

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SECURITY ENHANCED LIGHTWEIGHT

MESSAGING PROTOCOL

by

Özlem YERLİKAYA

July, 2018

İZMİR

 SECURITY ENHANCED LIGHTWEIGHT

MESSAGING PROTOCOL

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Master of

Science in Computer Engineering

by

Özlem YERLİKAYA

July, 2018

İZMİR

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Asst. Prof. Dr. Gökhan DALKILIÇ

for sharing valuable time and for his precious advice. On the coding part, I want to

thank to Marcin Bachry for sharing his knowledge and time with me.

Finally, I like to thank my family, my colleague Göksu Tüysüzoğlu, and my friends

Yunus Şeker, Halime Kardaş and Gülsüm Uzut for their contribution and constant

support.

Özlem YERLİKAYA

iv

SECURITY ENHANCED LIGHTWEIGHT MESSAGING PROTOCOL

ABSTRACT

Internet of things (IoT) allows devices especially with low process capability and

power consumption, to transmit data to each other using various communication

technologies such as wired, wireless network and radio frequency. When huge number

of devices with limited resources are connected to IoT application, provided security

gains significant importance to ensure the integrity, confidentiality, accessibility of

these sensitive data. In addition, the availability of a variety of specialized devices and

communication technologies demonstrate the hassle of providing a standard security

mechanism.

When device features such as power and process capability are taken into account,

message queue telemetry transport (MQTT) is the most appropriate lightweight

communication protocol. In this study, the MQTT security is defined, and preliminary

work related to MQTT on the basic security issues such as privacy, authentication and

access control is examined.

This study provides authorization mechanism by using open authorization (OAuth

2.0) protocol, which is recommended to gain authorization. In addition to the

authenticator token, authentication is performed in two steps using a HMAC-based

one-time password (HOTP) due to its short life span. Since MQTT protocol does not

have bidirectional authentication other than using transport layer security (TLS),

mutual authentication is provided by using OTP with hash chain. Advanced encryption

standard (AES) is used for providing confidentiality to prevent against potential

security vulnerabilities. Security analysis of the implementation has been discussed by

giving an alternative solution by using these methods against selected attacks. It has

been observed that various security vulnerabilities and difficulties have been

successfully resolved.

Keywords: MQTT, mutual-authentication, authorization, HOTP, OAuth 2.0, AES

v

GÜVENLİĞİ GELİŞTİRİLMİŞ HAFİF MESAJLAŞMA PROTOKOLÜ

ÖZ

Nesnelerin interneti, işlem yeteneği düşük, kısıtlı güç tüketimine sahip cihazların

kablolu, kablosuz ağ, radyo frekansı gibi çeşitli haberleşme teknolojileri kullanarak

birbirleriyle veri iletimi gerçekleştirmesine olanak sağlar. Nesnelerin interneti

uygulamalarında çok sayıda kısıtlı kaynağa sahip cihazın bağlı bulunulduğu

düşünüldüğünde, bu hassas verilerin gizliliğini, bütünlüğünü, ulaşılabilirliğini

sağlamak güvenliğin önemini artırmaktadır. Buna ek olarak, çeşitli özellikte cihazın

bulunması ve çeşitli haberleşme teknolojileri ile bağlantı kurulabilmesi standart bir

güvenlik mekanizması sağlamanın güçlüğünü göstermektedir.

Cihazın güç ve işlem yeteneği gibi özellikleri göz önünde bulundurulduğunda

mesaj kuyruk telemetri taşıma (MQTT) en uygun hafif haberleşme protokolü olarak

belirlenmiştir. MQTT güvenlik mekanizması tanımlanıp, verinin gizliliği, kimlik

doğrulama, erişim kontrolü gibi temel güvenlik konularına yönelik yapılmış çalışmalar

incelenmiştir.

Bu çalışma, yetkilendirme için önerilen açık yetkilendirme (OAuth 2.0)

protokolünü kullanarak yetkilendirme mekanizması sağlamaktadır. Kimlik doğrulama

belirtecine ek olarak, kısa ömürlü olmasıyla HMAC tabanlı tek kullanımlık şifre

(HOTP) kullanılarak iki adımda kimlik doğrulama uygulanmıştır. Taşıma katmanı

güvenliği (TLS) kullanımı dışında çift yönlü doğrulamaya sahip olmayan MQTT

protokolü için, OTP’yi karma zincir ile kullanarak karşılıklı kimlik doğrulama

sağlanmıştır. Olası güvenlik açıklarına karşı gizlilik, gelişmiş şifreleme standardı

(AES) ile sağlanmıştır. Uygulamanın güvenlik analizi, belirlenen saldırılara karşı bu

yöntemleri kullanarak alternatif bir çözüm sunarak tartışılmıştır. Çeşitli güvenlik

açıklarının ve zorluklarının başarılı bir şekilde çözüldüğü gözlenmiştir.

Anahtar kelimeler: MQTT, karşılıklı kimlik doğrulama, yetkilendirme, HOTP,

OAuth 2,0, AES

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES ... ii

LIST OF TABLES ... ii

CHAPTER ONE - INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Contribution ... 3

1.3 Outline of the Thesis.. 4

CHAPTER TWO - RELATED WORK ... 6

2.1 Literature Review .. 6

CHAPTER THREE - LIGHTWEIGHT COMMUNICATION PROTOCOLS 12

3.1 Constrained Application Protocol ... 12

3.2 Extensible Messaging and Presence Protocol ... 13

3.3 Advance Message Queuing Protocol .. 13

3.4 Data Distribution Service .. 13

3.5 Message Queue Telemetry Transport Protocol ... 14

3.5.1 Security of Message Queuing Telemetry Transport Protocol 16

vii

CHAPTER FOUR – THE PROPOSED METHODS OF SECURITY

MECHANISM .. 18

4.1 The OAuth 2.0 Authorization Framework .. 18

4.2 HMAC-Based One-Time Password .. 25

4.3 Advanced Encryption Standard Algorithm ... 26

CHAPTER FIVE - IMPLEMENTATION .. 29

5.1 Experimental Setup ... 29

5.1.1 MQTT Client ... 30

5.1.2 MQTT Broker .. 30

5.1.3 Authorization Server (WSO2is) .. 31

5.1.4 MongoDB .. 31

5.2 Authentication and Authorization Mechanism .. 32

CHAPTER SIX - SECURITY ANALYSIS OF THE IMPLEMENTATION 44

6.1 Prevent Replay Attacks ... 44

6.2 Prevent Password Guessing ... 44

6.3 Prevent Man-in-the-Middle Attack ... 44

6.4 Protect from Eavesdropping .. 45

6.5 Impersonation Attack Protection ... 45

6.6 Provide Mutual Authentication ... 45

6.7 Restricted Device Access .. 46

6.8 Manage De-synchronization .. 46

6.9 Prevent physical attack .. 46

6.10 Provide Confidentiality ... 47

viii

6.11 Prevent Denial of Service Attack ... 47

CHAPTER SEVEN - CONCLUSION AND FUTURE WORK 48

REFERENCES ... 50

ii

LIST OF FIGURES

Page

Figure 3.1 MQTT message format ... 14

Figure 3.2 MQTT message types ... 15

Figure 4.1 The OAuth 2.0 protocol flow ... 19

Figure 4.2 Obtained access token step by step ... 22

Figure 4.3 Obtained access token step by step ... 23

Figure 4.4 Flow of obtained access token .. 24

Figure 4.5 AES structure .. 27

Figure 4.6 CFB mode encryption ... 28

Figure 4.7 CFB mode decryption ... 28

Figure 5.1 The flow of authentication and authorization mechanism 32

Figure 5.2 The pub/sub clients connect to the Mosquitto .. 43

ii

LIST OF TABLES

Page

Table 3.1 Comparison of lightweight communication protocol 12

Table 5.1 The selected software and hardware information 29

Table 5.2 Client information .. 33

Table 5.3 Access token information... 34

Table 5.4 HOTP count is based on client secret .. 35

Table 5.5 Registered three clients’ information and their 6th HOTP counts 37

Table 5.6 Connect message type .. 38

Table 5.7 Returned client information ... 39

Table 5.8 Parse scope of access token ... 42

Table 5.9 The information of client’s access ... 43

1

CHAPTER ONE

INTRODUCTION

The terms of the Internet of things (IoT) is defined as so many devices that can be

sensor, radio frequency identification (RFID) tag, smart card with their low capacity

of central processing units (CPU) and power, communication each other without

human interaction or user interface by using in diverse communication technologies

such as wireless, Ethernet, Bluetooth, ZigBee etc. Obtained data is recorded to the

cloud or storage and managed over the network by accessing regardless of physical

location. It is difficult to provide security due to these heterogeneous communication

technologies and protocols. Furthermore, IoT architecture is not stated as certain layer.

Literature is examined to indicate security hole for each layer and to supply essential

security for the IoT application. The message queue telemetry transport (MQTT)

protocol is chosen in order to design authentication and authorization mechanism and

a security plugin is written by considering the resource-restricted device to be added

to the protocol. The following page in chapter refers to the contribution of security on

the MQTT protocol.

1.1 Motivation

Internet of things (IoT) concept was firstly mentioned in 1999 by Kevin Asthon’s

radio frequency identification (RFID) presentation (Sheng et. al., 2013). A huge

number of devices are connected to the Internet in order to share their data via

lightweight communication protocols and to monitor these data from anywhere. When

a serious number of devices with limited storage and scarce energy source are taken

into account, providing the security requires too much cost. There is no highly

accepted standard security mechanism for Internet of things (IoT) applications as seen

from previous studies. Both studies in (Jing, Vasilakos, Wan, Lu & Qiu 2014; Oh &

Kim, 2017) defined the IoT architecture as 3 layers that are perception, network,

application; analyzed the security threats of each layers in consideration of

heterogeneity, device features, etc. Whereas, (Kraijak & Tuwanut, 2015) explained

2

IoT architecture with its security vulnerabilities as five layers that are perception,

network, middleware, application, business layer in detail.

So as to provide the essential main security requirements that are data

confidentiality, integrity, availability for IoT application, firstly which application

layer protocol will be determined for restricted-resource device such as smart card,

RFID, sensor etc. To make right choice for application protocol, existing protocols that

are constrained application (CoAP), message queue telemetry transport (MQTT),

advanced message queuing (AMQP), extensible messaging and presence (XMPP),

data distribution service (DDS), are compared with each other’s in terms of their CPU

utilization, network bandwidth capacity (Asim, 2017), storage capacity, computational

availability, limited power (Karagiannis, Chatzimisios, Vazquez-Gallego & Alonso-

Zarate, 2015) and low header size (Salman & Jain, 2013).

MQTT protocol is one of the most appropriate communication protocols especially

for real time applications compared to aforementioned lightweight protocols with

regard to having quality of service (QoS), low header size, bandwidth usage and

efficient power consumption (Manohar & Reuban Gnana Asir, 2018) for constrained

resource devices. For this reason, in this study MQTT is preferred. Data is sent by

Eclipse-paho client to Mosquitto that is MQTT broker, and the data is received by

different clients such as Android mobile application, Linux machine from broker over

the Internet via MQTT communication protocol. MQTT supports secure end-to-end

data transmission by using the transport layer security (TLS) as a secure channel.

Certificates provides mutual authentication between client and broker (Banks &

Gupta, 2014). However, TLS is inappropriate for IoT device due to the complex

computation requirements. The initial issue to be intended in this study is to prevent

the access on the IoT application by the unidentified devices. The next step is

determining the access policies such as read and write, of the verified device.

Therefore, a security mechanism is developed and added to the existing security

mechanism of MQTT and Mosquitto.

3

OAuth 2.0 protocol is preferred to delegate authority without sharing username and

password in order to prevent user credentials from being re-used without the awareness

of the user by third party applications (Windley, 2016). Since MQTT protocol has no

security mechanism for access principle, the token that includes the scope of the client

is obtained via OAuth2.0 protocol to restrict the access area (Fremantle & Aziz, 2016).

In an event where TLS/SSL is not used as the secure channel, one-time password

(OTP) with its short life span may be a good choice to provide mutual authentication.

It can be used to prevent the impersonation attack if the token is eavesdropped during

sending plain text in token based authentication (Haller, 1994). Shivraj, Rajan, Singh

& Balamuralidhar (2015) compared their suggested OTP scheme with existing OTP

schemas that are HMAC based one-time password (HOTP), Time based one-time

password (TOTP) and Lamport’s OTP algorithm over the lightweight identity based

elliptic curve cryptography for IoT to provide authentication and observe their

performances. Esfahani et. al. (2017) proposed authentication mechanism for IoT

environment that only includes computations of XOR and hash function. Their

authentication mechanism prevents replay attack by using nonce whereas to ensure

that the message is not altered by using one-way hash function to avoid the

modification attack. Our study is implemented and contributed one more step

including authentication with hash chain based OTP to confirm both client and broker

by increasing security against token stealing in the insecure channel.

The proposed the MQTT security mechanism is referred authentication and

authorization that are provided by using token over insecure channel with HOTP-hash

chain, advanced encryption standard (AES) encryption. Security analysis is

performed, then.

1.2 Contribution

The aim of the thesis is to introduce a number of lightweight protocols used transmit

data which are obtained from IoT applications such as health, industry, automotive and

4

financial, over the network. The proposed lightweight protocols are examined under

five main headings: MQTT, CoAP, XMPP, AMQP, DDS.

Another remarkable point for this thesis is to suggest the utilization of MQTT

protocol as a proposed lightweight communication protocols on the IoT scenarios.

Especially in real time applications, efficient power consumption, minimized network

traffic with low header size, message loss and latency reduction that depend on QoS

will be advantageous for devices that have weak computational ability. However, the

existing security mechanism of MQTT may be exposed to various security attacks due

to the security weaknesses of MQTT.

Other purpose on the following sections is to introduce the OAuth 2.0 protocol

framework, HOTP, AES-256 cipher feedback (CFB) mode symmetric encryption.

They are explained to show how to perform authentication and authorization security

mechanism so as to provide the access control and securely data transmission by

identifying both client and broker in cases where fake server, attacker and huge number

of client are available.

As the final contribution of this study is to classify several significant security

attacks in IoT scenarios. For this purpose, firstly, the previous study (Fremantle et. al.,

2014) which suggests providing access control with OAuth 2.0 protocol, has been

taken as the model and implemented with a view to obtain token in order to validate

the client and client's access. Possible challenges and security vulnerabilities based on

the study have been determined and an alternative solution was generated that includes

HOTP with hash-chain to provide mutual authentication without using static password

and to avoid authentication with plain text implementing AES encryption without the

need of extra computation for the key generation and distribution.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows: The next chapter introduces the

examined literature study. In the first step, IoT architecture and security hole of each

5

layer representation, lightweight communication protocols and MQTT security are

explained. Chapter 2 includes definition of the lightweight communication protocols

by comparing with MQTT protocol and explanation of MQTT protocol and its security

in detail. In the next chapter, the OAuth 2.0 authorization framework is explained in

general and detailed knowledge on the implementation is provided. Furthermore,

HOTP is stated by expanding different IoT scenarios used in the literature. It is shown

that AES encryption and HOTP are needed against the security attacks.

Implementation of study by the methods described in the previous chapter, is shown

in chapter 5. Moreover, Chapter 6 discusses possible security vulnerabilities on the

MQTT communication, and presents a solution against these attacks by the applied

written plugin while Chapter 7 concludes the thesis with a summary of the learned key

lessons.

6

CHAPTER TWO

RELATED WORK

Nowadays, data privacy gains significant importance in large scale IoT application

areas especially in health, industry, automotive and financial areas that include

sensitive personal data, when it is thought that huge number of devices are connected.

One needs to have a good determination of how unauthorized devices is restricted in

order to ensure privacy for being able to design a successfully authentication and

authorization mechanism, whether paper based or digitalized. For obtaining

knowledge of how to make a good providing identity and authority of the device by

chosen most suitable communication protocol for resource-restricted devices, some

studies were examined. The studies show that possible attacks on IoT layers are

mentioned and how with the cryptographic studies are taken precautions. The

lightweight communication protocols on application layer are compared with each

other in terms of devices with constrained resources. The most appropriate MQTT

protocol is determined and the knowledge of security MQTT protocol is indicated.

Some of the key concepts of these studies are summarized below.

2.1 Literature Review

Ali, Sabir & Ullah (2016) present IoT structure with four parts such as perceptual

layer, network layer, support layer and application layer. They also indicate possible

security attack of each layer. Perceptual layer has heterogeneous devices like sensor,

RFID tag, Bluetooth, Zigbee device that are restricted with having low battery and

limited storage, and these IoT devices spread over a large area. Huge amount of data

is obtained from these devices via communication protocol in network layer and it is

processed or storage in cloud in support layer. Application layer provides different

application such as smart healthcare, smart home, smart agricultures to user according

to their areas of interest. Each layers have specific security attacks. Perceptual layer,

for instance, has attacks such as node tampering, fake node, physical damage, mass

node authentication, whereas network layer has network congestion, node jamming in

wireless sensor network (WSN), eavesdropping attack, denial of services attacks. In

7

addition, data security, interoperability and portability, cloud audit can be occurred in

support layer while data access and authentication, phishing attack, malwares attack is

happened in application layer. The content of this study refers some precautions to

come up with these attacks. These precautions are lightweight encryption algorithm

for data privacy and authentication and access control mechanism for device in

perceptual layer, secure communication protocol for replay, routing, jamming attack

in network layer, going on cloud audits for confidentiality, integrity and storage

encryption for user’s data in support layer, accessing control mechanism with secure

application code in application layer. In conventional security, some cryptographic

methods that using AES as symmetric encryption for data privacy, preferring Rivest-

Shamir-Adleman (RSA) as asymmetric encryption algorithm for digital signature,

secure hash algorithm (SHA) for data accuracy and Diffie-Hellman for key generation,

are strongly used to provide security. However, these algorithms call for much more

CPU power and battery due to including complex computation. Moreover, key

management is necessary for cryptographic algorithms due to the number of device

excessing in IoT scenarios. Also, authorization and authentication mechanism are

forced out to identify devices and data confidentiality because of huge number of IoT

devices. Denial of services attack is another security problem that led to consume much

more power in IoT scenarios. Consequently, the study informs possible attack in each

IoT architecture layer, explains these attacks in detail, suggests solution against the

attacks, and gives information about difficulties of applying traditional secure solution

way in IoT.

IoT architecture is defined in detail as three layers; perception, network and

application layers. Security vulnerabilities for each layer are emphasized with their

challenges (Mendez, Papapanagiotou, & Yang, 2017). Whereas, IoT architecture is

described in detail with five layers, which are perception, network, middleware,

application, business layer. The data is collected by varied sensor in perception layer

and is forwarded to network layer via insecure way. In this phase, it can be exposed

attacks such as eavesdropping, denial of service attack, on account of sensor device

placement on physical environment. Attacker can modify program in sensor device

and then access its information or using data adversely. Secure communication is

8

necessary between perception layer and network layer due to data privacy. It can be

provided by encryption connection. Network layer contains huge number of connected

devices and their data exchange lead to high traffic. Therefore, denial of service attack

can occur. Sensing data is operated and stored in middleware layer, and the IoT

applications such as smart health depending on the process data is managed in

application layer. Business layer consists of whole IoT system that gives a result as a

variety graph or report based on processing data. Analysis is made by taking into

consideration this result. So data confidentiality, integrity, availability is so important

during all communication. In addition, untrusted users should not access data or

device, authentication and control mechanism must be provided. In this study, real

time IoT application is implemented by using Arduino, publish/subscribe library,

Mosquitto as a broker and Ponte framework. Sending/receiving data is provided over

the Internet via MQTT communication protocol. A problem is identified that publish

sends message with a topic to broker and subscribe receives this message from broker

by using same topic. If attacker knows this topic, he publishes message that include

irrelevant information, with same topic. Subscriber gets data under this topic, and

obtains wrong data. In the scope of paper, currently there is no implemented solution

for this problem except for suggested payload encryption (Kraijak & Tuwanut, 2015).

Yassein, Shatnawi & Al-zoubi (2016) gives information about lightweight

protocols that are suitable for IoT scenarios in terms of constrained device with low

batteries, low bandwidth, limited storage, weakness process, untrusted network. These

protocols are CoAP, MQTT, XMPP, DDS, AMQP and their architecture,

communication and message transmission reliability are examined in detail. In the

event of different applications and devices, it is determined which protocol is suitable

for IoT application by taking in consideration properties of these devices.

In the study (Katsikeas et. al., 2017), some of open source IoT protocols that are

devices profile for web services (DPWS), XMPP, CoAP, MQTT, compare with each

other according to their specific features and strong performance on restricted device

in terms of low battery and computation as both literature and real application. The

strengths and weaknesses of these protocols have been demonstrated relative to each

9

other. The characteristic of MQTT protocol is explained in detail and its security is

informed in terms of the authentication, authorization and data confidentiality. A pair

of username and password as a plaintext are used to identify client, when client

connects to broker. Access control list (ACL) can be used in MQTT protocol in order

to provide authorization mechanism that contains topic besides the username and

password, to manage client access. Data confidentiality is provided by using

encryption algorithm between client and broker or publisher and subscriber. In this

study, analysis performance and power consumption results are obtained by applying

secure on MQTT protocol to Contiki OS and Cooja simulator as a theoretical and also

using MQTT protocol, Mosquitto, zolertia Z1 motes, and Raspberry Pi as a real

platform. AES with a 128-bit key as symmetric key algorithm is used to send message

securely from publisher to subscriber. Sending message with AES payload encryption

is applied to only one block size length whereas AES cipher block chaining (AES-

CBC) mode is up to four-block sizes. Moreover, AES offset codebook (AES-OCB)

mode that is for both authentication encryption and payload encryption with message

is sent to subscriber, then subscriber verifies this encrypted message and this allows

the complete transmission of data. Unlike payload encryption, AES cipher block

chaining - message authentication code (AES-CCM) mode is used as link layer

encryption to provide node-to-node encryption. Consequently, the analysis power

consumption, average round ripe time, random access memory (RAM) and read only

memory (ROM) utilization of comparative with each encryption mechanism are shown

in detail with different payload of sizes in byte.

OAuth 2.0 protocols is integrated to provide access control in MQTT

communication protocol due to huge number of devices in IoT applications.

Conventional authorization and authentication system is not suitable for IoT scenarios

because it is strongly difficult to manage each device by using username, password

and role credentials. In addition, there is no user interface or interaction between

machine and developer so it is not easy to manage access authority. Access token and

scope are obtained by using OAuth 2.0 protocol to connect MQTT broker that is

Mosquitto. Whether device is publisher or subscriber is determined by using the scope

information. MQTT protocol runs over TCP so it can use TLS as the secure channel

10

but IoT devices is limited in terms of battery and storage. The connection between

client and MQTT broker is provided without TLS due to using 8bit-Arduino as a client.

Refresh token is difficulty due to limited storage. Only using same token leads to

security vulnerabilities such as spoofing, denial of services. In addition to this,

exchange scope is not possible because each scope belongs to an access token

(Fremantle, Aziz, Kopecky & Scott, 2014).

Security with key/cipher text policy attribute base encryption (KP-CP ABE) using

lightweight elliptic curve cryptography is provided due to broadcast encryption in

MQTT communication protocol. Elliptic curve is used for optimizing complexity.

Firstly, publisher prepare access list to send to broker and demand the key from broker

to encrypt data with this key. It also adding information about user access to decrypt

message and sent to broker. If there is access permission of subscriber, it receives this

data and key from broker and decrypts data with the private key. However, there is no

information about that how the key is generated. Also publisher both sends access tree

to the broker and takes the key from the broker with no secure channel so attacker can

reach this data (Singh, Rajan, Shivraj & Balamuralidhar, 2015).

Zamfir, Balan, Iliescu & Sandu (2016) analyzed security based on the approach of

pre-shared key, raw public key and certificate on both CoAP and MQTT protocol. In

order to share securely videos data in real time, based on Hierarchical inner product

encryption (HIPE) was proposed as end to end encryption on publish/subscribe

architecture (Rajan et.al., 2016).

Kinikar & Terdal (2016) developed a fire alarm IoT application by using OAuth

protocol for giving access without shared username and password to Gmail, twitter.

Niruntasukrat et. al. (2016) implement to provide access control mechanism with

adapted OAuth 1.0 protocol on IoT systems that IoT devices communicate with each

other over MQTT protocol. The aim of this study is to avoid too heavy encryption

algorithm in order to authenticate device to broker and ensure data privacy between

client and broker by using OAuth 1.0 protocol. Unlike OAuth 2.0 protocol, client sends

its password by digital signing to provide confidentiality in OAuth 1.0 protocol. The

11

scope of this study, their security design is analyzed in terms of security hole. Real IoT

application is implemented by using three different IoT devices and their message

latency are compared with in terms of devices resource after applying authorization

mechanism.

Lightweight asymmetric encryption AA-Beta is preferred for constrained device in

IoT application and is analyzed encryption and decryption based on CPU clock cycle

for each process (Syed Farid, Mohd Anuar & Habibah, 2016).

Mosquitto auth plugin is added to provide access control with ACL by storing user

name and password as encrypted on the database (Upadhyay, Borole & Dileepan, 2016).

Gantait, Patra & Mukherjee (2016) developed security mechanism that includes

web, mobile, IoT client applications on the three layers of IoT application. Device

authentication was provided with using a token as the username and application id on

IBM Watson IoT platform in consideration of without using TLS due to constrained

resources. OTP was added as an extra security level with mobile application in order

to protect device from physical attack. Payload encryption was implemented to prevent

against eavesdropping. After the secure data transmission, how to securely store the

data on the cloud was explained by IBM Bluemix cloud IoT platform. Device access

was managed by using OAuth 2.0 protocol which HiveMQ broker supports.

Suggested authorization security mechanism related to OAuth 2.0 on MQTT

protocol is implemented. In addition to this existent and suggested security mechanism

on MQTT protocol, HOTP with hash chain is used for mutual authentication and AES

is used for data confidentiality.

12

CHAPTER THREE

LIGHTWEIGHT COMMUNICATION PROTOCOLS

In order to give a better making decision of which lightweight communication

protocol is used in IoT scenario firstly, the details of communication protocols by

considering to their capacity of storage and energy consumption must be compared. In

particular, used protocols in IoT scenarios are mentioned in terms of their usage

purpose and features. Especially for constrained resource device, MQTT is much more

suitable communication protocol than other aforementioned lightweight protocols that

are shown in Table 3.1 (Yerlikaya & Dalkılıç, 2017).

Table 3.1 Comparison of lightweight communication protocol

PROTOCOL XMPP CoAP AMQP DDS MQTT

Rest     

Publish/subscribe     

Request/response     

Transport TCP UDP TCP TCP TCP

security TLS DTLS TLS TLS/DTLS TLS

Head size - 4 8 - 2

QoS - -   

3.1 Constrained Application Protocol

CoAP was designed as a web protocol by working group of internet engineering

task force (IETF) for restricted resource device and unreliable network (Frigieri,

Mazzer & Parreira, 2015). Both CoAP and MQTT are suitable than HTTP for sensor

network environment in terms of efficient energy consumption and low bandwidth

thanks to their low header size respectively 4, 2 bytes (Bandyopadhyay &

Bhattacharyya, 2013). In comparison of MQTT, CoAP is based on RESTFUL

architecture and provide security end-to-end encryption over the datagram transport

layer security (DTLS) instead of TLS since it runs over datagram transport layer

(UDP) (Elgazzar, 2015).

13

3.2 Extensible Messaging and Presence Protocol

XMPP is based on both publish/subscribe and response/request schemes. It

provides messaging in real time communication. The transmission and storage of the

data takes place in extensible markup language (XML) format (Shelat, Patel & Bhatt,

2016). Therefore, much more power is required for resource-restricted device. In

addition, XML structure needs high bandwidth so MQTT communication protocol

with low header size and power efficiency is more preferable than XMPP

communication protocol (Kirsche & Klauck, 2012).

3.3 Advance Message Queuing Protocol

AMQP is based on publish/subscribe scheme and generally most suitable for

financial application as provide server-to-server communication than device-to-device

communication (Patierno, 2016). As different from MQTT, AMQP contains exchange

and queue features that are used to save data and forward the data to a related queue

depending on specific rules. AMQP runs over TCP, so secure communication is

provided by using TLS. AMQP provides more reliable communication in insecure

network environments, as it stores incoming data. The AMQP header size is 6 bytes

more than the MQTT header size. Therefore, MQTT contains more capacity of

message. The communication is more secure and reliable with AMQP, while energy

efficiency is ensured with MQTT (Luzuriaga, 2015).

3.4 Data Distribution Service

DDS is based on publish / subscribe schemes like MQTT and provides real time

communication with running over TCP. In difference with MQTT, in order to

minimize message loss and delay, it has much more QoS than MQTT has (Ungurean

& Gaitan, 2015).

14

3.5 Message Queue Telemetry Transport Protocol

MQTT communication protocol was developed by IBM in 1999 and was

standardized to provide lightweight machine-to-machine (M2M) communication by

OASIS in 2013. MQTT is a suitable communication protocol for IoT scenarios based

on publish/subscribe architecture. The protocol is more preferred for device with

limited processing, limited energy, memory, lower bandwidth and better performing

data size than CoAP in insecure network environment (Soni & Makwana, 2017). In

Figure 3.1, the MQTT message format is displayed.

MQTT consists of client that can be publisher or subscriber, and broker

components. The client (publisher) transmits the sensor data to the broker under a

specific topic. The broker will forward the data to the subscriber by filtering out the

access right and the client (subscriber) of interest. Publisher and subscriber do not have

the knowledge of each other, such as IP address. All communication is realized

through over the broker. Publisher and subscriber do not have to be connected to the

same network at the same time, since the protocol performs asynchronous transmission

(Shinde, Nimkar, Singh, Salpe & Jadhav, 2016).

Remaining length (1-4bytes)

Variable Length Message Payload

0 1 2 3 4 5 6 7

Message Type DUP QoS Retain

Variable Length Header

2
 B

yt
e

s

{Fixed Header 2 Bytes}

B
it

s

Figure 3.1 MQTT message format

The fields of MQTT message format are:

 Message Type: MQTT protocol contains 14 MQTT message types that are

CONNECT, CONNACK, PUBLISH, SUBSCRIBE, SUBACK,

15

UNSUBSCRIBE, UNSUBACK, PUBACK, PUBREC, PUBREL,

PUBCOMP, PINGREQ, PINGRESP and DISCONNECT. As an example

the message types used for message transmission between client and broker

are shown in Figure 3.2.

 Publisher Broker Subscriber

MOSQUITTO

Figure 3.2 MQTT message types

 DUP: It refers as a flag that either the message is duplicate or not.

 QoS Level: MQTT includes three different messaging quality of service

levels such as at most once, at least once and exactly once in case of unsafe

network environments or connection failures that may occur on the network.

Data is transmitted with the appropriate one of these services by depending

on the constrained bandwidth. The most reliable level requires much more

bandwidth. Data may be lost at the lowest level and network traffic is low

in this level (Lee, Kim, Hong & Ju, 2013). The levels are:

o At most once: Message is only sent once and this level does not

guarantee the transmission of the message.

o At least once: Message is sent at least once. The message can be

transmitted repeatedly. Network traffic may occur increasingly.

16

o Exactly once: This level is preferred to be sure that the message has

been delivered. When the message is received, response redirects

PUBREC, PUBREL, PUBCOMP messages as acknowledgement.

High network traffic occurs in this level.

 Retain: It informs to the broker by pointing out last published message and

the message is transmitted as the first message to the new subscriber.

 Remaining Length: It indicates the remaining size of message.

 Variable header: It includes information about protocol name and version,

keep alive timer, connect flags such as QoS, retain, clean session.

 Payload: It includes information about username, password, topic name and

message. topic is a UTF-8 string and can consist one more topic with slash.

3.5.1 Security of Message Queuing Telemetry Transport Protocol

IoT scenarios are getting increased day by day and many devices connect to the

Internet for transmitting data with each other by using communication protocols.

Eavesdropping and accessing transmitted data between client and server, modifying

accessed data or re-routing to an untrusted server, denial of service attack, timing

attack, etc. are some of the vulnerabilities of the MQTT protocol. Furthermore, MQTT

protocol has no specific security mechanism. Credential sets such as OAuth token and

the pair of username and password can be added to the connection message of the

MQTT protocol. MQTT server can verify a client by using access control list (ACL),

database or lightweight directory access protocol (LDAP). However, this identity

information sent in plain text can cause man in the middle and replay attacks (Banks

& Gupta, 2014).

17

Since MQTT protocol runs over TCP/IP, an alternative solution against the attacks

is the TLS. However, the TLS requires heavy computation that is not suitable for IoT

devices having limited resources (Mahmood, 2016). Whenever using the TLS is

possible in implementation, it provides the secure channel between client and MQTT

server that means all communication is encrypted between client and broker. So, even

if the attacker eavesdrops the message, he cannot alter this data and cannot interrupt

the communication.

Some brokers use extra security mechanisms such as payload encryption, payload

signing, complex authentication protocol, authorization/topic permission, etc. by using

plugin mechanisms (MQTT security fundamentals, n. d). Publisher encrypts the

payload that includes the user name and the password with the message and then sends

this data to the broker. In an alternative payload signing mechanism provides, if the

payload is accessed by the broker, it is signed with a private key by the broker and then

sent to the subscriber. Therefore, the subscriber can be sure that the message comes

unaltered from the correct source. Authorization/topic permission provides restriction

to access all topics by all subscribers. Broker filters the received message from the

publisher in terms of topic and then sends this filtered message to the subscriber. The

subscriber receives the message from the topic that he is interested in (Obarmaier,

2015).

18

CHAPTER FOUR

PROPOSED METHODS OF SECURITY MECHANISM

In chapter three, MQTT security is explained from start to end without getting into

excessive details. In this chapter, combining chapter three’s information with

contribution facilities with OAuth 2.0 protocol, AES encryption algorithm and HOTP

with hash chain application’s development process and authentication and

authorization security mechanism will be put forth.

4.1 The OAuth 2.0 Authorization Framework

The OAuth 2.0 is an open authorization and authentication protocol that was

standardized in 2012 by IETF RFC 6749 (Hardt, 2012). Third party application can

store and use user credentials such as password and username as a without user

information until the user changes his/her credential. OAuth 2.0 protocol is preferred

to manage client’s own authority without sharing its credential in order to provide

communication with secure IoT device (S.W. Jung & S. Jung, 2017). OAuth 2.0

protocol has four roles (Chae, Kim & Cho, 2017) as stated below;

 Resource owner: This is a person who has a resource that is gained

authority.

 Resource server: A server contains protected resource owner that is owned

by user and it manages access to resource owner by using access token.

 Client: A client is an application that runs on the server and makes a request

on behalf of the resource owner.

 Authorization server (AS): Resource owner is authenticated and gained

authorization by server and then, access token is sent to client.

19

These four roles can be explained in social network like this example: Resource

owner can be you that shared your images, videos and tweets are your special data in

your tweet application. Client is an application that wants access resource owner’s

data, that is, your shared data from your tweet application. Client can be a mobile

application, web application etc. Authorization server is the identity system to give an

authority to the client application to get resource owner’ tweet, so your tweet server

needs to know client application. In this case, firstly you need to save the address

information of client application on twitter servers. Client application will then be

authorized when a request is made to your twitter servers from the client application.

The twitter servers that authenticate and authorize, are the authorization server in the

OAuth 2.0 protocol. Resource server is the location where the protected data to be

accessed is located. For example, twitter API endpoints is called resource server which

the tweets client application want to gain access.

The flow of OAuth 2.0 protocol is indicated interaction between four roles (Li,

Mitchell & Chen, 2018) as shown in Figure 4.1.

Client

Resource Owner

Authorization Server

Resource Server

(A)- Authorization Request

(B)- Authorization Grant

(C)- Authorization Grant

(D)-Access Token

(E)- Access Token

(F)-Protected Resource

Figure 4.1 The OAuth 2.0 protocol flow

A- Client wants to gain authority from resource owner.

20

B- The client receives an authorization grant, that is an identity acting the resource

owner's authorization, phrased using one of four grant types defined as

authorization code, implicit, password credentials, client credentials used by

client to request authorization by the authorization server.

1. Authorization code grant: It is running on server-based

application. Authorization server generates code and sends to client

after user is authenticated or gain access. Client sends its credential

via this code to demand access token.

2. Implicit: Access token is obtained directly without using

authorization code. It is preferable for client with implemented in

the browser using a script language.

3. Resource owner password credentials: In case trust between

client and resource owner, access token is obtained directly with

username and password.

4. Client credentials: Client can be access its own resource by using

client credentials as an authorization grants.

C- The client is authenticated by authorization server and request access token via

authorization grant.

D- Client and authorization grant is validated by authorization server. If they are

valid, authorization server gives access token.

E- Client demands protected resource from resource server and is authenticated via

access token.

F- Client is validated via access token from resource server and if it is valid,

resource server gives response to request.

21

The MQTT protocol has no an access principle designed. The OAuth 2.0 protocol

is preferred to provide authorization mechanism in IoT scenario because it is difficult

to manage setting up credentials and fine-gained access of huge number of devices. In

addition to this, it is difficult to manage their role-based access control due to a great

number of devices. Furthermore, there is no user interface or interaction between

human and device to control.

The MQTT protocol provides authentication with username and password.

CONNECT message includes client id that is generated randomly by broker or

generated as statically and embedded on device by developer. In this study, clients are

prevented to have same credentials by developed authorization and authentication

mechanism based on OAuth 2.0 identity and access management protocol that gives

client id, client secret, scopes and access token in order to indicate unique client and

client’s access.

The WSO2 identity server (WSO2is) acts as an authorization server and running

playground2 OAuth 2.0 web application on it to obtain access token and scope in order

to identify device and restrict device authority. The WSO2is consists identity and

access management protocols such as OAuth 2.0 and OpenID Connect is an open-

source implementation (WSO2is, 2017). It is indicated to show respectively step by

step in Figure 4.2 and Figure 4.3 how the access token is obtained via the OAuth 2.0

with playground2 web application on WSO2is.

Curl command line tool is used to obtain access token on Linux machine. Client id,

client secret, username and password are required to request a token.

 Curl -- user mfsEQkwtfKINk0npCSWRb66l6jIa: 1xlZwKPWOHlGTY g1bw4lM0QfQwa -k -d

“grant_type=password&username=admin&scope=

W3sicnciOijydyIsInRvcGljIjoiL3RlbXBlcmF0dXJlLyJ9XQ==” –H “Content-Type:application/x-

www-form-urlencoded” https://localhost:9443/oauth2/token

22

Service Provider ID

MQTT_Test

Authentication

Configuration

Oauth/OpenID Connect

Configuration

OAuth Client Key

OAuth Client Secret

Callback Url

Allowed Grant Type

PKCE

OAuth Version Oauth 2.0

0TI5rIKzffIV74KpNBTR1nrgFAga

YLNv0B7_QjcTpjF4yNRfOELNxw

http://wso2is.local:8080/playground2/

oauth2client

Code, Refresh Token

Yes, prevent interception attacks

 1.https://wso2is.local:8080/playground2/oauth2.jsp to start the
application

2.Authorize

code clientId scope CallbackURL AuthorizeEndPoint UsePKCE

3.User Credentials

username password

4.Authorize

(Approve)

Approve ApproveAlways Deny

5.GetAccessToken

AccessTokenEndPoint ClientSecretAuthorizationCode CallbackURL

Figure 4.2 Obtained access token step by step

23

6.GetTokenInfo

Access Token IntrospectionInfo ClientId

7.TokenInfo

exp username scope tokenType active

Authorization Grant Type : Authorization Code

Client Id: 0TI5rIKzffIV74KpNBTR1nrgFAga

Scope: [{ rw: rw , topic :/ozlem/# }]

Callback URL: http://wso2is.local:8080/playground2/oauth2client

Authorize Endpoint: https://localhost:9443/oauth2/authorize

Authorization Code: 739e9555-0441-3963-96e4-3a35c1ab3705

Callback URL: http://wso2is.local:8080/playground2/oauth2client

Access Token Endpoint: https://localhost:9443/oauth2/authorize

Client Secret: YLNv0B7_QjcTpJF4yNFRfOEINxwa

Access Token: fce57165-637f-3fa3-8531-cfccf414f240

Invoke the OAuth

introspection Endpoint

https://localhost:9443/

oauth2/introspect

AuthorizationCodes AccessTokens

Active InActive Expired Active InActive Expired Revoked

Figure 4.3 Obtained access token step by step

MQTT protocol consists client that can be publisher or subscriber. In order to

indicate interested topic and whether permission of read or write, scope is created as

JSON structure. Scope is [{“rw”:”rw”,” Topic”:”/temperature/”}] in the curl example.

Scope is defined in Base64-encode converted value in curl command. Obtained access

token is embedded manually to the device that has scarce processing and energy

resources. Each access token has static scope but client can be interest different scope

more than existed scope, so exchange scope is major problem that is mentioned in this

24

implementation (Fremantle et. al., 2014). The flow of obtained access token from

WSO2is is shown in Figure 4.4.

User Web browser Authorization Server (Wso2is)

1. Wanted a token embed in device

[Scope= /topic/#]

Web Application

(Playground2 Oauth)

2.GET [scope= /topic/#,

Redirect_URL= https://wso2is.local:8080/

playground2/oauth2client ,

Client_id=WAA-client_id,

Response_type= code]

3.HTTP 302 redirect url

4.HTTP 302 redirect url

5.GET

6.Web page asking user to login

7.Username and login

8.Web page asking for approval for scope /topic/#

9.Approve

10. Redirect back to web Auth App includinng code

11. GET /url?code=739e9555-0441-3963-

96e4-3a35c1ab3705

12.grant_type = authorization_code ,

Redirect_URL = https://wso2is.local:8080/playground2/

oauth2client

Client_id= 0TI5rIKzffIV74KpNBTR1nrgFAga

Code=739e9555-0441-3963-96e4-3a35c1ab3705

13.{ Token_type : bearer ,

 expires in :3600 ,

 refresh_token : d7860588-dd4e-36a5-ad93-

440cc77a1cfb

 access_token : 34060588-dd4e-36a5-ad93-

440cc77a1cfb }

Access Token is 34060588-dd4e-36a5-

ad93-440cc77a1cfb

Embed token in device

Figure 4.4 Flow of obtained access token

This implementation is based on previous done study (Fremantle et. al, 2014) that

indicates in case of a time expiration of the access token, re-generating access token

with refresh token in client code may not be possible because of the restricted resources

of the device. In addition to this, access token is sent to broker as a plaintext. However,

using the same token with insecure channel can give a rise to the security

vulnerabilities such as spoofing, eavesdropping, man-in-the-middle, and replay.

Therefore, in order to prevent these attacks, contribution on previous done study with

25

AES encryption and HOTP with hash chain are implemented to increase security level.

They are detailed on the following pages.

4.2 HMAC-Based One-Time Password

There has been no method or plugin aside from using certificate to create a mutual

authentication mechanism in MQTT protocol yet (Banks & Gupta, 2014). Client can

be authenticated by the broker. However, there is no study to authenticate the broker

by the clients aside from TLS. It is significantly critical since all communication is

performed over the broker that receives data from the publisher and filters these data

according to the topic where subscriber is interested in and then, sends it to the

subscriber. Unless the broker is authenticated, client cannot to be sure that it is

communicating with the correct broker or has been forwarded to a third party broker.

Considering the devices having restricted resource, hash chain without secret key to

confirm the broker by the client is designed to avoid heavy computation on the client’s

side besides the authentication and access of the client.

HOTP was standardized as IETF RFC 4226 in December 2005. HOTP is preferred

in order to provide not only two-way authentication but also to prevent replay attacks

without time synchronization (H. J. Kim & H. S. Kim, 2015). The HOTP algorithm is

based on HMAC-SHA-1, a shared unique secret (K) between a client and the broker,

and a counter value (C) that must be synchronized with the HOTP generator and the

HOTP validator. OTP is generated from a HMAC-SHA-1 value by truncate (M’Raihi,

Bellare, Hoornaert, Naccache & Ranen, 2005; Saxena, 2007). The HOTP is expressed

as in (4.1).

 HOTP (K, C) = Truncate (HMAC-SHA-1(K, C)) (4.1)

In this study, obtained client id from WSO2is is used as unique secret to generate

HOTP value since every access token is owned unique client secret and client id.

Furthermore, the client id is kept as a secret without sharing with broker because client

id will be obtained if access token is valid after client is authenticated with access

token from authorization server by broker. Therefore, Attacker does not easily guess

HOTP value by not stealing or eavesdropping client id over insecure channel.

26

Broker acts OTP generator based on HOTP with Lamport’s backward hash chain

scheme (Park, 2018). As hash function exponentiation requires high computation aside

from client, it is critical problem in the Lamport's scheme. However, N-times hash

chain is generated by broker whereas client acts as a validator and only stores

𝑁 + 1𝑡ℎ hash chain value. Client validates broker until N equals to zero. Client has

(𝑁 + 1)𝑡ℎ (HOTP (client id, 5)) value. Broker generates N-times HOTP-hash chain

value (4.2).

 ℎ𝑁(p)=h (h (…h (HOTP (client id, 5))) (4.2)

The other significant problem is re-initialization of hash value in case the value of

N equals to zero. In this study, HOTP value and status are recorded on MongoDB, in

order to update and re-initialize HOTP value by performing an algorithm with the

indicated secret value.

In order to understand the advantages of using OTP to authenticate, it will be better

to follow approach aware of occurring possible attacks between client and broker in

case of insecure channel for implementation. First, MQTT connection between client

and broker will be displayed without security mechanism, and then, details of each

part will be explained as measure against security vulnerabilities in following sections.

4.3 Advanced Encryption Standard Algorithm

Advanced encryption standard (AES) is a symmetric encryption that encrypts and

decrypts message by the same key, and it is supported by constrained devices. AES

encryption is a block cipher that it includes 128-bit block length, key that has different

length such as 128, 192, 256 bits. Each key has different process round respectively as

10, 12, 14. In encryption state, each round consists operations such as substitute bytes,

shift rows, mix columns and add round key, whereas the operations of inverse shift

rows, inverse substitute bytes, add round key and inverse mix columns takes place in

decryption state (Stallings, 2006). AES structure is shown in Figure 4.5.

27

Figure 4.5 AES structure (Stallings, 2006)

Token is used for client’s password-based authentication via insecure channel. In

order to prevent eavesdropping, password is encrypted by cipher text feedback (CFB)

mode of the AES. CFB mode requires that initially initialization vector (IV) is

encrypted with encryption key (K). And then, the result of the encryption is XORed

with plain text and operated result (C1) is used as IV for the following block cipher.

The process performs for all blocks based on the previous operated result (C1, C2, C3

etc.) (Blazhevski, Bozhinovski, Stojchevska & Pachovski, 2013). Both encryption and

decryption have the same process that it is respectively shown in Figure 4.6 and Figure

4.7 (Stallings, 2006).

28

Figure 4.6 CFB mode encryption (Stallings, 2006)

Figure 4.7 CFB mode decryption (Stallings, 2006)

Using AES encryption protects credentials against spoofing and eavesdropping

whereas, it does not prevent replay and man in the middle attack. Password in every

connection is changed by HOTP with hash-chain to protect against aforementioned

attacks. AES symmetric encryption is supported on MQTT protocol, but key

generation and distribution is a hassle when too many devices are considered. In this

study, password decryption is implemented by broker in case of client-broker

encryption. Client id which is used as public key that is owned by client, is obtained

after the client is authenticated with the access token from the WSO2is by the broker.

If token is validated, token information is requested that includes expires time,

username, scope, token type, active and client id. Therefore, distribution key problem

is solved as key is known by both client and broker.

29

CHAPTER FIVE

IMPLEMENTATION

As mentioned in Chapter 4, the proposed methods are briefly summarized and the

details of the implementation are given in this chapter.

MQTT protocol has two components that are client (publisher or subscriber) and

the broker. Three main ideas exist in terms of security in this study. Firstly, the clients

must be authenticated by the broker. There is no data transmission between an

unauthorized client and the broker. The second, client must send or receive message

from the correct broker to ensure that it takes data from the trusted source. The last

one, every client can only access to its interested topic according to its read / writing

permission.

5.1 Experimental Setup

The components of MQTT protocol and tools to provide security are explained in

this section. The selected software and hardware information is given on the Table 5.1.

Table 5.1 Selected software and hardware information

WSO2is 5.3 Requirements Version

Oracle Java SE Development Kit JDK1.8.0_144

Apache ActiveMQ 5.15.3

Apache Ant 1.10.1

Apache Maven 3.5.0

OAuth 2.0 configure Playground2 web application

Tomcat 7.0.82

Sample of Identity Server

MongoDB 3.6 Mongo-c-driver 1.10.0

Libbson

Mosquitto_pyauth app. Python 2.7

MQTT Broker Mosquitto (Linux Machine) 1.4.8

MQTT 3.1.1 Client library Eclipse_paho

MQTT Client Tool MQTT.fx

Mosquitto_pub/mosquitto_sub

30

5.1.1 MQTT Client

Various MQTT client libraries are available based on in diverse programing

languages. For example, M2MMQTT, FuseSource, machine head, MQTT.js, ruby-

mqtt are implemented with programing languages respectively C#, Java, Clojure,

JavaScript, Ruby. Eclipse-paho client is supported by many programming languages

such as C, C++, Java, JavaScript, Python, Go, C# (Obermaier, 2015).

Eclipse-paho is an open source MQTT client and is implemented with Python 2.7

language in this study. The Eclipse-paho MQTT client is supported by MQTT 3.1 and

MQTT 3.1.1 protocol (Paho project, 2015). It connects to MQTT broker and acts a

publisher or subscriber.

MQTT 3.1.1 version is preferred since it allows the length of the identity of the

client to be greater than 23 bytes. In order to evaluate the improved security

mechanism, client tools are used. Mosquitto_sub / Mosquitto_pub is used on server

without GUI whereas MQTT.fx shows broker statistics with GUI.

5.1.2 MQTT Broker

All communication takes place over the broker in the MQTT protocol. Eclipse

Mosquitto is an open source message broker and is written with the C language. It is

supported by MQTT 3.1 and 3.1.1 protocol. Mosquitto is especially suitable for IoT

application (Light, 2013). To prevent stealing and modifying data between the client

and the broker, Mosquitto is configured with TLS or authentication and authorization

mechanism is added by using backend database, ACL file and certificates to increase

secure communication. In this study, a plugin is written to develop security mechanism

with Python language on Mosquitto-v1.4.8.

31

5.1.3 Authorization Server (WSO2is)

WSO2 identity server (WSO2is) is an open source identity and access management

that includes many services such as authentication with Kerberos, X509 and OTP with

SMS or mobile application in addition to access control with OAuth 2.0, OpendID etc.

(WSO2is, 2017). WSO2is acts as an authorization server in this study. OAuth 2.0

authorization protocol requires callback URL so it is configured with playground 2.0

web application. Curl is used in command line to obtain access token via HTTPs

Internet protocol on the authorization server. Client authority and identity are validated

with the token and scope by introspection REST API on the plugin over the broker.

5.1.4 MongoDB

MongoDB is an open-source the one of the NoSQL database that stores data in

JavaScript object notation (JSON) document format. It makes easier usage since

complex hierarchical structures can be defined with embedded array or object as one

record. Furthermore, it performs high scalability in case huge number of clients’

connection to the IoT application. As MongoDB includes features such as indexing,

sorting, filtering, aggregation unlike the relational database, instant queries are made

faster (Chodorow, 2013). While many NoSQL databases allow access to the database

only via keys, MongoDB also offers regular expressions, as well as querying for

desired fields and range queries.

In this study, since the record can consist the embedded array of document, different

size and type of the pair of field-value for each document, MongoDB is especially

preferred to provide dynamically HOTP value synchronization between client and

server than other database. Moreover, adding, removing and updating are operated

directly by indicating certain value with index. MongoDB plugin is integrated on

Mosquitto and client secret is used to provide uniqueness for each client on MongoDB.

When the MQTT security mechanism is developed it is assumed that security is

provided between the MQTT components and the MongoDB.

32

5.2 Proposed Authentication and Authorization Mechanism

Previous the done study (Fremantle et. al., 2014) related to OAuth 2.0 framework

has been implemented with contribution of AES encryption and HOTP with hash-

chain to identify securely both client and broker. The contribution is made to the

previous work for the authentication and access authority is shown in the flow chart in

Figure 5.1.

Client Broker
Mqtt_pyauth_

oauth2_otp
WSO2is

2. Connect(Username = access token,

 Password = E(Client id, Client

secret HOTP), Client _id = client_secret)

3. Unpwd_check(

Username = access

token)

4. Introspect (Access

Token)

 {Valid:true,

Scope= {RW}/topic/#

Client_id : }
True

Connack

10. Acl_check(

Client_id,

Username=Acess

token,

/topic/

temperature,Write)
11. Introspect(Access

token)

{Valid: true,

Scope= {RW}/topic/

? }

Is /topic/temperature

in /topic/? ?

Is W in RW?

True

Publish

Data

MongoDB

 1. Obtain (Access Token,client_id,client_secret), Embed

them and HOTP value

5. Check_user

(client secret &

client id)

6. Filter, Insert or Update

(Generate

(client_secret,HOTP

(client_id))
{Nth-HOTP,

status}

7. Validate_user (N+1th-

HOTP(client), h(Nth-HOTP(broker)))

{ valid:true,

HOTP(broker) =

N-1th-

HOTP(broker,

Status: }

True

9. Publish /topic/

temperature,

Message

8. Validate Broker(N+1th-HOTP(client),h(Nth-HOTP(Broker)))

Update (HOTP(client) = Nth-HOTP(Broker))

Figure 5.1 The flow of authentication and authorization mechanism

Initially, every one of the clients is registered to the identity server that is known as

WSO2is in the study, and then configure OAuth 2.0 service provider with playground2

web application (Wso2is, 2017). Service provider generates unique client id and client

secret for each registered client to obtain access token and determine client’ access,

33

that is a scope. Access token is taken with using curl command line tool on Linux

machine. Client’s 𝑁𝑡ℎ(HOTP) value is generated by using client id as a secret key,

taking C is a static number. Generation HOTP is defined in (5.1)

 HOTP (client id, 5) = Truncate (HMAC-SHA-1(client id, 5)) (5.1)

The HOTP value, client secret, client id and access token are manually embedded

in client such as device, smart card, etc. by the developer. Each client’s client secret is

a unique value. The HOTP value depending on the client secret is inserted on

MongoDB and is updated in every CONNACK message.

Eclipse-paho python client library is used as a publisher/subscriber client and

Mosquitto which is an open source message broker written in C language, is used as

the MQTT broker (Light, 2013). In order to generate HOTP in addition to the

validation of the client and its authority on the broker, Mosquitto_pyauth github code

(Bachry, 2013) is developed on Mosquitto broker. Client information and how to use

this information with MQTT CONNECT message to connect to the Mosquitto broker

is shown in Table 5.2.

Table 5.2 Client information

THE INFORMATION OF CONNECT MESSAGE

CLIENT ID “mfsEQkwtfKINk0npCSWRb66l6jIa”

CLIENT SECRET “1xlZwKPW6OHlGTYg1bw4lM0QfQwa”

ACESS TOKEN “607c8f8b-9a16-3663-9bfe-0f05ddf34c33”

𝑵𝒕𝒉HOTP 200289

USER NAME Access Token

PASSWORD AES-256(client id, Client secret ‖ HOTP)

PORT 1883

BROKER ADDRESS 193.x.x.x

34

Client id: Client id is used as both public key for AES encryption and secret key

for generation HOTP. It does not share with broker. Client id is obtained as information

of active token when the client is authenticated.

Client secret is used to create document for each one of the clients on MongoDB

in order to provide a unique record Also for the re-initialization of HOTP value and

the management of synchronization between client and broker are performed by filter

the client secret with document on MongoDB. To prevent from eavesdropping, client

secret is encrypted by AES-CFB mode with client id as a key that is 256-bit length.

The length of the client id is not static, so its length is completed by padding with zero

in case of being less than 32 bytes. The challenge of key distribution over the insecure

channel is overcome by using the client id that is known to both the client and the

broker. Only used AES encryption does not prevent replay attack or man in the middle

attack. So client secret and HOTP value are concatenated to change password in every

connection and then, are encrypted. The last 6 digit of password expresses HOTP

count.

Access token is obtained by curl command line tool from authorization server to

authenticate client by using as the username in CONNECT message. The information

of the access token is informed in Table 5.3. So, as to avoid re-generating token in case

of a time expiration of the access token, a long-lived expiration time is set up.

Table 5.3 Access token information

Access Token 607c8f8b-9a16-3663-9bfe-0f05ddf34c33

Refresh Token: A05da6fb-ab14-35ea-8ab9-8a39086c2c1e

Scope: W3sicnciOiJydyIsInRvcGljIjoiL3B6Zi8ifV0=

Token Type: Bearer

Expires in: 1080000

In our study, undermentioned solution is recommended instead of using static same

password and username in terms of transmitting without secure way. As well as using

35

a token, to put the security one more step ahead, hash chain is used to validate the

client in case of a stolen token.

HOTP is used to prevent replay attack by generating different value for each one

of the CONNECT message. Moreover, HOTP with hash-chain supplies broker

authentication by the client side. Therefore, Publisher sends message to the trusted

broker, and subscriber ensures to receive message from correct broker.

In respect of generation and verification of the HOTP, broker acts as generator

whereas client stores only calculated last HOTP value and then, the HOTP count are

updated depending on the verification processes on MongoDB.

Initially Generated HOTP Values:

Client HOTP value = 𝑁𝑡ℎ𝐻𝑂𝑇𝑃(𝑐𝑙𝑖𝑒𝑛𝑡 𝑖𝑑, 5),

Broker HOTP values = (𝑁 − 1)𝑡ℎ𝐻𝑂𝑇𝑃(𝐻𝑂𝑇𝑃 (𝐻𝑂𝑇𝑃…(1𝑡ℎ𝐻𝑂𝑇𝑃 (0𝑡ℎ𝐻𝑂𝑇𝑃(𝑐𝑙𝑖𝑒𝑛𝑡 𝑖𝑑, 5)))))

This equation is exemplified like below Table 5.4.

Table 5.4 HOTP count is based on client secret

HOTP Value / 𝒏𝒕𝒉 0 1 2 … N-2 N-1 N

 Client Secret: 1xlZwKPW6OHlGTYg1bw4lM0QfQwa

Client HOTP - - - - - - 200289

Broker HOTP 354034 419503 763894 … 858123 543115 -

1’s Connection Client - - - - - 543115 -

1’s Connection Broker 354034 419503 763894 … 858123 - -

 Client Secret: 5kK7XjmQf0RDOKgxVGQScJqT7rYa

Client HOTP - - - - - - 224769

Broker HOTP 021964 211428 931713 … 273294 020723 -

1’s Connection Client - - - - - 020723 -

1’sConnection Broker 021964 211428 931713 … 273294 - -

The first stage is that access token is validated from authentication server by broker,

and then, if the client is valid, password is decrypted and obtained client’s HOTP count

36

and client secret. Client secret is controlled on the MongoDB whether the HOTP was

previously generated by the broker or not. If there is no match, firstly N-1 times HOTP

values are created and inserted on MongoDB. The second stage, Client’s 𝑁𝑡ℎ HOTP

value is compared with taking hash (𝑁 − 1)𝑡ℎ HOTP value that broker has. If the

match is correct, client is validated by the broker. Broker updates its HOTP value with

one step backward as (𝑁 − 2)𝑡ℎHOTP value. Broker responds as CONNACK

message with result codes that indicates successfully connection, to client. Before the

client receives/publishes message, Client’s 𝑁𝑡ℎHOTP value is compared with taking

hash (𝑁 − 1)𝑡ℎHOTP value that broker has. If they match, broker is validated by the

client. Client updates its HOTP value with (𝑁 − 1)𝑡ℎHOTP value that broker has, and

then, publishes or subscribes message based on client authority. Synchronization

between client and broker is managed by MongoDB operation.

Username is generally used for password-based on authentication. Username can

be token, OTP etc. In this implementation, access token is used as username to provide

uniqueness credential of huge number devices. The pair of username and password as

credential is sent to Mosquitto broker with CONNECT message for first step

authentication.

Password consists of concatenation of client secret and HOTP count. Before it is

transmitted to the broker, password is encrypted with AES-256 CFB mode by using

client id as a key. Password always changes in every connection thanks to HOTP

count. Client id is not shared between client and server. In this manner, even if the

password is captured by an attacker, the attacker cannot alter password without

decryption via key and cannot reuse password due to HOTP’s short life span. Password

is defined like this;

Password = AES-256(client id, Client secret ‖ HOTP)

Authentication mechanism is made up two stages. Each step is explained with

indicated MQTT message type step by step.

Step 1. Registered client to WSO2is, whose information aforementioned client id,

client secret and access token, are used to show how the authentication and

37

authorization in the implementation of local area is performed. Developer calculates

default HOTP value, that is determined 6𝑡ℎ HOTP to sample, and embeds this HOTP

value and client’s information in the MQTT client. Registered three clients’

information is given in Table 5.5. One of the clients has two different access token due

to base on its scopes.

Table 5.5 Registered three clients’ information and their 6𝑡ℎHOTP counts

Client Access Token Client id Client secret 6𝑡ℎHOTP

Pub1 4e526038-00c5-37b-

fbb55-149c67a9a7de

mfsEQkwtfKINk0npCSWRb66l6jIa

1xlZwKPW6OHlGTYg1b

w4lM0QfQwa

322924

Pub1 69c71be5-f987-3464-

9da4-681387b6f0d1

mfsEQkwtfKINk0npCSWRb66l6jIa

1xlZwKPW6OHlGTYg1b

w4lM0QfQwa

322924

Sub1 33e578ee-3f69-3737-

8f99-951edc5352e7

01F3krL2tXHtmt55cowbv93dlBoa

5kK7XjmQf0RDOKgxVG
QScJqT7rYa

623106

Sub2 f9db5044-a9ba-3c44-

84ce-be6c39774292

nSAy8NhBCPpiUwfXen5Yp0dXLqMa

40GiRwSpht3JiaTd5fDF0

U36oGAa

808139

Scope is defined as JSON format for publisher as: [{“rw”:”rw”,”

Topic”:”/temperature/”}]. Its base64encode converted value is written as the scope to

request access token from WSO2is via curl command line tool and following this:

curl --user mfsEQkwtfKINk0npCSWRb66l6jIa:1xlZwKPW6OHlGTYg1bw4lM0QfQwa -k -d

"grant_type=password&username=admin&password=admin&scope=W3sicnciOiJydyIsInRvcGljIjoiL3RlbXBlc

mF0dXJlLyJ9XQ==" -H "Content-Type: application/x-www-form-urlencoded”

https://localhost:9443/oauth2/token

The response from WSO2is is shown as below. After the validation client, scope is

parsed as JSON.

{"access_token":"4e526038-00c5-37bf-bb55-149c67a9a7de","refresh_token":"fca938fc-4976-391e-94bc

51a492d47789","scope":"W3sicnciOiJydyIsInRvcGljIjoiL3RlbXBlcmF0dXJlLyJ9XQ==","token_type":"Bearer"

,"expires_in":10800}.

38

Step 2. In order to connect to the Mosquitto message broker, firstly client sends

CONNECT message that includes client id, port, broker address, clean session and

keep alive. In addition to this, optional username and password are used to provide

authentication. Clean session is preferred ‘False’ or ‘0’ to store all message and client

information by broker in case message is demanded as QoS 1 or 2. ‘True’ or ‘1’ clean

session specifies that broker clean previous all communication and client. Keep alive

indicates time interval whether the connection is reachable or not via PINGREST or

PINGREC. Client id which is known both the client and the Mosquitto broker, is used

as the key to encrypt password that contains concatenation of client secret and

6𝑡ℎHOTP. One of the authentication stages takes places via access token that is used

as username in clear text. The second authentication is validated encrypted password

that is changed via HOTP in every connection to prevent replay attack. The

CONNECT message is indicated in Table 5.6.

Table 5.6 Connect message type

Client Client id Username(Access token) Password AES-256

Pub1

1xlZwKPW6OHlGTY

g1bw4lM0QfQwa

4e526038-00c5-37bf-bb55-

149c67a9a7de

K5gpx1FXFuSjNOQJTyHtpe

5isY3uVWSSy8rcjCm2_isFl2

pGcIetMqo2P3Qo4gtvfQfQN

kqmqQe46VhFhS7eSQ

Sub1

5kK7XjmQf0RDOKg

xVGQScJqT7rYa

33e578ee-3f69-3737-8f99-

951edc5352e7

rSAc4cDbhcbCuFxwPOJ98m

86BSPMFSOPcjPwTuLoi45w

xttJJPvqx0DP7g4fooY6d9myi

LAffMTi7ARTsH4rGA

Sub2

40GiRwSpht3JiaTd5f

DF0U36oGAa

f9db5044-a9ba-3c44-84ce-

be6c39774292

inDrRo3kCMI1_qGkJr2BckF

PkGe4_sH6WMXK1rZ0X9Pc

LPwMlZ3sd4v1MGaoY9xvR

V7ITii5bL6QT4tYmArSDQ

client=mqttClient.Client(client_id=client secret, clean_session=False, userdata=None,

transport=”tcp”)

client.username_pw_set(user, password)

client.connect(broker_address=193.x.x.x, port=1883, keepalive=60)

Step 3. Mosquitto_pyauth (Bachry, 2013) github code is written to improve

application with python language instead of C language on the Mosquitto by Martin.

39

In this study, the application with this github code is developed to implement security

mechanism. This application runs over Mosquitto message broker. Unpwd_check

function is called to validate access token from WSO2is to authenticate client when

the client connects. if username or password is empty, regardless of calling

introspection API, a response message will be returned as an unauthorized client with

CONNACK message to the client.

Step 4. The developed application of mqtt-pyoauth2.0_otp calls introspection API

to obtain client id that is used as the key for decryption of the cipher password, by

validation access token from the authorization server via HTTPs protocol. Then, the

authorization server returns client information as the response in Table 5.7.

Table 5.7 Returned client information

Username: admin@carbon.super

Exp: 1523833511

Iat: 1523822711

Token_type: Bearer

Client_id: mfsEQkwtfKINk0npCSWRb66l6jIa

Active: True

Scope: W3sicnciOiJydyIsInRvcGljIjoiL3RlbXBlcmF0dXJlLyJ9XQ==

Unless the token is active, the client is unauthorized and its access will be denied.

CONNACK message with result code 5 is returned to the client, that means connection

refused, not authorized. In case of the active token, first authentication step is

completed successfully. CONNACK message with result code 0 is returned to the

client, that means connection accepted, an authorized client. Client secret and

6𝑡ℎHOTP(client) are obtained by using the client id as the key.

Step 5. To authenticate both client and broker, MongoDB is implemented as a

backend on Mosquitto with application. In order to perform second authentication, 6𝑡ℎ

HOTP(client) and calculated HOTP(5𝑡ℎHOTP(broker)) are compared with each other,

if values are equal, client will be validated.

40

Step 6. For step 5, first thing to be checked on MongoDB is whether the broker

generates HOTP depending on client secret or not. If not, broker generates HOTP

values N-times and inserts on MongoDB. The sampling was done by assuming that N

is 5. In order to provide synchronization between client and broker, status code is kept

for one of the HOTP values depending on the client secret. HOTP values with status

code '2' is noticed in order to indicate the ordered process for the broker and the client.

As an example using exist user, a user document with a generation HOTP might look

like:

{ObjectId("507f191e810c19729de860ea")

"user_id": " mfsEQkwtfKINk0npCSWRb66l6jIa",

"HOTP": [{“status”:0, “count”: 0, “broker_HOTP:” 042439”},

 {“status”:0, “count”: 1, “broker_HOTP:” 459020”},

 {“status”:0, “count”: 2, “broker_HOTP:” 273755”}

 {“status”:0, “count”: 3, “broker_HOTP:” 237502”},

 {“status”:0, “count”: 4, “broker_HOTP:” 335460”},

 {“status”:2, “count”: 5, “broker_HOTP:” 991565”},]}}

{ObjectId ("507f191e810c19729de860eb")

"user_id":5kK7XjmQf0RDOKgxVGQScJqT7rYa

"HOTP": [{“status”:0, “count”: 0, “broker_HOTP:” 543862”},

 {“status”:0, “count”: 1, “broker_HOTP:” 128892”},

 {“status”:0, “count”: 2, “broker_HOTP:” 608455”},

 {“status”:0, “count”: 3, “broker_HOTP:” 070065”},

 {“status”:2, “count”: 4, “broker_HOTP:” 711973”},

 {“status”:1, “count”: 5, “broker_HOTP:” 0633688”},]}}

If the client secret exists on MongoDB, the document is updated in case of

validation client.

Step 7. The HOTP value that depends on client secret and has status code as 2, is

taken and its HOTP value is calculated. And then, it is compared with HOTP(client).

If they matched, broker updates its HOTP value with the previous value of itself due

to irreversible hash function and status of the new HOTP value is updated as 2. The

status of the old HOTP value is changed as 1 to indicate ordered process for client.

Pub1 is exampled like this:

41

6-times HOTPs are generated by using client id and 5 respectively as secret, count.

Secret
 𝐶𝑙𝑖𝑒𝑛𝑡 𝑖𝑑
← 1xlZwKPW6OHlGTYg1bw4lM0QfQwa

𝐻𝑂𝑇𝑃0 = 042439 𝐻𝑂𝑇𝑃2 = 273755 𝐻𝑂𝑇𝑃4 = 335460

𝐻𝑂𝑇𝑃1 = 459020 𝐻𝑂𝑇𝑃3 = 237502 𝐻𝑂𝑇𝑃5 = 991565

6𝑡ℎHOTP
𝑝𝑢𝑏1 𝐶𝑙𝑖𝑒𝑛𝑡 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝐻𝑂𝑇𝑃
← 322924

5𝑡ℎHOTP
𝑠𝑡𝑎𝑡𝑢𝑠 𝑒𝑞𝑢𝑎𝑙𝑠 2 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛
𝑐𝑙𝑖𝑒𝑛𝑡 𝑠𝑒𝑐𝑟𝑒𝑡 𝑜𝑛 𝑚𝑜𝑛𝑔𝑜𝑑𝑏

← 991565

In case comparison is equivalent, the document based on client secret is updated.

HOTP(broker)
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑏𝑟𝑜𝑘𝑒𝑟 ℎ𝑜𝑡𝑝 𝑎𝑠 𝐻𝑂𝑇𝑃4

𝐻𝑂𝑇𝑃4 𝑠𝑡𝑎𝑡𝑢𝑠 𝑎𝑠 2 𝑤ℎ𝑒𝑟𝑒𝑎𝑠 𝐻𝑂𝑇𝑃5 𝑠𝑡𝑎𝑡𝑢𝑠
 𝑖𝑠 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑎𝑠 1

← 𝐻𝑂𝑇𝑃4

Client receives CONNACK message with result code 0, that means client is

authenticated and connection is successful. If the HOTP values do not matched,

CONNACK message with result code as 5 is returned to the client, that means

connection refused, not authorized.

Step 8. After the client is authenticated with access token and HOTP value by the

broker, broker is authenticated by client side. HOTP value is calculated with HOTP

value that has status code as 1, and then, the calculated HOTP value is compared with

client's own HOTP value. The aim of this step is to be ensured that publish or subscribe

message is forwarded to the right broker. If the result of the comparison is true, client

updates its HOTP value with the broker's HOTP value and also updates status codes

from 1 to 0 to provide synchronization between the client and the broker to detect

attack in case of interception of the MQTT message. Pub1 is exampled with following

like this:

In case CONNACK message with result code as 0 is received, broker is authenticated.

6𝑡ℎHOTP
𝑝𝑢𝑏1 𝐶𝑙𝑖𝑒𝑛𝑡 𝐻𝑂𝑇𝑃
← 322924

42

5𝑡ℎHOTP
𝑠𝑡𝑎𝑡𝑢𝑠 𝑒𝑞𝑢𝑎𝑙𝑠 1 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛
𝑐𝑙𝑖𝑒𝑛𝑡 𝑠𝑒𝑐𝑟𝑒𝑡 𝑜𝑛 𝑚𝑜𝑛𝑔𝑜𝑑𝑏

← 991565

HOTP(𝐻𝑂𝑇𝑃5)
𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑤𝑖𝑡ℎ 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟
⇔ 𝐻𝑂𝑇𝑃6

In case comparison is equivalent, client HOTP value and the document based on client secret

are updated.

HOTP(Client)
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑐𝑙𝑖𝑒𝑛𝑡 ℎ𝑜𝑡𝑝 𝑎𝑠

 𝐻𝑂𝑇𝑃5

← 𝐻𝑂𝑇𝑃5

Status
𝑠𝑡𝑎𝑡𝑢𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑙𝑖𝑒𝑛𝑡 𝑠𝑒𝑐𝑟𝑒𝑡

𝑖𝑠 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 1 𝑡𝑜 0

← 0

Step 9. After broker is authenticated by the client, the client acts as publisher or

subscriber to send or receive message based on the client’s interested topic. In this

step, client sends message with the related-topic on PUBLISH message to the broker.

Step 10. When the PUBLISH message is received by the broker, the broker calls

acl_check function in mqtt_pyauth2.0_otp application.

Step 11. Application calls introspection API to give access control by comparing

client access and scope that access token has. Authorization server replies the defined

scope of access token and its validation to the application. Application parses scope as

JSON format like in the Table 5.8.

Table 5.8 Parse scope of access token

Client/Access Token Scope

Pub1/ 4e526038-00c5-37b-fbb55-149c67a9a7de [{“rw”,:”rw”,”Topic”:”/temperature/”}]

Sub1/ 33e578ee-3f69-3737-8f99-951edc5352e7 [{“rw”,:”r”,”Topic”:”/temperature/”}]

Sub2/ f9db5044-a9ba-3c44-84ce-be6c39774292 [{“rw”,:”r”,”Topic”:”/humidity/”}]

Client read, write permission are shown as respectively r/ w. The topic of scope is

checked with the topic of the message. If they match, client gains authority. For

instance, four clients connect to broker that have different access authority in Figure

5.2. WEMOS has writing permission to publish message related to temperature topic,

whereas the client tools with MQTT.FX on Linux machine, MQTT-lens on Chrome

43

web browser and MyMQTT on Android operating system have read permission with

their interested topic in temperature to receive message.

WEMOS

Mosquitto25 °C

 PC-MQTTFX

 TABLET-MQTTLens

mongoDB

 SMART-PHONE

MyMQTT

25 °C

Publisher Broker Subscriber

Figure 5.2 The pub/sub clients connect to the Mosquitto

When the publisher sends a message under a topic as temperature, the subscriber

receives the message from broker according to the valid token and scope, that it is

given in Table 5.9.

Table 5.9 The information of client’s access

Client Access token Message Topic Scope Topic Result Status

Pub1

Valid 25° /temperature/ /temperature/ Authenticated and

authorized

Sub1

Valid 25° /temperature/ /temperature/ Authenticated and

authorized

Sub2 Valid denied /humidity/ /humidity/ Authenticated but

not authorized for
temperature

Sub3 Invalid denied denied denied Not authenticated

and authorized

Sub4 Valid denied /humidity/ /temperature/ Authenticated but
not authorized due to

not matching scope

topic and message topic

Sub3 has not credential due to not registered to the WSO2is so its access is denied

with response unauthorized. Whereas, sub1, sub2 and sub4 has valid access token and

completed two authentication steps successfully. However, Sub2 can receive message

only under a humidity topic so receiving message is restricted. Although sub4 can

access the temperature topic it requests under the humidity topic and its access is

denied. Sub1 gets the message since its authority and requested topic match.

44

CHAPTER SIX

SECURITY ANALYSIS OF THE IMPLEMENTATION

Chapter 6 describes how the vulnerabilities are prevented by using the developed

MQTT security mechanism application.

6.1 Prevent Replay Attacks

Transmitted data is reused by an attacker on MQTT in order to interrupt the process

by sending this data repeatedly. Generally, nonce and timestamp are suggested to

prevent from replay attacks. In our implementation, in order to avoid time

synchronization, HOTP has been preferred to change data continuously that means,

obtained password has been invalid in a short-time.

6.2 Prevent Password Guessing

The necessary secret for HOTP has been kept confidential without transmitting it

between client and broker to be not able to calculate HOTP. Therefore, an attacker

cannot guess password easily without known secret.

6.3 Prevent Man-in-the-Middle Attack

The man-in-the-middle attack sniffs the data between the client and the server and

can read, delete or modify this data. Even if data is encrypted, it can be altered due to

pre-shared key. In order to prevent this attack, public key is not transmitted over

insecure channel between the client and the Mosquitto broker. The key is obtained by

verifying the client from the authorization server via HTTPs. In addition, password is

modified by applying backward hash chain due to being non-invertible. Access token

can be stolen because of sending it clear text. However, one more authentication step

is implemented with hash-chain. Unless correct client secret key and HOTP value are

obtained after decryption, there will be no user registration on MongoDB and client

authority is denied.

45

6.4 Protect from Eavesdropping

Access token can be stolen but it is not enough to connect to the broker. Password

is encrypted with AES-CFB mode and encryption key is kept secret without

forwarding between the client and the broker. Unless the key is known by the attacker,

plain text is not found.

6.5 Impersonation Attack Protection

If the attacker connects to the broker before the client, it is authenticated. At the

same time, synchronization is degraded between the client and the broker. The

MongoDB scheme is designed to understand whether there is any attacker or not.

Client changes status attribute on MongoDB that includes three modes respectively 0,

1, 2. The mode 2, indicates the order the broker will process. The mode 1, specifies

that the client updates the value of status attribute from 1 to 0 in case of receiving

CONNACK message and then, publishes or subscribes message after the identified

broker. The last mode 0, is to understand the re-initialization of the hash function in

case all the values of status attribute are equal to zero. And then, the last count of

HOTP is used as secret to generate HOTP again as many as the previously mentioned

number and the client HOTP is updated with one more calculation hash of the last

HOTP to provide synchronization. If synchronization cannot be achieved, the client is

reset. If the impersonation attack is occurred, it can be determined by the situation that

the client cannot alter the value of status attribute 1 to 0 since CONNACK message

cannot be received by the client. The control mechanism is applied on before

progressing the access control by the broker and impersonation attacker authority is

denied. If the client connects to the broker before the attacker, impersonation attack

cannot be possible due to the invalid password with HOTP.

6.6 Provide Mutual Authentication

There is no knowledge of client information such as IP address and port number

between any client. All communication is occurred between the client and the broker.

46

Client should make sure of sending message to a trusted broker and receiving message

from the right source. Therefore, hash chain is used to provide two-way authentication

between the client and the broker. There is no mechanism to identify the broker aside

from the certificates on MQTT protocol.

6.7 Restricted Device Access

In MQTT protocol, publisher and subscriber communicate with each other based

on their topic. If there is no access control mechanism, each client accesses all

messages regardless of their interested topic. Therefore, huge network traffic is

occurred. In order to take advantages of MQTT protocol such as low bandwidth, the

OAuth 2.0 authorization protocol that is also recommended by MQTT (Banks &

Gupta, 2014), is used to restrict client access depending on its interested topic and

permit reading or writing. OAuth 2.0 protocol is implementation is explained in the

previous section in detail. Even if the authentication information is impersonated by

the attacker, no message is transmitted without known scopes.

6.8 Manage De-synchronization

MongoDB is used on written mqtt-oauth2-otp plugin to update and manage HOTP

value in case of possible network disconnection and attacker.

6.9 Prevent physical attack

The scope of the study has no precautions against the physical attack. However, it

is suggested that mobile application can be added to plugin in order to manage with

the OTP by the user to revoke device or access.

47

6.10 Provide Confidentiality

Password and payload are encrypted by AES to provide data confidentiality.

Attacker does not achieve the knowledge of message, topic and password without

having encryption key that does not transmitted between client and broker.

6.11 Prevent Denial of Service Attack

Denial of service (DoS) is an attack which makes the service disabled. Due to the

regular attacks on a system, the system cannot operate efficiently and becomes

unserviceable. DoS attack causes system resources to run out quickly. Connect

message is changed in every connection by using HOTP and updated regularly.

Therefore, possible of synchronization problem is under the controlled between the

client and the broker to maintain availability of communication. If the DoS attack is

possible, client’ credential is revoke and access is denied.

48

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

This study emphasizes the importance of device authentication and authorization in

IoT scenarios due to the number of devices and their sensitive data. MQTT lightweight

communication protocol is preferred to provide security as low battery power, storage,

bandwidth of the IoT is taken into consideration. MQTT protocol has no specific

security mechanism apart from authentication with username password, so a plugin is

written over the broker. The main concern with uniqueness, key generation and

delivery challenges of huge number of devices are coped with the OAuth 2.0

framework on WSO2is authorization server. Unique client id and secret is generated

incase registration authorization server. Token and scope is created with the web

application on the authorization server. Client id is used as key with AES encryption

and kept secret to prevent spoofing and alteration of the message in case of the insecure

channel whereas the client secret indicates client uniqueness. Broker obtains the key

after the validation of the client with the introspection API on the authorization server.

Client is authenticated in two steps with token and HOTP in order to prevent the replay

attack and protected against the attacks due to using a static token. Therefore,

CONNECT message is continuously changed by using short-lived HOTP in every

connection to obtain much stronger security.

As different from the authentication of client, HOTP with hash chain is suggested to

can be sure that communication takes place over the trusted broker. HOTP changes

during every connection. Therefore, the connection will be attempts unsuccessful even

if HOTP or token is obtained by the attacker. Time synchronization or nonce is

suggested against the replay attack. However, time synchronization can be a problem

between the client and the broker so protection from replay attack is provided with

HOTP with hash chain as HOTP value is updated with the previous hash value using

the invertible hash function. Moreover, if the attacker impersonates the client, HOTP

will be invalid after its first connection. Hash chain synchronization is managed by

updating status codes and the HOTP value on the MongoDB. Re-initialize HOTP value

49

is controlled with the status code and the count attribute on the MongoDB by a

proposed algorithm.

The scope of paper focused on three main security issues for the MQTT protocol.

Initially, authentication is achieved with token and HOTP in order to prevent

connection with an unauthorized client by stronger security in two steps. Secondly, in

order to transmit all communication over the trust broker, HOTP with hash chain is

used to prevent forwarding message to an unknown third party. The last one, to

decrease network traffic and message delay, OAuth 2.0 framework is used, which

restricts unauthorized user access to all messages. Especially, HOTP is preferred to

prevent replay attack and man-in-the middle attack as well as providing two-way

authentication with hash chain. AES encryption without shared pre-key is used to

prevent spoofing and eavesdropping in terms of using static token. The other security

problems are discussed with the given solutions of aforementioned methods.

To sum up, In IoT applications, there is a difficulty in setting up a unique identifier

for many devices with resource constraints. Furthermore, due to the availability of a

large number of resource constraint devices, there is a key management challenge in

implementing encryption algorithms to ensure the confidentiality, integrity and

availability of the data in unsecured network environments. Our proposed

authentication and authorization mechanism gives successful solution against the

security vulnerabilities of IoT applications.

 In the future work, the result of experimental studies using WEMOS will be

evaluated according to security vulnerability and cost. Exchange scope has challenges

due to using static token. In case the scope is changed, access token is modified.

However, each client is defined with the manually embedded token. Mobile

applications with cloud usage can be integrated to re-change the scope and prevent

from physical attacks.

50

REFERENCES

Ali, I., Sabir, S., & Ullah, Z. (2016). Internet of things security , device authentication

and access Control : A Review. International Journal of Computer Science and

Information Security,14(8), 456.

Asim, M. (2017). A Survey on application layer protocols for Internet of things (IoT).

International Journal,8(3).

Bachry, M. (2013) Mosquitto auth plugin Retrieved May 05, 2018, from

https://github.com/mbachry/mosquitto_pyauth.

Bandyopadhyay, S., & Bhattacharyya, A. (2013). Lightweight Internet protocols for

web enablement of sensors using constrained gateway devices. International

Conference on Computing, Networking and Communications, ICNC , 334–340.

https://doi.org/10.1109/ICCNC.2013.6504105.

Banks, A., & Gupta, R. (2014). MQTT Version 3.1.1. OASIS Standard. Retrieved May

05, 2018, from http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/ os/mqtt-v3.1.1-

os.html.

Blazhevski, D., Bozhinovski, A., Stojchevska, B., & Pachovski, V. (2013). Modes of

operation of the AES algorithm., 212–216.

Chae, C., Kim, K., & Cho, H. (2017). A study on secure user authentication and

authorization in OAuth protocol. Cluster Computing, 1-9,

https://doi.org/10.1007/s10586-017-1119-6.

Chodorow, K. (2013). MongoDB: The Definitive guide: Powerful and scalable data

storage , (2nd ed.), O'Reilly Media, Inc.

Elgazzar, M. H. (2015, December). Perspectives on M2M protocols. In Intelligent

51

Computing and Information Systems (ICICIS), 2015 IEEE Seventh International

Conference on. 501-505. https://doi.org/ 10.1109/IntelCIS.2015.7397267.

Esfahani, A., Mantas, G., Matischek, R., Saghezchi, F. B., Rodriguez, J., Bicaku, A.,

& Bastos, J. (2017). A lightweight authentication mechanism for M2M

Communications in Industrial IoT Environment. IEEE Internet of Things Journal,

4662(c), 1–8. https://doi.org/10.1109/JIOT.2017.2737630.

Fremantle, P., & Aziz, B. (2016, November). OAuthing: Privacy-enhancing federation

for the Internet of Things. In Cloudification of the Internet of Things, CIoT, 1–6.

https://doi.org/10.1109/CIOT.2016.7872911.

Fremantle, P., Aziz, B., Kopecky, J., & Scott, P. (2014, Semptember). Federated

identity and access management for the Internet of things. In International

Workshop on Secure Internet of Things, 10–17.

https://doi.org/10.1109/SIoT.2014.8.

Frigieri, E. P., Mazzer, D., & Parreira, L. F. C. G. (2015). M2M protocols for

constrained environments in the context of IoT : A comparison of approaches. In

Telecommunications Symposium (SBrT), 1–4. https://doi.org/10.14209/sbrt.2015.2.

Gantait, A., Patra, J., & Mukherjee, A. (2016, May). Design and build secure IoT

solutions , Part 1 : Securing IoT devices and gateways. IBM DeveloperWorks, 1–

20. Retrieved from https://www.ibm.com/developerworks/library/iot-trs-secure-

iot-solutions1/index.html.

Haller, N. (1994). The S/KEY one-time password system, Proceedings of the ISOC

Symposium on Network and Distributed System Security.

Hardt, D. (2012). The OAuth 2.0 Authorization Framework, IETF, RFC 6749.

Retrieved 05 May, 2018, from https://tools.ietf.org/html/rfc6749.

52

Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet

of Things: perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

https://doi.org/10.1007/s11276-014-0761-7.

Jung, S. W., & Jung, S. (2017). Personal OAuth authorization server and push OAuth

for Internet of things. International Journal of Distributed Sensor Networks, 13(6),

1–11. https://doi.org/10.1177/1550147717712627.

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015).

A survey on application layer protocols for the Internet of Things. Transaction on

IoT and Cloud Computing, 3(1), 11–17. https://doi.org/10.5281/ZENODO.51613.

Katsikeas, S., Fysarakis, K., Miaoudakis, A., Van Bemten, A., Askoxylakis, I.,

Papaefstathiou, I., & Plemenos, A. (2017). Lightweight & secure industrial IoT

communications via the MQ telemetry transport protocol. Proceedings - IEEE

Symposium on Computers and Communications, 1193–1200.

https://doi.org/10.1109/ISCC.2017.8024687.

Kim, H. J., & Kim, H. S. (2011, June). AUTHHOTP- HOTP based authentication

scheme over home network environment. Proceedings of the International

Conference on Computational Science and Its Applications - Volume Part III, 622–

637. Retrieved from http://dl.acm.org/citation.cfm?id=2029312.2029360.

Kinikar, S. & Terdal, S. (2016, August). Implementation of open authentication

protocol for IoT based application. In Inventive Computation Technologies

(ICICT), International Conference on. (1), 1-4.

https://doi.org/10.1109/INVENTIVE.2016.7823267.

Kirsche, M., & Klauck, R. (2012, March). Unify to bridge gaps: Bringing XMPP into

the Internet of Things. IEEE International Conference on Pervasive Computing and

Communications Workshops, PERCOM Workshops, 455–458.

https://doi.org/10.1109/PerComW.2012.6197534.

53

Kraijak, S. & Tuwanut, P. (2015, October). A survey on Internet of things architecture,

protocols, possible applications, security, privacy, real-world implementation and

future trends, In Communication Technology (ICCT), 26–31.

Lee, S., Kim, H., Hong, D. K., & Ju, H. (2013). Correlation analysis of MQTT loss

and delay according to QoS level. In International Conference on Information

Networking, 714–717. https://doi.org/10.1109/ICOIN.2013.6496715.

Li, W., Mitchell, C. J., & Chen, T. (2018). Mitigating CSRF attacks on OAuth 2.0 and

OpenID connect, 1–18. Retrieved from http://arxiv.org/abs/1801.07983.

Light, R. (2013). Mosquitto-an open source mqtt v3. 1 broker. Retrieved May 05,

2018, from http://mosquitto. org.

Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C., & Manzoni, P. (2015,

January). A comparative evaluation of AMQP and MQTT protocols over unstable

and mobile networks. 12th Annual IEEE Consumer Communications and

Networking Conference, CCNC, 931–936.

https://doi.org/10.1109/CCNC.2015.7158101.

Mahmood, Z. (Ed.). (2016). Connectivity Frameworks for Smart Devices: The Internet

of Things from a Distributed Computing Perspective. Springer.

Manohar, H. L., & Reuban Gnana Asir, T. (2018). Data consumption pattern of MQTT

protocol for IoT applications. Communications in Computer and Information

Science, 808, 12–22. https://doi.org/10.1007/978-981-10-7635-0_2.

Mendez, D. M., Papapanagiotou, I., & Yang, B. (2017). Internet of things: Survey on

security and privacy, 1–16. Retrieved from http://arxiv.org/abs/1707.01879.

M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D & Ranen, O. (2005). HOTP: An

HMAC-based one-time password algorithm, Internet Engineering Task Force

54

(IEFT), December 2005. Retrieved May 05, 2018, from

https://tools.ietf.org/pdf/rfc4226.pdf.

MQTT security fundamentals. (n. d) HIVEMQ enterprise MQTT broker. Retrieved

May 05, 2018, from https://www.hivemq.com/mqtt-security-fundamentals/.

Niruntasukrat, A., Issariyapat, C., Pongpaibool, P., Meesublak, K., Aiumsupucgul, P.,

& Panya, A. (2016, May). Authorization mechanism for MQTT-based Internet of

Things. IEEE International Conference on Communications Workshops, ICC, 6,

290–295. https://doi.org/10.1109/ICCW.2016.7503802.

Obermaier, B. D. (2015). Getting started with MQTT ­ A Protocol for the Internet of

Things. Retrieved May 05, 2018, from https://dzone.com/refcardz/getting-started-

with-mqtt?chapter=1.

Oh, S.-R., & Kim, Y.-G. (2017, February). Security requirements analysis for the IoT.

International Conference on Platform Technology and Service (PlatCon), 1–6.

https://doi.org/10.1109/PlatCon.2017.7883727.

Paho, Eclipse. (2015) "Paho project." Retrieved May 05, 2018, from http://www.

eclipse. org/paho.

Park, C. S. (2018). One-time password based on hash chain without shared secret and

re-registration, Computers & Security 75, 138-146.

https://doi.org/10.1016/j.cose.2018.02.010.

Patierno, P. (2016). AMQP essenstials. Retrieved May 05, 2018, from

https://dzone.com/refcardz/amqp-essentials.

Rajan, M. A., Varghese, A., Narendra, N., Singh, M., Shivraj, V. L., Chandra, G., &

Balamuralidhar, P. (2016). Security and privacy for real time video streaming using

hierarchical inner product encryption based publish-subscribe architecture.

55

Proceedings - IEEE 30th International Conference on Advanced Information

Networking and Applications Workshops, WAINA, 373–380.

https://doi.org/10.1109/WAINA.2016.101.

Salman, T., & Jain, R. (2013). Networking protocols for Internet of things, 1–28.

Retrieved from http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot.pdf.

Saxena, A. (2007). Dynamic authentication: Need than a choice. 3rd IEEE/Create-Net

International Conference on Communication System Software and Middleware,

COMSWARE, 214–218. https://doi.org/10.1109/COMSWA.2008.4554411.

Shelat, R., Patel, N., & Bhatt, C. (2016, March). A Survey of open source protocols

XMPP and SIP for instant messaging system. Proceedings of the Second

International Conference on Information and Communication Technology for

Competitive Strategies - ICTCS ’16, 1–4.

https://doi.org/10.1145/2905055.2905319.

Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., & Leung, K. (2013). A survey

on the ietf protocol suite for the internet of things: Standards, challenges, and

opportunities. IEEE Wireless Communications, 20(6), 91–98.

https://doi.org/10.1109/MWC.2013.6704479.

Shinde, S. A., Nimkar, P. A., Singh, S. P., Salpe, V. D., & Jadhav, Y. R. (2016).

MQTT-Message queuing telemetry transport protocol. International Conference on

Research and Recent Trends in Engineering and Technology. (ICRRTET) 3(3),

240-244.

Shivraj, V. L., Rajan, M. A., Singh, M., & Balamuralidhar, P. (2015). One time

password authentication scheme based on elliptic curves for Internet of Things

(IoT). National Symposium on Information Technology: Towards New Smart

World, (c), 1–6. https://doi.org/10.1109/NSITNSW.2015.7176384.

Singh, M., Rajan, M. A., Shivraj, V. L., & Balamuralidhar, P. (2015, April). Secure

56

mqtt for internet of things (iot). In Communication Systems and Network

Technologies (CSNT), 2015 Fifth International Conference on. 746-751.

Soni, D., & Makwana, A. (2017, April). A survey on mqtt: a protocol of Internet of

Things (IoT). International Conference on Telecommunication, Power Analysis

and Computing Techniques (Ictpac), 0–5. Retrieved from

https://www.researchgate.net/publication/316018571_A_SURVEY_ON_MQTT_

A_PROTOCOL_OF_INTERNET_OF_THINGSIOT.

Syed Farid, S. A., Mohd Anuar, M. I., & Habibah, H. (2016, May). Timing analysis

of lightweight AA-Beta encryption scheme on embedded Linux for Internet of

Things. IEEE Symposium on Computer Applications & Industrial Electronics

(ISCAIE), 113–116.

Stallings, W. (2006). Cryptography and network security principles and practice (6th

ed.). India: Pearson Education.

Ungurean, I., & Gaitan, N.-C. (2015). Data distribution service for real-time systems

- a solution for the Internet of Things environments. Annals of the University

Dunarea de Jos of Galati: Fascicle II, Mathematics, Physics, Theoretical

Mechanics, 38(1), 72–77. Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&site=eds-

live&db=a9h&AN=113483718.

Upadhyay, Y., Borole, A., & Dileepan, D. (2016, March). MQTT based secured home

automation system. In Symposium on Colossal Data Analysis and Networking,

CDAN. 1-4. https://doi.org/10.1109/CDAN.2016.7570945.

Windley, P. J. (2016). API access control with OAuth: Coordinating interactions with

the Internet of Things, IEEE Consumer Electronics Magazine, vol. 4(3), 52–58,

https://doi.org/10.17485/ijst/2016/v9i9/86791.

WSO2. (2017). WSO2 Identity Server Documentation. Retrieved May 05,2018, from

57

https://docs.wso2.com/display/IS530/WSO2+Identity+Server+Documentation.

Yassein, M. B., Shatnawi, M. Q., & Al-zoubi, D. (2016, September). Application layer

protocols for the Internet of things: A survey. In Engineering & MIS (ICEMIS),

International Conference on, 1-4.

Yerlikaya, Ö., & Dalkılıç, G. (2017, May). Security of message queue telemetry

transport protocol. In Signal Processing and Communications Applications

Conference (SIU), 25th,1-4.

Zamfir, S., Balan, T., Iliescu, I., & Sandu, F. (2016, October). A security analysis on

standard IoT protocols. In International Conference on Applied and Theoretical

Electricity, 1-6. Proceedings. https://doi.org/10.1109/ICATE.2016.7754665.

