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THE VEHICLE ROUTING PROBLEM WITH TRAFFIC CONDITIONS 

 

ABSTRACT 

 

The Vehicle Routing Problem (VRP) is a combinatorial optimization and integer 

programming problem seeking to service a number of customers with a fleet of 

vehicles. The classical VRP aims to find a set of routes at a minimal cost for beginning 

and ending points of the route at the depot, so that the known demands of all customers 

are fulfilled. Each customer is visited only once, by only one vehicle, and each vehicle 

has a limited capacity. It is important that the right amount of product should be 

transported at the right time to ensure customer satisfaction. So, choosing the right 

route is very critical for transportation systems. The vehicle routing problem is an NP-

Hard problem.  When number of customers and vehicles, constraints of capacity, and 

time increases, the solution of the problem becomes more difficult. 

 

In this study, a vehicle routing problem, which is suitable for real-life situation is 

discussed. In order to establish the best route apart from the traveled total distance, 

time must be taken into account for customer satisfaction. Traffic volume on the 

selected route will affect the time which is spent on the route. So, traffic plays an 

important role in determining the route. In this study, traffic conditions on alternative 

ways are taken into account to solve VRP. To achieve this aim, literature review is 

conducted, then integer linear programing formulation and metaheuristic method 

which is a combination of Genetic Algorithm, Lin-Kernighan Algorithm and 2-opt 

Algorithm, is developed. 

 

Keywords: Vehicle routing problem, traffic condition, genetic algorithm, Lin-

Kernighan algorithm 
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TRAFİK KOŞULLARI İLE ARAÇ ROTALAMA PROBLEMİ

ÖZ 

Araç rotalama problem (ARP), belirli bir talebi minimum maliyet ile başlangıç ve 

bitiş noktası depo olan rota boyunca müşterilere ulaştırmayı amaçlar. Temel bir araç 

rotalama problemi, kapasiteleri belirli araçlar ile tüm müşterilerin memnuniyetini 

sağlayan, minimum taşıma maliyetli rotaların oluşturulması için kullanılır. Müşteri 

memnuniyetini sağlayabilmek için taşımanın doğru miktarda ve istenilen zamanda 

yapılması önemlidir. Bu durum malzeme taşınmasında ve ürün dağıtımında doğru 

rotanın seçilmesinin önemini arttırmaktadır. Araç rotalama problemi NP-zor bir 

problemdir. Bu nedenle, matematiksel çözüm yöntemleri ile kabul edilebilir sürelerde 

sadece küçük boyutlu problemlerin çözümü yapılabilmektedir. Müşteri ve araç sayısı, 

kapasite ve zaman kısıtları arttıkça problemin çözümü zorlaşmaktadır.  

Araştırmada gerçek hayat koşullarına uygun bir araç rotalama problemi ele 

alınmıştır. Rotanın en iyi şekilde oluşturulabilmesi için de kat edilen toplam mesafe 

dışında, müşteri memnuniyeti bağlamında zamanın da dikkate alınması 

gerekmektedir. Seçilen rota üzerindeki araç trafiği, rota üzerinde harcanan zamanı 

etkileyeceğinden, rota belirlenmesinde önemli bir rol oynamaktadır. Dolayısıyla, bu 

çalışmada araç rotalama probleminin çözümünde alternatif yollar üzerindeki trafik 

koşulları da dikkate alınmış olup, bu çalışma ile pratik hayata ve literatüre katkı 

yapılması hedeflenmiştir. Problemin formülasyonu ve çözümü için öncelikle literatür 

araştırması yapılmıştır. Literatür araştırmasını takiben, belirlenen araç rotalama 

probleminin tamsayılı doğrusal programlama ile matematiksel formülasyonu 

oluşturulmuştur ve Genetik Algoritma, Lin-Kernighan Algoritması ve 2-opt 

algoritmasının birleşiminden oluşan metasezgisel bir metot geliştirilmiştir. 

Anahtar kelimeler: Araç rotalama problemi, trafik etkisi, genetik algoritma, Lin-

Kernighan algoritması 
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CHAPTER ONE 

INTRODUCTION 

 

Vehicle Routing Problem (VRP) is one of the current challenges in transportation 

systems. Using limited resources in the most efficient way is important in all fields. 

Aim of the VRP is the same for minimizing transportation costs. It tries to find 

optimum routes with less resources and with higher satisfaction. Because of that, VRP 

is the frequently studied topic in literature and it is also encountered in daily life. 

 

VRP has many variants because of its interest in daily life. The constraints 

encountered in daily life are also studied in the literature. In this study, while a solution 

method for VRP is developed for the literature, the probing effect of traffic condition 

to VRP which is faced in daily life has been tried to be reflected. For this purpose, an 

algorithm is developed for solving Capacitated Vehicle Routing Problem (CVRP), 

Pick-up Delivery Vehicle Routing Problem (PDVRP) and their variant that considers 

traffic condition. 

 

 Firstly, in Chapter 2, description of VRP and literature review is given for 

understanding of the problem. Then, mostly studied variants of VRP are described 

briefly. 

 

In Chapter 3, solution methods for VRP are explained. Integer linear programing, 

dynamic programing and branch and bound method are described as exact methods. 

2-opt Algorithm, Lin-Kernighan Algorithm and Genetic Algorithm are elucidated as 

heuristic and metaheuristic methods.  

 

Integer linear programing formulation and a small computational study, which 

considers traffic condition, is performed in Chapter 4. This formulation is based for 

proposed metaheuristic that is described in the following chapters. 

 

 A case study for CVRP, PDVRP and their variants with effect of traffic condition 

are examined in Chapter 5. Different data sets for CVRP and PDVRP are tested. For 
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traffic condition, real life data for Istanbul is obtained and proposed method is tested 

with this data. Lastly in Chapter 6, the study is concluded. 
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CHAPTER TWO 

VEHICLE ROUTING PROBLEM 

 

2.1 Description of Vehicle Routing Problem 

      

The vehicle routing problem (VRP) is one of the main components of distribution. 

Organizations should deliver goods and conditions that vary each day (Cordeau, 

Laporte, Savelsberg, & Vigo, 2007). VRP is a combinatorial optimization subject that 

is widely studied in literature. It has exact and heuristic solution techniques and it 

generalizes Traveling Salesman Problem (TSP). Therefore, VRP is NP-hard like TSP. 

VRP was first studied by Dantzig & Ramser (1959) and they mentioned in their article 

that optimum routing of delivery vehicles between warehouse and a set of customers 

with minimum transportation cost. Kumar & Panneerselvam (2012) mentioned that 

VRP is about finding an optimal route for a fleet of vehicles to service a set of 

customers, given a set of constraints.  

 

VRP literature growth is exponential with a %6 annual growth rate according to 

Eksioglu, Vural, & Reisman (2009). Because of this growth at the VRP literature, it is 

difficult to follow developments.  

 

Transportation costs are considerable cost components for organizations. 

According to Bell & Griffis (2010), VRP is economically important because it reduces 

the cost of transportation. When an organization optimize its routes or number of its 

vehicle it can satisfy its costumer better and, in this way, it can achieve competitive 

position.  

 

VRP has different types and these types vary according to the constraints which are 

problems have. Basically, VRP has three main constraints; routes should start and 

finish at the warehouse, all customers should visit once and demands of all customers 

should be satisfied. Although these three constraints are common for most types of 

VRP, they could be changed for some specific types. Kumar & Panneerselvam (2012) 

define variants of VRP as “formulated based on the nature of the transported goods, 



4 

 

the quality of service required and the characteristics of the customers and the 

vehicles”. 

 

2.2 Types of Vehicle Routing Problem 

 

Transportation is a matter of everyday life. Companies need to transport their 

services one point to another. As well as for the individuals transportation can be a 

problem. Knowing the optimum route between the points to be visited during the day, 

can prevent the waste of time and energy. So, VRP is a major problem in daily life and 

it encounters different constraints depends on situations. Although there are three main 

constraints for VRP, different constraints can be added, or main constraints can be 

extended depending on real life situations. VRP classified according to these 

constraints. The types of VRP which is frequently studied in the literature are as 

follows: 

 

• Capacitated VRP (CVRP) 

• VRP with Pick-up and Delivering (PDVRP) 

• VRP with Time Windows (VRPTW) 

• Multiple Depots VRP (MDVRP) 

• Split Delivery VRP (SDVRP) 

 

Braekers, Ramaekers, & Nieuwenhuyse (2016) classified 277 VRP articles which 

published between 2009 and 2015. Results about the variants of VRP and the usage in 

the literature are shown at Table 2.1.  
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Table 2.1 Variants of the VRP (Braekers, et al., 2016) 

Variant Relative presence (2009-2015) 

Capacitated vehicles 90.52% 

Heterogeneous vehicles 16.51% 

Time windows 37.92% 

Backhauls 18.65% 

Multiple depots 11.01% 

Recourse allowed 9.48% 

Multi-period time horizon 8.87% 

Precedence and coupling constraints 8.56% 

Subset covering constraints 8.56% 

Split deliveries allowed 6.12% 

Stochastic demands 6.12% 

 

These types also are divided into sub varieties with additional constraints. For 

example; CVRP is studied to fleet with homogeneous or heterogeneous capacities. 

  

This study focuses on CVRP, PDVRP and these variants of VRP considering the 

traffic effect. 

 

2.2.1 Capacitated VRP 

 

Capacitated Vehicle Routing Problem (CVRP) is the variant of VRP which vehicles 

have certain capacities. Companies must service a set of customers with known 

demands on the routes that have minimum transportation cost, which are starting and 

ending points at a depot and the vehicles are homogeneous and having a certain 

capacity in CVRP (Pisinger & Ropke, 2007). Vehicles cannot transport more goods 

than their capacity at once. Customers should have satisfied under this additional 

capacity constraint.  

 

CVRP is the most studied variant of the VRP in literature. According to Braekers, 

et al. (2016), CVRP is mostly studied variant of VRP at between years 2009 and 2015 

with a %90 rate. 
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CVRP is also has its own variants. If the problem studied with vehicles which have 

different capacities, it is called Heterogenous VRP. In another situation, customers 

may have to visit in a certain time and this type is CVRP with Time Windows. These 

variants of CVRP can be expanded with specific additional constraints. 

  

Minimizing the total travel distance is the general aim of all VRPs. Time spent in 

the transport and transportation costs such as fuel can be reduced when the travel 

distance is minimized. But in real life, minimizing travel distance is not enough for 

reducing spent time and transportation cost. External factors like traffic can affect the 

time spent on transportation. Spent time between two nodes is changed depending on 

traffic volume. One of the focuses on this research is CVRP with the traffic conditions.  

 

2.2.2 VRP with Pick-Up and Delivering  

 

Customers may have different needs in transportation network. Some may demand 

pick-up and the others may demand delivery or both simultaneously. Taşan & Gen 

(2011) explain VRP with Pick-Up and Delivering as “customers need simultaneous 

pick-up of goods from their location and delivery of goods to their location by vehicles 

start at a warehouse companies serve customers with pick-ups and deliveries from/to 

their locations”.  

 

Capacity of the vehicle is needed to consider in PDVRP. Because pick-ups and 

deliveries are affecting the capacity in different ways. This make the capacity planning 

more difficult than the other VRPs. The total amount of goods to deliver in a route 

must not exceed the capacity of vehicle, vehicle should have enough capacity to pick-

up the goods in a route and capacity of the vehicle must not exceed at any customer. 

The fullness of the vehicle depends on the sequence of customers. So, in PDVRP, 

visiting order of customers should be considered besides total distance. 
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2.2.3 VRP with Time Windows 

 

Timing is a situation that companies need to consider. Any delay in supply chain 

can cause trouble at other operations of companies and customer satisfaction is 

affected from this.  The vehicle routing problem with time windows (VRPTW) 

considers these timing.  

     

VRPTW is explained by Desrochers, Desrosier & Solomon (1992) as service, 

which is pick-up, or delivery can begin within the time window defined by customer 

and should include the earliest and the latest start of service. 

 

2.2.4 Multiple Depots VRP 

 

Companies should decrease their transportation cost to compete with the others. In 

large distribution systems having multiple depots can be more efficient than having 

one depot. Multiple Depots VRP handles with this situation. Surekha & Sumathi 

(2011) have mentioned that it is a difficult for companies to determine which 

customers are served by which depots without exceeding the capacity constraints. 

 

2.2.5 Split Delivery VRP 

 

Customers required to visited only once in classical VRP. This constraint removed 

for Split Delivery VRP. Each customer can be visited more than once and depending 

on this, demand of customers can be greater than the vehicle capacity in Split Delivery 

VRP (Archetti & Speranza, 2008).  
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CHAPTER THREE 

SOLUTION METHODS FOR VEHICLE ROUTING PROBLEM 

 

3.1 Overview of Solution Methods for Vehicle Routing Problem 

 

VRP has a major place in distribution management and many companies are dealing 

with this problem. The problem emerges in different types because of the diverse 

constraints which are companies are faced with in daily life. Due to these differences, 

VRP has been studied extensively in operational research literature. Also, it is difficult 

to solve as the size of the problem grows and this is another reason for researches in 

recent years. Therefore, there are many solution methods for VRP which are exact, 

heuristics and metaheuristic methods.  

 

Braekers, et al., (2016) survey 277 articles which are published between 2009 and 

2015, and determine the trend in VRP litarature. According to their study, 

metaheuristic methods are mostly used in recent years. The usage percentages of the 

methods are at Table 3.1. 

 

Table 3.1 Overview of applied methods (Braekers, et al., 2016) 

Applied 

Method 
Articles 

Overall 

(%) 

2009 

(%) 

2010 

(%) 

2011 

(%) 

2012 

(%) 

2013 

(%) 

2014 

(%) 

2015 

(%) 

Metaheuristic 233 71.25 65 63 65 77 80 76 65 

Exact Method 56 17.13 17 20 26 10 13 17 19 

Classical Heuristic 32 9.79 11 15 15 17 4 5 10 

Real-time solution 

methods 
11 3.36 6 0 6 4 5 2 0 

Simulation 7 2.14 4 4 6 0 2 0 0 
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3.2 Exact Methods 

 

Exact methods can be useful for small problems because of it guarantee to give an 

optimum solution. VRP is a NP-hard problem and if problem has large instances, it 

may not be possible to find results in acceptable time with exact methods. Integer 

linear programming formulations, branch and bound method and dynamic 

programming are among the exact methods. 

 

3.2.1 Integer Linear Programming Formulations   

      

Mathematical formulations are used in integer linear programming for ensure exact 

solution. These mathematical formulations based on decision variables, constraints 

and objective function. Different types of VRP can be solved integer linear 

programming formulation by reorganizing variables, constraints or even objective 

function. Although integer linear programming is easy to adapt different situations, it 

is not always the most useful method. The solution time increases when problem size 

grows. Therefore, integer linear programing formulations methods are more suitable 

for small sized problems. 

 

3.2.2 Branch and Bound Method 

      

Branch and bound method has been developed for TSP (Balas & Toth, 1983).  

Encouraging results for big problems were obtained for TSP by Carpaneto & Toth 

(1980). Laporte, Mercure, & Nobert (1986) adapted for CVRP in their article.  

 

Branch and bound method divides the problem into sub problems and decides 

which sub problem to be concluded. The method compares every new solution with 

the previous solutions and tries to find optimal route. If sub tours occur, method tries 

to avoid them. 
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3.2.3 Dynamic Programming 

 

Successive steps are used to solve the problem in the dynamic programing. Small 

sub problems are solved according to these steps. Then these solutions are used for 

solving large sub problems. 

 

3.3 Heuristic and Metaheuristic Methods 

 

Laporte, Toth, & Vigo (2013) mentioned in their article that VRP holds major place 

in transportation management and because of that carries worldwide faced VRP on a 

daily basis. VRP arises in several forms because of the variety of constraints 

encountered in practice. For over 50 years, the VRP is studied frequently in operational 

research community. This is due partly to the economic importance of the problem, 

but also to the methodological challenges it poses. TSP, which is a special case of 

VRP, can now be solved with very large instances and VRP is much more difficult 

solve to compare to TSP. For example, CVRP, which is simple case for VRP with 

constraints of capacity, is still difficult to solve with hundred customers by exact 

algorithms.  Therefore, in recent years, researches are focused on to develop powerful 

metaheuristic.  

 

Exact methods may not be sufficient for problems which have many instances or 

constraints. Solving these large problems with exact methods can take long time. 

Therefore, heuristic and metaheuristic methods are needed for solving problems in 

reasonable time even if exact methods guarantee to give an optimum solution. 

 

In addition to reasonable solving time, other reasons for using heuristic methods are 

mentioned in book which is written by Martí & Reinelt (2011). These reasons are; 

unknown solving method for problem, unsuitable available hardware for exact 

methods, difficult to model constraints with exact methods and heuristic method can 

be used part of global procedure that guarantees optimum solution.  Again, according 

to Martí & Reinelt (2011) a good heuristic method should provide reasonable 
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computational effort, near optimal solution with high probability and probability of 

finding bad solution should be low.  

 

Sörensen & Glover (2013) have explained metaheuristic as follows, ‘A 

metaheuristic is a high-level problem-independent algorithmic framework that 

provides a set of guidelines or strategies to develop heuristic optimization algorithms’. 

Metaheuristic is trying to find optimal solution from set of solutions with iterative 

operations which is a computational method. The most important feature of 

metaheuristic is that no need to any knowledge about the optimization problem. 

Genetic algorithm, ant colony algorithm, simulated annealing and tabu search are some 

of the most popular metaheuristics.  

 

3.3.1 2-opt Heuristic 

 

2-opt heuristic methods is a local search method that compare every possible pair 

of nodes by change them each other. This way the method aims to find optimal 

solution. 2-opt is first proposed by Croes (1958) for solving TSP and it is also widely 

preferred for VRP.  

 

3.3.2  Lin-Kernighan Heuristic 

     

Lin-Kernighan heuristic is one of the most effective algorithms which is first 

developed by Lin & Kernighan (1973). Lin-Kernighan algorithm is general version of 

2-opt and 3-opt algorithm. It changes places all nodes and rearrange the sub-tour for 

finding better solution. Pseudo code for solving VRP with Lin-Kernighan Algorithm 

is as follows: 
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1. Generate route 

2. while i < stop criteria 

3.      Pick random node, k. 

4.  for all nodes k+t, t=2 

5.           if distancek-1, k - distancek-1, k+t>0 

6.                Produce new route kk+tk+t-1k+1-2…k+t+1… 

7.                if new route is an improvement 

8.                    Change old route with new route. 

9.                     Increase the node count t ← t + 1. 

10.              else 

11.  Increase the node count t ← t + 1. 

12.    else  

13.              Increase the node count t ← t + 1. 

14.        Increase the stop count i ← i + 1. 

 

3.3.3 Genetic Algorithm 

 

Genetic algorithm is proposed by Holland (1975). Genetic algorithm is a 

population-based algorithm which is inspired by evolution. Genetic Algorithm starts 

with an initial set of solutions called a population. Individuals in the population is 

called a chromosome which represents a solution to the problem and are scored by its 

fitness function. Chromosomes are composed of genes representing of variables. The 

chromosomes evolve through iterations called generations by using a kind of "natural 

selection" together with the genetics−inspired operators of crossover, mutation, and 

inversion. 

 

The large-scale NP-hard problems, like VRPs with great number of customers or 

constraints, are difficult to solve in acceptable time. Genetic Algorithm is evolutionary 

algorithm and proposed for searching near-optimal solution and has a few steps for 

achieve to this optimal solution. Steps of Genetic Algorithm are as flows: 
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• Representation of the problem 

• Initial population generator 

• Suitable fitness function 

• Parent selection 

• Crossover 

• Mutation 

 

These steps can be modified according to problem definition. In this way, different 

kind of problems can be solved effectively with Genetic Algorithm. General pseudo 

code for Genetic Algorithm is as follows: 

 

1. Generate initial population 

2. Evaluate fitness function 

3. while i < stop criteria   

4.  Select parents parent chromosomes 

5.       Crossover parent chromosomes for children 

6.            if Mutate probability is true 

7.                 Mutate child chromosomes     

8.            else 

9.                  Don’t apply mutation 

10.     Evaluate new population 

11.     Increase the stop criteria i ← i + 1. 

 

3.3.3.1 Representation of the Problem 

 

Representation of the problem is one of the most important decision to implement 

Genetic Algorithm. An appropriate representation will ensure that the Genetic 

Algorithm works efficiently for the problem. Representation depends on the 

specifications of the optimization problem. There are some representations that are 

frequently used; binary representation, real valued representation, integer 

representation and permutation representation. 
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3.3.3.1.1 Binary Representation. In this representation method, genes are 

represented by string of binary variables. Each gene has a value of 0 or 1. The structure 

of the chromosome can be seen at Figure 3.1. 

 

X1 X2 X3 X4 X5 … Xn 

0 1 1 0 0 … 1 

Figure 3.1 Binary representation of chromosome 

 

When the solution space occurs of Boolean decision variables like yes or no, binary 

representation method can be used. If problem is assumed to be VRP in Figure 3.2, xn 

is decision variables for customers and 0 means that nth  customer is not visited, 1 

means that customer is visited. 

 

3.3.3.1.2 Real Valued Representation. Genes should be defined as continuous 

variables rather than discrete for some problems. Real-valued representation is the 

most effective method for these types of problems. Representation of the chromosome 

is in the Figure 3.2. 

 

X1 X2 X3 X4 X5 … Xn 

0.2 0.1 0.7 0.9 0.5 … 0.1 

Figure 3.2 Real-valued representation of the chromosome 

 

In this representation, the value of X1 is 0.2 for this specific chromosome. 

 

3.3.3.1.3 Integer Representation. In some cases, solution space cannot be limited to 

binary variables. For example; if status of the machine is to be encoded as occupied, 

available and broken, it can be encoded as 0, 1, 2. In this case integer representation 

can be appropriate. In Figure 3.3, the machine X2 is occupied. 
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X1 X2 X3 X4 X5 … Xn 

1 0 0 2 1 … 1 

Figure 3.3 Integer representation of the chromosome 

 

3.3.3.1.4 Permutation Representation. In many problems, the solution is 

represented by an order of elements. Permutation representation method is the most 

effective way for these types of problems. 

 

Solution of the VRP is the order of the customers. In CVRP vehicle must visit each 

customer exactly once and all routes must start end finish at the depot. In this way, 

when vehicle visit all customers, there are a permutation of all customers and depot 

which to minimize the distance.  

 

X1 X2 X3 X4 X5 … Xn 

0 5 1 0 2 6 0 3 4 0 7 0 

Figure 3.4 Permutation representation of the chromosome 

 

In Figure 3.4, 0 represents to depot and there are 7 customers. 4 routes are 

determined for this solution. Solution of the VRP is naturally a permutation and 

therefore permutation representation can be used effectively. 

 

3.3.3.2 Initial Population Generator 

 

Population is the sum of the chromosomes in generation. Chromosomes in the 

population are directly related to solutions because of they are affected by each other. 

Therefore, generating initial population is important for efficiency of the Genetic 

Algorithm.  

 

Size and diversity are the main concern at the initial population. If size of initial 

population is larger, Genetic Algorithm can slow down. On the other hand, when the 

size is too small, population is not enough for finding better solution by genetic 

operators. Optimum size of the population can be found by trial and error. Diversity 
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of the population can increase different chromosomes. This increases the likelihood of 

finding better results.  

 

There are two general method for determine to initial population: Random generator 

and heuristic methods. Random generator determines the chromosomes completely 

random. In heuristic method, chromosomes are determined by heuristic algorithm. 

That method can lead to all chromosomes in population is similar and diversity can be 

reduced. Thence combining these two methods is generally preferred.  

 

3.3.3.3 Suitable Fitness Function 

 

A fitness function is defined as a function that calculates to accordance of the 

solutions with the problem. In some cases, the fitness function and the objective 

function may be the same, while in others it might be different based on the problem. 

The chromosomes with the better fitness values stays in the population when the 

chromosomes with the worse fitness values are replaced with better ones. 

 

3.3.3.4 Parent Selection 

 

Parent selection is the cruel steps for maintaining diversity in the population.  

Selected parents are used for applying crossover. There are several methods for parent 

selection. 

 

3.3.3.4.1 Roulette Wheel Selection. In this method, the wheel is divided according 

to fitness value of the chromosomes. Better fitness value has a greater pie on the wheel. 

Random number between 0 and 360 is used for selecting parents. Therefore, the 

probability of choosing an individual depends directly on its fitness. 

 

3.3.3.4.2 Rank Selection. Every chromosome in the population are ranked 

according to their fitness function. Selection of the parents depend on this ranking. The 

higher ranked chromosomes are preferred more than the lower ranked ones. 
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3.3.3.4.3 Random Selection. Parents are selected random from the population. 

Because it is completely random, there is no pressure to improve the population.  

 

3.3.3.5 Crossover 

 

Genetic Algorithm mimics the process of natural evolution. Two parents are 

selected when new chromosomes are created. Then, these selected parent 

chromosomes are crossover.  During this process, chromosomes have the possibility 

of being mutated. At the end of these steps better chromosomes survive and weak ones 

are eliminated from the population. These steps constitute genetic operators for 

Genetic Algorithm. 

  

New chromosomes are created from selected parents by crossover operator. One or 

more child chromosomes are produced using the genetic material of the parent 

chromosomes. There are a lot of method in the literature for crossover. Some of these 

popular ones in literature as follows: 

 

3.3.3.5.1 One-Point Crossover. A random point from the parent’s chromosomes is 

selected and remaining parts of parents are swapped for creating new child 

chromosomes. There is a multi-point crossover and in this method two points are 

selected for swap. Evaluating child chromosomes by one-point crossover can be seen 

at Figure 3.5. 

 

 

Figure 3.5 Child chromosomes by one-point crossover 

 

Parent 1 1 2 3 4 5 6 7 8 9 Child 1 1 2 3 2 9 8 4 1 5

Parent 2 6 3 7 2 9 8 4 1 5 Child 2 6 3 7 4 5 6 7 8 9
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3.3.3.5.2 Uniform Crossover. In uniform crossover method random genes of parent 

chromosomes are swapped between each other. Child chromosomes by uniform 

crossover is in Figure 3.6. 

 

 

Figure 3.6 Child chromosomes by uniform crossover 

 

3.3.3.5.3 Partially-Mapped Crossover (PMX). This method is proposed by 

Grefenstette, et al., (1985). A portion of parent chromosomes is exchanged. Then 

remaining genes of parent chromosomes are added to child chromosomes, taking care 

not to be the same as the first portion part. If one of the remaining genes are already in 

the portion, the corresponding gene added from the other parent chromosomes. In this 

way, two child chromosomes are obtained.  

 

 

Figure 3.7 Parent chromosomes for PMX crossover 

 

Parent 1 1 2 3 4 5 6 7 8 9 Child 1 1 3 7 4 9 6 4 1 5

Parent 2 6 3 7 2 9 8 4 1 5 Child 2 6 2 3 2 5 8 7 8 9

Parent 1 1 2 3 4 5 6 7 8 9

Parent 2 6 3 7 2 9 8 4 1 5

2->4

8->6

Child 1 1 2 3 2 9 8 7 8 9 1 4 3 2 9 8 7 6 5 9->5

Child 2 6 3 7 4 5 6 4 1 5 8 3 7 4 5 6 2 1 9 6->8

4->2

5->9
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In Figure 3.7, PMX procedure is shown. For this example; 4, 5, 6 at parent 1 and 2, 

9, 8 at parent 2 are selected for mapping. These portions of parents are swapped 

between each other. Then remaining parts are added child 1 and child 2. Second gene 

of child 1, which is represented by 2, is same as the first gene of the selected portion 

of parent 1. So, this gene is exchange with the first gene of the selected portion of 

parent 2 (2=>4). 

 

PMX crossover method is suitable for VRP with permutation representation. 

Because with this method, all genes, in that case all customers, are used exactly once. 

 

3.3.3.6 Mutation 

 

Mutation can be defined simply as a small random modification in the 

chromosomes for obtain new solutions. Diversity can be increased with mutation. Like 

crossover, there are a lot of method for mutation and these methods can be alterable 

according to problem. Some of the commonly used methods are as follows: 

 

3.3.3.6.1 Bit Flip Mutation. This method is used with binary representation method. 

One or more random genes are selected and modified. If gene is 1, it is transformed 

into 0. Representation of bit flip mutation is in the Figure 3.8. 

 

 

Figure 3.8 Bit flip mutation 

 

3.3.3.6.2 Swap Mutation. Two random genes are selected and swapped between 

each other. This method is generally used with permutation representation. Figure 3.9 

shows swap mutation. 

 

0 0 1 1 0 1 1 1 0

Chromosome

0 1 1 1 1 0 1 1 0
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Figure 3.9 Swap mutation 

 

3.3.3.6.3 Scramble Mutation. Scramble mutation is shown at Figure 3.10. Random 

portion of the chromosome is selected and genes in this portion are shuffled randomly. 

This method is also commonly used with permutation representation.  

 

 

Figure 3.10 Scramble mutation 

 

After crossover and mutation, chromosomes with better fitness values join the 

population and worse ones are eliminated. 

 

These all steps of Genetic Algorithm repeat until termination condition is met. 

Determining the termination condition is important because of the running time of 

algorithm. If termination condition is set incorrectly, algorithm can still run after 

finding the optimal solution or it can be stop before find the optimal or best solution 

that algorithm can be achieved. 

 

Termination condition is usually determined according to three condition. There 

has been no improvement in the population after certain numbers of iterations, 

algorithm can be terminated. Algorithm can be terminated after an absolute number of 

generations. Lastly, the objective function value has reached a pre-defined value, 

algorithm can be stopped. 

 

Genetic Algorithm can be modified according to studied problem. All of the 

mentioned steps should be selected carefully for the efficiency of algorithm.   

Chromosome 6 3 7 2 9 8 4 1 5 6 3 4 2 9 8 7 1 5

Chromosome 6 3 7 2 9 8 4 1 5 6 7 9 3 2 8 4 1 5
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CHAPTER FOUR 

INTEGER LINEAR PROGRAMMING FOR THE VEHICLE ROUTING 

PROBLEM WITH TRAFFIC CONDITIONS 

 

4.1 Problem Definition 

 

VRP, which is suitable for real-life situation is discussed in this study. In order to 

establish the best route except the traveled total distance, time must be taken into 

account for customer satisfaction. Vehicle traffic on the selected route will affect the 

time which is spent on the route, traffic plays an important role in determining the 

route. So, mathematical model is developed which is considering traffic conditions. 

 

Proposed approach is based on VRPTW methodology and some new constraints 

are added for reflect the traffic effect. 

 

4.1.1 Mathematical Model of the Problem 

 

Mathematical model is developed by adding paramaters Vi and Li, constraints 4.8 

and 4.9 to the model of Kumar & Paneerselvam (2012) which is formulated for 

VRPTW.  

 

Variables: 

 

• Xij, ∈ {0, 1}, 0 if there is no arc from node i to node j, and 1 otherwise 

• Ti, arrival time at node i  

• Li, leaving time at node i 

• Vi, time per km 
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Parameters: 

 

• mi, demand at node i  

• cap, capacity of vehicle 

• si, service time at node i  

• Tmax maximum route time  

• ERi, earliest arrival time at node i  

• LTi, latest arrival time at node i 

• distij, distance between node i and node j 

• z, time period 

• h, time per km for time period 

• N, total node 

• P, total time period 

 

Mathematical Model: 

 

Minimize ∑∑𝑑𝑖𝑠𝑡𝑖𝑗𝑉𝑖

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑖=0

𝑋𝑖𝑗 (4.1) 

Subject to  

  

∑𝑋𝑖𝑗

𝑁

𝑗=1

= 1, 𝑓𝑜𝑟 𝑖 = 0 (4.2) 

  

∑𝑋𝑗𝑖

𝑁

𝑗=1

= 1, 𝑓𝑜𝑟 𝑖 = 0 (4.3) 

  

∑𝑋𝑖𝑗

𝑁

𝑖=0
𝑖≠𝑗

=∑𝑋𝑖𝑗

𝑁

𝑗=0
𝑗≠𝑖

, 𝑓𝑜𝑟 𝑖, 𝑗 ∈ {1, … ,𝑁} (4.4) 
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∑𝑋𝑖𝑗(𝑑𝑖𝑠𝑡𝑖𝑗𝑉𝑖) + 𝑠𝑖 + 𝑇𝑖 ≤ 𝑇𝑗

𝑁

𝑖=0

, 𝑓𝑜𝑟 𝑗 = {1,… ,𝑁} (4.5) 

  

∑𝑚𝑖

𝑁

𝑖=1

∑𝑋𝑖𝑗

𝑁

𝑗=0
𝑖≠𝑗

≤ 𝑐𝑎𝑝 (4.6) 

  

∑∑𝑋𝑖𝑗(𝑑𝑖𝑠𝑡𝑖𝑗𝑉𝑖) + 𝑠𝑖

𝑁

𝑗=0
𝑖≠𝑗

𝑁

𝑖=0

≤  𝑇𝑚𝑎𝑥 (4.7) 

  

𝑉𝑖 =

{
 
 

 
 
𝐿𝑖 ≥ 𝑧1     ℎ1
𝐿𝑖 ≥ 𝑧2     ℎ2

.

.
𝐿𝑖 ≥ 𝑧𝑃     ℎ𝑝

 , 𝑖 = {1, … ,𝑁} (4.8) 

  

(𝑇𝑖 + 𝑠𝑖) = 𝐿𝑖 , 𝑖 = {1,… ,𝑁} (4.9) 

  

𝐸𝑅𝑖 ≤ 𝑇𝑖 ≤ 𝐿𝑇𝑖 (4.10) 

  

𝑋𝑖𝑗 ∈ {0,1} (4.11) 

 

The objective function, which is seen formulation 4.1, minimizes the total travelling 

time. The constraints 4.2 and 4.3 ensure that for each route, there is exactly one arc 

which is outgoing and incoming from the depot. These constraints ensure that a 

complete tour for each vehicle is ensured. The constraint 4.4 makes sure that each node 

is visited exactly once. The constraint 4.5 guarantees that the arrival time of each 

vehicle at the node j is less than the specified arrival time (Tj) at that node. The 

constraint 4.6 controls the vehicle capacity. Demand of the nodes in one route should 

equal or less than capacity. The constraint 4.7 ensures that the total time of travel of 

the route of each vehicle is less than or equal to the maximum route time (Tmax). 

Constraint sets 4.8 and 4.9 are added to reflect traffic conditions. Time per kilometer 
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(Vk) is determined according to time period zp. Since the time period is determined 

hourly, leaving time at node i is calculated by dividing 60 in constraint 4.9. The 

constraint 4.10 ensures that arrival time of node i is between earliest and latest arrival 

times of node i. Last constraint 4.11 shows that 𝑋𝑖𝑗 is a binary variable.  If 𝑋𝑖𝑗 is equal 

to 0 there is no arc from node i to j, 1 otherwise. 

 

4.2 Example for Proposed Problem 

 

A small example problem is performed according to developed mathematical 

model. This example problem includes 5 nodes which includes depot. Customer 1 

represents the depot. All customers have demands, which have to be delivered, and 

time windows. 

 

Proposed Problem is solved with Lingo optimization modeling software.  

 

4.2.1 Data for Proposed Problem 

 

 Distance matrix is in Table 4.1, demands of the customers are in Table 4.2 and time 

windows are in Table 4.3 for the example problem. Capacity of the vehicle is 15 for 

this problem. Traffic volume changes throughout the day. Especially, morning and 

evening hours have high traffic volume due to working hours. In order to reflect this 

change to the problem, one day is divided into four according to working hours. Traffic 

has high volume at 6 am to 1 pm and 5 pm to midnight. Traffic has low volume at 

midnight to 6 am and 1 pm to 5 am. When the traffic volume is high, Vk variable is 

1.2, in other case Vk variable is 1. 
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Table 4.1 Distance matrix for example problem 

Distance Matrix 1 2 3 4 5 

1 0 996 2162 1067 499 

2 996 0 1167 1019 596 

3 2162 1167 0 1747 1723 

4 1067 1019 1747 0 710 

5 499 596 1723 710 0 

 

Distance matrix shows that distance between two customers. For example, the 

distance between customer 4 and customer 2 is 1019 kilometer. 

  

Table 4.2 Demands of the customers 

Customer 1 2 3 4 5 

Demand 0 6 3 7 7 

 

Customer 1 has a 0 demand because of it is depot. Customers have 6, 3, 7 and 7 

demands respectively. 

 

Table 4.3 Earliest, latest and service times for customers 

Customer 1 2 3 4 5 

Earliest Time 0 1000 2800 2000 1800 

Latest Time 99999 2500 2900 3000 3900 

Service Time 0 10 12 10 10 

 

In Table 4.3, there are time windows for customers. Customer 2 don’t accept vehicle 

up to 1000 seconds after vehicle starts its tour. 
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4.2.2 Results of the Problem 

 

Objective function of the problem is minimizing the total distance and it is 6601 

km. Selected routes are in Figure 4.1. There are two routes which don’t exceed the 

vehicle capacity.  

 

 

Figure 4.1 Selected routes 

 

Example problem has 5 nodes and one day is divided into four sections. These 

instances are the maximum for solving the problem in acceptable time by exact 

methods which is applied with Lingo optimization modeling software. Example 

problem with 6 nodes is tried to solve but there is no feasible solution. Also, discussed 

problem has four section for one day. When these sections are increased, feasible 

solution cannot be found. If it is desired to increase instances, heuristic or 

metaheuristic methods may be considered. In Chapter Five of this study, metaheuristic 

method is developed for problems with larger instances and more constraints. 
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CHAPTER FIVE 

COMPUTATIONAL STUDY FOR PROPOSED METHOD 

 

5.1 Proposed Metaheuristic Method 

 

CVRP and PDVRP is NP-hard problem like all VRPs, for this reason, only problem 

instances with smaller size can be solved with exact methods in acceptable time. 

Heuristic and metaheuristic methods allow to solve problem with the larger size of 

instances. Real life transportation problems can have many customers and companies 

must be able to find optimum routes fastest in order to use time efficiently. Therefore, 

various heuristic and metaheuristic algorithms are used in this research. Due to 

efficiency of Genetic Algorithm in solving combinatorial problems like VRPs it is 

used as based approach. Lin-Kernighan and 2-opt as local search algorithms are 

developed in this research to solve CVRP, PDVRP and VRP with Traffic Condition. 

The flow chart of the entire method can be seen at Figure 5.1. 

 

All the steps of Genetic Algorithm are mentioned in Chapter Two. The method used 

for each step is shown in the Table 5.1. 

 

Table 5.1 Genetic Algorithm steps for proposed method 

Steps of Genetic Algorithm Method Used 

Representation of the chromosomes Permutation representation 

Initial population Random Initialization + Heuristic Initialization 

Fitness Function Objective function 

Parent Selection Roulette wheel 

Crossover PMX crossover 

Mutation Swap mutation 

 

As can be seen from the flow chart, Lin-Kernighan and 2-opt algorithms are used 

at different part of proposed method. Especially, Lin-Kernighan algorithm is used after 

random initialization of population. The aim of using Lin-Kernighan algorithm at this 

stage is to improve initial population. Also, Lin-Kernighan and 2-opt algorithm are 

used after mutation steps to provide diversity. One of these two algorithms is chosen 
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according to random probability or algorithms may not be selected again this random 

probability. Iterations of the algorithms are finished according to their termination 

conditions.  

 

 

Figure 5.1 Flow chart for entire method 
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5.2 Application of the Proposed Method 

 

The application is formulated in C# programing language at Visual Studio 2013 

integrated development environment. Using these tools Windows Form application is 

developed. The whole view of the application can be seen Figure 5.2. 

 

Parallel programming has been utilized to make the application work faster and 

more efficiently. Threads have been used to apply parallel programing to application. 

In this way, separate parts of proposed method are running simultaneously. These parts 

are distributed to the core by using threads in C#. As the number of cores in the used 

computer increases, the speed and efficiency of the application increases. As 

mentioned before, when the number of the instances increased, more time is needed to 

solve the problem. Through parallel programming, this effect of larger problems is 

reduced. 

 

 

Figure 5.2 Application screen 

 

Parameters of proposed method are set via the application. This part of application 

screen is in the Figure 5.3. Iteration box is used for termination condition. In Figure 

5.3, after 10000 iterations algorithm is terminated. Total run box shows how many 
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times the algorithm will work in a row. In that case, the algorithm will work 10000 x 

20 times. Population size is determined by population box. LinK and 2-opt iteration 

boxes are used determine the termination conditions for these algorithms. Exit LinK 

box is used to prevent the Lin-Kernighan algorithm from working in vain. If algorithm 

cannot find better solution after the iterations until the value in the box, Lin-Kernighan 

algorithm will be terminated. In proposed solution method, Lin-Kernighan algorithm 

is applied initial population. Iteration for this stage is determined in LinK Counter box. 

Mutation Prob, LinK Prob, 2-opt Prob boxes are for probability of using these steps. 

LinK Prob and 2-opt Prob are related to each other. For the example in Figure 5.3, 

with a 20 percent probability Lin-Kernighan algorithm is applied, with a 20 percent 

probability 2-opt algorithm is applied and with a 60 percent probability none of these 

algorithms are applied. Capacity box represents the vehicle capacity for studied 

problem set. 

 

 

Figure 5.3 Parameter settings 

 

Best and mean values according to iterations can be seen via chart button. Chart is 

shown in Figure 5.4. This button helps to determine number of iterations which is 

suitable for the problem. Round check-box is used for rounding distance value to 

closest integer.  
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Figure 5.4 Iteration chart 

 

Different data sets can be run via select file button. One file or the list of files can 

select for the application. When the list of files is selected, all data sets in the list are 

run one by one. Application starts with calculate button and reset button sets the default 

value of all parameter.  

 

Solution of the problem appears both in writing and as a map. Routes and best 

distance value for this example can be seen Figure 5.5. Each lines of this part of 

application represent one route for best solution.  

 

 

Figure 5.5 Routes and solution 

 

Figure 5.6 represents to map version of the routes. The dot which is connected to 

all routes is depot and other ones are the customers. Customers are connected to each 

other with lines and it creates routes. 
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Figure 5.6 Map representation of routes 

 

While the user interface is being prepared, it has been taken care that the user can 

change parameters and see the results through this interface. In this way, parameter 

settings for different problems can be made easily. 

 

5.2.1 Computational Results for CVRP Data Sets 

 

Proposed method and developed application are tested with different CVRP data 

sets. These test problems, which are A set, B set and P set, are selected set of CVRP 

problems from Augerat et al., (1995). Problems are tested with a computer which has 

2.00 GB ram, dual core and 8.00GB ram, 8 cores. Best 20 results of 50 computations 

are taken into account.  It takes 10 seconds to 1 minute to reach the solution according 

to problem size. 

 

During the computational experiments, same parameter values are used. Used 

parameters are; population size is 100, number of iterations are 10000, mutation rate 
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20% and probability of applying Lin-Kernighan and 2-opt is 20%. Problems have been 

solved 20 times and the values in the tables are the averages of these solutions. 

 

24 problems in A set have been solved. Results for these problems can be seen at 

Table 5.2 and Figure 5.7. Optimum result is achieved for A-n33-k5.vrp problem. The 

optimum route found is shown at Figure 5.8.  

 

Table 5.2 Computational results for A data set 

Problem Instance Vehicle Capacity Optimum Best Mean Worst 

A-n32-k5.vrp 100 784 797.87 808.15 816.60 

A-n33-k5.vrp 100 661 661 670.92 689.84 

A-n33-k6.vrp 100 742 742 745.03 752.28 

A-n34-k5.vrp 100 778 780.94 789.94 799.75 

A-n36-k5.vrp 100 799 802.13 813.95 837.90 

A-n37-k5.vrp 100 669 678.00 691.18 725.09 

A-n37-k6.vrp 100 949 952.47 966.62 993.59 

A-n38-k5.vrp 100 730 734.18 740.13 746.10 

A-n39-k5.vrp 100 822 829.52 840.70 848.00 

A-n39-k6.vrp 100 831 835.28 846.74 873.96 

A-n44-k6.vrp 100 937 939.26 959.55 1002.36 

A-n45-k6.vrp 100 944 961.00 977.01 1040.51 

A-n45-k7.vrp 100 1146 1174.66 1190.31 1232.60 

A-n46-k7.vrp 100 914 919.38 927.94 939.44 

A-n48-k7.vrp 100 1073 1107.44 1127.21 1175.76 

A-n53-k7.vrp 100 1010 1039.66 1070.03 1160.23 

A-n54-k7.vrp 100 1167 1195.51 1213.51 1234.70 

A-n55-k9.vrp 100 1073 1084.45 1103.47 1117.42 

A-n60-k9.vrp 100 1354 1387.93 1422.33 1439.43 

A-n61-k9.vrp 100 1034 1061.47 1107.39 1184.41 

A-n64-k9.vrp 100 1401 1337.98 1384.44 1432.47 

A-n65-k9.vrp 100 1174 1668.26 1702.47 1726.86 

A-n69-k9.vrp 100 1159 1365.03 1383.38 1398.77 

A-n80-k10.vrp 100 1763 1453.07 1480.61 1497.01 

 

 

 

ftp://branchandcut.org/pub/data/VRP/A/A-n32-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n33-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n33-k6.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n36-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n37-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n37-k6.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n38-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n39-k5.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n39-k6.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n44-k6.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n45-k6.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n45-k7.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n46-k7.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n48-k7.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n53-k7.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n54-k7.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n55-k9.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n60-k9.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n61-k9.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n64-k9.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n65-k9.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n69-k9.vrp
ftp://branchandcut.org/pub/data/VRP/A/A-n80-k10.vrp
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Figure 5.8 Optimum routes for A-n33-k5 

 

The difference of the results from the optimum results is 3% on average. First 15 

problems have customer nodes less than 50 and the difference of the results from the 

optimum results for these problems is 1.2% on average. According to this, proposed 

method is better for smaller instances. 

 

22 problems in B set have been solved. Results for these problems can be seen at 

Table 5.3 and Figure 5.9. Optimum results are achieved for B-n31-k5.vrp and B-n41-

k6.vrp problems. The optimum routes for B-n31-k5.vrp can be seen at Figure 5.10. 

Optimum routes are: 

 

• depot, 29, 4, 25, 5, 18, 16, 21, depot 

• depot, 7, 23, 8, 12, 28, 26, depot 

• depot, 30, 13, 17, 9, 6, 22, depot 

• depot, 3, 1, 19, 24, 11, 15, 14, depot 

• depot, 20, 27, 10, 2, depot 
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Table 5.3 Computational results for B data set 

Problem Instance Vehicle Capacity Optimum Best Mean Worst 

B-n31-k5.vrp 100 672 672.00 673.61 676.09 

B-n34-k5.vrp 100 788 789.00 791.92 795.98 

B-n35-k5.vrp 100 955 956.29 956.29 956.29 

B-n38-k6.vrp 100 805 806.00 806.00 806.00 

B-n39-k5.vrp 100 549 551.00 558.11 570.58 

B-n41-k6.vrp 100 829 829.00 841.24 868.22 

B-n43-k6.vrp 100 742 743.00 749.62 761.29 

B-n44-k7.vrp 100 909 913.00 923.41 942.11 

B-n45-k5.vrp 100 751 754.00 761.03 808.10 

B-n45-k6.vrp 100 678 681.00 700.01 738.95 

B-n50-k7.vrp 100 741 747.65 753.93 759.00 

B-n50-k8.vrp 100 1312 1332.24 1344.72 1361.45 

B-n52-k7.vrp 100 747 1019.33 1031.00 1057.73 

B-n56-k7.vrp 100 707 749.00 759.13 776.98 

B-n57-k7.vrp 100 1153 721.00 731.73 743.03 

B-n57-k9.vrp 100 1598 1154.28 1167.32 1184.08 

B-n63-k10.vrp 100 1496 1628.30 1651.31 1677.53 

B-n64-k9.vrp 100 861 1555.41 1588.08 1625.11 

B-n66-k9.vrp 100 1316 888.00 918.41 930.69 

B-n67-k10.vrp 100 1032 1337.50 1359.63 1379.00 

B-n68-k9.vrp 100 1272 1059.11 1103.06 1116.99 

B-n78-k10.vrp 100 1221 1289.00 1323.69 1344.40 

  

ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n35-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n38-k6.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n39-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n41-k6.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n43-k6.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n44-k7.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n45-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n45-k6.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n50-k7.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n50-k8.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n52-k7.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n56-k7.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n57-k7.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n57-k9.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n63-k10.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n64-k9.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n66-k9.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n67-k10.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n68-k9.vrp
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Figure 5.10 Optimum routes for B-n31-k5.vrp problem 

 

Optimum distance for problem B-n41-k6.vrp is 829. In Figure 5.11, another 

solution for this problem can be seen. Distance for these routes are 831 and this result 

is different 0,2%. from optimum result. Routes for best distance is 831 as follows: 

 

• depot, 13, 30, 36, 32, 17, 14, 29, 1, depot 

• depot, 5, 15, 31, 22, 16, 8, depot 

• depot, 12, 23, 10, 40, 20, 7, depot 

• depot, 28, 11, 34, 33, 6, 25, depot 

• depot, 24, 35, 2, 9, 37, 3, 18, 21, depot 

• depot, 4, 39, 38, 27, 19, 26, depot 
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Routes for optimum distance are: 

 

• depot, 5, 15, 31, 22, 13, 8, depot 

• depot, 30, 36, 12, 32, 17, 14, 29, 1, depot 

• depot, 23, 10, 40, 20, 16, 7, depot 

• depot, 25, 6, 33, 34, 11, 28, depot 

• depot, 24, 35, 2, 3, 18, 21, 37, 9, depot 

• depot, 4, 39, 38, 27, 26, 19, depot 

 

These two solution is slightly different from each other. The difference of the results 

from the optimum results is 2.5% on average. Results for smaller problem is better like 

A set. 

 

 

Figure 5.11 Near optimum routes for B-n41-k6.vrp 
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20 problems in P set have been solved. Results for these problems can be seen at 

Table 5.4 and Figure 5.12. Optimum results are achieved for first 6 problem. Optimum 

routes can be seen for P-n16-k8.vrp and P-n23-k8.vrp in Figure 5.13 and Figure 5.14.  

 

Table 5.4 Computational results for P data set 

Problem Instance Vehicle Capacity Optimum Best Mean Worst 

P-n16-k8.vrp 35 450 450.00 450.07 451.34 

P-n19-k2.vrp 160 212 212.00 212.03 212.66 

P-n20-k2.vrp 160 216 216.00 216.25 219.94 

P-n21-k2.vrp 160 211 211.00 211.09 212.71 

P-n22-k2.vrp 160 216 216.00 216.61 217.87 

P-n23-k8.vrp 40 529 529.00 529.11 531.17 

P-n40-k5.vrp 140 458 459.00 476.33 509.54 

P-n45-k5.vrp 150 510 514.43 532.08 557.14 

P-n50-k7.vrp 150 554 567.00 581.16 594.00 

P-n50-k8.vrp 120 631 654.24 664.07 673.00 

P-n50-k10.vrp 100 696 715.74 728.93 747.74 

P-n51-k10.vrp 80 741 745.42 779.29 792.00 

P-n55-k7.vrp 170 568 587.78 606.63 620.18 

P-n55-k10.vrp 115 694 711.00 727.91 749.49 

P-n60-k10.vrp 120 744 963.00 984.93 1022.26 

P-n60-k15.vrp 80 968 756.03 787.39 806.25 

P-n65-k10.vrp 130 792 1002.65 1022.91 1054.64 

P-n70-k10.vrp 135 827 819.50 843.30 858.00 

P-n76-k4.vrp 350 593 863.68 895.77 917.00 

P-n76-k5.vrp 280 627 625.19 642.67 654.67 

 

Best, mean and the worst values are the same for first problem in the Table 5.4. The 

reason of this is that the size of the problem is very small. All the chromosomes in the 

population have been improved in 10000 iterations. It means that less iteration is 

enough for this problem.  

 

  

ftp://branchandcut.org/pub/data/VRP/P/P-n16-k8.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n19-k2.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n20-k2.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n21-k2.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n22-k2.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n23-k8.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n40-k5.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n45-k5.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n50-k7.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n50-k8.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n50-k10.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n51-k10.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n55-k7.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n55-k10.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n60-k10.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n60-k15.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n65-k10.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n70-k10.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n76-k4.vrp
ftp://branchandcut.org/pub/data/VRP/P/P-n76-k5.vrp
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Figure 5.13 Optimum routes for P-n16-k8.vrp 

 

 

Figure 5.14 Optimum routes for P-n23-k8.vrp 
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Figure 5.15 Near optimum routes for P-n70-k10.vrp 

 

The difference of the results from the optimum results is 5% on average of all 

problems. P data set has larger size problems both of customer and capacity. In Figure 

15, it can be seen that how complicated the problem P-n70-k10.vrp is. 

 

Computational results show that proposed method is better for smaller problem. 

Even so, there are a near optimal solution for larger problem. All problems are solved 

with same parameter. Parameters setting can improve results for larger problems. 

 

5.2.2 Computational Results for PDVRP Data Sets 

 

Proposed method is used for PDVRP with some changes due to problem structure. 

PDVRP has additional capacity constraint. There are two type of demand and these 

are affecting the capacity differently. Nagy & Salhi (2005) mentioned that weak and 

strong feasibility in their article. In weakly feasibility, capacity is never exceeding with 

the total load of pick-up and delivery. In this study, both of weak and strong feasibility 
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is ensured when the fitness function is calculated. Load factor of the vehicle is checked 

in every new customer node and the route never exceeds the vehicle capacity. If adding 

new customer to route exceeds the capacity of the vehicle, this new customer will not 

be added.  

 

Breedam (1996) data set is used for testing the PDVRP in Table 5.5. Problems are 

tested with a computer which has 8.00 GB ram and 8 cores. All problems are same 

size, and they have 100 customer nodes. It takes 3 minutes to reach the solution due to 

large problem size. Results for test data are in Table 5.5. 

 

Table 5.5 Computational results for proposed method 

Problem 

Instances 

Proposed Method 

Best Mean Worst 

1pp.dat 1136 1228 1305 

2pp.dat 1637 1672.95 1722 

3pp.dat 1778 1850.9 1942 

4pp.dat 1546 1592.4 1656 

5pp.dat 1001 1046.95 1080 

6pp.dat 1029 1070.2 1134 

7pp.dat 1049 1112.75 1181 

8pp.dat 1027 1070.65 1133 

9pp.dat 1852 1933.2 2026 

10pp.dat 1124 1170.8 1254 

11pp.dat 1265 1334.95 1412 

12pp.dat 1558 1607.75 1662 

13pp.dat 1024 1060.6 1120 

14pp.dat 1898 1974 2045 

15pp.dat 1013 1049.05 1113 

 

 

 

ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
ftp://branchandcut.org/pub/data/VRP/B/B-n34-k5.vrp
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Figure 5.16 Routes for 1pp.dat problem 

 

Figure 5.16 shows that routes for 1pp.dat problem. This solution is not the solution 

that mentioned in Table 5.5 and its distance is 1202. Delivery and pick-up values can 

be seen in the map. 

 

Test data used for PDVRP has demand only pick-up or delivery for each customer. 

In this study, developed application allows to simulations pick-up and delivery 

operation. To test simulations pick-up and delivery random Pick-up demand which is 

between 0 and 26 are added to A, B and P data sets. Results for this data set can be 

shown at Table 5.6. 
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Table 5.6 Results of simultaneous Pick-up and Delivery 

Problem Instance 
Optimum of 

CVRP 
Best Mean Worst 

A-n32-k5.vrp 784 801.4 835.2 868.0 

A-n33-k5.vrp 661 662.3 686.0 710.7 

A-n33-k6.vrp 742 744.3 751.4 763.9 

A-n34-k5.vrp 778 783.2 802.8 827.9 

A-n39-k6.vrp 831 835.3 861.6 894.6 

B-n31-k5.vrp 672 676.1 677.3 685.0 

B-n34-k5.vrp 788 791.1 799.1 808.7 

B-n35-k5.vrp 955 956.3 961.5 974.8 

B-n38-k6.vrp 805 808.7 815.7 837.5 

B-n39-k5.vrp 549 553.3 563.2 569.6 

B-n41-k6.vrp 829 837.1 850.3 872.3 

B-n43-k6.vrp 742 749.5 755.4 776.0 

B-n44-k7.vrp 909 915.2 938.5 961.9 

B-n50-k7.vrp 741 748.4 766.5 788.5 

B-n57-k7.vrp 1153 1156.0 1181.9 1255.3 

P-n16-k8.vrp 450 454.4 454.5 455.0 

P-n19-k2.vrp 212 212.7 213.3 220.6 

P-n20-k2.vrp 216 217.4 217.7 219.6 

P-n23-k8.vrp 529 535.5 539.9 546.8 

 

5.2.3 Computational Results for CVRP and PDVRP with Traffic Conditions 

 

Constraints of traffic condition are added as described in the Chapter 4 to 

application. The distance is multiplied by a coefficient, which is represent traffic 

volume, while the objective function is being calculated. In that way, traffic condition 

is reflected to problem.  

 

Developed application is used for solving real life problem with real distance values 

between 20 locations in Istanbul. These distance values are obtained from Google 

Maps. These locations are as follows: 

• Hilton Hotel (Start Point - Depot) 

• Modern Art Museum 

• Topkapı Palace 

• Mısır Bazaar 
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• Galata Tower 

• Dolmabahçe Place 

• Sultan Ahmet Mosque 

• Gezi Park 

• Kapalı Bazaar 

• Ayasofya Mosque 

• Beyoğlu 

• Yedikule Zindanları 

• Miniatürk 

• Fatih Mosque 

• Panorama 1453 

• Eyüp Sultan Mosque 

• Rahmi Koş Museum 

• Yıldız Park 

• Kariye Museum 

• Exhibition and Trade Center Perpa 

 

 Coefficients of the traffic condition are determined according to graph in Figure 

5.17  (Yandex, 2012).  

 

 

Figure 5.17 Graph for coefficient of the traffic condition in Istanbul both Europe and Asian sides 
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16 time periods are defined, and coefficients of these periods are in Table 5.7. 

Computational study has been made using this data. 8 real life problems have been 

studied and these problems are as follows: 

 

• 10 nodes, CVRP, high traffic volume 

• 10 nodes, CVRP, low traffic volume 

• 10 nodes, PDVRP, high traffic volume 

• 10 nodes, PDVRP, low traffic volume 

• 20 nodes, CVRP, high traffic volume 

• 20 nodes, CVRP, low traffic volume 

• 20 nodes, PDVRP, high traffic volume 

• 20 nodes, PDVRP, low traffic volume 

 

Table 5.7 Coefficient for time periods 

Time Period Coefficient 

07:00 07:30 1.75 

07:30 08:30 3 

08:30 09:30 2.5 

09:30 10:30 2 

10:30 11:30 1.75 

11:30 12:30 1.5 

12:30 13:30 1.25 

13:30 14:30 1.37 

14:30 15:30 1.8 

15:30 16:30 2.3 

16:30 17:30 2.75 

17:30 18:30 3.25 

18:30 19:30 4.75 

19:30 20:30 2.5 

20:30 21:30 1 

21:30 07:00 0.5 

 

Starting time is 7 a.m. for high traffic volume and 10 p.m. for low traffic volume. 

Capacities is 35 for CVRP and 50 for PDVRP with 20 nodes. When capacity is 
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determined, P data set is considered because of the number of nodes. Demands are 

generated as uniformly distributed values between 0 and 30. In PDVRP version of the 

problem, pick-up and delivery are done simultaneously. There is only one vehicle and 

all routes are traveled with this vehicle. The elapsed time is calculated accordingly one 

vehicle.  

 

As can be seen in Table 5.8 fitness values are higher when the traffic volume is 

high. The effect of traffic condition can be seen directly from the computational study.  
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Table 5.8 Computational results for VRP with traffic conditions 

  High Traffic Volume Low Traffic Volume 

    

Best 

Fitness 

Value 

Routes 

Best 

Fitness 

Value 

Routes 

10 

CVRP 77490 

depot, 4, depot  

depot, 7, 1, 5, depot  

depot, 6, 3, depot  

depot, 2, 8, 9, depot 

41164 

depot, 4, depot 

depot, 3, 6, depot 

depot, 9, 8, 2, depot 

depot, 7, 1, 5, depot 

PDVRP 52198 

depot, 6, 8, depot 

depot, 4, depot 

depot, 2, depot 

depot, 1, 7, 5, depot 

depot, 9, 3, depot 

31937 

depot, 2, 9, 8, depot 

depot, 7, 1, 5, depot 

depot, 4, depot 

depot, 3, 6, depot 

20 

CVRP 80962 

depot, 9, 19, 18, 12, depot 

depot, 17, 13, depot 

depot, 10, depot 

depot, 15, depot 

depot, 3, 16, depot 

depot, 4, 8, depot 

depot, 2, 6, depot 

depot, 14, depot 

depot, 1, 5, 7, depot 

depot, 11, depot 

38314 

deot, 14, 3, 16, 11, 15, depot  

depot, 8, 4, 5, 2, 7, 10, depot  

depot, 1, 6, 9, 19, 18, 12, 17, 13, 

depot  

PDVRP 58005 

depot, 2, 6, 9, 7, depot 

depot, 19, 18, 12, 11, depot 

depot, 10, 15, depot 

depot, 14, 3, depot 

depot, 17, 13, 16, depot 

depot, 5, 4, 8, depot 

depot, 1, depot 

57927 

depot, 19, 18, 12, 10, depot 

depot, 1, 4, 8, depot 

depot, 5, 2, 6, 9, depot 

depot, 7, 17, 16, depot 

depot, 14, 15, depot 

depot, 3, 13, 11, depot 
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CHAPTER SIX 

CONCLUSION 

 

The main objective of the VRP is minimizing the transportation cost. While 

achieving this objective, all constraints must be considered. In this study, adding traffic 

condition to VRP is the main concern because the traffic is daily struggle. Literature 

review was done, and most suitable methods were found to reflect traffic condition.  

 

Proposed methods for CVRP, PDVRP and their variants, that consider traffic 

conditions, contribute both to the literature and daily life. Integer linear programming 

formulation as exact method and a metaheuristic method that combines 2-opt, Lin-

Kernighan and Genetic Algorithm was developed.  

 

Different data sets were studied with proposed method. Developing integer linear 

programing formulation has been a guide for metaheuristic method. A small problem 

was solved with integer linear problem and its results were sufficient for the problem 

studied. For larger problems, metaheuristic method was developed because VRP is a 

NP-Hard problem. To achieve optimum or near optimum solutions for larger problems 

in acceptable time, heuristic methods should be used. When metaheuristic method was 

developed, parallel programing method was used. In this way, speed and the efficiency 

of the method are increased. 

 

Computational studies for CVRP were performed. The results of these studies are 

promising. Speed of the application and the results are acceptable. Parameter settings 

can be done via user interface. This allows to improve the efficiency of the application 

according to problem. Results of PDVRP are not as good as results of CVRP. To 

improve results for PDVRP parameter settings can be done.  

 

For testing traffic condition effect on the CVRP and simultaneous PDVRP real life 

data was obtained. Results were suitable for proposed method. Traffic volume data is 

deterministic, and it only changes according to time. If real-time data can be obtained 

for traffic conditions, the results will be closer to real life. These problems are both in 
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real life and the literature have importance in the transportation systems. Therefore, in 

this thesis, solution approaches are proposed for CVRP, PDVRP and their variants 

considering traffic conditions. 
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