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PARTIAL LEAST SQUARES METHOD FOR THE ANALYSIS OF GENE

EXPRESSION DATA

ABSTRACT

Partial Least Squares Regression (PLSR) is an unsupervised machine learning

technique to modeling associations between variables through orthogonal latent

variables. Using these latent variables, PLSR can make an inference from huge and

computationally complex datasets that have missing values, noise and a numerous

number of variables relativity more than the number of observations. The classical

and standard algorithm of the PLSR is the Nonlinear Iterative Partial Least Squares

Regression (NIPALS). The NIPALS is proposed for regression, classification and

dimension reduction. The NIPALS and other PLSR algorithms have been used

frequently for various bioinformatic studies.

In high-throughput gene expression data research, one of the important goals is to

investigate gene-gene or their products interactions. To measure the level of

association between these genes or their products, a highly recommended method can

be used which is calculated by the variable weights and loadings based on PLSR,

called Connectivity Scores.

In this thesis, PLSR was used for computing connectivity scores to construct gene

networks for three brain region of a developing mouse brain in the embryonic period.

Statistical analysis is performed using R statistical language and Cytoscape software is

used to visualize gene networks.

Keywords:Gene networks, high throughput gene expression data, machine learning,

partial least squares regression
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GEN EKSPRESYON VERİLERİNİN ANALİZİ İÇİN KISMİ EN KÜÇÜK

KARELER YÖNTEMİ

ÖZ

Kısmi En Küçük Kareler Regresyonu (KEKKR) değişkenler arasındaki ilişkileri

ortogonal gizli değişkenler aracılığıyla modellemek için kullanılan denetimsiz bir

makine öğrenme tekniğidir. KEKKR bu gizli değişkenleri kullanarak, kayıp

gözlemlere, gürültüye ve değişken sayısına oranla çok sayıda gözlem değerine sahip

olan büyük ve karmaşık veri kümelerinden bir çıkarım yapabilir. KEKKR’nin klasik

ve standart algoritması Doğrusal Olmayan Iteratif Kısmi En Küçük Kareler

Regresyonu’dur (NIPALS). NIPALS, regresyon, sınıflandırma ve boyut küçültme için

önerilmiştir. NIPALS ve diğer KEKKR algoritmaları çeşitli biyoinformatik

çalışmaları için sıklıkla kullanılmaktadır.

Yüksek çıktılı gen ifadesi veri araştırmalarında, önemli hedeflerden biri gen-gen

veya gen ürünlerinin etkileşimlerini araştırmaktır. Bu genler veya gen ürünleri

arasındaki ilişki seviyesini ölçmek için oldukça tavsiye edilen bir yöntem olan ve

KEKKR metoduna göre hesaplanan değişken ağırlıklari ve yükleri ile bulunan

Bağlantı Skorlar kullanılabilir.

Bu tezde, embriyonik dönemde gelişen fare beynine ait üç beyin bölgesinin gen

ağları oluşturmak için bağlantı puanları KEKKR kullanılarak hesaplanmıştır.

İstatistiksel analizler için R istatistik dili ve gen ağlarını görselleştirmek için

Cytoscape yazılımı kullanılmıştır.

Anahtar kelimeler: Gen ağları, yüksek çıktılı gen ifade verileri, makine öğrenmesi,

kısmi en küçük kareler regresyonu
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CHAPTER ONE

INTRODUCTION

Machine learning, a convenient approach including algorithms and methods, is

used for understanding and learning statistical relationships concerning large data by

constructing computer programs that improve with past experiences. Machine

learning methods are divided into two groups as Supervised Learning and

Unsupervised Learning methods. Supervised learning is based on creating models for

estimating output by using one or more inputs. With this approach, the outputs are

known, and the algorithm can be controlled with these known outputs. On the other

hand, there are no known outputs in unsupervised learning. The purpose of the

aforementioned method is to learn from the structure of the data.

One of the supervised machine learning techniques, namely the Partial Least

Squares (PLS), is widely used for classification, dimension reduction or modelling

relationships between two matrices, response variable(s) Y and predictor variables X

by creating new components which is called latent variables. While building a model

for collinear data, Partial Least Squares Regression (PLSR) can remove

multicollinearity in both independent and dependent variables using these latent

variables. In addition, PLSR can handle the classical regression problems such as

noise, missing values and complex problems. Moreover, PLSR is recommended for

creating a model in which the number of variables much bigger than the number of

observations. It was developed by Wold (1966) for modelling economic paths. The

first type of PLSR algorithm is used for calculation of principal components. Shortly

afterwards, this algorithm was improved a version of calculation of canonical

correlation. In the same year, Wold (1975) published the classical PLSR procedure

Nonlinear Iterative Least Square (NILES) algorithm building a model based on the

loadings and weights of the variables and later changed the name as Nonlinear

Iterative Partial Least Square (NIPALS) algorithm.

PLSR is also a very popular in other scientific areas. The first application of PLSR

was in chemometrics, and it is still very popular in the field. In many chemometric
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researches, collinearity problem among the variables causes miscalculation of

regression coefficients. Wold et al. (1984), applied PLSR and some additional

methods including Principal Component Regression (PCR), James Stein shrunk

estimate (JS), Ridge Regression (RR) and Total Least Squares (TLS) to evaluate a

chemical data and PLSR has shown to be a proper method. Geladi & Kowalski

(1986) showed the weaknesses of Multiple Linear Regression (MLR) and Principal

Component Regression (PCR) and claimed that PLSR is a better alternative.

Höskuldsson (1988) investigated statistical and mathematical structure of PLSR. The

superiority of the PLSR over other regression methods is explained by the fact that it

chooses the minimum number of variables with the maximal reduction. Helland

(1988) demonstrated the mechanism of PLSR and emphasized that PLSR obtained

smaller mean square error using fewer components than the PCR by a simulation

study. Helland (1990) showed that PLSR algorithms have some advantages, such as

usages of projections and geometric intuition. De Jong (1993) introduced an

algorithm, SIMPLS, where PLS factors are determined to maximize covariance

criteria between X and Y latent variables and obey certain orthogonality and

normalization restrictions. Wold et al. (2001) used PLSR algorithm on Quantitative

Structure – Activity Relationship (QSAR) and Quantitative Structure – Property

Relationships (QSPR) modelling. Also, they reported PLSR results better than MLR.

Besides these, there are many PLSR algorithms in the field of chemometrics in the

literature. (See e.g. Hubert & Branden (2003), Branden & Hubert (2004), Serneels

et al. (2005), Alin & Agostinelli (2017), among others.)

Recent years, it has also been a highly preferred method in bioinformatics for

analysis of high-throughput gene expression data. High-throughput gene expression

profiling has become an important research area with advent of low-cost microarray

technology. This profiling is used to discover the relationships or associations

between gene expression levels and it helps to understand the mechanism of

biological systems such as budding yeast or common diseases. For this profiling

process, researchers generally use network-based approaches to investigate, represent

and analyze any biological situation and the causes, biomarkers, alternative therapy
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strategies, pathways, pathogenesis and even gene associations of various disease.

There are many biological network types such as protein-protein interaction, cell

signaling, metabolic, gene regulatory, gene co expression etc. Networks of DNA,

neurons, RNA-sequence, proteins and LinkRNA data, provide a better understanding

each kind of relationship between and within species, diseases and genetic

mechanisms. Datta (2001) proposed PLSR for gene co expression network

construction and shown that classification into temporal groups using expression

levels during sporulation of budding yeast. The magnitudes of the regression

coefficients indicate which genes are important in each sporulation phases. Also,

coexpression analysis based on PLSR has been used in other budding yeast

researches. Johansson et al. (2003) showed that cell cycle behavior with cyclically

expressed genes of budding yeast. Carter et al. (2004) provided a new perspective to

molecular structure of cellular state. They showed mechanisms of different cellular

states and selective genetic elements of yeast and human medulloblastoma networks.

After that, Boulesteix & Strimmer (2005) used PLSR to estimate and understand the

complex regulatory mechanisms in cells. Therefore, they build transcription factor

activity (TFA) networks for budding yeast datasets. Bras & Menezes (2006) applied

PLS-based methods which have stronger dimension reduction performance to predict

missing values using a pattern of original dataset that is non-time series cell cycle

regulated genes in yeast. Pihur et al. (2008) compared reconstruction of genetic

networks based on PLS and other alternative network inference methods on yeast

DNA-damage data. Yeast DNA genetic associations network illustrated by Cytoscape

program. Moreover, PLS-based network exposed seventeen out of 118 associations

that was the highest matched the existing associations. Tenenhaus et al. (2010)

presented an investigation of sensitivity and specificity of PLS and other 4 methods

on budding yeast microarray data. According to the results, PLS has provided

worthful information about gene associations. Lately, Mehmood et al. (2011b) and

Mehmood et al. (2011a) suggested PLS-based criteria for mapping relationships of

genotype-phenotype on budding yeast. The derived results were consistent with

known yeast phylogeny.
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PLSR is also one of the most popular methods for disease research studies. Alaiya

et al. (2000) used PLS and PCA to classify three types (benign, borderline and

malignant) of ovarian tumors. Using the PLS loadings, the most related variables for

distribution of three tumor types were determined. Analysis of a learning set selected

randomly from original data revealed 18 cancer types 11 of which was correct

classification. Nguyen & Rocke (2002) used PLS and PC for dimension reduction on

five different type of cancer to distinguish between normal and cancer tissue, and

types of tumors. They showed PLS components were superior to PC components and

had better true classification rate. Pérez-Enciso & Tenenhaus (2003) categorized

before and after chemotherapy treatment in case control study, estrogen receptor

positive and negative tumors and tumor classification on breast cancer data. Also they

showed the satisfactory performance of PLS for classification problem. Huang & Pan

(2003) proposed a penalized version of PLSR, that removed genes which have low

prediction power. In his study, a PPLSR model was used to estimate the support time

of LVAD (left mechanical ventricular assist device), which is a substitution therapy

for heart failure patients, using gene expression levels. Compared with Random

Forest, PLS-based method displayed better results. Boulesteix (2004) examined gene

classification by PLS dimension reduction for gene selection for tumor diagnosis on

nine different cancer types. Musumarra et al. (2004) studied on the genes, associated

with cancer development via PLS. They suggested new diagnostic tools for colon

cancer. Huang et al. (2005) applied 5 different statistical methods including PLS to

determine prognosis, find alternative therapy and differentiate between ischemic and

non-ischemic heart failure. Boulesteix & Strimmer (2006) examined bioinformatics

applications of PLS analysis for high dimensional data. They focused on several

advantages of PSL such as fast, efficient and availability for classification, survival

analysis and transcription factors activities analysis. Abdi (2010) explained PLSR

models for especially brain imaging datasets (because of the multidimensional

structure of brain imaging data) and applied bootstrap and jackknife methods to

measure the quality of predictions. Land Jr et al. (2011) claimed PLS can be used to

discover biomarkers of colon cancer. In other studies that used different network

methods on the same colon cancer microarray data, many important prognostic
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indicator genes were common. Huang et al. (2013) investigated multi-classification

toxicology to show some prognostic significance of breast cancer. PLSR was proved

to be an effective and practicable alternative to categorize two or more classes. Wang

et al. (2014) introduced a new interpretation for the mechanism of epilepsy and

potential targets for new alternative treatments with PLS regression analysis. Most

recently, Ding (2014) used PLS to identify prognostic genes in end-stage renal failure

patients. The PLS latent variables network was constructed to show key molecules.

The results of this study gave the molecular mechanism of underlying renal failure.

There are some studies on using PLSR for an analysis of brain data. Dreissig et al.

(2009) presented an application of PLSR to analysis lipid brain tissue for diagnostics

of tumor type and grade. Ramírez et al. (2010) proposed an early diagnosis system for

Alzheimer’s disease by using PLSR classification of the regional cerebral blood flow

with single means of photon emission computerized tomography (SPECT). They

compared PLSR and Random Forest methods and found that PLSR had higher

sensitivity, specificity and accuracy rate. Faria et al. (2011) investigated brain tumor

classes according their biochemical changes and patterns. The metabolic patterns

detected by PLS based method and showed PLS was an efficient method to chemical

classification of brain tumors. Shokri-Kojori et al. (2017) used functional

connectivity density (FCD) mapping to expose alcohol and resting brain activity

relationships. The PLSR comparison between heavy drinkers and control group

showed that, heavy drinkers had higher FCD in cerebellum and control group had

higher FCD in visual and prefrontal cortices and thalamus. Biomarkers of

transitioning from light to heavy drinking were presented.

In this thesis, we will build a network for mouse brain regions, fore-, mid- and

hindbrain, to better understanding the functions of developingmouse brain in embryotic

process. This thesis contains four chapters. In chapter two, some biological background

is given, a brief information about biological network is mentioned and focused on

PLSR methodology. In chapter three, the investigated mouse brain data sets, the brain

properties, and functions are discussed. Furthermore, the results of the classification of

the data, PLSR analysis, and the gene networks are given. Finally, some future works
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and conclusions are given in chapter four.
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CHAPTER TWO

GENE NETWORKS BY PARTIAL LEAST SQUARE REGRESSION

2.1 Biological Background

In living organisms and many viruses, the basic biological units of heredity are

DNA, RNA, proteins, and metabolites. DNA, also known as deoxyribonucleic acid, is

a molecule that carries the genetic information of biological compounds such as RNA

and proteins during reproduction. This information determines the function of genes

thereby the function of cells. Each cell contains chromosomes that composed of many

genes. A single strand of DNA has millions of nucleotides which labeled as adenine

(A), thymine (T), cytosine (C) and guanine (G). The nucleotides in one strand bound

the other nucleotides in another strand, according to base pairing rules (A with T and

C with G). In this way, the structure of DNA becomes a double helix. Figure 2.1

shows that, the first photograph of DNA’s double helix structure in electron

microscope by taken physicist Prof. Enzo Di Fabrizio (MacKinnon, 2012). The red

arrows show the strands.

Figure 2.1 The first photograph of DNA (MacKinnon, 2012)

A gene is a special stretch of the double helix. Genes determine the characteristics of

a whole and of a function of the cells. All these genes are ingredients a part of a tissue.

These tissues make up an organ which is a part of an organism. Figure 2.2 shows the

gene and chromosome (NLM, 2018).
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Figure 2.2 Gene structure. By U.S. National Library of Medicine (NLM, 2018)

2.1.1 Biological Networks

In organisms, interested cases, complex processes or genetic abnormalities caused

by mutation, evolution, etc., can be found by investigation of genetic relationships.

Network approaches have been used to explore these observed associations or

relationships. Network methods are developing day by day and their importance and

popularity are increasing. Biological networks provide a mathematical representation

of connections found in ecological, evolutionary and physiological research. A

biological network basically consists of nodes and edges. Nodes represent

metabolites, genes or their products, while edges represent the association between

them. Edges can be direct, that means high betweenness or high degree, or indirect.

These nodes are used to represent any organism, gene, protein or neuron.

Types of biological networks are protein-protein interaction networks, gene

regulatory networks (DNA- protein interaction networks), metabolic networks, neural

networks, signaling networks, ecological networks and gene co-expression networks

(transcript-transcript association networks). In this thesis, analysis of mouse brain

regions is made by gene co-expression network.

Along with the development of high throughput genomics technologies including

microarray and RNA sequencing, genome-wide expression analysis has become a

major study area. Gene co-expression networks (GCN) describes the associations or

associations between high throughput expression patterns of genes or their products
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such as DNA, RNA and long non-coding RNA (lincRNA). These associations show

the similarities or differences between gene expression patterns from same or

different biological conditions.

Different statistical methods have been used to measure the level of similarities or

differences including Pearson’s and Spearman’ s correlations, Bayesian and ARACNE

approach. Alternatively, partial least squares regression can be used.

2.2 Partial Least Squares Regression

High-throughput gene expression data are generally characterized by the number

of observations (n) that are much smaller than the number of genes (k). Under this

circumstance, the probability of occurrence of multicollinearity problem increases.

Multicollinearity problem causes the estimators to have a large amount of variance

and the estimated values may be much different than their true values. Therefore, the

traditional statistical methodology for such data cannot be used directly. In that case,

dimension reduction or latent variable methods such as PC and PLS regression can be

applicable.

PLS regression is originally proposed for modelling the relation between response

and explanatory variables. It is also proposed for building gene co-expression

networks by Datta (2001). PLSR is a latent variable based method where orthogonal

latent variables are obtained as to maximize covariance between them.

The goal of PLSR is to predict matrix of response variables, Y is a (nxm) using

matrix of explanatory variables,X is a (nxk) through the linear relation given in (2.1).

Here, n is number of observations, m is number of Y variables, k is number of X

variables. PLSR decomposes X and Y matrices according to the linear models in

(2.2) and (2.3). ε = (ε1, ..., εn) is iid normally distributed error with E(εi) = 0 and

V ar(εi) = σ2. The rest of the this thesis (′) will be used to represent the matrix

transpose.
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Y = Xβ + ε (2.1)

X = TP ′ + E (2.2)

Y = UC′ + G (2.3)

T (nxA) is the score matrix of X , and P (kxA) is the loading matrix of X and

while, U (nxA) is a score matrix of Y , and C (mxA) is the loading matrix of Y . E

(nxk) and F (nxm) are residual matrices for X and Y , respectively. A defines the

number of latent variables.

For gene network construction PLSR is used to obtain connectivity scores which

will be introduced in the next section. In this context, each gene is modeled on the rest

of the genes. So, our response will be a vector of genes, let’s say xi, and X(i) matrix

contains the remaining genes. Orthogonal score matrix T(i) = (t1(i), t
2
(i), ..., t

A
(i)) is

obtained as in (2.4).

ta(i) =
∑
k

wa
(i)jx(i)j (T(i) = X(i)W(i)) (2.4)

W(i) with size of ((k − 1)xA) is the X weight matrix, when ith gene is taken

as response. wa
(i)j represents the contribution of ith variable on jth variable at the

ath component.(i = 1, 2, ...,m and j = 1, 2, ..., k) x(i)j describes jth variable and

ta(i) = (ta(i)1, t
a
(i)2, ..., t

a
(i)n)

T is the score vector for ath component when xi is our

response variable.

Using these scores, the jth explanatory variable an response variable xi can be

rewritten as in (2.5) and (2.6).

x(i)j =
∑
a

ta(i)p
a
(i)j + e(i)j (2.5)
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xi =
∑
a

ca(i)t
a
(i) + f(i) (2.6)

ca(i) is the loading of the response xi on ath component, and pa
(i)j is the loading of

x(i)j on ath component.

Coefficients for the model of xi on the rest of (k−1) x variables are then calculated

by the formula in (2.7).

bik =
∑
a

ciawka , j ̸= i (2.7)

PLSR is an iterative method. After all computations, X(i) matrix is deflated as in

(2.8) and all calculations are repeated with deflated Xa
(i). Iterations last until all of

A components are obtained. By deflating X(i), we guarantee orthogonal component

scores.

Xa
(i) = X

(a−1)
(i) − ta(i)p

a
j (2.8)

These components have a new vector space which is a subspace of the original

data. PLSR generates these orthogonal latent variables that have maximum

covariance. When A equals k, PLSR and MLR give same results.

The process of generating new latent variables at each iteration, depends on the

algorithm that used. Several algorithms have been proposed for PLSR in the literature,

starting with Nonlinear Iterative Partial Least Square (NIPALS) which is used in this

thesis. The historical evolution of some of the well-known algorithms is given below

(Kondylis (2006)).

• NIPALS algorithm (Wold (1966) and Wold (1975))

• SIMPLS algorithm (De Jong (1993))
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• SAMPLS algorithm (Bush & Nachbar (1993))

• KERNEL algorithm (Rosipal & Trejo (2001))

• PPLSR algorithm (Bastien et al. (2005))

2.2.1 NIPALS Algorithm

The classical and standard algorithm for computing PLSR components is NIPALS.

It has been used for PCA first and later used for PLSR. It effectively tolerates the

missing values and uses predictions from the model for handling these the missing

values. These predictions have zero residuals and therefore there is no influence on

the scores and loadings.

NIPALS algorithm, which works with centralized and scaled X and Y variables,

consists of the following steps (Wold et al. (2001)). Here, we assume only one response.

For the sake of simplicity we refer our response as y. But for network construction y

will be the ith gene taken as a response variable.

Step 1: A single Y variable column is assigned to u, u = y.

Step 2: The w weight vector is obtained with u,w = X ′u/u′u.

Step 3: w is scaled to have unit length, divided by the euclidean normw,w = w/∥w∥.

Step 4: The t vector,X scores, is calculated, t = Xw.

Step 5: The c loading vector, for y, is calculated, c = yy′/t′t.

Step 6: c is scaled to have unit length, divided by the euclidean norm c, c = c/∥c∥.

Step 7: The u vector is updated for next iteration, u = yc/c′c.

Step 8: The loadings ofX , p vector, is computed, p = X ′t/t′t.

Step 9: The deflation ofX variables,X = X − tp′.

12



Step 10: The deflation of Y variables, y = y − tc′.

After the first component is obtained, both X and Y matrixes can be reduced in

order to calculate the parameters for next component. The deflation in Step 8 is

optional, the results are same whether Y deflated or not. These steps are repeated as

many as the determined number of components, A.

There is no certain method for choosing the proper number of component, which is

one of the most important decision, in PLSR procedure. Since PCA is known with a

strong classification accuracy in many situations, in this thesis PCA is used as a

classification method on mouse brain data to choose the number of components.

Finally, after determining the optimal number of components, PLSR parameters are

obtained from the NIPALS process and connectivity scores are calculated to show the

relation between each pair of cases, and to build a network.

2.2.2 Connectivity Scores

Connectivity scores is a useful tool for exploring associations in gene network

structure (Pihur et al. (2008)). If there is an edge between two nodes (ith and jth

genes), this edge is formed by statistically significant connectivity score of ith and jth

genes. This connectivity score is obtained by association score between ith and jth

genes and the symmetric association score between jth and ith genes, in presence of

other genes.

ŝij =

∑A
a=1 c

a
(i)w

a
(i)j +

∑A
a=1 c

a
(j)w

a
(j)i

2
(2.9)

Equation 2.9 shows the computation of connectivity score for ith and jth genes, ŝij .

In
∑A

a=1 c
a
(i)w

a
(i)j , gene i is the response variable. ca(i) is the loading of the ith gene on

the ath component andwa
(i)j is the contribution of jth gene on the ath component when

13



the ith gene is modeled by other genes. In
∑A

a=1 c
a
(j)w

a
(j)i, the symmetric calculation,

gene k is the response variable. ca(j) is the loading space jth gene on the ath component

and wa
(j)i is the contribution of the ith gene on the ath component when the jth gene

is modeled by other genes. Once the connectivity scores are calculated for each gene

pair, the gene network can be constructed the significant scores.

To decide if a connectivity score is significant, all scores are normalized from −1

to 1. The following equation(2.10) is used for all ith and jth gene pairs normalization

calculations.

ŝnew
ij =

2(ŝij − min(ŝij))

(max(ŝij) − min(ŝij)) − 1
(2.10)

Then, the significance of the normalized connectivity score is determined using

some threshold values, ϵ. The modular structure and the sensitivity of the gene

network changes with choice of ϵ which can be ϵ ∈ {0.35, 0.4, 0.45, 0.5, 0.55} (Gill

et al. (2010)).
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CHAPTER THREE

NUMERICAL RESULTS

In this chapter, the PLSR in gene networks has been examined in the developing

mouse brain. A brief information about brain and their functions,mouse brain and

their development have been given. The variables and observations of the

investigated mouse brain datasets have been mentioned. The classifications and

filtering according to the biological properties have been explained. Filtered data

PLSR analysis and the gene networks that built by using the predicted parameters

have been performed. R 3.3.1 is used for statistical analysis and Cytoscape 3.6.1 is

used for visualizing gene networks.

3.1 Data Sets

Brain, which is a mass of nerve tissue, is the most complex organ that controls all

functions of the body. The mammalian brain has three major regions; fore-, mid- and

hindbrain. The developmentally oldest portion of the brain is the reptilian brain,

which is also known as hindbrain (rhombencephalon). The hindbrain consists of the

pons, medulla oblongata and cerebellum. It coordinates vital functions such as

heartrate, balance, breathing, reflex actions and body temperature. The second one is

the midbrain (mesencephalon) that connects the forebrain to the hindbrain. The

midbrain formed by cerebral peduncles, corpora quadrigeminal and cerebral

aqueduct. It associated with hearing, eye movement, emotions, learning and memory.

The rostral-most region of the brain is the forebrain (prosencephalon). It is the largest

brain division and includes cerebrum, thalamus and hypothalamus. The forebrain

provides imagination, language, creativity and logic.

In Figure 3.1, the mouse brain parts are shown; the purple part is the hindbrain,

the red part is the midbrain and the beige part is the forebrain. In this thesis, brain

development in the embryonic period is observed using gene expression levels from

the three parts of the mouse prenatal brain. In each brain parts, genes belonging to
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different regions datasets are modeled by PLSR, individually. And gene networks are

created for each brain part.

Figure 3.1 The mouse brain parts

The pregnancy process of mouse is approximately 21 days. The rapid brain growth

and development of these regions continues until the tenth day of the postnatal period.

The pregnancy can be examined in three-time section as the first seven days, the

second seven days and the third seven days. In the first seven days, brain tissue and

central nervous system occur. Somites, which originate the vertebral, the spinal

muscle and the spinal dermis, form on the eighth day. On day nine, gray matter

ingenerates in the brainstem, hindbrain. Spinal cord, Purkinje cells, and medulla

oblongata begin to form in the tenth day. In the eleventh day, the brain development

is accelerated and cerebral cortex, globus pallidus which regulate voluntary

movements, and thalamus development seen. On the twelfth day, the formation of the

brain partitions such as the amygdala, optic axons, mitral cells and cochlear nucleoids

is observed. On the thirteenth day, thalamus, hypothalamus and optic axons continue

to develop, and pons cells that control motor activities begin to develop. White matter

and the development of retinal cells (cones, and amacrine cells) begin to appear on the

fourteenth day. Hypothalamus and retinal cell development continue in the fifteenth

and sixteenth day. On the eighteenth day, the development of the cerebral cortex

continues. The formation of another retinal cell, rods occurs on the nineteenth day

(Çoban (2014)). Table 3.1 shows the daily process of brain development (Finlay &

Darlington (1995)).
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Table 3.1 Mouse brain development timeline

Day Active Parts
9 Hindbrain
10 Hindbrain
10.5 Forebrain
11 Fore-Mid-Hindbrain
11.5 Forebrain
12 Fore-Mid-Hindbrain
12.5 Fore-Midbrain
13 Fore-Midbrain
13.5 Fore-Mid-Hindbrain
14 Forebrain
15 Fore-Midbrain
16 Fore-Midbrain
17 Forebrain
19 Forebrain

We have three separate data set; forebrain, midbrain and hindbrain parts data. This

data sets are taken from the Sequence Read Archive, which is an open source for

high-throughput gene datasets. All data sets consist of 47,415 gene, 121,400 gene

transcript, and 26 samples, except the forebrain data with 25 samples. There are four

gene expression measurements for each tenth (E10.5), eleventh (E11.5) (three

measurements in forebrain data), twelfth (E12.5), fourteenth (E14.5) prenatal days,

two gene expression measurements for each thirteenth (E13.5), fifteenth (E15.5) and

sixteenth (E16.5) prenatal days, and four gene expression measurements for postnatal

day (P0).

3.2 Results

3.2.1 Clustering

In high-throughput expression data and biological network studies, clustering is a

preprocess which allows to see the most important features of a cluster. PCA is a

widely used unsupervised statistical method which aims to divide a data into clusters

or classes and build new significant variables by using dimension reduction. PCA
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converts a set of data of possibly multicollinear variables into a set of values of

uncorrelated variables called principal components. In this thesis, PCA is used to

choose proper number of components before building the networks with PLSR. In

addition, hierarchical clustering, another classification method that supports PCA

results, is used.

All mouse datasets collected at 8 different time points. For forebrain data, 8 of

25 samples selected using PCA based on the structure of the data. The first principal

component is the most correlated with 24 of the original variables, that has maximum

variance explained ratio with 94.94%, shown in Table 3.2.

Table 3.2 Cumulative proportion of variance explained for forebrain

Number of Componets Cumulative Explained Variances
1 0.9494
2 0.9835
3 0.9876
4 0.9904
5 0.9921
6 0.9931
7 0.9938
8 0.9944
9 0.9949
10 0.9954

Alternatively, the scree plot of proportion of variance explained (Figure 3.2) shows

that cumulative variance of components from smallest variance to largest. First two

components explain 98.35% of the variation in the data. Despite three components

have an adequate amount of variation explained it is more convenient to work with 8

components for this data set. The 8th component has 99.44% variance explained ratio.
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Figure 3.2 Proportion of variance explained plot for the forebrain data

The plot of classification for the first and the second component, Figure 3.3 shows

that a projection of all samples. Here, the 25 samples divided into 8 classes, pointed out

with red rectangles, compatible with the time points in our data. Each class represented

by eight different color and shape.

Figure 3.3 Classification of PC1 and PC2 for days on the forebrain data

In hierarchical clustering, another way to represent the data, a dendrogram (a cluster

tree) that is the plot for getting meaningful classification projections. Figure 3.4 shows

the 8 classes, shown by different colors, for 25 time points that are the same as PCA
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classification.

Figure 3.4 Hierarchical classification for the forebrain data

For the second data set, the midbrain data have 8 classes for 26 samples selected

using PCA based on the structure of the data. The first principal component explains

the 94.96% of the variance (Table 3.3).

Table 3.3 Cumulative proportion of variance explained for midbrain

Number of Componets Cumulative Explained Variances
1 0.9496
2 0.9848
3 0.9882
4 0.9906
5 0.9921
6 0.9932
7 0.9939
8 0.9945
9 0.9950
10 0.9955

Figure 3.5 illustrates the cumulative proportion of variances explained by

components. Although first two components explain 98.48% of the variation in the

data, it is better to use 8 components for this data set. The 8th component has 99.45%

variance explained ratio.
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Figure 3.5 Proportion of variance explained plot for the mibrain data

The visualization of subsets of the first and the second components, Figure 3.6 shows

that the 26 samples divided into 8 classes.

Figure 3.6 Classification of PC1 and PC2 for days on the midbrain data

The hierarchical method shows the 8 classes which fundamentally carries the same

results with PCA clusters. (Figure 3.7)
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Figure 3.7 Hierarchical classification for the midbrain data

In the hindbrain data, which is similar to the midbrain data, it has been shown that 8

days in 26 samples according to PCA results. The variance explained ratio of the first

component is 95.46%. The cumulative variance explained ratios of all variables are

given in Table 3.4.

Table 3.4 Cumulative proportion of variance explained for hindbrain

Number of Componets Cumulative Explained Variances
1 0.9546
2 0.9851
3 0.9884
4 0.9904
5 0.9922
6 0.9931
7 0.9938
8 0.9944
9 0.9949
10 0.9954

Figure 3.8 supports previous table and shows the cumulative variances of

components. As it is expected, first two components explain 98.51% which is most of

the variation in the data. The 8th component has 99.44% variance explained ratio.
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Figure 3.8 Proportion of variance explained plot for the hindrain data

The scree plot of the first and the second component scores, Figure 3.9 displays that

the 26 samples divided into 8 classes.

Figure 3.9 Classification of PC1 and PC2 for days on the hindbrain data
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The dendrogram of hindbrain data illustrates the 8 classes by different colors in

Figure 3.10.

Figure 3.10 Hierarchical classification for the hindbrain data.

3.2.2 Connectivity Scores with Partial Least Square Regression

Before performing analysis by PLSR, a few filtering steps have been used to show

possible biologically significant genes. First, expression levels that are smaller than 1

based on the daily time points (transcripts per million - TPM), are eliminated from the

data. TPM is a normalization method for RNA-seq expression, that provides a digital

measure of the abundance of transcripts. TPM is necessary to remove technical biases

in sequenced data. If there is a larger number of zero expression values than the half

of the number of samples of a day, the gene is extracted because it is not biologically

meaningful. In case the number of expression values which are greater than 1 TPM,

is more than half of the number of samples for any day out of 8 days, the investigated

gene should remain in the dataset. For example, the gene named “Tbx2” with the code

“ENSMUSG00000000093” has the expression values that are zero on all days except

day 10. This is enough to remain the interested gene in the dataset. Another example

is the “Pbsn” gene with the code “ENSMUSG00000000003”, that has been removed
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since it has expression values that are zero for all samples at all days. In addition,

Differential Expression Analysis was used as the second filter.

As a result of the filtering on the forebrain data, 12, 746 genes out of 47, 415, and

25, 418 gene transcripts out of 121, 400 was obtained. The midbrain data filtering gave

12, 879 genes out of 47, 415, and 25, 554 gene transcripts out of 121, 400. Similarly,

the filtering on the hindbrain data results presented 12, 618 genes out of 47, 415, and

24, 318 gene transcripts out of 121, 400.

Because the analysis using whole datasets computationally expensive, the PLSR and

the network analysis were performed with 10%of the data, which is randomly selected.

This reduction led to 2288 genes and 2543 transcripts for the forebrain data, 2286 genes

and 2555 transcripts for the midbrain data, and 2234 genes and 2432 transcripts for the

hindbrain data.

3, 232, 153 connectivity score was calculated for 2543 transcripts in the reduced

forebrain data set. Table 3.5 shows the forebrain data connectivity scores between

first 25 transcript id and 3 transcript id, using PLSR. The connectivity score can be

interpreted similarly to the correlation coefficient. For instance, the score for the same

two transcript id are equal to 1, as seen in ”ENSMUST00000123809.1” and

”ENSMUST00000123809.1”. This means that, as in the correlation interpretation,

there is the perfect relation between them. Besides this, there are different

connectivity scores between different transcripts, such as −0.05508792 for

”ENSMUST00000123809.1” and ”ENSMUST00000046950.12”. There is a poor

relation between these two transcripts.

25



Ta
bl
e
3.
5
Co

nn
ec
tiv
ity

sc
or
es

fo
ra

pa
rt
of

fo
re
br
ai
n
da
ta

Tr
an
sc
rip

tI
D

E
N
S
M

U
S
T
00
00
01
89
25
9.
1

E
N
S
M

U
S
T
00
00
00
46
95
0.
12

E
N
S
M

U
S
T
00
00
01
23
80
9.
1

EN
SM

U
ST

00
00
01
89
25
9.
1

1
−
0.
05
59
08
79
2

0.
01
98
43
84
9

EN
SM

U
ST

00
00
00
46
95
0.
12

−
0.
05
59
08
79
2

1
0.
14
52
07
72
5

EN
SM

U
ST

00
00
01
23
80
9.
1

0.
01
98
43
84
9

0.
14
52
07
72
5

1
EN

SM
U
ST

00
00
01
49
34
4.
7

−
0.
11
27
57
43
8

0.
09
98
35
83
3

−
0.
08
93
40
20
9

EN
SM

U
ST

00
00
01
67
86
8.
7

−
0.
13
06
69
10
6

0.
00
54
73
84
1

−
0.
02
24
89
43
6

EN
SM

U
ST

00
00
01
89
50
9.
1

0.
13
71
13
44
1

−
0.
08
67
50
94
6

−
0.
06
69
04
22
7

EN
SM

U
ST

00
00
01
19
19
7.
7

0.
10
64
24
01
6

−
0.
05
32
23
47
3

−
0.
06
21
12
68
5

EN
SM

U
ST

00
00
01
09
29
0.
1

0.
12
52
59
37
2

0.
02
17
87
21

0.
08
58
14
17

EN
SM

U
ST

00
00
01
49
03
9.
1

0.
00
09
39
42
6

−
0.
02
91
22
42
7

0.
09
11
81
66
6

EN
SM

U
ST

00
00
01
46
50
6.
1

−
0.
06
29
44
87
3

0.
14
41
64
88
6

0.
00
12
61
27
6

EN
SM

U
ST

00
00
00
66
64
6.
10

−
0.
00
20
39
35

0.
07
70
93
81
4

0.
03
84
30
56
7

EN
SM

U
ST

00
00
00
54
46
2.
10

0.
06
99
51
37
4

−
0.
00
24
03
06
3

0.
06
14
46
70
9

EN
SM

U
ST

00
00
01
43
58
7.
1

0.
09
81
55
92
8

−
0.
02
10
73
06
1

0.
01
04
44
53
9

EN
SM

U
ST

00
00
01
65
00
7.
7

0.
06
57
14
15
1

−
0.
05
43
44
04
8

−
0.
16
97
78
65
6

EN
SM

U
ST

00
00
00
76
58
7.
4

0.
00
99
50
89
5

0.
10
97
15
27
9

0.
25
18
59
54
6

EN
SM

U
ST

00
00
01
69
43
3.
2

−
0.
02
69
16
02

−
0.
03
06
67
34
4

−
0.
01
71
49
81
1

EN
SM

U
ST

00
00
01
17
72
1.
7

0.
12
74
31
11
9

0.
00
31
47
64
4

0.
08
69
00
79
3

EN
SM

U
ST

00
00
01
72
08
2.
1

0.
13
00
47
24
8

−
0.
07
48
26
78
8

−
0.
03
68
69
25
3

EN
SM

U
ST

00
00
00
98
56
6.
4

−
0.
20
01
71
47
5

0.
06
69
63
2

0.
04
62
64
03
3

EN
SM

U
ST

00
00
01
32
06
9.
1

0.
01
44
20
09
6

0.
07
65
83
14
1

0.
07
06
44
10
3

EN
SM

U
ST

00
00
02
14
89
3.
1

0.
08
05
10
78
8

−
0.
05
88
49
39
7

0.
09
67
46
84
1

EN
SM

U
ST

00
00
01
20
91
2.
7

−
0.
00
88
69
98
5

0.
01
94
37
34
7

0.
04
56
74
39
6

EN
SM

U
ST

00
00
01
36
12
0.
1

−
0.
10
26
41
45
5

0.
03
91
55
61
6

0.
03
64
17
92
7

EN
SM

U
ST

00
00
00
44
35
2.
6

−
0.
04
87
39
56
2

0.
01
05
24
21
5

0.
00
59
03
37
4

EN
SM

U
ST

00
00
01
05
50
7.
4

−
0.
01
59
11
87

−
0.
05
47
66
82
6

−
0.
06
28
71
31
6

26



The statistical significance of these scores is determined by comparing the ϵ

threshold value. In this thesis, ϵ was taken as 0.4. The absolute values of all scores

were compared with 0.4, and the transcripts with significant association were

considered. 8 component PLSR showed associations between 619 genes out of 2288

gene. For the first transcript ”ENSMUST00000149344.7”, there was a relation

between 10 other transcripts, according to the connectivity scores equal to or greater

than 0.4 (Table 3.6).

Table 3.6 Connectivity scores ≥ 0.4 for a part of forebrain data

Transcript ID TranscriptID ConnectivityScores
ENSMUST00000149344.7 ENSMUST00000136252.7 0.788720287
ENSMUST00000149344.7 ENSMUST00000156967.7 0.438031448
ENSMUST00000149344.7 ENSMUST00000174661.8 0.589502431
ENSMUST00000149344.7 ENSMUST00000200480.1 0.496122416
ENSMUST00000149344.7 ENSMUST00000156232.1 0.504289268
ENSMUST00000149344.7 ENSMUST00000123869.7 0.410540942
ENSMUST00000149344.7 ENSMUST00000176717.1 0.441532964
ENSMUST00000149344.7 ENSMUST00000055408.12 0.450291922
ENSMUST00000149344.7 ENSMUST00000147268.7 0.507600116
ENSMUST00000149344.7 ENSMUST00000180465.7 0.426338591

In the reduced midbrain data set, the 3, 262, 735 connectivity score for 2555

transcripts was computed. The connectivity scores for 3 transcripts with the first 25

transcripts are shown in Table 3.7.
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To build a network of genes with the statistically significant associations, the

absolute values of the scores were compared with ϵ = 0.4. Table 3.8 illustrates the

significant transcript ids and their scores. There are associations between 684 genes

out of 2286 gene. The first transcript ”ENSMUST00000170167.7” was associated

with 13 different transcripts, in midbrain data.

Table 3.8 Connectivity scores ≥ 0.4 for a part of midbrain data

Transcript ID TranscriptID ConnectivityScores
ENSMUST00000170167.7 ENSMUST00000064635.11 0.404250888
ENSMUST00000170167.7 ENSMUST00000142182.7 0.457933312
ENSMUST00000170167.7 ENSMUST00000184550.7 0.445709491
ENSMUST00000170167.7 ENSMUST00000199377.1 0.436250601
ENSMUST00000170167.7 ENSMUST00000179001.7 0.407556632
ENSMUST00000170167.7 ENSMUST00000192355.5 0.418907943
ENSMUST00000170167.7 ENSMUST00000169754.7 0.468947117
ENSMUST00000170167.7 ENSMUST00000119603.1 0.55767594
ENSMUST00000170167.7 ENSMUST00000206462.1 0.4254855
ENSMUST00000170167.7 ENSMUST00000151973.1 0.433882114
ENSMUST00000170167.7 ENSMUST00000054310.3 0.416900156
ENSMUST00000170167.7 ENSMUST00000141589.1 0.538911152
ENSMUST00000170167.7 ENSMUST00000145956.1 0.444156303

Lastly, 2, 956, 096 connectivity scores for 2432 transcripts were found in the reduced

hindbrain data set. The results of 25 transcripts between 3 transcripts are given in Table

3.9.
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For all reduced hindbrain data, PLSR showed associations between 675 genes out

of 2234 gene, using 8 components. The results of comparing the scores of the first

transcript with 0.4 showed the significant relationships with 3 transcripts.

Table 3.10 Connectivity scores ≥ 0.4 for a part of hindbrain data

Transcript ID TranscriptID ConnectivityScores
ENSMUST00000169053.1 ENSMUST00000173493.7 0.409291638
ENSMUST00000169053.1 ENSMUST00000143425.1 0.406130761
ENSMUST00000169053.1 ENSMUST00000143361.1 0.433458687

3.2.3 Gene Networks

Gene networks are established after the significant connectivity scores are obtained.

The network is visualized with the Cytoscape software. Forebrain network consists of

619 nodes (genes) with 3, 232, 153 associations between them (Figure 3.11 and closer

look on Figure 3.12). Midbrain network have 684 nodes with 3, 262, 735 associations

(Figure 3.13 and closer look on Figure 3.14). Hindbrain network contains 675 nodes

with 2, 956, 096 associations (Figure 3.15 and closer look on Figure 3.16).

Figure 3.11 Constructed association gene networks using the PLSR for the forebrain data (a)
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Figure 3.12 Constructed association gene networks using the PLSR for the forebrain data (b)

Figure 3.13 Constructed association gene networks using the PLSR for the midbrain data (a)

Figure 3.14 Constructed association gene networks using the PLSR for the midbrain data (b)
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Figure 3.15 Constructed association gene networks using the PLSR for the hindbrain data (a)

Figure 3.16 Constructed association gene networks using the PLSR for the hindbrain data (b)
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CHAPTER FOUR

CONCLUSION

The goal of this thesis is built gene co expression network by connectivity scores

based on PLSR. Because PLSR can be applied to complex data sets in many ways, it

has various application areas such as chemistry, economics and biology. The first

suggestion for using PLSR in gene networks was made by Datta. And since then, it

has been among the preferred methods. The PLSR method is shown as a powerful

tool for discovering associations between genes since it can tolerate missing values,

noise, the cases that the large number of variables relative to the number of

observations, and most importantly multicollinearity problem within the response (Y

variables) and explanatory variables ( X variables). The decision of how many

components are used is necessary before computing the PLSR parameters. For this

purpose, one of the dimension reduction or latent variable based methods, such as

PCA, must use. The PCA method, which is frequently used in high-throughput gene

expression data and in many biological studies, generates the new independent

variables using the dimension reduction when the problem of multicollinearity

problem is seen in the datasets. After the number of components is determined by

PCA, PLSR parameters which are loadings and weights of X and Y variables, are

calculated for each gene pair. Several algorithms for PLSR, can be found in the

literature. To find the associations between genes for each pair, the connectivity

scores are calculated by using one of the PLSR algorithms, NIPALS. The statistical

significance of the connectivity score, which is a practical tool for exploring the

associations in gene networks, is determined with comparing a threshold value, ϵ. If

the absolute value of the score for two genes is greater than the threshold value ϵ, it

can be said that there is a meaningful relationship between them. The gene networks

are established by using significant gene associations obtained from the comparison

of each gene pair’s connectivity scores with ϵ.

In this thesis, PLSR is used to observe the development of the mouse brain in the

embryonic period on three brain parts; those are fore-, mid- and hindbrain. There are 26
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samples (except the forebrain data with 25 samples) that spread of 8 days in the datasets.

Classification of the all three datasets by 8 days and the decision of the 8 number of

component were shown by PC analysis. PLSR was performed with 8 components on

the reduced datasets. According to PLSR weights and loadings, the connectivity scores

for each gene pair was calculated and compared with the threshold, ϵ = 0.4. For the

forebrain data, 619 genes from 2288 genes were found to be significant association.

684 genes out of 2286 genes were found to be significant association in the midbrain

data. Lastly, 675 genes from 2234 genes were shown to associate in the hindbrain data.

Furthermore, instead of 10% of the datasets, all calculations will be renewed and gene

networks will be created for whole datasets in future works.
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