 1118507 1780932 2847741
MAE 1886.50 974.50 1267.26 970.22 1236.03 1560
MAPE 25.90 11.76 15.87 11.70 15.42 16.49
sMAPE 22.53 10.99 14.54 10.94 14.16 18.22

90



10000.00

S000.00

8000.00

700000 | Ayt s
P
# 4
o e—
6000.00 2’
| P p ’/ sssas ATA(p,)
1 s ATAMUl(p,q)
500000 | .’
j ”f - e ATA(P"q)
} Yy - = = ATA(p,0)
4000.0
000.00 i ATAmult{p*,q)

=« ATAdamped

3000.00

1975
1976
1978

9
1980
1981
1982
1983
1984

9

.
1987
1988
1989
1990
1991
199
1993
1994

Figure 4.6 Forecasts of ATA trend methods to N96 data set in M3 competition.

The sSMAPE measures calculated from the training set show that AT A(p, q) the
additive trended ATA method, provides the best fit to the data followed by the
additive form of ATA with fixed level. AT A(p,0) generates the largest with
in-sample one-step errors. In Figure 4.6, the forecasts generated by the methods can
be examined. Pretending that we have not seen the data over the test-set we would
conclude that all forecasts are quite plausible especially from the methods that

account for the trend in the data.

Comparing the forecasting performance of the methods over the training set in
Table 4.8, AT A(p, q) is the most accurate method according to the MAE, MAPE and
SMAPE, while AT A(p*,q) is most accurate according to the MSE. Similarly,
AT A(p*,q) outperforms the others when the performance on the test sets are
compared. Conflicting results like this are very common when performing forecasting
competitions between methods. As forecasting tasks can vary by many dimensions
(length of forecast horizon, size of test set, forecast error measures, frequency of data,
etc.), it is unlikely that one method will be better than all others for all forecasting

scenarios.
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4.5 Results From The M3-Competition

Since the M-3 competition data (Makridakis & Hibon (2000)) is still the most
recent and comprehensive time-series data collection available, the performance of
the proposed combination will be evaluated by applying the proposed methods to this
collection. The results from this competition are verified by the M-3 data set with
forecasts for all competing methods are available in the International Journal of
Forecasting's website. In this section, the results of five benchmark methods namely
single, holt, winter, comb(S-H-D) and ETS are obtained from Makridakis & Hibon

(2000), and are compared one by one to their counter ATA models.

Before the AT'A method is applied, the data sets were deseasonalized by the
classical multiplicative decomposition method as explained in previous sections,
when necessary. The parameters are optimized by minimizing the in-sample
one-step-ahead SMAPE and to stay consistent with rest of the literature forecasts up to
18 steps ahead (the number of steps as specified in the M3-competition) are computed
and again SMAPE for all forecast horizons are computed and averaged across all 3003
series. The data sets are of various lengths, with different kinds of trend and
seasonality components, time intervals between successive observation are yearly,
quarterly, monthly or other and each data set consists of in and out sample data points.
Yearly data have an average size of 28 and also the average size equals to 49 for
quarterly, 117 for monthly and 77 for other time intervals between successive

observation.

When the trended models of ATA are applied to the 3003 series, the smaller values
of trend parameters performed more accurately than the larger values such as ¢ = 1
especially for short data size and forecast horizons. When ¢ = 1is chosen all past trends
are treated or weighted equally which helps eliminate possible over trending problems.
On the other hand, for data of larger size the trend behaviour can be detected better
and the parameter may have been larger values. When the performance of trended

ATA models are obtained, it is observed that AT'A(p*, g) gives more accurate results
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for data of larger size. Moreover, key aspects of the trend is hidden in the simple
form of the ATA model. If the level of the observations is not correctly estimated,
accurate estimation of the trend parameter may not be possible. The AT A(p, 0) results
obtained from the M3 competition will support this idea. Therefore, in this thesis pre
determined model parameters as defined in the following list items are used to obtain
the accurate forecasts. Results from seven different applications of the ATA method

will be considered here.

1. AT A(p,0) is an alternative to SES method where p is the optimum value for

qg=20.
2. AT A(p, 1) where p is optimized for g = 1

3. AT A(p*,q) is an alternative to Holt's linear trend method where g is optimized

for p = p*

4. AT Agamped(p*, ) is an alternative to damped trend method where g is optimized

for p = p* with fixed damped trend (¢ = 0.95)

5. AT A,omp(S-H-D) is an alternative to M3-competitiors of Comb(S-H-D) where

g is optimized for p = p*

6. AT A — select where a simple model selection of the two models in (1) and (2)

is carried out based on in-sample SsMAPE

7. AT A — comb where a simple average of the forecasts from the two models in

(1) and (2) is used as a forecast.

When the patterns of trend component are examined on a time series data set like
in Figure 4.7, the impact of ATA trend models on the predictive performance is clearly
seen. There is an increasing trend, so enlarging the value of the trend parameter for

short-length data will lead us to inconsistent estimates.
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Figure 4.7 The h-step forecasts for all ATA trend methods

Reseasonalized forecasts are produced when necessary for all versions for as many
steps ahead as required. The results are given in Table 4.9- Table 4.13. When the ATA
models given in the list are each compared to their counter ES models, it can be seen that
they all perform better both for individual forecast horizons and an average except for
the case when Comb(S-H-D) is compared to AT A, ,,5(S-H-D) on the forecast horizon
18. (AT A omp(S-H-D)' sMAPE 18.4 and Comb(S-H-D)' SMAPE 18.3)

The results from all 3003 data sets can be summarized as in Table 4.9. Here when
the methods are compared based on the average SMAPE for forecasting horizons 1-18,
AT A — comb stands out from the rest, ranking first. It performs better than not just the
pure approaches like ETS and Comb(S-H-D), it outperforms all existing methods. It is
worth noting that AT A — comb is more accurate than ETS and Comb(S-H-D) for all

individual forecasting horizons, not just on average.

The success of AT A is evident even when just the results from the simplest version
of the method (AT A(p*, 0)) are studied. This simple version performs better than SES
for all forecasting horizons and on average and its average SMAPE for horizons 1—18 is
the same as ETS' SMAPE (13.77). The AT A with linear trend component (AT A(p*, q))

is again more accurate than its competitor Holt on all forecasting horizons.

AT A method does not perform as well when the results are averaged just for the
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seasonal series. This can be attributed to the fact that the AT'A models we considered
here do not model seasonality like the other competitors. Still, AT A — select ranks
second among all the competitors when the average SMAPE for horizons 1 — 18 are
considered. For non-seasonal data, AT A models inarguably perform as well as Theta

and much better than the other methods.

For annual data AT A — select performs better than all other methods for both
short term and long term forecasting horizons except the first horizon. In addition, it
is worth noting that these results show a 3% improvement compared to slightly the
nearest competitor, the RBF model. When compared the SES model performs better
than AT A(p, 0) but when the average values of the optimal smoothing parameters(a)
are examined, it is observed that the value equals to 0.9177 for SES and 0.8266 for
ATA. These findings support the idea that ATA obtains the forecast values with
smaller variance. Also, for SES a smoothing value larger than 0.5 is considered to be
problematic. On the other hand, when the AT A(p*,q) and Holt models are
compared, it is apparent that the performance of the ATA model improves by 8.33%
on sSMAPE on average. These results are evidence that most of the yearly data sets
have meaningful trends. However, it is also supported this idea that the average
symmetric MAPE is 16.7 for AT A(p, 1) and 17.6 for AT A(p*, q). It is a significant
finding for forecasting in literature since the best performance of ATA can be reached

with only two smoothing trend parameters (g = 0, 1)

The quarterly data has up to trend and seasonality patterns as explained previous
sections. For these data, AT'A — comb ranks second right after Theta when SsMAPE is
averaged for horizons 1 — 4, 1 — 6 and 1 — 8. Note that the model is better than other
popular models according to simplicity, optimization speed and accuracy. For monthly
data it outperforms all other methods when errors are averaged for horizons 1 — 18.
Further, the out sample results obtained by applying the ATA method are 5.88% better
than the single method. AT A(p*,q) performs noticeably well for the 174 other data

sets.

In this chapter a combination of forecasts from the AT'A method is proposed and the
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Table 4.9 Average symmetric MAPE across different forecast horizons: all 3003 series

Method

Forecasting horizons

Averages

1 2 3 4 5 6 8 12 15 18

1-4 1-6 1-8 1-12 1-15 1-18

Naive2 10.5 11.3 13.6 15.1 15.1 15.9 14.5 16.0 19.3 20.7

Single

Holt

Winter
Dampen
Comb (S-H-D)
ETS

9.510.612,714.114315.013.3 14518.319.4
9.010.412.814.515.115.813.914.818.820.2
9.110.512.914.615.115.914.0 14.6 18.9 20.2
8.810.012.013.513.814.312.513.917.518.9
8.910.012.013.513.714.212.413.6 17.3 18.3
8.8 9.812.013.513.914.713.014.117.6 18.9

12.62 13.57 13.76 14.24 14.81 15.47
11.73 12,71 12.84 13.13 13.67 14.32
11.67 12.93 13.11 13.42 13.95 14.60
11.77 13.01 13.19 13.48 14.01 14.65
11.07 12.05 12.17 12.45 12.98 13.64
11.1012.04 12.13 12.412.91 13.52
11.04 12.13 12.32 12.66 13.14 13.77

AT A(p, 0)
ATA(p,1)

AT A(p*,q)
ATAdumped(P*u Q)
AT A ormp(S-H-D)
ATA — select
ATA — comb

8.910.012.113.713.914.712.813.917.318.9
84 9.711.512913.614.212915.418.920.9
86 9.711.713.513.714512513.617.318.7
8.6 9.611.613.213.514212.413.717.018.6
8.6 9.611.513.113.213.912.213.516.8 184
8.7 9.611.512.913.113.712.113.717.3 18.7
85 9.611.412.813.013.612.013.1163 174

11.16 12.21 12.34 12.64 13.13 13.77
10.64 11.72 11.94 12.66 13.32 14.09
10.89 11.96 12.08 12.37 12.87 13.50
10.76 11.77 11.92 12.24 12.75 13.39
10.70 11.65 11.78 12.11 12.61 13.25
10.69 11.58 11.70 12.09 12.64 13.28
10.56 11.47 11.58 11.94 12.40 12.94

Table 4.10 Average symmetric MAPE across different forecast horizons: 645 annual series

Forecasting horizons Averages
Method 1 2 3 4 5 6 1-4 1-6
Naive2 8.5 132 178 199 230 249 14.85 17.88
Single 8.5 133 176 19.8 228  24.8 1482 17.82
Holt 8.3 137 190 220 252 273 1577 19.27
Winter 8.3 137 19 22 252, 203 1597 1927
Dampen 8.0 12.4 17 193 223 240 1419 17.18
Comb (S-H-D) 7.9 12.4 16.9 193 222 237 14.11 17.07
ETS 93 13.6 183 208 234 258 15.48 18.53
ATA(p,0) 9.1 13.5 17.6 199 228 251 15.04  18.00
ATA(p,1) 83 122 16.8 186 215 233 13.95 16.78
ATA(p*,q) 83 124 17.0 200 231 251 1440  17.62
AT Ajnpea(p™,q) 8.2 12.1 16.4 19.1 219 235 13.94  16.87
AT A omp(S-H-D) 82 12.0 16.1 186 213 229 13.73 16.51
ATA — select 8.3 11.5 15.6 177 205 220 1328 1594
ATA —comb 84 123 165 183 210 227 13.87  16.54
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Table 4.11 Average symmetric MAPE across different forecast horizons: 756 quarterly series.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 1-4 1-6 1-8

Naive2 54 7.4 8.1 92 104 124 137 7.55 8.82 9.95
Single 53 72 7.8 92 102 12,0 134 738 B8.63 9,72
Holt 50 69 83 104 115 131 156 767 921 10.67

Winter 50 7.1 83 102 114 132 153 7.65 921 10.61
Dampen 5.1 6.8 7.7 9.1 9.7 113 128 7.18 8.29 933
Comb S-H-D 5.0 6.7 75 8.9 9.7 112 128 7.03 8.16 9.22
ETS 50 66 79 9.7 109 121 142 732 871 9.94
ATA(p,0) 52 7.1 78 97 101 11.8 135 745 8.62 9.71

ATA(p,1) 53 68 76 91 99 110 124 719 828 9.24
ATA(p*,q) 50 69 76 95 102 119 13.7 723 851  9.69

AT Agumpea(p™ @) 5.0 68 75 94 100 118 135 717 842  9.56
ATApmy(S-H-D) 50 68 74 92 97 114 130 712 826  9.33
ATA —select 52 70 77 92 96 111 123 728 830 921
ATA—comb 51 68 75 90 96 109 123 710 813  9.07

Table 4.12 Average symmetric MAPE across different forecast horizons: 1428 monthly series.

Forecasting horizons Averages

Methed 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 15.013.515.717.0 14.9 14.4 15.6 16.019.320.7 15.30 15.08 15.26 15.55 16.16 16.89
Single 13.012.114.015.113.513.1 13.8 14.518.319.4 13.53 13.44 13.60 13.83 14.51 15.32
Holt12.211.6 13.414.6 13.6 13.3 13.7 14.8 18.8 20.2 12.95 13.11 13.33 13.77 14.51 15.36

Winter 12.5 11.713.714.713.6 13.4 14.1 14.6 18.920.2 13.17 13.28 13.52 13.88 14.62 15.44
Dampen 11.9 11.4 13.0 14.212.9 12.6 13.0 13.917.5 18.9 12.63 12.67 12.85 13.10 13.77 14.59
Comb S-H-D 123 11.513.214.312.912.513.013.617.3 18.3 12.83 12.7912.92 13.11 13.75 14.48
ETS11.510.612.313.412.312313.214.117.618.9 11.93 12.05 12.43 12.96 13.64 14.45

ATA(p,0)11.510.812.613.812.612.512.913.917.318.9 12.2012.3312.78 12.98 13.67 14.49
ATA(p,1) 11.010.912.213.412.812.8 13.8 15.418.920.9 11.86 12.16 13.19 14,07 15.01 15.33

AT A(p*,q) 11.610.912.513.812.412.312.713.617.3 18.7 12.18 12.3712.82 13.16 13.93 15.06

AT A gamped(p*,g) 11.510.912.513.712.412.3 12,6 13.717.0 18.6 12.13 12.1912.40 12,77 13.44 14.24
AT A omp(S-H-D) 11.510.8 12.513.712.412.212.513.516.8 18.4 12.11 12.17 12.36 12.71 13.36 14.15
ATA — select 11.6 11.0 12.6 13.8 12.412.3 12.7 13.717.3 18.7 12.22 12.26 12.65 12.84 13.53 14.31
ATA — comb 11.110.712.113.112.011.912.413.116.317.4 11.75 11.83 12.07 12.50 13.08 13.76

97



Table 4.13 Average symmetric MAPE across different forecast horizons: 174 other series.

Forecasting horizons Averages
Method 1 2 3 4 5 6 8 1-4 1-6 1-8
Naive2 22 36 54 63 78 76 92 438 549 6.30
Single 2.1 36 54 63 78 76 92 436 548 6.29
Holt 19 29 39 47 58 356 72 332 413 481
Winter 1.9 29 39 47 58 56 172 332 413  4.81
Dampen 1.8 2.7 39 47 58 54 6.6 328 4.06 461
CombS-H-D 1.8 28 41 47 58 53 6.2 336 4.09 4.56
ETS 20 3.0 40 44 54 51 6.3 337 399 451
ATA(p,0) 21 35 54 63 78 75 091 434 545 6.26
ATA(p,1) 19 29 41 48 60 57 171 346 426 4.87
ATA(p*,q) 1.7 26 37 43 54 49 62 3.09 3.77 430
AT Agormpea(p®,q) 1.8 2.7 41 47 58 53 63 333 4.06 4.55
ATAmp(S-H-D) 1.8 28 42 47 59 53 62 338 410 456
ATA —select 1.8 28 40 46 57 53 66 330 4.03 4.60
ATA—comb 19 30 45 51 63 58 6.8 3.62 440 493

proposed approach's forecasting performance is investigated. Even though the models
from the AT A method have similar form to their counter ES models, the proposed
combination's predictive performance is much better for the M3 data sets. The optimum
parameter values, forecasts and errors for the proposed method can be reached from the

website https.//atamethod wordpress.com.

The results presented in this section do not reflect the end performance of AT A.
In this section we competed with just one AT'A model (linearly trended with additive
errors) and combined forecasts from only two parameterizations of it. Incorporating
other types of trend using different accuracy measures will surely increase the method's
performance which will be discusses in chapter 5. The fact that this simple combination
can perform better than existing methods is fascinating and this further strengthens the

idea that simplicity is indeed a prerequisite for forecasting accuracy.
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CHAPTER FIVE
BEST PERFORMANCE OF ATA METHOD

In the previous chapters, ATA method has been proposed as an alternative to ES
models and we have seen there is one to one correspondence between them. The results
presented in the previous chapters do not reflect the end performance of ATA and on
the contrary those results were just the initial findings. ahen the two approasches are
compared model to model on an individual base, ATA models consistently outperforms
their counter ES models. There are numerous ways to increase the performance of ES
methods. Most of the attempts to increase the performance are based on combinations
of different ES models, model selection rules, transformations and sophisticated data
preprocessing techniques. These methods were employed by some of the competitors

in the M3 competition.

In order to improve our methods performance, in this section we will implement
similar ideas to our methodology. More specifically, we will propose certain model
selection rules for data of different time intervals and we eill consider combinations of
forecasts from different parameterizations of our model. The details on these ideas are
given in the following subsection. Later on we will compare the outsample performance
of these newly proposed methods to existing ones on the M3 competition data based

on the metrics SMAPE and MASE.

Before the AT A method is applied, the data sets were deseasonalized by the
classical multiplicative decomposition method, when necessary. The parameters are
optimized by minimizing the in-sample one-step-ahead SMAPE which is defined in
equation (2.40) and to stay consistent with rest of the literature forecasts up to 18
steps ahead (the number of periods ahead as 6 for yearly, 8 for quarterly/other and 18
for monthly series) are computed and again SMAPE and also MASE which is defined
in equation (2.47) for all forecast horizons are computed and averaged across all 3003

series.
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5.1 Combination and Selection Criterion of ATA Models

As it was stated before the accuracy when various methods are being combined
outperforms, on average, the individual methods being combined and the accuracy of
the various methods depends upon the length of the forecasting horizon involved.
Therefore, we will concentrate on the extra improvement in accuracy since the “best”
method varies according to the accuracy measure being used and the type of data
(micro, industry, macro, etc.) involved. Such differentiation becomes clearer if the
data are further subdivided into yearly, quarterly, monthly and ‘other’ since size and
characteristics of each data set are different. The method "Comp S-H-D" in the M3
Competition is the simple arithmetic average of three methods: Single, Holt and
Dampen Trend Exponential Smoothing. Clearly, the combination is more accurate
than the three individual methods being combined for practically all forecasting
horizons. Therefore, similar attempts will be tried in this section for ATA method in
order to improve forecasting accuracy. As Makridakis & Hibon (2000) states that any
improvement in out-sample forecasting accuracy can result in savings of many

millions of dollars, less wasted resources, and/or better service.

Different ATA models can easily be constructed by using different smoothing
parameter values. These derivative models highlight different aspects of the original
data, as different smoothing parameters helps in strengthening or attenuating the
signals of different time series components. In each series, the appropriate ATA
method is fitted and its respective time series components are forecasted. This
approach achieves a better estimation of the different time series components, through
the various smoothing parameters and reduces the importance of model selection
through forecast combination. In this section, different modelling strategies were
employed for different types of data. An empirical evaluation of the proposed
framework shows significant improvements in forecasting accuracy by taking

advantage of, the easy optimization process.

More specifically, for annual data a model selection was carried out between the
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models AT'A(p*,0), AT A(p,1) and AT Agamped(p, 1) based on their in sample one
step ahead SMAPE values where p* is the optimum value of p for ¢ = 0. For quarterly
data, a simple combination of forecasts from the models AT A(p*,0), AT A(p, 1) and
AT Adamped(p, 1) selection and AT A(p*, ¢) was used by obtaining the average of the
three forecasts from these models. For monthly data, in addition to AT A(p*,0),
AT A(p,1) and AT A(p,2) also contributed to the combination for forecast horizons
1-4. for horizons 1-5, a simple combination of forecasts from the models AT A(p*, 0),
AT A(p, 1) and for forecast horizons 7-10 a simple combination of forecasts from the
models AT A(p*,0), AT A(p, 1) and AT A(p*,0). So, for monthly data, the average of
forecasts from these four models was used. Finally for the other data sets, we carried
out a simple model selection based on in-sample SMAPE again, between AT A(p*, q)
as before and a multiplicative version of the same model AT A,...(p*,q). To

summarize, all selection and combination criteria can be given in a table as below:

Table 5.1 Model selection and combination criteria

Model selection and combination criteria

Data Forecast horizon Methods
Yearly 1-6 select(AT A(p, 0); select(AT A(p, 1); AT Agamped(p,1)))
Quarterly 1-8 combine (AT A(p, 0); select(AT A(p, 1); AT Adamped(p, 1)); AT A(p*, q))
Monthly 1-4 combine (AT A(p,0); AT A(p,1); AT A(p,2))

5-6 combine(AT A(p, 0); AT A(p, 1))

7-10 combine(ATA(p,0); AT A(p*, q); AT A(p, 2))

11-18 combine (AT A(p, 0); ATA(p", q); AT A(p, 1))
Other 1-8 select(ATA(p*, q); AT Amuie(p*, q))
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5.2 M3-Competition Results

The M3 competition data set consists of 645 yearly, 756 quarterly, 1428 monthly
and 174 other series. The original data, as well as the forecasts of the methods that
participated in the competition, are available in the R package Mcomp and website
(International Institude of Forecasters-IIF). Although the M3 competition took place
some time ago, the original submissions to the competition are still competitive and
valid benchmarks. So, the results obtained for the M3 competition data are still of

interest and will be discussed in detail.

In this thesis, R package is used to obtained forecast values from ATA methods. The
algorithm for all models are constructed manually in R. All details and R codes for all

ATA models will be given in the appendix.

The strategy explained in the previous section is used when modeling the M3
competition data and in the following tables the results obtained in this fashion are
labelled as AT A — best. Reseasonalized forecasts are produced when necessary for
all versions for as many steps ahead as required.  The results are given

in Table 5.2~ Table 5.7.

It can be clearly seen that ATA out-performs all its competitors when the short
term and long term forecasting horizons are averaged for both metrics. It is especially
interesting that ATA outperforms ETS which performs a model selection from 30
possible ES models (models include different types of trend (multiplicative, damped,
multiplicative damped) and seasonal components (additive, multiplicative) in addition
to different types of errors (additive and multiplicative errors)) utilizing AIC as a
selection criterion. Moreover, according to the SMAPE results, the performance of the
proposed AT A — best method yields an error that is 5.61% smaller than that of the
Theta method, best method in the original M3-competition. It can be seen taht, when
MASE is used, again AT A — best performs better than the other competitior, yielding

on error that is 11.11% smaller than Theta. It is also worth noting that the results from
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Table 5.2 Average symmetric MAPE across different forecast horizons: all 3003 series

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Ata 83 9.4 11.0 123 12.6 13.2 11.7 12.9 16.2 17.3 10.27 11.14 11.27 11.62 12.10 12.68

Theta 8.4 9.6 11.3 12.5 13.2 13.9 12.0 13.2 16.4 18.4 10.45 11.49 11.62 11.96 12.45 13.05
ForecastPro 8.6 9.6 11.4 13.0 13.4 143 12.7 133 16.4 183 10.66 11.72 11.90 12.18 12.64 13.23
ForecastX 8.7 9.8 11.6 13.1 13.2 13.8 12.6 14.0 17.8 18.8 10.82 11.72 11.88 12.22 12.81 13.50
Comp S-H-D 8.9 10.0 12.0 13.5 13.7 14.0 12.4 13.6 17.3 18.3 11.10 12.02 12.11 12.39 12.90 13.51
Dampen 8.8 10.0 12.0 13.5 13.8 14.3 12,5 13.9 17.5 189 11.07 12.05 12.17 12.45 12.98 13.64
RBF 9.9 10.5 12.4 13.4 13.2 14.1 12.8 14.1 17.3 17.8 11.56 12.26 12.40 12.76 13.24 13.74

ETS 88 9.8 12.0 13.5 13.9 147 13.0 14.1 17.6 18.9 11.04 12.13 1232 12.66 13.14 13.77

B-J automatic 9.2 10.4 12.2 13.9 14.0 14.6 13.0 141 17.8 19.3 11.42 12.39 12.52 12.78 13.33 13.99
SmartFes 9.2 10.3 12.0 13.5 14.0 15.0 13.0 14.9 18.0 19.4 11.23 12.32 12.47 12.93 13.47 14.11
PP-aotocast 9.1 10.1 12.2 13.7 14.0 14.6 13.3 14.4 179 19.8 11.27 12.28 12.49 12.92 13.47 14.14
Flores/Pearce2 10.0 11.0 12.8 14.1 14.1 14.6 12.9 14.4 18.2 20.2 11.96 12.76 12.80 13.03 13.60 14.30
Single 9.5 10.6 12.7 14.1 143 14.9 13.3 14.5 183 19.4 11.73 12.68 12.82 13.12 13.66 14.31
Theta-sm 9.5 10.6 12.6 13.8 14.8 15.6 13.4 144 17.7 193 11.62 12.80 12.98 13.31 13.75 14.34
AutoBox2 9.5 10.4 12.2 13.9 13.9 14.8 13.3 15.2 18.4 20.0 11.53 12.47 12.67 13.14 13.75 14.46
Flores/Pearcel 9.2 10.5 12.6 14.5 14.8 15.2 13.8 14.4 19.1 21.0 11.68 12.78 13.03 13.31 13.92 14.72
Ararma 9.7 109 12.6 14.2 14.6 15.5 13.9 152 18.5 20.3 11.85 12.91 13.12 13.54 14.09 14.74

Holt 9.0 10.5 12.9 14.8 15.6 16.2 144 153 19.5 21.1 11.79 13.16 13.39 13.75 14.33 15.03

Winter 9.1 10.5 13.1 14.9 15.6 16.3 145 152 19.6 21.1 11.90 13.26 13.48 13.83 14.41 15.11
AutoBox1 9.8 11.1 13.1 15.1 16.0 16.7 14.2 15.4 19.1 20.4 12.30 13.64 13.76 13.99 14.54 15.21
Naive2 10.5 11.3 13.6 15.1 15.1 15.8 14.5 16.0 19.3 20.7 12.62 13.55 13.74 14.22 14.80 15.46
AutoBox3 9.8 11.3 13.1 14.8 16.1 16.6 14.8 16.7 19.8 22.0 12.24 13.62 13.87 14.28 14.88 15.71
Auto-ANN 9.0 10.5 11.9 13.9 13.9 15.6 13.5 14.8 17.5 19.8 11.32 12.47 12.66 13.05 13.59 14.23
Robust-Trend 10.5 11.2 13.3 14.8 15.2 15.9 15.3 18.0 23.2 25.7 12.46 13.49 13.84 14.77 15.70 16.70

the THETA model that we present here are obtained from the forecasts provided on
the IIF website and are a little different from the M3 competition paper (Makridakis
& Hibon (2000)). When the results shown in Table 5.2 and Table 5.3 are examined, it
can be clearly seen that ATA is consistently more accurate across all horizons
regardless of accuracy measures. These results are very impressive and the best

forecasting methods in litarature can never achieves these.

5.2.1 Best Performance of ATA for Yearly Data

In this section, the results are shown for all methods on just the yearly data. the
forecasts of AT'A — best are obtained and the two error metrics are calculated. It can
be seen that the AT'A—best using different modelling strategies performs better than the
all original M3 competition methods, consistently outperforming them in all measures.

The difference that the ATA method makes can be even more evidently seen in Table 5.4
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Table 5.3 Average MASE across different forecast horizons: all 3003 series

Forecasting horizons Averages
Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18
Ata 0.68 0.85 1.10 1.32 1.46 1.62 1.15 0.85 1.05 1.20 0.99 1.17 1.16 1.10 1.08 1.09
Theta 0.75 095 1.28 1.53 1.73 1.94 1.34 0.94 1.19 135 1.04 1.24 1.23 1.15 1.13 1.14
ForecastPro 0.68 0.89 1.19 1.48 1.67 1.87 1.28 0.85 1.07 1.24 1.06 1.30 1.29 1.20 1.17 1.17
ForecastX 0.70 0.90 1.17 1.42 1.57 1.74 1.26 091 1.16 1.29 1.05 1.25 1.24 1.17 1.16 1.17
Comp S-H-D 0.70 0.90 1.21 1.46 1.63 1.80 1.24 0.89 1.14 127 1.07 1.28 1.27 1.19 1.17 1.18
Dampen 0.70 0.91 1.23 1.51 1.69 1.87 1.27 0.91 1.16 1.31 1.09 1.32 1.30 1.22 1.20 1.21
RBF 0.82 098 1.27 1.49 1.62 1.81 1.30 0.89 1.11 1.21 1.14 1.33 1.32 1.24 1.21 1.21
B-J automatic 0.73 0.95 1.28 1.56 1.74 193 1.32 092 1.18 1.33 1.13 1.36 1.35 126 1.24 124
SmartFes 0.79 098 1.25 1.52 1.66 1.85 128 0.95 1.16 130 1.14 1.34 132 1.24 1.22 1.23
PP-aotocast 0.72 0.94 1.27 1.54 1.72 1.91 1.33 1.01 1.23 142 1.12 1.35 1.34 127 1.26 1.27
Flores/Pearce2 0.88 1.05 1.31 1.54 1.69 1.87 1.32 0.96 1.19 1.50 1.19 1.39 137 1.28 1.26 1.27
Single 0.78 1.03 1.36 1.63 1.82 2.05 1.49 097 1.25 138 1.20 1.45 1.44 1.35 132 1.33
Theta-sm 0.75 0.95 1.28 1.53 1.73 1.94 1.34 0.94 1.19 1.35 1.13 1.36 1.35 127 125 1.25
AutoBox2 0.77 095 1.23 1.48 1.62 1.83 1.34 1.13 1.23 1.97 1.11 1.31 131 1.26 1.26 1.30
Ararma 0.73 0.97 1.29 1.60 1.86 2.16 1.29 0.89 1.12 1.30 1.15 1.44 1.40 130 1.27 1.26
Flores/Pearcel 0.75 0.96 1.26 1.55 1.74 1.93 1.38 0.94 1.26 1.53 1.13 1.36 1.36 1.28 1.26 1.28
Holt 0.71 0.93 1.26 1.56 1.76 1.96 1.33 0.91 1.15 1.32 1.12 1.37 135 1.26 1.24 1.24
Winter 0.72 096 1.73 1.56 1.77 1.97 1.33 0.93 4.18 131 1.24 145 142 133 1.44 1.42
AutoBox1 0.80 1.05 1.38 1.70 1.94 2.23 137 092 1.16 1.33 123 1.52 1.48 1.36 1.33 1.32
Naive2 0.82 1.06 1.39 1.67 1.85 2.09 1.53 1.02 1.29 144 124 148 148 1.39 137 1.37
AutoBox3 0.78 1.01 1.29 1.56 1.75 1.95 137 0.99 1.20 1.40 1.16 1.39 1.38 1.29 1.27 1.28
Auto-ANN 0.72 0.95 1.22 1.50 1.69 195 1.36 096 1.16 1.34 1.10 1.34 1.33 1.25 1.24 1.24
Robust-Trend 0.77 0.95 1.22 1.44 1.61 1.78 1.31 099 1.26 1.45 1.10 130 1.29 1.24 124 1.25

for the annual series. The method is again the most accurate here.

The literature on forecasting competition has highlighted that the performance of

a forecasting method differs according to the used accuracy measure. The AT A —

best method apparently outperforms all other methods for both average sSMAPE and

MASE metrics. However, all other methods move positions when the metric changes

in performance order. For instance, Robust trend has moved up from 5 to 2. This is an

interesting result because the Robust Trend method for all series has been illustrated

the worst performance.

5.2.2 Best Performance of ATA for Quarterly Data

The accuracy performance of quarterly series is demonstrated and interpreted in

this section. For quarterly series in Table 5.5, it is noticeable that the Theta and ATA

models produce significantly better forecasts for all horizons compared to the other
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Table 5.4 The accuracy perfomance of all methods for the 645 annual series at different (SMAPE and
MASE) metrics

mean sMAPE mean MASE
Averages Averages

Methods 1-4 1-6 Methods 1-4 1-6

Ata 13.08 15.601 Ata 2.01 2.55
RBF 13.75 16.42 Robust-Trend 2.03 2.62
ForecastX 13.80 16.48 RBF 2.10 2.72
AutoBox?2 13.69 16.59 AutoBox?2 2.14 2.75
Theta 14.06 16.97 ForecastX 2.17 2.77
Robust-Trend 13.87 17.03 Theta 2.19 2.81
Comp S-H-D 14.11 17.07 Comp S-H-D 2.23 2.88
PP-aotocast 14.12 17.12 Flores/Pearcel 2.26 2.94
Flores/Pearcel 14.22 17.20 SmartFcs 2.36 3.00
ForecastPro 14.19 17.27 Theta-sm 2.29 3.01
Dampen 14.30 17.36 Flores/Pearce2 242 3.02
SmartFcs 14.95 17.71 PP-aotocast 2.31 3.02
B-J] automatic 14.78 17.72 ForecastPro 2.30 3.03
Single 14.82 17.81 Dampen 2.32 3.03
Flores/Pearce2 15.31 17.84 Auto-ANN 2.33 3.03
Naive?2 14.85 17.88 B-J automatic 245 3.16
Theta-sm 14.60 17.92 Single 2.48 3.17
Ararma 15.17 18.35 Naive2 2.48 3.17
ETS 15.48 18.53 AutoBox3 2.51 3.18
Auto-ANN 15.39 18.56 Winter 2.41 3.18
Winter 16.19 20.02 Holt 2.41 3.18
Holt 16.19 20.02 Ararma 2.50 3.48
AutoBox3 17.48 20.87 AutoBox1 2.72 3.68
AutoBox1 17.57 21.58 ETS - 2.83
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approaches. However, the first four successful models retain their performance against
different metrics but others can not. In addition, it is surprisingly that the single model
performs better than Holt and Winter, eventhough the data set contains seasonal and

trend patterns.

5.2.3 Best Performance of ATA for Monthly Data

Table 5.6 shows the results from all methods on the monthly data, ordered by their
average SMAPE and MASE. It is known that the monthly series are seasonal, trended
and have long size, so their patterns are more complex. From Table 5.6 it can be seen
that even though we do not model the seasonality properly, the method still performs
better than ARIMA and ETS on both short and long term forecasting horizons. The
ATA method also consistently outperforms all the original methods from the M3 in all
measures for monthly data. While the performance of other successful methods can

changes according to SMAPE and MASE, this is not the case for ATA.

5.2.4 Best Performance of ATA for Other Data
Table 5.7 shows the results for all methods on the other data, ordered by means

of SMAPE and MASE. Across the complete forecast horizon, the ATA method again

outperforms all other methods for all error metrics.
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Table 5.5 The accuracy perfomance of 756 quarterly series at different (sSMAPE and MASE) metrics

mean SMAPE mean MASE
Averages Averages
Methods 1-4  1-6 1-8 Methods 14 1-6 1-8
Ata 696 796  8.89 Ata 079 093 1.07
Theta 7.00 8.04 896 Theta 0.81 095 1.09
Comp S-H-D 7.03 816 922 Comp S-H-D 0.79 095 1.10
Dampen 7.18 829 936 Dampen 0.81 096 1.13
PP-aotocast 7.12 8.28 9.39 PP-aotocast 0.80 096 1.13
ForecastX 712 835 954 Robust-Trend 0.86 1.02 1.15
RBF 7.69 8.67 9.57 ForecastX 0.81 097 1.15
Single 7.38 8.63 9.72 RBF 090 1.03 1.17
Robust-Trend 7.63 8.86 9.79 Flores/Pearcel 0.84 1.01 1.18
ForecastPro 7.28 8.60 9.82 Ararma 0.86 1.01 1.18
Theta-sm 759 8.75 9.82 AutoBox2 0.87 1.02 1.19
ETS 7.32 8.71 9.94 B-J automatic 0.84 1.01 1.19
Naive2 7.55 8.82 9.95 ForecastPro 0.83 1.01 1.20
Flores/Pearcel 7.48 8.78 9.95 Theta-sm 0.87 1.04 1.21
AutoBox2 7.79 8.98 10.00 Winter 0.85 1.03 1.22
SmartFcs 8.02 9.16 10.15 Holt 0.85 1.04 1.23
Ararma 8.03 9.16 10.19 SmartFecs 091 1.06 1.23
Auto-ANN 7.80 9.10 10.20 Single 0.86 1.05 1.23
B-J automatic  7.79 9.10 10.26 Naive2 087 1.06 1.24
Flores/Pearce2 8.57 9.54 10.43 Auto-ANN 0.87 1.06 1.24
Winter 765 934 10.84 Flores/Pearce2 0.97 1.11 1.26
Holt 7.67 934 10.94 AutoBox3 090 1.09 1.27
AutoBox1 7.95 952 10.96 AutoBox1 093 1.13 1.33
AutoBox3 8.14 971 11.19 ETS - - 1.18
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Table 5.6 The accuracy perfomance of 1428 monthly series at different (SMAPE and MASE) metrics

mean SMAPE mean MASE
Averages Averages
Methods 1-4 1-6 1-8 1-12 1-15 1-18 Methods 1-4 1-6 1-8 1-12 1-15 1-18
Ata 11.63 11.73 11.93 12.29 1290 13.60 Ata 0.59 0.63 0.67 0.73 0.78 0.84
Theta 11.54 11.75 12.09 12.50 13.14 13.89 ForecastPro 0.59 0.63 0.66 0.72 0.78 0.85
ForecastPro 11.75 11.81 12.07 12.48 13.13 13.90 Theta 0.60 0.64 0.68 0.74 0.79 0.86
ETS 11.93 12.05 12.43 12.96 13.64 14.45 ForecastX 0.62 0.65 0.69 0.76 0.82 0.89
Comp S-H-D  12.83 12.74 12.88 13.09 13.73 1447 CompS-H-D 0.65 0.68 0.72 0.77 0.83 0.90
ForecastX 12,32 12.28 12.44 12.82 13.61 1447 Ararma 0.66 0.70 0.74 0.79 0.84 0.91
Dampen 12.63 12.63 12.81 13.08 13.75 14.58 Dampen 0.64 0.68 0.72 0.78 0.84 0091
RBF 13.49 13.14 13.36 13.64 14.19 14.76 Holt 0.64 0.68 0.72 0.78 0.84 0.91
B-J automatic 12.78 12.70 12.86 13.19 13.95 14.80 RBF 0.73 0.73 0.77 0.81 0.86 0.91
SmartFcs 12.16 12.53 12.85 13.49 14.20 15.01 B-J automatic 0.63 0.67 0.71 0.77 0.84 0.91
Auto-ANN 12.32 12,52 12.93 13.48 14.21 15.03 SmartFcs 0.65 0.68 0.72 0.79 0.85 0.92
Flores/Pearce2 13.26 13.18 13.31 13.52 14.30 15.19 AutoBoxl 0.67 0.70 0.74 0.79 0.85 0.92
Single 13.53 13.39 13.56 13.81 14.49 1530 Auto-ANN 0.63 0.67 0.71 0.79 0.85 0.93
PP-aotocast 13.16 13.22 13.52 13.88 14.53 15.33 Theta-sm 0.69 0.72 0.76 0.82 0.88 0.95
Theta-sm 13.38 13.66 13.95 14,17 14.68 15.38 Flores/Pearce2 0.69 0.72 0.76 0.81 0.87 0.95
AutoBox2 13.54 13.51 13.76 14.17 1490 15.73 AutoBox3 0.66 0.70 0.75 0.82 0.89 0.96
Holt 13.02 13.18 13.48 14.05 14.87 15.79 Single 0.70 0.73 0.77 0.84 090 0.97
AutoBox1 13.27 13.37 13.67 14.07 1491 15.81 PP-aotocast 0.71 0.75 0.80 0.86 0.92 0.99
Ararma 13.42 13.55 13.96 14.39 15.06 15.83 Flores/Pearcel 0.71 0.77 0.82 0.86 0.92 1.01
Winter 13.26 13.39 13.72 14.23 15.03 1593 Robust-Trend 0.77 0.80 0.85 0.91 0.97 1.04
Flores/Pearcel 13.74 13.92 14.21 14.28 15.03 15.99 Naive2 0.77 0.80 0.84 0.90 097 1.04
AutoBox3 13.13 13.58 14.04 14.65 15.50 16.59 AutoBox2 0.74 0.78 0.82 0.90 0.97 1.08
Naive2 1530 15.08 15.26 15.55 16.16 16.89 Winter 0.91 0.86 0.86 0.89 1.15 1.17
Robust-Trend 15.49 15.50 16.03 16.84 17.85 18.93 ETS - - - - - 0.87
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Table 5.7 The accuracy perfomance of 174 other series at different (sSMAPE and MASE) metrics

mean SMAPE mean MASE
Averages Averages

Methods 1-4 1-6 1-8 Methods 1-4 1-6 1-8

Ata 3.04 368 4.14 Ata 1.27 152 1.72
Ararma 3.17 387 438 AutoBox2 1.35 1.63 1.86
Theta 320 393 441 Robust-Trend 1.36 1.65 1.88
AutoBox?2 3.19 386 441 Theta 1.36 1.67 1.90
ETS 337 399 451 ForecastPro 1.36 1.66 192
Comp S-H-D 336 4.09  4.56 ForecastX 144 1.71 192
Robust-Trend 13.87 17.03 4.58 AutoBox3 142 1.71 197
ForecastPro 3.31 400 4.60 Winter 1.3 1.71 1.99
Dampen 328 4.06 4.6l Holt 138 171 1.99
PP-aotocast 3.29 4.07 4.62 Ararma 1.43 1.77 2.01
ForecastX 342 410 4.64 SmartFcs 1.59 1.84 2.03
AutoBox3 339 409 471 Dampen 142  1.77 2.04
Auto-ANN 326 4.07 4.80 Comp S-H-D 1.48 1.81 2.04
Winter 3.32 413 4.81 PP-aotocast 1.44 1.78 2.05
Holt 3.32 413 4381 AutoBox1 1.61 1.86 2.08
SmartFcs 3.68 433 486 Auto-ANN 1.39 1.74 2.08
Flores/Pearce2 3.67 443  4.89 Theta-sm 1.57 1.93 220
Theta-sm 3.66 4.37 4.93 Flores/Pearcel 1.63 1.95 2.23
AutoBox|1 3.76 438 493 B-J automatic  1.54 1.94 2.26
B-J automatic  3.52 438  5.06 Flores/Pearce2 1.74 2.06 2.29
Flores/Pearcel 3.71 447  5.09 RBF 206 241 2.66
RBF 438 512  5.60 Naive2 2.07 264 3.09
Single 436 548 6.29 Single 2.07 2.64 3.09
Naive2 438 549  6.30 ETS - - 1.79




Table 5.8 Mean sMAPE by time interval between successive observations

Time interval between successive observation

Methods Monthly Other Quartly Yearly All

Ata 13.598 4.139 8.888 15.601 12.682
Theta 13.892 4.410 8.956 16.974 13.051
ForecastPro 13.898 4.604 9.815 17.271 13.234
ForecastX 14.466 4.638 9.537 16.480 13.502
Comp S-H-D 14.466 4.561 9.216 17.072 13.508
Dampen 14.576 4.609 9.361 17.360 13.640
RBF 14.760 5.598 9.565 16.424 13.740
ETS 14.450 4.510 9.940 18.530 13.770
B-J automatic 14.796 5.062 10.260 17.726 13.995
SmartFcs 15.007 4.860 10.153 17.706 14.115
PP-aotocast 15.328 4.617 9.395 17.128 14.144
Flores/Pearce2 15.186 4.893 10.431 17.843 14.299
Single 15.300 6.295 9.717 17.817 14.313
Theta-sm 15.380 4,927 9.821 17.922 14.344
AutoBox2 15.731 4.414 10.004 - 16.593 14.460
Flores/Pearcel 15.986 5.087 9.954 17.205 14.718
Ararma 15.826 4.383 10.186 18.356 14.738
Holt 15.795 4.811 10.938 20.021 15.030
Winter 15.926 4.811 10.840 20.021 15.105
AutoBox1 15.811 4.935 10.961 21.588 15.214
Naive2 16.891 6.302 9.951 17.880 15.462
AutoBox3 16.590 4,713 11.192 20.877 15.710
Auto-ANN 15.031 4.800 10.199 18.565 14.226
Robust-Trend 18.931 4.578 9.789 17.033 16.699
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Table 5.9 Mean MASE by time interval between successive observations

Time interval between successive observation

Methods Monthly Other Quartly Yearly All

Ata 0.841 1.717 1.072 2.550 1.098
Theta 0.858 1.904 1.087 2.806 1.138
ETS 0.870 1.790 1.180 2.830 1.160
ForecastX 0.894 1.925 1.155 2.769 1.172
ForecastPro 0.848 1.920 1.204 3.026 1.174
Comp S-H-D 0.896 2.045 1.105 2.876 1.180
RBF 0.910 2.658 1.173 2.720 1.208
Dampen 0.908 2.036 1.126 3.032 1.208
SmartFcs 0.919 2.034 1.226 2.996 1.229
Holt 0.909 1.993 1.225 3.182 1.239
Auto-ANN 0.926 2.083 1.241 3.033 1.241
B-J automatic 0.914 2.259 1.188 3.165 1.245
Robust-Trend 1.036 1.877 1.152 2.623 1.253
Theta-sm 0.950 2.204 1.211 3.006 1.255
Ararma 0.907 2.008 1.178 3.481 1.262
Flores/Pearce2 0.950 2.295 1.255 3.016 1.267
PP-aotocast 0.994 2.048 1.128 3.016 1.267
AutoBox3 0.962 1.969 1.272 3.177 1.282
Flores/Pearcel 1.008 2.226 1.184 2.938 1.284
AutoBox2 1.082 1.860 1.185 2.754 1.303
AutoBox1 0.924 2.082 1.331 3.679 1.322
Single 0.974 3.091 1.229 3.171 1.325
Naive2 1.037 3.089 1.238 3.172 1.370
Winter 1.165 1.993 1.217 3.182 1.416
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CHAPTER SIX
SUMMARY AND CONCLUSION

Many forecasting methods have been proposed and studied in the literature. None
of these proposed methods is consistently the best according to all different
forecasting criterion. The relative ranking of the performance of the different
forecasting methods varies according to the accuracy measure being used and length
of the forecasting horizon involved. An obvious fact accepted by forecasters is
statistically sophisticated or complex methods do not necessarily provide more
accurate forecasts than simpler ones and the accuracy when various methods are
being combined outperforms, on average, the individual methods being combined.
Exponential smoothing methods are the most widely used and well-known
forecasting method in the literature since they are very accurate, simple and easy to
manage but the basic reason for this popularity is their proven success against other

more complex methods.

Despite the fact that these models are well established, they still have some
shortcomings that affect the quality of forecasts they produce. We propose a family of
models which are given the name ATA method, that help overcome these
shortcomings especially related to optimization and initialization, since there is no
consensus among forecasters on the value of smoothing parameters and selection of
initial values. The formulation of ATA is similar to ES but the weights attached to

observations are different and these variations help eliminate these shortcomings.

In this paper, the two approaches, exponential smoothing and ATA method, have
been compared based on popular metrics that are commonly used while comparing
forecasting methods. While some of these comparisons are based on the simple
versions of the two approaches, the generality of these results hold for models with
more components. Empirical performances of both approaches on the
M3-competition data sets have been given and it was verified that ATA has better
forecasting accuracy than all other competitors in addition to the fact that it is a

simple and interpretable model. Contrary to expectations, the relative ranking of the
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performance of the ATA method didn’t change according to the accuracy measure
being used and length of the forecasting horizon involved. In short, best should be

best in every forecasting setting, and ATA method accomplishes this.

We have also proposed a very simple but fast automatic forecasting strategy based
on the model framework and this strategy is also applied to the M3 competition data
set and performed even better. We note that we have not done any preprocessing of
the data, identification of outliers or level shifts, or used any other strategy and
transformations to improve the forecasts. These results are based on a simple
application of the algorithm to the data. Of course, the performance of ATA method
could be improved further if we used some sophisticated data preprocessing
techniques as was done by some of the competitors in the M3 competition. The fact
that even the simple version of ATA and the straight forward algorithm for
combinations and selections we proposed perform so well is very promising and the
results given in these thesis is not the final performance of the ATA method since the
method can be improved by allowing for more sophisticated model selection

strategies and more involved combinations of forecasts.
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APPENDICES ONE
APPENDIX

R code for AT A(p, q)

library(xIsx)

library(matrixcalc)

library(biganalytics)

library(matrixStats)
data=read.xlsx("d:/m3seasonallyadjusteddata.xlsx",1)
data=data.frame(data)

n=matrix(0,nrow=3003, ncol=1)
Sonuc<-array(NA.,c(4,3003,127))
tsonforecast<-sontrend<-matrix(0,nrow=1, ncol=3003)

minpl<-tminsMAPE<-matrix(0,nrow=1, ncol=3003)

for (k in 1:3003)

m3003=data[k,]
m3003=m3003[m3003!=9999999999]
m3003=ts(m3003)

lengths(m3003)
n[k,]<-sum(lengths(m3003))

m=n[k]

p=m-1

for (y in 0:p){

q=y+l

tsMAPE<-tforecast<-trend<-matrix(NA,nrow=m, ncol=3003)
tfit<-tlevel<-ttrend<-terror<-matrix(NA ,nrow=m, ncol=m)
for (x in q:m){

for (i in 1:m){
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if (i<=y) {

if (i==1){

tlevel[x,i]=(m3003[i])
ttrend[x,i]=0
tfit[x,i]<-(tlevel[x,i]+ttrend[x,i])

}

else{

tlevel[x,i]=(m3003[i])
ttrend[x,i]=(m3003[i]-m3003[i-1])

thit[x,i]<-(tlevel[x,i]+ttrend[x,i])

I
else if ((y<i) & (i<=x)){
if (y==0){

tlevel[x,i]=(m3003[i])

ttrend[x,i]=0

tfit[x.,i]=m3003[i]+0

}

else {

tlevel[x,i]=(m3003[i])
ttrend[x,i]<-((y/i)*(tlevel[x,i]-tlevel[x,i-11))+((1-(y/1))*(ttrend[x,i-1]))
tfit[x,i]<-(tlevel[x,i]tttrend[x,i])

}

}

else if ((y<i) & (i>x))
tlevel[x,1]<-((x/1)*m3003[i])+((1-(x/1))*(tlevel[x,i-1]+ttrend[x,i-1]))
ttrend[x,i]<-((y/i)*(tlevel[x,i]-tlevel[x,i-1]))+((1-(y/i))*(ttrend[x,i-1]))
tfit[x,i]<-(tlevel[x,i]+ttrend[x,i])

}

terror[x,i]<-(abs(m3003[i+1]-tfit[x,i])/(abs(m3003[i+1]+tfit[x,i])/2))* 100

tforecast[,k]=tlevel[,m]
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trend[,k]=ttrend[,m]

tsMAPE[ k]<-rowMeans(terror, na.rm = TRUE)
tminsMAPE[ k]<- min(tsMAPE[ k], na.rm = TRUE)
minpl[,k]<- max(which(tsMAPE[,k]==tminsMAPE[,k]))
tsonforecast[ k]<-tforecast[minp1[,k].k]

sontrend[,k]<-trend[minp1[,k].k]

Sonuc[ 1k,y+1]=minp1[,k]
Sonuc[2,k,y+1]=tminsMAPE[ k]
Sonuc[3,k,y+1]=tsonforecast[,k]
Sonuc[4,k,y+1]=sontrend[,k]

1

}

proc.time()

library(xlsx)

write.xlsx(Sonuc[1,,], "d:/ATA(p).xIsx")
library(xlsx)

write.xIsx(Sonuc[1,,], "d:/ATA(sMAPE).xlIsx")
library(xlsx)

write.xIsx(Sonuc[1,,], "d:/ATA(forecast).xlsx")
library(xlsx)

write.xlsx(Sonuc[1,,], "d:/ATA(trend).xIsx")

R code for AT A,,.1(p, q)

library(x1sx)
library(matrixcalc)
library(biganalytics)
library(matrixStats)
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data=read.xlsx("d:/m3seasonallyadjusteddata.xlsx",1)
data=data.frame(data)

n=matrix(0,nrow=3003, ncol=1)
Sonuc<-array(NA,c(4,3003,127))
tsonforecast<-sontrend<-matrix(0,nrow=1, ncol=3003)

minp 1 <-tminsMAPE<-matrix(0,nrow=1, ncol=3003)

for (k in 1:3003)

m3003=data[k,]
m3003=m3003[m3003!=9999999999]
m3003=ts(m3003)

lengths(m3003)
n[k,]<-sum(lengths(m3003))

m=n[k]

p=m-1

for (y in 0:p){

q=y+l

tsMAPE<-tforecast<-trend<-matrix(N A ,nrow=m, ncol=3003)
tfit<-tlevel<-ttrend<-terror<-matrix(NA,nrow=m, ncol=m)
for (x in q:m){

for (iin 1:m){

if (i<=y) {

if (i==1){

tlevel[x,i]=(m3003[i])

ttrend[x,1]=1

tfit[x,i]<-(tlevel[x,i]*ttrend[x,i])

}

else{
tlevel[x,i]=(m3003[i])
ttrend[x,1]=(m3003[i]/m3003[i-1])
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tfit[x,i]<-(tlevel[x,i]*ttrend[x,i])

3
else if ((y<i) & (i<=x)){
if (y==0){

tlevel[x,i]=(m3003[i])

ttrend[x,i]=1

tfit[x,i]=m3003[i]*0

}

else {

tlevel[x,i]=(m3003[i])
ttrend[x,1]<-((y/i)*(tlevel[x,i]/tlevel[x,i-1]))+((1-(y/i))*(ttrend[x,i-1]))
tfit[x,i]<-(tlevel[x,i]*ttrend[x,i])

}

}

else if ((y<i) & (i>x))
tlevel[x,i]<-((x/i)*m3003[i])+((1-(x/1))*(tlevel[x,i-1]*ttrend[x,i-1]))
ttrend[x,i]<-((y/i)*(tlevel[x,i]/tlevel[x,i-1]))+((1-(y/i))*(ttrend[x,i-1]))
tfit[x,i]<-(tlevel[x,i]*ttrend[x,i])

}

terror[x,i]<-(abs(m3003[i+1]-tfit[x,i])/(abs(m3003[i+1]+tfit[x,i])/2))* 100
tforecast[ ,k]=tlevel[,m]

trend[,k]=ttrend[,m]

tsMAPE[ k]<-rowMeans(terror, na.rm = TRUE)

tminsMAPE[ k]<- min(tsMAPE[ k], na.rm = TRUE)

minp1[,k]<- max(which(tsMAPE[,k]==tminsMAPE][ k]))
tsonforecast[,k]<-tforecast[minp1[.k].k]

sontrend[,k]<-trend[minp1[,k].k]

Sonuc[1,k,y+1]=minp1[,k]
Sonuc[2,k,y+1]=tminsMAPE[ k]

123



Sonuc|3,k,y+1]=tsonforecast[,k]

Sonuc[4,k,y+1]=sontrend[,k]

1

}

proc.time()

library(xlsx)

write.xlsx(Sonuc[1,,], "d:/ATAmult(p).xlsx")
library(xlsx)

write.xIsx(Sonuc|[1,,], "d:/ATAmult(sMAPE).xIsx")
library(xlsx)

write.xIsx(Sonuc[1,,], "d:/ATAmult(forecast).xlsx")
library(xIsx)

write.xIsx(Sonuc([1,,], "d:/ATAmult(trend).xIsx")

R code for AT A(p, g = constant)

library(xlsx)
library(matrixcalc)
library(biganalytics)

library(matrixStats)

data=read.xlsx("d:/m3seasonallyadjusteddata.xIsx",1)

data=data.frame(data)

n=matrix(0,nrow=3003, ncol=1)

Sonuc<-matrix(1,nrow=7, ncol=3003)
sonforecast<-tsonforecast<-sontrend<-matrix(NA,nrow=1, ncol=3003)
minpl<-minsMAPE<-ming2<-tminsMAPE<-matrix(NA,nrow=1, ncol=3003)
for (k in 1:3003){

m3003=data[k,]
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m3003=m3003[m3003!=9999999999]

m3003=ts(m3003)

lengths(m3003)

n[k,]<-sum(lengths(m3003))

m=n[k]

a=1

tsMAPE<-tforecast<-trend<-matrix(NA,nrow=m, ncol=3003)
tfit<-tlevel<-ttrend<-terror<-te | <-matrix(NA,nrow=m, ncol=m)
for (y in a:m){

for (i in 1:m){

if (i<=a) {

if (I==1){

tlevel[y.i]=(m3003[i])

ttrend[y,i]=0

tfit[y,i]<-(tlevel[y,i]+ttrend[y,i])

}

else{

tlevel[y,i]=(m3003[i])
ttrend[y,i]=(m3003[i]-m3003[i-1])
tfit[y,i]<-(tlevel[y,i]+ttrend[y,i])

3

else if ((a<i) & (i<=y)){

if (a==0){

tlevel[y,i]=(m3003[i])
ttrend[y,i]=0

tfit[y,i]=m3003[i]+0

}

else {

tlevel[y,i]=(m3003[i])
ttrend[y,i]<-((a/i)*(tlevel[y,i]-tlevel[y,i-1]))+((1-(a/i))*(ttrend[y,i-11))
tfit[y,i]<-(tlevel[y,i]+ttrend[y,i])
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}

else if ((a<i) & (i>y)){
tlevel[y,i]<-((y/i)*m3003[i])+((1-(y/i))*(tlevel[y,i-1]+ttrend[y.i-1]))
ttrend[y,i]<-((a/i)*(tlevel[y,i]-tlevel[y,i-1]))+((1-(a/i))*(ttrend[y,i-1]))
tfit[y,i]<-(tlevel[y,i]+ttrend[y.i])

}

terror|y,i]<-(abs(m3003[i+1]-tfit[y,i])/(abs(m3003[i+1]+tfit[y,i])/2))*100
tforecast[,k]=tlevel[,m]

trend[,k]=ttrend[,m]

tsMAPE[ k]<-rowMeans(terror, na.rm = TRUE)

tminsMAPE[,k]<- min(tsMAPE[ k], na.rm = TRUE)

ming2[,k]<- max(which(tsMAPE[k]==tminsMAPE[ k]))
tsonforecast[,k]<-tforecast[ming2[.k].k]

sontrend[,k]<-trend[ming2[,k].k]

Sonuc[1,k]=minpl1[k]
Sonuc[2,k]=minsMAPE[ k]
Sonuc|3,k]=sonforecast[ k]
Sonuc[4.k]=ming2[.k]
Sonuc[5,k]=tminsMAPE[ k]
Sonuc[6,k]=tsonforecast[ k]
Sonuc|[7,k]=sontrend[,k]

1

}

proc.time()

library(xIsx)
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write.xIsx(Sonuc, "d:/ATA(p=opt,q=sbt)xIsx")

R code for AT A,.1:(p, ¢ = constant)

library(xlsx)
library(matrixcalc)
library(biganalytics)

library(matrixStats)

data=read.xIsx("d:/m3seasonallyadjusteddata.xlsx",1)
data=data.frame(data)

n=matrix(0,nrow=3003, ncol=1)

Sonuc<-matrix(1,nrow=7, ncol=3003)
sonforecast<-tsonforecast<-sontrend<-matrix(NA,nrow=1, ncol=3003)
minpl<-minsMAPE<-ming2<-tminsMAPE<-matrix(NA,nrow=1, ncol=3003)
for (k in 1:3003){

m3003=data[k,]

m3003=m3003[m3003!=9999999999]

m3003=ts(m3003)

lengths(m3003)

n[k,]<-sum(lengths(m3003))

m=n[k]

a=1

tsMAPE<-tforecast<-trend<-matrix(NA,nrow=m, ncol=3003)
tfit<-tlevel<-ttrend<-terror<-te 1 <-matrix(NA,nrow=m, ncol=m)
for (y in a:m){

for (iin 1:m){

if (i<=a) {

if (i==1){

tlevel[y,i]=(m3003[i])
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ttrend|[y,i]=1
tfit[y,i]<-(tlevel[y,i]*ttrend[y,i])

}

else{

tlevel[y,i]=(m3003[i])
ttrend[y,i]=(m3003[i]/m3003[i-1])
tfit[y,i]<-(tlevel[y,i]*ttrend[y,i])

3}

else if ((a<i) & (i<=y)){

if (a==0){

tlevel[y,i]=(m3003[i])
ttrend[y,i]=1

tfit[y,i]=m3003[i]*0

}

else {

tlevel[y,i]=(m3003[i])
ttrend[y,i]<~((a/i)*(tlevel[y,i]/tlevel[y,i-11))+((1-(a/i))*(ttrend[y,i-1]))
tfit[y,i]<-(tlevel[y,i]*ttrend|y.i])

}

}

else if ((a<i) & (i>y)){
tlevel[y,i]<-((y/i)*m3003[i])+((1-(y/i))*(tlevel[y,i-1]*ttrend[y,i-1]))
ttrend|y,i]<-((a/i)*(tlevel[y,i]/tlevel[y,i-1]))+((1-(a/i))*(ttrend[y,i-1]))
tfit[y,i]<-(tlevel[y,i]*ttrend[y,i])

}

terror[y,i]<-(abs(m3003[i+1]-tfit[y,i])/(abs(m3003[i+1]+tfit[y,i])/2))*100
tforecast[ ,k]=tlevel[,m]

trend[,k]=ttrend[,m]

tsMAPE][ k]<-rowMeans(terror, na.rm = TRUE)
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tminsMAPE[ k]|<- min(tsMAPE[.k], na.rm = TRUE)
ming2[,k]<- max(which(tsMAPE[,k]==tminsMAPE[ k]))
tsonforecast[ k]<-tforecast[ming2[,k].k]
sontrend[,k]<-trend[ming2[.k].k]

Sonuc[1,k]=minp1[,k]
Sonuc[2.k]=minsMAPE[,k]
Sonuc[3,k]=sonforecast[,k]
Sonuc[4,k]=ming2[.k]
Sonuc[5,k]=tminsMAPE[ k]
Sonuc[6,k]=tsonforecast[ k]
Sonuc[7,k]=sontrend[ k]

1

}

proc.time()
library(xIsx)
write.xlsx(Sonuc, "d:/ATAmult(p=opt,g=sbt)xIsx")

R code for AT Agomped(p, ¢ = constant)

library(xlsx)
library(matrixcalc)
library(biganalytics)

library(matrixStats)

data=read.xlsx("d:/m3seasonallyadjusteddata.xlsx",1)
data=data.frame(data)
datal=read.xlsx("d:/s.index3003.xlsx",1)
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datal=data.frame(datal)

n=matrix(NA,nrow=3003, ncol=1)

nl=matrix(NA,nrow=19, ncol=3003)

Sonuc<-array(NA,c(23,3003,9))
sonforecast<-tsonforecast<-sontrend<-matrix(NA,nrow=1, ncol=3003)

minp1<-minsMAPE<-ming2<-tminsMAPE<-matrix(NA ,nrow=1, ncol=3003)

for (k in 1:3003){

m3003=datalk,]
m3003=m3003[m3003!=9999999999]
m3003=ts(m3003)

lengths(m3003)
n[k,]<-sum(lengths(m3003))

m=n[k]

nl=datal

a=1

d1=0.80

d=1
tsMAPE<-tforecast<-trend<-matrix(NA,nrow=m, ncol=3003)
tfit<-tlevel<-ttrend<-terror<-tel <-matrix(NA,nrow=m, ncol=m)
for (y in aim){

for (iin 1:m){

if (i<=a) {

if (i==1){

tlevel[y,i]=(m3003[i])

ttrend[y,i]=0
tfit[y,i]<-(tlevel|y,i]+ttrend[y,i]*d1)

}

else{

tlevel[y,i]=(m3003[i])
ttrend[y,i]=(m3003[i]-m3003[i-1])
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tfit[y,i]<-(tlevel[y,i]+ttrend[y,i]*d1)

1

else if ((a<i) & (i<=y)){

if (a==0){

tlevel[y,i]=(m3003[i])

ttrend[y,i]=0

tfit[y,i]=m3003[i]+0*d1

}

else {

tlevel[y,i]=(m3003[i])
ttrend[y,i]<-((a/i)*(tlevel[y,i]-tlevel[y,i-11))+((1-(a/i))*(ttrend[y,i-1])*d1)
tfit[y,i]<-(tlevel[y,i]+ttrend[y,i]*d1)

}

}

else if ((a<i) & (>y)){
tlevel[y,i]<-((y/1)*m3003[i])+((1-(y/i))*(tlevel[y,i-1]+ttrend[y,i-1]*d1))
ttrend|[y,i]<-((a/i)*(tlevel[y.i]-tlevel[y,i-1]))+((1-(a/i))*(ttrend[y,i-1]*d1))
tfit[y,i]<-(tlevel[y,i]+ttrend[y,i]*d1)

}

terror(y,i]<-(abs(m3003[i+1]-tfit[y,i])/(abs(m3003[i+1]+tfit[y,i])/2))* 100
tforecast[ . k]=tlevel[,m]

trend[,k]=ttrend[,m]

tsMAPE[ k]<-rowMeans(terror, na.rm = TRUE)

tminsMAPE[.k]<- min(tsMAPE[.k], na.rm = TRUE)

ming2[.k]<- max(which(tsMAPE[ k]==tminsMAPE[ k]))
tsonforecast[,k]<-tforecast[ming2[,k].k]

sontrend[ ,k]<-trend[ming2[,k].k]
Sonuc[1,k,d]|=minp1[,k]

Sonuc|2,k,d]=ming2[,k]
Sonuc[3,k,d]=tminsMAPE[ k]
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Sonuc[4,k,d]=tsonforecast[,k]
Sonuc|[5,k,d]=sontrend[,k]

if (n1[1,k]==6){

Sonuc|[6,k,d]=(tsonforecast[ 1 ,k]+sontrend[1,k]*d1)*n1[2.k]
Sonuc[7.k,d]=(tsonforecast[ 1 ,k]+sontrend[ 1,.k]*(d1+d12))*n1[3,k]
Sonuc[8,k,d]=(tsonforecast[1,k]+sontrend[1,k]*(d1+d12*%+d13))*n1[4.k]
Sonuc[9,k,d]=(tsonforecast[ 1 ,k]+sontrend[ 1,k]*(d1+d12%+d 1 3%d14))*n1[5,k]
Sonuc[10,k,d]=(tsonforecast[ 1 ,k]+sontrend[1,k]*(d1+d12%d 1 3*+d14+d15))
*n1[6.k]

Sonuc[11,k,d]=(tsonforecast| 1 ,k]+sontrend[1,k]*(d1+d12+d13+d14+d15+d16))
*nl[7.k] }

else if (n1]1.k]==8){

Sonuc[6,k,d]=(tsonforecast[ 1 ,k]+sontrend[1,k]*d1)*n1[2.k]
Sonuc[7,k,d]=(tsonforecast[1,k]+sontrend[1,k]*(d1+d12))*n1[3.k]
Sonuc[8,k,d]=(tsonforecast[1,k]+sontrend[1,k]*(d1+d12%+d13))*n1[4.k]
Sonuc[9,k,d]=(tsonforecast[1,k]+sontrend[ 1,k]*(d1+d12+d13+d14))*n1[5.k]
Sonuc[10.k,d]=(tsonforecast[ 1 ,k]+sontrend[1.k]*(d1+d12%+d13%+d14%+d15))
*nl1[6.k] ‘
Sonuc[11,k,d]=(tsonforecast[ 1 k]+sontrend[ 1,k]*(d1+d12*+d13+d14+d15+d16))
*nl[7.k]

Sonuc[12,k,d]=(tsonforecast[ 1 ,k]+sontrend[1.k]*(d1+d12%d13+d14+d15
+d16+d17))*n1[8.k]
Sonuc[13,k,d]=(tsonforecast[1,k]+sontrend[1,k]*(d1+d12%d13*+d14+d15
+d16+d17+d18))*n1[9,k]}

else if (n1[1.k]==18){
Sonuc[6,k,d]=(tsonforecast[1,k]+sontrend[1,k]*d1)*n1[2,k]
Sonuc[7.k.d]=(tsonforecast[1,k]+sontrend[1,k]*(d1+d12))*n1[3.k]
Sonuc|8,k,d]=(tsonforecast[ 1 k]+sontrend[1,k]*(d1+d12+d13))*n1[4,k]
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Sonuc[9,k,d]=(tsonforecast[1,k]+sontrend[1,k]*(d1+d12%+d13%d14))*n1[5,k]
Sonuc[10,k,d]=(tsonforecast[ 1 ,k]+sontrend[ 1 ,k]*(d1+d12%d13+d14+d15))
*nl[6.k]
Sonuc[11,k,d]=(tsonforecast[1,k]+sontrend[1.k]*(d1+d12*+d13*+d14+d15+d16))
*nl[7.k]

Sonuc[12,k,d]=(tsonforecast[1,k]+sontrend[1,k]*(d 1+d12%*d13%d14+d]1 5%
d16+d17))*n1[8.k]

Sonuc[13.k,d]=(tsonforecast[ 1 ,k]+sontrend[1,k]*(d1+d12%+d13+d14+d15+
d16+d17+d18))*n1[9,k]

Sonuc[14,k,d]=(tsonforecast[ 1 ,k]+sontrend[ 1,k|*(d1+d12%+d13+d14+d 15+
d16+d17+d18+d19))*n1[10.k]

Sonuc[15 k,d]=(tsonforecast[ 1 ,k]+sontrend[ 1, k]*(d1+d12%d13+d14+d15%
d16+d17+d18+d19+d110))*n1[11.k]
Sonuc[16,k,d]=(tsonforecast[1,k]+sontrend[ 1,k]*(d1+d12+d13+d14+d 15+
d16+d17+d18+d19+d110+d111))*n1[12,k]

Sonuc[17.k,d]=(tsonforecast[ 1 ,k]+sontrend[1,k]*(d1+d12%+d13*+d14+d 15+
d16+d17+d18+d19+d110+d111+d112))*n1[13.k]
Sonuc[18.k,d]=(tsonforecast[1,k]+sontrend[ 1 ,k]*(d1+d12%d13%d14*+d15+
d16+d17+d18+d19+d 1 10+d 1 1'1+d112+d113))*n1[14.k]
Sonuc[19,k,d]=(tsonforecast[1,k]+sontrend[ 1, k]*(d1+d12+d13*d14%+d15%+
d16+d17+d18+d19+d 1 10+d 1 I'1+d112+d 1 13+d114))*n1[15,k]
Sonuc[20.k,d]=(tsonforecast[1,k]+sontrend[ 1,k]*(d1+d12%+d 13+d14+d 15+
d16+d1 7+d18+d19+d110+d 1 ' +d112+d113+d114+d115))*n1[16,k]
Sonuc[21,k,d]=(tsonforecast[ 1 ,k]+sontrend| 1,k]*(d1+d12%d13+d14+d 15+
d16+d1 7+d18+d19+d 1 10+d 1 ' +d112+d113+d1 14+d115+d116))*n1[17,k]
Sonuc[22,k,d]=(tsonforecast[ 1 ,k]+sontrend[1,k]*(d1+d12+d13*+d14+d 15+
d16+d1 7+d18+d19+d1 10+d 1 11+d112+d113+d114+d115+d116+d117))*n1[18,k]
Sonuc[23 k,d]=(tsonforecast[ 1 ,k]+sontrend[ 1,k]*(d1+d12%d13*+d14+d1 5+
d16+d17+d18+d19+d110+d111+d112+d113+d114+d115+d11%6+
d117+d118))*n1[19,k]}

133



1

}

proc.time()
library(xlsx)
write.xlsx(Sonuc[,,1], ""d:/adddamped(ATA (p=opt,q=sbt,0.80)).xlsx")

R code for AT A(p*, q)

library(xlsx)
library(matrixcalc)
library(biganalytics)
library(matrix Stats)

data=read.xlsx("d:/m3seasonallyadjusteddata.xIsx",1)
data=data.frame(data)

n=matrix(0,nrow=3003, ncol=1)

Sonuc<-matrix(1,nrow=7, ncol=3003)
sonforecast<-tsonforecast<-sontrend<-matrix(0,nrow=1, ncol=3003)

minpstar<-minsMAPE<-minq2<-tminsMAPE<-matrix(0,nrow=1, ncol=3003)

for (k in 1:3003){

m3003=datal[k,]
m3003=m3003[m3003!=9999999999]
m3003=ts(m3003)

lengths(m3003)

n[k,]<-sum(lengths(m3003))

m=n|k]

ssMAPE<-sforecast<-matrix(0,nrow=m, ncol=3003)

sfit<-slevel<-serror<-se 1 <-matrix(0,nrow=m, ncol=m)
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for (x in 1:m){

for (iin 1:m){

if (i<=x) {
slevel[x,i]=(m3003[i])
sfit[x,i]=slevel[x,i]

}

else {
slevel[x,i]<-((x/1)*m3003[i])+((1-(x/i))*(slevel[x,i-1]))
sfit[x,i]=slevel[x,i]

}

serror|[x,i]<-abs(m3003[i+1]-sfit[x,i])/(abs(m3003[i+1]+sfit[x,i])/2))* 100
sforecast[,k]=slevel[,m]

ssMAPE[ k]<-rowMeans(serror, na.rm=TRUE)

minsMAPE[ k]<- min(ssMAPE[ k], na.rm=TRUE)

minpstar[,k]<- max(which(ssMAPE[k]==minsMAPE[ k]))

sonforecast[,k]<-sforecast[minpstar[,k].k]

1

pl=minpstar[,k]
a=pl
tsMAPE<-tforecast<-trend<-matrix(0,nrow=a+1, ncol=3003)

tfit<-tlevel<-ttrend<-terror<-te | <-matrix(0,nrow=a+1, ncol=m)

for (y in 0:a){

for (i in 1:m){

if (i<=y) {

if (I==1){
tlevel[y+1,i[=(m3003[i])
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ttrend[y+1,i]=0

tfitly+1,i]<-(tlevel[y+1,i]+ttrend[y+1,i])

h

else{

tlevel[y+1,i]=(m3003[i])

ttrend[y+1,i]=(m3003[i]-m3003[i-1])
tfit[y+1,i]<-(tlevel[y+1,i]+ttrend[y+1,i])

1)

else if ((y<i) & (i<=a)){

if (y==0){

tlevel[y+1,i]=(m3003[i])

ttrend[y+1,i]=0

tfit[y+1,i]=m3003[i]+0

¥

else {

tlevel[y+1,i]=(m3003[i])
ttrend[y+1,i]<-((y/i)*(tlevel[y+1,i]-tlevel[y+1,i-1]))+((1-(y/i))*(ttrend[y+1,i-1]))
tfit[y+1,i]<-(tlevel[y+1,i]+ttrend[y+1,i])

}

}

else if ((y<i) & (i>a)){
tlevel[y+1,i]<-((a/i)*m3003[i])+((1-(a/i))*(tlevel[y+1,i-1]+ttrend[y+1,i-1]))
ttrend[y+1,i]<-((y/i)*(tlevel[y+1,i]-tlevel[y+1,i-1]))+((1-(y/1))*(ttrend[y+1,i-1]))
tfit[y+L,i]<-(tlevel[y+1,i]+ttrend[y+1,i])

}

terror[y+1,i]<-abs(m3003[i+1]-tfit[y,i])/(abs(m3003[i+1 ]+tfit[y,i])/2))* 100
tforecast[,k]=tlevel[,m]

trend[,k]=ttrend[,m]

tsMAPE[ k]<-rowMeans(terror, na.rm = TRUE)

tminsMAPE[ k]<- min(tsMAPE[.k], na.rm = TRUE)
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ming2[.k]<- max(which(tsMAPE[ k]==tminsMAPE[,k]))
tsonforecast[ k] <-tforecastfming2[,k].k]
sontrend[,k]<-trend[minqg2[,k].k]

Sonuc[1,k]=minpstar[,k]
Sonuc[2,k]=minsMAPE[ k]
Sonuc[3,k]=sonforecast[ k]
Sonuc[4,k]=ming2[.k]-1
Sonuc[5,k]=tminsMAPE[ k]
Sonuc|6,k]=tsonforecast[,k]
Sonuc[7,k]=sontrend[,k]

1}

}

proc.time()
library(xIsx)
write.xIsx(Sonuc, "d:/ATA(pstar,q).x1sx")
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