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ON THE SPECTRAL PROPERTIES OF SCHRÖDINGER OPERATORS

ABSTRACT

The time independent Schrödinger operator is one of the fundamental operator in

quantum physics.

In this thesis, firstly, we obtain asymptotic formulas of arbitrary order for the

eigenvalues of the multidimensional Schrödinger operator with a matrix potential and

the Neumann boundary condition, when the corresponding eigenvalue of the

unperturbed operator is near the diffraction plane.

Secondly, we introduce a detailed analysis of the spectral properties of Schrödinger

operators with non-regular potentials on infinite metric graphs such as a

characterization of the bottom of essential spectrum, the discreteness of the negative

part of the spectrum and of the whole spectrum, exponential decay of eigenfuctions.

Here we suppose that the potential is locally integrable and its negative part is

bounded in certain integral sense.

Keywords: Schrödinger operator, matrix potential, Neumann condition, perturbation,

asymptotic formulas, metric graph, spectrum, eigenspace of Schrödinger operators,

exponential decay.
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SCHRÖDINGER OPERATÖRLERİNİN SPEKTRAL ÖZELLİKLERİ

ÜZERİNE

ÖZ

Zamandan bağımsız Schrödinger operatörü kuantum fiziğinin temel

operatörlerinden biridir.

Bu tezde ilk olarak, Neumann sınır koşulları ile tanımlanan matris potansiyelli çok

boyutlu Schrödinger operatörünün özdeğerleri için keyfi dereceden asimptotik

formüller elde edilmiştir. Bu kısımda, özdeğerlerin kırınım düzlemine yakın olduğu

varsayılmıştır.

İkinci olarak ise, sonsuz metrik grafikleri üzerinde tanımlı düzenli olmayan

potansiyele sahip Schrödinger operatörünün; esaslı spektrumunun alt sınırının

karakterizasyonu, spektrumunun negatif kısmının ve tüm spektrumunun diskritliği,

özvektörlerin üstel azalması gibi spektral özelliklerinin detaylı bir analizi yapılmıştır.

Bu kısımda, potansiyelin lokal olarak integrallenebilir olduğu ve potansiyelin negatif

kısmının integral anlamında sınırlı olduğu varsayılmıştır.

Anahtar kelimeler: Schrödinger operatörü, matris potensiyeli, Neumann koşulu,

pertürbasyon, asimptotik formüller, metrik grafiği, spektrum, Schrödinger

operatörünün özuzayı, üstel azalma.
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CHAPTER ONE

INTRODUCTION

The spectral theory of operators in a finite dimensional space first appeared in the

study of frequencies of small vibrations of mechanical systems. If the vibrations of a

string is in consideration, then an eigenvalue problem for a differential operator

arises. For instance, for an inhomogeneous string, it is necessary to consider the

general Sturm-Liouville problem with variable coefficients. Finally, study of

vibrations of a membrane or a three dimensional elastic body leads to the eigenvalue

problems for multidimensional differential operators.

One of the richest source of the spectral theory is the quantum physics and most

of the theory is dedicated to the Schrödinger operator L(V ) defined by the differential

expression

L(V )u(x) = (−∆+ V (x))u(x)

which is a fundamental operator of quantum physics. The Schrödinger operator can be

considered as the energy operator of one or several particles depending on the form of

the potential V (x). According to the fundamental principles of quantum physics, the

possible values of the energy of a particle belong to the spectrum of the Schrödinger

operator and eigenfunctions describe the state of the particle.

This thesis includes two independent studies on the spectral theory of Schrödinger

operators.

The first study, which is the subject of Chapter Two, is on the Schrödinger operator

whose potential is a real-valued, symmetric matrix V . In the sequel, we denote this

operator by L(V ). More precisely, L(V ) is defined by

L(u(x)) = (−∆+ V (x))u(x) (1.1)
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and the Neumann boundary condition

∂u

∂n

∣∣∣∣
∂F

= 0, (1.2)

in Lm
2 (F ) where F is the d-dimensional rectangle F = [0, a1]× [0, a2]× · · ·× [0, ad],

a1, a2, . . . , ad are arbitrary real numbers, ∂F is the boundary of F , m ! 2, d ! 2, ∂
∂n

denotes differentiation along the outward normal of the boundary of F ,∆ is a diagonal

m ×m matrix whose diagonal elements are the scalar Laplace operators ∆ = ∂2

∂x1
2 +

∂2

∂x2
2 + · · · + ∂2

∂xd
2 , x = (x1, x2, . . . , xd) ∈ Rd, V is a real-valued symmetric matrix

V (x) = (vij(x)), i, j = 1, 2, . . . ,m, vij(x) ∈ L2(F ), that is, V T (x) = V (x).

We denote the eigenvalue and eigenfunction pairs of L(V ) by ΛN and ψN ,

respectively.

In Chapter Two, we obtain asymptotic formulas for the eigenvalue ΛN of L(V )

when the corresponding eigenvalue of the unperturbed operator L(0), which is defined

by (1.1) when V (x) = 0 and the boundary condition (1.2), is roughly speaking, near

diffraction plane.

In the second study, which covers Chapters Three, we consider Schrödinger

operators with non-regular potentials on infinite metric graphs. The potentials are

supposed to be locally integrable with negative part bounded in certain integral sense.

Defining a self-adjoint Schrödinger operator, we start with a second-order symmetric

differential operator

L0u = −d2u

dx2
+ V (x)u

on the domain that consists of sufficiently smooth compactly supported functions

satisfying the Kirchhoff conditions at the vertices of a metric graph Γ.

In Chapter Three, first we show that the Friedrichs extension, L, of L0 is the only

self-adjoint extention of L0. Our next result is a characterization of the bottom of

essential spectrum. In the rest of Chapter Three, we begin with a sufficient condition

for the discreteness of the negative part of spectrum. Then we obtain a necessary and
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sufficient condition for the discreteness of whole spectrum. Finally, we show that,

under natural assumptions, eigenfunctions corresponding to isolated eigenvalues of

finite multiplicity decay at infinity exponentially fast.

Now, in Section 1.1 and Section 1.2, we give the literature surveys, fundamental

definitions and facts related with our first and second studies, respectively.

1.1 Introduction to the Perturbation Theory of the Schrödinger Operator with a

Matrix Potential

In this section, we give a brief discussion of what is known from the literature and

what is presented in this thesis about the perturbation theory of the multidimensional

Schrödinger operator with a matrix potential.

As the eigenvalue problem of the operator L(V ) defined by (1.1) and (1.2), most

of the problems related with spectral theory fail to be explicitly soluble, they need a

qualitative and asymptotic study.

In this direction, perturbation theory which was created by Rayleigh and

Schrödinger is an important tool in the spectral theory of linear differential operators.

The main problem is to seek an approximate solution of the eigenvalue problem for a

linear operator slightly different from a simplier one for which the problem is

completely solved. More precisely, for the Schrödinger operator L(V ), it is essential

to know how the eigenvalues of the unperturbed operator L(0) is affected under

perturbation.

The most significant progress has been achieved in one dimensional case. The

crucial property in analysis of the problem in one dimensional case is that the distance

between the consecutive eigenvalues (which occurs in the denominator of the

perturbation series) becomes larger and larger so that the perturbation theory can be

applied to obtain the asymptotic formulas for sufficiently large eigenvalues.
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For physical applications, it is important to have a perturbation theory of the

Schrödinger operator in many dimensional cases because of the fact that the Hilbert

space for N particles in Rd is L2(RN ·d). However, in many dimensional case, (even

in two or three dimensions), the problem is considerably difficult. In this case, to

construct a perturbation theory turns out to be rather difficult, because of the

denseness of the eigenvalues of the free operator which are situated very close to each

other in a high energy region. Therefore, when perturbation disturbs them, they

strongly influence each other. This presents considerable difficulties as the arbitrarily

small differences become small divisors in an asymptotic expansion, in particular,

“the small denominators problem”. Thus, to describe the perturbation of one of the

eigenvalues, we must also study all the other surrounding eigenvalues.

In order to overcome this difficulty, for the first time in papers (Veliev, 1987, 2006,

2007, 2015), the eigenvalues of the unperturbed operator L(0) is divided into two

groups: Non-resonance and resonance ones. In these papers, various asymptotic

formulas were obtained for the perturbations of each group.

Now to give the precise definitions of these groups, we first introduce the following

notations:

The eigenvalues and the eigenfunctions of the unperturbed operator L(0):

The eigenvalues of the operator L(0) which is defined by (1.1) when V (x) = 0 and

the boundary condition (1.2) are |γ|2 and the corresponding eigenspaces are

Eγ = span{Φγ,1(x),Φγ,2(x), . . . ,Φγ,m(x)},

where γ ∈ Γ+0

2 = {(n1π
a1

, n2π
a2

, . . . , ndπ
ad

) : nk ∈ Z+ ∪ {0}, k = 1, 2, . . . , d},

Φγ,j(x) = (0, . . . , 0, uγ(x), 0, . . . , 0), j = 1, 2, . . . ,m,

uγ(x) = cos n1π
a1

x1 cos n2π
a2

x2 · · · cos ndπ
ad

xd, u0(x) = 1 when γ = (0, 0, . . . , 0). The

non-zero component uγ(x) is in the j-th component.
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It can be easily calculated that the norm of uγ(x), γ = (γ1, γ2, . . . , γd) ∈ Γ+0

2 in

L2(F ) is
√

µ(F )
|Aγ | , where µ(F ) is the measure of the d-dimensional rectangle F , |Aγ| is

the number of vectors in

Aγ =

{
α = (α1,α2, . . . ,αd) ∈

Γ

2
: |αk| = |γk|, k = 1, 2, . . . , d

}
,

Γ

2
=

{(
n1π

a1
,
n2π

a2
, . . . ,

ndπ

ad

)
: nk ∈ Z, k = 1, 2, . . . , d

}
.

Equivalently,

∥uγ(x)∥ =

√
a1a2 · · · ad

2d−s
,

where s, (0 ≤ s ≤ d), is the number of components γk of (γ1, γ2, . . . , γd) such that

γk = 0.

Since {uγ(x)}γ∈Γ+0

2
is a complete system in L2(F ), for any q(x) in L2(F ) we have

q(x) =
∑

γ∈Γ+0

2

|Aγ|
µ(F )

(q, uγ)uγ(x), (1.3)

where (·, ·) is the inner product in L2(F ).

In this thesis, it is convenient to use the equivalent decomposition (see Karakılıç,

Atılgan et al. (2005))

q(x) =
∑

γ∈Γ
2

qγuγ(x), (1.4)

where qγ = 1
µ(F )(q(x), uγ(x)) for the sake of simplicity. That is, the decomposition

(1.3) and (1.4) are equivalent for any d ≥ 1.

Since vij(x) ∈ L2(F ) by (1.4), it has the following decomposition

vij(x) =
∑

γ∈Γ
2

vijγuγ(x) (1.5)

for i, j = 1, 2, . . . ,m where vijγ =
(vij, uγ)

µ(F )
.
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Throughout Chapter Two, which is devoted to our first study, we have the following

assumption:

Assumption on the potential V (x) :

We assume that the Fourier coefficients vijγ of vij(x) satisfy

∑

γ∈Γ
2

|vijγ|2(1 + |γ|2l) < ∞ (1.6)

for each i, j = 1, 2, . . . ,m, l > (d+20)(d−1)
2 + d+ 3 which implies

vij(x) =
∑

γ∈Γ+0(ρα)

vijγuγ(x) +O(ρ−pα), (1.7)

where Γ+0(ρα) = {γ ∈ Γ
2 : 0 ≤ |γ| < ρα}, p = l− d, α < 1

d+20 , ρ is a large parameter

and O(ρ−pα) is a function in L2(F ) with norm of order ρ−pα.

Indeed, we have

∥∥∥∥∥
∑

γ∈Γ
2 \Γ+0(ρα)

vijγuγ

∥∥∥∥∥

2

=

∥∥∥∥∥
∑

|γ|>ρα

vijγuγ

∥∥∥∥∥

2

=
∑

|γ|>ρα

|vijγ|2∥uγ∥2

=
∑

|γ|>ρα

|vijγ|2
a1a2 · · · ad

2d−s
≤ a1a2 · · · ad

∑

|γ|>ρα

|vijγ|2 = a1a2 · · · ad
∑

|γ|>ρα

[
|vijγ||γ|l

|γ|l

]2

≤ a1a2 · · · ad

⎡

⎣
∑

|γ|>ρα

|vijγ||γ|l

|γ|l

⎤

⎦
2

≤ a1a2 · · · ad

⎛

⎝
∑

|γ|>ρα

|vijγ|2|γ|2l
⎞

⎠

⎛

⎝
∑

|γ|>ρα

1

|γ|2l

⎞

⎠ .

The first sum in the last expression is convergent by (1.6). The second sum is big-oh

of ρ−pα by using the integral test. Thus, (1.7) holds .

Moreover, by (1.6), we have

Mij ≡
∑

γ∈Γ
2

|vijγ| < ∞, for all i, j = 1, 2, . . . ,m. (1.8)
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Actually,

∑

γ∈Γ
2

|vijγ| =
∑

γ∈Γ
2

|vijγ||γ|l

|γ|l <

⎛

⎝
∑

γ∈Γ
2

|vijγ|2|γ|2l
⎞

⎠

1
2
⎛

⎝
∑

γ∈Γ
2

1

|γ|2l

⎞

⎠

1
2

< ∞.

As noted in Hald & McLaughlin (1996), q(x) satisfies (1.6) if q(x) ∈ W l
2(F ), for

sufficiently large l and support of the gradient of q is in the interior of F . Also if

q(x) ∈ W l
2(F ) is a periodic function with respect to a lattice

Ω = {(m1a1,m2a2, . . . ,mdad) : mk ∈ Z, k = 1, 2, . . . , d} then it also satisfies

condition (1.6).

Resonance and Non-Resonance Domains: (For more detailed analysis of these

domains, see Veliev (2015))

Definition 1.1.1. Let ρ be a large parameter, α < 1
d+20 , αk = 3kα, k = 1, 2, . . . , d− 1

and

Vb(ρα1) ≡
{
x ∈ Rd : ||x|2−|x+ b|2| < ρα1

}
,

E1(ρα1 , p) ≡
⋃

b∈Γ(pρα)
Vb(ρα1),

U(ρα1 , p) ≡ Rd \ E1(ρα1 , p),

Ek(ραk , p) =
⋃

γ1,γ2,...,γk∈Γ(pρα)

(
k⋂

i=1
Vγi(ρ

αk)

)
,

where Γ(pρα) ≡
{
b ∈ Γ

2 : 0 < |b| < pρα
}
and the intersection

k⋂
i=1

Vγi(ρ
αk) in Ek is

taken over γ1, γ2, . . . , γk which are linearly independent vectors and the length of γi is

not greater than the length of the other vector in Γ∩γiR. The set U(ρα1 , p) is said to be

a non-resonance domain, and the eigenvalue |γ|2 is called a non-resonance eigenvalue

if γ ∈ U(ρα1 , p). The domains Vb(ρα1), for b ∈ Γ(pρα) are called resonance domains

and the eigenvalue |γ|2 is a resonance eigenvalue if γ ∈ Vb(ρα1).
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The domain Vb(ρα1)\E2, i.e., the part of resonance domain Vb(ρα1), which does not

contain the intersections of two resonance domains is called a single resonance domain.

As noted in Veliev (2006), Veliev (2007) and Veliev (2015), the single resonance

domain Vb(ρα1) \ E2 has asymptotically full measure on Vb(ρα1), that is, if

2α2 − α1 + (d+ 3)α < 1 and α2 > 2α1 (1.9)

hold, then

µ ((Vb(ρα1) \ E2) ∩ B(ρ))

µ (Vb(ρα1) ∩ B(ρ))
→ 1, as ρ→ ∞,

where B(ρ) =
{
x ∈ Rd : |x| " ρ

}
, for a large parameter ρ ≫ 1 and

E2 =
⋃

γ1,γ2∈Γ(pρα)
(Vγ1(ρ

α2) ∩ Vγ2(ρ
α2)). Since α < 1

d+20 , the conditions in (1.9) hold.

How the eigenvalues |γ|2 of the unperturbed operator L(0) is affected under

perturbation is an important problem. We study this problem by using energy as a

large parameter, in other words when |γ| ∼ ρ, that is, there exist positive constants c1,

c2 such that c1ρ < |γ|< c2ρ, c1, c2 do not depend on ρ and ρ is a big parameter.

For the scalar case, m = 1, non-resonance and resonance domains were first

introduced in Veliev (1987) and more recently in Veliev (2015). Corresponding to

each group he obtained various asymptotic formulas for the eigenvalues of the

periodic Schrödinger operator with quasiperiodic boundary conditions in an arbitrary

dimension d ≥ 2. In Feldman et al. (1991), Friedlander (1990), Karpeshina (1996)

and Karpeshina (2002), the authors obtained asymptotic formulas for quasiperiodic

boundary conditions in two and three dimensions. Hald & McLaughlin (1996)

obtained asymptotic formulas for Dirichlet boundary condition in two dimensions. In

Atılgan et al. (2002), Karakılıç, Atılgan et al. (2005) and Karakılıç, Veliev et al.

(2005), the authors obtained asymptotic formulas for the eigenvalues of the

Schrödinger operator with Dirichlet and Neumann boundary conditions in an arbitrary

dimension.
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For the matrix case, asymptotic formulas for the eigenvalues of the Schrödinger

operator with quasiperiodic boundary conditions are obtained in Karpeshina (2002).

In Coşkan & Karakılıç (2011), in an arbitrary dimension, the asymptotic formulas of

arbitrary order for the eigenvalue of the operator L(V ) which corresponds to the non-

resonance eigenvalue |γ|2 of L(0) are obtained.

In Chapter Two, we obtain the high energy asymptotics of arbitrary order in an

arbitrary dimension (d ≥ 2) for the eigenvalue of L(V ) corresponding to resonance

eigenvalue |γ|2 when γ belongs to the single resonance domain, that is,

γ ∈ Vδ(ρα1) \ E2, where δ is from {e1, e2, . . . , ed} and e1 =
(

π
a1
, 0, . . . , 0

)
,

e2 =
(
0, π

a2
, . . . , 0

)
, . . . , ed =

(
0, 0, . . . , π

ad

)
.

1.2 Introduction to Schrödinger Operators on Infinite Metric Graphs

This section has a survey nature about quantum graphs and is devoted to the essential

ingredients of the proofs which are presented in Chapter Three.

The name “quantum graph” refers to a graph considered as a one-dimensional

simplicial complex and equipped with a differential operator (“Hamiltonian”). Such

objects naturally arise as simplified models in mathematics, physics, chemistry and

engineering, when one considers wave propagation through a quasi-one-dimensional

system that looks like a thin neighborhood of a graph. The works on quantum graph

theory and their applications have brought together tools and intuition coming from

graph theory, combinatorics, mathematical physics, PDEs, and spectral theory.

In paper Kuchment (2004), one can find some basic notions and results concerning

quantum graphs and their spectra. In Kuchment (2005), a continuation of Kuchment

(2004), some combinatorial spectral results are considered too. While combinatorial

spectral graph theory has been initiated quite long time ago, the theory of quantum

graphs is not developed well enough. A contemporary presentation of the subject in a

monograph form is given in Berkolaiko & Kuchment (2013).
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Now, we introduce the main players of the quantum graph theory: metric graphs and

differential operators on them.

Metric Graphs:

Let Γ = (E, V ) be an undirected graph with the set of edgesE and the set of vertices

V . Multiple edges and loops are allowed. At the same time we assume that the graph

is connected in the sense that any two vertices are terminal vertices of at least one path

of edges. Recall that the degree dv of a vertex v ∈ V is the number of edges emanating

from v. We assume that all the vertices of the graph Γ have finite and positive degrees.

For any vertex v ∈ V we denote by Ev the set of edges adjacent to v.

The graph Γ is said to be a metric graph if each edge e is identified with an [0, le] of

the real line. The endpoints of the interval correspond to the vertices of the edge. The

induced coordinate on the edge e is denoted by xe though we often skip the index e in

this notation. The distance d(x, y) between two points x and y in Γ is defined as the

length of a shortest path that connects these points. Since the graph is connected, the

distance is well defined. Fixing an arbitrary vertex o ∈ V , we set

d(x) = d(o, x) .

In addition, there is a natural measure, dx, on Γ which coincides with the Lebesgue

measure on each edge. In particular, integration over Γ makes sense.

In Chapter Three, we accept the following assumptions:

(i) The sets of edges and vertices are countably infinite;

(ii) There exist two positive constants l and l such that

l ≤ le ≤ l

for all e ∈ E.

10



Assumption (i) means that the graph Γ is a non-compact metric space. Considering

metric graphs, many authors allow infinite edges with the vertex of degree 1 at infinity.

However, such an edge can be replaced by an infinite chain of edges each of which

has a fixed length. Therefore, this case reduces to the case when Assumption (ii) is

satisfied. This assumption is imposed for a convenience only.

Schrödinger Operators on Infinite Metric Graphs:

Differential equations on metric graphs (networks) is a relatively new area of

mathematical research though the first publication in which equations of such type

appear is paper Kirchhoff (1847). Last decades demonstrate a great progress in this

area as well as in its applications. Various aspects of differential equations and

operators on metric graphs are reflected in monographs Berkolaiko & Kuchment

(2013), Blank et al. (2008), Mehmeti et al. (2001), Pokornyi et al. (2005) and survey

articles Von Below & Mugnolo (2013), Kuchment (2002, 2004, 2005), Pokornyi &

Pryadiev (2004) (see also references therein). A substantial part of this activity,

known under the name “Quantum Graphs”, is dealing with the spectral theory of

Schrödinger and other quantum mechanical operators on metric graphs (see

Berkolaiko & Kuchment (2013), Blank et al. (2008), Kuchment (2004, 2005) and

references therein).

In Chapter Three, to define a self-adjoint Schrödinger operator, we start with a

second-order symmetric differential operator

L0u = −d2u

dx2
+ V (x)u

on the domain that consists of sufficiently smooth compactly supported functions

satisfying the Kirchhoff conditions at the vertices of a metric graph Γ.

Assumptions on the potentials:

In Chapter Three, the potentials are supposed to be locally integrable with negative

part bounded in certain integral sense (see, assumptions (V1) and (V2)). In the case of
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operators on real line, these assumptions turn into the assumption that the potential is of

local Kato class, while its negative part is of Kato class (see, e.g., Cycon et al. (2009),

Simon (1982)). Under our assumptions, L0 is a symmetric, bounded below operator in

the space L2(Γ).

The Friedrichs extension, L, of L0 is the object of Chapter Three, where first we

show that L is the only self-adjoint extension of L0. In other words, the operator L0 is

essentially self-adjoint. Actually, we introduce the maximal extension, L̃, of L0 and

prove that it coincides with the operator L. To achieve this aim, we are using an

appropriate variation of the method of Agmon (1985) based on an estimate of

L2-norm of a function u in terms of L2-norm of L̃u. Then we obtain a

characterization of the bottom of essential spectrum in terms of the Rayleigh quotient

similar to the well-known Persson's theorem for Schrödinger operators on Rd (see,

e.g., Cycon et al. (2009)). Being of interest in its own, this is a key tool in our next

result devoted to the discreteness of spectrum. We begin with a sufficient condition

for the discreteness of the negative part of spectrum which is similar to an old result

Birman (1959) (see also Glazman (1965)) for Schrödinger operators on real line.

Then we obtain a necessary and sufficient condition for the discreteness of whole

spectrum. This is a generalization of a classical result by Molchanov (1953) (see also

Glazman (1965)) on one-dimensional Schrödinger operators. The condition we

provide is similar to that in the Molchanov's result and means that the potential

growths to infinity at infinity in an integral sense. Recently, another result of

Molchanov's type is published in Kovaleva & Popov (2015). In that paper it is

assumed that the potential is continuous and bounded below. Under this assumption

those authors prove the following sufficient condition: if the potential tends to infinity

at infinity, then the spectrum is discrete. In this sense that result is weaker than one

obtained in Chapter Three. On the other hand, Kovaleva & Popov (2015) deals with

slightly more general vertex conditions allowing δ-interaction at vertices. However,

we would like to point out that our approach extends to this case without any

difficulty.
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While the theory of Schrödinger operators on the Euclidean space is currently well-

developed, the theory of quantum graphs, i.e., Schrödinger type operators on metric

graphs, is relatively new, and many important problems in this area are still open. Most

of results obtained so far concern the case when the potential is sufficiently regular.

However, as it is well-known the potential represents external force field which often

has singularities. Due to this fact, in Chapter Three, we study Schrödinger operators

with locally integrable potentials on infinite metric graphs. Such potentials form a

sufficiently wide class and allow many important singularities.

A well-known fact in the theory of Schrödinger operators on the Euclidean space is

that, under natural assumptions, eigenfunctions corresponding to isolated eigenvalues

of finite multiplicity decay at infinity exponentially fast (see, e.g., Simon (1982)). From

the point of view of quantum mechanics this means that bound states of a quantum

system are well-localized in space. A natural conjecture is that a similar statement

holds true on metric graphs.

In the theory of Schrödinger operators on Rd there are several ways to study

exponential decay of eigenfunctions. Commonly known of them are discussed in

Agmon (2014), Agmon (1985), Bardos & Merigot (1977), Hislop & Sigal (1996),

Reed & Simon (1975), Simon (1982). All these methods are not appropriate in the

case of quantum graphs because they heavily relay on either smooth structure, or

linear one, of the underlying Euclidean space. Also we mention a geometric method

suggested in Agmon (2014), Agmon (1985). However, this method applies only in

the case of eigenvalues below the essential spectrum. We intend to employ another

approach which is typically used to obtain estimates of Green's functions. In case of

eigenfunctions it is used in Kurbatov (2012).

In the rest of Chapter Three, we prove that, under natural assumptions,

eigenfunctions corresponding to isolated eigenvalues of finite multiplicity decay at

infinity exponentially fast. Our approach to obtain exponential decay of

eigenfunctions on metric graphs is an adaptation of that in Kurbatov (2012). The key

point is to study the resolvent of “twisted” operators defined in terms of certain
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function η on the graph. This will be done by means of analytic functional calculus.

The function η has to be chosen so that the twisted operator is well-defined and

twisting preserves the Kirchhoff vertex conditions. Therefore, η must be sufficiently

regular. In particular, η has to be smooth at interior points of the edges and satisfy the

Kirchhoff conditions at the vertices. On the other hand, the function η has to allow us

to control the distance function on the graph. The best choice would be to use a

function η which coincides with the distance function. However, this is not possible

because the distance function is only continuous and does not satisfy the vertex

condition (3.3). Actually, we use as η an appropriate regularization of the distance

function.
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CHAPTER TWO

ASYMPTOTIC FORMULAS FOR THE SINGLE RESONANCE

EIGENVALUES OF THE SCHRÖDINGER OPERATORWITH A MATRIX

POTENTIAL

Schrödinger operators are inexhaustible asmathematics itself. Indeed, themethod of

approach to the spectral theory of these operators may differ according to the properties

of its potential as well as its domain which is described by the boundary conditions.

By this reason, as in papers Veliev (1987), Veliev (2006), Veliev (2007), Veliev

(2015), Karakılıç, Atılgan et al. (2005) and Karakılıç, Veliev et al. (2005), Atılgan

et al. (2002), Coşkan & Karakılıç (2011), in this chapter, we study the operator L(V ).

The crucial difference between this chapter and the study Coşkan & Karakılıç (2011)

is that here we obtained the asymptotic formulas for the resonance eigenvalues, |γ|2

when γ belongs to the single resonance domain, that is, γ ∈ Vδ(ρα1) \ E2, where δ is

from {e1, e2, . . . , ed} and e1 =
(

π
a1
, 0, . . . , 0

)
, e2 =

(
0, π

a2
, . . . , 0

)
, ed =

(
0, . . . , π

ad

)
,

d ≥ 2, while in Coşkan & Karakılıç (2011) the authors obtained asymptotic formulas

for the non-resonance eigenvalues.

To obtain asymptotic formulas for eigenvalues of L(V ) when γ ∈ Vδ(ρα1) \E2, we

use a similar approach as in Veliev (2015) and Karakılıç, Veliev et al. (2005). In this

chapter, there are some additional technicalities.

2.1 The Operator L(P (s))

Now let Hδ = {x ∈ Rd : x · δ = 0} be the hyperplane which is orthogonal to δ.

Then we define the following sets:

Ωδ = {ω ∈ Ω : w · δ = 0} = Ω ∩Hδ,

Γδ = {γ ∈ Γ

2
: γ · δ = 0} =

Γ

2
∩Hδ.
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Here “ ·” denotes the inner product inRd. Clearly, for all γ ∈ Γ
2 , we have the following

decomposition

γ = jδ + β, β = (β1, . . . , βd) ∈ Γδ, j ∈ Z. (2.1)

Note that; if γ = jδ + β ∈ Vδ(ρα1)\E2, then

|j| < r1, r1 = ρα1 |δ|−2 + 1, |βk| > 1

3
ρα1 , ∀k : ek ̸= δ. (2.2)

We write the decomposition (1.3) of vij(x) as

vij(x) =
∑

γ′∈Γ
2

vijγ′uγ′(x) = pij(s) +
∑

γ∈Γ
2 \δR

vijγuγ(x), (2.3)

where

pij(s) =
∑

n∈Z

pijn cosns, pijn = vij(nδ), s = x · δ, i, j = 1, 2, . . . ,m. (2.4)

In order to obtain the asymptotic formulas for the single resonance eigenvalues |γ|2

(γ ∈ Vδ(ρα1) \ E2), we consider the operator L(V ) as the perturbation of L(P (s))

where L(P (s)) is defined by the differential expression

Lu = −∆u+ P (s)u (2.5)

and the Neumann boundary condition

∂u

∂n

∣∣∣∣
∂F

= 0,

P (s) = (pij(s)) , i, j = 1, 2, . . . ,m. (2.6)

It can be easily verified by the method of separation of variables that the eigenvalues

and the corresponding eigenfunctions of L(P (s)), indexed by the pairs

(j, β) ∈ Z× Γδ, are λj,β = λj+|β|2 and

χj,β(x) = uβ(x) · ϕj(s) = (uβ(x)ϕj1, uβ(x)ϕj2, . . . , uβ(x)ϕjm), respectively, where

β ∈ Γδ, λj is the eigenvalue and ϕj(s) = (ϕj,1(s),ϕj,2(s), . . . ,ϕj,m(s)) is the

16



corresponding eigenfunction of the operator T (P (s)) defined by the differential

expression

T (P (s))Y = −
∣∣∣∣
π

ai

∣∣∣∣
2

Y ′′ + P (s)Y (2.7)

and the boundary condition

Y ′(0) = Y ′(π) = 0. (2.8)

The eigenvalues of the operator T (0), defined by (2.7) when P (s) = 0 and the

boundary condition (2.8), are |nδ|2 = |nπai |
2 with the corresponding eigenspace

En = span {Cn,1(s), Cn,2(s), . . . , Cn,m(s)}, where Cn,i(s) = (0, . . . , cosns, . . . , 0),

the non-zero component cosns stands in the ith place and n ∈ Z+ ∪ {0}. It is well

known that (for example, see Naimark et al. (1967)) the eigenvalue λj of T (P (s))

satisfying |λj − |jδ|2| < supP (s), satisfies the following relation

λj = |jδ|2 +O

(
1

|jδ|

)
. (2.9)

By the above equation, the eigenvalue |γ|2 = |β|2 + |jδ|2 of L(0) corresponds to

the eigenvalue |β|2 + λj of L(P (s)).

Note that Lm
2 (F ) is the space of all vector valued functions

f(x) = (f1(x), . . . , fm(x)) whose components fi(x), i = 1, . . . ,m, m ≥ 2, are in

L2(F ). We denote the inner product in Lm
2 (F ) by ⟨·, ·⟩ which is defined by using the

inner product (·, ·) in L2(F ) as follows:

f(x) = (f1(x), . . . , fm(x)), g(x) = (g1(x), . . . , gm(x)) ∈ Lm
2 (F )

⇒ ⟨f, g⟩ = (f1, g1) + · · ·+ (fm, gm), (2.10)

for x ∈ Rd, d ≥ 2. Also for any f ∈ Lm
2 [0, π], since {Cn,i}n∈Z+∪{0}, i=1,2,...,m is a

complete system, by (2.10) we have the decomposition
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f(s) =
∑

n∈Z+∪{0}

m∑

i=1

2

π
⟨f(s), Cn,i(s)⟩Cn,i(s)

=

⎛

⎝
∑

n∈Z+∪{0}

2

π
(f1(s), cosns) cosns, . . . ,

∑

n∈Z+∪{0}

2

π
(fm(s), cosns) cosns

⎞

⎠ .

(2.11)

On the other hand, by equivalence of the decompositions (1.3) and (1.4) (q(x) = q(s) ∈

Lm
2 [0, π], when d = 1), it is convenient to use the decomposition

f(s) =
∑

n∈Z

m∑

i=1

1

π
⟨f(s), Cn,i(s)⟩Cn,i(s).

In the sequel, for the sake of simplicity, we use the brief notation ⟨f(s), Cn,i(s)⟩ instead

of 1
π ⟨f(s), Cn,i(s)⟩, since the constants which do not depend on ρ are inessential in our

calculations.

The system of eigenfunctions {χj,β}j,β is complete in Lm
2 (F ). Indeed; suppose that

there exists a non-zero function f(x) ∈ Lm
2 (F )which is orthogonal to eachχj,β , j ∈ Z,

β ∈ Γδ. Since Cn,i, i = 1, 2, . . . ,m can be decomposed by ϕj , by (2.1), and the

definition of χj,β , the function φi,γ = uβ(x) ·Cn,i, i = 1, 2, . . . ,m can be decomposed

by the system {χj,β}j∈Z,β∈Γδ
. Thus, the assumption ⟨χj,β(x), f(x)⟩ = 0 for j ∈ Z,

β ∈ Γδ implies that ⟨f(x) , φi,γ⟩ = 0, ∀γ ∈ Γ
2 and i = 1, 2, . . . ,m, which contradicts

to the fact that {φi,γ(x)}γ∈Γ
2 , i=1,...,m is a basis for Lm

2 (F ).

To prove the asymptotic formulas, we use the binding formula

(ΛN − λj,β) ⟨ψN , χj,β⟩ = ⟨ψN , (V − P )χj,β⟩ , (2.12)

for the eigenvalue, eigenfunction pairs ΛN , ψN(x) and λj,β,χj,β of the operators L(V )

and L(P (s)), respectively. The formula (2.12) can be obtained by multiplying the

equation L(V )ψN(x) = ΛNψN(x) by χj,β and using the facts that L(P (s)) is self-

adjoint and L(P (s))χj,β = λj,β χj,β .
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Now our aim is to decompose (V − P )χj,β with respect to the basis

{χj′,β′}j′∈Z,β′∈Γδ
. By (2.3) and (1.7), we have

vij(x)− pij(s) =
∑

(β1,n1)∈Γ′(ρα)

dij(β1, n1) cosn1s uβ1(x) +O(ρ−pα), (2.13)

where

Γ′(ρα) = {(β1, n1) : β1 ∈ Γδ\{0}, n1 ∈ Z, n1δ + β1 ∈ Γ(ρα)}

and

dij(β1, n1) =
1

µ(F )

∫

F

vij(x) cosn1s uβ1(x)dx.

For (β1, n1) ∈ Γ′(pρα), we have |n1δ + β1| < pρα and since β1 is orthogonal to δ,

|β1| < pρα, |n1| < pρα |n1| <
1

2
r1 (2.14)

(see (2.2)).

Clearly (see equation (22) in Karakılıç et al. (2005)), we have, for all

i, j = 1, 2, . . . ,m,

∑

(β1,n1)∈Γ′(ρα)

dij (β1, n1) (cosn1s) uβ1(x)uβ(x)

=
∑

(β1,n1)∈Γ′(ρα)

dij (β1, n1) (cosn1s)uβ1+β(x) (2.15)

for all β ∈ Γδ satisfying
∣∣βk
∣∣ > 1

3ρ
α1 , ∀k : ek ̸= δ.

By using the definition of χj,β , P (s), the decompositions (2.13) and (2.15), we have

(V − P )χj,β =

∑

(β1,n1)∈Γ′(ρα)

m∑

k=1

(d1k (β1, n1) (cosn1s)ϕj,k(s)uβ+β1 ,

. . . , dmk (β1, n1) (cosn1s)ϕj,k(s)uβ+β1) +O
(
ρ−pα

)
. (2.16)
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Now we consider the following decompositions:

ϕj,k(s) =
∑

n∈Z

(ϕj,k, cosns) cosns, (2.17)

cosn1s ϕj,k(s) =
∑

n∈Z

(ϕj,k, cosns) . cosn1s. cosns

=
∑

n∈Z

(ϕj,k, cosns) .
1

2
[cos(n1 + n)s+ cos(n1 − n)s]

=
∑

n∈Z

(ϕj,k, cosns) . cos(n1 + n)s (2.18)

for each j ∈ Z, k = 1, 2, . . . ,m.

On the other hand; the decomposition ofϕj(s) = (ϕj,1(s), . . . ,ϕj,m(s))with respect

to the basis {Cn,i(s) = (0, 0, . . . , cosns, 0, . . . , 0)}n∈Z,i=1,2,...,m is given by

ϕj(s) = (ϕj,1,ϕj,2, . . . ,ϕj,m)

=
∑

n∈Z

m∑

i=1

⟨ ϕj(s), Cn,i(s) ⟩Cn,i(s)

=

(
∑

n∈Z

⟨ ϕj(s), Cn,1(s) ⟩ cosns, . . . ,
∑

n∈Z

⟨ ϕj(s), Cn,m(s) ⟩ cosns
)
. (2.19)

Thus, (2.17), (2.18) and (2.19), gives

ϕj,k(s) =
∑
n∈Z

⟨ ϕj(s), Cn,k(s) ⟩ cosns (2.20)

cosn1s ϕj,k(s) =
∑
n∈Z

⟨ ϕj(s), Cn,k(s) ⟩ cos(n+ n1)s.

Lemma 2.1.1. Let r be a number no less than r1 (r ≥ r1) and j, n be integers satisfying

|j|+ 1 < r, |n| ≥ 2r. Then

⟨ ϕj(s) , Cn,i(s) ⟩ = O
(
ρ−(l−1)α

)
, ∀i = 1, 2, . . . ,m (2.21)

and

ϕj(s) =
∑

|n|<2r

m∑

i=1

⟨ ϕj(s) , Cn,i(s) ⟩ Cn,i(s) +O
(
ρ−(l−2)α

)
. (2.22)
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Proof. We use the following binding formula for T (0) and T (P (s))

(
λj − |nδ|2

)
⟨ϕj(s), Cn,k(s)⟩ = ⟨ϕj(s), P (s)Cn,k(s)⟩ (2.23)

and the obvious decomposition, which can be obtained by definition of P (s) and (1.7),

P (s)Cn,k(s) =

⎛

⎜⎝
∑

|n1δ|< |nδ|
2l

p1kn1 cosn1s cosns, . . . ,
∑

|n1δ|< |nδ|
2l

pmkn1 cosn1s cosns

⎞

⎟⎠

+O
(
|nδ|−(l−1)

)

=

⎛

⎜⎝
∑

|n1δ|< |nδ|
2l

p1kn1 cos(n− n1)s, . . . ,
∑

|n1δ|< |nδ|
2l

pmkn1 cos(n− n1)s

⎞

⎟⎠

+O
(
|nδ|−(l−1)

)

=
m∑

t=1

∑

|n1δ|< |nδ|
2l

ptkn1Cn−n1,k(s) +O
(
|nδ|−(l−1)

)
. (2.24)

Putting above equation (2.24) into (2.23), we get

(
λj − |nδ|2

)
⟨ϕj(s), Cn,k(s)⟩

= ⟨ϕj(s),
m∑

t1=1

∑

|n1δ|< |nδ|
2l

pt1kn1Cn−n1,k⟩+O
(
|nδ|−(l−1)

)

=
m∑

t1=1

∑

|n1δ|< |nδ|
2l

pt1kn1⟨ϕj(s), Cn−n1,k(s)⟩+O
(
|nδ|−(l−1)

)
. (2.25)

By assumption |n| ≥ 2r and |j|+1 < r, thus if |n1δ| < |nδ|
2l then ||(n−n1)δ|2−|j|| > |n|

5

which together with (2.9) imply |λj − |(n − n1)δ|2| > c|nδ|. So that in (2.23) if we

substitute (n− n1)δ instead of nδ, we get

⟨ϕj(s), Cn−n1,k(s)⟩ =
⟨ϕj(s), P (s)Cn−n1,k⟩
λj − |(n− n1)δ|2

. (2.26)
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Now using (2.26) in (2.25), we get

(
λj − |nδ|2

)
⟨ϕj(s), Cn,k(s)⟩ =

m∑

t1=1

∑

|n1δ|< |nδ|
2l

pt1kn1⟨ϕj(s), P (s) Cn−n1,k(s)⟩
(λj − |(n− n1)δ|2)

+O
(
|nδ|−(l−1)

)
.

Again putting (2.24) into the last equation, we obtain

(
λj − |nδ|2

)
⟨ϕj(s), Cn,k(s)⟩

=
m∑

t1=1

∑

|n1δ|< |nδ|
2l

pt1kn1⟨ϕj(s),
m∑

t2=1

∑

|n2δ|< |nδ|
2l

pt2kn2 Cn−n1−n2,k(s)⟩

(λj − |(n− n1)δ|2)
+O

(
|nδ|−(l−1)

)

=
m∑

t1,t2=1

∑

|n1δ|<
|nδ|
2l

|n2δ|<
|nδ|
2l

pt1kn1pt2kn2⟨ϕj(s), Cn−n1−n2,k(s)⟩+O
(
|nδ|−(l−1)

)

(λj − |(n− n1)δ|2)
. (2.27)

In this way, iterating p1 = [ l2 ] times and dividing both sides of the obtained equation

by λj − |nδ|2, we have

⟨ϕj(s)Cn,k(s)⟩ =
m∑

t1,t2,...,tp1=1

∑

|n1δ|< |nδ|
2l

|n2δ|< |nδ|
2l

...
|np1δ|<

|nδ|
2l

pt1kn1pt2kn2 . . . ptp1knp1
⟨ϕj, Cn−n1−···−np1 ,k

⟩
p1−1∏
s=0

(λj − |(n− n1 − · · ·− ns)δ|2)

+O(|nδ|−(l−1)), (2.28)

where the integers n, n1, . . . , np1 satisfy the conditions

|ns| <
|n|
2l

, s = 1, . . . , p1, |j|+ 1 <
|n|
2
.

These conditions and the assumptions |n| > 2r, |j|+ 1 < r imply that

||n− n1 − · · ·− ns|− |j|| > |n|
5
, s = 0, 1, 2, . . . , p1.
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This together with (2.9), give

1

|λj − |(n− n1 − · · ·− ns)δ|2|
=

1∣∣∣|jδ|2 +O
(

1
|jδ|

)
− | (n− n1 − · · ·− ns) δ|2

∣∣∣

= O
(
|nδ|−2

)
(2.29)

for s = 0, . . . , p1 − 1. Hence by (2.28), (2.29) and (1.8), we have

⟨ϕj(s), Cn,k(s)⟩ = O
(
|nδ|−(l−1)

)
.

Since |nδ| ≥ 2r ≥ r1 > 2ρα, O
(
|nδ|−(l−1)

)
= O(ρ−(l−1)α) from which we get the

proof of (2.21).

To prove (2.22), we write the Fourier series of ϕj(s) with respect to the basis

{Cn,1(s), . . . , Cn,m(s)}n∈Z as follows:

ϕj(s) =
∑

n∈Z

⟨ϕj(s), Cn,k(s)⟩Cn,k(s)

=
∑

|n|<2r

⟨ϕj(s), Cn,k(s)⟩Cn,k(s) +
∑

|n|!2r

⟨ϕj(s), Cn,k(s)⟩Cn,k(s).

From which together with (2.21), we get (2.22).

Using the first relation (2.21) in Lemma 2.1.1 and (2.20), we also have

cosn1s ϕj,k(s) =
∑

|n|<2r

⟨ ϕj(s) , Cn,k(s) ⟩ cos(n+ n1)s+O
(
ρ−(l−2)α

)
. (2.30)

Putting this last relation (2.30) into (2.16), we get

(V − P )χj,β

=
∑

(β1,n1)∈Γ′(ρα)

∑

|n|<2r

m∑

k=1

(d1k (β1, n1) ⟨ ϕj(s) , Cn,k(s) ⟩ cos(n+ n1)s uβ+β1 , . . . ,

dmk (β1, n1) ⟨ ϕj(s) , Cn,k(s) ⟩ cos(n+ n1)s uβ+β1) +O
(
ρ−pα

)
(2.31)
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(note that p = (l − d), d ≥ 2 ⇒ 1
ρ(l−2) < 1

ρpα . Hence O (ρ−pα) + O
(
ρ−(l−2)α

)
=

O (ρ−pα)).

Now, in order to decompose (V −P )χj,β with respect to
{
χj+j′1,β

′
1

}
we consider the

inner product ⟨(V − P )χj,β,χj+j′1,β
′
1
⟩, that is, by the definition of χj+j′1,β

′
1
and (2.31),

the inner products (cos(n + n1)s uβ+β1 , ϕj+j′1,t
(s) uβ′

1
), t = 1, 2, . . . ,m. Using the

decomposition (2.20), instead of j, we substitute j + j′1 to get

(
cos(n+ n1)s uβ+β1 , ϕj+j′1,t

(s) uβ′
1

)

=

(
cos(n+ n1)s uβ+β1 ,

∑

n′∈Z

⟨ ϕj+j′1
(s) , Cn′,t(s) ⟩ cosn′s uβ′

1

)

=
∑

n′∈Z

⟨ ϕj+j′1
(s) , Cn′,t(s) ⟩

(
cos(n+ n1)s uβ+β1 , cosn′s uβ′

1

)
.

Note that if β′
1 ̸= β + β1 or n′ ̸= n+ n1 then (cos(n+ n1)s uβ+β1 , cosn′s uβ′

1
) = 0.

Thus,

(
cos(n+ n1)s uβ+β1 , ϕj+j′1,t

(s) uβ′
1

)

=

⎧
⎨

⎩
0 , if β′

1 ̸= β + β1 or n′ ̸= n+ n1

⟨ ϕj+j′1
(s) , Cn+n1,t(s) ⟩ , otherwise.

Using the last equality and (2.31), we get

(V − P )χj,β

=
∑

j′1∈Z
(β1,n1)∈Γ′(ρα)

⎛

⎝
∑

|n|<2r

m∑

k=1

m∑

i=1

dik (β1, n1) ⟨ϕj, Cn,k⟩⟨ϕj+j′1
, Cn+n1,i⟩

⎞

⎠χj+j′1,β+β1

+O(ρ−pα). (2.32)
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Lemma 2.1.2. Let r be a number no less than r1 (r ≥ r1), j, n and n1be integers

satisfying |n| < 2r, |n1| < 1
2r1 and |j|+ 1 < r, then

∑

j1∈Z
|j1|!6r

⟨ϕj+j1 , Cn,i⟩ = O
(
ρ−(l−2)α

)
, ∀i = 1, 2, . . . ,m.

Proof. By the binding formula (2.23) for T (0) and T (P (s)) we have

(
λj+j1 − |(n+ n1)δ|2

)
⟨ϕj+j1 , Cn+n1,k⟩ = ⟨ϕj+j1 , P (s)Cn+n1,k⟩. (2.33)

If |j1| ≥ 6r then the assumptions of this lemma imply ||j + j1|− |n+ n1|| > r
2 . Thus,

using (2.33) and the fact that λj+j1 = |(j + j1)δ|2 +O
(

1
|(j+j1)δ|

)
, we get

|
∑

j1!6r

⟨ϕj+j1 , Cn+n1,k⟩| = |
∑

j1!6r

⟨ϕj+j1 , P (s)Cn+n1,k⟩
λj+j1 − |(n+ n1)δ|2

|.

Using the decomposition of ptk(s) =

(
∑

|l1δ|<|rδ|
vtk,l1δ cos l1s

)
+ O(|rδ|−(l−1)) and

iterating the obtained formula p1 = [ l2 ] times as in the proof of Lemma 2.1.1, we get

|
∑

|j1|!6r

⟨ϕj+j1 , Cn+n1,k⟩|

= |
∑

j1!6r

∑

|l1δ|<|rδ|
|l2δ|<|rδ|

...
|lp1δ|<|rδ|

m∑

t1,t2,...,tp1=1

vt1k,l1δ . . . vtp1k,lp1δ⟨ϕj′ , Cn+n1−l1−···−lp1 ,k
⟩

p1−1∏
s=0

|λj+j1 − (n+ n1 − l1 − · · ·− ls)δ|2
. (2.34)

Since |n| < 2r and |n1| < 1
2r1 <

1
2r, |n+n1| < 5r

2 . Also, |n+n1− l1− · · ·− ls| < 3r

and 1
|λj+j1−|(n+n1−l1−···−ls)δ|2| = O (|r|−2). Substituting this result into (2.34) and using

(1.8), we get the proof.
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By Lemma 2.1.2, the equation (2.32) becomes;

(V − P )χj,β = O(ρ−pα)+

∑

|j′1|<6r

(β1,n1)∈Γ′(ρα)

⎛

⎝
∑

|n|<2r

m∑

k=1

m∑

i=1

dik (β1, n1) ⟨ϕj, Cn,k⟩⟨ϕj+j′1
, Cn+n1,i⟩

⎞

⎠χj+j′1,β+β1

= O(ρ−pα)+

∑

|j1|<6r
(β1,n1)∈Γ′(ρα)

⎛

⎝
∑

|n|<2r

m∑

k=1

m∑

i=1

dik (β1, n1) ⟨ϕj, Cn,k⟩⟨ϕj+j1 , Cn+n1,i⟩

⎞

⎠χj+j1,β+β1 ,

that is,

(V − P )χj,β =
∑

(β1,j1)∈Q(ρα,6r)

S (j, β, j + j1, β + β1)χj+j1,β+β1 +O(ρ−pα), (2.35)

for every j satisfying |j|+ 1 < r, where

Q(ρα, 6r) = {(β, j) : |jδ| < 6r , 0 < |β| < ρα} ,

and

S (j, β, j + j1, β + β1)

=
∑

n1:(n1,β1)∈Γ′(ρα)

⎛

⎝
∑

|n|<2r

m∑

k=1

m∑

i=1

dik (β1, n1) ⟨ϕj, Cn,k⟩⟨ϕj+j1 , Cn+n1,i⟩

⎞

⎠ .

We need to prove that

∑

(β1,j1)∈Q(ρα,6r)

|S (j, β, j + j1, β + β1)| < c3. (2.36)
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By the definition of S (j, β, j + j1, β + β1), dik (β1, n1) and (1.8), we have

∑

(β1,j1)∈Q(ρα,6r)

|S (j, β1, j
′, β + β1)|

≤
∑

n1:(β1,n1)∈Γ′(ρα)

m∑

i,k=1

|dik(β1, n1)|
∑

|n|<2r

|⟨ϕj, Cn,k⟩|
∑

|j1|<6r

∣∣⟨ϕj+j1 , Cn+n1,i⟩
∣∣

≤ c4
∑

|n|<2r

|⟨ϕj, Cn,k⟩|
∑

|j1|<6r

|⟨ϕj+j1 , Cn+n1,i⟩| . (2.37)

Now we prove that

∑

n∈Z

|⟨ϕj, Cn,k⟩| < c5 and
∑

j1∈Z

|⟨ϕj+j1 , Cn+n1,i⟩| < c6. (2.38)

For this, let

A =
{
n ∈ Z | |nδ|2 ∈ [λj−1,λj+1]

}

and

B =
{
j1 ∈ Z | λj+j1 ∈

[
|(n+ n1)δ|2 − 1, |(n+ n1)δ |2 + 1

] }
,

then it follows from (2.9) that the number of elements in the sets A and B are less than

c7. So if we isolate the terms with n ∈ A and j1 ∈ B in the first and second summations

of inequalities in (2.38), respectively, applying (2.23) to the other terms then using the

facts
∑

n/∈A

1

|λj − |nδ|2| < c8 and
∑

j1 /∈β

1

|λj+j1 − |(n+ n1)δ|2|
< c9,

we get (2.38), hence by (2.37), (2.36) is proved.
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2.2 The Iterability Condition

The expressions (2.35) and (2.12) together imply that

(ΛN − λj′,β′) ⟨ψN , χj′,β′⟩

=
∑

(β1,j1)∈Q(ρα,6r)

S (j′, β′, j′ + j1, β
′ + β1) ⟨ψN , χj′+j1,β′+β1⟩+O(ρ−pα). (2.39)

If the condition (iterability condition for the triple (N, j′, β′) )

|ΛN − λj′,β′ | > c10 (2.40)

holds then the formula (2.39) can be written in the following form

⟨ψN , χj′,β′⟩ =
∑

(β1,j1)∈Q(ρα,6r)

S (j′, β′, j′ + j1, β′ + β1) ⟨ψN , χj′+j1,β′+β1⟩
ΛN − λj′,β′

+O(ρ−pα). (2.41)

Using (2.39) and (2.41), we are going to find ΛN which is close to λj,β , where |j|+1 <

r1. For this, first in (2.39) instead of j′, β′, taking j, β, hence instead of r taking r1, we

get

(ΛN − λj,β) ⟨ψN , χj,β⟩

=
∑

(β1,j1)∈Q(ρα,6r1)

S (j, β, j + j1, β + β1) ⟨ψN , χj+j1,β+β1⟩+O(ρ−pα). (2.42)

To iterate it by using (2.41) for j′ = j + j1 and β′ = β + β1, we will prove that there

is a number N such that

|ΛN − λj+j1,β+β1| >
1

2
ρα2 , (2.43)

where |j + j1| < 7r1 ≡ r2, since λj,β and |j1| < 6r1. Then (j + j1, β + β1) satisfies

(2.40). This means that, in formula (2.39), the pair (j′, β′) can be replaced by the pair
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(j + j1, β + β1). Then, (2.39) instead of r taking r2, we get

⟨ψN , χj+j1,β+β1⟩ = O(ρ−pα)+
∑

(β2,j2)∈Q(ρα,6r2)

S (j + j1, β + β1, j + j1 + j2, β + β1 + β2) ⟨ψN , χj+j1+j2,β+β1+β2⟩
ΛN − λj+j1,β+β1

.

Putting the above formula into (2.42), we obtain

(ΛN − λj,β) c(N, j, β) = O(ρ−pα)+
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

S (j, β, j1, β1)S (j1, β1, j2, β2) c(N, j2, β2)

ΛN − λj1,β1

,

(2.44)

where c(N, j, β) = ⟨ψN ,χj,β⟩, jk = j+j1+j2+· · ·+jk and βk = β+β1+β2+· · ·+βk.

Thus, we are going to find a number N such that c(N, j, β) is not too small and the

condition (2.43) is satisfied.

Lemma 2.2.1. (a) Suppose g1(x), g2(x), . . . , gp2(x) ∈ Lm
2 (F )where p2 = [ d

2α2
]+1.

Then for every eigenvalue λj,β of the operatorL(P (s), there exists an eigenvalue

ΛN of L(V ) satisfying

(i) |ΛN − λj,β| < 2M , where M =∥V ∥,

(ii) |c(N, j, β)| > ρ−qα, where qα = [ d
2α + 2]α,

(iii) |c(N, j, β)|2 > 1
2p2

p2∑
i=1

∣∣∣⟨ψN ,
gi

∥gi∥⟩
∣∣∣
2

> 1
2p2

∣∣∣⟨ψN ,
gi

∥gi∥⟩
∣∣∣
2

, ∀i = 1, 2, . . . , p2.

(b) Let γ = β + jδ ∈ V ′
δ (ρ

α1) and (β1, j1) ∈ Q(ρα, 6r1), (βk, jk) ∈ Q(ρα, 6rk),

where rk = 7rk−1 for k = 2, 3, . . . , p. Then for k = 1, 2, 3, . . . , p1, we have

|λj,β − λjk,βk | > 3

5
ρα2 , ∀βk ̸= β. (2.45)

Proof. (a) Let A,B,C be the set of indexes N satisfying (i), (ii), (iii), respectively.

Using the binding formula (2.12) for L(V ) and L(P (s)) and the Bessel's

inequality, we get
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∑

N /∈A

|c(N, j, β)|2 =
∑

N /∈A

∣∣∣∣
(ψN , (V − P )χj,β)

ΛN − λj,β

∣∣∣∣
2

≤ 1

4M2
∥(V − P )χj,β∥2 ≤

1

4
.

Hence by Parseval's relation, we obtain

∑

N∈A

|c(N, j, β)|2 > 3

4
.

Using the fact that the number of indexes N in A is less than ρdα and by the

relation N /∈ B ⇒ |c(N, j, β)| ≤ ρ−qα, we have

∑

N∈A\B

|c(N, j, β)|2 < ρdαρ−qα < ρ−α,

since α < 1
d+20 . On the other hand by the relation A = (A \ B) ∪ (A ∩ B) and

the above inequalities, we get

3

4
<
∑

N∈A

|c(N, j, β)|2 =
∑

N∈A\B

|c(N, j, β)|2 +
∑

N∈A∩B

|c(N, j, β)|2,

which implies
∑

N∈A∩B

|c(N, j, β)|2 > 3

4
− ρ−α >

1

2
. (2.46)

Now, suppose that A ∩ B ∩ C = ∅, i.e., for all N ∈ A ∩ B, the condition (iii)

does not hold. Then by (2.46) and Bessel's inequality, we have

1

2
<

∑

N∈A∩B

|c(N, j, β)|2 ≤
∑

N∈A∩B

1

2p2

p2∑

i=1

∣∣∣∣

〈
ψN ,

gi
∥gi∥

〉∣∣∣∣
2

=
1

2p2

p2∑

i=1

∑

N∈A∩B

∣∣∣∣

〈
ψN ,

gi
∥gi∥

〉∣∣∣∣
2

<
1

2p2

p2∑

i=1

∥∥∥∥
gi

∥gi∥

∥∥∥∥
2

=
1

2
,
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which is a contradiction.

(b) The definition of λj,β gives

|λj,β − λjk,βk | = ||β|2 + λj − |β + β1 + · · ·+ βk|2 − λjk |

≥ |||β|2 − |β + β1 + · · ·+ βk|2|− |λj − λjk ||. (2.47)

The condition of the lemma (β1, j1) ∈ Q(ρα, 6r1), (βk, jk) ∈ Q(ρα, 6rk) and

the relation β + jδ ∈ Vδ(ρα1) \ E2 together with |jδ| < c11ρα1 (see (2.2)) and

|jiδ| < c12ρα1 (see (2.14)) imply that

ρα2 < ||β|2 + |jδ|2 − |βk|2 − |jkδ|2|

< ||β|2 − |βk|2|+ c12ρ
α1 , β1 + ...+ βk ̸= 0,

since β, β1, ..., βk are orthogonal to δ. That is, we have

||β|2 − |βk|2| > c13ρ
α2 .

This last inequality together with (2.47) and the asymptotic formula (2.9) give

|λj,β − λjk,βk | > c14ρ
α2 .

2.3 Asymptotic Formulas

Now we consider the following function

gi(x) =
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

S (j, β, j1, β1)S (j1, β1, j2, β2)χj2,β2

(λj,β − λj1,β1)i
, 1 ≤ i ≤ p2. (2.48)

Since {χj2,β2(x)} is a total system and β1 ̸= 0 by (2.36) and (2.45), we have
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∑
(j′,β′)

|⟨gi(x),χj′,β′⟩|2 =
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

|S(j,β,j1,β1)S(j1,β1,j2,β2)|2

|(λj,β−λj1,β1)
i|2

≤ c15 ρ−2iα2 , i.e.,

gi(x) ∈ Lm
2 (F ) and ∥gi(x)∥ = O(ρ−iα2), ∀i = 1, 2, . . . , p2. (2.49)

Theorem 2.3.1. For every eigenvalue λj,β of the operator L(P (s)) with β + jδ ∈

V ′
δ (ρ

α1), there exists an eigenvalue ΛN of the operator L(V ) satisfying

ΛN = λj,β +O
(
ρ−α2

)
. (2.50)

Proof. By Lemma 2.2.1, for the chosen gi(x), i = 1, 2, . . . , p2 in (2.48), there exists a

number N , satisfying (i), (ii), (iii). Since (β1, j1) ∈ Q(ρα, 6r1), by part (b) of

Lemma 2.2.1, we have

|λj,β − λj1,β1 | > c16ρ
α2 .

The above inequality together with (i) imply

|ΛN − λj1,β1 | > c17ρ
α2 .

Using the following well known decomposition

1

[ΛN − λj1,β1 ]
=

p2∑

i=1

[ΛN − λj,β]
i−1

[λj,β − λj1,β1 ]i
+O

(
ρ−(p2+1)α2

)
,

and (2.48), we see that the formula (2.44) can be written as

(ΛN − λj,β) c(N, j, β)

= O(ρ−pα) +
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

S (j, β, j1, β1)S (j1, β1, j2, β2) ⟨ψN ,χj2,β2⟩
ΛN − λj1,β1

=
p2∑

i=1

[
(ΛN − λj,β)

i−1

〈
ψN ,

gi
∥gi∥

〉]
∥gi∥+O

(
ρ−(p2+1)α2

)
.
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Now dividing both sides of the last equation by c(N, j, β) and using (ii), (iii) we have

|ΛN − λj,β| ≤ O
(
ρ−(p2+1)α2+qα

)
+

∣∣∣
〈
ψN ,

g1
∥g1|

〉∣∣∣
|c(N, j, β)| ∥g1∥

+
|ΛN − λj,β|

∣∣∣
〈
ψN ,

g2
∥g2∥

〉∣∣∣
|c(N, j, β)| ∥g2∥+ · · ·+

|ΛN − λj,β|(p2−1)
∣∣∣
〈
ψN ,

gp2
∥gp2∥

〉∣∣∣
|c(N, j, β)| ∥gp2∥

≤ (2p2)
1
2
(
∥g1∥+2M∥g2∥+ · · ·+ (2M)p2−1∥gp2∥

)
+O

(
ρ−(p2+1)α2+qα

)
.

Hence by (2.49), we obtain

ΛN = λj,β +O
(
ρ−α2

)
,

since (p2 + 1)α2 − qα > α2. Theorem is proved.

It follows from (2.45) and (2.50) that the triples (N, jk, βk) for k = 1, 2, . . . , p1,

satisfy the iterability condition (2.40). By (2.41) instead of j′, β′ and r taking j2, β2

and r3, we have

c(N, j2, β2) =
∑

(β3,j3)∈Q(ρα,6r3)

S(j2, β2, j3, β3)(ψN ,χj3,β3)

ΛN − λj2,β2
+O(ρ−pα). (2.51)

To obtain the other terms of the asymptotic formula ofΛN , we iterate the formula (2.44).

Now we isolate the terms with multiplicand c(N, j, β) in the right hand side of (2.44).

(ΛN − λj,β)c(N, j, β) = O(ρ−pα)

+
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

(j+j1+j2,β+β1+β2)=(j,β)

S (j, β, j1, β1)S (j1, β1, j, β)

ΛN − λj1,β1
c(N, j, β)

+
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

(j+j1+j2,β+β1+β2) ̸=(j,β)

S (j, β, j1, β1)S (j1, β1, j2, β2)

ΛN − λj1,β1
c(N, j2, β2). (2.52)
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Substituting the equation (2.51) into the second sum of the equation (2.52), we get

(ΛN − λj,β)c(N, j, β)

=
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

(j2,β2)=(j,β)

S (j, β, j1, β1)S (j1, β1, j, β)

ΛN − λj1,β1
c(N, j, β)

+
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

(j2,β2 )̸=(j,β)
(β3,j3)∈Q(ρα,6r3)

S (j, β, j1, β1)S (j1, β1, j2, β2)S (j2, β2, j3, β3)

(ΛN − λj1,β1)(ΛN − λj2,β2)
c(N, j3, β3)

+O(ρ−pα). (2.53)

Again isolating terms c(N, j, β) in the last sum of the equation (2.53), we obtain

(ΛN − λj,β)c(N, j, β)

= [
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)

(j2,β2)=(j,β)

S (j, β, j1, β1)S (j1, β1, j, β)

ΛN − λj1,β1

+
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)Q(ρα,6r2)
(β3,j3)∈Q(ρα,6r3)

(j2,β2 )̸=(j,β)
(j3,β3)=(j,β)

S (j, β, j1, β1)S (j1, β1, j2, β2)S (j2, β2, j, β)

(ΛN − λj1,β1)(ΛN − λj2,β2)
]c(N, j, β)

+
∑

(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)
(β3,j3)∈Q(ρα,6r3)

(j2,β2 )̸=(j,β)
(j3,β3 )̸=(j,β)

S (j, β, j1, β1)S (j1, β1, j2, β2)S (j2, β2, j3, β3)

(ΛN − λj1,β1)(ΛN − λj2,β2)
c(N, j3, β3)

+O(ρ−pα). (2.54)

In this way, iterating 2p times, we get

(ΛN − λj,β)c(N, j, β) =

[
2p∑

k=1

S̃k

]
c(N, j, β) + R̃2p +O(ρ−pα), (2.55)
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where

S̃k(ΛN ,λj,β) =
∑

(β1,j1)∈Q(ρα,6r1)
(βk+1,jk+1)∈Q(ρα,6rk+1)

(jk+1,βk+1)=(j,β)
(js,βs )̸=(j,β), s=2,...,k

(
k∏

i=1

S (ji−1, βi−1, ji, βi)

(ΛN − λji,βi)

)
S
(
jk, βk, j, β

)

(2.56)

and

R̃k =
∑

(β1,j1)∈Q(ρα,6r1)
(βk+1,jk+1)∈Q(ρα,6rk+1)
(js,βs) ̸=(j,β), s=2,...,k+1

(
k∏

i=1

S (ji−1, βi−1, ji, βi)

(ΛN − λji,βi)

)
S
(
jk, βk, jk+1, βk+1

)
c(N, jk+1, βk+1).

(2.57)

Now we estimate S̃k and R̃k. For this, we consider the terms which appear in the

denominators of (2.56) and (2.57). By the conditions under the summations in (2.56)

and (2.57), we have j1+j2+. . .+ji ̸= 0 or β1+β2+. . .+. . . βi ̸= 0, for i = 2, 3, . . . , k.

If β1 + β2 + . . .+ . . . βi ̸= 0, then by (2.45) and (2.50), we have

|ΛN − λji,βi | > 1

2
ρα2 . (2.58)

If β1+β2+ . . .+ . . . βi = 0, i.e., j1+ j2+ . . .+ ji ̸= 0, then by a well-known theorem

|λj,β − λji,βi | = |λj − λji | > c18,

hence by (2.50), we obtain

|ΛN − λji,βi | > 1

2
c19. (2.59)

Since βk ̸= 0 for all k ≤ 2p, the relation β1 + β2 + · · · + βi = 0 implies β1 + β2 +

· · ·+ βi±1 ̸= 0. Therefore the number of multiplicands ΛN −λji,βi in (2.57) satisfying
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(2.58) is no less then p. Thus, by (2.36), (2.58) and (2.59), we get

S̃1 = O(ρ−α2), R̃2p = O(ρ−pα2). (2.60)

Theorem 2.3.2. (a) For every eigenvalue λj,β of L(P (s)) such that

β + jδ ∈ V ′
δ (ρ

α1), there exists an eigenvalue ΛN of the operator L(V )

satisfying

ΛN = λj,β + Ek−1 +O(ρ−kα2), (2.61)

where E0 = 0, Es =
2p∑
k=1

S̃k(Es−1 + λj,β,λj,β), s = 1, 2, . . . .

(b) If

|ΛN − λj,β| < c20 (2.62)

and

|c(N, j, β)| > ρ−qα (2.63)

hold then ΛN satisfies (2.61).

Proof. By Lemma 2.2.1 (a) - (b), there exists N satisfying the conditions (2.62) and

(2.63) in part (b). Hence it suffices to prove part (b). By (2.45) and (2.62), the triples

(N, jk, βk) satisfy the iterability condition in (2.40). Hence we can use (2.55) and

(2.60). Now we prove the theorem by induction:

For k = 1, to prove (2.61), we divide both sides of the equation (2.55) by c(N, j, β)

and use the estimations (2.60).

Suppose that (2.61) holds for k = s, i.e.,

ΛN = λj,β + Es−1 +O(ρ−sα2). (2.64)
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To prove that (2.61) is true for k = s+ 1, in (2.55) we substitute the expression (2.64)

for ΛN into
2p∑
k=1

S̃k(ΛN ,λj,β), then we get

(ΛN − λj,β)c(N, j, β)

=

[
2p∑

k=1

S̃k

(
λj,β + Es−1 +O(ρ−sα2),λj,β

)
]
c(N, j, β) + R̃2p +O(ρ−pα), (2.65)

dividing both sides of the last equality by c(N, j, β) and using Lemma 2.2.1(ii), we

obtain

ΛN = λj,β +
2p∑

k=1

S̃k

(
λj,β + Es−1 +O(ρ−sα2),λj,β

)
+O(ρ−(p−q)α). (2.66)

Now we add and subtract the term
2p∑
k=1

S̃k (Es−1 + λj,β,λj,β) in (2.66), then we have

ΛN = λj,β + Es +O(ρ−(p−q)α)

+

[
2p∑

k=1

S̃k

(
λj,β + Es−1 +O(ρ−sα2),λj,β

)
−

2p∑

k=1

S̃k (Es−1 + λj,β,λj,β)

]
. (2.67)

Now, we first prove that Ej = O(ρ−α2) by induction. E0 = 0. Suppose that Ej−1 =

O(ρ−α2), then a = λj,β + Ej−1 satisfies (2.58) and (2.59). Hence we get

S̃1(a,λj,β) = O(ρ−α2) ⇒ Ej = O(ρ−α2). (2.68)

To prove the theorem, we need to show that the expression in the square brackets in

(2.67) is equal to O(ρ−(s+1)α2). This can be easily checked by (2.68) and the obvious

relation

1

λj,β + Es−1 +O(ρ−sα2)− λjk,βk

− 1

λj,β + Es−1 + λjk,βk

= O(ρ−(s+1)α2), (2.69)

for βk ̸= β. The theorem is proved.

37



CHAPTER THREE

THE SPECTRAL THEORY OF SCHRÖDINGER OPERATORS ON

INFINITE METRIC GRAPHS

This chapter is organized as follows. In Section 3.1, we give description of main

functional spaces on metric graphs. Section 3.2 contains the definition and main

properties of Schrödinger operators with locally integrable potentials on metric

graphs. In Section 3.3, first, we prove essential self-adjointness of the Hamiltonian.

Then we obtain a description of the bottom of essential spectrum. In Section 3.4, we

prove theorems on the discreteness of the negative part of the spectrum and of the

whole spectrum that extend some classical results for one dimensional Schrödinger

operators. Finally, in Section 3.5, we show under natural assumptions that

eigenfunctions corresponding to isolated eigenvalues of finite multiplicity decay at

infinity exponentially fast.

3.1 Main Functional Spaces on Metric Graphs

Let us introduce basic functional spaces on metric graphs (we employ the standard

notations of functional spaces on intervals of real line). We denote by L2(Γ) the space

of all complex valued functions which are square integrable on Γ with respect to the

measure dx. More explicitly, this space consists of all measurable functions f such that

f |e ∈ L2(e) for all e ∈ E and

∥f∥2 = ∥f∥2L2 =
∑

e∈E

∥f∥2L2(e) < ∞ .

The Sobolev space H1(Γ) consists of all continuous complex valued functions f on Γ

such that f |e ∈ H1(e) for all edges e ∈ E and

∥f∥2H1 =
∑

e∈E

∥f∥2H1(e) < ∞ .
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We also need the standard space L1
loc(Γ) with respect to the measure dx. It consists

of all functions which are absolutely integrable on every edge. Finally, we introduce

the space BS(Γ) of Stepanov bounded functions (known also as uniform L1 space see

Simon (1982)). It consists of all functions f ∈ L1
loc(Γ) such that

∥f∥BS = sup
e∈E

∥f∥L1(e) < ∞ .

We need the following simple lemma.

Lemma 3.1.1. For every ε > 0, there exists a constant Cε > 0 such that

∫

Γ

|f(x)||u(x)|2dx ≤ ∥f∥BS

(
ε∥u′∥2 + Cε∥u∥2

)
,

whenever f ∈ BS(Γ) and u ∈ H1(Γ).

Proof. Without loss of generality we may suppose that u is a real valued function.

Since u ∈ H1(Γ), then it is continuous and, hence, there exists ye ∈ e such that

u2(ye) =
1

le

∫

e

u2(x)dx .

On the other hand, for any ε > 0

∣∣∣∣
d

dx
u2(x)

∣∣∣∣ = |2u′(x)u(x)| ≤ ε|u′(x)|2 + ε−1u2(x) ,

which yields ∫

e

∣∣∣∣
d

dx
u2(x)

∣∣∣∣ ≤ ε∥u′∥2L2(e) + ε−1∥u∥2L2(e) .

Then we have

u2(y)− u2(ye) =

∫ y

ye

d

dx
u2(x)dx ≤

∫

e

∣∣∣∣
d

dx
u2(x)

∣∣∣∣ dx

≤ ε∥u′∥2L2(e) + ε−1∥u∥2L2(e),
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and, by the definition of ye,

u2(y) ≤ ε∥u′∥2L2(e) + (ε−1 + l−1
e )∥u∥2L2(e) .

Hence,

∑

e∈E

∫

e

|f(y)|u2(y)dy ≤
(
sup
e∈E

∫

e

|f(y)|dy
)∑

e∈E

∥u2∥L∞(e)

≤∥f∥BS

(
ε
∑

e∈E

∥u′∥2L2(e) + Cε

∑

e∈E

∥u∥2L2(e)

)

= ∥f∥BS

(
ε∥u′∥2 + Cε∥u∥2

)
,

where Cε = ε−1 + l−1.

Let us introducemore functional spaces onmetric graphs. The spaceL∞(Γ) consists

of essentially bounded functions with the standard ess sup-norm.

Also we need some spaces of compactly supported functions and local Sobolev

spaces. The space H1
comp(Γ) consists of all compactly supported functions from

H1(Γ). This is a locally convex linear topological space. The space H1
loc(Γ) consists

of all continuous functions u such that u ∈ H1(e) for all edge e. This is also a locally

convex space. The negative Sobolev space H−1(Γ) is the space of all continuous

anti-linear functionals on H1
comp(Γ), i.e., the anti-dual space to H1

comp(Γ). The duality

pairing, as well as the inner product in L2, is denoted by (., .).

Certainly,

H1
comp(Γ) ⊂ H1(Γ) ⊂ L2(Γ) ⊂ H−1(Γ) ⊂ H−1

loc (Γ)

(continuous and dense embeddings). In what follows we also need the continuous

embedding

H1(Γ) ⊂ L∞(Γ) .

Indeed, by (Brezis, 2010, Theorem 8.8), there exists a constant K > 0 independent of
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e ∈ E and such that |v(x)| ≤ K∥v∥H1(e) for all v ∈ H1(e). This implies immediately

that

|v(x)| ≤ K∥v∥H1(Γ), x ∈ Γ (3.1)

for all v ∈ H1(Γ).

Throughout this chapter we shall use the following sequence of cut-off functions

defined on Γ (see, Kuchment (2004)). Fix a vertex o ∈ Γ. For any integer n > 0, let

Γn ⊂ Γ be the union of all edges e such that both endpoints of e are at a distance at

most n from o. This is an exhausting sequence of compact sets. Let us fix aC2 function

φ(x) on [0, l/4] such that it is equal to 1 in a small neighborhood of 0, equal to 0 in a

small neighborhood of l/4 and 0 ≤ φ ≤ 1. We define the cut-off function ϕn on Γ

as follows. It is equal to 1 on Γn and to 0 on all edges which do not have vertices in

Γn. Now let e be an edge with only one vertex v in Γn. Identifying e with the interval

[0, le], without loss of generality we may suppose that the vertex v corresponds to the

endpoint 0. Then we defineϕn to be equal to φ on [0, l/4] and 0 on the remaining part of

[0, le]. It is easily seen that 0 ≤ ϕn ≤ 1, and there exists a constant C > 0 independent

of n such that |ϕ′
n| ≤ C and |ϕ′′

n| ≤ C on all edges. Notice that in Section 3.3 we

shall use cut-off functions with a specific choice of the function φ. Namely, suppose

that 0 < ε0 < ε1 < l/4. Making use of a partition of unity, we can choose the

function φ that satisfies the following additional properties: φ(x) = 1 for x ∈ [0, ε0]

and φ(x) = 1 − (x − ε0)6 for x ∈ (ε0, ε1]. Then a straightforward verification shows

that the function (1− φ2(x))1/2 is of class C2.

3.2 Schrödinger Operators

Let V (x) be a real function on Γ. We consider the Schrödinger operator associated

to the differential expression

L = − d2

dx2
+ V (x)
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together with certain conditions at the vertices of Γ. Throughout this chapter we accept

the following assumptions

(V 1) The function V is locally integrable on Γ : V (x) ∈ L1
loc(Γ);

(V 2) V− ∈ BS(Γ) : sup
e∈E

∫
e

V−(x) < ∞ .

Here and thereafter we use the following notation a+ = max{a, 0} and

a− = −min{a, 0}.

Let D0(Γ) be the space of all compactly supported function ϕ on Γ such that

ϕ|e ∈ C2(e) for all edges e ∈ E,

ϕ is continuous at all vertices of Γ (3.2)

and
∑

e∈Ev

dϕ

dne
(v) = 0 (3.3)

for all vertices v ∈ V , where d
dne

stands for the outward derivatives at the endpoints

of the edge e. Condition (3.3) is the so-called Kirchhoff vertex condition. In the case

when the degree dv = 1 this is the standard Neumann boundary condition (equally well

it can be replaced by the Dirichlet condition). Making use of the cut-off functions ϕn

and standard approximation techniques on finite intervals it is not difficult to see that

the space D0(Γ) is dense in the space H1(Γ) and, hence, in L2(Γ).

First we introduce the operatorL0 inL2(Γ)with the domainD(L0) = D0(Γ) defined

by

(L0ϕ)(x) = (Lϕ)(x)

on every edge e ∈ E. It can be easily shown that L0 is a symmetric operator. Actually,

the standard integration by parts over all edges shows that (L0u, v) = (u, L0v) for each

u, v ∈ D0(Γ).
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Lemma 3.1.1 implies that for every θ > 0 there exists a constant Cθ > 0, depending

on ∥V−∥BS , such that

∫

Γ

V−(x)|u(x)|2dx ≤ θ∥u′∥2 + Cθ∥u∥2 (3.4)

for all u ∈ H1(Γ).

Let q0(u) = (L0u, u), u ∈ D0(Γ), be the quadratic form associated to the operator

L0. Making use of inequality (3.4) with θ small enough, we obtain that there exist

constants α0 > 0 and λ0 > 0 such that

q0(u) =

∫

Γ

(
|u′(x)|2 + V (x)|u(x)|2

)
dx

≥
∫

Γ

(
|u′(x)|2 + (|V (x)|− 2V−(x)) |u(x)|2

)
dx

=

∫

Γ

(
|u′(x)|2 + |V (x)||u(x)|2 − 2V−(x)|u(x)|2

)
dx

≥
∫

Γ

(
|u′(x)|2 + |V (x)||u(x)|2

)
dx− 2θ∥u′∥2 − 2Cθ∥u∥2

=(1− 2θ)

∫

Γ

|u′(x)|2dx+

∫

Γ

|V (x)||u(x)|2dx− 2Cθ∥u∥2

>(1− 2θ)

∫

Γ

(
|u′(x)|2 + |V (x)||u(x)|2

)
dx− 2Cθ∥u∥2

=α0

∫

Γ

(
|u′(x)|2 + |V (x)||u(x)|2

)
dx− λ0∥u∥2L2(Γ) (3.5)

for all u ∈ D0(Γ). Here we choose α0 = 1− 2θ and λ0 = 2Cθ with θ small enough.

In particular, q0 is bounded below as well as the operator L0. Hence, q0 is a

closable quadratic form, by the Friedrichs extension theorem. Its closure is denoted

by q. Obviously,

q0(u) ≤
∫

Γ

(
|u′(x)|2 + |V (x)||u(x)|2

)
dx (3.6)

for all u ∈ D0(Γ). Together with (3.5), this implies that the domainD(q) of q consists

of all u ∈ H1(Γ) such that

∫

Γ

(
|u′(x)|2 + |V (x)||u(x)|2

)
dx < ∞ .
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Furthermore, inequalities (3.5) and (3.6) hold for the form q and all u ∈ D(q). Being

equipped with the norm

(q(u) + (λ0 + 1)∥u∥2)1/2 ,

the space D(q) is a Hilbert space continuously embedded into H1(Γ).

Since the form q is closed and bounded below, it generates the self-adjoint operator

L, the so-called Friedrichs extension of L0, which is bounded below (see, e.g., Blank

et al. (2008) and Reed & Simon (1975)). The operator L is defined as follows. A

function u ∈ D(q) belongs to the domain D(L) of L and Lu = f ∋ L2(Γ) if and only

if ∫

Γ

(u′ϕ′ + V uϕ) dx =

∫

Γ

fϕ dx (3.7)

for all ϕ ∈ D(q). Testing (3.7) on smooth functions with compact support in any

open edge, we see that on each edge the function u satisfies the equation Lu = f in

the weak sense. Hence, the derivative u′ is an absolutely continuous function on each

edge. Choosing a test function ϕ such that its support belongs to a sufficiently small

neighborhood of some vertex v, while on a smaller neighborhood ϕ = 1, we obtain,

after integration by parts, that u satisfies vertex condition (3.3).

3.3 Essential Self-Adjointness and the Bottom of Essential Spectrum

In this section, first, we show that the Friedrichs extension, L, of L0 is the only

self-adjoint extension of L0. In other words, the operator L0 is essentially self-adjoint.

For this aim, let us consider the maximal operator L̃ = L∗
0 associated to the

differential expression L and vertex conditions (3.2) and (3.3). The domain D(L̃)

consists of all functions u ∈ L2(Γ) such that

(i) u and u′ are absolutely continuous functions on each edge, and, hence,

u′′ ∈ L1
loc(Γ);

(ii) u satisfies vertex conditions (3.2) and (3.3);
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(iii) Lu ∈ L2(Γ).

The operator L̃ is defined by L̃u = Lu for all u ∈ D(L̃).

Obviously, L ⊂ L̃. Actually, we have the following

Theorem 3.3.1. Under assumptions (V 1) and (V 2), L = L̃.

Proof. Replacing V (x) by V (x) + λ with sufficiently large λ, we may suppose that

L0 ≥ I in the sense that

(L0ϕ,ϕ) =

∫

Γ

(|ϕ′|2 + V (x)|ϕ|2)dx ≥ ∥ϕ∥2 (3.8)

for all ϕ ∈ D(L0).

The key point of the proof is the following inequality. Suppose that u ∈ D(L̃) and

f = L̃u. Then

∥u∥ ≤ ∥f∥ . (3.9)

Notice that it is enough to prove inequality (3.9) for real valued functions only.

By the definition of L̃, V u ∈ L1
loc(Γ) and

∫

Γ

(u′ϕ′ + V uϕ)dx =

∫

Γ

fϕdx (3.10)

for all ϕ ∈ D0(Γ). Let ψ ∈ D0(Γ). Elementary differentiation shows that ψ2u ∈ D(L̃)

and has a compact support. A standard approximation argument in one dimension

shows that there exists a sequence uk ∈ D0 such that uk → u and u′
k → u′ locally

uniformly on Γ. Then ψ2uk ∈ D0(Γ). Taking ϕ = ψ2uk in (3.10) and passing to the

limit, we obtain that

∫

Γ

(
u′(uψ2)

′
+ V u2ψ2

)
dx =

∫

Γ

fuψ2dx . (3.11)

By the identity

u′(uψ2)
′
= ((uψ)′)2 − u2(ψ′)2 ,
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equation (3.11) becomes

∫

Γ

(
((uψ)′)2 + V u2ψ2 − u2(ψ′)2

)
dx =

∫

Γ

fuψ2dx . (3.12)

Inequality (3.8) and a density argument imply that

∫

Γ

(
((uψ)′)2 + V (uψ)2

)
dx ≥

∫

Γ

(uψ)2dx . (3.13)

Combining (3.12) and (3.13), we obtain that

∫

Γ

(
(uψ)2 − |ψ′|2u2

)
dx ≤

∫

Γ

fuψ2dx . (3.14)

Taking as ψ the cut-off function ϕn constructed in Section 3.1, we obtain

∫

Γ

(uϕn)
2dx ≤

∫

Γ

fuϕ2
ndx+

∫

Γ

u2|ϕ′
n|2dx

≤
(∫

Γ

(uϕn)
2dx

)1/2

·
(∫

Γ

(fϕn)
2dx

)1/2

+

∫

Γ

u2|ϕ′
n|2dx .

Since 0 ≤ ϕn ≤ 1 andϕn = 1 onΓn, the last inequality and the inequality 2ab ≤ a2+b2

imply that ∫

Γn

u2dx ≤
∫

Γ

(uϕn)
2dx ≤

∫

Γ

f 2dx+ 2

∫

Γ

u2|ϕ′
n|2dx .

Since ϕ′
n is bounded uniformly with respect to n, ϕ′

n = 0 on Γn and u ∈ L2(Γ), we

have that ∫

Γ

u2|ϕ′
n|2dx ≤ C

∫

Γ\Γn

u2dx → 0 as n → ∞ ,

and inequality (3.9) follows.

To complete the proof it is enough to show that D(L̃) ⊂ D(L). Since L ≥ I , then

it possesses the bounded inverse operator L−1. Let u ∈ D(L̃) and v = u − L−1L̃u.

Then v ∈ D(L̃) and L̃v = 0 because L ⊂ L̃. However, inequality (3.9) implies that the

operator L̃ has zero kernel and, hence, v = 0. As consequence, v = 0 and u ∈ D(L).

This completes the proof.
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Theorem 3.3.1 shows that the operator L is the only self-adjoint extension of L0.

Hence, the operator L0 is essentially self-adjoint, and L is the closure of L0. In

particular, D0(Γ) is dense in D(L) with respect to the graph norm.

Our next aim is to obtain a characterization of the bottom of essential spectrum.

For any compact subset K of Γ we denote by D0(Γ \ K) the set of all functions

ϕ ∈ D0(Γ) such that suppϕ ⊂ Γ \K. We denote by σ(L) and σess(L) the spectrum

and the essential spectrum of L.

It is well known that the bottom of the spectrum of a self-adjoint bounded below

operator coincides with the infimum of its Raylaigh quotient. Due to the density of

D0(Γ) in D(L) with respect to the graph norm, this implies immediately that

infσ(L) = Λ(L), where

Λ(L) = inf
{
(Lϕ,ϕ)

∥ϕ∥2 : ϕ ∈ D0(Γ),ϕ ̸= 0

}
.

Theorem 3.3.2. Under assumptions (V 1) and (V 2)

infσess(L) = sup
Γn#Γ

inf
{
(Lϕ,ϕ)

∥ϕ∥2 : ϕ ∈ D0(Γ \ Γn),ϕ ̸= 0

}
, (3.15)

where the supremum is taken over the sequence of compact sets Γn defined in

Section 3.1.

To prove Theorem 3.3.2 we need the following lemma.

Lemma 3.3.3. Suppose that, for some λ ∈ R,

(Lϕ,ϕ) ≥ λ∥ϕ∥2 (3.16)

for all ϕ ∈ D0(Γ \ Γn). Then there exists a non-negative function W ∈ D0(Γ) such

that

(LWϕ,ϕ) ≥ λ∥ϕ∥2 (3.17)

for all ϕ ∈ D0(Γ), where LW = L+W .
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Proof. Let ϕn be the sequence of cut-off functions with special choice of the function

φ (see the end of Section 3.1). Then ϕn ∈ D0, and the function ψn(x) = (1−ϕ2
n(x))

1/2

is C2-smooth on each edge and satisfies conditions (3.2) and (3.3). Furthermore, it is

not difficult to verify the following identity.

ϕ′′ = ϕn(ϕnϕ)
′′ + ψn(ψnϕ)

′′ + [(ϕ′
n)

2 + (ψ′
n)

2]ϕ . (3.18)

Let ϕ ∈ D0(Γ). Using (3.18), we obtain that

(Lϕ,ϕ) = (L(ϕnϕ),ϕnϕ) + (L(ψnϕ),ψnϕ)

−
∫

Γ

[(ϕ′
n)

2 + (ψ′
n)

2]|ϕ|2dx . (3.19)

Since suppψn ⊂ Γ \ Γn, it follows from (3.16) that

(L(ψnϕ),ψnϕ) ≥
∫

Γ

ψ2
n|ϕ|2dx . (3.20)

By the definition of Λ(L),

(L(ϕnϕ),ϕnϕ) ≥ Λ(L)

∫

Γ

ϕ2
n|ϕ|2dx . (3.21)

Combining (3.19), (3.20) and (3.21), we obtain that

(Lϕ,ϕ) ≥
∫

Γ

(ψ2
n + Λ(L)ϕ2

n − (ϕ′
n)

2 − (ψ′
n)

2)|ϕ|2dx

=

∫

Γ

α(x)|ϕ|2dx (3.22)

for all ϕ ∈ D0(Γ), where

α(x) = ψ2
n + Λ(L)ϕ2

n − (ϕ′
n)

2 − (ψ′
n)

2

is continuous function such that α(x) = 1 outside a compact set. Then α(x) − 1 has
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compact support. Let κ := sup(1− α(x)) and set

W (x) = α(x) + κ · ϕn′(x) ,

where n′ > n is large enough. With this choice of W , (3.22) yields (3.17), and the

proof is complete.

Proof of Theorem 3.3.2. Fix a number λ such that

λ < sup
Γn#Γ

inf
{
(Lϕ,ϕ)

∥ϕ∥2
: ϕ ∈ D0(Γ \ Γn),ϕ ̸= 0

}
.

Hence, there exists n ∈ N such that

(Lϕ,ϕ) ≥ λ∥ϕ∥2

for all ϕ ∈ D0(Γ \ Γn). By Lemma 3.3.3, there exists a non-negative function

W ∈ D0(Γ) such that

((LW )ϕ,ϕ) ≥ λ∥ϕ∥2

for all ϕ ∈ D0(Γ), which implies that

Λ(LW ) = infσ(LW ) ≥ λ . (3.23)

Since W is a compactly supported function, the multiplication operator by W is

compact. Hence, by Weyl's theorem, σess(L) = σess(LW ). As consequence,

infσess(L) ≥ inf σ(LW ) ≥ λ ,

and we conclude that

infσess(L) ≥ sup
Γn#Γ

inf
{
(L0ϕ,ϕ)

∥ϕ∥2 : ϕ ∈ D0(Γ \ Γn),ϕ ̸= 0

}
. (3.24)

To prove the reverse inequality let µ be any positive number such that
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µ < inf σess(L). Let Eµ be the spectral projector of L that corresponds to the part of

the spectrum below µ. Then Eµ is a finite rank projection so that

Eµ =
N∑

i=1

(·,φi)φi ,

where φi ∈ D(L) are orthonormal eigenfunctions of L with eigenvalues below µ.

Hence, for any function ϕ ∈ D0(Γ \ Γn)

∥Eµϕ∥ ≤
N∑

i=1

|(ϕ,φi)| · ∥φi∥2

≤
N∑

i=1

(∫

Γ\Γn

|φi|2dx
) 1

2

∥φi∥ · ∥ϕ∥ .

Therefore, for any ε ∈ (0, 1), there exists an n = n(ε) ∈ N such that

∥E(µ)ϕ∥ " ε · ∥ϕ∥ (3.25)

for all ϕ ∈ D0(Γ \ Γn).

Now we have

(Lϕ,ϕ) = ∥L 1
2ϕ∥2

= ∥L 1
2 (I − Eµ)ϕ∥2 + ∥L 1

2Eµϕ∥2

≥ ∥L 1
2 (I − Eµ)ϕ∥2 = (L(I − Eµ)ϕ,ϕ)

≥ µ∥(I − Eµ)ϕ∥2

≥ µ∥ϕ− Eµϕ∥2

≥ µ(∥ϕ∥ − ∥Eµϕ∥)2. (3.26)

Combining (3.25) and (3.26), we obtain that

(Lϕ,ϕ) ≥ µ · (1− ε)2 · ∥ϕ∥2
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for any ϕ ∈ D0(Γ \ Γn), which implies that

sup
Γn#Γ

inf
{
(L0ϕ,ϕ)

∥ϕ∥2 : ϕ ∈ D0(Γ \ Γn),ϕ ̸= 0

}
≥ µ · (1− ε)2 .

Letting ε→ 0, we conclude that

sup
Γn#Γ

inf
{
(L0ϕ,ϕ)

∥ϕ∥2 : ϕ ∈ D0(Γ \ Γn),ϕ ̸= 0

}
≥ inf σess(L) .

Together with (3.24), this proves (3.15).

The proof is complete. $

3.4 Discreteness of Spectrum

We begin with a sufficient condition for the discreteness of the negative part of

spectrum.

Theorem 3.4.1. In addition to Assumptions (V 1) and (V 2), suppose that

∫

e

V−(x)dx → 0

in the sense that for every ε > 0 there exists n ∈ N such that

∫

e

V−(x)dx < ε

for all e ∈ E such that e ⊂ Γ\Γn. Then the negative part of spectrum, σ(L)∩(−∞, 0),

is discrete.

Proof. We need to prove that there is no negative part of the essential spectrum. By

Theorem 3.3.2, it is enough to show that for every ε ∈ (0, 1) there exists n ∈ N such

that ∫

Γ

(|u′(x)|2 − V−(x)|u(x)|2)dx ≥ −ε
∫

Γ

|u(x)|2dx (3.27)
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for all u ∈ D0(Γ \ Γn).

Let η > 0. Then there exists n(η) ∈ Z such that

∫

e

V−(xe)dxe < η

for all e ∈ E such that e ⊂ Γ \ Γn(η). For any u ∈ D0(Γ \ Γn(η)) there exists x0,e ∈ e

such that

u2(x0,e) =
1

le

∫

e

u2(x)dx .

Then, for x ∈ e,

|u2(x)− u2(x0,e)| = 2

∣∣∣∣∣

∫ x

x0,e

u′udx

∣∣∣∣∣ ≤
∫

e

(u′2 + u2)dx .

From this, we have

∫

e⊂Γ\Γn(η)

V−u
2(x)dx =

∫

e⊂Γ\Γn(η)

V−(u
2(x)− u2(x0,e))dx

+

∫

e⊂Γ\Γn(η)

V−u
2(x0,e)dx

≤ η

∫

e⊂Γ\Γn(η)

(u′2(x) + u2(x))dx+
η

le

∫

e⊂Γ\Γn(η)

u2(x)dx

≤ η

∫

e⊂Γ\Γn(η)

(u′2(x) + u2(x))dx+
η

l

∫

e⊂Γ\Γn(η)

u2(x)dx

≤ η

(
1 +

1

l

)∫

e⊂Γ\Γn(η)

(u′2(x) + u2(x))dx .

Summing up over e ⊂ Γ \ Γn(η), we obtain that

∑

e⊂Γ\Γn(η)

∫

e

V−u
2(x)dx ≤ η

(
1 +

1

l

) ∑

e⊂Γ\Γn(η)

∫

e

(u′2(x) + u2(x))dx .

Taking η sufficiently small so that ε = η(1 + l−1) < 1, we obtain that

∫

Γ

(u′2(x)− V−u
2(x))dx ≥ −ε

∫

Γ

u2(x)dx ,

for all u ∈ D0(Γ \ Γn) with n = n(η). The proof is complete.
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Now we prove a criterion for the discreteness of the whole spectrum. We employ

the following terminology. An interval in Γ is a subinterval of any edge.

Theorem 3.4.2. Under Assumptions (V 1) and (V 2), σ(L) is discrete if and only if for

every α ∈ (0, l) ∫

S

V (x)dx → ∞ (3.28)

as the interval S of length α escapes to infinity (this means that for everyM > 0, there

exists n ∈ N such that ∫

S

V (x)dx ≥ M

for all intervals S of length α with the property that S ⊂ Γ \ Γn ) .

Proof. (a) Sufficiency. Suppose that (3.28) holds. Without loss of generality, we

assume that L ≥ I . To prove that the spectrum of L is discrete it is sufficient to show

that the negative part of σ(L − µI) is discrete for all µ > 0. By Theorem 3.3.2, to do

this we have to prove the existence of n ∈ N such that

∫

Γ

(|u′|2 + V |u|2)dx ≥ µ

∫

Γ

|u|2dx (3.29)

for all u ∈ D0(Γ \ Γn).

Now, given α ∈ (0, l), we choose n(α) such that for every interval S ⊂ Γ \ Γn(α)

of length α ∫

S

V (x)dx ≥ 1 . (3.30)

For an edge e, we introduce the number

N(e) =

⎧
⎪⎪⎨

⎪⎪⎩

le
α

if le
α is an integer

[
le
α

]
+ 1 otherwise .

Then we cover the edge e by intervals Se
k, k = 1, . . . , N(e), of length α in such a way

that at most two of the intervals overlap.

53



Due to the continuity of u, in each interval Se
k we can choose a point xe

k such that

u2(xk) =

∫
Se
k
V (x)u2(x)dx
∫
Se
k
V (x)dx

. (3.31)

Estimating |u2(x)− u2(xe
k)| as in the proof of Theorem 3.4.1, we obtain the inequality

∫

Se
k

u2(x)dx =

∫

Se
k

u2(xe
k)dx+

∫

Se
k

(u2(x)− u2(xe
k))dx

≤ α

∫
Se
k
V (x)u2(x)dx
∫
Se
k
V (x)dx

+ α

∫

Se
k

(u′2 + u2)dx .

Hence, by (3.30)

∫

Se
k

u2(x)dx ≤ α

∫

Se
k

V (x)u2(x)dx+ α

∫

Se
k

(u′2 + u2)dx . (3.32)

Summing up inequalities (3.32) over all e ∈ Γ \ Γn(η) and all k, we obtain that

∫

Γ

u2(x)dx ≤ α

∫

Γ

V (x)u2(x)dx+ α

∫

Γ

(u′2 + u2) dx

for all u ∈ D0(Γ \ Γn(η)).

Since we suppose that L ≥ I , then q(·)1/2 is an equivalent norm on the form domain

D(q). Since the embeddingD(q) ⊂ H1(Γ) is continuous, ∥u∥2H1 ≤ Cq(u). Therefore,

∫

Γ\Γn(η)

u2(x)dx ≤ (1 + C)α

∫

Γ\Γn(η)

(u′2 + V (x)u2)dx .

Taking α = ((1 + C)µ)−1, we obtain (3.29).

(b) Necessity. Assume that the spectrum σ(L) is discrete, but for some α ∈ (0, l)

there exist ρ > 0 and a sequence of intervals Sk of length α escaping to infinity and

such that ∫

Sk

V (x)dx ≤ ρ . (3.33)

Obviously, we may assume that each edge contains at most one such interval and
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Sk ⊂ Γ \ Γk. Now, we choose a sequence of ψk ∈ D0(Γ) such that suppψk ⊂ Sk,

0 ≤ ψk ≤ 1, |ψ′
k| ≤ C for some C > 0, and ψk = 1 on some subinterval of length δ in

Sk. Then ψk ∈ D0(Γ \ Γk) and

∫

Sk

(ψ′2
k (x) + V (x)ψ2

k(x))dx ≤
∫

Sk

ψ′2
k (x)dx+

∫

Sk

V (x)ψ2
k(x)dx

≤ αC2 +

∫

Sk

V (x)dx

≤ αC2 + ρ . (3.34)

On the other hand, ∫

Sk

ψ2
k(x)dx ≥ δ .

Hence, ∫

Γ

(ψ′2
k (x) + V (x)ψ2

k(x))dx ≤ αC2 + ρ

δ

∫

Γ

ψ2
k(x)dx .

By Theorem 3.3.2, it follows that for

σ(L− µI) ∩ (−∞, 0)

contains points of essential spectrum whenever

µ >
αC2 + ρ

δ
.

This contradiction proves the required.

3.5 Exponential Decay of the Eigenfunctions

Now before giving our result on exponential decay of eigenfunctions, we begin with

some properties of Schrödinger operators with locally integrable potentials on metric

graphs obtained in Section 3.2.
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Under Assumption (V 1), the differential expression

L = − d2

dx2
+ V (x)

generates an operator L : H1
loc(Γ) → H−1

loc (Γ) defined as follows

(Lu, υ) =
∫

Γ

(u′(x)υ′(x) + V (x)u(x)υ(x)) dx, ∀υ ∈ H1
comp(Γ).

In Section 3.2, we have started with a second order symmetric differential operator

L0u = −d2u

dx2
+ V (x)u (3.35)

on the domainD0(Γ) that consists of all compactly supported function u on Γ such that

u|e ∈ C2(e) for all edges e ∈ E, satisfies vertex conditions (3.2) and (3.3). Under our

assumptions, L0 is a symmetric, bounded below operator in the space L2(Γ).

Let q0(u) = (L0u, u), u ∈ D0(Γ), be the quadratic form associated to the symmetric

operator L0. Under Assumptions (V 1) and (V 2), the form q0 is bounded below and,

hence, closable. Furthermore, the closure q of q0 generates a self-adjoint, semi-bounded

below extension L of L0. The operator L is the only self-adjoint extension of L0. In

other words, the operator L0 is essentially self-adjoint. The form domainD(q) is given

by

D(q) = H+ =

{
u ∈ H1(Γ) :

∫

Γ

|V (x)||u(x)|2dx < ∞
}

.

This is a Hilbert space continuously and densely embedded into L2(Γ). Its dual space

is denoted by H−. Obviously, L2(Γ) ⊂ H− ⊂ H−1
loc (continuously and densely). The

operator L extends to a bounded linear operator L̂ : H+ → H− (see (Reed & Simon,

1980, Section VIII.6)). Actually, L̂ is the restriction of L to H+, while L is the

restriction of L to the domain D(L) of L. The domain D(L) consists of all functions

u ∈ L2(Γ) such that u and u′ are absolutely continuous on each edge of Γ, satisfy

vertex conditions (3.2) and (3.3), and Lu ∈ L2(Γ). Equipping D(L) with the graph

norm, we often regard L as a bounded linear operator from D(L) into L2(Γ).
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To obtain exponential decay of the eigenfunctions, we begin with the following lemma.

Lemma 3.5.1. There exists a function η such that it is continuous on Γ, η|e ∈ C2(e) on

each edge e, with η′ and η′′ bounded on Γ, η satisfies the Kirchhoff vertex conditions,

and

d(x)− c0 ≤ η(x) ≤ d(x) + c0 , x ∈ Γ , (3.36)

with c0 > 0 independent of x.

Proof. We construct the function η so that at any vertex η = d. Consider any edge e

that connects two vertices v and w, and identify it with the interval [−m,m], where

2m = le, so that the endpoint −m corresponds to the vertex v. Let a = d(v) and

b = d(w). Then on this edge

d(x) = min[a+ x+m, b+m− x] .

We define η to be the cubic polynomial such that

η(−m) = a, η′(−m) = 0,

η(m) = b, η′(m) = 0 ,

Then an elementary calculation shows that η is of the form

η(x) = αx3 + βx+ γ ,

where α, β and γ are given by

α =
a− b

4m3
,

β = −3(a− b)

4m

and

γ =
a+ b

2
.
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Now let

θ(x) =
b− a

2m
x+

a+ b

2
.

The maximum value of d(x) is d(x0) = (a + b)/2 + m, where x0 = (b − a)/2. It is

easily seen that θ(x) ≤ d(x), while the maximum value of d(x)− θ(x) on [−m,m] is

d(x0)− θ(x0). A straightforward calculation shows that

d(x0)− θ(x0) = m− (b− a)2

4m
≤ l̄

2
.

Making use of the elementary calculus, we see that the function θ(x) − η(x) attains

extreme values

±(b− a)

6
√
3

at the points ±m/
√
3. Thus, on [−m,m]

|θ(x)− η(x)| ≤ |b− a|
6
√
3

.

Since obviously |b− a| ≤ l̄, we obtain (3.36) with

c0 =
l̄

2
+

l̄

6
√
3
.

The proof is complete.

The relation (3.36) shows that exponential estimates in terms of the distance function

are equivalent to exponential estimates in terms of the function η. This is a serious

reduction to obtain exponential decay. Because now “twisted”operator Lϵ right below

is well-defined.

Let ϵ ∈ R. For u ∈ L2
loc(Γ), we set

(Φϵu)(x) = eϵη(x)u(x) .

It is easily seen that Φϵu ∈ L2
loc(Γ), and Φϵ is a linear continuous operator in L2

loc(Γ).
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Moreover,

ΦϵH
1
loc(Γ) ⊂ H1

loc(Γ)

and

ΦϵH
1
comp(Γ) ⊂ H1

comp(Γ) ,

and Φϵ is a continuous linear operator in these spaces. This operator extends to a linear

continuous operator

Φϵ : H
−1
loc (Γ) → H−1

loc (Γ)

by the formula

(Φϵu, υ) = (u,Φϵυ), ∀υ ∈ H1
comp(Γ)

for any u ∈ H−1
loc (Γ). This is indeed an extension of Φϵ previously defined on L2

loc(Γ).

Now we define twisted operator

Lϵ : H
1
loc(Γ) → H−1

loc (Γ)

by

Lϵu = ΦϵLΦ−ϵu, u ∈ H1
loc(Γ) .

An explicit expression for this operator is the following

Lϵ = L+ ϵBϵ,

where

Bϵ = 2η′(x)
d

dx
+ η′′(x)− ϵη′2(x).

The operator Bϵ maps continuously H1(Γ) into L2(Γ).

Lemma 3.5.2. The restriction of Lϵ to D(L) defines a closed linear operator Lϵ in

L2(Γ), with the domainD(Lϵ) = D(L) and non-empty resolvent set, provided |ϵ| ≤ ϵ0

for some ϵ0 > 0.
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Proof. Without loss of generality, we may assume that the operator L is positive

definite. Hence, as a bounded operator from D(L) into L2(Γ), L is invertible. In

addition, we suppose that |ϵ| ≤ 1. Since η′, η′′ ∈ L∞(Γ), the restriction of Bϵ to the

space H1(Γ) is a (uniformly with respect to ϵ) bounded linear operator

Bϵ : H1(Γ) → L2(Γ). Since the embedding D(L) ⊂ H1(Γ) is continuous and D(L)

is equipped with the graph norm, then

∥ϵBϵu∥ ≤ C|ϵ|∥Lu∥ , ∀u ∈ D(L) .

Hence, the operator Lϵ : D(L) → L2(Γ) has a bounded inverse if |ϵ| is sufficiently

small. As consequence, the operator Lϵ , with the domain D(Lϵ) = D(L) is a closed

operator in L2(Γ).

Remark 3.5.3. Notice that Lϵ as a bounded operator from D(L) into L2(Γ) depends

continuously on ϵ. Then so is the resolvent. This implies that Lϵ as a closed operator in

L2(Γ) is continuous with respect to ϵ in a neighborhood of ϵ = 0 in the sense of Kato's

generalized convergence Kato (1966).

Let L2
ϵ(Γ) be the image of L2(Γ) under the transformation Φϵ, i.e.,

L2
ϵ(Γ) = ΦϵL

2(Γ) .

This is a Hilbert space with the norm induced from L2(Γ)

∥Φϵu∥ϵ = ∥u∥ , u ∈ L2
ϵ(Γ) .

Assuming that |ϵ| is small enough, we introduce the operator

L(ϵ) = Φ−ϵLϵΦϵ .

This is a closed operator in L2
−ϵ(Γ) with the domain

D(L(ϵ)) = Φ−ϵD(L) .
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By the definition of L(ϵ), this operator is unitary equivalent to Lϵ. Notice that, due to

the properties of the function η, functions in D(L(ϵ)) satisfy vertex conditions (3.2)

and (3.3). Actually, L(ϵ) is the restriction of L to the domain D(L(ϵ)).

Theorem 3.5.4. Under Assumptions (V 1) and (V 2), let λ0 be an isolated eigenvalue

of finite multiplicity for the operator L. Then there exist ϵ > 0 and C > 0 such that for

any normalized eigenfunction u ∈ L2(Γ) with the eigenvalue λ0

|u(x)| ≤ Ce−ϵd(x) . (3.37)

Proof. First we note that, by Lemma 3.5.1, it is enough to prove the estimates

|u(x)| ≤ Ce−ϵη(x) (3.38)

instead of (3.37).

Since λ0 is an isolated eigenvalue, there is a sufficiently small closed disc centered

at λ0 and such that it contains the only point λ0 of the spectrum of L. Denote by γ the

boundary of this disc, with counterclockwise orientation. Then the image of the Riesz

projector

P0 =
1

2πi

∫

γ

(λI − L)−1dλ

is the eigenspace E0 of the operator L, with the eigenvalue λ0, and the multiplicity of

λ0 is dimE0 = k < ∞.

By Lemma 3.5.2 and Remark 3.5.3, in a small neighborhood of ϵ = 0 the operator

Lϵ depends continuously in ϵ with respect to Kato's generalized convergence. Hence,

by (Kato, 1966, Theorem 3.16 of Ch. 4), for all ϵ in a neighborhood of ϵ = 0, the circle

γ does not intersect the spectrum of Lϵ, the Riesz projector

Pϵ =
1

2πi

∫

γ

(λI − Lϵ)
−1dλ
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as a bounded operator in L2(Γ) depends continuously on ϵ in this neighborhood, and

dimEϵ = k < ∞ is independent of ϵ, where Eϵ is the image of Pϵ.

Now we turn to the operator L(ϵ) which is unitary equivalent to Lϵ and, as

consequence, has the same spectrum. The Riesz projector associated to the part of

spectrum surrounded by γ is unitary equivalent to Pϵ because

P(ϵ) = Φ−ϵPϵΦϵ =
1

2πi

∫

γ

Φ−ϵ(λI − Lϵ)
−1Φϵdλ

=
1

2πi

∫

γ

(Φ−ϵ(λI − Lϵ)Φϵ)
−1dλ

=
1

2πi

∫

γ

(λI − L(ϵ))
−1dλ.

Hence, the image E(ϵ) of P(ϵ) is isomorphic to Eϵ and, therefore, dimE(ϵ) = k.

Let ϵ > 0. Then

L2
−ϵ(Γ) ⊂ L2(Γ) ,

D(L(ϵ)) ⊂ D(L)

and the operator L(ϵ) is the restriction of the operator L. Hence, the resolvent

(λI − L(ϵ))−1 of L(ϵ) is the restriction of the resolvent (λI − L)−1 of L to the space

L2
−ϵ(Γ). This implies immediately that the projector P(ϵ) is the restriction of the

projector P(0) = P0. Therefore, E(ϵ) is a subspace of E0. Since the dimensions of

these two spaces are equal to k, we have that E0 = E(ϵ). This means that the

eigenspace E0 is, in fact, a subspace of L2
−ϵ(Γ).

Now let u ∈ E0 be an eigenfunction with ∥u∥ = 1. Then u = Φ−ϵv for some

v ∈ L2(Γ). Since Φϵ induces an isomorphism between E0 and Eϵ, and ∥u∥ = 1, then

∥v∥ is bounded by a constant independent of u. By the definition of Lϵ, the function

v ∈ D(L) satisfies

Lϵv = λ0v .

Recall that the resolvent of Lϵ acts as a bounded operator from L2(Γ) into D(L) and,
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hence, into H1(Γ). Now the last equation implies that ∥v∥H1 and, hence, ∥v∥L∞ are

bounded by a constant independent of u, that is, there exists a constant K > 0 such

that

|v(x)| ≤ K∥v∥H1(Γ), x ∈ Γ.

As a consequence,

|u(x)| = |e−ϵη(x)v(x)| ≤ Ce−ϵη(x) ,

where the constant C > 0 depends only on λ0 and ϵ. The proof is complete.
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CHAPTER FOUR

CONCLUSION

One of the richest source of the spectral theory is the quantum physics and most

of the theory is dedicated to the Schrödinger operator L(V ) defined by the differential

expression

L(V )u(x) = (−∆+ V (x))u(x)

which is a fundamental operator of quantum physics. The Schrödinger operator can be

considered as the energy operator of one or several particles depending on the form of

the potential V (x). According to the fundamental principles of quantum physics, the

possible values of the energy of a particle belong to the spectrum of the Schrödinger

operator and eigenfunctions describe the state of the particle.

This thesis includes two independent studies on the spectral theory of Schrödinger

operators.

The first study is on the Schrödinger operator defined by (1.1)-(1.2), whose potential

is a real-valued, symmetric matrix V = (vij(x)), i, j = 1, 2, . . . ,m. We denote this

operator by L(V ).

We denote the eigenvalue and eigenfunction pairs of L(V ) by ΛN and ψN ,

respectively.

The eigenvalues of the unperturbed operator L(0) which is defined by (1.1) when

V (x) = 0 and the boundary condition (1.2) are |γ|2 and the corresponding eigenspaces

are

Eγ = span{Φγ,1(x),Φγ,2(x), . . . ,Φγ,m(x)},

where γ ∈ Γ+0

2 = {(n1π
a1

, n2π
a2

, . . . , ndπ
ad

) : nk ∈ Z+ ∪ {0}, k = 1, 2, . . . , d},

Φγ,j(x) = (0, . . . , 0, uγ(x), 0, . . . , 0), j = 1, 2, . . . ,m,

uγ(x) = cos n1π
a1

x1 cos n2π
a2

x2 · · · cos ndπ
ad

xd, u0(x) = 1 when γ = (0, 0, . . . , 0). The

non-zero component uγ(x) is in the j-th component.
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We assume that the Fourier coefficients vijγ of vij(x) satisfy

∑

γ∈Γ
2

|vijγ|2(1 + |γ|2l) < ∞

for each i, j = 1, 2, . . . ,m, l > (d+20)(d−1)
2 + d+ 3.

In Chapter Two, we obtain asymptotic formulas for the eigenvalueΛN ofL(V )when

the corresponding eigenvalue of the unperturbed operator L(0), is roughly speaking,

near diffraction plane.

As the eigenvalue problem of the operator L(V ) defined by (1.1) and (1.2), most

of the problems related with spectral theory fail to be explicitly soluble, they need a

qualitative and asymptotic study.

The most significant progress has been achieved in one dimensional case. The

crucial property in analysis of the problem in one dimensional case is that the distance

between the consecutive eigenvalues (which occurs in the denominator of the

perturbation series) becomes larger and larger so that the perturbation theory can be

applied to obtain the asymptotic formulas for sufficiently large eigenvalues.

However, in many dimensional case, (even in two or three dimensions), the

problem is considerably difficult. In this case, to construct a perturbation theory turns

out to be rather difficult, because of the denseness of the eigenvalues of the free

operator which are situated very close to each other in a high energy region.

Therefore, when perturbation disturbs them, they strongly influence each other. This

presents considerable difficulties as the arbitrarily small differences become small

divisors in an asymptotic expansion, in particular, “the small denominators problem”.

Thus, to describe the perturbation of one of the eigenvalues, we must also study all

the other surrounding eigenvalues.

In order to overcome this difficulty, for the first time in papers (Veliev, 1987, 2006,

2007, 2015), the eigenvalues of the unperturbed operator L(0) is divided into two
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groups: Non-resonance and resonance ones (see Definition 1.1.1).

In Chapter Two, we obtain the high energy asymptotics of arbitrary order in an

arbitrary dimension (d ≥ 2) for the eigenvalue of L(V ) corresponding to resonance

eigenvalue |γ|2 when γ belongs to the single resonance domain, that is,

γ ∈ Vδ(ρα1) \ E2, where δ is from {e1, e2, . . . , ed} and e1 =
(

π
a1
, 0, . . . , 0

)
,

e2 =
(
0, π

a2
, . . . , 0

)
, . . . , ed =

(
0, 0, . . . , π

ad

)
.

In order to obtain the asymptotic formulas for the single resonance eigenvalues

|γ|2 (γ ∈ Vδ(ρα1) \ E2), we consider the operator L(V ) as the perturbation of

L(P (s)) where L(P (s)) is defined by the differential expression

Lu = −∆u+ P (s)u

and the Neumann boundary condition

∂u

∂n

∣∣∣∣
∂F

= 0,

P (s) = (pij(s)) , i, j = 1, 2, . . . ,m,

pij(s) =
∑

n∈Z

pijn cosns, pijn = vij(nδ), s = x · δ, i, j = 1, 2, . . . ,m.

It can be easily verified by the method of separation of variables that the eigenvalues

and the corresponding eigenfunctions of L(P (s)), indexed by the pairs

(j, β) ∈ Z× Γδ, are λj,β = λj+|β|2 and

χj,β(x) = uβ(x) · ϕj(s) = (uβ(x)ϕj1, uβ(x)ϕj2, . . . , uβ(x)ϕjm), respectively, where

β ∈ Γδ, λj is the eigenvalue and ϕj(s) = (ϕj,1(s),ϕj,2(s), . . . ,ϕj,m(s)) is the

corresponding eigenfunction of the operator T (P (s)) defined by the differential

expression

T (P (s))Y = −
∣∣∣∣
π

ai

∣∣∣∣
2

Y ′′ + P (s)Y (4.1)

and the boundary condition

Y ′(0) = Y ′(π) = 0. (4.2)
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The eigenvalues of the operator T (0), defined by (4.1) when P (s) = 0 and the

boundary condition (4.2), are |nδ|2 = |nπai |
2 with the corresponding eigenspace

En = span {Cn,1(s), Cn,2(s), . . . , Cn,m(s)}, where Cn,i(s) = (0, . . . , cosns, . . . , 0),

the non-zero component cosns stands in the ith place and n ∈ Z+ ∪ {0}. It is well

known that (for example, see Naimark et al. (1967)) the eigenvalue λj of T (P (s))

satisfying |λj − |jδ|2| < supP (s), satisfies the following relation

λj = |jδ|2 +O

(
1

|jδ|

)
.

By the above equation, the eigenvalue |γ|2 = |β|2 + |jδ|2 of L(0) corresponds to the

eigenvalue |β|2 + λj of L(P (s)).

As a result, we proved the following theorems

• Theorem 2.3.1 For every eigenvalue λj,β of the operatorL(P (s))with β+jδ ∈

V ′
δ (ρ

α1), there exists an eigenvalue ΛN of the operator L(V ) satisfying

ΛN = λj,β +O
(
ρ−α2

)
.

• Theorem 2.3.2

(a) For every eigenvalue λj,β of L(P (s)) such that β + jδ ∈ V ′
δ (ρ

α1), there

exists an eigenvalue ΛN of the operator L(V ) satisfying

ΛN = λj,β + Ek−1 +O(ρ−kα2), (4.3)

where E0 = 0, Es =
2p∑
k=1

S̃k(Es−1 + λj,β,λj,β), s = 1, 2, . . . .

(b) If

|ΛN − λj,β| < c20
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and

|c(N, j, β)| > ρ−qα

hold then ΛN satisfies (4.3).

For the operator L(V ) defined by (1.1), (1.2) we may suggest the following open

problem:

For m ≥ 1 (both scalar and matrix cases) one may study the asymptotic behaviour

of the eigenfunctions of L(V ) for both non-resonance and resonance domains.

In the second study, we consider Schrödinger operators with non-regular potentials

on infinite metric graphs.

Let Γ = (E, V ) be an undirected graph with the set of edgesE and the set of vertices

V . The graph Γ is said to be a metric graph if each edge e is identified with an [0, le]

of the real line.

The distance d(x, y) between two points x and y in Γ is defined as the length of a

shortest path that connects these points. Since the graph is connected, the distance is

well defined.

For the second study, in Chapter Three, we assumed that

(i) The sets of edges and vertices are countably infinite;

(ii) There exist two positive constants l and l such that

l ≤ le ≤ l

for all e ∈ E.
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Differential equations on metric graphs (networks) is a relatively new area of

mathematical research though the first publication in which equations of such type

appear is paper Kirchhoff (1847).

In Chapter Three, to define a self-adjoint Schrödinger operator, we start with a

second-order symmetric differential operator

L0u = −d2u

dx2
+ V (x)u

on the domain that consists of sufficiently smooth compactly supported functions

satisfying the Kirchhoff conditions at the vertices of a metric graph Γ. The potentials

are supposed to be locally integrable with negative part bounded in certain integral

sense (see, assumptions (V1) and (V2)). In the case of operators on real line, these

assumptions turn into the assumption that the potential is of local Kato class, while its

negative part is of Kato class (see, e.g., Cycon et al. (2009), Simon (1982)). Under

our assumptions, L0 is a symmetric, bounded below operator in the space L2(Γ).

While the theory of Schrödinger operators on the Euclidean space is currently well-

developed, the theory of quantum graphs, i.e., Schrödinger type operators on metric

graphs, is relatively new, and many important problems in this area are still open. Most

of results obtained so far concern the case when the potential is sufficiently regular.

However, as it is well-known the potential represents external force field which often

has singularities. Due to this fact, in Chapter Three, we study Schrödinger operators

with locally integrable potentials on infinite metric graphs. Such potentials form a

sufficiently wide class and allow many important singularities.

First, we show that the Friedrichs extension, L, of L0 is the only self-adjoint

extension of L0. In other words, the operator L0 is essentially self-adjoint. For this

aim, let us consider the maximal operator L̃ = L∗
0 associated to the differential

expression L and vertex conditions (3.2) and (3.3). The domain D(L̃) consists of all

functions u ∈ L2(Γ) such that
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(i) u and u′ are absolutely continuous functions on each edge, and, hence,

u′′ ∈ L1
loc(Γ);

(ii) u satisfies vertex conditions (3.2) and (3.3);

(iii) Lu ∈ L2(Γ).

The operator L̃ is defined by L̃u = Lu for all u ∈ D(L̃).

Obviously, L ⊂ L̃. Actually, we have the following theorem

• Theorem 3.3.1 Under assumptions (V 1) and (V 2), L = L̃.

Next we obtained a characterization of the bottom of essential spectrum:

• Theorem 3.3.2 Under assumptions (V 1) and (V 2)

infσess(L) = sup
Γn#Γ

inf
{
(Lϕ,ϕ)

∥ϕ∥2 : ϕ ∈ D0(Γ \ Γn),ϕ ̸= 0

}
,

where the supremum is taken over the sequence of compact sets Γn defined in

Section 3.1.

For the discreteness of spectrum, we begin with a sufficient condition for the

discreteness of the negative part of spectrum.

• Theorem 3.4.1 In addition to Assumptions (V 1) and (V 2), suppose that

∫

e

V−(x)dx → 0

in the sense that for every ε > 0 there exists n ∈ N such that

∫

e

V−(x)dx < ε
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for all e ∈ E such that e ⊂ Γ \ Γn. Then the negative part of spectrum, σ(L) ∩

(−∞, 0), is discrete.

Then we proved a criterion for the discreteness of the whole spectrum.

• Theorem 3.4.2 Under Assumptions (V 1) and (V 2), σ(L) is discrete if and only

if for every α ∈ (0, l) ∫

S

V (x)dx → ∞

as the interval S of length α escapes to infinity (this means that for everyM > 0,

there exists n ∈ N such that

∫

S

V (x)dx ≥ M

for all intervals S of length α with the property that S ⊂ Γ \ Γn ) .

The last result of our second study is on the exponential decay of eigenfunctions:

• Theorem 3.5.4 Under Assumptions (V 1) and (V 2), let λ0 be an isolated

eigenvalue of finite multiplicity for the operator L. Then there exist ϵ > 0 and

C > 0 such that for any normalized eigenfunction u ∈ L2(Γ) with the

eigenvalue λ0

|u(x)| ≤ Ce−ϵd(x) .

In the second study, we consider Schrödinger operators with non-regular potentials on

infinite metric graphs. Our above results can be extended to the case when Kirchhoff

vertex conditions are replaced by general self-adjoint vertex conditions. This is a

relatively new problem for us.
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