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DATA ENGINEERING AND MANAGEMENT IN TEXTILE SECTOR 

ABSTRACT 

Recently, enormous amounts of data are generated every day in textile industry. 

These multivariable and nonlinear data include raw material characteristics, machine 

settings, process parameters and quality attributes of the textile product. Deriving 

useful patterns and valuable knowledge from these raw data provides making right 

decisions to increase quality and productivity for textiles. To serve the purpose, this 

thesis focuses on the application of the data mining and machine learning techniques 

in the textile sector.  

 

Data engineering is a discipline that concerns with data mining techniques for data 

processing and analysis. Data mining techniques can be grouped in three main 

categories: classification, clustering, and association rule mining. In this thesis, 

several case studies were conducted for each category. In the classification-based 

case studies, ensemble learning methods were proposed to improve prediction 

performance in textile sector (i.e. to determine stab resistance performances of 

knitted structures) as well as deep learning methods for textile object identification. 

As a clustering-based study, a novel hierarchical clustering approach, named k-

Linkage, was proposed that calculates resemblance between pair of clusters 

considering k samples from two clusters. In the association rule mining study, an 

extended FP-Growth algorithm was used to discover the relationships between yarn 

and fabric properties. 

 

In the thesis, several experimental studies were performed for each study to 

demonstrate the performances of the proposed methods. In each experiment, the 

proposed approaches were applied on real-world textile data and compared with the 

existing approaches in terms of different evaluation measures. In general, the results 

obtained from each experiment indicate that the proposed approaches in this thesis 

achieve more accurate results than the conventional solutions. 
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TEKSTİL SEKTÖRÜNDE VERİ MÜHENDİSLİĞİ VE YÖNETİMİ 

ÖZ 

Son dönemlerde, tekstil endüstrisinde her gün devasa miktarda veri 

üretilmektedir. Bu çok değişkenli ve doğrusal olmayan veriler, tekstil ürününün 

hammadde özelliklerini, makine ayarlarını, işlem parametrelerini ve kalite 

niteliklerini içerir. Bu ham verilerden faydalı örüntülerin ve değerli bilginin elde 

edilmesi, tekstil ürünlerinin kalite ve verimliliğini arttırmak için doğru kararlar 

almayı sağlar. Bu amaca istinaden, bu tez, tekstil sektöründe veri madenciliği ve 

makine öğrenmesi tekniklerinin uygulanmasına odaklanmaktadır. 

 

Veri mühendisliği, veri işleme ve analizi için veri madenciliği teknikleri ile 

ilgilenen bir disiplindir. Veri madenciliği teknikleri üç ana kategoride 

gruplandırılabilir: sınıflandırma, kümeleme ve birliktelik kuralı analizi. Bu tezde, her 

kategori için çeşitli durum çalışmaları gerçekleştirilmiştir. Sınıflandırma temelli 

durum çalışmalarında, tekstil nesnelerinin ayırt edilmesi için derin öğrenme 

yöntemlerinin uygulanmasının yanı sıra, tekstil sektöründe tahminleme 

performansını iyileştirmek (örn. örgü yapıların delinme performansını belirlemek) 

için de topluluk öğrenmesi yöntemleri önerilmiştir. Kümelemeye dayalı bir çalışma 

olarak ise, k-Linkage isimli, küme çifti arasındaki benzerliği hesaplamak için iki 

kümeden de k tane örneklemi göz önünde bulunduran yeni bir hiyerarşik kümelenme 

yaklaşımı önerilmiştir. Birliktelik kuralı analizi çalışmasında, iplik ve kumaş 

özellikleri arasındaki ilişkilerin ortaya çıkarılması için genişletilmiş bir FP-Growth 

algoritması kullanılmıştır. 

 

Tezde, önerilen yöntemlerin performansını göstermek adına her bir çalışma için 

çeşitli deneysel çalışmalar gerçekleştirilmiştir. Her bir deneyde, önerilen yaklaşımlar 

gerçek tekstil verileri üzerinde uygulanmış ve mevcut yöntemler ile farklı 

değerlendirme ölçütleri açısından karşılaştırılmıştır. Genel olarak, her bir deneyden 

elde edilen sonuçlar, bu tezde önerilen yaklaşımlarla geleneksel çözümlere göre daha 

doğru değerlere ulaşıldığını göstermektedir. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General  

 

The necessity of processing raw data and exploring valuable and potentially 

useful information obtained from them has arisen in many areas of engineering, 

science, business, medicine, and public service. Today’s information technology 

applications analyze data and convert them to valuable knowledge in an efficient 

way. At this point, the Data Engineering concept plays an important role. Data 

engineering is a sub-branch of data science that transforms raw data to suitable for 

analyzing process and applies scientific methods on transformed data to discover 

potentially useful knowledge. Data mining (DM) is a specialized form of data 

engineering, which is used for discovering previously unknown, although potentially 

useful, patterns from raw data. DM is successful in analyzing situations when vast 

amount of data is available, when the data is complex with many variables and 

nonlinear relations, when there is the need to predict behaviors or outcomes, and 

when it is needed to find associations and relationships that are not currently 

understood.  

 

In the textile industry, even when a simple product such as a basic t-shirt is 

considered, a large amount of data is generated and stored. These data include raw 

materials, machine settings, and quality parameters of the product. The data to be 

processed are multivariable and nonlinear if a relationship is sought among fiber 

properties, process parameters, and yarn properties or among yarn properties, 

machine settings, and fabric performance. In addition, significant innovations and 

improvements have occurred in the textile industry with the introduction of technical 

textiles with crucial performance expectations at extreme conditions, such as 

protective clothing against bullet, knives, microorganisms, impact, cold, sun, etc. 

Thus, there is the continuous demand for processing data and discovery of valuable 

and potentially usable knowledge from these data in the textile industry.  
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Many classical mathematical and statistical models have been used in numerous 

textile studies to process textile data. However, these traditional methods remain 

incapable of discovering overall and complex relations among features of data 

instances and predicting unknown feature values for a new instance. Because of this 

challenge, DM techniques that are implemented in wide range of engineering areas 

have also been used in textile engineering during the recent years.  

 

1.2 Purpose 

 

Data mining in textile industry (DMTI) is an interdisciplinary area, including but 

not limited to decision support systems, recommender systems, visual data analytics, 

information retrieval, database management system, domain-driven DM, and so on.  

DMTI can be drawn as a combination of three main areas: computer science, textiles, 

and statistics. The intersection of these three areas also forms other subareas closely 

related to DMTI, such as traditional software, traditional research, DM, and machine 

learning (ML) as shown in Figure 1.1. Traditional data analysis in the textile sector is 

assumption-driven, meaning that a hypothesis is formed against the data, whereas in 

contrast, DM is discovery-driven, meaning that patterns are automatically discovered 

from textile data.  Because of this reason, the aim of this thesis is implementing 

novel data mining techniques for processing textile data and converting it to useful 

patterns to obtain valuable knowledge and making right decisions to increase quality 

and productivity.  

 

 

Figure 1.1 Main areas related to data mining in textile industry 
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Application of data mining techniques in textile sector for deriving useful patterns 

presents several advantages and these are given below: 

 Prediction of parameters expected based on other parameters or under 

different cases in textile studies 

 Construction of models to reduce the consumption of textile-related 

materials, such as fabrics, yarns, dyes, and sewing threads 

 Discovering patterns that can be used to produce better textile end-

products 

 Analyzing textile data to achieve better customer satisfaction 

 Recognition and classification of textile defects for quality control 

 Discovering customers’ purchasing habits to increase the sales of textile 

products  

 Identifying staff-related patterns in a textile factory 

 Discovery of hidden, interesting, and meaningful rules and valuable 

correlations among textile data using association rule mining algorithms 

 Determination of the most important factor that affects the performance of 

a yarn or fabric property using a DM technique such as decision tree 

 Detection of anomalies in textile data using the clustering algorithm to 

identify bad values, changes, errors, noises, frauds, and abnormal activities 

to realize the purpose of giving an alarm 

 Development of a model to manage resources effectively in textile 

industry 

 Analyzing the records of financial transactions in the textile sector for 

better decision making 

 Using DM as a pre-processing step before performing the essential textile 

study 

 Text mining to extract interesting patterns and perform textile knowledge 

extraction from the unstructured textile documents that are obtained from 

different sources 

 Clustering the items in textile data to describe the current situation more 

clearly and to plan different activities for different groups 
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 Usage of process mining in the context of workflow management and to 

improve the processes in the textile sector 

 

Considering these motivations, in this thesis, five different data mining studies 

were performed on textile data to obtain valuable knowledge and making right 

decisions to increase quality and productivity for textiles. The purposes of the studies 

conducted within the scope of this thesis can be listed below: 

 Determination of the most important parameters for stab performances of 

plain, plush, doubleface and doublefaceinlay knitted aramid samples at 

three energy levels  

 Improving prediction performance of the parameters under ten different 

cases in textile studies  

 Classification of 28x28 gray-scale images to fashion products 

 Preventing both chaining and rounding effects of hierarchical clustering on 

textile items 

 Discovering the relationships between yarn parameters and fabric 

properties  

 

1.3 Novel Contributions of this Thesis 

 

The main contributions of this thesis are on five levels;  

 

First, we focused on the determination of the most important parameters for stab 

resistance performances of knitted structures using six different classification 

algorithms. In this study, stab performances of plain, plush, doubleface, and 

doublefaceinlay knitted aramid samples at three energy levels are analyzed to predict 

the model with six different classification algorithms; two of them which are 

ensemble learning algorithms were never used before in textile sector. According to 

experiment results, the decision tree is proposed as the most successful algorithm 

because it reveals the important parameters and also their critical values for perfect 

stab performances of knitted samples so that it will be possible to plan the knitted 
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structure parameters before fabric manufacturing process according to these critical 

values for the intended level of protection. 

 

Second, we proposed an ensemble learning approach that combines neural 

networks with different parameter values (the number of hidden layers, learning rate, 

and momentum coefficient) to improve prediction performance in textile sector. It is 

the first study that the proposed ensemble learner has been implemented in textile 

sector. This study also compares ensemble neural networks with a single neural 

network in terms of correlation coefficient and relative absolute error measures on 

different textile datasets. 

 

Third, we developed a novel advanced neural network architecture that contains 

convolutional, max pooling, and fully connected layers to classify fashion products. 

This study also compares the proposed convolutional neural network (CNN) with 

ensemble learning methods (i.e. Bagging, Random Forest and AdaBoost) in terms of 

classification accuracy.  

 

Fourth, we proposed a novel approach, named k-Linkage, which calculates the 

distance by considering k observations from two clusters separately. This study also 

introduced two novel concepts: k-min linkage and k-max linkage. While k-min 

linkage considers k minimum (closest) pairs from points in the first cluster to points 

in the second cluster, k-max linkage takes into account k maximum (farthest) pairs of 

observations. 

 

The last, we uncovered relationships between yarn parameters and fabric 

properties using an extended FP-Growth algorithm in association rule mining. This 

study extracted different types of frequent itemsets (closed, maximal, top-k, top-k 

closed, top-k maximal) that have not been determined in textile sector before. It also 

proposed two novel concepts, closed frequent item and maximal frequent item, to 

identify significant items in data. 
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Consequently, in this thesis, (i) important parameters of knitted structures for stab 

performance were determined and ensemble learning algorithms were applied on 

textile sector for the first time, (ii) an ensemble learning approach that combines 

neural networks with different parameter values was proposed to improve prediction 

performance in textile sector, (iii) a novel convolutional neural network (CNN) 

architecture was developed to classify fashion products (iv) a novel hierarchical 

clustering approach, named k-Linkage was proposed and (v) an extended FP-Growth 

algorithm was introduced. 

 

1.4 Organization of the Thesis 

 

This thesis is organized in seven chapters and the remainder of the thesis is 

structured as follows: 

 

In Chapter 2, existing data mining and machine learning studies implemented in 

textile industry were presented and explained in detail to provide an overview of how 

data mining and machine learning techniques can be applied in the textile industry.  

 

In Chapter 3, data engineering, data mining and machine learning concepts with 

their methods; classification, clustering, and association rule mining were explained 

in detail.  

 

In Chapter 4, three different classification case studies: (i) determination of the 

most important parameters for stab resistance performances of knitted structures, (ii) 

improving prediction performance on textile sector using a novel ensemble neural 

network model, and (iii) classifying fashion products using a novel convolutional 

neural network (CNN) were explained.  This section also gave information about the 

application of the proposed models on the datasets and presented the obtained results 

with discussions separately. 

 

In Chapter 5, a novel approach, named k-Linkage, and two novel concepts (k-min 

linkage and k-max linkage) were introduced. This chapter also gave background 
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information on hierarchical clustering and the traditional linkage methods. Lastly, the 

experimental study was presented and the obtained experimental results were 

discussed in this chapter.  

 

In chapter 6, brief background information on association rule mining and the 

types of frequent patterns were given firstly. Then, novel concepts with their 

definitions and the extended (proposed) version of the FP-Growth algorithm were 

introduced. This section also presented the obtained experimental results. 

 

Finally, in Chapter 7, some concluding remarks and future directions were 

presented. 
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CHAPTER TWO 

RELATED WORK 

 

In this chapter, data mining studies, including classification, clustering and 

association rule mining techniques and machine learning algorithms, implemented in 

textile industry were presented and explained in detail to provide an overview of how 

these techniques can be applied in the textile industry to deal with different problems 

where traditional methods are not useful (Yildirim, Birant & Alpyildiz, 2018). The 

present studies clearly show that a classification technique has higher interest than 

both clustering and association rule mining techniques in the textile industry. This 

review also shows that the most commonly applied classification methods are 

artificial neural networks and support vector machines, and they generally provide 

high accuracy rates in the textile applications. For the clustering task of data mining, 

a k-Means algorithm was generally implemented in textile studies among the others 

that were investigated in this study. 

 

2.1 Review of Classification Studies in Textile Industry 

 

Classification is the process of analyzing the input data to develop an accurate 

model using the features present in the data and then using this model to assign new 

input data to predefined classes. A classification algorithm finds relationships 

between the values of the predictors and the values of the target. Applications of 

classification include document categorization, diagnostic prediction, price 

prediction, risk assessment, and sentiment analysis. 

 

Classification is the commonly preferred DM technique in the textile industry 

because it provides predictions about unknown properties and parameters in textile 

studies (Kumar & Sampath, 2012). For example, Akyol, Tufekci, Kahveci & Cihan 

(2014) presented a predictive model for the estimation of the drying period of wool 

yarn bobbins and compared five categories of ML regression methods: functions, 

lazy-learning algorithms, meta-learning algorithms, rule-based algorithms, and tree-

based learning algorithms. In their study, these methods were applied on datasets that 
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consists of 20 parameters using Waikato environment for knowledge analysis 

(WEKA) DM tool. A reduced Error Pruning (REP) tree algorithm was utilized as the 

most successful algorithm among the others used in their study. 

 

In the literature, there are five types of classification algorithms utilized in the 

textile industry: (i) artificial neural networks, (ii) support vector machines, (iii) 

Bayesian classifiers, (iv) decision trees and (v) k-nearest neighbors. 

 

2.1.1 Neural Network in Textile Industry 

 

Artificial Neural Networks (ANN) is a classifier inspired by the biological neural 

structure of the brain, which predicts unknown attribute values depending on input 

data, and it is a popularly used classification method in the textile industry. An ANN 

consists of a large number of highly interconnected processing elements (neurons) 

and weight values on the connections among them. 

 

ANNs have been used in the textile industry for different purposes. Some studies 

were carried out for production planning (Jaouachi & Khedher, 2015) by evaluating 

and predicting the sewing thread consumption of jean trousers, automatic fabric fault 

detection (Eldessouki, Hassan, Qashqari & Shady, 2014; Su & Lu, 2011; Xin, Li, 

Qiu & Liu, 2012) by classifying faults via real time fabric images, performance 

development (Ahmad, 2016; Behera, 2006; Hu, Ding, Yu, Zhang & Yan, 2009; 

Mozafary & Payvandy, 2013; Ozkan, Kuvvetli, Baykal & Sahin, 2015) by 

maintaining predictive models for the relationship between textile parameters and 

performance. Another type of problem for which the NN technique was used in 

textile industry, was to predict utility properties of textile materials, such as the 

moisture and heat transfer rate in fabrics (Rahnama, Semnani & Zarrebini, 2013) and 

air permeability of fabrics (Matusiak, 2015).  The use of neural networks for color 

science (Hamrouni, Kherallah & Alimi, 2011) and textile printing (Golob, Osterman 

& Zupan, 2008) was also investigated.  For example, Golob et al. (2008) proposed to 

determine the correct pigment combinations of dyes for textile printing using the 

ANN technique. In their study, a collection of 1430 printed samples obtained from 

10 dyes was used as a training dataset. 
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Quality control plays an important role in the textile industry. Traditional human 

inspection can result in mistaken judgments, an increase in costs, and low-speed 

manufacturing. Therefore, some researchers (Eldessouki et al., 2014; Su & Lu, 2011; 

Xin et al., 2012; Xin, J. Zhang, R. Zhang & Wu, 2017) used an ANNs to detect 

textile-related defects such as fabric defects (i.e., yarn, woven fabric, knitted fabric, 

dyeing defects) and garment defects (i.e., cutting, sewing, embroidery, and 

accessories defects). Su & Lu (2011) proposed an automated vision system for the 

detection of lycra spandex defects by extracting the features of fabric image textures 

using the gray level co-occurrence matrix and then applying a backpropagation 

neural network (BPNN) to establish flaw classifications of the fabric. In another 

textile study, Xin et al. (2012) proposed an expert system for the quality evaluation of 

fabric wrinkle appearance based on image analysis and using ANN. Xin et al. (2017) 

developed an artificial intelligence system based on a dual-side co-occurrence matrix 

and BPNN to classify color texture in their study. Eldessouki et al. (2014) proposed 

an automated fabric defect system using ANN, utilizing principal component 

analysis (PCA) to reduce the dimensionality of the features without losing the high 

variation embedded in the original data. 

 

In textile studies, the most preferred type of ANN is the feed-forward neural 

network (FFNN) in comparison to the use of Recurrent neural networks (RNN) and 

Competitive neural networks (CNN) (Hamrouni, Kherallah & Alimi, 2011) (Figure 

2.1). In FFNNs, the information moves in only one direction (forward) -from the 

input layer, through the hidden layers (if any) and to the output layer- while it is 

bidirectional in RNNs.  As an example of FFNN application, Rahnama et al. (2013) 

developed an intelligent model that measures the moisture and heat transfer rate in 

light-weight nonwoven fabrics. 
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Figure 2.1 Types of neural networks commonly used in the textile industry 

 

The most widely used model in FFNN for textile studies is multilayer perceptron 

(MLP), in comparison with single-layer perceptron (SLP). As an example textile 

study, SLP was applied on worsted woolen yarn samples to classify the unknotted 

joints of yarn ends over a dataset consisting of 1250 experiments (Lewandowski, 

2011). An example study in the textile sector that used MLP was performed by 

Ozbek, Akalın, Topuz & Sennaroglu (2011). They aimed to estimate Turkey’s denim 

trousers export during a year by considering 23 parameters, such as the minimum 

wage, the price of cotton, electricity, the credit usage of ready-made clothing 

enterprises, brands of denim trousers, and others. Their study clearly showed that 

MLP models predicted more successfully when compared with RNNs. Another 

textile study (Matusiak, 2015) that used MLP was performed to predict the air 

permeability of woven fabrics. A radial basis function (RBF) network is another type 

of FFNN that uses RBFs as its activation functions. As an example study that used 

RBF in textile sector, Behera (2006) introduced an expert system for the prediction 

of both construction and performance parameters of canopy fabrics. In experiments, 

predicted and actual values were compared, and the proposed system showed good 

prediction performance. Within the textile industry, a number of studies have been 

reported that compares MLP and RBF models. Z. Yildiz, Dal, Ünal & K. Yildiz 

(2013) used these techniques to predict the seam strength and elongation at break in 

garments of poplin and gabardine woven fabrics. They concluded that the best 

modeling results were obtained using MLP in the training process and RBF in the 
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testing process; however, in general, there was a consistent similarity between the 

experimental results. 

 

Although several types of NN algorithms have been proposed, the most popular 

one, which is used in textile studies, is the back propagation algorithm (BPNN). In 

the textile industry, this algorithm was used to develop a predictive model of a 

polyurethane-based coating process for forecasting the final characteristics of a 

coated fabric (i.e., thermal insulation, strength, dimensional stability) based on the 

process parameters (Furferi et al., 2012). Another textile study that used BPNN was 

performed by Farooq & Cherif (2008) to identify the leveling action point at the 

auto-leveling draw frame. One of the challenges facing in textile applications is that 

BPNN requires overly time-consuming trial and error to find the learning parameters. 

To overcome this problem, Su & Lu (2011) used the Taguchi method combined with 

BPNN. Another problem encountered in textile studies is the computational overhead 

of BPNN. To eliminate this challenge, the Levenberg–Marquardt algorithm was 

incorporated into the back propagation to accelerate the training, and Bayesian 

regularization was utilized to reduce the testing error for the practical textile 

applications (Farooq & Cherif, 2008). 

 

When researchers compared ANN with regression analysis in textile studies 

(Haghighat, Johari, Etrati & Tehran, 2012; S. N. Ogulata, Sahin, R. T. Ogulata & 

Balci, 2006; Uçar & Ertuğrul, 2007), they proposed ANN to be able to get more 

accurate results. For example, Haghighat et al. (2012) used ANN and multiple linear 

regression to predict the hairiness of polyester-viscose blended yarns based on 

various parameters. The comparison results indicated that ANN had better 

performance, rather than multiple linear regressions, on the yarn hairiness prediction. 

Similarly, Uçar & Ertuğrul (2007) predicted the amount of fuzz, which was 

determined by image processing techniques on the fabric surface using ANN and 

regression analysis. According to experimental results, it was observed that NN 

provided more accurate results than regression analysis. Jaouachi & Khedher (2015) 

also proposed NN for the prediction of the amount of sewing thread consumption 

required to assemble jean trousers, rather than linear regression methods.  In the case 
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where ANN was checked against multiple regression, S. N. Ogulata et al. (2006) 

indicated that both of the models could be used to estimate the fabric or yarn 

properties accurately. 

 

While some textile studies used a single activation function for all NN layers (e.g., 

sigmoid (S. N. Ogulata et al., 2006), linear (Lewandowski, 2011), most of the studies 

(Haghighat et al., 2012; Kumar & Sampath, 2012; Jaouachi & Khedher, 2015; 

Matusiak, 2015; Ozbek et al., 2011; Uçar & Ertuğrul, 2007; Xin et al., 2012; Yildiz 

et al., 2013) proposed the usage of different activation functions for different layers 

(i.e., sigmoid and linear activation functions in the hidden and output layers, 

respectively). Several textile studies (Bahadir, Kalaoglu, Jevsnik, Eryuruk & 

Saricam, 2015; Lewandowski & Drobina, 2008) aimed to perform the analysis of 

different activation functions to figure out the optimal function for a problem. For 

example, Bahadir et al. (2015) tried both sigmoid and hyperbolic tangent functions to 

show the performance of the model constructed to identify the fabric drape of woolen 

fabrics treated with different dry finishing processes. The results indicated that the 

hyperbolic tangent function presented better performance results than the sigmoid 

function for this problem, with lower mean square errors. 

 

In the textile industry, hybrid systems based on NN have also been studied during 

the last decade. For example, Hu et al. (2009) developed hybrid systems for fit 

garment design based on both the NN and immune co-evolutionary algorithm (NN-

ICEA), and the NN and genetic algorithm (NN-GA). The proposed approaches were 

applied on a dataset of 450 pairs of pants to demonstrate their prediction capabilities 

of them on the fit garment design. 

 

The technical difficulty, when applying the ANN in a textile study, is to design 

the network correctly, especially in determining the type of ANN, its topology 

(number of hidden layers and processing elements in each layer), learning algorithm, 

stopping criteria, and activation function(s). Determining the value of the parameters 

(i.e., momentum, learning rate, bias value) is equally important for accurate work 

with ANNs to obtain reliable results. Some textile studies (Bahadir et al., 2015; 
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Farooq & Cherif, 2008; Haghighat et al., 2012; Matusiak, 2015; Ozbek et al., 2011; 

Su & Lu, 2011; Yildiz et al., 2013) focused on the design issues in the building of an 

artificial neural network classifier. For example, Bahadir et al. (2015) tested the 

neural network efficiency by changing the number of neurons for the problem of 

predicting the drape behavior of woolen fabrics treated with different finishing 

processes. 

 

2.1.2 Support Vector Machine in Textile Industry 

 

Support vector machine (SVM) (Salcedo-Sanz, Rojo-Alvarez, Martinez-Ramon & 

Camps-Valls, 2014) is a supervised learning model that is based on statistical 

learning theory, the concept of decision planes and structural risk minimization. 

SVM algorithm constructs a hyperplane in a high-dimensional space for the 

prediction of class labels. In order to avoid overfitting and high-dimensionality 

problems, SVMs choose the maximum margin separating the hyperplane and defined 

a kernel function to map the training data into a higher-dimensional feature space. 

 

SVM has been applied to different textile problems, such as predicting fabric type 

(Ghosh, Guha & Bhar, 2015) and fabric parameters (Yap, X. Wang, L. Wang & Ong, 

2009), predicting yarn properties (Abakar & Yu, 2013, 2014; Lü, Yang, Xiang & 

Wang, 2007), fiber identification (Lu, Zhong, Li, Chai, Xie, Yu & Naveed, 2018; 

Wan, Yao, Zeng & Xu, 2009), and color management (Zhang & Yang, 2014) in 

textile printing and dyeing. Similar to the ANN, SVM has also been applied for 

quality management (Nurwaha & Wang, 2012; Su, Yao, Xu & Bel, 2011) in textile 

sector, especially for defect classification (Li & Cheng, 2014) in textile textures. Lu 

et al. (2018) proposed an approach to identify microscopic images of cashmere and 

wool fibers using SVM. Features of the images are extracted and reformulated using 

a bag-of-words model and the identification process is performed by SVM classifier. 

 

Surface inspection-based quality control studies in the textile industry have been 

analyzed in two steps. The SVM algorithm was applied as the second step to predict 

the class of that data, while fabric images were initially preprocessed and parameters 

were defined by a feature extractor. For example, Li & Cheng (2014) presented a 
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yarn-dyed woven fabric defect model using combined feature extractors and 

modified SVM classifiers. The model was tested on 180 selected defect images of 

yarn-dyed fabrics, including different patterns, using a cross validation technique. 

According to the test results, more than 91% of the samples were accurately 

recognized and classified by the proposed method. Another textile study related to 

quality management developed a predictive model for the wrinkling appearance of 

fabric using modified wavelet coefficients and SVM classifiers. In the testing step, 

the developed model was applied on 300 images of five selected fabrics that had 

different weave structures, fiber contents, colors, and laundering cycles. Obtained 

validation results indicated that approximately 78% instances were correctly 

classified by the proposed model. 

 

Several textile studies (Nurwaha & Wang, 2012; Lü et al., 2007; Zhang & Yang, 

2014) compared SVM with other classification techniques. For example; Zhang & 

Yang (2014) tried both SVM and Naive Bayes algorithms for the prediction of color 

differences between the evaluated dyed fabrics. The results indicated that it was 

possible to increase the prediction accuracy by 9% with the SVM model. Another 

study by Lü et al. (2007), also proposed SVM instead of ANN for the prediction of 

worsted yarn properties, indicating that SVM provided more stability for predictive 

accuracy than ANN under real datasets and small population circumstances, such as 

worsted yarn spinning process being noisy and dynamic. Nurwaha & Wang (2012) 

developed an intelligent control system for estimating textile yarn quality by 

comparing six techniques: the General Neural Network (GNN), the Group Method of 

Data Handling Polynomial Neural Network (GMDHP), Gene Expression 

Programming (GEP), SVM, MLP, and RBF neural networks. When the estimation 

performances of these techniques were compared, the lowest error values were 

provided by the SVM model, followed by GEP. 

 

As in the other domains, one of the challenges faced in textile studies is to search 

for the optimal parameters of the SVM. To overcome this problem, some textile 

studies used genetic algorithms for optimization (Abakar & Yu, 2013; Zhang & 

Yang, 2014). Another technical difficulty in textile studies is to determine 
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independent parameters from the training data to reduce the dimensionality of the 

feature vector, improving the speed of the evaluation and accuracy through this way. 

To solve this problem, several textile studies (Mustafic, Jiang & Li, 2016; Jing, 

Zhang, Kang & Jia, 2012; Wu, Chen, Wang, Sun & She, 2012; Zhang & Yang, 

2014) used PCA technique. 

 

SVMs can be classified into two categories, linear and nonlinear according to the 

kernel function they used. Some textile studies (Ghosh et al., 2015) performed linear 

classification. For example, Ghosh et al. (2015) presented a study for the 

identification of handloom and powerloom fabrics using a proximal support vector 

machine (PSVM). When the model was tested by applying a k-fold cross validation 

technique, the prediction results indicated that PSVM categorized handloom and 

powerloom fabrics efficiently and correctly, with 98.75% accuracy rate. In addition 

to performing linear classification, SVMs can efficiently perform a nonlinear 

classification by mapping input space into a high-dimensional, even infinite 

dimensional, feature space.  As a nonlinear SVM study example, Wan et al. (2009) 

introduced an automated identification system for fiber cross-sectional shapes. 

Firstly, the shape features were characterized using a distance-based Skeletonization 

algorithm, and then, SVM with a nonlinear kernel function was implemented to 

classify shaped fibers; a total of 1200 samples have been evaluated. The fibers in the 

six testing groups were classified with 95.43% average accuracy, compared to human 

inspection. Some textile studies (Sun et al., 2011; Yap et al., 2009) performed both 

linear and nonlinear SVM to compare them. Yap et al. (2009) presented a study for 

the prediction of wool knitwear pilling propensity. While the linear kernel function 

showed an average prediction accuracy of 85%, the nonlinear kernel achieved the 

highest performance, with a 90% prediction accuracy. 

 

Studies conducted in the textile industry showed that the kernel function played an 

important role in the accuracy of the SVM model forecast. For this reason, some 

textile articles (Abakar & Yu, 2014; Yap et al., 2009) compared the kernels (i.e., 

polynomial, sigmoid or RBF) with respect to their prediction performances. Abakar 

& Yu (2014) compared SVM models based on polynomial, radial basis, and Pearson 
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functions in the prediction of yarn tenacity. When a k-fold cross validation technique 

was used as the evaluation method, the results showed that it is possible to provide 

correct predictions on the yarn properties using SVM with Pearson function as well 

as the SVM mode based on RBK kernel and ANN. The same researchers (Abakar & 

Yu, 2013) also proposed the prediction of yarn tenacity using SVMs for regression 

(SVMR). The genetic algorithm for feature selection was also used as the 

preprocessing stage to be able to select the best attributes related to the prediction of 

yarn tenacity. The proposed approach was compared with a noisy model of SVMR, 

and obtained results showed that the hybrid approach achieved higher predictive 

performance than the noisy model. 

 

In the textile sector, the RBF (Jing et al., 2012) is the most commonly selected 

kernel function used in SVMs. This is mainly because of its accurate and reliable 

performances in applications. To obtain the highest possible classification accuracy, 

it is necessary to find a set of optimal parameters, including the regularization value 

(c) and the width of RBF kernel (σ) (Wu et al., 2012). As an example textile study 

that used RBF kernel, Wu et al. (2012) developed an intelligent clothing framework 

that recognized human daily activities using a single waist worn tri-axial 

accelerometer sensor. Six different physical activities obtained from 492 samples 

were recognized and classified into predefined categories using the SVM method. 

The proposed activity recognition method was validated, with a mean classification 

accuracy of 95.25%. 

 

2.1.3 Bayesian Classification in Textile Industry 

 

Although NN and SVM techniques offer reasonably good solutions for textile 

problems, researchers have also tried using the Naive Bayes algorithm. Naive Bayes 

(Cichosz, 2015) is one of the well-known and highly scalable classification 

algorithms, which uses Bayes Theorem to calculate conditional probabilities for the 

determination of unknown class values of samples. 
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As a well-established classification algorithm, the Naive Bayes algorithm has 

been used to overcome problems in various types of textile applications, such as the 

objective evaluation of surface roughness (Hu, Xin & Yan, 2002), color difference 

evaluation in fabric dyeing (Zhang & Yang, 2014), and fabric pilling evaluation 

(Kim & Kang, 2005). 

 

In the textile industry, as a two-stage process, image analysis techniques have 

been generally used as the first step before Bayesian classification. Firstly, textile 

surface characteristics (i.e., surface roughness, color mean values, number, area, and 

density of pills) were extracted by image processing, and then, the classification 

algorithm was applied to evaluate fabric appearance, such as fabric pilling or fabric 

wrinkle. For example, Kim & Kang (2005) presented a study for fabric pilling 

evaluation using four classification algorithms: Naive Bayes, minimum distance, k-

nearest neighbors, and neural network. The grades of fabric samples were predicted 

comprehensively, and high accuracy rates (≥90) were obtained using these 

algorithms. Hu et al. (2002) proposed a morphological fractal method to analyze the 

fabric surface objectively after abrasion, and the Naive Bayes method is applied to 

classify the pilling quality grades objectively. 

 

The challenges arising in textile applications when Bayesian classification is used 

can be indicated as missing data, continuous variables, attribute independence, and 

zero observations. When proposing solution approaches, each challenge can be 

overcome in the following ways. If a textile data instance has a missing value for an 

attribute, it can be ignored when a probability is calculated for a class value or it can 

be filled with an appropriate value while preparing data.  In the case when an 

attribute is continuous, it would either need to be converted to a discrete variable, or 

a probability density function (i.e., Gaussian), which describes the distribution of the 

textile data, should be used. If the attributes in a textile data are correlated or 

dependent, Bayesian networks can be used.  If an attribute has a value that was not 

observed in training, the model assigns a zero probability, and thus, it cannot make a 

prediction. To overcome this problem, the Laplace correction technique can be used 

to assign arbitrarily low probabilities. 
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2.1.4 Decision Trees in Textile Industry 

 

The decision tree (DT) is a supervised learning algorithm that classifies unknown 

attribute values by constructing a tree that is a conjunction of rules.  

 

Attempts have been made to increase the accuracy of the knowledge discovery 

process by applying DT techniques to textile data. Agarwal, Koehl, Perwuelz & Lee 

(2011) aimed to reveal the effectiveness level of wash-ageing and fabric softener 

usage on the mechanical properties (such as tensile extension, shear and bending 

rigidity, compression energy, fabric roughness) of knitted fabrics using a DT 

algorithm over 104 types of different samples with different fiber types and fineness, 

yarn construction, and fabric structure. The same researchers (Agarwal, Koehl, 

Perwuelz & Lee, 2010) also investigated the softener pickup amount and its 

uniformity using the same dataset. In these studies, DT was indicated to be used for 

the better interpretation of the large set of variants. 

 

The DT algorithm has also been implemented for the benefit of sizing 

determination problems of garment manufacture in the textile industry. The size of 

the garment with the best fitting can be a problem if not based on anthropometric 

data, which means a large set of data and variables. Thus, researchers indicated that 

the use of the DT algorithm provided the benefits for the use of anthropometric data, 

in that it allows for wider coverage of body shapes with fewer number of sizes and 

generates regular sizing patterns and rules. For example, Hsu & Wang (2004) 

introduced a new pants sizing system for the manufacture of garments to determine 

the pants sizes of army soldiers. The sample dataset consisted of 265 static 

anthropometric variables evaluated from 610 soldiers in Taiwan, resulting in 160,000 

pieces of data. The classification and regression trees (CART) algorithm was utilized 

to discover body dimension patterns and categorize them into specific figure types. 

Researchers defended that their study as being useful for the specification of 

standard-sizing systems to produce military uniforms in Taiwan. In another study, 

Zakaria (2011) also proposed a sizing system for school-aged children in Malaysia 
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using the DT technique. The sample dataset contained the body characteristics of 

1001 randomly selected girls from 29 different schools in Malaysia. 

 

In textile studies, the DT technique has been generally used to predict the 

probability of events of interest. For example, it was used to predict wash-ageing of 

fabrics (Agarwal et al., 2011) drying time periods of bobbins (Akyol et al., 2014), 

and the amount of softener picked up by the fabric (Agarwal et al., 2010) and to 

determine the most important factors/parameters among many variables for an 

effective sizing system (Hsu & Wang, 2004). For such studies, DT was preferred 

because it is capable of expressing the degree of relationships between output and 

input variables and selects the most important attributes when constructing the tree. 

 

There are several challenges in using DTs effectively in textile studies, including 

overfitting, tree pruning, noisy data, and irrelevant attributes. To overcome these 

problems, from our point of view, future research is necessary on the use of the 

random forest (Ziegler & König, 2014) technique in textile studies. 

 

2.1.5 K-Nearest Neighbor in Textile Industry 

 

K-nearest neighbors (KNN) (Keller & Gray, 1985) is a lazy learning classifier 

that determines a class label by considering a majority vote of its closest k (a user-

defined constant) neighbors using a similarity measure. 

 

In the textile industry, KNN has been used for two types of problems: (i) as a 

classification technique (Mariolis & Dermatas, 2010; Yildiz, Buldu & Demetgul, 

2016) and (ii) as a pre-processing step before applying a DM algorithm (Yu, Hui, 

Choi & Ng, 2010).   In the first category, several applications have been reported. 

For example, Mariolis & Dermatas (2010) presented an automated seam quality 

control system based on surface roughness estimation with the help of the KNN 

algorithm. The experiment material used in their study included 211 seam specimens 

from two kinds of fabrics. The classification performance of textile seam quality of 

KNN was calculated with accuracy rate of 81.04%. Similarly, Yildiz et al. (2016) 
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also used KNN algorithms to classify defects in textile fabrics via the obtained 

properties of feature-extracted images using a thermal camera. As a preprocessing 

step before applying DM, Yu et al. (2010) proposed a model for fabric hand 

prediction using fuzzy NN. In their study, the KNN algorithm was used for the 

feature selection to reduce the computational cost by decreasing the number of input 

variables. 

 

There are four challenges to using KNN effectively in textile studies: (i) finding 

the optimum value of parameter k, (ii) selecting the best distance measure, (iii) 

reducing features, and (iv) weighting features. A major challenge in KNN 

classification is how to choose the optimum value of the neighborhood parameter k. 

In order to overcome this problem in textile studies, the KNN algorithm is run for 

various k, and the value achieving the highest classification accuracy is then selected 

as the optimal value for k (Mariolis & Dermatas, 2010). Another challenge is to 

select the best distance measure from a set of alternative metrics (i.e., Euclidean, 

City-Block, Minkowski, etc.) in order to obtain the highest classification accuracy 

for the given data. As a solution, Mariolis & Dermatas (2010) used and compared 

different distance measures for the assessment of textile seam quality. The third 

problem is that textile data may have numerous features in dimension, and many of 

these features may be irrelevant or redundant. In this case, PCA (Glosh et al., 2015; 

Wu et al., 2012; Zakaria, 2011; Zhang & Yang, 2014; Jing et al., 2012) or filter-

based feature selection (Akyol et al., 2014) methods can be used to reduce the 

dimensionality before applying the KNN algorithm. The last challenge is to identify 

the weights of features if the different importance of variables is take into 

consideration. Kim & Kang (2005) show that it is possible to increase classification 

accuracy by weighting features in textile studies. 

 

2.1.6 Comparison of Classification Methods in Textile Industry 

 

The classification based textile studies mentioned so far are compared in Table 

2.1. In this table, the scopes of the studies, year they were performed, algorithms that 

were used in the studies, and success rate with the validation method are listed. In 
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addition, if more than one algorithm is presented and compared with each other, the 

proposed one (the most successful one) is also indicated. 

 

2.1.7 Classification Validation 

 

The previous section elucidated different ways of obtaining knowledge from 

textile data using various classification techniques. One of the main questions when 

classification is performed in the textile industry is how to validate the classification 

results. Expert knowledge plays an important role in validating the result of these 

studies. Besides, some validation methods have been used, such as correlation 

coefficient (Bahadir et al., 2015; Haghighat, 2012; Lewandowski & Drobina, 2008; 

Matusiak, 2015; Ozbek et al., 2011; S. N. Ogulata, 2006; Uçar & Ertuğrul, 2007; 

Yildiz et al., 2013), holdout validation (Kuo & Juang, 2016), and k-fold cross 

validation (Ghosh et al., 2015; Nurwaha & Wang, 2012; Li & Cheng, 2014; Sun et 

al., 2011; Wu et al., 2012).  For the k-fold cross validation method, it is possible to 

see different k values used in different textile studies, such as k=10 in the studies 

(Ghosh et al., 2015; Nurwaha & Wang, 2012), k=5 in the study (Sun et al., 2011) and 

k=4 in another work (Wu et al., 2012). In order to decide, different k values can be 

tried, and the average one or the best one that has a sufficiently small deviation can 

be chosen. 
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Table 2.1 Comparison of classification studies in textile industry (Reg, regression; MAE, Mean absolute error; MSE, Mean squared error; RMSE, Root mean squared 

error; R, Correlation coefficient) 

Ref Year Type of Problem 

Algorithms Validation 

Method & 

Accuracy 

Proposed  

Algorithm 
Artificial Neural Network (ANN) 

Reg SVM Bayes DT KNN Other 
FFNN RNN SLP MLP RBF BPNN 

Kuo & Juang 2016 
Determination of embroidered 

textile defects 
√   √  √       

Train (70%) 

Test (30%) 

Accuracy=100% 

ANN 

Akyol et al. 2015 
Prediction of drying time 

period of wool yarn bobbins 
   √ √  √   √ √ 

REP Tree, 

Kstar, etc. 

MAE=0  

RMSE=0 
REP tree 

Jaouachi & 

Khedher
 
 

2015 

Prediction of the sewing 

thread consumption of jean 

trousers 

√   √  √ √      R2=0.973 ANN 

Matusiak 2015 

Prediction of the air 

permeability of woven 

Fabrics 

√   √         
R=0.9848 

MAE=0.1714 
ANN 

Bahadir et al. 2015 

Prediction of the drape 

behavior of woolen fabrics 

treated with dry finishing 

processes 

√   √  √       
R=0.92 

MSE=0 
ANN 

Xin et al. 2017 Color texture classification      √       R=0.9726 BPNN 

Eldessouki et al. 2014 
Determination of plain woven 

fabric defects 
√   √         

correct 

classification 

rate (CCR) = 

90% 

ANN (and 

principal 

component 

analysis) 

Mozafary & 

Payvandy 
2013 

Prediction of worsted spun 

yarn quality 
√   √  √      K-Means 

Regression=0.79

177 

K-means and 

ANN with 

Levenberg–

Marquardt  

Yildiz et al. 2013 
Modelling of seam strength 

and elongation at break 
   √ √        

R≈1  

MSE=3.33e-05 
MLP or RBF 

Rahnama et al. 2013 

Measurement of the moisture 

and heat transfer rate in light-

weight nonwoven fabrics 

√     √       

error < 4.7% for 

heat 

         < 7.9% for 

moisture 

ANN 

 

2
3
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Table 2.2 continues 

Kumar & Sampath 2012 

Prediction of the dimensional 

properties of a weft-knitted 

double cardigan structure 

made from 100% cotton ring 

spun yarns 

√   √  √       
MSE=0.84 

R2 >0.98 

ANN with 

Levenberg–

Marquardt alg. 

Xin et al. 2012 

Quality evaluation of fabric 

wrinkle appearance based on 

image analysis 

√  √   √       
R2 = 0.9798 

MSE=0.004635 
ANN 

Furferi et al. 2012 

Prediction of the final 

characteristics of a coated 

fabric, based on the process 

parameters 

√   √  √       
average error < 

5.5% 
ANN 

Haghighat et al. 2012 

Prediction of the hairiness of 

polyester-viscose blended 

yarns 

√   √  √ √      

R = 0.967 

MSE=4.58    

PF/3=7.059 

ANN 

Su & Lu 2011 
Determination of lycra 

spandex defects 
√   √  √       

RMSE=0.00010

4 

Accuracy=97.14

% 

Taguchi-based 

BPNN 

Hamrouni et al. 2011 Textile plant modeling  √  √         error = 0.013 ANN 

Lewandowski 2011 
Determination of the 

unknotted joints of yarn ends 
  √         Adaline 

coefficient = 

74.12% 
Adaline 

Ozbek et al. 2011 
Estimation of Turkey’s denim 

trousers export 
 √  √         

R=0.9314 

RMSE=0.0089  

ANN (MLP 

version) 

Hu et al. 2009 
Fit prediction in garment 

design (pants) 
√   √        ICEA, GA error rate < 0.1 

Hybrid (NN-

ICEA) 

Farooq & Cherif 2008 

Prediction of the leveling 

action point at the drawframe 

auto-leveling  

√   √  √       

10-fold cross-

validation 

R2 = 0.9622 

BPNN and 

Levenberg–

Marquardt alg. 

Ucar & Ertugrul 2007 
Prediction of fuzz fibers on 

fabric surface 
√   √  √ √      R=0.88 ANN 

 

 

 

 

2
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Table 2.3 continues 

Behera 2006 

Prediction of both 

construction and performance 

parameters of canopy fabrics 

    √        

differences 

between actual 

and predicted 

values for all 

parameters 

ANN 

Ogulata et al. 2006 

Prediction of elongation and 

recovery of woven bi-stretch 

fabric 

√   √  √ √      R=0.992 

ANN or 

Linear 

Regression 

2
5
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2.2 Review of Clustering Studies in Textile Industry 

 

Clustering is the process of grouping a set of objects according to their 

similarities. It helps us better understand the characteristics of data because fewer 

groups are more easily interpreted. Several studies have focused on the application of 

the clustering process in the textile industry with the aid of algorithms named K-

Means (Esfandarani & Shahrabi, 2012; Soltani, Shahrabi, Asadi, Hadavandi & 

Johari, 2013; Song & Ashdown, 2011; Yıldırım & Başer, 2011; Zhang, Xin, Fang & 

Cao, 2015), Fuzzy C-Means (Kuo, Lan, Dong, Chen & Lin, 2018; Kuo, Shih & Hsu, 

2011; Shih, Kuo & Cheng, 2016) and Hierarchical (Nourani, Jeddi & Moghadam, 

2011; Prada, Curran & Furton, 2014). 

 

K-means is an easily implemented algorithm that divides the given dataset into k 

clusters by determining the centroids of each cluster. Zhang et al. (2015) used this 

algorithm to cluster interlaced, multi-colored, dyed, yarn-woven fabrics. Images 

captured from fabrics were divided into three sub images in red, blue and green and 

were then filtered in Lab color space; finally, the algorithm was processed for color 

clustering. In another study, Yıldırım & Başer (2011) also used the K-Means 

algorithm but for a different purpose -in order to determine cloth fell position. In 

their study, line laser lights were used as reference lines, and wavelet transform was 

utilized for the segmentation process. 

 

Garment fitting problems in the textile industry are instances of clustering 

problems and were tackled via PCA and K-means algorithms (Esfandarani & 

Shahrabi, 2012; Song & Ashdown, 2011) for size charts with higher fitting. 

Esfandarani & Shahbari (2012) proposed a suit sizing system by segmenting the 

heterogeneous population to a more homogenous one, and the aggregate loss of 

fitness is used to evaluate the resultant sizing.  Song & Ashdown (2011) presented a 

clustering application for the categorization of lower body shapes of adult females 

using PCA and K-Means algorithms. The samples, which include body shapes of 

2488 women aged 18-35 with approximate body mass index of 34.14, were divided 

into three categories curvy shape, hip tilt shape and straight shape. 
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Several textile studies used clustering for subsequent analysis and further 

processing stages. For example, Soltani et al. (2013) used the K-means clustering 

algorithm as a preprocessing step before the actual analysis took place. They 

developed a three-stage hybrid model for the migration behavior of fibers: (i) key 

variables of samples were determined by stepwise regression analysis method; (ii) 

the samples divided into three clusters; and finally, (iii) yarn migration factor for 

each cluster was specified using the adaptive neuro-fuzzy inference system. 

 

In terms of challenges while working with K-means algorithms in the textile 

industry that some textile researchers (Mozafary & Payvandy, 2013; Song & 

Ashdown, 2011) have attempted to overcome, two of them come to fore, the first of 

which is determining the optimal k value. Different cluster numbers were studied to 

determine the best grouping. Secondly, initial cluster centers are assigned randomly, 

and therefore, the final answer is dependent on the choice of initial centers. Thus, to 

be applied in future studies, the usage of K-Means++ algorithm in the textile 

industry shall be preferred to improve both the speed and the accuracy of K-Means. 

 

Recently, textile researchers have attempted to achieve high accuracy by 

combining and enhancing supervised techniques with clustering (Mozafary & 

Payvandy, 2013). Mozafary & Payvandy (2013) used both K-means clustering and 

ANN classification algorithms one after another to predict yarn quality parameters 

such as unevenness, nep, and thin and thick place. The model was validated using 

data obtained from more than 150,000 sources, including fiber, manufacturing 

process, and yarn quality parameters, and showed good performance for the 

prediction of worsted spun yarn quality. Another study that integrated clustering and 

classification methods into a single platform was performed by Kuo et al. (2011) 

They presented a texture simulation on embroidery fabrics, which uses probabilistic 

NNs and texture fitting methods based on fuzzy C-means. Firstly, regions and colors 

were separated using the clustering method, and then, texture patterns were 

categorized using a classification algorithm. 
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The main motivation for using clustering algorithms is to tackle the problem of 

grouping individual objects more efficiently and more accurately. To achieve this 

objective, some textile studies proposed combining two or more clustering 

algorithms. For example, Jiang, D. Zhang, Cong, A. Zhang & Gao (2014) combined 

multi-channel clustering and K-means clustering algorithms for the automatic 

identification of jacquard warp-knitted fabric patterns. According to observed 

experimental results, the proposed system gave exact segmentation results with high 

consistency and edge accuracy. 

 

Fuzzy c-means (FCM) (Novak, Perfilieva & Dvorak, 2016) is a well-known 

clustering algorithm that partitions the dataset into c fuzzy clusters with respect to the 

distance between the cluster center and the data point.  Xiao, Nie, Zhang, Geng, Wu 

& Li (2014a) used the FCM algorithm to recognize the yarn crossing areas of woven 

fabric. The same researchers also presented a study on the recognition of woven 

fabric patterns using gradient histogram and fuzzy C-means (Xiao, Nie, Zhang, 

Geng, Wu & Li, 2014b). Ammor, Lachkar, Slaoui & Rais (2008) conducted a similar 

study. They investigated a new formulation for providing the optimization of pattern 

recognition using fuzzy C-means in the textile field. Their study proposed a new 

cluster validity index that was based on the maximum entropy principle to determine 

the optimal number of clusters with a high degree of overlap. In another study, Kuo 

et al. analyzed the processing parameters for the quality characteristics of tensile 

strength and elongation by the fuzzy C-means algorithm. Shih et al. (2016) also 

proposed an automated analysis system for automated color, shape and texture 

analysis of Tatami embroidery fabric images using Fuzzy C-Means (FCM) clustering 

method. 

 

In a hierarchical agglomerative clustering algorithm, there are three different types 

of inter-cluster distance measurement: single-link, complete-link and average-link. 

While some textile studies (Li, Yuen, Yeung & Sin, 2001; Prada et al., 2014) used 

only one approach (i.e., single link) to determine the effect of textile structural 

parameters on the performance, some of them (Nourani et al., 2011; Yoon & Park, 

2002) used and compared all of the approaches to evaluate the relationship between 
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the textile parameters and the properties.  Li et al. (2001) combined both hierarchical 

and non-hierarchical algorithms with the aim to classify fabrics without noticeable 

color shade differences. 

 

The clustering based textile studies performed until now are partitioning-based 

and hierarchical based. However, density-based clustering algorithms, such as 

density-based spatial clustering of applications with noise (DBSCAN), are capable of 

discovering clusters of any arbitrary shape and size in datasets, which even include 

noise and outliers. Because of these advantages, we believe that, in the future, the 

density-based clustering approach will begin to be used in the textile industry. 

 

2.2.1 Comparison of Clustering Methods in Textile Industry 

 

The clustering based textile studies mentioned so far are compared in Table 2.2. 

In this table, the scopes of the studies, years they were performed, and the algorithms 

that were used in the studies are listed.  

 

Table 2.4 Comparison of clustering studies in textile industry 

Ref Year Type of Problem 

Algorithms 

K-Means 
Fuzzy  

C-Means 
Hierarchical Other 

Zhang et al. 2015 
Clustering interlaced multi-colored 

dyed yarn woven fabrics 
√    

Mozafary & 

Payvandy    
2014 

Combining classification with 

clustering to predict yarn quality 
√   ANN 

Jiang et al. 2014 
Identification of jacquard warp-

knitted fabric patterns 
√   

multi-

channel 

clustering 

Soltani et al. 2013 
Cluster analyses in modelling fiber 

migration 
√   

Adaptive 

Neuro-

Fuzzy, ANN 

Yildirim & Baser 2011 
Clustering in order to determine the 

cloth fell position 
√    

Song & Ashdown
 
    2011 

Categorization of lower body shapes 

for adult females 
√   PCA 

Xiao et al. 2014 Recognition for woven fabric pattern  √  

Gray-level 

co-

occurrence,  

gradient 

histogram 

Kuo et al. 2011 
Clustering and classification on 

embroidery fabric 
 √  

probabilistic 

NN 

Ammor et al. 2008 
Optimization of pattern recognition 

in textile field 
 √  

maximum 

entropy 

principle 
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Table 2.5 continues 

Kuo et al. 2018 

Analyzing the processing parameters 

for the quality characteristics of 

tensile strength 

 √  

Taguchi 

method, 

stem cells 

Shih et al. 2016 
Automated color, shape and texture 

analysis 
 √   

Prada et al. 2014 

Characteristic human scent 

compounds trapped on natural and 

synthetic fabrics 

  √  

Nourani et al. 2011 

Determining the structural 

parameters and yarn type affecting 

tensile strength and abrasion of weft 

knitted fabrics 

  √  

 

“Classification” and “Clustering” methods are popularly preferred in textile 

industry. Figure 2.2 shows the number of publications that return from Elsevier’s 

Scopus search engine when searching the terms ‘Classification’ and ‘Textile’ - 

‘Clustering’ and ‘Textile’ on title / abstract / keywords parts, in each year from 2004 

to 2018. As can be seen, both numbers continue to increase and classification topic 

has higher interest than clustering topic in textile industry.  

 

 

Figure 2.2 Number of publications related to classification and clustering in textile sector in Elsevier’s 

Scopus by year 

 

2.2.2 Clustering Validation 

 

The validation of clustering remains an active topic in DM research (Derntl & 

Plant, 2016). This effort is also necessary for textile applications. Some textile 
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studies (Jiang et al., 2014; Soltani et al., 2013) used the sum of squared error (SSE) 

to evaluate clusters regardless of the clustering algorithm that produced them.  

 

SSE is commonly preferred clustering validation method which measures the 

variance of the clusters by calculating the sum of the squared differences between 

each observation and the mean value of the cluster. Being SSE value equals to zero 

means that each observation in the cluster is identical. 

 

2.3 Review of ARM Studies in Textile Industry 

 

Although ARM has a very long history in many areas, especially in marketing, 

only a few studies (Ciarapcia, Sanctis, Resta, Dotti, Gaiardelli, Bandinelli, Fani & 

Rinaldi, 2017; Huang, Qiu & Yang, 2009; Ingle & Suryavanshi, 2015; Logeswari, 

Valarmathi, Sangeethe & Masilamani, 2014) have been conducted so far in the 

textile industry. However, these studies do not aim to determine textile parameters; 

instead, they focus on different purposes such as textile marketing (Huang et al., 

2009), ARM method verification by using a textile dataset (Ingle & Suryavanshi, 

2015; Logeswari et al., 2014), and environmental strategies developed by fashion 

companies (Ciarapcia et al., 2017). One of the studies in the literature (Lee, Choy, 

Ho, Chin, Law & Tse, 2013) proposed a quality management system based on hybrid 

OLAP-association rule mining for extracting defect patterns in the garment industry. 

The experimental results presented that the proposed HQMS approach provided the 

quality improvement in the industry. Similarly, ARM can be used to discover useful 

patterns and interesting relationships among set of yarn and fabric parameters in a 

textile data. 
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CHAPTER THREE 

DATA ENGINEERING AND MANAGEMENT 

 

This chapter gives the background information about data engineering and 

management notions. It also explains data mining with its methods; classification, 

clustering, and association rule mining and machine learning approach in detail.  

 

3.1 Data Engineering 

 

As a result of technological innovations and developments, enormous amounts of 

data are generated every day in textile industry as well as in a wide range of areas 

such as business, education, healthcare, government, finance, social media. The 

increase in the amount of data that is generated creates the potential to discover 

valuable knowledge from it. However, it also generates a need to deal with data 

processing in an efficient and low-cost way. To overcome this necessity, data 

engineering and management concept was proposed. 

 

Data engineering is the process of integrating raw data from various resources and 

managing it to prepare for the application of data mining and machine learning 

algorithms. Data pre-processing is the step which makes the raw data ready for the 

input demands of data mining and machine learning algorithms. This step consists of 

five steps: data integration, data transformation, data cleaning, data reduction and 

data discretization. 

 Data integration: Data integration process combines data residing in 

different sources in a single format. 

 Data transformation: This step converts raw data from one format to 

another validated format using normalization, aggregation and 

generalization methods.  

 Data cleaning: It cleans raw data including incomplete, noisy and 

inconsistent records with the help of some techniques such as filling 

missing values, identifying outliers, and resolving inconsistent samples.  
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 Data reduction: Irrelevant attributes in the huge amount of data are 

eliminated in this step to reduce the complexity.  

 Data discretization: Discretization is an essential task for the 

classification algorithms which accept only datasets that contains 

categorical valued records. This process divides numerical values into 

intervals called bins.  

 

3.1.1 Data Mining 

 

Data mining, which is a step of Knowledge Discovery in Databases process, is the 

process of extracting useful patterns or relations from raw data involving many 

disciplines such as machine learning, artificial intelligence, database systems and 

statistics. Data mining tasks can be categorized as classification, clustering, and 

association rule mining.  

3.1.1.1  Classification 

 

Classification is the most studied and commonly applied data mining task. It 

develops a model to assign new patterns into one of several predefined classes. 

Classification uses a training set D = (R1, R2, …, Rn) that has some records R, which 

consist of a number of attributes R = (a1, a2, …, am) of which one (aj) is a target 

outcome. Classification algorithms try to determine relationships between attributes 

in a training set to classify new observations. 

 

In this study, three different classification case studies were performed: (i) 

determination of the most important parameters for stab resistance performances of 

knitted structures, (ii) improving prediction performance on textile sector using a 

novel ensemble neural network model, and (iii) classifying fashion products using a 

novel convolutional neural network (CNN). 

3.1.1.2 Clustering 

 

Clustering, an unsupervised learning technique, is the process of grouping a set of 

objects into meaningful clusters in such a way that similar objects are placed within a 
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cluster. Clustering analysis is currently used in many areas such as image processing, 

pattern recognition, segmentation, machine learning, and information retrieval. The 

main task of clustering is to compare, measure, and identify the resemblance of 

objects based on their features by using a similarity measure such as the Manhattan, 

Euclidean, or Minkowski distance for numerical attributes and Jaccard’s distance for 

categorical values. Clustering algorithms are categorized into five major types, as 

listed in Table 3.1. 

 

Table 3.1 Categorization of well-known clustering algorithms 

Cluster Models Clustering Algorithms 

Partitioning Methods K-Means, C-Means, K-Medoids, CLARANS, ... 

Hierarchical Methods Single/Complete/AverageLink, BIRCH, ROCK, CAMELEON, ...  

Density-Based Methods DBSCAN, DENCLUE, OPTICS, ... 

Grid-Based Methods STING, CLIQUE, WaveCluster, ... 

Model-Based Methods SOM (Self Organizing Maps), COBWEB, EM (Expectation 

Maximization), ... 

 

In this thesis, a novel approach, named k-Linkage, which calculates the distance 

by considering k observations from two clusters separately was proposed. This study 

also introduced two novel concepts: k-min linkage and k-max linkage. While k-min 

linkage considers k minimum (closest) pairs from points in the first cluster to points 

in the second cluster, k-max linkage takes into account k maximum (farthest) pairs of 

observations. 

3.1.1.3 Association Rule Mining 

 

Association Rule Mining (ARM), one of the most important and well researched 

techniques of data mining, is the extraction of interesting correlations, relationships, 

frequent patterns or associations, or general structures among sets of items in the 

transactions. 

 

Let I = {i1, i2, ..., im} be a set of m distinct literals called items, T be transaction 

that contains a set of items such that T ⊆ I, D be a dataset D = {t1, t2, ..., tn} that has n 

transaction records T. An association rule is an implication of the form X ⇒ Y, where 
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X ⊂ I, Y ⊂ I are sets of items called frequent itemsets, and X ∩ Y = ø. The rule X ⇒ 

Y can be interpreted as “if itemset X occurs in a transaction, then itemset Y will also 

likely occur in the same transaction”. 

 

There are two important basic measures for association rules: support and 

confidence. Usually thresholds of support and confidence are predefined by users to 

drop those rules that are not particularly interesting or useful. In addition to these 

measures, additional constraints can also be specified by the users such as time, item, 

dimensional, or interestingness constraints. 

 

Support of an association rule in the form of X ⇒ Y is defined as the percentage of 

records that contain both X and Y itemsets to the total number of transactions in the 

dataset D. Support is calculated by the following formula in Equation (3.1). 

 

 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ⇒ 𝑌) =

Number of transactions contain both X and Y

Total number of transactions in D
 

 

(3.1) 

 

Suppose the support of rule X ⇒ Y is 1%. This means that one percent of the 

transactions contain X and Y items together. 

 

The Confidence of an association rule in the form of X ⇒ Y is defined as the 

percentage of the number of records that contain both X and Y itemsets with respect 

to the total number of transactions that contain X, as in Equation (3.2). 

 

 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 ⇒ 𝑌) =

Support(X ∪  Y ) 

Support(X)
 

 

(3.2) 

 

Suppose the confidence of the association rule X ⇒ Y is 85%. This means that 

85% of the transactions that contain X also contain Y.  

 

In this study, we uncovered relationships between yarn parameters and fabric 

properties using an extended FP-Growth algorithm in association rule mining. This 
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study extracted different types of frequent itemsets (closed, maximal, top-k, top-k 

closed, top-k maximal) that have not been determined in textile sector before. It also 

proposed two novel concepts, closed frequent item and maximal frequent item, to 

identify significant items in data. 

 

3.1.2 Machine Learning 

 

Machine learning is a branch of artificial intelligence which provides computer 

systems to learn from experiences using statistical methods. In this discipline, models 

that trained by a dataset are generated using machine learning algorithms. The aim of 

the machine learning is to predict unknown target attributes of the datasets using 

these generated models. There are two main types of tasks in machine learning: 

supervised learning and unsupervised learning. 

3.1.2.1 Supervised Learning 

 

The predictive model is generated using input variables x and their output variable 

y in the supervised learning method. Classification and regression methods are 

examples of supverised learning. 

3.1.2.2 Unsupervised Learning 

 

In unsupervised learning paradigm, there is no prior information about output 

variables y in the datasets. It provides the discovering useful patterns based only on 

input variables x. This techniqe is used in clustering and association rule mining 

methods. 
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CHAPTER FOUR 

CLASSIFICATION STUDIES IN TEXTILE SECTOR 

 

This chapter presents three different classification case studies that performed in 

this thesis, (i) determination of the most important parameters for stab resistance 

performances of knitted structures, (ii) improving prediction performance on textile 

sector using a novel ensemble neural network model, and (iii) classifying fashion 

products using a novel convolutional neural network (CNN).  In this chapter, 

implementation of the proposed approaches on the specific textile data were 

described and the obtained results from the experiments were discussed separately.  

         

4.1 Material and Methods 

 

In this thesis, classification, ensemble learning and deep learning methods were 

preferred for the three different case studies. In each study, different methods and 

their algorithms were used. In total, six different classification algorithms (K-Nearest 

Neighbor, AdaBoost, Naive Bayes, Neural Network, Random Forest, and Decision 

Tree ) were applied on real-world textile data. 

 

4.1.1 Classification Algorithms 

 

Classification is one of the commonly used data mining task which categorizes 

new samples into predefined classes. Algorithms try to find out relationships 

between features of instances in training set and predict unknown target attribute 

value based on a given input. In this study, six classification algorithms: k-Nearest 

Neighbors , AdaBoost, Naive Bayes, Neural Networks, Random Forest and Decision 

Tree  were implemented on the experimental data. 

 

4.1.1.1 K-Nearest Neighbor 

 

K-Nearest Neighbor (k-NN) is a type of instance-based learning to classify an 

instance with the same class label as a majority vote of its k neighbors that have 
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certain class labels. It uses a distance metric (i.e. Euclidean distance) to find the k 

nearest neighbors of a data point. The optimal k value is determined empirically. 

4.1.1.2 AdaBoost 

 

AdaBoost (Adaptive Boosting) is a boosting based algorithm invented by Yoav 

Freund and Robert Schapire. It iteratively trains classifiers, each time reweighting the 

samples in the dataset to focus the next classifier on misclassified ones. In this 

method, all predictions obtained from each learner are combined using a weighted 

voting mechanism.  

4.1.1.3 Naive Bayes 

 

Naive Bayes is a well-known statistical classifier based on applying Bayes' 

theorem with naive independence assumptions between every pair of attributes to 

determine input samples’ classes by calculating unknown conditional probabilities. 

4.1.1.4 Neural Network  

 

Neural Network is a supervised learning technique which consists of 

interconnected multiple layers of nodes in a weighted directed graph that takes input 

data and transforms it into proper outputs. 

4.1.1.5 Random Forest 

 

Random Forest is a bagging based ensemble learning algorithm, introduced by 

Leo Breiman and Adele Cutler. It builds more than one decision trees using different 

subsets of the data and evaluating different subsets of features at each node. After 

training process, it classifies a new sample by applying a voting mechanism over all 

the trees in the forest.  

4.1.1.6 Decision Tree  

 

Decision Tree learning is a supervised learning classification method which uses a 

decision tree that is grown using depth- first strategy to predict input samples’ 
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unknown class attribute values depending on input variables.  The tree structure 

involves nodes to represent features, branches to represent values of features, and 

leaves for class labels.  There are various decision tree algorithms to predict 

unknown values of instances, containing C4.5, C5, ID3, CART and CHAID.  In this 

study, Quinlan’s C4.5 algorithm was chosen for classification process (N. Bhargava, 

Sharma, R. Bhargava & Mathuria, 2013). To construct the tree, the attribute, which is 

beneficial for learning in training set and which gives high mutual information, 

should be specified. To determine order of features in the decision tree, information 

gain, which is based on entropy, is calculated for each feature as defined in Equation 

(4.1). 

 

 
𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −∑

|𝑆𝑉|

|𝑆|
− 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑉)

𝑣∈𝐴

 
 

(4.1) 

 

where Sv represents subset of states S for which attribute A with v value. The 

entropy measures impurity of a particular feature in data set and is calculated as 

defined in Equation (4.2). 

 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =∑−𝑝𝑖 log2 𝑝𝑖

𝑚

𝑖=1

 
 

(4.2) 

 

where pi is the possibility of output state value i in the data set which has m 

instances and S subsets. The attribute which maximizes the information gain is 

selected as splitting point of the tree. The feature which has the highest information 

gain value among the others is chosen for the root of the tree. Each attribute has 

many possible split points value to branch out the tree and the optimal split point 

value is found by using information gain as defined in Equation (4.1).  Information 

gain is evaluated for each split point between examples from different classes and the 

best split point is chosen. For example, the dataset shown in Figure 4.1 has nine 

samples consisting of fabric thickness (mm) and class parameters (D - dangerous, M 

- medium and P - perfect for stab resistance performances). Entropy values are 

calculated as defined in Equation 4.1 for each possible split points c1, c2, c3 and c4 as 
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0.666, 0.899, 1.267 and 1.387 respectively. Then these entropy values are subtracted 

from entropy value of whole dataset, so information gain values of possible split 

points are evaluated. According to information gain results, c1 is selected as the best 

split point which gives maximum information gain value among the other split points 

and calculated by the average of border values of c1 as 9.75 ((4+15.5)/2). This can be 

interpreted as the stab resistance performance will be dangerous (fatal) when the 

fabric thickness is less than 9.75 mm for the examined samples. 

 

thickness 1.9 3.3 4 15.5 17.6 21 26.2 30.5 34 

class D D D M P P M M P 

                 c1                     c2                                               c3   c4 

    

                 c1=  9.75 

     

   (the best splitting point value)     

Figure 4.1 Finding split point of experimental dataset 

 

The main advantages of C4.5 algorithm are that it is easy to understand, reveals 

good performance on large data sets and in lower training duration. C4.5 classifier 

shows successful results on many areas such as document classification, medical 

diagnosis, business and biomedical. 

 

4.1.2 Ensemble Learning 

 

Ensemble learning is the process that uses a set of learners and predicts an output 

by a voting mechanism over all learners. There are several voting mechanisms such 

as major class labels for categorical target attributes, and the output of an operation 

(average, weighted average, median, minimum, maximum) for numeric target 

attributes. 

 

Many experiments (Che, Liu, Rasheed & Tao, 2011; Yu & Ni, 2014; Svetnik, 

Wang, Tong, Liaw, Sheridan & Song, 2005; Yu, Wang & Lai, 2008) found that 

ensemble learners often provide more accurate predictive results than an individual 

learner. Ensemble learning is generally used for constructing a strong classifier to 

improve prediction performance, feature selection and error-correcting output codes. 

In ensemble-based system, firstly multiple learners are trained and then these 



 

41 

 

learners are generally compounded by taking a voting mechanism. Thus, this 

learning method reduces the risk of an unfortunate selection of a learner which shows 

poor prediction performance. 

 

In the literature, four different approaches are proposed for constructing an 

ensemble of learners (Alpaydın, 2014): 

 Using different training sets: Multiple training subsets are created over 

the original dataset and an individual learning algorithm is trained on each 

different training sets. Selecting different subsets from the original dataset 

can be performed randomly (i.e. bagging) or weighted (i.e. boosting and 

cascading). 

 Using different features: The subsets of input features from the training 

set are selected and given to the learners as input. 

 Combining different learning algorithms: Different learning algorithms 

are applied on the same dataset to get different models. 

 Using different parameters: A single algorithm is used with different 

parameters such as varying k value in k-nearest neighbor classifier 

algorithm. 

 

The ensemble methods can be grouped under four main types: Bagging, Boosting, 

Stacking and Voting. In the third case study, bagging and boosting methods by 

choosing C4.5 decision tree algorithm as base learner were applied on Fashion-

MNIST dataset. To categorize sample fashion products, the Random Forest 

algorithm as a bagging based approach and AdaBoost algorithm as a boosting based 

approach were utilized. 

 

Bagging: Bagging, also known as bootstrap aggregating, is a simple and 

commonly used ensemble method which creates multiple training sets by selecting 

samples randomly over the original dataset. Thus, it is provided that each learner in 

ensemble structure is trained with a different training subset. After training step, the 

predictions from each model are aggregated using a voting mechanism to obtain a 

single final output. 
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Boosting: Boosting is another ensemble technique which aims to convert weak 

learners to strong ones. In this approach, each sample in the training set is assigned a 

weight value and the algorithm increases the weights of misclassified samples in 

each iteration. 

 

4.1.3 Deep Learning 

 

Deep learning also known as deep neural networks is a specialized form of 

machine learning which uses multi layered neural network structures. The deep 

learning architecture needs large amounts of data with class labels for training phase 

of the model and requires high computing power (i.e. high-performance GPUs for 

parallelism) to reduce training time of the model. In the third case study, a type of 

convolutional neural networks (CNN) was developed for textile object classification. 

 

CNN: A Convolutional Neural Network (CNN) is a category of deep feed-

forward artificial neural networks consisting of hidden layers with learnable weights 

and biases. Each neuron in the architecture generally receives 2D image pixels as an 

input, performs a dot product and presents the mapping between input image pixels 

and their class labels. The structure of CNN comprises of a number of convolutional 

and subsampling layers followed by one or more fully-connected layers. The input 

image for the convolutional layer is denoted as m x m x c, where m refers pixels for 

height and width of the image and c symbolizes the number of channels in the image. 

The convolutional layer is utilized to extract features from the input image using a 

filter. Then, the pooling layer provides to reduce size of the image and the 

parameters of the model. 

 

The main advantages of CNNs are that they sizably reduce the amount of 

parameters of the network model and create new features from the training sets. 

Therefore, the CNN paradigm shows a really good performance in areas such as 

image recognition and classification. 
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4.2 Case Study 1 - Classification of Stab Resistance Performances of Knitted 

Structures 

 

Body armors are important equipments for the police, army or any security staff. 

Developments in the field of protective armor present stab and cut resistant materials 

as flexible armors which are comfortable, lightweight and invisible. Flexible body 

armors allow the wearer to move while providing protection against the stab attacks. 

 

Previous studies examined evaluation of different stab and cut resistant materials’ 

performance with the experiments performed by measurement devices using 

situation analysis and mathematical modeling methods and after these measurements 

the materials which has the highest performance among the compared were 

suggested. The search for better performing structures and fabrics continues; even 

though through previous experimental studies the important parameters have been 

outlined it will be helpful to be able to predict values for these important parameters 

so that selection of the raw materials, process types and parameters could be chosen 

more focused to the intended stab resistance performance. It is possible to have such 

a good start if important parameters and their values can be estimated and this can be 

done by using data mining techniques to decide which parameter and its value should 

be selected for a high stab resistance. While traditional data analysis forms a 

hypothesis against the data, “Data Mining” discovers the relations by converting raw 

data into useful patterns or relations and provides a model of the behavior. 

 

In this study, it is aimed to determine important parameters and their critical 

values for stab resistance performances of knitted structures by using data mining 

techniques. Stab and cut resistance of body armor materials has been measured by 

experiments using situation analysis and mathematical modeling methods in all 

previous studies. To the best of our knowledge, this is the first study that estimates 

important parameters with their values for stab performances of knitted structures. 

 

The main contributions of this study as follows; Firstly, important parameters of 

knitted structures for stab performance are determined from experimental data by 
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using decision tree classification algorithm.  Second, ensemble learning algorithms 

which haven’t been used before in textiles, are implemented on the data of knitted 

structures. These algorithms benefit from multiple learning algorithms for 

classification task and shows better prediction performance for stab resistance of 

knitted structures. Lastly, applied algorithms are compared with each other in terms 

of accuracy rates and execution times on three different datasets, and the successful 

algorithm is suggested at the end of the experimental results. The proposed algorithm 

predicts the important parameters with their critical values. Thus, distinctly different 

from previous studies, where stab resistance performances were experimentally 

evaluated, the presented study focuses on prediction of the parameters with their 

critical values for stab resistance performances of knitted structures. In this way it 

will be possible to plan the knitted structure parameters before fabric manufacturing 

process for the intended stab resistance performance. 

 

4.2.1 Experimental Study 

 

Classification algorithms mentioned in material and methods section (k-NN, 

AdaBoost, Naive Bayes, Multilayer Perceptron, Random Forest, and C4.5 Decision 

Tree) were applied on the experimental dataset for three different stab energy levels 

using Weka open source data mining library. Decision tree algorithm differs greatly 

from the others in terms of providing the important parameters with their “critical” 

values. 

 

4.2.2 Dataset Description 

 

The experimental dataset, which is used to derive the pattern in this study, is 

obtained in a previous study (Alpyildiz, Rochery, Kurbak & Flambard, 2011), where 

stab resistance performances of plain, plush, doubleface and doublefaceinlay knitted 

single and multilayer aramid fabrics are examined in comparison for three different 

stab energy levels.  Basic characteristics of the fabric set investigated are given in 

Table 4.1. 
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Table 4.1 Parameters of knitted samples  

Knit structure  Thickness (mm) (1 Layer) Mass/area (g/m2) (1 Layer) 

Plain 1.94 504 

Plush 4 1145 

Doubleface 4.39 1565 

DoublefaceInlay 4.41 1585 

 

Knit structure, fabric thickness, fabric mass per unit area, number of fabric layers, 

side (face or back) of the fabric facing the stabbing and stab resistance performances 

for three energy levels are considered in this study and thus the dataset consists of 

800 samples. “Sample” can be a single layer fabric or many fabrics layered; where 

all of the fabric layers have the same knit structure. The details of data set are given 

in two separate tables; nominal parameters in Table 4.2 and numerical parameters in 

Table 4.3. Numerical parameters of the knitted structures and their values were 

acquired from the results of the experiments realized in a previous study (Alpyildiz et 

al., 2011). 

 

Table 4.2 Details of numerical attributes  

Numerical Parameters Min value Max value 

Number of layers 1 10 

Mass per unit area (g/m2) 493.072 16963.449 

Thickness (mm) 1.92 45.7 

 

Table 4.3 Details of nominal attributes  

Nominal Parameters Label Number of records 

Knit structure 

Plush 200 

Jersey 200 

DoubleFace 200 

DoubleFaceInlay 200 

Front or back face 
F 400 

B 400 

Four joule perforation 

Dangerous 200 

Medium 74 

Perfect 46 

 

Six joule perforation 

Dangerous 154 

Medium 90 

Perfect 118 

 

Ten joule perforation 

Dangerous 0 

Medium 6 

Perfect 134 
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Stab resistance of the fabrics is indicated (Alpyildiz et al., 2011) with the trauma 

values on the backing material and trauma is categorized based on the “perforation 

value (p) ” defining the depth of the knife in the backing material as being fatal when 

p > 10mm, medium when 10mm  p > 7mm and perfect when p  7 mm (Croft & 

Longhurst, 2007).  Thus class labels of samples regarding the stab performances 

were assigned according to perforation values; If the perforation value is less than or 

equal to 7 mm, it is regarded as “perfect”. Else if the perforation value of the sample 

is greater than 7 mm and less than or equal to 10 mm, sample shows “medium” 

perforation performance. Finally, the samples apart from these values (more than 10 

mm) are labeled as “dangerous”. 

 

4.2.3 Results 

 

C4.5 decision tree algorithm was implemented on the experimental dataset of 

knitted structures to predict important parameters with their critical values for stab 

resistance performances at the following energy levels: 4, 6 and 10 J. To classify a 

new sample, the tree is traversed by starting from the root node to leaf by following 

branches appropriate for the attribute (parameter) values of sample.  Reached leaf 

node at the end of the tree traversal will be sample’s class label 

(dangerous/medium/perfect stab performance).  The trees generated for classification 

of perforation at different energy levels was pruned by selecting minimum number of 

instances at each leaf as 3. In the trees as the attributes; “thickness” indicates the 

thickness of the sample (sample can be a single layer fabric or many layers of fabric) 

in mm, “mass/Area” indicates the weight of the sample per unit area in g/m2, 

“numOfLayers” indicate the number of fabric layers in the sample, knitStructure” 

indicates the knit stucture of the fabric layers of the sample, which can be plain, 

plush, doubleface or doublefaceinlay. 

 

Figure 4.2 shows the pruned tree that is generated by applying C4.5 algorithm on 

the experimental data to discover significant parameters with their critical values for 

perforations at the energy level 4J. The tree (Figure 4.2) indicates that “thickness”, 

which has the highest information gain value, is the most determinant parameter for 
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input sample to discover its stab resistance performance.  Thus the tree starts with 

thickness parameter. The tree indicates that when the sample’s thickness value is less 

than or equal to 9.75 mm, the sample’s perforation value is more than 10 mm and 

thus stab performance of those samples is “Dangerous” at 4 J. Otherwise, if the 

“thickness” value is greater than 9.75 mm, the tree continues to branch out. At this 

point, “massArea” attribute value of sample shall be considered. If the “massArea” 

value is greater than 5089.03 gr/m2, sample shows “Perfect” stab performance. Else, 

“numOfLayers” attribute becomes important to make the decision.  For either cases 

when attribute of “numOfLayers” value is less than/equal to 3 and greater than 3, the 

tree branches with two different nodes of “knitStructure”.  If “numOfLayers” value is 

less than or equal to 3 and “knitStructre” value equals to “Plush”, “thickness” and 

“massArea” values of the sample must be considered. Else if “numOfLayers” value 

is less than or equal to 3 but “knitStructre” value equals to “Jersey”, “DoubleFace” or 

“DoubleFaceInlay”, class labels of the sample will be “Medium”, “Dangerous” or 

“Medium” respectively. In the other “knitStructure” node, “Plush”, “DoubleFace” 

and “DoubleFaceInlay” fabrics shows “Medium” perforation performances.  Feature 

of “massArea” identifies target value of sample which has “Jersey” structure. For 

perfect stab resistant performance with a perforation less than 7 mm at 4J, the tree 

(Figure 4.2) indicates that 3 layer plain knitted fabric shall be preferred with a sample 

mass per unit area less than 4661 g/m2 and sample thickness more than 9.75 mm. 
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Figure 4.2 Decision tree for the dataset of stab performances at 4 J 

 

C4.5 algorithm was implemented on the knitted structure data likewise as given in 

Figure 4.3, but this time for the stab performances at 6 J. “massArea” attribute of 

input sample determines the decision for classification in this tree.  Target value of 

sample, which has “massArea” value that is less than or equal to 3883.39 g/m2, is 

regarded to have stab resistance performance as “Dangerous”. If the “massArea” 

value is greater than 3883.39 g/m2, attribute of “thickness” should be taken in 

consideration.  Perforation performance of a sample will be “Perfect”, if “thickness” 

value is greater than 21.5 mm. Otherwise, “knitStructure” node branches according 

to fabric structure types. This process continues until reaching any leaf node. For 

perfect stab resistant performance with a perforation less than 7 mm at 6J, the tree 

(Figure 4.3) indicates that the sample shall have more than 3883 g/m2 weight per unit 

area and 21.5 mm thickness regardless of the knit structure and number of fabric 

layers. If the sample thickness shall be preferred less than 21.5 mm then 3 layers of 

doubleinlay knitted fabric shall be preferred for perforation values less than 7 mm. 
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Figure 4.3 Decision tree for the dataset of stab performances at 6 J  

                             

Lastly, a new tree was constructed for classifying the stab performances of 

samples with doubleface and doublefaceinlay fabrics at 10 J using C4.5 algorithm as 

shown in Figure 4.4.  Attribute of “massArea” was indicated as the most determinant 

feature for input sample. Distinctly from the trees mentioned above, class label of 

input sample depends on only “massArea” and “thickness” attributes. 

 

 

Figure 4.4 Decision tree for the dataset of stab performances under energy level at 10 J  

 

For all of the energy levels, the model, proposed through decision tree algorithm, 

predicts the determinant parameters and their critical values but the accuracy rates 

shall be indicated in comparison with all of the other implemented algorithms. 
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All of the algorithms of the predictive model in this study were compared by 

using n-fold cross validation technique selecting n input value as 10 and success of 

the applied classification algorithms on the selected datasets were revealed. This 

technique divides dataset into 10 parts: 9 of them for training and the rest for test, 

and accuracy rates were evaluated by repeating it for each subset and taking mean of 

them as shown in Figure 4.5. 

 

 

Figure 4.5 Evaluation of accuracy rate   

 

Accuracy rate is defined as the ratio of sum of the correctly classified (true 

positive (TP)) and misclassified positive instances (true negative (TN)) to the number 

of test data including false positive (FP) and false negative (FN) instances and gives 

success of the applied algorithm on the selected data as shown in Equation (4.3). 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(4.3) 

 

F-measure which is a measurement of algorithm’s accuracy on test set can be 

considered as harmonic mean of precision and recall was shown in Equation (4.4). F-

measure value ranges between zero (0) for worst and one (1) for best. 

 

 

 
𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(4.4) 
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Precision is the number of correctly classified positive instances divided by total 

number of positive elements shown in Equation (4.5). 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4.5) 

 

Recall is the number of correctly classified positive instances divided by sum of 

the correctly classified positive and misclassified false instances shown in Equation 

(4.6). 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.6) 

 

Testing was performed on a personal computer with features of Intel Core 2 Duo 

CPU, 6 GB RAM. Tables 4.4, 4.5 and 4.6 present the precision, recall, f-measure 

values and accuracy rates of the classification algorithms, k-NN, AdaBoost, Naive 

Bayes, Multilayer Perceptron, Random Forest and C4.5 (decision tree), on the 

experimental datasets of stab performances of knitted structures at the energy levels: 

4, 6 and 10 J. According to the results, C4.5 algorithm has the highest classification 

accuracy on the dataset of stab performances at 4 J. The Random Forest algorithm is 

the most successful algorithm for the dataset of perforation performances at 6 J 

energy level when compared to the other algorithms. For the last dataset which 

contains stab performances of knitted structures under energy level at 10 J, the 

AdaBoost and Random Forest algorithms show the best accuracy performance and 

reach the rate of 97.14%. Table 4.5 and 4.6 indicate that ensemble learning 

algorithms show great success on the datasets of perforation performances at 6 and 

10 J because it uses multiple classifier models to get better accuracy rates when 

comparing with the other classification algorithms implemented in this study. 

 

If the experimental results are considered in general, C4.5 is the most appropriate 

algorithm for the datasets of each energy level because it is the only algorithm 

among the others, which discovers significant parameters with their values that 

effects stab resistance of knitted structures at each energy level. While C4.5 
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algorithm shows the highest accuracy rate for the dataset of perforation performances 

at 4 J, it also gives successful rates for the other two energy levels. 

 

Table 4.4 Comparison of the algorithms for the dataset of perforation performances at 4 J  

Algorithms Precision Recall F-measure Accuracy Rate (%) 

k-NN 0.79 0.77 0.74 76.88 

AdaBoost 0.94 0.92 0.92 91.88 

Naive Bayes 0.90 0.89 0.90 89.38 

Multilayer Perceptron 0.94 0.94 0.94 93.75 

Random Forest 0.94 0.94 0.94 94.38 

C4.5 0.95 0.95 0.95 94.69 

 

Table 4.5 Comparison of the algorithms for the dataset of perforation performances at 6 J  

Algorithms Precision Recall F-measure Accuracy Rate (%) 

k-NN 0.88 0.88 0.88 87.57 

AdaBoost 0.91 0.90 0.90 89.78 

Naive Bayes 0.90 0.87 0.88 87.02 

Multilayer Perceptron 0.91 0.91 0.91 91.16 

Random Forest 0.92 0.91 0.92 91.44 

C4.5 0.91 0.90 0.90 90.33 

  

Table 4.6 Comparison of the algorithms for the dataset of perforation performances at 10 J  

Algorithms Precision Recall F-measure Accuracy Rate (%) 

k-NN 0.93 0.92 0.92 92.14 

AdaBoost 0.97 0.97 0.97 97.14 

Naive Bayes 0.97 0.91 0.93 91.43 

Multilayer Perceptron 0.92 0.96 0.94 95.71 

Random Forest 0.97 0.97 0.97 97.14 

C4.5 0.96 0.96 0.96 96.43 

 

To show estimation success of the algorithms on selected dataset, confusion 

matrices can be used as another method in addition to accuracy rates. Confusion 

matrix is a matrix representation of closeness of the predicted values to the actual 

values which classified by a selected algorithm. 

 

In Table 4.7, 4.8 and 4.9, confusion matrices of C4.5 algorithm which present 

number of instances as predicted and actual values on the datasets with three 

different energy levels, 4J, 6J, and 10J were shown. For example, in the confusion 

matrix given in Table 4.7 it is easily seen that 197 of 200 samples were correctly 

labeled as “Dangerous” and the rest three of them were misclassified as “Medium”. 

For the other class values, while 64 and 42 samples of the dataset were correctly 
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classified as “Medium” and “Perfect” respectively. In this way, amount of 

experimental data can be shown with these confusion matrices. 

 

Table 4.7 Confusion matrix of C4.5 algorithm for the dataset of perforation performances at 4J  

4J  Predicted Class 

A
ct

u
a

l 

V
a

lu
es

  Dangerous Medium Perfect 

Dangerous 197 3 0 

Medium 8 64 2 

Perfect 0 4 42 

 

Table 4.8 Confusion matrix of C4.5 algorithm for the dataset of perforation performances at 6J  

6J  Predicted Class 

A
ct

u
a

l 

V
a

lu
es

  Dangerous Medium Perfect 

Dangerous 144 10 0 

Medium 3 79 8 

Perfect 0 14 104 

 

Table 4.9 Confusion matrix of C4.5 algorithm for the dataset of perforation performances at 10J  

10J  Predicted Class 

A
ct

u
a

l 

V
a

lu
es

  Dangerous Medium Perfect 

Dangerous 0 0 0 

Medium 0 3 3 

Perfect 0 2 132 

 

Execution times of applied algorithms are measured when running on datasets 

under three different energy levels, 4, 6, and 10 J and compared as shown in Table 

4.10. According to results, it is clearly understood that even though k-NN algorithm 

has the best time performance and multilayer perceptron shows the highest execution 

time for the datasets with all energy levels, C4.5 algorithm also shows good 

performance in terms of execution times in addition to successful accuracy rates. 

 

Table 4.10 Execution times of the algorithms for the datasets of stab performances at 4, 6 and 10J   

Algorithms 
Execution Times (sec.) 

4 Perforation 6 Perforation 10 Perforation 

k-NN 0.034 0.033 0.033 

AdaBoost 0.136 0.140 0.103 

Naive Bayes 0.040 0.038 0.036 

Multilayer Perceptron 0.464 0.613 0.340 

Random Forest 0.245 0.329 0.198 

C4.5 0.066 0.072 0.048 
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4.3 Case Study 2 - Improving Prediction Performance using Ensemble Neural 

Networks  

 

Neural network technique has been recently preferred in textile sector for the 

prediction task because the traditional mathematical and statistical methods can be 

inadequate to derive complex relations within textile datasets. A neural network is an 

interconnected group of nodes that are constructed to identify underlying 

relationships in a set of data for classification and prediction. A multilayer perceptron 

(MLP) is the most utilized model in neural network connecting multiple layers in a 

directed graph. A MLP has many parameters to be concerned such as the number of 

hidden layers, learning rate, momentum coefficient, the type of activation function, 

hidden layer size, stopping criteria (the number of epochs or target error rate), and 

learning algorithm. In this study, different MLP models with different setting 

parameters have been used to construct an ensemble of neural networks (Yıldırım, 

Birant & Alpyıldız, 2017). 

 

Meanwhile ensemble learning has become a popular machine learning approach 

in recent years due to the high prediction performance it provides. Ensemble learning 

is a type of machine learning that merges multiple base learning models to make 

final prediction (Alpaydın, 2014). The base learners can be any classification and 

prediction algorithms such as neural network (Yu, Wang & Lai, 2008), Bayesian 

networks (Alessandro, Corani, Mauá & Gabaglio, 2013), regression (Budka & 

Gabrys, 2010), and decision tree (Dietterich, 2010; Che, Liu, Rasheed & Tao, 2011). 

It has been observed that ensemble learners show a great success in many fields 

(Dietterich, 2010). Considering this motivation, this study focuses on the application 

of ensemble neural networks on real-world textile datasets. 

 

The novelty and main contributions of this study are as follows: (i) it proposes an 

ensemble learner which consists of combination of multilayer perceptron models 

with three different initialization parameters (the number of hidden layers, learning 

rate and momentum coefficient) to improve prediction performance, (ii) it is the first 

study that the proposed ensemble learner has been implemented in textile sector, and 
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(iii) it compares ensemble neural networks with a single neural network in terms of 

correlation coefficient and relative absolute error measures on different textile 

datasets. 

 

4.3.1 Experimental Study 

 

This study proposes an ensemble learning approach that combines neural 

networks with different parameter values. The MLP models in our study were 

constructed with three different parameters: the number of hidden layers (hl), 

learning rate (lr) and momentum coefficient (mc). This specific approach was 

proposed because of two reasons. First, the target attribute in the dataset that will be 

predicted has numerical values, instead of categorical values; so a neural network 

algorithm can be used for numerical prediction, in contrast to categorical 

classification algorithms like decision tree. Second, the number of records in the 

dataset is not sufficient for selecting multiple training subsets or choosing feature 

subsets. 

 

In the proposed approach, each of three parameters (hl, lr, mc) has three different 

values. Only one parameter is changed at each time, whereas other parameters are 

kept constant.  So, the permutation of three parameters with three values forms 27 

different MLP models. While learning rate parameter is used for fine-tuning the 

change of bias values and weight size of the algorithm, momentum coefficient 

stabilizes the weight change and provides to reach global minima. With learning rate 

𝜂 and momentum coefficient 𝛼, the weight update from unit i to unit j by ∆𝑤𝑗𝑖 at t 

iteration becomes 

 

∆𝑤𝑗𝑖(𝑡) = 𝜂𝛿𝑗𝑥𝑗𝑖 + 𝛼∆𝑤𝑗𝑖(𝑡 − 1) (4.7) 

 

where 𝛿𝑗 is the error gradient and 𝑥𝑗𝑖 refers the input. 

 

Choosing too low learning rate causes the network learn very slowly and so it 

takes a long time to get good prediction performance. When the learning rate is too 
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high, the objective function and weights diverge. Likewise, too low momentum 

coefficient slows down the network model and prevents to reach global minima from 

local minima credibly. Conversely, too high momentum coefficient may give rise to 

overshooting the minimum. 

 

The general structure of the proposed ensemble model is presented in Figure 4.6. 

In this model, input x is given to the 27 different neural networks and the outputs yi 

that are obtained from each model are averaged to find final prediction output Ô. A 

unipolar sigmoid activation function is used in each node. Table 4.11 shows the 

parameter values of 27 different neural networks. The number of hidden layers 

ranges from 2 to 6 by increment 2. Learning rate and momentum coefficient 

parameters take values 0.1, 0.2 and 0.3 at each time. 

 

                                  

Figure 4.6 General structure of the proposed model 

 

Table 4.11 Parameter-dependent multilayer perceptron model combinations   

Number of 

hidden layers (hl) 

Learning rate 

(lr) 

Momentum 

coefficient (mc) 

Neural Network 

Model 

2 0.1 0.1 MLP1 

2 0.1 0.2 MLP2 

2 0.1 0.3 MLP3 

2 0.2 0.1 MLP4 

2 0.2 0.2 MLP5 

2 0.2 0.3 MLP6 

2 0.3 0.1 MLP7 

2 0.3 0.2 MLP8 

2 0.3 0.3 MLP9 

Ensemble Neural Networks 

MLP1 

MLP2 

MLP27 

ȳ 
Ô 

…
 

y1 

y2 

y27 

x 

Input 

Ensemble 
Output 
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Table 4.12 continues 

4 0.1 0.1 MLP10 

4 0.1 0.2 MLP11 

4 0.1 0.3 MLP12 

4 0.2 0.1 MLP13 

4 0.2 0.2 MLP14 

4 0.2 0.3 MLP15 

4 0.3 0.1 MLP16 

4 0.3 0.2 MLP17 

4 0.3 0.3 MLP18 

6 0.1 0.1 MLP19 

6 0.1 0.2 MLP20 

6 0.1 0.3 MLP21 

6 0.2 0.1 MLP22 

6 0.2 0.2 MLP23 

6 0.2 0.3 MLP24 

6 0.3 0.1 MLP25 

6 0.3 0.2 MLP26 

6 0.3 0.3 MLP27 

 

The outcomes obtained from each multilayer perceptron model are averaged as 

defined in Equation (4.8) and the result is selected as a final prediction. 

 

 

Ô =
1

𝑁
∑𝑀𝐿𝑃𝑖(𝑥)

𝑁

𝑖=1

= 
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

 (4.8) 

 

where x is input vector, yi is the output of each model, Ô is the ensemble output 

(final output) and N is the number of neural networks. 

 

The algorithm that used in this research is given below. The algorithm accepts two 

inputs: training dataset D and the number of neural networks N. It finds the average 

of outputs obtained from each MLP model as a final result. 

 

Algorithm for ensemble neural networks  

Input: D: training dataset, N: the number of neural networks  

Output: Ô: ensemble output  
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Step 1. Get input training t samples (x11, x12, ..., y1m), ..., (xt1, xt2, ..., ytm) with 

categorical / numeric inputs x and numeric outputs y  

Step 2.  Loop while i <= N ensemble members 

a. Initialize parameters: learning rate lr, momentum coefficient mc, the 

number of hidden layers hl 

b. Train MLPi 

c. Get hypothesis ht from MLPi : X → Y 

d. Set total = total + Y  

e. Set i = i + 1 

End of loop 

Step 3.  Calculate final ensemble output Ô = (total / N) 

 

The proposed ensemble neural networks (NNs) model was tested on ten different 

real-world textile datasets. The application was developed by using Weka open 

source data mining library. Ensemble NNs model was compared with individual NN 

in terms of correlation coefficient and relative absolute error measures. 

 

4.3.2 Dataset Description 

 

In this experimental study, ten different datasets that are available for public use 

were selected to demonstrate the capabilities of the proposed ensemble NNs. The 

datasets were obtained from the data archive in Statistics Department of University 

of Florida. Basic characteristics of the investigated textile datasets are given in Table 

4.12. These datasets are on different types of textile end-products (fiber, yarn, fabric 

or garment), clothing categories (towels, jeans, thermal clothing), fiber types (cotton, 

silk, wool), fiber properties (i.e. length), spinning methods (ring, mule), yarn 

parameters (i.e. count), fabric structural parameters (warp and weft density, mass per 

unit area), fabric quality parameters (i.e. hairiness, color difference, shrinkage), 

processes (i.e. dye, dry), and treatments. 

 

 

 



 

59 

 

Table 4.13 Description of textile datasets   

Dataset 

ID 
Dataset Name Attributes | Values 

Dataset 1 Color Among 3 Fabrics exposed to 

4 soils, washed at 2  temperatures 

with 2 surfactants 

-Soil type | { 1=tea, 2=coffee, 3=wine, 4=charcoal } 

-Fiber type |  { 1=cotton, 2=silk, 3=wool } 

-Temperature | { 1=40C, 2=60C  } 

-Surfactant | {1=anionic, 2=non-ionic }                                           

 -Color difference  | numeric 

Dataset 2 Cotton Output by Yarn Count for 

Mule and Ring Spinning in New 

England Early 1900s 

-Spinning type | { 1=mule, 2=ring } 

-Yarn count | numeric 

-Output (lbs/week) | numeric 

Dataset 3 Effects of Impact, Specimen 

Layers, and Quilting on Energy 

Absorption of Body Armour 

-Impact | { 1=slow, 2=fast, 3=edge } 

-Specimen layers | { 1, 2, 3,5 } 

-Quilting | { 1=none, 2=square, 3=diamond } 

-Energy absorbed | numeric 

Dataset 4 Fabric Treatment and Cycle Effects 

on Wool Shrinkage 

-Run | numeric 

-Treatment | { 1=untrt, 2=ac(15s), 3=ac(4m), 

4=ac(15m) } 

-Number of revolutions | numeric 

-Top shrinkage | numeric 

Dataset 5 Hairiness of Yarns of Various 

Twist Levels, Test Speeds, and 

Bobbins 

-Twist level | { 1=373tpm, 2=563, 3=665 } 

-Test speed | { 1=25m/min, 2=100, 3=400 } 

-Bobbin number | numeric 

-Hairiness index (x100) | numeric 

Dataset 6 Fraction of Wool Dye in Bath by 

Treatment and Observer 

-Treatment | { 1=Ether extracted, 2=Ether and 

alcohol-extracted, 3=Alcoholic potash (15 seconds), 

4=Alcoholic potash (4 min), 5=Alcoholic potash (15 min) 

} 

-Observer | numeric 

-Replicate | numeric 

-Proportion of dye in bath | numeric 

Dataset 7 Energy Effectiveness of 4 Dryer 

Types on 3 Clothing Categories 

-Clothing category | { 1=towels, 2=jeans, 3=thermal 

clothing } 

-Dryer type | {1=Electric dryer, 2=Bi-directional 

electric dryer, 3=Town gas-fired dryer, 4=LPG-fired 

dryer } 

-Energy effectiveness | numeric 

Dataset 8 Air Permeability of Woven Fabrics 

as Function of Warp, Weft, Mass 

per Unit Area 

-Warp density | numeric 

-Weft density | numeric 

-Mass per unit area | numeric 

-Average air permeability | numeric 
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Table 4.14 continues 

Dataset 9 Comparison of 2 Fabrics and 7 

Levels of Layers for Ballistic Tests 

on Bullet-proof Fabric 

-Ply number | numeric 

-Material | { 1=twaron 2=k-flex } 

-Condition | { 1=dry  2=wet } 

-Bullet velocity mean  | numeric 

-Bullet velocity SD  | numeric 

-Trauma Depth Mean  | numeric 

Dataset 10 Fabric Treatment and pH Effects 

on Wool Shrinkage 

-Run | numeric 

-Treatment | { 1=untrt, 2=ether, 3=ether/alcohol } 

-pH level | { 2,4,6 } 

-Top Shrinkage | numeric 

 

4.3.3 Results 

 

First, each neural network was trained with different initial values for network 

parameters using a training set and then target values of each sample were predicted 

and compared with original values in the test set. In order to evaluate the model, 90% 

of entire dataset was selected for training phase and the rest of them were used for 

testing step. To show success of ensemble learning model proposed in this study, the 

results obtained from ensemble NNs were compared with individual NN in terms of 

correlation coefficient and relative absolute error measures. 

 

 Correlation coefficient: Correlation coefficient (r) is a measure which 

gives a degree ranging from -1.0 to 1.0 to indicate the relationship between 

the predicted outputs and actual outputs. While correlation value -1.0 

shows a strong negative correlation, correlation value of 1.0 means that 

there is a strong positive relationship between two outputs. The correlation 

between the predicted and actual values is calculated as defined in 

Equation (4.9). 

 

 𝑟 =

∑ (𝑝𝑖 − �̅�)(𝑎𝑖 − �̅�)𝑖

𝑛 − 1

√∑ (𝑝𝑖 − �̅�)
2

𝑖

𝑛 − 1
∑ (𝑎𝑖 − �̅�)2𝑖

𝑛 − 1

 (4.9) 
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where p refers to predicted target value, a is actual target value and n is 

the number of samples. 

 

 Relative absolute error: Relative absolute error (RAE) gives the ratio of 

magnitude of difference between the actual and predicted values to the 

mean value of the measured quantity as shown in Equation (4.10). 

 

 𝑅𝐴𝐸 =
∑ |𝑝𝑖 − 𝑎𝑖|𝑖

∑ |�̅� − 𝑎𝑖|𝑖
 (4.10) 

 

where p refers to predicted target value, a is actual target value. 

 

Correlation coefficient and relative absolute error were computed on ten textile 

datasets for ensemble NNs and individual NN with default settings to compare them. 

Figure 4.7 presents the comparative results in terms of correlation coefficient 

measure. The results indicate that the proposed ensemble model gives more accurate 

prediction results than the individual model in seven of ten datasets. In some cases, 

the difference is small; however, sometimes ensemble NNs has a significantly higher 

than individual NN. 

 

 

Figure 4.7 Experimental results based on coefficient correlation 

 

The graph given in the Figure 4.8 illustrates the relative absolute errors obtained 

by ensemble versus individual NN models. There is an inverse ratio between the 

success of the model and the RAE value. The model with lower error rate means that 
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it is more successful than the other. From this point of view, it is clearly seen that the 

proposed ensemble NNs model has lower RAE values than the individual one on 

almost all datasets. 

 

 

Figure 4.8 Experimental results based on relative absolute error 

 

When the experimental results are considered in general, it is possible to say that 

the proposed ensemble model improves prediction performance in textile sector. 

 

4.4 Case Study 3 - Comparison of Deep Learning and Ensemble Learning for 

Textile Object Classification  

 

 Object classification is one of the essential tasks in machine learning. The goal of 

object classification is to assign a class label to each unlabeled object using the 

existing labeled objects. Object classification is a difficult task in many domains, 

especially in the presence of large numbers of classes, due to the high dimensionality 

of data and the large variations between images belonging to the same class. This 

study focuses on object classification in textile domain. 

 

Machine learning has proven to be powerful for object classification. It presents 

several classification algorithms which use the features of objects to specify the class 

of each object. Nowadays, ensemble learning has become one of the most active 

fields in machine learning and commenced to be used in many areas to produce 

accurate results. Ensemble learning is a machine learning technique which merges a 

set of individual learning models and then aggregates them to obtain single final 
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prediction by a voting mechanism over all learners. These individual learning models 

can be any classification algorithms like decision tree, Naive Bayes, neural network, 

k-nearest neighbor and regression. The ensemble methods can be grouped under four 

main types: bagging, boosting, stacking and voting. In the literature, it is indicated 

that ensemble methods usually show better classification results than an individual 

model would. 

 

In the last decide, deep learning approach has showed remarkable results on big 

data problems by running in reasonable time scale. Deep learning is a new field of 

machine learning research which provides computers to learn from experiences 

inspired by how the human brain works. The deep learning models include multi-

layered neural network architecture that is trained by large-scale datasets. This 

paradigm achieves state-of-the-art performances in a considerable number of 

domains such as image recognition, computer vision, speech recognition, robotics 

and natural language processing. 

 

The novelty and main contributions of this study are as follows: (i) it provides a 

brief survey of deep learning and ensemble learning, which has been revealed to 

improve the performance of learning models for textile object classification, (ii) it 

proposes a novel advanced network architecture which was designed as an example 

of a "deep neural network” including convolutional, max pooling, and fully 

connected layers, and (iii) it presents experimental studies conducted on a new 

benchmark dataset named Fashion-MNIST to demonstrate that the proposed 

advanced network architecture gives better classification results than ensemble 

learning methods in terms of accuracy. 

 

4.4.1 Experimental Study 

 

In this study, an advanced network architecture was designed as an example of a 

“deep neural network”, that it has several layers, including convolutional, max 

pooling, and fully connected layers. As given in Figure 4.9, the network consists of 



 

64 

 

two convolutional layers, where each layer is followed by one max-pooling layer, 

and finally one fully connected layer. 

 

 

Figure 4.9 The design parameters of proposed advanced convolutional neural network architecture 

 

In the experimental studies, we used Fashion-MNIST dataset (Xiao, Rasul & 

Vollgraf, 2017) that introduced in 2017 with the aim to provide a good benchmark 

dataset for deep learning models. Individual C4.5 decision tree algorithm, ensemble 

learning methods (Bagging, Random Forest and AdaBoost) by choosing C4.5 as 

base learner and the proposed CNN were compared on Fashion-MNIST dataset in 

terms of accuracy. Azure Machine Learning Studio was used to implement the deep 

neural network application. Ensemble learning applications were developed by using 

Weka open source data mining library (Frank, Hall & Witten, 2016). 

 

input Picture [28, 28]; 
 

// first convolutional layer parameters 

hidden C1 [5, 28, 28] from Picture convolve { 

   InputShape  = [28, 28]; 

   KernelShape = [5, 5]; 

   Stride  = [1, 1]; 

   Padding = [T, T]; 

   MapCount = 5; 

} 
 

// first pooling layer parameters 

hidden P1 [5, 14, 14] from C1 max pool { 

   InputShape  = [5, 28, 28]; 

   KernelShape = [1, 2, 2]; 

   Stride  = [1, 2, 2]; 

} 
 

// second convolutional layer parameters 

hidden C2 [50, 14, 14] from P1 convolve { 

   InputShape  = [5, 14, 14]; 

   KernelShape = [1, 5, 5]; 

   Stride  = [1, 1, 1]; 

   Sharing = [F, T, T]; 

   Padding = [F, T, T]; 

   MapCount = 10; 

} 
 

// second pooling layer parameters 

hidden P2 [50, 7, 7]  from C2 max pool { 

   InputShape  = [50, 14, 14]; 

   KernelShape = [1,  2, 2]; 

   Stride  = [1,  2, 2]; 

} 
 

hidden H3 [100] from P2 all; 
 

output Result [10] softmax from H3 all; 
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4.4.2 Dataset Description 

 

Fashion-MNIST dataset (Xiao et al., 2017) consists of 70,000 examples where 

each sample is a 28x28 gray-scale image, associated with a label that belongs to 10 

fashion product classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, 

sneaker, bag, and ankle boot. Those products come from different gender groups: 

men, women, kids and neutral. The number of examples for each class is equal 

(7,000 images per category), thus it is a balanced dataset. The training set has 60,000 

front-look thumbnail images, where the test set has 10,000 images, both of which 

have been pre-split for bench-marking purposes. Each image in the training and test 

datasets is in the form of a vector with 28*28 = 784 elements, where each element 

corresponds to one pixel in the image. Each pixel-value is an integer between 0 and 

255 that indicates the lightness or darkness of that pixel, where 

higher numbers correspond to darker colors. In other words, 0 is a pure white pixel 

and 255 is a pure black pixel. The first column of the dataset consists of the class 

labels (0-9) and the rest of the columns contain the pixel-values of the associated 

image. Table 4.13 gives a summary about the Fashion-MNIST dataset and Table 

4.14 presents all class labels in the range [0, 9] with example images for each class. 

 

Table 4.15 Dataset summary   

Dataset Training  Testing  Classes Features 

Fashion-MNIST 60,000 10,000 10 474 

 

Table 4.16 Image classes and examples from Fashion-MNIST dataset   

Class Type of Product  Example Images 

0 T-shirt/top  
1 Trouser  
2 Pullover  
3 Dress  
4 Coat  
5 Sandal  

6 Shirt  

7 Sneaker  

8 Bag 
 

9 Ankle boot  
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4.4.3 Results 

 

The first experiment in this study was performed by applying three ensemble 

learning techniques (Bagging, Random Forest and AdaBoost) on Fashion-MNIST 

dataset to classify fashion products into their types. In Bagging and AdaBoost 

technique, C4.5 decision tree algorithm was preferred as base learner because of its 

popularity, low computational complexity and high classification performance. As a 

result of the experiment, the accuracy rates of each ensemble learning techniques 

were evaluated by checking whether the predicted and actual labels match in the test 

set. 

 

In the second experiment, the proposed convolutional neural network, including 

two convolutional layers, one max pooling layer, and one fully connected layer, was 

applied on the same dataset. The CNN architecture in our study was constructed with 

modifying the hyper parameters to reach the most successful classification result. 

The input parameter values such as the number of convolution layers, filter size, 

padding mode, strides and the number of neurons in the fully-connected layer are 

given in Figure 4.9. The accuracy rate of the proposed method was calculated as the 

first experiment. 

 

The graph given in Figure 4.10 shows the comparative results of implemented 

techniques on the dataset in terms of the accuracy rates. The results indicate that the 

ensemble based models (random forest 87.92%, bagging 89.09%, AdaBoost 89.36%) 

and the convolutional neural network model (90.56%) generally provide higher 

accuracy values than individual classification algorithm (83.05%). When the 

experimental results are considered in general, it is possible to say that the proposed 

convolutional neural network has the best accuracy score. 
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Figure 4.10 Comparison of ensemble learning and convolutional neural network techniques on 

Fashion-MNIST dataset 

 

Table 4.15 presents the confusion matrix of the convolutional neural network 

model, which is a matrix representation of closeness of the predicted classes to the 

actual classes. Overall the results are very good for bag, trouser, and ankle boot that 

have accuracies 98.3%, 98.1% and 97.5%, respectively. All these categories have 

rather less false positives, giving a higher value along the diagonal of the confusion 

matrix. Furthermore, while the model achieved 97.2% accuracy for the sandal class, 

it has a score of 95.8% in the dress category. 

 

Table 4.17 Confusion matrix that shows the ratio of correct and incorrect predictions made by CNN 

model for each class  

  Predicted Class (%) 

 
 T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag 

Ankle 

boot  

A
ct

u
a

l 
C

la
ss

 (
%

) 

T-

shirt/top 
82.7 0.1 1.8 2.5 0.4 0.2 11.7  0.6  

Trouser 0.1 98.1 0.3 0.9 0.2 0.2  0.1 0.1  

Pullover 1.9 0.2 81.2 1.3 9.3  6.0  0.1  

Dress 1.3 0.6 0.1 95.8 1.1  1.0  0.1  

Coat   3.1 3.8 85.9  7.1  0.1  

Sandal    0.2  97.2  1.2 0.1 1.3 

Shirt 9.8 0.1 4.5 4.6 6.2  74.4  0.4  

Sneaker      1.5  94.5  4.0 

Bag 0.1 0.1 0.2 0.1 0.3 0.2 0.3 0.2 98.3 0.2 

Ankle 

boot  
     0.3  2.1 0.1 97.5 

 

However, shirt predictions (74.4%) occasionally were misclassified as a T-

shirt/top. A similar issue occurred with the pullover class, which only had 81.2% 

83.05
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Object Classification Accuracy (%)
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correct predictions with many being misclassified as a coat. The classifier seems to 

have trouble distinguishing between t-shirt/top and shirt, as well as pullover and coat, 

which are not surprising because these clothing items look quite similar. So, object 

classification is a difficult task, when near similarity among various types of textile 

products exist. 

 

Figure 4.11 illustrates the changes in accuracy rates which were provided by the 

convolutional neural network model depend on number of iterations. The highest 

accuracy rate that is 90.56 was obtained when the number of iterations was 10. The 

classification accuracy stabilizes after approximately 10 epochs. So, the classification 

accuracy stabilizes in just a few iterations in this study. 

 

 

Figure 4.11 Test accuracy vs epoch (the number of iterations) 
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CHAPTER FIVE 

A CLUSTERING STUDY: PROPOSED K-LINKAGE METHOD 

 

Clustering, which is one of the data mining techniques, combines a set of objects 

into clusters based on a certain similarity measure. Clustering algorithms can be 

basically grouped under three categories: partitioning, hierarchical and density-based 

methods. Partitioning clustering is an iterative method which divides a dataset into 

disjoint clusters. Hierarchical clustering is characterized by the development of a 

hierarchy by either repeatedly merging small clusters into a larger one 

(agglomerative strategy) or splitting a larger cluster into smaller ones (divisive 

strategy). Density-based clustering is to discover clusters of arbitrary shape based on 

the density of the region surrounding the data point. This study focuses on 

hierarchical clustering problems on textile data. 

 

Hierarchical clustering has been commonly used in many applications by applying 

either divisive or agglomerative method. Divisive hierarchical clustering is a top 

down approach which starts with a single cluster and splits the cluster into two 

dissimilar clusters recursively until specified condition is satisfied. Agglomerative 

hierarchical clustering is a bottom up approach and starts with clusters containing 

single observations and continuously merges them based on a similarity strategy until 

all clusters are merged into one big cluster, or a stopping criteria is met. The 

traditional strategies of computing cluster distances are single, complete, average, 

and centroid linkages. However, these strategies can remain incapable of merging 

correct clusters, because small perturbations in the data can lead to large changes in 

hierarchical clustering assignments. There is no guarantee that single linkage or 

complete linkage will individually give the optimal clusters, because they consider 

only a single distance between two clusters. The calculation of distances between 

clusters based on a single pair may not always reflect the true underlying relationship 

between clusters and so it returns clusters that are only locally optimal. The main aim 

of this study is to overcome this drawback by proposing a new approach for textile 

domain. 
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This study proposes a novel linkage method for hierarchical clustering, named k-

Linkage (Yildirim & Birant, 2017). The proposed k-Linkage method evaluates the 

distance between two clusters by calculating the average distance between k pairs of 

observations, one in each cluster. This study also introduces two novel concepts: k-

min linkage and k-max linkage. While k-min linkage considers k minimum (closest) 

pairs from points in the first cluster to points in the second cluster, k-max linkage 

takes into account k maximum (farthest) pairs of observations. 

 

In the experimental studies, the proposed k-Linkage method was firstly tested on 

five well-known benchmark datasets to demonstrate its success. The results show 

that the proposed approach can often produce more accurate clustering results, when 

compared with the traditional linkage methods in terms of accuracy rate. The 

proposed approach was also applied on a real-world textile dataset to discover 

associations and obtain complex and nonlinear relations in textile domain. In 

addition to these, to determine the optimal number of pairs, we ran the algorithm 

several times using different k values, varying from 3 to 9 in increments of 2, and the 

optimal one was selected with the highest accuracy rate. 

 

5.1 Agglomerative Hierarchical Clustering 

 

Hierarchical clustering is one of the major cluster analysis techniques that 

construct hierarchical structure of clusters through a two-dimensional diagram 

known as dendrogram. The main steps in the agglomerative hierarchical clustering 

(AHC) are presented in Figure 5.1. Each observation in the dataset is assigned to one 

distinct cluster, then distances between each pair of the objects of the clusters are 

calculated and the closest pair of clusters according to the linkage criteria is merged 

into one cluster continuously. 
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Figure 5.1 The step-by-step process of AHC algorithm 

 

 

5.1.1 Classical Linkage Methods 

 

While a hierarchical clustering algorithm is being computed on a given 

transactional dataset Ƭ = {t1, t2, ..., tp}, there are p clusters such that C = {C1, C2, ..., 

Cp}, where ⋃ 𝐶𝑖 =
𝑝
𝑖=1 𝑇 and Ci ≠ . A linkage method begins with p clusters and 

then the most similar clusters Cu and Cv are found and merged into one cluster.  At 

the j-th step of the procedure, j = 0, 1, ..., p-1, the clustering procedure decides which 

of two clusters 𝐶𝑢
(𝑗−1)

 and 𝐶𝑣
(𝑗−1)

 are to be merged so that we get 𝐶𝑤
(𝑗)
= 𝐶𝑢

(𝑗−1)
 ∪

𝐶𝑣
(𝑗−1)

, where 𝐶𝑢
(𝑗−1)

∩ 𝐶𝑣
(𝑗−1)

= ∅  for u ≠ v. 

 

Let {x1, x2, ..., xm} be a set of m observations from cluster Cu and {y1, y2, ..., yn} be 

a set of n observations from cluster Cv. The distance between clusters Cu and Cv is 

denoted by dCu,Cv and it is formulated by D(x,y) which is the distance between every 

possible observation x from Cu and observation y from Cv. To calculate D(x,y), the 

Euclidian distance is usually used for numerical attributes, while Jaccard distance 

can be preferred for categorical variables. 

 

Hierarchical clustering controls linkage strategies for iterative optimization, each 

of which repeatedly merges the most similar clusters. As an optimization problem, 
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the main objective of our study is to minimize the differences within each cluster and 

maximize the differences between the clusters. It is possible to solve an optimization 

problem by using different techniques such as ant colony (Chen, Zhou & Luo, 2017), 

fuzzy models (Vaščák, 2012), particle swarm optimization (Precup, Sabau & Petriu, 

2015; Vrkalovic, Teban & Borlea, 2017), and simulated annealing (Precup et al., 

2015; Vrkalovic et al., 2017). The agglomerative hierarchical clustering is an 

example of greedy algorithms in that it does the locally optimal thing at each step, 

but this doesn't guarantee producing a globally optimal solution. The optimization 

problem in this study can be defined by objective functions, the variables and the 

constraints as follows. 

 

Objective Functions: minimize 𝑑𝑐𝑢,𝑐𝑣 

Variables: dCu,Cv is the distance between clusters Cu and Cv 

                 u,v = 1...p for p clusters                   

                 Cu = {x1, x2, ..., xm}   for m items 

              Cv =  {y1, y2, ..., yn}    for n items 

              D(x,y) is the distance between items xϵCu and yϵCv 

Constraints: Ci ≠ , 𝐶𝑢 ∩ 𝐶𝑣 = ∅ for u ≠ v 

         D(x, y) ≥ 0, D(x, x) = 0 and D(x, y) = D(y, x) 

 

The objective function of the optimization problem varies according to linkage 

method. There are mainly four linkage methods to evaluate the distances between 

clusters: single, complete, average and centroid. At each stage of the clustering 

process, two clusters that have the smallest linkage distance according to the selected 

linkage method are merged. 

 

Single Linkage: (Figure 5.2a) Single linkage, also called nearest-neighbor 

technique, selects the distance between closest observations in clusters as shown in 

Equation (5.1). 
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Objective function for single linkage: 

 

               𝑑𝐶𝑢,𝐶𝑣 = argmin(𝑢,𝑣)
( min
𝑥∈𝐶𝑢,𝑦∈𝐶𝑣

𝐷(𝑥, 𝑦)) (5.1) 

 

Complete Linkage: (Figure 5.2b) Complete linkage, also called furthest-neighbor 

technique, selects distance between farthest observations in clusters as shown in 

Equation (5.2). 

 

Objective function for single linkage: 

 

           𝑑𝐶𝑢,𝐶𝑣 = argmin(𝑢,𝑣)
( max
𝑥∈𝐶𝑢,𝑦∈𝐶𝑣

𝐷(𝑥, 𝑦)) (5.2) 

 

The main objective of this method is to minimize the maximum inter-cluster 

distance, as an optimization problem. 

 

Average Linkage: (Figure 5.2c) Average linkage calculates distances between all 

pairs of observations in clusters and averages all of these distances as shown in 

Equation (5.3). 

 

 Objective function for average linkage: 

 

 

      𝑑𝐶𝑢,𝐶𝑣 = argmin(𝑢,𝑣)
(
1

|𝐶𝑢|

1

|𝐶𝑣|
∑ ∑ 𝐷

𝑦∈𝐶𝑣𝑥∈𝐶𝑢

(𝑥, 𝑦)) (5.3) 

 

where uC and vC are the number of objects in the clusters Cu and Cv respectively. 

 

Centroid Linkage: (Figure 5.2d) Centroid linkage method finds the distance 

between two mean vectors of the clusters.  As an optimization problem, the goal of 

centroid linkage method is to minimize the objective function given in Equation 

(5.4). 
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Objective function for centroid linkage: 

 

        𝑑𝐶𝑢,𝐶𝑣 = arg𝑚𝑖𝑛 (𝐷(�̅�, �̅�)) 

       

= argmin
(𝑢,𝑣)

(

 
 
𝐷((

1

|𝐶𝑢|
∑ 𝑥

𝑥∈𝐶𝑢

) ,(
1

|𝐶𝑣|
∑ 𝑦

𝑦∈𝐶𝑣

))

)

 
 

 

(5.4) 

 

where x  and y  are the centroids (mean) of the clusters Cu and Cv respectively. 

 

Theoretical properties of a distance measure D(x,y) between two objects x and y 

are as follows: 

 

 D(x, y) ≥ 0. The distance between two objects must be strictly greater than 

0. 

 D(x, x) = 0. The distance between an object and itself must be 0. 

 D(x, y) = D(y, x). The distance between object x and y must be the same as 

the distance between y and x. 

 

 Given a dataset that consists of five instances, assume that there are two clusters 

Cu = {x1, x2} and Cv= {y1, y2, y3}. The calculation of distances between clusters in 

terms of four linkage methods is as follows: 

 

 Single Linkage: 

 

D(x, y) = min{D(x1, y1), D(x1, y2), D(x1, y3), D(x2, y1), D(x2, y2), D(x2, y3)} 

 

 Complete Linkage: 

 

D(x, y) = max{D(x1, y1), D(x1, y2), D(x1, y3), D(x2, y1), D(x2, y2), D(x2, y3)} 
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 Average Linkage: 

 

            𝐷(𝑥, 𝑦)  =  

  𝐷(𝑥1, 𝑦1) + 𝐷(𝑥1, 𝑦2) + 𝐷(𝑥1, 𝑦3) +

𝐷(𝑥2, 𝑦1) + 𝐷(𝑥2, 𝑦2) +  𝐷(𝑥2, 𝑦3)

6
 

 

 Centroid Linkage: 

 

            𝐷(𝑥, 𝑦)  =  𝐷 ((
𝑥1 + 𝑥2 

2
) , (

𝑦1 + 𝑦2 + 𝑦3 

3
)) 

 

To unify all of these methods, the Lance - Williams procedure provides a 

generalization in which all methods are special cases, as given in Equation (5.5). 

 

Objective Function:  

Minimizing 

 

       𝑑𝐶(𝐴𝐵) = 𝛼𝐴𝑑𝐶𝐴 + 𝛼𝐵𝑑𝐶𝐵 + 𝛽𝑑𝐴𝐵 + 𝛾|𝑑𝐴𝐶 − 𝑑𝐵𝐶 (5.5) 

   

Variables:  

αA, αB, β, γ are parameters  

A, B, C are clusters. 

dij is the distance of cluster (or object) pairs. 

dC(AB) is the distance between cluster C and the new cluster AB. 

ni refers to the number of items in cluster i, i ϵ {A, B, C}. 

 

Constraints: 

αA + αB + β = 1 

αA = αB 

β < 1 

 

Single Linkage: 

αA=1/2, αB=1/2, β=0, γ=-1/2 
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m
1
 m

Complete Linkage: 

αA=1/2, αB=1/2, β=0, γ=1/2 

 

Average Linkage: 

αA=nA/(nA+nB), αB=nB/(nA+nB), β=0, γ=0 

 

Centroid Linkage: 

αA=nA/(nA+nB), αB=nB/(nA+nB), β=-nAnB/(nA+nB)2, γ=0 

 

In order to compensate the drawbacks of the current linkage schemes (given in the 

5.1.2. section), we propose a new linkage criterion: k-Linkage. Instead of considering 

only one pair like single and complete linkage methods, the k-min linkage (Figure 

5.2e) and k-max linkage (Figure 5.2f) methods take into account more than one pairs, 

i.e. k closest or k furthest pairs respectively. 

 

 

  

                                               (a) Single-linkage         (b) Complete-linkage          (c) Average-linkage        

 

 
 

 

 
 

                                              (d) Centroid-linkage  (e) k-min linkage (k=3)   (f) k-max linkage (k=3) 
 

Figure 5.2 Classical and proposed linkage methods 

 

5.1.2 Drawbacks of Classical Linkage Methods 

 

The classical linkage methods have the following drawbacks (Gagolewski, 

Bartoszuk & Cena, 2016; Chen, Zhou & Luo, 2017): 

 

- The single linkage method suffers from a chaining effect and produces long 

chains and it has a tendency to produce clusters that are straggly or elongated. Figure 

5.3a demonstrates chaining problem in single-link clustering. The single-link method 

only compares d1 and d2 distances, and the distance between left-right clusters (d1) 

is smaller than the distance between up-down clusters (d2). Since the merge criterion 

 

m
2
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considers one pair and, a chain of points can be extended for long distances without 

regard to the overall shape of the emerging cluster (Manning, Raghavan & Schütze, 

2012). In addition, the single linkage method tends to construct clusters of 

unbalanced sizes and produces highly skewed dendrograms. Furthermore, it has 

limitations on the detection of clusters that are not well separated. On the other hand, 

it might be useful to detect outliers in the dataset, because outliers often appear as 

clusters with only one member. 

 

- The complete-linkage method in general tends to produce tightly bound clusters. 

Clusters tend to be compact and roughly equal in diameter. In addition, complete 

linkage method is sensitive to outliers which are points that do not fit well into the 

global structure of the cluster. Figure 5.3b demonstrates outlier problem in complete-

link clustering. The outlier at the left edge splits the optimal cluster because the 

smallest furthest distance is d2 among alternative distances. It tends to break large 

clusters, often resulting in a single large cluster and a number of singletons or ones 

with a very low cardinality. 

 

- The average linkage method is somewhere between single linkage and complete 

linkage. However, it takes long time to calculate the distances between all pairs and 

average all of these distances. The time needed to apply a hierarchical clustering 

algorithm is most often dominated by the number of computations of a pairwise 

distance measure. Time constraint is an important issue for large datasets. 

 

- In the centroid linkage method, the center will move as clusters are merged. As a 

result, the distance between merged clusters may actually decrease between steps, 

making the analysis of results problematic. In other words, clustering with centroid 

linkage is not monotonic and can contain an inversion, which means that similarity 

can increase during clustering, instead of monotonically decreasing from iteration to 

iteration. In the case of an inversion in a dendrogram, a horizontal merge line shows 

up lower than the previous merge line. Increasing similarity in clustering steps 

contradicts the fundamental assumption that small clusters are more coherent than 
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large clusters (Manning et al., 2012). Therefore, the algorithm causes problems that 

some instances may need to be switched from their original clusters. 

 

                                                 (a)                                              (b) 

Figure 5.3 (a) Chaining problem in single-link clustering   (b) Outlier problem in complete-link 

clustering 

 

Solution quality in hierarchical clustering may vary depending on how clusters are 

fused. There is no guarantee that single or complete linkage will collectively or 

individually give the optimal clusters. They sometimes do not reflect the true 

underlying data structure. Because of the greedy nature of the single and complete 

linkages in hierarchical clustering, the algorithm returns clusters that are only locally 

optimal. The presence of local minima leads to incorrect clustering results. To 

overcome the limitations of the current linkage methods, this study proposes a new 

linkage method, named k-Linkage. 

 

5.1.3 Proposed K-Linkage Method 

 

K-Linkage is a novel linkage method which aims to find similarity of clusters by 

considering k observations from a cluster Cu and k observations from another cluster 

Cv. In the subject of k-Linkage method, this study proposes two novel concepts, 

named k-min linkage and k-max linkage, to evaluate distances between clusters. 

5.1.3.1 K-min Linkage Method  

 

The k-min linkage method calculates the sum of distances between k closest 

observations in clusters and finds the average of them as a similarity measure. 

Definition 1 defines k-min linkage concept for the first time. 
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Definition 1. Let {x1, x2, ..., xm} be a set of m observations from cluster Cu and {y1, 

y2, ..., yn} be a set of n observations from cluster Cv. The distance between clusters Cu 

and Cv is denoted by dCu,Cv and it is formulated by taking the average of k closest 

observation pairs (x,y), where  𝑥 ∈ 𝐶𝑢 and  𝑦 ∈ 𝐶𝑣 ,  as shown in Equation (5.6). 

 

Objective function for k-min linkage: 

 

 

 𝑑𝐶𝑢,𝐶𝑣 =
1

|𝑘|
∑arg

(𝑖)
min
(𝑢,𝑣)

( min
𝑥∈𝐶𝑢,𝑦∈𝐶𝑣

𝐷(𝑥, 𝑦))

𝑘

𝑖=1

 (5.6) 

 

On the basis of k-min linkage method, two clusters which have the most k similar 

members on average are merged at each stage of the process. For the case where 

more than one pairs of observations have the same similarity, some of them can 

easily be selected, because overall average distance doesn't change in the case of ties. 

5.1.3.2 K-max Linkage Method  

 

The k-max linkage method calculates the sum of distances between k farthest 

observations in clusters and finds the average of them as a similarity measure. 

Definition 2 defines k-max linkage concept for the first time. 

 

Definition 2. Let {x1, x2, ..., xm} be a set of m observations from cluster Cu and {y1, 

y2, ..., yn} be a set of n observations from cluster Cv. The distance between clusters Cu 

and Cv is denoted by dCu,Cv and it is formulated by taking the average of k farthest 

observation pairs (x,y), where  𝑥 ∈ 𝐶𝑢 and 𝑦 ∈ 𝐶𝑣, as shown in Equation (5.7). 

 

Objective function for k-max linkage: 

 

 

𝑑𝐶𝑢,𝐶𝑣 =
1

|𝑘|
∑arg

(𝑖)
min
(𝑢,𝑣)

( max
𝑥∈𝐶𝑢,𝑦∈𝐶𝑣

𝐷(𝑥, 𝑦))

𝑘

𝑖=1

 (5.7) 
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On the basis of k-max linkage method, two clusters which have the most k 

dissimilar members on average are merged at each stage of the process. 

 

The agglomerative hierarchical clustering algorithm has been improved in this 

research. The steps of the application of the proposed methods are given below. 

 

Step 1.  Assign each object in the dataset to a separate cluster so that for n objects 

we have n clusters each containing just one object. 

 

Step 2. Calculate the distances between the clusters. 

 

Step 3. Find the closest pair of clusters based on a similarity strategy and merge 

them into a single cluster. 

 

 K-min Linkage: Select the average distance of k-closest objects between 

clusters. 

 K-max Linkage: Select the average distance of k-farthest objects between 

clusters. 

 

Step 4.  Compute the distances between new cluster and each of other clusters. 

 

Step 5. Repeat steps 3 and 4 until all objects are clustered into a single cluster. 

 

5.1.4 Advantages of K-Linkage Method over Traditional Hierarchical Methods 

 

Proposed k-Linkage method has several advantages over traditional linkage 

methods. First, considering k observations instead of single observation prevents the 

greedy nature of the single and complete linkages. It also achieves greater speed-up 

than average and centroid linkage, so as to reduce the number of computations of a 

pairwise distance measure, because a spatial index can be used for quick 

neighborhood lookup. 
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Another advantage of the proposed k-Linkage method is that it can be used to 

detect clusters with arbitrary shapes, because it prevents both chaining and rounding 

effects by considering several pairs. While the single linkage method produces 

elongated clusters and the complete linkage method tends to construct 

spherical clusters, k-Linkage method is more robust to local optimal decisions. 

 

The main advantage behind the k-Linkage clustering lies in the fact that its 

solution is similar to the well-known technique K-nearest neighbor (KNN). How the 

KNN algorithm takes into account several objects when classifying a new instance, 

similarly, k-Linkage method also considers several pairs to make sure about the 

relationship among clusters. 

 

5.1.5 Advantages of K-Linkage Method over Non-Hierarchical Methods 

 

There are many advantages of k-Linkage method in comparison with non-

hierarchical clustering algorithms such as k-Means, DBSCAN. First, k-Linkage 

method presents hierarchical structure of clusters, so it gives more information about 

the clusters than the unstructured set of clusters returned by non-hierarchical 

clustering. Thus, the output of the k-linkage method is easy to interpret and very 

useful in understanding the dataset. 

 

Another significant advantage of k-Linkage method is that it is deterministic (non-

random) which means that it does not include any random parameter or random 

initialization technique. Thus, it produces the same results when run several times on 

the same data. However, some non-hierarchical clustering algorithms (i.e. k-Means) 

depend on random initialization so that clustering results may vary across runs. 

 

Another advantage of our k-Linkage method is that it is appropriate for clustering 

high-dimensional data. Besides these advantages, K-linkage method also supports 

different forms of similarity and distance, thus it can be used with many attribute 

types. It does not even require a distance, any measure can be used, including 

similarity functions, such as Euclidean distance for numerical data, Jaccard distance 
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for categorical data, Levenshtein distance for strings, and Gower distance for time 

series and mixed type data, even semantic similarity measures. However, some non-

hierarchical clustering algorithms are limited to Euclidean distance. 

 

5.1.6 An Example for K-Linkage Method 

 

In this section, the application of the proposed linkage metrics (k-min and k-max 

linkage) in agglomerative hierarchical clustering is illustrated by two datasets. Table 

5.1 shows sample datasets that contain X and Y coordinates of the instances and 

consist of 18 records that are uniquely identified by an ID. Only Y value of the 

element “N” is different between two datasets. In this study, Euclidean distance was 

used as distance measurement between instances. 

 

Table 5.1 Sample datasets 

Dataset 1  Dataset 2 

ID X Y  ID X Y 

A 2 7  A 2 7 

B 2 6  B 2 6 

C 3 6  C 3 6 

D 3 8  D 3 8 

E 4 6  E 4 6 

F 5 8  F 5 8 

G 7 9  G 7 9 

H 12 16  H 12 16 

I 13 16  I 13 16 

J 14 16  J 14 16 

K 14 17  K 14 17 

L 15 16  L 15 16 

M 16 16  M 16 16 

N 15 18  N 15 24 

O 12 9  O 12 9 

P 13 9  P 13 9 

Q 15 9  Q 15 9 

R 16 8  R 16 8 

 

Table 5.2 shows the clustering steps of AHC algorithm with single and k-min 

linkage methods on dataset 1, while Table 5.3 shows the steps for complete and k-

max linkage methods on dataset 2, where the user defined k parameter was selected 
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as 3. In the first step, each observation in the dataset is assumed as one distinct 

cluster. After that, the most similar pair of clusters according to the selected linkage 

criteria are merged into one cluster in each step. For example; the closest clusters in 

the first step are cluster {A} and cluster {B}, so clusters {A} and {B} are merged as 

{A, B} in step 2. This process is continued until all clusters are merged into one 

cluster. The first sixteen steps, each producing a new cluster by merging two existing 

clusters, are identical. At the step 17 in Table 5.2, single-link clustering joins clusters 

{A,B,C,E,D,F,G} and {O,P,Q,R} because on the maximum similarity definition of 

cluster similarity, those two clusters are closest. On the other hand, k-min linkage 

method joins clusters {H,I,J,K,L,M,N} and {O,P,Q,R} because those are the closest 

clusters according to top three similar pairs among them. Similarly, complete and k-

max linkage methods make a difference at the step 17. 

 

Table 5.2 Clustering steps based on single and k-min linkage methods for dataset 1 

Step Clusters using Single Linkage          Clusters using k-min Linkage (k=3) 

1 {A},{B},{C},{D},{E},{F},{G},{H},{I},{J},{K}

,{L},{M},{N},{O},{P},{Q},{R} 

{A},{B},{C},{D},{E},{F},{G},{H},{I},{J},{K},{L},{M}

,{N},{O},{P},{Q},{R} 

2 {A,B},{C},{D},{E},{F},{G},{H},{I},{J},{K},{

L},{M},{N},{O},{P},{Q},{R} 

{A,B},{C},{D},{E},{F},{G},{H},{I},{J},{K},{L},{M},{

N},{O},{P},{Q},{R} 

3 {A,B,C},{D},{E},{F},{G},{H},{I},{J},{K},{L}

,{M},{N},{O},{P},{Q},{R} 

{A,B,C},{D},{E},{F},{G},{H},{I},{J},{K},{L},{M},{N}

,{O},{P},{Q},{R} 

4 {A,B,C,E},{D},{F},{G},{H},{I},{J},{K},{L},{

M},{N},{O},{P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H},{I},{J},{K},{L},{M},{N},{

O},{P},{Q},{R} 

5 {A,B,C,E},{D},{F},{G},{H,I},{J},{K},{L},{M

},{N},{O},{P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H,I},{J},{K},{L},{M},{N},{O}

,{P},{Q},{R} 

6 {A,B,C,E},{D},{F},{G},{H,I,J},{K},{L},{M},{

N},{O},{P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H,I,J},{K},{L},{M},{N},{O},{

P},{Q},{R} 

7 {A,B,C,E},{D},{F},{G},{H,I,J,K},{L},{M},{N

},{O},{P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H,I,J,K},{L},{M},{N},{O},{P}

,{Q},{R} 

8 {A,B,C,E},{D},{F},{G},{H,I,J,K,L},{M},{N},

{O},{P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H,I,J,K,L},{M},{N},{O},{P},{

Q},{R} 

9 {A,B,C,E},{D},{F},{G},{H,I,J,K,L,M},{N},{O

},{P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H,I,J,K,L,M},{N},{O},{P},{Q

},{R} 

10 {A,B,C,E},{D},{F},{G},{H,I,J,K,L,M},{N},{O,

P},{Q},{R} 

{A,B,C,E},{D},{F},{G},{H,I,J,K,L,M},{N},{O,P},{Q},{

R} 

11 {A,B,C,E,D},{F},{G},{H,I,J,K,L,M},{N},{O,P}

,{Q},{R} 

{A,B,C,E,D},{F},{G},{H,I,J,K,L,M},{N},{O,P},{Q},{R} 

12 {A,B,C,E,D},{F},{G},{H,I,J,K,L,M,N},{O,P},{

Q},{R} 

{A,B,C,E,D},{F},{G},{H,I,J,K,L,M,N},{O,P},{Q},{R} 

13 {A,B,C,E,D},{F},{G},{H,I,J,K,L,M,N},{O,P},{

Q,R} 

{A,B,C,E,D},{F},{G},{H,I,J,K,L,M,N},{O,P},{Q,R} 
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Table 5.3 continues 

14 {A,B,C,E,D,F},{G},{H,I,J,K,L,M,N},{O,P},{Q,

R} 

{A,B,C,E,D,F},{G},{H,I,J,K,L,M,N},{O,P},{Q,R} 

15 {A,B,C,E,D,F},{G},{H,I,J,K,L,M,N},{O,P,Q,R} {A,B,C,E,D,F},{G},{H,I,J,K,L,M,N},{O,P,Q,R} 

16 {A,B,C,E,D,F,G},{H,I,J,K,L,M,N},{O,P,Q,R} {A,B,C,E,D,F,G},{H,I,J,K,L,M,N},{O,P,Q,R} 

17 {A,B,C,E,D,F,G,O,P,Q,R},{H,I,J,K,L,M,N} {A,B,C,E,D,F,G},{H,I,J,K,L,M,N,O,P,Q,R} 

18 {A,B,C,E,D,F,G,O,P,Q,R,H,I,J,K,L,M,N} {A,B,C,E,D,F,G,O,P,Q,R,H,I,J,K,L,M,N} 

 

Table 5.4 Clustering steps based on complete and k-max linkage methods for dataset 2 

Step Clusters using Complete Linkage Clusters using k-max Linkage (k=3) 

1 {A},{B},{C},{D},{E},{F},{G},{H},{I},{J},{K}

,{L},{M},{N},{O},{P},{Q},{R} 

{A},{B},{C},{D},{E},{F},{G},{H},{I},{J},{K},{L},{M},

{N},{O},{P},{Q},{R} 

2 {A,B},{C},{D},{E},{F},{G},{H},{I},{J},{K},{

L},{M},{N},{O},{P},{Q},{R} 

{A,B},{C},{D},{E},{F},{G},{H},{I},{J},{K},{L},{M},{N

},{O},{P},{Q},{R} 

3 {A,B},{C,E},{D},{F},{G},{H},{I},{J},{K},{L}

,{M},{N},{O},{P},{Q},{R} 

{A,B},{C,E},{D},{F},{G},{H},{I},{J},{K},{L},{M},{N},

{O},{P},{Q},{R} 

4 {A,B},{C,E},{D},{F},{G},{H,I},{J},{K},{L},{

M},{N},{O},{P},{Q},{R} 

{A,B},{C,E},{D},{F},{G},{H,I},{J},{K},{L},{M},{N},{O

},{P},{Q},{R} 

5 {A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L},{M}

,{N},{O},{P},{Q},{R} 

{A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L},{M},{N},{O},

{P},{Q},{R} 

6 {A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L,M},{

N},{O},{P},{Q},{R} 

{A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L,M},{N},{O},{P

},{Q},{R} 

7 {A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L,M},{

N},{O,P},{Q},{R} 

{A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L,M},{N},{O,P},

{Q},{R} 

8 {A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L,M},{

N},{O,P},{Q,R} 

{A,B},{C,E},{D},{F},{G},{H,I},{J,K},{L,M},{N},{O,P},{

Q,R} 

9 {A,B},{C,E},{D,F},{G},{H,I},{J,K},{L,M},{N}

,{O,P},{Q,R} 

{A,B},{C,E},{D,F},{G},{H,I},{J,K},{L,M},{N},{O,P},{Q

},{R} 

10 {A,B,C,E},{D,F},{G},{H,I},{J,K},{L,M},{N},{

O,P},{Q,R} 

{A,B,C,E},{D,F},{G},{H,I},{J,K},{L,M},{N},{O,P},{Q},

{R} 

11 {A,B,C,E},{D,F},{G},{H,I,J,K},{L,M},{N},{O,

P},{Q,R} 

{A,B,C,E},{D,F},{G},{H,I,J,K},{L,M},{N},{O,P},{Q},{R

} 

12 {A,B,C,E,D,F},{G},{H,I,J,K},{L,M},{N},{O,P}

,{Q,R} 

{A,B,C,E,D,F},{G},{H,I,J,K},{L,M},{N},{O,P},{Q,R} 

13 {A,B,C,E,D,F},{G},{H,I,J,K,L,M},{N},{O,P},{

Q,R} 

{A,B,C,E,D,F},{G},{H,I,J,K,L,M},{N},{O,P},{Q,R} 

14 {A,B,C,E,D,F},{G},{H,I,J,K,L,M},{N},{O,P,Q,

R} 

{A,B,C,E,D,F},{G},{H,I,J,K,L,M},{N},{O,P,Q,R} 

15 {A,B,C,E,D,F,G},{H,I,J,K,L,M},{N},{O,P,Q,R} {A,B,C,E,D,F,G},{H,I,J,K,L,M},{N},{O,P,Q,R} 

16 {A,B,C,E,D,F,G},{H,I,J,K,L,M,N},{O,P,Q,R} {A,B,C,E,D,F,G},{H,I,J,K,L,M,N},{O,P,Q,R} 

17 {A,B,C,E,D,F,G,O,P,Q,R},{H,I,J,K,L,M,N} {A,B,C,E,D,F,G},{H,I,J,K,L,M,N,O,P,Q,R} 

18 {A,B,C,E,D,F,G,O,P,Q,R,H,I,J,K,L,M,N} {A,B,C,E,D,F,G,O,P,Q,R,H,I,J,K,L,M,N} 
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Figure 5.4 visualizes the clusters at the step 16 in Table 5.2. The figure shows that 

the application of AHC algorithm based on different linkage methods (single-link 

and k-min-link) can produce different clustering results at the next step. In the single-

link clustering process (Figure 5.4a), the distances between “G-O” denoted by d1 and 

“O-H” denoted by d2 are compared, and then clusters C1 and C3 are merged, 

because d1 is smaller than d2. However, this causes the chaining problem as 

discussed in Section 5.1.2. On the other hand, k-min linkage method merges clusters 

C2 and C3 according to the average of top three closest pairs: “O-H”, “I-P”, and “L-

Q”. Thus, k-min linkage method avoids the construction of long chains and the 

production of clusters that are elongated as shown in Figure 5.4b. In addition, k-min 

linkage method reduces the sum of squared errors (SSE) from 3.32 to 2.85 in this 

example. So, the SSE results show that it is possible to get more optimal clustering 

results by using k-min linkage based agglomerative clustering algorithm. 

 

 

              

    (a) Single Linkage merges clusters C1 and C3                             (b) K-min Linkage merges clusters C2 and C3 

 

Figure 5.4 Merging clusters with k-min linkage and single linkage methods 

 

Figure 5.5 is an example of a complete linkage clustering of the set of points 

given in Table 5.1 and the k-max linkage clustering of the same set. It visualizes the 

clusters at the step 16 in Table 5.3. In complete-link clustering, the distances between 

“B-R” denoted by d1 and “N-R” denoted by d2 are compared, and then clusters C1 

and C3 are merged, because d1 is smaller than d2. On the other hand, k-max linkage 

method merges clusters C2 and C3 according to the average of top three farthest 

pairs: “N-R”, “O-M”, and “K-Q”. The sum of squared errors (SSE) of the clusters 
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that are constructed by the complete and k-max linkages are 3.32 and 2.24 

respectively. This means that complete-link clustering didn’t find the most optimal 

cluster structure in this example, because it pays too much attention to outliers as 

explained in section 5.1.2. It can be affected by points at a great distance in a cluster 

where two merge candidates meet. However, k-max linkage method avoids the 

greedy nature of the complete-link by considering several pairs. 

 

 

 (a) Complete Linkage merges clusters C1 and C3                    (b) K-max Linkage merges clusters C2 and C3  

 

Figure 5.5 Merging clusters with k-max linkage and complete linkage methods 

 

The clustering steps of four different methods (single, complete, k-min and k-max 

linkage) for the datasets given in Table 5.1 are summarized via dendrograms in 

Figure 5.6 and Figure 5.7. The first clusters are the same for single linkage and k-min 

linkage methods. However, the dendrogram differs in the last steps. Complete 

linkage and k-max linkage lead to the similar dendrogram pattern, but differs towards 

the end. The hierarchy needs to be cut at some point. A number of criteria can be 

used to determine the cutting point: (i) cut the dendrogram at a pre-specified level of 

similarity, (ii) cut the hierarchy where the gap between two successive similarities is 

largest, (iii) cut at the point that a target number of clusters is reached (Manning et 

al., 2012).  
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               (a)  Single linkage method                                                            (b)  k-min linkage method (k=3) 

 

Figure 5.6 Dendrograms of single-link and k-min link clustering 

 

 

              (a)   Complete linkage method                                                       (b)  k-max linkage method (k=3) 

 

Figure 5.7 Dendrograms of complete-link and k-max link clustering 

 

5.2 The Algorithm of K-Linkage Method 

 

This study presents an improved version of agglomerative hierarchical clustering 

algorithm that has the ability to cluster objects in a dataset using k-Linkage similarity 

metric. The pseudocode of the proposed k-Linkage method is presented in Figure 5.8. 

This algorithm only finds the distance between two clusters ClusterA and ClusterB, 

so it should be called from a native AHC algorithm that executes the steps of 

merging the currently most similar clusters. In the pseudocode, a “Link” structure is 

constituted to define a pair of two objects; one belonging to the first cluster and the 

other belonging to the second cluster. The algorithm stores a list of pairs by 

calculating the distances between objects in the pairs using findDistance() function. 

If the linkage type is k-min, the list is sorted by ascending order considering distance 

values. On the contrary, in the case of k-max, the list is sorted by descending order. 

After that, the obtained top-k distances in the list according to user defined k value 

are averaged. The pairs including selected objects are removed from the list to 

consider distinct objects in the next step. The output value (kLinkageDistance) 

represents the distance between two clusters based on k-Linkage method. 
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struct Link 

begin     
    int startPoint 

    int endPoint 

   double distance 

end 

 

Algorithm K-Linkage  
Inputs: ClusterA: the first cluster,  

              ClusterB: the second cluster,  

              k: the number of object pairs,  
              linkageType: the type of linkage (k_min or k_max) 

Output: kLinkageDistance  

begin 
    List list = new List() 

    k = min(ClusterA.numberofObjects(), ClusterB.numberofObjects(), k)  
    for i = 0 to ClusterA.numberofObjects() - 1 

        for j = 0 to ClusterB.numberofObjects() - 1  

            list.Add(new Link(i, j, findDistance(ClusterA[i], ClusterB[j]) 

        end for 

    end for 

    if linkageType == k_min 
        list.OrderBy(d => d.distance) 

    else 

        list.OrderByDescending(d => d.distance) 

    end if 
    double totalDistance = 0 

    for i = 0 to k-1 
        totalDistance += list[0].distance 

        int tempStart = list[0].startPoint 

        int tempEnd = list[0].endPoint 
        list.RemoveAll(s => s.startPoint == tempStart  ||  e => e.endPoint == tempEnd) 

    end for 

    double kLinkageDistance = totalDistance / k 
    return kLinkageDistance         

end 

 

Figure 5.8 The pseudocode of the proposed k-Linkage method 

 

AHC is one of the most commonly used hierarchical clustering algorithms but it 

needs a significant amount of time to cluster considerably large datasets. The 

complexity of the naive AHC algorithm is O(n3), because it exhaustively requires to 

scan the n×n matrix to find the most similar clusters in each of n-1 iterations, where n 

is the number of instances (Manning et al., 2012). To handle this problem and to 

reduce time complexity to O(n2), several improved algorithms are proposed, such as 

SLINK and CLINK for single-linkage and complete-linkage criterions respectively. 

Another study (Walter, Bala, Kulkarni & Pingali, 2008) uses kd-tree (k-dimensional 

tree) with locally-ordered and heap-based versions in which empirical performance is 

better than O(n2) and closer to linear scaling with input size. The time complexity of 

the proposed k-Linkage method is also O(n2) with a proper data structure and index-

assisted searching mechanism, where n is the number of instances in the dataset. 
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5.3  Experimental Study 

 

In this study, the proposed linkage types were compared with traditional linkage 

types such as single, complete, centroid and average linkages. We have expanded an 

application that can be accessed from GitHub repository: 

https://github.com/gyaikhom/agglomerative-hierarchical-clustering. The application 

was implemented for agglomerative hierarchical clustering in C programming 

language. Our expanded application reads data from a file and includes six different 

methods to cluster data:  single, complete, average, centroid, k-min linkage and k-

max linkage. First, the application was executed on five different benchmark datasets 

with varying k numbers to determine the optimal solution. In order to evaluate the 

cluster results and to compare our method with the existing methods, accuracy rate is 

calculated by comparing output cluster labels with previously known class labels. 

Then, the proposed approach was also applied on a benchmark textile dataset with 

selecting k number as 3.  

 

5.3.1 Dataset Description 

 

In the first experimental study, five different datasets which are well-known and 

broadly used in data mining were selected to demonstrate the capabilities ok k-min 

and k-max linkage methods. The datasets, named Iris, Wine, Haberman, Diabetes 

and Banknote were obtained from UCI Machine Learning Repository that can be 

accessed from the web site https://archive.ics.uci.edu/ml/datasets.html. 

 

Then, a benchmark textile dataset was utilized in the second experiment to 

discover complex relations using k-min and k-max linkage methods. This dataset 

gives an information about comfort ratings for military fabrics.  

 

5.3.2 Comparison of K-Linkage Method with Traditional Methods 

 

In this experimental study, k-min and k-max linkage methods have been used for 

the first time to improve clustering validation and quality. To measure cluster 
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validity in the first experiment, cluster labels that match externally previously known 

class labels are evaluated and regarded as accuracy rate of clustering result. In simple 

terms, accuracy is the ratio of the number of correctly clustered data points to the 

total number of data points. Accuracy is calculated using the formula, accuracy = (TP 

+ TN)/ (TP + FN + TN + FP), where TP, FP, TN, and FN denote the number of true 

positives, false positives, true negatives, and false negatives, respectively. 

 

In order to evaluate the proposed k-linkage scheme, we tested it in various 

datasets. Figure 5.9 shows the comparative results of the k-min linkage method with 

single linkage method in terms of accuracy rate. After trying different alternatives, 

the best value for the k parameter was determined as 5. The obtained results show 

that the proposed k-min linkage method is generally more successful than the single 

linkage method in terms of accuracy rate. Even though single-link clustering may 

seem preferable at first, it is optimal with respect to the wrong criterion in many 

clustering applications. Single-link clustering reduces the assessment of cluster 

quality to a single similarity between a pair of observations. Since the merge 

criterion is strictly local, it cannot recognize the overall distribution of the clusters. 

On the other hand, k-min linkage method can reflect the true underlying relationship 

between clusters by considering several pairs and so it can find the better merge 

candidates. 

 

 

Figure 5.9 Comparison of k-min linkage with single linkage 

 

Figure 5.10 shows a comparison between complete and k-max linkage methods, 

where k is equal to 5. The results show that the proposed k-max linkage method has a 

potential to outperform the complete-link approach. A measurement based on only 

BankNote Diabetes Iris Wine Haberman

5-min Link 57.73 64.97 68 42.7 73.86

SingleLink 55.47 65.23 66 38.76 70.59
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one pair cannot fully reflect the distribution of instances in a cluster. It is therefore 

not surprising that complete-link algorithm can produce undesirable clusters. 

Considering k pairs in each step of clustering, instead of only one pair, can improve 

cluster validation. Taking into account our algorithm’s accuracy performance, the 

proposed method may be recommended for practical use. 

 

 

Figure 5.10 Comparison of k-max linkage with complete linkage 

 

Table 5.4 gives comparison results of k-linkage metric with traditional similarity 

metrics (single-link, complete-link, average-link, and centroid linkage) on the 

datasets in terms of accuracy rate. According to the results, its performance is 

comparable with other linkage methods. The proposed k-linkage method outperforms 

the current linkage methods in three of the five datasets in terms of the clustering 

quality. Centroid clustering is not optimal for any dataset because inversions can 

occur. Rather than average-link, k-linkage method can be used, because its similarity 

measure is conceptually simpler than the average of all pairwise similarities. On the 

other hand, a spatial indexing mechanism can be used for k-linkage methods to 

determine top-k closest or farthest pairs faster. 

 

Table 5.5 Comparison of k-linkage methods with classical methods 

 Accuracy Rate (%) 

Dataset k-min Link 

(k=5) 

k-max Link 

(k=5) 

Single 

 Link 

Complete 

 Link 

Average  

Link 

Centroid 

BankNote 57.73 66.91 55.47 66.84 64.5 63.78 

Diabetes 64.97 65.89 65.23 65.1 65.23 65.23 

Iris 68 82 66 88 88.67 66 

Wine 42.7 53.37 38.76 93.26 38.76 38.76 

Haberman 73.86 73.53 70.59 69.61 69.61 71.24 

BankNote Diabetes Iris Wine Haberman

5-max Link 66.91 65.89 82 53.37 73.53

CompleteLink 66.84 65.1 88 93.26 69.61
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The proposed method k-linkage where k is equal to 3 was implemented on the 

textile dataset to compare this metric with traditional similarity metrics (single-link 

and complete-link) in terms of SSE. The results presented in Figure 5.11 indicate that 

the sum of squared errors (SSE) of the clusters that are constructed by the single, 

complete, 3-min and 3-max linkages are 3.44, 3.14, 3.09, and 2.80 respectively. This 

means that 3-max and 3-min linkages provide more accurate clustering results than 

the single-link and complete-link metrics. It is also possible to say that 3-max linkage 

method has the best clustering score among the other metrics.  

 

 

Figure 5.11 Comparison of k-linkage methods with single and complete linkage methods  

 

 

5.3.3 The Effect of Parameter on K-Linkage Method 

 

K-linkage method requires a user defined parameter k which is the number of 

pairs of instances between clusters. To achieve optimal k value, several experiments 

can be performed as trial-and-error approach and the value which gives the highest 

accuracy rate can be selected as k. The graphs in Figure 5.12 and Figure 5.13 show 

the accuracy rate changes for k-min and k-max linkage, where k is ranging from 3 to 

9 in increments of 2. It is possible to see from the results that when the value of the k 

parameter increases, the accuracy rate remains the same or becomes a little bit 

higher. However, the rate of increase differs from dataset to dataset. 

 

SingleLink CompleteLink 3-min Link 3-max Link

Dataset Comfort 3.44 3.14 3.09 2.80
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Figure 5.12 Parameter selection for k-min linkage method 

 

 

Figure 5.13 Parameter selection for k-max linkage method  
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CHAPTER SIX 

AN ASSOCIATION RULE MINING STUDY: EXTENDED FP-GROWTH 

ALGORITHM 

 

 Textile datasets can be of any end-product in the textile industry, such as a fiber, 

yarn, fabric, or garment. Knowing what is expected from a raw material is important 

to both the supplier of raw material and the purchaser. A cotton grower and fiber 

manufacturer would like to know what sort of yarn quality can be produced from 

their crop so that they can ask the right price for the fiber. The buyer, a yarn 

manufacturer, would be interested in knowing whether the desired yarn properties 

can be obtained from a particular variety of cotton it intends to buy. The user of the 

yarn, the fabric manufacturer, will be interested in knowing the performance of the 

yarn from its physical and mechanical properties. Thus, one of the major concerns in 

the fabric-manufacturing process is to determine settings of design parameters that 

result in a satisfactory combination of quality characteristics. The fabric structure and 

properties are primarily influenced by fiber properties (length, fineness, etc.), 

spinning methods (ring, rotor, air jet, etc.), yarn parameters (count, twist, single and 

doubled, etc.), fabric structural parameters (warp and weft density, weave, etc.), and 

finally finishing treatments. The relationship between fabric structure and properties 

is complex and inherently nonlinear. 

 

Despite many statistical and mathematical studies that predict and reveal specific 

properties of utilized yarn and fabric materials, a number of challenges continue to 

exist when evaluated in many perspectives, such as discovering complex 

relationships among material properties in data. Data mining plays an important role 

in discovering hidden patterns from fabric data and transforming it into knowledge. 

Therefore, the aim of the study is to uncover relationships between yarn parameters 

and fabric properties using an extended FP-Growth algorithm in association rule 

mining (Yildirim, Birant & Alpyildiz, 2017).  

 

The novelty and main contributions of this study are as follows. First, it is the first 

study that proposes using ARM to identify the complex relationships between 
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significant yarn parameters (i.e. hairiness, irregularity, diameter) and their effects 

upon fabric quality (i.e. pilling, abrasion). Second, it implements the FP-Growth 

algorithm in the textile domain for the first time. Third, it presents an extended FP-

Growth algorithm that has the ability to find the different types of patterns such as 

closed, maximal, and top-k frequent itemsets. Fourth, this study also proposes two 

novel concepts, cf-item and mf-item, to identify significant items in data. In contrast 

to previous studies, the present study focuses on single-item based analysis because it 

can be used to solve different types of problems in different areas such as feature 

selection, the determination of important parameter values, and discretization. 

 

An extended FP-Growth algorithm, which is proposed in this study, was executed 

on a real-world textile dataset with different support values to compare the different 

types of patterns and to demonstrate the applicability of ARM algorithms on yarn 

and fabric data. Experimental results show that proposed approach is very useful for 

discovering novel and interesting rules related to fabric quality. 

 

6.1 Association Rule Mining (ARM) 

 

ARM finds frequent patterns and interesting relationships among set of items in 

dataset. The most commonly used ARM algorithms are Apriori, FP-Growth, and 

Eclat. FP-Growth is a scalable algorithm that discovers large volumes of frequent 

itemsets efficiently using an extended prefix-tree structure (FP-tree). 

 

6.1.1 Frequent Pattern Mining (FPM) 

 

 FPM discovers patterns from data that are more frequent than the specific 

threshold (Aggarwal, Bhuiyan & Hasan, 2014). An itemset I is called a frequent 

itemset (FI) if its support value, which is denoted by σ(I), in the dataset D is greater 

than or equal to the user-defined minimum support, i.e. if σ(I) ≥ minsup. Frequent 

pattern analysis on a large volume of data is a challenging process, since there is 

usually a large number of distinct single items, and their combinations may form a 

huge number of itemsets; thus, it requires a significant amount of time. In addition, 
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the necessary storage capacity plays an important role. Due to the large amount of 

frequent itemsets that can be generated from a dataset, some studies (Zaki & Hsiao, 

2002; Burdick, Calimlim & Gehrke, 2011) revealed the need for concise 

representations of all frequent itemsets such as closed and maximal frequent 

itemsets. 

 

 Closed Frequent Itemset (CFI) 

 

 An itemset I is a closed itemset if there exists no itemset I’ such that 1) I ⊂ I’ and 

2) ∀ transaction T, I ∈ T ⟶ I’ ∈ T. 

 

CFI is a subset of frequent itemsets that has no superset with the same support, as 

shown in Equation (6.1) (Zaki & Hsiao, 2002). 

 

 ∀ X ⊃ C : σ(X) < σ(C) Ʌ σ(X) ≥ minsup Ʌ σ(C) ≥ minsup, (6.1) 

 

where C is a closed frequent itemset whose supersets X have a strictly smaller 

support. 

 

 Maximal Frequent Itemset (MFI) 

 

A closed frequent itemset is an MFI if it is not a subset of any other frequent 

itemset, as shown in Equation (6.2) (Burdick et al., 2011). 

 

 ∀ X ⊃ M : σ(X) < minsup Ʌ σ(M) ≥ minsup, (6.2) 

 

where M is a maximal frequent itemset that has no frequent superset like X. 

 

 Top-k Frequent Itemsets (TFI) 

 

An itemset I is a TFI if I is the k most frequent itemset for a specified value k 

(Pietracaprina, Riondato, Upfal & Vandin, 2010; Cheung & Fu, 2004). Users will 
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need to give the desired count of frequent itemsets, which is an easily understood 

parameter. 

 

Given an itemset I, let f(I) be frequency of I in dataset D. Assume that the 

complete list of itemsets is denoted as δ, which is sorted in descending order 

according to their frequencies such that δ = {I1, I2, I3,..., Ip}. For a given k, with 1 ≤ 

k ≤ p and p = | δ |, f(Ik) represents the frequency of kth itemset. Top-k frequent 

itemsets can be represented as shown in Equation (6.3). 

 

 TFI (k) = {(I, f(I)) ∶ I ∈ δ, f(I) ≥ f(Ik)}, (6.3) 

 

where TFI(k) refers to the k most frequent itemsets in dataset D. 

 

A closed itemset I is a top-k frequent closed itemset (TFCI) if there is no more 

than (k – 1) closed itemsets whose frequency is higher than that of I. 

 

A maximal itemset is a top-k frequent maximal itemset (TFMI) if its frequency 

count is among the k highest frequencies of maximal itemsets, where k is the desired 

number of frequent maximal itemset. 

 

6.1.2 Item Mining: cf-item and mf-item 

 

Item mining is a part of traditional frequent pattern mining with the goal of 

identifying items that are essential for the analysis. It focuses on discovering 

frequent items whose length is equal to 1. In the subject of item mining, this study 

proposes two novel concepts, cf-item and mf-item, to distinguish the types of items 

in the dataset. Zaki & Hsiao (2002) indicated closed and maximal itemsets that are 

subsets of frequent itemsets and include more than one item. However, the present 

study introduces cf-item and mf-item concepts because single-item identification is 

particularly important where there is a need to investigate the significances of the 

attributes. 
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 CF-item 

 

Cf-item is a single item that is both closed and frequent. Cf-items can be 

determined by finding the subset of closed frequent patterns whose lengths are equal 

to 1. 

 

Definition 1. Let ℐ = {i1, i2, ..., im} be a set of m items. Let C be closed and 

frequent, and ||C|| denotes its length. The item C is said to be cf-item if it has no 

superset with the same support value, its support count is higher than minimum 

support denoted by σ(C) ≥ minsup, C ∈ ℐ and its length is equal to 1, so ||C|| = 1. Cf-

item is defined in the Equation (6.4). 

 

 ∀ X ⊃ C : σ(X) < σ(C) Ʌ ǁCǁ = 1 Ʌ σ(X) ≥ minsup Ʌ σ(C) ≥ minsup, (6.4) 

 

where C is a cf-item whose supersets X have a strictly smaller support and the 

maximum length is limited to 1. 

 

 MF-item 

 

Mf-item is a single item such that it is both maximal and frequent. Mf-items are 

the subset of maximal frequent patterns whose lengths are equal to 1. This study is 

the first study that proposes mf-item. 

 

Definition 2. Let ℐ = {i1, i2, ..., im} be a set of m items. Let M be maximal and 

frequent, and ||M|| denotes its length. The item M is said to be mf-item if it has no 

frequent superset, its support count is higher than minimum support denoted by 

σ(M) ≥ minsup, M ∈ ℐ, and its length is equal to 1 and so ||M|| = 1. Mf-item is 

defined in Equation (6.5). 

 

 ∀ X ⊃ M : σ(X) < minsup Ʌ ǁMǁ = 1 Ʌ σ(M) ≥ minsup, (6.5) 
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where M is an mf-item that has no frequent superset like X and the maximum 

length is limited to 1. 

 

Figure 6.1 shows the relationship among the different types of frequent patterns. 

The general relationship is MFI ⊆ CFI ⊆ FI. Cf-items, mf-items, and top-k patterns 

are located in the related areas as a subset. In addition, all MFIs are closed because 

they have no frequent superset and so they cannot have the same support count as 

their supersets. Top-k patterns are located in the related areas as a subset. 

 

 

Figure 6.1 The relationship among the different types of frequent patterns 

 

Table 6.1 shows an example of obtaining closed, maximal, top-k frequent 

itemsets, cf-item, and mf-item from a sample dataset. The example dataset contains 

five items ℐ = {A, B, C, D, E} and consists of six transactions, which are uniquely 

identified by an ID. Minimum support threshold was chosen as 50% and so items or 

itemsets that occur in the dataset three or more times will be selected as frequent. 

 

Table 6.1 A sample dataset and different types of frequent patterns obtained from it  

ID Transactions  FI  CFI  MFI  Top-4 FI  Items 

1 A, C, D  1-itemset  1-itemset  1-itemset  1-itemset  cf-item 

2 B, C, E  {B} : 4  {C} : 4  {D} : 3  {B} : 4  {C} : 4 

3 A, B, C, E  {C} : 4  {D} : 3  3-itemset  {C} : 4  {D} : 3 

4 D, B, E, C  {D} : 3  2-itemset  {B, C, E} : 3  {E} : 4  mf-item 

5 D  {E} : 4  {B, E} : 4    2-itemset  {D} : 3 
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Table 6.2 continues 

6 B, E  2-itemset  3-itemset    {B, E} : 4   

   {B, C} : 3  {B, C, E} : 3       

   {B, E} : 4         

   {C, E} : 3         

   3-itemset         

   {B, C, E} : 3         

 

Step 1: Frequent itemsets 

 

To find frequent itemsets, all transactions are traversed and the support values of 

items are evaluated first. Items whose support values are greater than or equal to the 

minimum support are selected as frequent. In this example, all items, except item A, 

are frequent because they appear in more than three transactions. In the next 

iteration, candidate 2-itemsets are generated using only the frequent 1-itemsets and 

evaluated by counting their supports. For example, the candidate {B, D} is found to 

be infrequent after computing their support values. Next, the algorithm will 

iteratively generate new candidate k-itemsets using the frequent (k – 1)-itemsets 

found in the previous iteration. 

 

Step 2: Closed frequent itemsets  

 

Itemset {C}, with support 4, is a closed frequent itemset because its supersets 

({B, C} : 3, {C, E} : 3, and {B, C, E} : 3) have a smaller support count (3). 

However, itemset {B, C} is not a closed frequent itemset because its superset {B, C, 

E} has the same support of 3. For the same reason, itemsets {B}, {E}, and {C, E} 

are also not closed frequent itemsets. 

 

Step 3: Maximal frequent itemsets  

 

Itemsets {D} and {B, C, E} are maximal frequent itemsets because none of their 

supersets are frequent. In contrast, itemset {B, E} is nonmaximal because one of its 
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immediate supersets {B, C, E} is frequent. For the same reason, itemset {C} is also 

not a maximal frequent itemset. 

 

Step 4: Top-k frequent itemsets 

 

When k parameter is assigned to 4, the k most frequent itemsets in this example 

could be {B}, {C}, {E}, and {B, E} without any constraints. 

 

Step 5: Top-k frequent closed itemsets  

 

The frequency counts of the itemsets {C} and {B, E} are among the k = 2 highest 

frequencies of closed itemsets. 

 

Step 6: Top-k frequent maximal itemsets 

 

When k = 2 is the desired number of frequent maximal itemsets, {D} and {B, C, 

E} are selected in this example. 

 

Step 7: Cf-item 

 

The closed frequent itemsets whose lengths are equal to 1 are {C} and {D}. Cf-

items in data can be found if there is a need to investigate the significances of the 

items. 

 

Step 8: Mf-item 

 

The item D is both closed and maximal, because none of the supersets of this 

item are frequent. Determining a mf-item is important when performing single item-

based data analysis. 
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6.1.3 Advantages of Proposed Method 

 

The novel concepts (cf-item, mf-item) and the extended FP-Growth algorithm can 

be used to solve different types of problems in different areas, such as feature 

selection, the determination of important parameter values, and discretization. 

 

 Feature selection 

 

Feature selection, one of the important data-preprocessing stages, is performed 

to choose a subset of relevant items in the dataset. This process decreases the 

number of features and increases the accuracy of the categorization. Cf-item and 

mf-item can be useful when identifying the most frequent single features in the 

data set. 

 

 Determination of parameter values 

 

Cf-item and mf-item specify the significant of the parameters and so they can 

be used to determine the important of items with their values. For example, a cf-

item discovered from the dataset {YarnHairiness = (3–4]} and interpreted as Yarn 

Hairness is one of the significant parameters, with a range between 3 and 4. 

 

 Discretization 

 

Discretization converts numeric values of attributes to nominal/ordinal values 

by using a categorization strategy. The key point of discretization is the 

determination of a set of optimal split points and intervals. The presented method 

in this study discovers the patterns containing same attributes with different range 

of values. Suppose cf-items {YarnHairinessH = (3–5]} and YarnHairinessH = (8–

10]} were obtained when the algorithm was executed. According to these patterns, 

the optimal split points can be found to define the interval boundaries in the 

discretization process. 
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6.2 Extended FP-Growth Algorithm 

 

Pattern-mining algorithms have a wide range of applications, such as cross-

marketing, website click stream analysis, and biomedical applications. The most 

commonly used algorithms in these applications are Apriori, FP-growth, and Eclat. 

FP-Growth stands for “frequent pattern growth” and was proposed for discovering 

sets of frequent patterns using an extended prefix-tree structure named FP-tree. FP-

Growth was developed as an alternative for the Apriori algorithm to handle large 

volumes of frequent itemsets with high performance utilizing a divide-and-conquer 

strategy. The algorithm consists of two steps: building an FP-tree and obtaining 

frequent itemsets from this tree. An FP-tree has a compact prefix tree structure that 

stores and represents the transaction database horizontally and vertically. While 

horizontal representation of the tree indicates a prefix tree of transactions, vertical 

representation shows links between the prefix tree branches. The root of the tree is 

labelled as “null” and each node holds an item’s name, an item’s transaction count, 

and node links. 

 

A simple FP-tree construction example with minimum support 50% is illustrated 

in Figure 6.2 by considering a sample dataset given in Table 6.2. To construct the 

tree, the algorithm passes over the dataset two times. First, the support count of each 

item is calculated and frequent items are sorted in decreasing order. At the next 

pass, each transaction is read and mapped to a path in the tree. Paths in the FP-tree 

overlap when different transactions share common items. Cf-items and mf-items are 

highlighted in gray on the tree. 

 

Table 6.3 Transactions in a sample dataset and their frequent items   

ID Items 1-itemset Ordered frequent items 

1 A, C, D {B} : 4 C, D 

2 B, C, E {C} : 4 B, C, E 

3 A, B, C, E {E} : 4 B, C, E 

4 D, B, E, C {D} : 3 B, C, E, D 
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Table 6.4 continues 

5 D  D 

6 B, E  B, E 

 

 

 

Figure 6.2 Illustrated FP-tree, cf-items and mf-items in the tree 

 

This study presents an extended version of the FP-Growth algorithm that has the 

ability to find the different types of patterns, such as frequent, closed, maximal, top-

k frequent, top-k closed, top-k maximal, cf-item, and mf-item. The pseudocode of 

the extended FP-Growth algorithm is presented in Figure 6.3. The algorithm first 

computes a list of frequent items sorted by frequency in descending order (F[ ]). 

After that, the FP-Tree is constructed by scanning each transaction in the dataset. 

Then the FP-Growth method (Li, Wang, D. M. Zhang & Chang, 2008) starts to mine 

the FP-tree for each frequent item by recursively building conditional trees. The 

algorithm also mines closed and maximal patterns on frequent itemsets. The lengths 

of each itemset in CFI and MFI are also controlled to determine cf-items and mf-

items, respectively. In addition, it also determines the k most frequent, closed, and 

maximal itemsets. The time complexity of computing the list F[ ] is O(n), where n 

is the number of the transactions in the dataset. However, the computational cost of 

procedure Growth() is at least polynomial. 
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Algorithm Extended_FP-Growth (D, minsup)  

Inputs:  D: dataset, minsup: minimum support, ℐ: set of items in D,  

               k: the desired number of patterns (top-k)  

Outputs:  FI: frequent itemsets, CFI: closed frequent itemsets,  

                  MFI: maximal frequent itemsets, TFI: top-k frequent itemsets,   

                  TFCI: top-k frequent closed itemsets,  

                  TFMI: top-k frequent maximal itemsets, cf-item, mf-item 

begin 
     Define frequency list: F[ ] = {} 

     foreach transaction Ti in D  

          foreach item aj in Ti  

               F[aj]++  

     Sort F[ ] 

     Define and clear the root of FP-tree: r  

     foreach Transaction Ti in D  

          Make Ti ordered according to F[ ] 

          Call ConstructTree(Ti, r) 

     foreach item ai in ℐ  
          if F[ai] ≥ minsup  

               FI = FI ⋃ Growth(r, ai, minsup) 

     foreach frequent itemset fi in FI  

          if fi has no superset in FI with same support  

               CFI = CFI ⋃ fi 

               if |fi| = 1  

                    cf-item = cf-item ⋃ fi 

               if fi has no superset in FI 

                    MFI = MFI ⋃ fi 

                    if |fi| = 1  

                         mf-item = mf-item ⋃ fi  

     for i = 1 to k 

          TFI = TFI ⋃ FI.sort[i]   

          TFCI = TFCI ⋃ CFI.sort[i]   

          TFMI = TFMI ⋃ MFI.sort[i] 

end  

Figure 6.3 Pseudocode of extended FP-Growth algorithm  

 

6.3 Experimental Study 

 

In this study, the extended FP-growth algorithm was applied on a real-world 

fabric dataset (Yaşar, 2015) to discover the relationships between selected yarn 

parameters with selected fabric properties. 

 

The algorithm was executed on the dataset with varying support threshold values 

to compare the different types of patterns. Most relevant yarn parameters with fabric 

properties that were obtained as the outcomes of this algorithm are explained and 

the number of frequent items/itemsets are shown with the help of charts. In this 

experimental study, cf-item and mf-item were utilized for the first time to perform 

single item-based data analysis. 
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6.3.1 Dataset Description 

 

The dataset considered in this study contains selected yarn parameters (yarn 

manufacturing method, elongation at break, irregularity, hairiness, bending rigidity, 

and capillary properties) and selected fabric properties (pilling, abrasion resistance, 

and bending rigidity) that were experimentally obtained in a previous study (Yaşar, 

2015). The raw dataset contains 1800 records and consists of fifteen attributes, 

including nominal and numerical values: nine of them are yarn parameters and the 

rest of them are fabric features. The statistical details of the dataset are presented in 

Table 6.3. 

 

Table 6.5 Statistical details of the dataset and the categories in the attributes  

Attributes 

# of 

records 

Min  

value 

Max  

value 

Mean 

Std. 

Dev. 

    Categories 

Yarn tenacity 100 16.98 21.87 18.97 1.6 

    [15.5–17.5], (17.5–19.5], (19.5–21.5],  

    (21.5–23.5] 

Yarn elongation at 

break (%) 

100 14.54 18.47 16.66 0.99     [13.5–15.5], (15.5–17.5], (17.5–19.5] 

Yarn irregularity 100 7.96 9.6 8.76 0.54     [7–9], (9–11] 

Yarn hairiness (H) 100 3.63 5.5 4.16 0.69     [3–4], (4–5], (5–6] 

Yarn hairiness (S3) 100 8 1947 594.08 784.27 

    [3–9], (9–27], (27–39], (39–462],  

    (462–1419],  (1419–2376] 

Yarn capillary 200 2 4.3 3.18 0.56     [2–3], (3–4], (4–5] 

Yarn bending rigidity 600 3.34 4.89 4.03 0.42     [3–3.5], (3.5–4], (4–4.5], (4.5–5] 

Yarn diameter 200 0.51 0.7 0.58 0.06     [0.5–0.56], (0.56–0.63], (0.63–0.7] 

Abrasion resistance 48 16.3 25.1 21.46 2.28 

    [16–18.75], (18.75–20.75],  

    (20.75–23.125], (23.125–25.5] 

Pilling resistance 36 3 5 4.17 0.49     [3–3.5], (3.5–4], (4–4.5], (4.5–5] 

Wrinkle resistance 72 100.5 143.25 121.86 13.3 

    [100–111], (111–122], (122–133],           

    (133–144] 

Fabric bending 

rigidity 

64 0.91 2.59 1.55 0.62 

    [0.5–1.3], (1.3–2.2], (2.2–3] 

  



 

107 

 

Table 6.6 continues  

Capillary warp 

direction 

40 1.6 3.6 2.44 0.55 

    [1–1.75], (1.75–2.5], (2.5–3.25],  

    (3.25–4] 

Capillary weft 

direction 

40 1.2 3.4 2.1 0.61 

    [1–1.75], (1.75–2.5], (2.5–3.25],  

    (3.25–4] 

Yarn manufacturing 

method 

 MVS, RAJ, SIRO, RING 

 

ARM algorithms require categorical data; they cannot directly deal with numeric 

attributes. For this reason, in this study, numeric attributes were discretized into 

intervals by finding a set of significant split points of distribution changes that 

define the interval boundaries of the discretization. The discretization process is 

divided into different categories from different perspectives, such as supervised or 

unsupervised, top-down or bottom-up, static or dynamic, local or global, nominal or 

ordinal, univariate or multivariate, direct or iterative (Liu, Hussain, Tan & Dash, 

2002). The discretization technique applied in this study was unsupervised, top-

down, static, global, nominal, univariate, and direct. The split points were obtained 

by using both expert techniques approved by the textile community and an equal 

width binning method that divides numerical values into equal n intervals. Due to 

irregular distribution, three attributes (hairinessS3, yarn diameter, and abrasion 

resistance) were categorized by evaluating boundaries and binning widths by using a 

frequency table, while the rest of the numeric attributes in the dataset were 

discretized by equal width binning method. For example, attribute tenacity was 

discretized into four categories as follows: [15.5–17.5], (17.5–19.5], (19.5–21.5], 

(21.5–23.5] and each numeric value in this attribute was mapped in a category 

according to the range of value. The last column in Table 3 shows the categories of 

attributes with their interval values that were selected during the discretization 

process. 

 

6.3.2 Comparison of Different Types of Patterns 

 

An extended FP-Growth algorithm was executed on the dataset with varying 

support thresholds from 10 to 60 in increments of 5. Only those items with support 
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values greater than or equal to the threshold level were selected as frequent patterns 

and others were discarded. Table 6.4 shows the numbers of different types of 

patterns (i.e. frequent, closed, maximal, cf-item, and mf-item) separately varying 

from 1-itemset to 5-itemset. Results show that the number of frequent itemsets 

produced from dataset is large when the minimum support level is set to low, i.e. the 

number of 5-itemset patterns is 7166 when minsup = 10%. However, the algorithm 

produces a reasonable number of closed and maximal frequent itemsets, i.e. the 

number of 5-itemset closed patterns is 57 when minsup = 10%. Thus, it is possible 

to compress the collection of frequent itemsets in a more manageable size. In 

addition, it is also possible to determine the significance of the attributes with cf-

item and mf-item concepts. 

 

Table 6.7 The numbers of different types of patterns with different support thresholds  

 Frequent itemsets Cf-item 

Closed frequent 

itemsets 

Mf-item 

Maximal frequent 

itemsets 

Support 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

10 48 502 2084 4772 7166 14 41 58 67 57 0 0 1 7 12 

15 41 306 805 1084 891 14 41 57 60 45 0 0 10 12 35 

20 37 183 302 240 113 14 41 47 48 10 1 6 12 36 9 

25 27 100 105 48 13 13 36 35 14 1 0 11 20 13 1 

30 21 48 26 3 0 13 27 18 3 0 2 12 15 3 0 

35 13 25 7 0 0 11 17 7 0 0 2 9 7 0 0 

40 13 13 3 0 0 11 9 3 0 0 4 5 3 0 0 

45 9 9 1 0 0 7 6 1 0 0 1 6 1 0 0 

50 9 5 1 0 0 7 2 1 0 0 4 2 1 0 0 

55 6 1 0 0 0 6 1 0 0 0 4 1 0 0 0 

60 3 1 0 0 0 3 1 0 0 0 1 1 0 0 0 

  

Figure 6.4 shows the comparative results of the numbers of frequent, closed and 

maximal itemsets for support threshold levels ranging from 20 to 50 in increments 

of 5. The figure presents the results for different lengths of patterns, i.e. 1-itemset, 

2-itemset, 3-itemset, and 4-itemset. Results show that when the minimum support 

value decreases, the number of FI patterns increases almost exponentially. This 
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means that a large amount of frequent itemset patterns are generated when the 

algorithm is executed with small support values. However, the algorithm produces a 

reasonable number of CFI and MFI patterns. When the minimum support value and 

size of the itemset increase (i.e. minsup = 25% and 4-itemset), the differences 

between the number of FIs, CFIs, and MFIs decrease. For this reason, the type of 

the pattern is not critical in the case of large parameter values. 

 

 

(a) 1-itemset                                              (b) 2-itemset 

 

(c) 3-itemset                                              (d) 4-itemset 

Figure 6.4 Comparison of the numbers of FI, CFI and MFI patterns  

 

The graph in Figure 6.5 shows the number of closed and maximal frequent items 

generated by the extended FP-Growth algorithm for varying support thresholds from 

30 to 60 in increments of 5. From this graph, it is possible to see that the number of 

cf-items is always greater than or equal to the number of mf-item patterns because 

of the relationship MFI ⊆ CFI. The obtained results also show that while minimum 

support value increases, the number of cf-items decreases about linearly. However, 

the numbers of obtained mf-item patterns are irregular because the supersets of the 

patterns changes according to support threshold levels. When the support value 
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increases, the differences between the number of CFI and MFI decrease. For this 

reason, the type of the pattern is not as critical as in the case of large support values. 

 

 

Figure 6.5 Comparison of the numbers of cf-item and mf-item   

 

Figure 6.6 shows the lowest and highest support values of top-k patterns with k 

ranging from 1 to 10. It compares TFI, TFCI, and TFMI patterns with 2-itemset 

when the minimum support threshold is 35%. According to the results, the lowest 

and highest support values of TFI and TFCI patterns are generally close to each 

other, but the support values of TFMI patterns in top-k lists are lower than them. To 

select interesting relationships among data and determining frequent itemsets, the 

widely used parameter is minimum support value. However, specifying optimal 

minimum support threshold is a difficult and time-consuming task for users because 

selecting the threshold is somewhat unstable. For this reason, it is also possible to 

discover top-k frequent patterns without the minimum support specification. In this 

case, a specified itemset-length can also be used as a threshold to focus on the 

desired pattern size. 
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Figure 6.6 The lowest and highest support values of top-k patterns (2-itemset) 

 

6.3.3 Association Rules 

 

Table 6.5 shows some rules discovered by the algorithm. According to the 

results, the patterns {YarnElongationAtBreak = (15.5–17.5]} and {YarnIrregularity 

= [7–9]} are the most frequent 1-itemsets, which indicates that they are the most 

influential parameters among the ones considered. Following these two parameters, 

the important attributes and their range values were determined as cf-items and mf-

items and given as, for example, {YarnHairinessH = (3–4]} and {YarnCapillary = 

(3–4]}, respectively. The results also express the relationships among yarn 

manufacturing methods (msv, raj, siro, ring), yarn parameters (i.e. hairiness, 

capillary, diameter), and fabric properties (i.e. pilling, wrinkle, abrasion), as some 

are indicated in Table 6.5 by example patterns of two or more itemsets. For 2-

itemsets, the patterns {YarnHairinessH = (3–4], FabricPilling = (3.5–4]} and 

{FabricAbrasion = (20.75–23.125], YarnHairinessH = (3– 4]} indicate that when the 

yarn hairiness index H values are between 3 and 4, the fabric pilling performance can 

be expected to be from 3.5 to 4 and the fiber loss values due to abrasion of the fabric 

will lie between 20.75 and 23.12 mg. When the yarn irregularity values lie between 7 

and 9 and yarn diameter is between 0.5 and 0.56 mm the fabric bending rigidity is 

expected to be between 0.5 and 1.3 with the rule {YarnIrregularity = [7–9], 

YarnDiameter = [0.5–0.56], FabricBendingRigidity = [0.5–1.3]}. If the yarns are 

manufactured by the Rieter Air Jet (RAJ) method and have elongation at break 

values between 15.75% and 17.75% and yarn hairiness H index between 3 and 4, 

then the pilling performance of the fabric from such yarn will be between 3.5 and 4, 

as indicated by the pattern {YarnManufacturing = RAJ, YarnElongationAtBreak = 
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(15.5–17.5], YarnHairinessH = (3–4], FabricPilling = (3.5–4]}. For the textile 

industry, where there are many parameters affecting the end-product performance, 

the relationships between the parameters of the yarn and the fabric is important to 

understand the product behavior so that the end-product can be shaped according to 

the customer. With these example patterns, the algorithm proves to be able to derive 

the relationships between the yarn and fabric parameters and also the significant 

values for the important parameters could be stated. 

 

Table 6.8 Example of rules discovered by association rule mining   

Length Pattern 

Support 

(%) 

Minsup 

(%) 

Type 

1-Itemsets 

{YarnElongationAtBreak = (15.5–17.5]}  75 

55 

TFCI 

{YarnIrregularity = [7–9]}  75 TFCI 

{YarnHairinessH = (3–4]}  70 cf-item 

{YarnBendingRigidity = (3.5–4]} 55 TFMI 

{YarnCapillary = (3–4]} 55 mf-item 

2-Itemsets 

{YarnHairinessH = (3–4], YarnIrregularity = [7–9]}  45 

30 

CFI 

{YarnHairinessH = (3–4], FabricPilling = (3.5–4]}  35 FI 

{YarnElongationAtBreak = (15.5–17.5], FabriWrinkle = [100–

111]}  

30 

FI 

{YarnTenacity = (19.5–21.5], FabricBendingRigidity = [0.5–

1.3]} 

30 

FI 

{YarnHairinessH = (3–4], FabricAbrasion = (20.75–23.125]} 30 MFI  

3-Itemsets 

{YarnIrregularity = [7–9], YarnDiameter = [0.5–0.56], 

FabricBendingRigidity = [0.5–1.3]}  

50 

30 

MFI 

{YarnTenacity = (17.5–19.5], YarnBendingRigidity = (3.5–4],  

YarnIrregularity = [7–9]} 

30 

CFI 

{YarnBendingRigidity = (3.5–4], FabricCapillaryWarp = (1.75–

2.5], 

YarnElongationAtBreak = (15.5–17.5]}  

35 

FI 
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Table 6.9 continues 

4-Itemsets 

{YarnManufacturing = SIRO, YarnIrregularity = [7–9],  

YarnDiameter = [0.5–0.56], FabricBendingRigidity = [0.5–1.3]}  

25 

20 

CFI 

{YarnManufacturing = RAJ, YarnElongationAtBreak = (15.5–

17.5],  

YarnHairinessH = (3–4], FabricPilling = (3.5–4]} 

25 

FI 

{YarnManufacturing = MVS, FabricCapillaryWarp = (1.75–2.5],  

YarnTenacity = (17.5–19.5], FabricBendingRigidity = (1.3–2.2]} 

20 

FI 

{YarnManufacturing = RING, YarnHairinessH = (5–6], 

YarnElongationAtBreak = (17.5–19.5], FabricWrinkle = (133–

144]} 

20 

FI 

{YarnDiameter = [0.5–0.56], FabricAbrasion = (20.75–23.125]  

YarnIrregularity = [7–9], FabricBendingRigidity = [0.5–1.3]} 

20 

MFI 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

 

Discovering previously unknown and potentially useful knowledge from raw data 

and making right decisions based on this knowledge is a major need for textile 

engineering as well as in many areas, such as healthcare, finance, and marketing. The 

present textile studies in the literature that implements classical mathematical and 

statistical models to analyze raw data can be inadequate to derive complex relations 

within textile datasets. Because of this reason, DM-based information technology 

applications have been recently preferred in the textile industry during the past 

decade. The “related work” part of this document presents a survey on DM methods 

specifically designed for textile applications and also describes some experimental 

works in the literature. The second chapter demonstrates how clustering and 

classification techniques can be applied in textile sector to deal with a problem. 

 

Data engineering is a sub-branch of data science which prepares raw data to 

suitable for analyzing process and implementing DM techniques on to discover 

potentially useful knowledge. The aim of this thesis is application of novel DM 

techniques on raw textile data to obtain valuable knowledge and making right 

decisions to increase quality and productivity. In this thesis, five novel DM studies 

including classification, clustering, and association rule mining methods were 

performed on well-known benchmark textile datasets. 

 

As a summary, in this thesis, (i) important parameters of knitted structures for stab 

performance were determined and ensemble learning algorithms were applied on 

textile sector for the first time, (ii) an ensemble learning approach that combines 

multiple neural networks with different parameter values was presented to improve 

prediction performance in textile sector, (iii) a novel convolutional neural network 

(CNN) architecture was developed to classify fashion products (iv) a novel 

hierarchical clustering approach, named k-Linkage was proposed and (v) an extended 
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FP-Growth algorithm was introduced as a novel concept for association rule mining 

approach. 

 

Experiments were performed for each study in the thesis to demonstrate the 

performance of the proposed methods. In each experiment, the proposed approaches 

were executed on real-world benchmark textile data and compared with the present 

algorithms in terms of different evaluation measures. According to the results, the 

proposed methods in this thesis produce more accurate results and so show better 

performance than the conventional solutions. When the experimental results are 

considered in general, we recommend the implementation of data science and 

engineering techniques in textile sector because it provides higher data processing 

ability than the classical mathematical and statistical models. 

 

7.2 Future Work 

 

In future work, ARM can be suggested for applying more frequently in textile 

industry, besides the classification and clustering methods. Similarly, the negative 

association rule could be addressed in future research to be able to describe the 

occurrences of some textile properties characterized by the absence of others.  For 

example, it would be interesting to find out which factors are relatively and 

absolutely relevant and irrelevant that they may arise frequently or infrequently. 

Mining sequential patterns in textile data could also be one of the future research 

areas. There could be scope for research in determining time-related behavior in 

textile data. 

 

An additional aspect related to current clustering studies in textile industry is that 

the K-Means++ algorithm could be addressed in future research to deal with the 

challenges of K-Means in a broad sense, i.e., to improve both the speed and the 

accuracy of K-Means. Even though partitioning and hierarchical clustering 

approaches have been generally proposed in textile studies, it is also possible to use 

density-based clustering techniques (i.e., DBSCAN algorithm) for future work 

because, DBSCAN is capable of forming arbitrarily shaped clusters and dealing with 

noise in the data. 
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Text mining, web mining, and process mining have been used in many 

engineering fields. However, there is very limited usage of them in textile industry. 

Future research can focus on: (i) text mining such as sentiment analysis to determine 

positive or negative textile related contents, (ii) web mining for building effective 

textile marketing strategies such as personalized recommendation, and (iii) process 

mining to improve performance of textile processes while reducing costs. 

 

In our opinion small textile data are an important challenge that could be 

addressed in future research. In this case, different strategies (i.e., reducing the 

number of features) should be investigated. 

 

Recently, several ontologies have been developed for the textile, fashion, and 

clothing domains. We believe that the future DM-based textile studies will be 

supported by the ontologies to extract semantic relationship, to improve accuracy, 

and to develop better decision support systems. 
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