

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OBJECT ORIENTED ANALYSIS AND SOURCE

CODE VALIDATION USING NATURAL

LANGUAGE PROCESSING

by

Fatma BOZYİĞİT

June, 2019

İZMİR

OBJECT ORIENTED ANALYSIS AND SOURCE

CODE VALIDATION USING NATURAL

LANGUAGE PROCESSING

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of

Philosophy in Computer Engineering

by

Fatma BOZYİĞİT

June, 2019

İZMİR

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Assist. Prof. Dr.

Özlem AKTAŞ, for her immense knowledge, continuous support, supervision, and

useful suggestions throughout this study. She conducted all the time of my research

and writing of this thesis. It has been an honor to be her Ph.D. student. I am also

grateful to Assoc. Prof. Dr. Deniz KILINÇ, my second supervisor, for his guidance,

valuable advices, and encouragement throughout this study. I could not have imagined

having a better mentor for my Ph.D. study. Also, I would like to offer my special

thanks to Assoc. Prof. Dr. Akın ÖZÇİFT for his valuable advice and encouragement

throughout this study.

Last but not least, I would like to thank my brother Alican BOZYİĞİT for

supporting me spiritually throughout writing this thesis and my life in general. It would

not have been able to complete this thesis without his support and help.

Fatma BOZYİĞİT

iv

OBJECT ORIENTED ANALYSIS AND SOURCE CODE VALIDATION

USING NATURAL LANGUAGE PROCESSING

ABSTRACT

Software requirements include description of the features for the target system and

express the expectations of users. In analysis phase, requirements are transformed into

easy-to-understand conceptual models that facilitate communication between

stakeholders. Although creating conceptual model using requirements is mostly

implemented manually by an analyst, the number of models that automate this process

has increased recently. Most of the models and tools are developed to analyze

requirements in English, and there is no study for agglutinative languages such as

Turkish or Finnish. In this thesis, we propose an automatic concept identification

model which transforms Turkish requirements into Unified Modelling Language

(UML) class diagram to ease the work of individuals in the software team, and reduce

the cost of software projects.

The proposed thesis is based on the Natural Language Processing (NLP) techniques

and a new rule-set containing twenty-six rules is created to find out Object Oriented

(OO) design elements from requirements. Since there is no publicly available dataset

on the online repositories, we have created a well-defined dataset containing ten

software requirements in Turkish and made it publicly available on GitHub to be used

by other researchers. We also proposed a novel evaluation model based on Analytical

Hierarchy Process (AHP) that considers the experts’ views and calculate the

performance of the overall system as enough successful. We can state that this result

is promising for the future works in this domain.

Keywords: Software requirements, conceptual model, Natural Language Processing,

rule-based model, Unified Modelling Language, class diagram, Analytical Hierarchy

Process

v

DOĞAL DİL İŞLEME KULLANIMI İLE NESNE TABANLI ANALİZ VE

KAYNAK KOD DEĞERLENDİRMESİ

ÖZ

Yazılım gereksinimleri, hedef sistemin özelliklerini ve kullanıcıların beklentilerini

ifade eder. Analiz aşamasında, gereksinimler paydaşlar arasında iletişimi kolaylaştıran

anlaşılması kolay kavramsal modellere dönüştürülür. Gereksinimleri kullanarak

kavramsal model oluşturma, çoğunlukla bir analist tarafından elle uygulanmasına

rağmen, bu süreci otomatikleştiren modellerin sayısı son zamanlarda artmıştır.

Modellerin ve araçların çoğu İngilizcedeki gereksinimleri analiz etmek için

geliştirilmiştir ve Türkçe ya da Fince gibi sondan eklemeli diller için mevcut bir

çalışma bulunmamaktadır. Bu tezde, yazılım takımında yer alan kişilerin çalışmalarını

kolaylaştırmak ve yazılım projelerinin maliyetini düşürmek için Türkçe gereksinimleri

Birleştirilmiş Modelleme Dili (BMD) sınıf diyagramına dönüştüren bir otomatik

kavram tanımlama modeli sunulmuştur.

Önerilen tezde, Doğal Dil İşleme (DDİ) tekniklerinden faydalanılmıştır ve Nesneye

Yönelik (NY) tasarım öğelerini gereksinimlerden bulmak için yirmi altı kural içeren

yeni bir kural kümesi oluşturulmuştur. Çevrimiçi depolarda diğer araştırmacıların

kullanımına açık bir veri kümesi bulunmadığından, Türkçe olarak yirmi yazılım

gereksinimi içeren iyi tanımlanmış bir veri kümesi oluşturulmuş ve diğer

araştırmacılar tarafından kullanılmak üzere herkese açık bir şekilde GitHub üzerinden

kullanıma sunulmuştur. Ayrıca, uzmanların görüşlerinden faydalanarak istatistiksel

Analitik Hiyerarşi Süreci'ne (AHP) dayanan yeni bir değerlendirme modeli önerilerek

sistem performansı değerlendirilmiştir. Elde edilen sonuçların, bu alanda yapılacak

çalışmalar için umut verici olduğunu olduğu gözlemlenmektedir.

Anahtar kelimeler: Yazılım gereksinimleri, kavramsal model, doğal dil işleme, kural

tabanlı modelleme, Birleştirilmiş Modelleme Dili, sınıf diyagramı, Analitik Hiyerarşi

Prosess

vi

CONTENTS

 Page

Ph.D. THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

CHAPTER ONE - INTRODUCTION ... 1

1.1 General .. 1

1.2 Purpose ... 1

1.3 Contributions of this Thesis .. 2

1.4 Organization of the Thesis .. 3

CHAPTER TWO - LITERATURE REVIEW .. 5

2.1 Research Methodology .. 6

2.1.1 Research Questions .. 7

2.2 Search Strategy .. 10

2.2.1. Search Queries .. 10

2.3. Study Selection Procedure .. 11

2.4 Quality Assessments .. 12

2.5 Analysis Results .. 13

2.5.1 Overview of the Reviewed Studies.. 13

2.5.2 Discussion .. 14

2.6 Discussion about SLR Results .. 27

CHAPTER THREE - OBJECT ORIENTED PARADIGM 29

3.1 Object Oriented Design ... 29

3.2 Unified Modelling Language (UML) .. 29

vii

3.2.1 Structural Diagram... 31

3.2.2 Behavioral Diagrams ... 36

3.2.3 Structural Diagram... 38

CHAPTER FOUR - PROPOSED METHODOLOGY FOR TURKISH

LANGUAGE ... 40

4.1 An Overview of the Turkish language .. 40

4.2 Natural Language Processing (NLP) ... 40

4.2.1 Tokenization .. 41

4.2.2 Stemming ... 41

4.2.3 POS Tagging .. 41

4.3 Rule-based Model .. 42

4.3.1 General Rules... 44

4.3.2 Class Rules .. 45

4.3.3 Attribute Rules ... 46

4.3.4 Method Rules ... 49

4.3.5 Relationship Rules ... 50

CHAPTER FIVE - OBJECT ORIENTED ANALYSIS OF ENGLISH

REQUIREMENTS ... 53

5.1 Proposed Model for Analyze English Requirements 53

5.1.1 NLP Methods Used in English Language ... 53

5.1.2 Proposed Rule-based Model for English Language 54

5.2 Experimental Study on English Requirements .. 55

CHAPTER SIX - PROPOSED EVALUATION MODEL 58

6.1 Standard Evaluation Methods ... 59

6.2 Analytical Hierarchy Process (AHP) .. 61

6.3 AHP-based Evaluation Method ... 62

viii

CHAPTER SEVEN - EXPERIMENTAL STUDY ... 68

7.1 Dataset ... 68

7.2 A Case Study ... 69

CHAPTER EIGHT - EVALUATION RESULTS .. 73

8.1 AHP-based Evaluation .. 73

8.2 Evaluation of System Performance ... 75

CHAPTER NINE - CONCLUSION AND FUTURE WORK 82

9.1 Conclusion ... 82

9.2 Future Work .. 83

REFERENCES ... 84

ix

LIST OF FIGURES

Page

Figure 2.1 Search strategy in the literature .. 7

Figure 2.2 General framework of approaches in the reviewed concept identification

studies .. 8

Figure 2.3 NLP analysis methods used in the reviewed concept identification studies

 ... 9

Figure 2.4 Papers screening process from search execution to quality assessment ... 13

Figure 2.5 An example search in WordNet .. 17

Figure 2.6 General architecture of NLP while analyzing requirements 18

Figure 2.7 Distribution of the outputs the studies in the SLR generate 21

Figure 2.8 Comparison of object and class diagram of ATM problem statement 22

Figure 3.1 The logo of UML .. 30

Figure 3.2 UML diagram types .. 31

Figure 3.3 An example of class diagram designed for ATM problem statement 32

Figure 3.4 An example of association relationship .. 33

Figure 3.5 An example of aggregation relationship ... 33

Figure 3.6 An example of composition relationship .. 34

Figure 3.7 An example of generalization relationship ... 35

Figure 3.8 An example of realization relationship ... 35

Figure 3.9 An example of use case diagram .. 37

Figure 4.1 Pseudo code algorithm of proposed rule-based model 43

Figure 4.2 An example of processing general and class rules 46

Figure 4.3 An example of executing general, class, and attribute rules..................... 48

Figure 4.4 Sub categories in the relationship rule-set .. 50

Figure 4.5 Aggregation relationship between student and course classes 51

Figure 4.6 An illustration of matching a sentence with GP1 52

Figure 5.1 An example of POS tagging ... 54

Figure 5.2 An example about stemming .. 54

Figure 5.3 ATM problem statement (Rumbaugh et al., 1991) 56

Figure 5.4 Experimental results on ATM problem statement 57

Figure 6.1 General architecture of reviewed approaches ... 59

x

Figure 6.2 Proposed approach .. 62

Figure 7.1 Generated class diagram for Restaurant case study 72

Figure 8.1 Flowchart of AHP model .. 73

Figure 8.2 The illustration of S and E .. 75

xi

LIST OF TABLES

Page

Table 2.1 Search terms used in the SLR .. 11

Table 2.2 Example of common rule any concept identifier can include 15

Table 2.3 Outputs of the studies involved in the SLR (LexA: Lexical Analysis, SynA:

Syntatic Analysis, SemA: Semantic Analysis) ... 19

Table 2.4 Outputs of the studies involved in the SLR (LexA: Lexical Analysis, SynA:

Syntatic Analysis, SemA: Semantic Analysis) ... 20

Table2.5 Relationship types in the generated models (Abst:Abstraction, Agg:

Aggregation, Assoc: Association, Comp: Composition) 24

Table 2.6 Evaluation results of the reviewed works .. 26

Table 4.1 An example for illustrating basic NLP methods .. 42

Table 4.2 Rule-set categories ... 42

Table 4.3 Example of general rule any concept identifier can include 44

Table 5.1 Evaluation results of AutoClass ... 56

Table 6.1 Evaluation results of Bozyiğit et al. (2016) ... 60

Table 6.2 F-Measures of the evaluation criterıa in Bozyiğit et al. (2016) 60

Table 6.3 Importance of each criterion with respect to AHP priorities 65

Table 6.4 Comparison Matrix A .. 65

Table 6.5 Weights of the criteria .. 66

Table 7.1 Some properties of created dataset... 69

Table 7.2 A sample requirements in the dataset .. 69

Table 7.3 Intermediate data obtained through NLP methods on Restaurant

requirements .. 70

Table 7.4 Design elements in the “Restoran” requirements 71

Table 7.5 Relationships extracted from “Restoran” requirements. 71

Table 8.1 Definition of evaluation criteria ... 74

Table 8.2 Weight of each criterion calculated by AHP ... 74

Table 8.3 Detailed experimental results regarding each criterion (CiC: Number of

correct elements providing Ci, CiM: Number of missing elements providing

Ci, CiI: Number of incorrect elements providing Ci) 76

Table 8.4 Precision, Recall, and F-measure values (Reqs: Requirements) 79

xii

Table 8.5 Conventional and AHP based evaluation results 80

1

CHAPTER ONE

INTRODUCTION

1.1 General

Software development process has many activities starting from requirements

analysis to deployment. Requirements analysis is considered as the most important

phase in the software development life cycle (SDLC). Software requirements

determine needs of users and involve convenient text-based information about target

system (Pohl, 2010). If a requirements document includes vague statements, it may

not be understood clearly by software team and causes expensive bugs to fix in next

phases (Sagar & Abirami, 2014). These bugs also extend the delivery time of software

and increase the total cost of the project. Therefore, it is important to write clear

requirements and convert them to conceptual models which increase the understanding

of the users’ needs. The aim of drawing a conceptual model is to map domain

information from user's side to software components on the developer’s side.

A conceptual model can be represented in different forms, such as Unified

Modeling Language (UML) diagrams, Entity Relationship Models (ERM), and

Business Models (BM). UML notion was created by Grady Booch, James Rumbaugh,

and Ivar Jacobson and has been evolving since the second half of the 1990s (Hunt,

2003). UML has fourteen types of diagrams to model software systems and business

processes, and all the diagrams are grouped into two categories; structural diagrams

and behavioral diagrams.

1.2 Purpose

In Object Oriented Analysis (OOA) phase, UML diagrams are the mostly used

models to present a wider view of user's requirements. Although this phase is generally

considered as a manual task, literature survey show that automatic generation of UML

models from text-based requirements has become an area of interest for researchers.

Considering the literature, it is seen that the majority of studies achieve automatic

2

generation of requirements documents written in English. This is because English is

one of the most spoken languages in the world and morphology of English is simple

and regular. On the other hand, analyzing of textual requirements is a challenging task

for morphologically complex languages such as Turkish and Finnish when their

agglutinative structure is considered.

In this study, a rule-based method that analyses the requirements written in Turkish

and automatically generates UML class diagrams is proposed and to the best of our

knowledge, it is the first study in literature. Design components of a class (classes,

attributes, entities and relationships) are extracted from textual requirements utilizing

Natural Language Processing (NLP) methods such tokenization and part of speech

(POS) tagging.

1.3 Contributions of this Thesis

The main contributions of this thesis are:

 It is the first study carried out on Turkish. To provide this contribution a

novel comprehensive rule-based model involving twenty-six transformation

rules is developed for Turkish.

 Considering the literature, there is no common and publicly available

dataset for any language in order to be used in the experimental work of

other researchers. As the second contribution of study, we have prepared

well-defined dataset containing software requirements both in Turkish and

English and made it publicly available on GitHub.

 Studies in the literature perform evaluation with commonly used measures

such as precision, recall, and F-measure (Bozyiğit, Aktaş, & Kılınç, 2019).

These measures assume each evaluation criterion (classes, attributes,

methods, relationship types, etc.) has the equal weight that may cause

inconsistent evaluation results. This is because the evaluation phase is

highly dependent on personal opinions, and so priority/weight of these

3

criteria varies depending on views of users. In our study, a novel evaluation

method based on Multi Criteria Decision Making (MCDM) is proposed.

1.4 Organization of the Thesis

This paper is organized as follows:

In Chapter 2, existing automatic concept identification studies in literature were

presented and explained in detail to provide an overview of how OO model generated

by using textual software requirements.

In Chapter 3, the principles of Object Oriented Design (OOD) are clarified in a

detailed manner. Different types of OOD representations are illustrated with

requirements, which are widely used in Software Engineering studies.

In Chapter 4, information about the methods used for implementing the concept

identification studies for Turkish and English (NLP analysis models and

transformation models) were explained in a detailed manner. Moreover, this chapter

gave background information on transformation model including unique

transformation rules and Turkish linguistic patterns.

In Chapter 5, the first part which analyze English requirements was experimented

on ATM (Rumbaugh et al., 1990) case study. The evaluation results are presented to

show the performance of the study in English requirements.

In Chapter 6, the second part which analyze English requirements was

experimented on a case study. The experimental results are presented to show the

performance of the study in requirements written in Turkish.

In Chapter 7, novel evaluation approach for the systems automatically generating

OO conceptual model is conducted. Proposed method calculates weights of the

4

evaluation criteria by using Analytical Hierarchy Process (AHP), after specific criteria

affecting the decision problem are determined.

In Chapter 8, the first part which performs on Turkish requirements was presented.

Twenty different case studies were utilized by using a novel evaluation model

including experts’ view and MCDM methods. Lastly, obtained evaluation results were

discussed in this chapter.

Finally, in Chapter 9, some concluding remarks and future directions were

presented.

5

CHAPTER TWO

LITERATURE REVIEW

In this chapter, we systematically summarize the technical aspects and identify

limitations of the recent studies, automatically implementing concept identification,

using Systematic Literature Review (SLR) (Kitchenham, Dyba, & Jorgensen, 2004)

framework makes our research processes more comprehensive. Thirty-nine papers are

selected and reviewed with respect to their approaches, outputs, datasets, evaluation

methods, and improvable points.

Considering the results of our systematic review, it is clearly seen that there are

some gaps must be filled in the current studies. The revealed gaps in the reviewed

studies are as follows;

• Majority of the reviewed studies are designed to analyze documents written in

English, with a few exceptions (Montes, et al., 2008) and (Liu et al., 2004). Montes et

al. perform concept identification on Spanish requirements and Liu et al. analyze on

requirements written in German.

• Most of the studies create only UML class diagram as the conceptual model.

Generating other types of diagrams beside class diagrams can make the current studies

many-sided and user-friendly.

• There are many studies that have some limitations in determining OO design

elements especially, relationships between the classes, interfaces, and abstract classes.

• It is realized that there is only one study (Bozyiğit et al., 2019) in the literature

which specially created dataset including twenty software requirements in Turkish and

English. The other studies in the literature use a few scenarios in English as dataset.

• All of the reviewed studies use standard evaluation metrics such as precision,

recall, F-measure during analyze of performance of their approach and ignore the

criteria affecting problem solution except (Bozyiğit et al., 2019).

The structure of this chapter is organized as follows: Section 2 gives information

about the aim of the study and research procedures used in the SLR. Section 3 presents

6

evaluation results of the reviewed studies with respect to research questions. Section 4

concludes the paper and includes suggestions for further studies.

2.1 Research Methodology

A review paper is survey of existing literature on a topic in order to explain the

current state of the topic (Gülpınar & Güçlü, 2013). Numerous review studies

conflicting findings are published in academic platforms each year. These studies can

use different research method considering the scope of review. Considering used

research methods, review papers are examined under two categories: narrative reviews

and SLR conducted by Kitchenham et al (2004). Narrative reviews evaluate the studies

related to research topic in a wide spectrum. In the SLR, a detailed and comprehensive

survey on particular research questions and subject area is performed (Brereton,

Kitchenham, Budgen, Turner, & Khalil, 2007). It also it allows proof-gathering on the

literature and provide guidelines for researchers on research trends and gaps.

Since SLR examines on the related studies in a more detailed and systematic way,

we developed a research methodology in view of the guidelines Kitchenamn et al.

(Kitchenham, 2004), Brereton et al. (Brereton et al., 2007), and Petersen et al.

(Petersen et al.,2008).

The general architecture and functional blocks of our proposed SLR model is shown

in Figure 2.1. The light blue rectangles in the figure demonstrates the main process in

the SLR. The blank box represents the essential factors must be considered in the main

processes of the SLR. The grey box illustrates the external tools used in the search

process and dark blue rectangle shows the expected outputs obtained in the SLR.

 Considering the Figure 2.1, it is seen that first of all, four research questions (RQ1,

RQ2, RQ3, and RQ4 which will be explained in Section 2.1.1) are determined in order

to build the framework of SLR. Secondly, we developed a search strategy that includes

paper selection procedures (determining search terms based on research questions and

creating search queries). Then, results of search process are filtered based on inclusion

7

and exclusion criteria. Finally, three quality assessment criteria are determined and

then studies which do not match these criteria are eliminated.

Figure 2.1 Search strategy in the literature

2.1.1 Research Questions

Specification of the research questions is the most important phase in the SLR

methodology, since research questions identify the scope and the objective of a review

study (Brereton et al., 2007).

In our study, research questions are determined in order to analyze and evaluate

different approaches that used in automatic concept identification studies. These

questions are listed as follows:

 Research Question 1 (RQ1): What are the approaches used for transforming

requirements into conceptual model?

8

 Research Question 2 (RQ2): What kind of conceptual models are generated

by the reviewed systems?

 Research Question 3 (RQ3): What types of datasets are used for testing the

performance of models in the reviewed studies?

 Research Question 4 (RQ4): Which evaluation methods are used in the

reviewed studies?

RQ1 aims to identify the approaches of the studies in the SLR. According to answers

to this question, it is observed which methods are proposed in the reviewed studies.

Figure 2.2 gives information about the general architecture of the used approaches in

the reviewed studies.

Figure 2.2 General framework of approaches in the reviewed concept identification studies

Then, it is discussed how the used methods affect the performance of the studies.

This question is divided into the following sub-questions are as follows:

9

 Which Natural Language Processing (NLP) methods are implemented to

obtain intermediate data from textual requirements? Figure 2.3 gives

information about the general analysis models used in the reviewed studies.

Figure 2.3 NLP analysis methods used in the reviewed concept identification studies

 Which transformation approaches are applied to intermediate data for

generating conceptual model?

RQ2 identifies outputs of the studies generated using transformation processes. That

is, types of extracted conceptual models (UML diagrams, program code, etc.) from

requirements are determined. This question is divided into the following sub-questions

are as follows:

 What kinds of UML diagrams are created in the studies, if they generate

UML model?

 Is there any missing design element in the generated conceptual model? For

example, is there any relationship between two classes uncovered?

RQ3 investigates the datasets used in the reviewed studies. This question is divided

into the following sub-questions are as follows:

10

 Do reviewed studies have a comprehensive dataset that includes many

requirements documents?

 What is the language of textual requirements in the dataset?

 Is the dataset of the related study publicly available to be used by other

researchers?

RQ4 gives information about evaluation methods in the studies. It investigates

whether MCDM techniques are performed and view of experts are included in the

evaluation phase.

2.2 Search Strategy

The search strategy is a manual search of specific digital databases. In this thesis,

we selected well known digital databases (ACM Digital Library, IEEE Xplore,

Springer Verlag, Google Scholar, ScienceDirect, Metapress, and Wiley InterScience)

to find high quality papers. The search process is completed on the journal papers and

conference proceedings from 1996 to 2019. To find the full text of these studies,

determined queries are entered to selected digital databases. Obtained results are first

checked whether including similar works (presented by same authors) or not. Then,

the inclusion / exclusion and quality assessment criteria are applied to the search

results, and the papers to be evaluated under the SLR are filtered finally.

2.2.1 Search Queries

In the search process step, firstly, the keywords related to the research topic area

are determined. To create search queries, we specify and categorize the search terms

based on research questions using the PICOC (Population, Intervention, Comparison,

Outcome, Context) proposed by Brereton et al. (2007).

Population are the criteria that specify the domain of transforming requirements

into conceptual model such as “requirements transformation”, “requirements

analysis”, and “generating conceptual model”. The definition of criteria specifying

11

domain are intervention, comparison, outcome, and context. Intervention are the

keywords that indicate approaches used for transforming requirements into conceptual

model such as “NLP methods” and “rule-based model”. Comparison are the keywords

about the position of the studies analyzing requirements without using automatic

concept identification methods. Outcome are the keywords about generated

conceptual models from the software requirements such as “UML diagrams”,

“ontology model”, and “source code”. Context are the keywords about context in

concept identification studies.

We did not use comparison criteria to formulate search strings. Also, we use context

criteria as exclusion criteria to eliminate the irrelevant papers (Section 2.3). The search

strings are derived from specified search terms including population, intervention and

outcome as shown in Table 2.1

Table 2.1 Search terms used in the SLR

Search Terms

(requirements OR “user needs”) AND (analyze OR transformation OR generation) AND

(“conceptual model” OR “analysis model”)

(requirements OR “user needs”) AND (analyze OR transformation OR generation) AND

(“UML diagrams” OR “class diagrams” OR “sequence diagram”, “activity diagram” OR

“use-case diagrams” OR “object diagram” OR “source code” OR “program code” OR

“validation model”, “ER model”)

(generating OR extracting OR creating) AND (“conceptual model” OR “UML diagrams”

OR “source code” OR “program code” OR “ER diagram”) AND (“NLP methods” OR “rule-

based model” OR ontology)

2.3 Study Selection Procedure

By using our search queries, fifty-nine papers are determined as input for the

selection process. Selection of appropriate studies are completed by using the specified

inclusion and exclusion criteria. In respect to this, first, fifty-one studies providing

inclusion criteria are selected. Then, four of the selected studies that include at least

one of exclusion criteria are eliminated. Finally, forty-seven studies, which are related

to our research scope, are identified.

12

Inclusion criteria are listed as follows:

 Studies in journal and conferences in the field of computer science, software

engineering, information systems, and natural language processing,

 Journal articles and conference proceedings published between 1996 and

2019,

 Paper full versions.

Exclusion criteria are listed as follows;

 Presentations, workshops papers, informal papers, and tools not based on

scientific study,

 Duplicate papers of same study,

 Paper that does not mention concept identification model in title and abstract

content.

2.4 Quality Assessments

The quality assessment process is used for interpretation of findings and

determining the power of detailed investigations (Kitchenham et al., 2004). The quality

of each selected study is evaluated according to the criteria shown as follows:

 Quality Assessment Criteria 1: Is the aim of the study explained clearly?

 Quality Assessment Criteria 2: Are the used methods in selected studies

explained?

 Quality Assessment Criteria 3: Is the output of study supported by concept

identification model?

To sum up, Figure 2.4 shows the steps of filtering process in our SLR methodology.

Firstly, fifty-nine papers are extracted regarding the results of search queries on

academic search engines. Then, filtering is performed with respect to inclusion and

exclusion criteria and so forty-seven papers are selected in this step. At the last step, it

13

is determined under specified quality assessment criteria whether the selected studies

are appropriate to be evaluated in this work. Finally, thirty-nine papers are selected to

be evaluated in this study.

Figure 2.4 Papers screening process from search execution to quality assessment

2.5 Analysis Results

2.5.1 Overview of the Reviewed Studies

This section presents the descriptive results of the SLR. When extracting data from

the papers and classifying it, the year of publication is a useful information to

understand how the research on the automatic concept identification is active in

software engineering area. When the literature review is conducted, it is observed that

concept identification studies were initiated in 1996 with a tool called LOLITA (Mich,

1996). Since 1996, almost every year researchers in many different countries have

presented papers dealing with the automatic concept identification from software

requirements. This indicates that the automatic concept identification issue is gaining

popularity in the field of Software Engineering and is worth investigating and

developing by researchers. According to our research, it is observed that the countries

with the most submitted concept identification studies are Canada and India. It is seen

14

that Turkey has the least number of publications with only two articles among twenty-

three countries.

2.5.2 Discussion

2.5.2.1 RQ 1-Which languages are supported by the reviewed systems?

It is much more difficult to perform knowledge extraction for morphologically rich

languages (MRLs) comparing to languages frequently studied within the scope of NLP

such as English. Agglutinative languages (Turkish, Finnish, Hungarian, etc.) is

exemplary for this since having complex morphology. For example, a sentence

consisting of many words in English can be expressed with only one word in Turkish

(“Are you one of those people whom we could not make to be Czechoslovakian

(English)”, “Çekoslavakyalılaştıramadıklarımızdan mısınız? (Turkish)”). Another

feature of the agglutinative languages is that the order of grammatical items in the

sentence is not determined according to any rules. Therefore, specification of the

relationships between the items in a sentence (POS tagging) can be a challenging task

for the agglutinative languages such as Turkish comparing to other morphological

typologies such as English in which the constituents of a clause have an ordered

structure. Moreover, the amount and variety of misspellings can increase especially in

the MLRs since having a great number of affixes and derivational morphemes.

Considering these difficulties in the MLRs, it is common to think that the current NLP

tools used for linguistic analysis do not perform effectively.

According to review of literature, it is seen that most of the tools are developed to

analyze requirements in English. This is because English is one of the most spoken

languages in the world and morphology of English is not complex comparing

especially with agglutinative languages (as mentioned before in the previous

paragraph). There is a few study supporting other languages such as (Montes et al.,

2008) and (Liu et al., 2004). Montes et al. analyze Spanish requirements and Liu et al.

work on requirements written in German.

15

Considering the language limitations in the current studies, we recommend creating

a common rule-set, which supports to analyze requirements written in any language.

In our study, we state that some transformation rules can be applied independently of

language in concept identification studies. For example; each noun in the document is

candidate for classes and attributes. Assume that we apply this rule for a sentence

written in both Turkish and English as in Table 2.2.

Table 2.2 Example of common rule any concept identifier can include

Turkish Her çalışan isim, yaş ve cinsiyet bilgilerine sahiptir. (Each employee has name, age,

and gender information.)

Nouns: çalışan (employee), isim (name), yaş (age), cinsiyet (gender), bilgi

(information)

English Each employee has name, age, and gender information.

Nouns: employee, name, age, gender, information

As can be seen from the example given in Table 2.2, the same design elements can

be extracted when a general rule is applied to different translations of a clause.

Consequently, the idea of creating a rule-set for analyzing the textual requirements

independently of the language provides motivation for our future work.

2.5.2.2 RQ 2-What are the different approaches used for transforming

requirements into conceptual model?

The approaches in the studies transforming requirements into conceptual model are

examined with this question. It is observed that generally similar approaches are

implemented in the concept identification studies. These approaches consist of NLP

analysis model and transformation model. First, requirements are pre-processed with

NLP analysis models to obtain an intermediate data. Then, the intermediate data are

inputted to the transformation model, and so OO conceptual model is generated

automatically.

There are five NLP analysis models available for pre-processing of textual

requirements: lexical analysis, syntactic analysis, semantic analysis, discourse analysis

16

and pragmatic analysis (Tayal, Raghuwanshi, & Malik, 2014). Lexical analysis

identifies structure of words and phrases in the sentences. It includes many steps, such

as tokenization, stemming/lemmatization, part of speech (POS) tagging and so on.

Tokenization facilitates extraction of information from text documents by separating

words, abbreviations, punctuations, and number groups in the sentence. Stemming or

lemmatization derives a base form of a word by reducing all inflectional forms. POS

tagging enables identification of words in a sentence according to the linguistic

properties such as noun, verb, and adjective (Tayal et al., 2014). POS tags are used for

determining design elements of the OO conceptual model. For instance, the verbs in

requirement text are candidates for methods in OO design model. Syntactic analysis

determines whether the structure of sentence is correct according to the grammar.

Semantic analysis figures out the meaning of linguistic input. Discourse analysis is the

process of specifying contextual information in textual data. Pragmatic analysis

facilitates normalization of textual data with detecting inconsistencies (Yamashita &

Matsumoto, 2000).

Transformation model enable identification of classes, attributes, methods,

relations, and other elements in OO design by using meaningful statements obtained

with NLP analysis models. There are four types of transformation model used in the

studies: standard transformation model, enhanced transformation model, ontology-

based transformation model, and pattern-based transformation model. Standard

transformation model has many rules that are established from linguistic patterns and

grammatical structures (Sagar & Abirami, 2014). For example, one of these rules in

this model may be “All nouns in the requirements documents are candidates for class

and attribute names”. Enhanced transformation model has a rule set that includes

specific rules, which are not used in previous studies. For instance, one of these

specific rules is “An adjective that qualifies a noun, where the adjective cannot be

classified combines with the noun subject to generate compound words” (Sagar &

Abirami, 2014). Ontology-based transformation model analyses the textual

requirements with respect to the semantics of the application domain (Yue, Briand, &

Labiche, 2010). Pattern-based transformation model incorporates specific pattern

properties into a proposed model (Kaiya & Saeki, 2005).

17

Table 2.3 and Table 2.4 gives information about the used methods of the studies

(from 1996 to 2019) in SLR. It is observed that most of the studies benefit from lexical

analysis which includes common techniques in the NLP frame such as tokenization,

stemming, and POS tagging. Considering the answers of this question, it is seen that

there is a little study implements semantic analysis, which is critically task to

understand the meaning of the text and extract necessary OO design elements. In fact,

semantic analysis is not hard task in English, because there is a lexical database for the

English language, WordNet (Miller, 1995), providing the short definitions and

synonyms of the words. In WordNet architecture nouns, verbs, and adjectives are

classified into synonym sets, each representing one underlying lexical concept. The

main relation between statements in WordNet is synonymy. Synonyms is also named

as synset. Each of 117 000 synsets defined in WordNet is linked to others by means of

a small number of conceptual relations. For each synset, WordNet includes a short

description (also known as gloss). Therefore, WordNet is enough beneficial to get

semantic relationships between the words. Figure 2.5 illustrates an example of search

on WordNet interface.

Figure 2.5 An example search in WordNet

Determining semantics of the text may be difficult for the other languages such as

Turkish, because there is no comprehensive dictionary for textual analysis applications

as WordNet. Thus, we recommend word embedding which is non-language related

and widely used to make sense out of the textual data. We believe that performing

18

semantic analysis using word embedding model will improve the performance in term

of accuracy of the generated model and running time. Also, there is only one study

benefits from the pragmatic analysis expected to significantly contribute to improving

the performance of the work and none of studies implements discourse analysis.

There is a numerous number of source to utilize specialized tasks of software

engineering. However, some of the sources may be hard to reach to be used for

researches, so designing a knowledge structure regarding the needs of planned system

is necessary to increase the performance of the software projects. Considering this, we

examine the selected papers within using ontology model and linguistic patterns.

Evaluation results show that there is a small number of studies generate a specific set

of rules including linguistic patterns and ontology model in their proposed approach.

However, we foresee creating specific rule-set including detailed linguistic patterns

and ontology will increase the performance of the semantic analysis phase of the

studies. Figure 2.6 shows the infrastructure of semantic analysis including WordNet

architecture and ontology model.

Figure 2.6 General architecture of NLP while analyzing requirements

19

Table 2.3 Outputs of the studies involved in the SLR (LexA: Lexical Analysis, SynA: Syntatic Analysis, SemA: Semantic Analysis, PrA: Pragmatic Analysis)

Paper Reference Year
Requirement

Representation
Processing method Transformation Model

Output

UML diagram Source Code
Validation

Model

Sagar and Abirami 2014 Textual LexA Enhanced transformation Class × ×

Montes et al. 2012 Use-Case SynA, SemA Standard transformation Class × ×

Moreno 1998 Textual None Pattern based transformation Object × ×

Subramaniam et al. 2004 Textual LexA Enhanced transformation Class, Use-Case × ×

Mich 1996 Textual LexA, SynA, SemA Standard transformation Object × ×

Kaiya and Saeki 2005 Textual PrA Ontology based transformation × × √

Capuchino et al. 2000 Textual None Enhanced transformation Class × ×

Overmyer et al. 2001 Textual LexA, SynA Standard transformation Class × √

Wahono and Far 2002 Textual LexA, SynA Enhanced transformation Object × ×

Insfra’n et al. 2002 Textual/UseCase None Standard transformation Class, Sequence Visual Basic, Java, ×

Perez-Gonzales 2002 Textual None Standard transformation Class, Sequence × ×

Harmain 2003 Textual LexA, SynA, SemA Ontology-based transformation Class × ×

Liu 2003 Use case LA Enhanced transformation Class × ×

Salbrechter et al. 2004 Textual LexA, SynA, SemA Enhanced transformation Activity × ×

Cysneiros and Leite 2004 Textual LexA, SemA Pattern based transformation Class, Sequence × ×

Song et al. 2004 Textual LexA Enhanced transformation Class × ×

Zhou and Zhou 2004 Textual LexA, SynA, SemA Pattern based transformation Class × ×

Ambriola and Gervasi 2006 Textual LexA, SynA, SemA Enhanced transformation
Class, Sequence, Use-

Case,
Pseudo code ×

El-Ghalayni et al. 2006
Domain

Ontology
LexA, SemA Ontology based transformation Class × ×

1
9

20

Table 2.4 Outputs of the studies involved in the SLR (LexA: Lexical Analysis, SynA: Syntatic Analysis, SemA: Semantic Analysis, PrA: Pragmatic Analysis)

Paper Reference Year
Requirement

Representation
Processing method Transformation Model

Output

UML diagram
Source

Code

Validation

Model

Cardei et al. 2008 Textual SemA Ontology based, Enhanced transformation × × √

Fatwanto and Boughan 2008 Use-Case SynA Pattern based transformation Class × ×

Giganto and Smith 2008 Use-Case LexA, SemA Enhanced transformation Class × ×

Seresht and Orndijeva 2008 Textual None Enhanced transformation Domain, Use-Case × ×

Popescu et al. 2008 Textual LexA, SynA, SemA Enhanced transformation Object ×

Bajwa et al. 2009 Textual LexA, SynA Enhanced transformation Class Java, VB. ×

Mu et al. 2009 Textual LexA, SemA Enhanced transformation × × √

Elbendak et al. 2011 Use-Case LexA Enhanced transformation Class ×

Brambilla 2012 Textual PrA Pattern based transformation Class Java ×

Shinde et al. 2012 Textual LexA,SemA Enhanced transformation Class, Sequence Java ×

More and Phalnikar 2012 Textual LexA, SynA, SemA Ontology based, Standard transformation Class × ×

Deshpande and Joshi 2012 Textual LexA, SynA, SemA Pattern based transformation Class × ×

Herchi and Abdeselam 2012 Textual LexA, SynA Ontology based, Standard transformation Class × ×

Tripathy et al. 2014 Textual
LexA, SynA, SemA,

PrA
Standard transformation Class Java ×

Landha¨ußer et al. 2014 Textual LexA, SemA Ontology based, Enhanced transformation Class, Activity × ×

Sharma et al. 2014 Textual LexA, SynA Pattern based transformation Sequence, Activity × ×

Arrelona et al. 2015 Textual LexA Ontology based transformation × × √

Ibrahim and Ahmad 2015 Textual LexA, SemA Ontology based, Enhanced transformation Class × ×

Bozyiğit et al. 2016 Textual LexA Enhanced transformation Class Java, C# ×

Mu et al. 2009 Textual LexA, SemA Enhanced transformation × × √

2
0

21

2.5.2.3 RQ 3- What kind of conceptual models can be generated by the reviewed

systems?

Studies responding to this question are collected under three different categories.

These categories are listed as follows:

 Studies generating UML diagrams,

 Studies generating source code,

 Studies generating validation model.

In the evaluation process of selected studies, it is easily realized that the conceptual

models extracted from the reviewed approaches are generally in the form of UML.

According to answers to RQ2, it is realized that thirty-four out of thirty-nine selected

studies aim to transform requirements into UML diagrams and only five of them focus

on validation process. Distribution of the generated conceptual models in the reviewed

studies can be shown as Figure 2.7.

Figure 2.7 Distribution of the outputs the studies in the SLR generate

The studies extracting UML diagrams are examined under six different sub-

categories in terms of the diagram types. The categories are class, object, sequence,

activity, use-case and collaborative diagrams. Type of diagrams generated in the

0

10

20

30

40

Generated Diagram

Distribution of the generated diagrams

Class diagram Object diagram Sequence diagram

Activity diagram Use-case diagram Colloboration diagram

Total number of studies

22

reviewed studies (from 2006 to 2019) is shown in Table 2.3 and 2.4. It is realized that

most of the studies generate only class diagram and so it can be said that they are not

many-sided and user-friendly. However, generation of other diagram types, which

have similar architecture with class diagram, by using extracted design elements in the

analysis phase is not difficult task. To make it clear, we illustrated class and object

diagrams for the same software scenario (ATM model) as seen in Figure x. A class

diagram shows what the objects in the system consist of and what they are capable of

doing. In contrast, an object diagram shows how objects in your system are interacting

with each other, and which states those objects contain when the program runs. Despite

having a different target, both of the class and object diagrams uses the same design

elements as you can see in the example (Figure 2.8).

C
la

ss
 D

ia
g
ra

m

O
b

je
ct

 D
ia

g
ra

m

Figure 2.8 Comparison of object and class diagram of ATM problem statement

23

Additionally, it is observed that eight studies Wahono & Far (2002), Zhou and Zhou

(2004), Popescu et al. (2007), Elbendak et al. (2011), Brambilla (2012), Herchi &

Abdessalem (2012), and Bozyiğit et al. (2016) performing UML transformation also

support code generation.

The main objective of the studies that support generation of UML diagram is to

specify classes, attributes, methods, and relationships in the OO paradigm. When

evaluating the studies generating UML diagrams, it is seen that majority of the

reviewed approaches are successful in determining the classes, their respective

attributes and methods. However, one of the important points to be considered in UML

diagrams is to determine the relationships between classes. Generalization,

aggregation, composition, and association are the examined relationship categories in

the scope of SLR. An association relationship is established when two classes are

connected to each other in any way. Aggregation is an association form, which express

the one-way relationship between objects. Life cycles of objects are independent of

each other. Related objects are not part of each other and there is an ownership

relationship between them. Composition gives information about the

interdependencies of the objects. An object may not be used independently of the

related object; in this case, we can say that there is a composition relationship between

them. Generalization is a relationship in which one model element (the child) is based

on another model element (the parent). It is used in class, component, deployment, and

use-case diagrams to show that the child inherits all of the attributes, methods, and

relationships that are specified in the parent. A realization is a relationship between

two model elements, in which one model element (the client) realizes the behavior that

the other model element (the supplier) defines. When the related studies are examined,

it is concluded that most of them have the limitations in specifying types of relationship

types. It is realized that only twenty-two of the reviewed works are available to

discover relationships between classes. In addition, only nine out of twenty-two studies

that detect relationship can perform relationship type determination. Table 2.5 gives

information on the studies that can determine relationships.

24

Table 2.5 Relationship types in the generated models (Abst: Abstraction, Agg: Aggregation, Assoc:

Association, Comp: Composition, Gen: Generalization, Spec: Specialization)

Reference

Relationship type Many to many

Abst Agg Assoc Comp Gen Spec

(Sagar & Abirami, 2014) × √ √ √ √ × ×

(Moreno et al., 1970) × × √ √ √ × √

(Kaiya & Saeki, 2010) × √ √ × √ × ×

(Overmyer et al., 2000) × × √ × √ × √

(Wahono & Far, 2001) × × × × √ × ×

(Insfra’n et al., 2002) × √ × × √ × √

(Harmain, 2002) × √ √ × × × √

(Liu, 2003) × × √ × √ × ×

(Song et al., 2004) × √ √ × √ × √

(Zhou & Zhou, 2007) × × × × × × √

(Cardei et al., 2007) × × √ × × × ×

(Fatwanto & Bough, 2008) × × √ × × × √

(Seresht & Ormandi, 2008) × √ √ × √ × √

Popescu et al. 2008) × √ √ × × × ×

(Bajwa et al. 2007) × × √ × × × ×

(Elbendak et al., 2009) × √ √ √ √ × √

(Brambilla, 2011) × × √ × √ × √

(Shinde et al., 2012) × √ √ × × × ×

(More & Phalnikar, 2012) × √ √ × √ × ×

(Herchi, 2012) × × √ × × × ×

(Tripathy et al., 2012) × × √ √ × × ×

(Ibrahim & Ahmad, 2015) × √ √ √ √ × ×

(Bozyiğit et al., 2016) × × √ × × × ×

2.5.2.4 RQ 4- Have any case study implemented to measure the performance of

models in the reviewed studies?

The dataset is the most important input for testing the performance of the proposed

model in scientific studies. The dataset must be well formed, well-formatted, and

available to be used in other scientific studies.

25

When the studies covered in the research are examined respect to the RQ3, it is

observed that they have some limitations in the dataset used. These limitations are

explained as follows:

 The datasets used include a few number of requirement documents.

 The requirements documents are used as input are simple structured and not

exactly like real-life scenarios.

Dataset sharing allows researchers working in the same fields to compare their

methods more objectively. It is realized that there is no study that uses a common

dataset shared on public platform. Since detailed information about the data sets used

in the studies cannot be accessed, only case studies scenarios are obtained. These case

studies are shown in Table 2.6.

2.5.2.5 RQ 5- Have any case study implemented to measure the performance of

models in the reviewed studies?

With recent development in the technology, studies implementing automatic

transformation from software requirements into OO-based source code become

widespread. The common aim of automatic transformation studies is creating a model

to reduce workload of a software development and expedite the preparation phase of

a software (Sagar & Abirami, 2014). When these studies are examined, it is seen that

commonly used measurements such as precision, recall and F-measure are used for the

evaluation process. By using these measurements, it is demonstrated whether a

produced model is a reasonable representation of the actual system (Mu, Wang, & Guo,

2009). These measures consider evaluation factors (OO design elements) as if they

have the same priority. However, it is necessary to consider that the specified criteria

for the evaluation of source codes have different priorities. The priorities of these

criteria vary depending on the views of decision makers who evaluate the system.

When the studies are examined, it is seen that commonly used measurements such as

precision, recall and F-measure are used for the evaluation process. Values of these

measurements in the studies are shown in Table 2.6.

26

Table 2.6 Evaluation results of the reviewed works

Reference Case Scenario Precision Recall F-Measure

(Sagar and Abirami, 2014)

ATM Model 91.67 91.67 ×

EFP 85 94.44 ×

Course Registration 100 81.82 ×

(Subramaniam et al., 2004) Automated Teller Machine × × ×

(Wahono and Far, 2002) Air Traffic Control System × × ×

(Yue et al., 2010) Withdraw Cash × × ×

(Song et al., 2007) Video Rental Store × × ×

(Ambriola and Gervasi, 2006) An industrial case study × × ×

(Fatwanto and Bough 2008) Voter Tracking System × × ×

(Seresht and Ormandi, 2008) Invoicing Order System × × ×

(Popescu et al., 2007)

Elevator

Monterey Workshop Airport

Security
× 88.46 ×

(Elbendak et al., 2011) ATM Model 82 58 ×

(Brambilla, 2012)
Social Media data (Comments,

chats, likes on social media)
× × ×

(Tripathy et al., 2014) ATM Model 100 93 ×

(Landha¨ußer et al., 2014)

Modal window × × ×

Musical Store × × ×

Circe × × ×

Monitoring Pressure × 45.83 ×

ATM Model × × ×

Steam Boiler × × ×

ABC video rental × 62.17

WHOIS protocol × × ×

Cinema × × ×

Timbered House × × ×

(Ibrahim and Ahmad, 2010) Library System × × ×

(Bozyiğit et al., 2016) ATM Model 100 93.5 93

Precision is the ratio of the number of the correctly selected design elements to the

number of all design elements in the conceptual model. Recall is calculated by the ratio

of number of the correctly selected design elements to the number of expected correct

elements. F-measure is obtained by calculating harmonic mean of the precision and

recall. By using these measurements, it is demonstrated whether a produced model is

27

a reasonable representation of the actual system (Bozyiğit, Aktaş, & Kılınç, 2017).

However, the evaluation criteria (classes, attributes, methods, relationship type, etc.)

are assumed to be equal in calculation of these metrics, and this assumption may cause

inconsistent evaluation results. This is because the evaluation phase is highly

dependent on personal opinions, and so priority of these criteria varies depending on

views of users.

In this thesis, we suggest a novel evaluation method to evaluate of the studies

transforming requirements into OO conceptual model. According to this, OO models

must be evaluated by considering expert opinions and weighting of these criteria. The

weights of evaluation criteria can be determined by using MCDM tools which are

widely used in various decision-making problems. We claim that using MCDM

methods including expert opinions much possibly provide more realistic and

consistent evaluation results in concept identification studies.

2.6 Discussion about SLR Results

Transforming requirements into OO conceptual model is a vital but challenging

task in software development. Although mostly done manually, there are available

approaches to automate this step of Software Development Life Cycle. Nevertheless,

it seems that there is not a practical, feasible automated solution despite the significant

amount of research. In this SLR, the selected thirty-nine primary studies implementing

concept identification on requirement documents are reviewed and evaluated by taking

into consideration approaches, functionalities, outputs presented, the dataset used, and

methods evaluated.

According to the analysis and evaluation of each approach in the studies examined,

it is determined that there are some issues to be improved in the literature. Firstly, a

clear majority of the reviewed studies deal with English requirement documents to

generate conceptual model. The increase in the number of innovative works analyzing

the documents in English language provides important contributions to this field.

However, working on the other languages enables such systems to reach more users

28

and become global. Secondly, available approaches generally touch on generating the

only class diagram of UML model. Other types of conceptual models and UML

diagrams can be generated from requirements by extending current studies.

Additionally, relationship identification between classes is not completed properly in

existing works and they are weak in specifying relationship types correctly.

The dataset is the most important input to test the performance of the proposed

model and it must be publicly available to be used in other studies. It is seen that all

studies surveyed have a dataset containing a small number of documents and there is

no shared dataset that is publicly available on the online repositories. This is definitely

a gap that needs to be filled.

The performance evaluation of concept identification studies is a challenge because

there is no definition of an accurate conceptual model. It is possible that two different

people differently evaluate the same requirements document, because the priorities of

evaluation criteria can be varied from person to person. However, it is seen that the

studies reviewed consider that the evaluation criteria have the same priorities, and do

not include expert opinions. This approach can lead to inconsistent results in

evaluation of the studies. For this reason, we suggest to use MCDM methods that

enable determining common weights of evaluation criteria with respect to expert

opinions.

To sum up, recommendations for further works and a desirable approach are

outlined in this study. As our future work, it is aimed to design a novel system, which

extends the previous studies, by the following functionalities:

• Specifying all types of relationships completely,

• Extracting more diagram types beside class diagrams,

• Generating source code for more than one programming language,

• Creating and using a large-scale dataset that includes various requirement

examples to test study,

• Using MCDM methods including expert opinion in the performance evaluation

29

CHAPTER THREE

OBJECT ORIENTED PARADIGM

Software requirements can be expressed in different ways. If a requirements

document includes high-level statements, it cannot be understood clearly by the all

stakeholders of project, so communication problems occur between customers and

software team. Consequently, it is important to set a conceptual model, which is easy

to understand, and provides more information compared to textual requirements.

A conceptual model is based on OO paradigm that enables software engineers to

think about problems in terms of classes, their instances (objects), and interactions

between the objects. Therefore, OO based approaches allow people to think

programming elements as real life objects and ease the control of work flow in

software projects. A conceptual model can be represented in various forms, such as

Unified Modelling Language (UML) diagrams, Entity Relationship Models (ERM),

and Business Model (BM). UML diagram is widely used in software engineering

domain from initial to the end of the planned software project. In this chapter, different

forms of UML models are presented briefly.

3.1 Object Oriented Design

OO-based design is a system which has specific characteristics and behaviors

including class structures and relationships between the classes. Attributes of classes

hold values of properties. Behaviors in class, also called methods, describe what can

be done to an object/class. While attributes and operations give information about

semantic of classes, relationships between classes (composition, aggregation,

dependency, etc.) give clue about semantic of all systems.

3.2 Unified Modelling Language (UML)

With the recent development in the technology, hardware and software systems are

interlaced and the huge network designs occurred. This situation makes the systems

30

more complex, so programming becomes a challenging task. Therefore, using standard

models instead of textual information about a planned design is an essential process of

SDLC.

UML notion was created by Grady Booch, James Rumbaugh, and Ivar Jacobson

and has been evolving since the second half of the 1990s. It is a language to create

common model, which is easy to understand by all stakeholders participating in the

software project.

Figure 3.1 The logo of UML

In Object Oriented Analysis (OOA) phase, UML diagrams are the mostly used

models to present a wider view of user’s requirements. If a requirements of a planned

system includes complex statements, it may not be understood definitely by software

team and causes serious bugs to be fixed in next phases. These bugs also extend the

delivery time of software and increase the total cost of the project. Therefore, it is

important to transform textual requirements to UML models, which increase the

understanding of the needs of users.

In UML models, big projects are divided into smaller components, which are

related to each other. For example, customers, bank personnel, and ATM machine are

assumed the different elements of ATM system. Customers use ATM machine to

withdraw cash and the bank personnel load money.

31

UML has four-teen types of diagrams to model software systems and business

processes, and all the diagrams are grouped into three categories; structural diagrams,

behavioral diagrams, and activity diagrams as illustrated in Figure 3.2.

Figure 3.2 UML diagram types

3.2.1 Structural Diagram

3.2.1.1 Class Diagram

Class diagram is the most widely used UML diagram type and aims to clearly

represent class structures and relationships between the classes in OO design. One of

the areas where class diagrams are used most efficiently is OO programming. A class

diagrams has mainly three components such as classes, attributes, methods, and

relationships between classes. Attributes of classes hold values of properties. Methods

in class, also called behaviors, describe what can be done to an object/class.

Relationships shows the dependencies of each classes with the other ones. An example

of class diagram can be seen in Figure 3.3. The elements illustrated with rectangles

represent the class structure and the arrows placed between the rectangles imply the

relationships. The first part in the rectangle includes the class name, the second section

shows the attributes, and the third section give information the methods that instance

32

of the class can perform. As shown in the figure, bank, customer, teller, account, etc.

are assumed as the different classes of a bank automation. Customers can withdraw

cash from his/her bank account and the bank personnel open or close account for

customers.

Figure 3.3 An example of class diagram designed for ATM problem

There are various types of relationships that can be used in the class diagrams such

as association, composition, aggregation, generalization, and realization.

An association relationship is established when two classes are connected to each

other in any way. In UML an association relationship is represented by a single arrow.

An association relationship can be represented as one-to-one, one-to-many, or many-

to-many (also known as cardinality). Assume that we have requirements sentence like

that “Users login to the system.” If we consider the words “users” and “system” as

33

classes in the planned model, we can link them with an association relationship as

illustrated with Figure 3.4.

Figure 3.4 An example of association relationship

Aggregation is an association form which express the one-way relationship between

objects. Life-cycles of objects are independent of each other. Related objects are not

part of each other and there is an ownership relationship between them. It is also called

“has a” relationship. Assume that there is such a relationship between user and

computer. Both of “user” and “computer” can be considered as exactly separate parts

of the system and existences of classes can continue even when the relationship

between them is removed. Aggregation relationship has the following characteristics:

 It is a semantically week relationship,

 It is a “has a” relationship,

 If a part is deleted, it’s relative can continue its existence.

Aggregation is expressed as a binary association and illustrated with a filled blank

diamond as seen in Figure 3.5.

Figure 3.5 An example of aggregation relationship

Composition gives information about the interdependencies of the objects. An

object may not be used independently of the related object; in this case we can say that

there is a composition relationship between them. This type of relationship can be also

34

names as “is-a-part-of”. Assume that we have requirements sentence like that “Users

can login to the system by using password.” As we can understand from this sentence,

the users can’t enter the systems without password and each password belongs to

exactly one user. Accordingly, if the user is deleted, so is his password. That is to say

there is a composite aggregation (composition) which is a “strong” form of aggregation

between user and password classes. Composition relationship has the following

characteristics:

 it is binary association,

 it is a whole/part relationship,

 a part could be included in at most one composite (whole) at a time,

 if a whole is deleted, all of its parts are deleted with it.

Composite aggregation is depicted as a binary association and illustrated with a

filled black diamond as seen in Figure 3.6.

Figure 3.6 An example of composition relationship

Generalization is a relationship in which one model element (the child) is based on

another model element (the parent). It is used in class, component, deployment, and

use-case diagrams to show that the child inherits all of the attributes, methods, and

relationships that are specified in the parent. The parent can have one or more children,

and any child model element can have one or more parents. Generalization

relationships can be used for taking attributes, behaviors, and relationships in a parent

and then reuse them in one or more child. Because the child model elements in

generalizations inherit the attributes, operations, and relationships of the parent,

elements that are distinct from the parent must be also defined. For example, assume

that there are to two authentications to login a website; administrator and customer.

35

Designer can bring these authentications together under same class such as user since

they may have common attributes (id, name, surname, etc.,) as seen in Figure 3.7.

Figure 3.7 An example of generalization relationship

A realization is a relationship between two model elements, in which one model

element (the client) realizes the behavior that the other model element (the supplier)

defines. Numerous clients can realize the behavior of a single supplier. Realization

relationships can be used in class diagrams and component diagrams. As in Figure 3.8

illustrates, a realization is displayed in the diagram editor as a dashed line with an

unfilled arrowhead that points from the client (realizes the behavior) to the supplier

(specifies the behavior).

Figure 3.8 An example of realization relationship

36

3.1.1.2 Object Diagram

An object diagram is derived from class diagrams so it is built considering design

elements in the relevant class diagram. The basic notions are similar for class diagrams

and object diagrams. Object diagrams also represent the static view of a system at a

particular moment. Object diagrams are used to provide a set of objects (instance of

classes) and interactions between them. The difference is that a class diagram describes

an abstract model including classes and their relationships. However, an object

diagram represents an instance at a particular time. It means the object diagram is

coherent with the functions of the actual system. The purpose is to obtain the static

aspect of a system at a particular time.

3.1.1.3 Component Diagram

Component refers to a module of classes that serve as subsystems with the ability

to interact with the rest of the system. The aim of a component diagram is to give

information about the relationships between different components in a system.

Component diagrams provide the planner to classify the different components so all

parts of the system utilize the tasks as it is expected. More commonly, in an OO

programming approach, the component diagram allows software developers to group

classes together based on a common model so that the stakeholders can look at a

software development project at a high level.

3.2.2 Behavioral Diagrams

3.2.2.1 Use-case diagram

A use case diagram is the initial form of software requirements for a new project

being developed. Use cases illustrate the expected interaction between user and

system. Concept of use case modeling helps the members of the software team to

design a system from the end user's perspective. It is a useful way to show

communication between user and system since specifying all externally visible system

behavior.

37

The general characteristics of use case diagram is as following:

 It summarizes relationships between use cases, actors, and systems.

 It gives information about the order of steps a user performs to achieve the

goal in the system.

Figure 3.9 shows a use case diagram example for a car selling system. As seen in

the figure, there are three main actors (manager, sales person, and customer) and their

behaviors in the system.

Figure 3.9 An example of use case diagram

3.2.2.2 State Machine Diagram

A state is an abstraction of the attribute values and relatives of an object. State

machine diagram is used to illustrate state-dependent behavior for an object. An object

reacts differently to the same issue in consideration of its state. State machine diagrams

are applied to objects that have distinct behavior to other entities such as actors, use

cases, methods, subsystems, and etc. There are several characteristics of states in state

machine diagram as following:

38

 A state performs in an interval of time.

 A state is often related to an abstraction of attribute values of an object

meeting some conditions.

 An object can change its state regarding both current input and the history

of its input values.

Each state diagram typically starts with a dark circle that shows the initial and end

states with a bordered circle that indicates the final state. They illustrate specific kinds

of behavior that changes from one state to another.

State diagrams describe states and transitions. States are illustrated with rectangles

with rounded corners. Transitions are indicated with arrows that pass from one state to

another and give information about situations of states.

3.2.3 Structural Diagram

3.2.3.1 Sequence Diagrams

Sequence diagrams show how objects communicate with each other objects and

utilize operations. They detail the interaction between objects in the context of a

collaboration. These diagrams are based on time intervals of the defined operations.

They demonstrate the order of the interaction between the object and the system.

In the diagram, messages (written with horizontal arrows) indicates the interaction

between the objects. Thick arrowheads denote synchronized calls, blank arrowheads

denote asynchronous messages, and dashed lines denote answers of the messages in

the system. If an object sends a synchronous dialog, it must wait until the task is

performed. However, when an object sends an asynchronous dialog, it doesn’t have to

wait for a response since processes are not interrupted. Method-calls are represented

with opaque rectangles indicating that processes are being implemented in case

response to the dialog.

39

3.2.3.2 Communication Diagrams

A communication (collaboration) diagram shows the interactions in the proposed

model. It is mainly based on relationships between the instances of classes (objects).

In these diagrams, objects are shown by using association connectors between the

objects. Dialogs are joined to the associations and illustrated with short arrows heading

in the direction of the communication.

40

CHAPTER FOUR

PROPOSED METHODOLOGY FOR TURKISH LANGUAGE

This chapter gives the background information about knowledge extraction from

software requirements written in Turkish and automatic concept identification studies.

It explains analysis of textual requirements with its methods; NLP techniques and rule-

based model including domain ontologies and linguistic patterns.

4.1 An Overview of the Turkish language

Turkish is a member of the Altaic language family and has distinctive

characteristics such as vowel harmony and extensive agglutination (Prakash, Lucila &

Wendy, 2011). The word structure in agglutinative languages is based on the addition

of derivational or inflectional morphemes to the roots as suffixes. Since morpheme

changes the meaning of the stems or roots that they are added to, many different words

may be derived from one word by adding morphemes. An example for this situation

is the word “Osmanlılaştıramadıklarımızdanmışsınızcasına” (as if you are among the

ones that we could not Ottomanize) (Aşlıyan, Günel & Filiz, 2006). Turkish as being

an agglutinative language has difficulties in NLP, since it has more complex

morphology when compared with other languages like English. Therefore,

development of an automated text to diagram transformation tool is a challenging task

for Turkish.

4.2 Natural Language Processing (NLP)

NLP is a science and engineering field, which designs and applies computer

systems to be used in processing and understanding natural languages (Rehman et al.,

2013). NLP can be used in many disciplines, such as computer science, software

engineering, computational linguistics, and so on. It enables to fill the gap between

human expressions and artificial intelligence. The developments in information

technologies have given a momentum to the studies dealing with natural languages in

the literature. The basic NLP steps are tokenization, stemming, POS tagging etc.

41

4.2.1 Tokenization

One of the preliminary steps of text processing is tokenization, which is the process

of separating sentence structure into word groups (Webster & Kit, 1992). To do this,

the punctuation marks and spaces are considered as separators, and the sentences are

separated into their components. In order to simplify the process of analysis extracting

information from requirements documents, the tokenization is applied firstly and word

sequences are obtained.

4.2.2 Stemming

The stem is the name given to the words derived from the roots of nouns and verbs

through derivational morphemes. Stemming means that the derivational suffixes added

to the words in the text document are held and the inflectional suffixes are removed

(Can et al., 2008). Derivational suffixes are used to derive words. The inflectional

suffixes are added to stem of the name and verbs to specify the state, possession,

plurality, time. The stemming process varies according to the language. It is possible

to achieve a stemming system by looking only in the dictionary of suffixes in English.

However, stemming is a difficult task in agglutinative languages such as Turkish,

Finnish and Korean. Because, the sequence of inflectional suffixes can be added to the

stem of a word.

After the text has been tokenized into words, it is cleaned from the inflectional

morphemes through the stemming process and the next step, POS tagging, is applied

in our proposed model. During the study, the stem of the word is accessed by clearing

the word from the inflectional by removing them.

4.2.3 POS Tagging

The process of categorizing word groups considering their function in a sentence is

called POS tagging (Straková, Straka, & Hajič, 2014). As the result of this labelling,

each word is separated into categories such as name, verb, conjunction, etc. Table 4.1

42

shows an example of POS tagging. In this example, the sentence structure is first

tokenized into words, and each word was marked according to their task in the

sentence.

Table 4.1 An example for illustrating basic NLP methods

Part Description

Sentence Bütün cümleler öğelerine ayrılır (All sentences are parsed into tokens).

Tokens bütün (all), cümleler (sentences), öğelerine (tokens), ayrılır (parsed)

Stems bütün (all), cümle (sentence), öğe (token), ayrılmak (parse)

Pos tags bütün (adjective), cümle (noun), öğe (noun), ayrılmak (verb)

4.3 Rule-based Model

Rule construction is an effective method to extract information from natural

language texts. Rules are relied on human knowledge and expertise to find out

candidate design elements in generated conceptual model. The major contribution of

our study is transforming intermediate text-based data in Turkish to OO design

elements using a rule-based model. In this study, a rule-set containing twenty-six rules

is created to find out OO design elements from requirements. The rules are categorized

under five different topics as seen in Table 4.2. The relationship rules have also three

sub-categories, taking different types of relationships into account.

Table 4.2 Rule-set categories

Rule category Number of rules in the category

General Rule (GR) 5

Class Rule (CR) 3

Attribute Rule (AR) 5

Method Rule (MR) 3

Relationship Rule (RR) Aggregation 2

Composition 4

Generalization 4

To perform the information extraction task, the rules in the different categories are

sequentially applied for each input sentence. First, each sentence is get as input for the

43

general rules category to determine basic keywords. Then, class, attribute, and method

rules are applied to identify the name of classes and their corresponding elements.

After the extraction of classes and their elements, the relationships rules are performed.

This task starts with applying aggregation rules, then, the sentences are matched with

composition patterns and generalization patterns. If a sentence does not match with

any of the defined patterns, it means that it does not contain any relationship to be used

in the generated class diagram. Figure 4.1 shows the pseudo code algorithm of our

rule-based model.

Input: Rs: Requirements, GRS: General rule-set, CRS: Class rule-set, ARS: Attribute rule-

set, RPRS: Relationship pattern and rule-set

Output: OODE: OOD elements

Algorithm:

 For each sentence S in Rs Do

 For each GR in GRS Do

 Execute GRj on the Si Then

 Find the deficient keywords which cannot be determined by NLP methods

 End For

 For each CR in CRS Do

 Execute CRj on the Si Then

 Find the names of classes in the diagram

 End For

 For each AR in ARS Do

 Execute ARj on the Si Then

 Find the names of corresponding attributes of each classes

 End For

 For each MR in ARS Do

 Execute MRj on the Si Then

 Find the names of corresponding methods of each classes

 End For

 For each RPR in RRS Do

 Match Si with RPRP Then

 Define the relationship type between related classes

 Exit

 End For

Figure 4.1 Pseudo code algorithm of proposed rule-based model

44

4.3.1 General Rules

The aim of the rules in “General” category is to perform a general analysis and a

pre-filtering process for the requirements documents. Considering the language

limitations in the current studies, we recommend creating a common rule-set which

supports to analyze requirements written in any language. In our study, we state that

some transformation rules can be applied independently of language in concept

identification studies. For example,

 Each noun in the document is candidate for classes and attributes.

Assume that we apply this rule for a sentence written in both Turkish and English as

in Table 4.3. As can be seen from the example given in Table 4.3, the same design

elements can be extracted when a general rule is applied to different translations of a

clause. Consequently, the idea of creating a rule-set for analyzing the textual

requirements independently of the language provides motivation for our future work.

Table 4.3 Example of general rule any concept identifier can include

English Each employee has name, age, and gender information.

Turkish Her çalışan isim, yaş ve cinsiyet bilgilerine sahiptir.

Nouns employee (çalışan), name (isim), age (yaş), gender (cinsiyet), information (bilgi).

In this thesis, five rules are defined in general-rule category and some of them are

explained with the use of examples.

General Rule #1: Nouns in sentences are candidates for class and attribute names.

General Rule #2: Proper nouns are removed from the candidate pool of classes and

properties.

General Rule #3: Succession of the nouns in the sentences are aggregated and they

are formed into single name, if the first noun has no affix.

Example: ders kataloğu (course catalogue) ders_katalog

45

General Rule #4: Verbs in the sentences are included by the pool of methods’

names.

General Rule #5: Succession of the verbs in the sentences are aggregated and they

are formed into a single verb. This is a specific rule for Turkish.

Example: işe almak (employ) işe_almak

To implement GR5, we aggregated auxiliary verbs (olmak, etmek, yapmak, vermek,

buyurmak, olunabilmek, geçmek, getirmek, ettirilmek) in the sentences with the words

in front of them. On the other hand, we also created and shared a new compound verb

exceptions list (Bozyiğit et al., 2019) which does not include auxiliary verbs such as

“etkileşim sağlamak (interact)”, “iletişim kurmak (communicate)”, “veri yüklemek

(load)”, and so on.

4.3.2 Class Rules

In OOP paradigm, a class is an abstract way of describing a real-world entity that

includes the properties and behaviors of an object to be created. Failure to include an

entity or making an incorrect classification in the design can lead to major problems

in the later phases of the software development process. Therefore, class extraction is

one of the most critical step when modelling a target software product. The classes in

the conceptual model must be in a correct and complete form. In this study, three rules

are defined in addition to general rules for the identification of the classes’ names.

These rules, their explanations and examples are shown following.

Class Rule #1: The frequency of names above a certain threshold are labelled as

classes.

Class Rule #2: The second name in the definite noun phrase declares the class

strictly if it is stated in the document more than once.

Example: fakültenin bölümleri (departments of faculty)

46

 fakülte (faculty) class, bölüm(department) class

Class Rule #3: If the verbs such as “sahip olmak (have)”, “içermek (include)”, and

“bulundurmak (contain)” exist in a sentence, the first name is labelled as a class.

Figure 4.2 presents an example in text format and it is processed using both general

(GR1, GR3) and class (CR3) rules.

Figure 4.2 An example of processing general and class rules

4.3.3 Attribute Rules

After the completion of general and class rules, the next step is to extract the

attributes of classes from requirements documents. Attributes of classes identify the

states of objects. As shown below, there are five rules in the “Attribute” category.

Attribute Rule #1: Adjectives can provide information about the properties of a

class.

Example: Yeşil(Green) kart (card)

 renk(colour) is attribute of kart class.

47

To implement AR1, system uses the list of adjectives which is provided by Türk Dil

Kurumu (TDK) to be used in academic works. We created a new adjective list by

adding definitions for some basic adjectives in the list of TDK (http://sozluk.gov.tr/,

2019). Thus, meanings of the basic adjectives such as color, number, shape, direction

etc. are easily retrieved and used for specification of the attributes.

Attribute Rule #2: If there is a possessive construction in a sentence and the first

name in the construction takes possessive or place suffixes, second name is pointed as

attribute of the first name. This is a special rule for Turkish.

For example, there are many inflectional suffixes can be added to “okul (school)”

and “öğrenci (student)” words and change the situation of these words as following:

“okulun öğrencisi”, “okulun öğrencisinde”, “okuldaki öğrencileri”, “okuldaki

öğrencilerde”, and so on. All of these noun phrases are represented with “student(s) of

school”, “school's student(s)”, and “student(s) in school” in English language.

Consequently, all of the possessive constructions above give information about two

design elements: “okul” is determined as class and “öğrenci” is specified as attribute

of related class considering AR2.

Attribute Rule #3: Object of the class derived from a noun can also be attributes

of other classes extracted from the same sentence.

Example: Mağaza asistanı, galerideki arabaların plaka, model, kiralama ücretini

sisteme (system) kaydeder. (Store assistant record the information of cars in the

gallery such as plate, model and renting price.).

Assume that the given example is a sentence in a requirements including needs of

a rented car gallery system. “Gallery” and “car” are determined as classes, because

frequencies of them exceed a certain threshold value as stated in CR1. On the other

hand, we can specify the “car” as attribute of “gallery” class as a result of AR2. That

is, “car” has both class and attribute labels in the system.

http://sozluk.gov.tr/

48

galeri class, arabaclass and attribute of “galery” class

Attribute Rule #4: If the verbs such as “sahip olmak (have)”, “içermek (include)”,

and “bulundurmak (contain)” exist in a sentence, all the names except the name of the

class are the attributes of that class.

Attribute Rule #5: Time, location, and percentage attributes of a class is retrieved

by using according to Named Entity Recognition (NET) supported by the ITU NLP

tool (Şeker & Eryiğit, 2017).

Example: FB073 nolu uçuşun saat 08:45’te kalkışı yapılmıştır. (FB073 flight

departed at 08:45.)

Assume that the given example is a sentence in the requirements document

including needs of an Airport system. “Flight” is determined as classes, because

frequency of it in the requirements text exceed a certain threshold value as stated in

CR1. Moreover, NET process retrieve the TIME entity from the sentence.

uçuş(flight) class, zaman(time) attribute of “uçuş” class

Figure 4.3 presents an example sentence processed using both general (GR1,

GR5), class (CR3), and attribute (AR4) rules.

Figure 4.3 An example of executing general, class, and attribute rules

49

4.3.4 Method Rules

Behaviors of an object in the class diagram are methods that change the state of the

system. In this study, the rule-set involving three different rules is defined to determine

the methods of classes. The rules and their explanations are shown as following.

Method Rule #1: Each verb in documents is a candidate method, except the verbs

such as: “sahip olmak (have)”, “içermek (include)”, “bulundurmak (contain)”,

“kapsamak (involve)”, “bulundurmak (provide)”, “oluşmak (comprise)”, “oluşturmak

(compose)”, “dahil olmak (participate)”, “varolmak (exist)”, “meydana gelmek

(consist)”, “kapsamına almak (incude)”, and similar verbs listed in our repository

(Bozyiğit et al., 2019).

Method Rule #2: A verb identified as a method can belong to more than one noun

identified as classes in the same sentence.

Example: Öğrenciler ve öğretim üyeleri, sistem değerlendirme anketlerini

yapabilirler. (Students and instructors can conduct system evaluation surveys.)

Assume that the example sentence is in a requirements document including the

needs of Course Enrollment System. “öğrenci (student)” and “öğretim_üye

(instructor)” are determined as classes, because their frequency in the requirements

text exceed a certain threshold value as stated in CR1. Our system labels

“anket_yapmak() (conduct survey)” verb as methods for both “öğrenci” and

“öğretim_üye” classes. Thus, “anket_yapmak()” method belongs both “öğrenci” and

“öğretim_üye” classes.

öğrenci Class1, instructor Class2, anket_yapmak() method of Class1 and

Class2

Method Rule #3: The verb in the sentence having the class information is the

method belonging to that class.

50

4.3.5 Relationship Rules

Relationships identify the ways of communication between the classes in the

conceptual models. In our study, we define two rules and eight linguistic patterns to

find out relationships in the generated class diagrams. Linguistic patterns are

specifically formed regarding the grammatical structure of Turkish language by the

authors of the study. Each sentence in the requirements is processed regarding to

relationship rules and patterns. If input data is matched with a rule or pattern,

relationship between two classes and its type are revealed. The defined rules and

patterns in this study are split into three sub-categories to get Aggregation,

Composition, and Generalization relationship types. These three sub-categories are

described in Figure 4.4. Aggregation is a kind of association between two classes

describing a part of relationship. Related classes in this type of relation are not affected

if a container class is deleted. On the other hand, Composition relationship indicates a

strict aggregation relation between the classes. If a container class is deleted all its

classes are also needed to be deleted (Kim, Lu, & Lee, 2017). Generalization

relationship is used to generate a derived class which inherits all elements in the parent

class. The rules in the Generalization and Composition sub-categories are defined

using pattern-based modelling. For relationships indicating generalization and

composition, a list of patterns covering relevant cases is defined by the authors of

study.

Figure 4.4 Sub categories in the relationship rule-set

51

4.3.5.1 Rules in the aggregation rule-set

Aggregation Rule #1: If all nouns are labelled as the class in a noun phrase, there

is a certain relationship between them. This rule support both English and Turkish

languages.

Example: Banka'nın müşterileri (Customers of the bank).

There is an aggregation relation between Banka (Class1) and Müşteri (Class2)

classes.

Aggregation Rule #2: If an attribute in a sentence is also labelled as a class, there

is a relationship. This rule can be executed on requirements written in both English

and Turkish.

Example: The courses a student takes might open up a career opportunity as well

as affecting his GPA.

Assume that “course” and “student” are specified as Class1, Class2 respectively by

executing GR1. If Class1 is also determined as attribute of Class2, we can say that there

is an aggregation relationship between “course” and “student” as shown with Figure

4.5.

Figure 4.5 Aggregation relationship between student and course classes

4.3.5.2 Patterns in the composition pattern-set

 Composition Pattern #1: Bir (Class1) birden fazla (Class2)

oluşmaktadır/içermektedir/bulundurmaktadır.

 Composition Pattern #2: (Class1) bir tür (Class2).

student course course

52

 Composition Pattern #3: (Class1) (Class2) parçasıdır/kısımıdır/elemanıdır/

oluşmaktadır/içermektedir.

 Composition Pattern #4: (Class1) (Class2) ait bir parçadır/kısımdır/bölümdür.

4.3.5.3 Patterns in the generalization pattern-set

 Generalization Pattern #1: Bir (Class1) (Class2) kategori yer

almaktadır/dahildir/bulunmaktadır.

 Generalization Pattern #2: (Class1) (Class2)’dır/dir.

 Generalization Pattern #3: (Class1) (Class2) ait bir kategoridir.

 Generalization Pattern #4: (Class1) (Class2) bir

altdalıdır/kategorisidir/alanıdır.

Figure 4.6 illustrates an example sentence processed by the pattern GP1.

Figure 4.6 An illustration of matching a sentence with GP1

53

CHAPTER FIVE

OBJECT ORIENTED ANALYSIS OF ENGLISH REQUIREMENTS

In this chapter, automatic concept identification is conducted for the linguistic

aspects of the English language. The model proposed for analyzing English

requirements consists of two parts; basic NLP methods (morphologic analysis) and

rule-based model including ten rules. In this chapter, English software requirements

are processed to build class diagram and generate C# program code with respect to OO

paradigm. Considering the experimental results, it can be confidently stated that the

performance results of proposed approach (designed for English) is more accurate than

reviewed studies in terms of finding classes in OO design.

5.1 Proposed Model for Analyze English Requirements

5.1.1 NLP Methods Used in English Language

Tokenization is the identification of each “atomic” unit / word in a sentence (Habert

et al., 1998). This process enables consisting of tokens arranged in a syntactically valid

combination. So, in order to analyze a text document, tokenization must firstly be

performed and groups of word must be obtained. Thus, it gets easy to make sense out

of the textual documents.

After tokenization morphologic analysis is performed. First, the process of

assignment grammatical tags to the word in a sentence is utilized. It is a semantic

analysis approach that expresses grammatical rules and how a word is used in a

sentence. So, intermediate data is obtained by using grammatical construct of the

sentence. The relationships between tokens can also be identified by using POS

tagging. POS tags include nouns, verbs, adverbs, adjectives, pronouns, conjunction

and their sub-categories. An example of POS tagging is shown in Figure 5.1.

54

Figure 5.1 An example of POS tagging

A stemming algorithm is a computational procedure which reduces derived words

to their base forms (Lovins, 1968). Derivational affixes and inflectional suffixes are

removed and words are transformed into stem morph. For example, as seen in Figure

5.2, words like “computing” and “computed” are converted to “compute” after the

stemming process. After POS tagging, Lancaster stemmer is used to stem tagged words

(Paice & Hooper, 2005). Then, duplicate words are removed from database.

Figure 5.2 An example about stemming

In this study, we used Stanford Parser to obtain the POS tags of all words in

documents (Manning et al., 2014). Words are classified into nouns, verbs, adjectives

or adverbs and stored according to their assigned POS. Further, nouns are classified

into proper and common nouns.

5.1.2 Proposed Rule-based Model for English Language

The extraction of design elements that belong to OO models is the base of concept

identification model. In this study, class diagrams and source codes is generated by

using elements (classes, attributes, methods and relations) in OO model. The aim of

using a rule-based model is to specify the valid components of the conceptual model.

55

A set of rules is formed to create the rule-based model. While some rules are taken

from reference’s paper, some are created specifically by authors of this study. The

rules are explained as following;

 Nouns in the sentences are candidate for class’ and attribute’s names.

 Proper nouns are cleaned from the textual data because they do not indicate any

class or attribute.

 The nouns having the maximum frequency are favorite candidates for class

names.

 Verbs in sentences are included by pool of methods’ names.

 Linking verbs between two nouns indicate a relationship.

 Verbs included by phrasal verb inform about relationships.

Example: “The family bring up a child.”

Family is Class1, bring up is association relationship, child is Class2.

 If a verb is included by the following list {include, involve, contain, consist of,

etc.}, there may be aggregation and composition relationship type.

 Succession of the nouns in the sentences (if there are no elements between them

except space) are aggregated and they are formed into single name.

Example: “concept identification model” is formed as single noun

“concept_identification_model”.

 Subordinating conjunction such as “of” before a noun helps to find attributes of

a class.

Example: “Gender of student”

 Gender is attribute of Student class.

 Possessive endings such as ‘s after a noun helps to find attributes of a class.

Example: “Student’s ID”

ID is attribute of Student class.

5.2 Experimental Study on English Requirements

The evaluation of the concept identification studies is a challenging task, because

extracted design elements from requirements may be differ from the real results. In

order to compare and obtain more accurate results, a particular use case study, which

56

is widely known in Software Engineering domain, is used. The case study is an ATM

problem statement (Rumbaugh et al., 1991) which is used in the experimental works

of Sagar and Abirami (Sagar & Abirami, 2014). Sagar and Abirami indicate that they

generate the different versions of the ATM case study by rephrasing original text.

Figure 5.3 shows the original version of ATM problem statement (Rumbaugh et al.,

1991).

The system must support a computerized banking network that includes both human cashiers and

ATMs. The computerized banking network will be shared by a consortium of banks. Each bank

provides a computer that maintains the bank's accounts and processes transactions against the

accounts. Cashier stations are owned by individual banks and communicate directly with the bank's

computers. Human cashiers enter the account data and transaction data. An ATM communicates with

a central computer. The central computer clears transactions with the banks. An ATM accepts a cash

card and interacts with the user. An ATM communicates with the central computer to carry out

transactions. An ATM dispenses cash, and prints receipts. The system requires appropriate record-

keeping and security provisions. The system must handle concurrent access to the same account

correctly. The banks will provide the bank's own software for the bank's own computers.

Figure 5.3 ATM problem statement (Rumbaugh et al., 1991)

In the experiments, we compare the performance results of this part of the thesis

(which is developed for analyze English requirements) with the results of Sagar and

Abirami’s work. Therefore, we also create three examples of requirement which are

categorized as simple, average, and complex by modifying original ATM problem

statement (Rumbaugh et al., 1991) to obtain more consistent comparison results Table

5.1 shows accuracy rates of all documents in class, attribute, method and relationship

categories.

Table 5.1 Evaluation results of AutoClass

Document Class Attribute Method Relationship

Simple 100% 100% 80% 95%

Average 100% 100% 74% 89%

Complex 100% 100% 70% 78%

57

Number of correct identified design elements (classes, attributes, methods, and

relationships) which are extracted in the thesis and Sagar’s study (Sagar & Abirami,

2014) are compared in as illustrated in Figure 5.4. Considering the results of

experimental study, it can be easily seen that the module developed for the thesis gives

more accurate results than Sagar’s work (Sagar & Abirami, 2014) in terms of

determining classes and attributes.

Figure 5.4 Experimental results on ATM problem statement

58

CHAPTER SIX

PROPOSED EVALUATION MODEL

With recent development in the technology, studies implementing automatic

transformation from software requirements into OO-based conceptual model become

widespread (Lamsweerde, 2013). The common aim of automatic transformation

studies is creating a model to reduce workload of a software development and expedite

the preparation phase of a software (Budinsky, Finny, Vlissides, & Yu, 1996). When

these studies are examined, it is seen that commonly used measurements such as

precision, recall and F-measure are used for the evaluation process. By using these

measurements, it is demonstrated whether a produced model is a reasonable

representation of the actual system (Zelkowitz & Wallace, 1997). These measures

consider evaluation factors (OO design elements) as if they have the same priority.

However, it is necessary to consider that the specified criteria for the evaluation of

source codes have different priorities. The priorities of these criteria vary depending

on the views of decision makers who evaluate the system.

In this thesis, we propose Analytical Hierarchy Process (AHP) (Saaty, 1994) based

validation of the studies, which utilize automatic OO-based source code

transformation from textual requirements. According to this, OO-based source code

documents are evaluated by considering weights of the criteria (classes, attributes,

methods, relationship type, etc.) which can be varied depending on decision makers.

The weights of evaluation criteria are determined by using AHP method, which is a

well-known Multi Criteria Decision Making (MCDM) tool and widely used in various

decision-making problems. The proposed approach is evaluated on a particular study,

which is presented by Bozyiğit, Aktaş, and Kılınç (2016). As a result, it has been

observed that the evaluation by using AHP gives more realistic results than the

accuracy rate calculated with precision, recall and F-measure in the study of Bozyiğit

et al. (2016).

The validation of studies implementing OO-based conceptual model generation

checks whether the obtained code contains the keywords in the software requirement

59

document. These keywords are classes, attributes, methods, relationships, relationship

type, etc. that should be included in OO design.

It is observed that similar approaches are utilized in the studies, which transform

textual requirements into OO-based source codes. Figure 6.1 shows the general

framework of these studies. First, the textual requirements are formatted by pre-

processing step within certain constraints. Then, the source code generation is

completed by compositing the model elements revealed by the transformation process.

Finally, evaluation of proposed model is performed.

Figure 6.1 General architecture of reviewed approaches

6.1 Standard Evaluation Methods

It is observed that all of the studies discussed in the paper benefit from the precision,

recall and F-measure parameters, which are the scoring concept of statistical science

in the evaluation phase (Makhoul, 1999). The number of the classes, attributes,

methods and relationships in the generated source code are compared with a standard

model and missing model elements are determined. Accuracy of proposed model is

calculated by taking into consideration the elements that are required, missing or

excessive.

The precision is obtained by the ratio of the correct data to the total data, and it is

calculated according to the equation given in Formula 1. TP (true positive) denotes the

60

number of objects that are correctly extracted by system. FP (false positive) refers to

the number of objects that the system confirms as true when indeed it is not.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6.1)

The recall metric is calculated by the ratio of the correct data to the expected correct

data, it is given in Formula 6.2. FN (false negatives) in the equation refers to the

number of correct data, which could not be found.

 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.2)

In order to calculate the accuracy of the proposed model, the harmonic mean of the

precision and recall values are obtained and the F-measure is calculated according to

the equation given in Formula 6.3.

 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2(𝑃𝑟 × 𝑅𝑒)

𝑃𝑟 + 𝑅𝑒
 (6.3)

Table 6.1 shows the evaluation results of a case study (one of the reviewed studies)

conducted by Bozyiğit et al. (2016). The precision, recall and F-measure values, which

are calculated based on the expected and obtained data as a result of the study, are

shown in Table 6.2.

Table 6.1 Evaluation results of Bozyiğit et al. (2016)

 Class Relationship Attribute Method

AutoClass 10 11 3 8

Expected values 10 13 3 9

Table 6.2 F-Measures of the evaluation criterıa in Bozyiğit et al. (2016)

 Class Relationship Attribute Method

Precision 1 0.92 1 0.8

Recall 1 0.85 1 0.89

F-measure 1 0.88 1 0.84

61

The accuracy rate Bozyiğit’s work (Bozyiğit et al., 2016) is calculated as 93%

regarding the F-measure value for each criterion in Table 6.2. All criteria are

considered equally weighted and arithmetic mean of all F-measure values is calculated

as shown in Equation 6.4.

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =

𝐶𝑙𝑎𝑠𝑠 + 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 + 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 + 𝑀𝑒𝑡ℎ𝑜𝑑

4

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
1 + 0.88 + 1 + 0.84

4

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0.93

(6.4)

6.2 Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) is a mathematical notation of problem- solving

that is widely used to make a decision in complex queries (Saaty, 1994). AHP method

has been formed after getting the structure of a query and the challenges decision

makers have to overcome.

The AHP method examines decision-making problems in three steps. The first step

is the definition of the problem. The second step is the determine solutions alternatives

to solve the problem. The most critical step is the specification of criteria used to

evaluate the alternative solutions.

Although there are several criteria, the importance of each criterion may not be

equal in multi-criteria decision-making problems. For example, if somebody has to

make a decision to buy between two shoes, conform and price are two factors which

can be comparative according to decision makers’ perception. The comfort may be

more essential than the price in buying behavior of anybody. Accordingly, he/she can

score comfort criteria as two for the comfort and one for the price.

In the MCDM problems, the weights of each criterion must be calculated to ensure

reaching the correct solution. Although this process is considered as easy task,

decision-makers can be confused during the determination of alternatives’ priority

order which enable problem-solving.

62

6.3 AHP-based Evaluation Method

It is a challenging task to validate the studies, which utilize conceptual model

transformation from requirement documents, because the evaluation phase is highly

dependent on personal opinions and it is subjective in nature. Therefore, firstly,

decision-making problem should be defined, and then factors affecting decision points

and importance values of these factors should be determined (Triantaphyllou, 2010).

In this case, AHP method that is created under MCDM would be so befitting. Thus, a

novel evaluation approach is presented in this study, and it is demonstrated in Figure

6.2. The evaluation part, which includes AHP, has a novelty, because none of the

studies in the literature generating source code from requirements uses criteria

weighting process in the evaluation phase.

Figure 6.2 Proposed approach

In the literature, AHP is widely used tool for dealing with various decision-making

problems. It enables the decision makers to define criteria and calculate weight for

each criterion to make the best decision. AHP starts with the construction of a

functional hierarchy to decompose complex systems into their basic parts according to

their required relationships (Saaty, 2000). To determine weights of criteria by using

AHP, there are four main steps to be done.

63

Step 1: The evaluation criteria are taken into consideration and alternatives are

chosen to make the best decision.

 There are multiple criteria affecting the accuracy of the OO-based source

code and the importance of the criteria is relative. The criteria specified by

three decision makers participating in this study are as follows.

 Classes: Finding all classes in the OO-based model completely,

 Attributes: Finding set of attributes and placing them in the related classes,

 Methods: Finding set of methods and placing them in the related classes,

 Relationships: Finding all relationships between classes and organize them

correctly,

 Relationship type (composition, aggregation, inheritance, association vb.):

Defining relationships type inter classes correctly.

 Many to many relationship: Showing whether there are many to many

relationships between the two classes.

Step 2: Comparison matrix of factors which is N×N square matrix A, is created

(Nasiboğlu, Bozyiğit, & Diker, 2015).

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮
𝑎𝑛2

 ⋮
… 𝑎𝑛𝑛

]

In this step, decision makers are asked to compare the criteria at a given level on a

pairwise basis in order to estimate their relative importance. A nine-point scale is

commonly used to demonstrate the experts’ preference between options as equal

importance, moderate importance, strong importance, very strong importance, or

extreme importance preferred. Table 6.3 shows the pairwise comparison of each

criteria belongs to three decision makers participating in the study. It is assumed that

the Criterion 1 is equally or more important than the Criterion 2.

64

Table 6.3 Importance of each criterion with respect to AHP priorities

Criterion 1

Criterion 2

Equal (1)

The importance value of Criterion 1

over Criterion 2

2 3 4 5 6 7 8 9

1 Class Relationship X

2 Class Attribute X

3 Class Method X

4 Class Relationship type X

5 Class Many to many X

6 Relationship Attribute X

7 Relationship Method X

8 Relationship Relationship type X

9 Relationship Many to many

association

 X

10 Attributes Method X

11 Attributes Relationship type X

12 Attributes Many to many X

13 Methods Relationship type X

4 Methods Many to Many X

15 Relationship

type

Many to Many X

Considering the values in Table 6.3, 𝑁 × 𝑁 comparison matrix A is created. The

diagonal elements of the comparison matrix are set to 1, because the relevant factor is

compared with itself in this case. As seen in Table 3, the first criterion in the first row

is four times important than second one according to the decision maker. Thus, the

element in the first row and second column is set to 4 and the element in the second

row and first column is set to 1 4⁄ in the matrix A according to Equation 6.5.

Accordingly, the comparison matrix is showed in Table 6.4.

𝑎𝑖𝑗 =

1

𝑎𝑖𝑗
 (6.5)

65

Table 6.4 Comparison Matrix A

 1 2 3 4 5 6

1 1 4.00 5.00 5.00 7.00 9.00

2 0.25 1 2.00 2.00 4.00 6.00

3 0.20 0.50 1 1.00 2.00 4.00

4 0.20 0.50 1.00 1 2.00 4.00

5 0.14 0.25 0.50 0.50 1 2.00

6 0.11 0.17 0.25 0.25 0.50 1

Step 3: AHP assigns a score to each option according to the decision makers’

pairwise comparison with respect to the considered criterion.

The column vectors are determined before calculating the weights of all of these

criteria; a column vector is denoted as 𝐵𝑖 where i is from 1 to n (the number of criteria).

They are represented as Equation 6.6.

 𝐵𝑖 = [𝑏11 𝑏21 … 𝑏𝑛1]
𝑇

 (6.6)

Equation 6.7 is used for calculating values of the elements in the column vector 𝐵𝑖.

 𝑎𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

 (6.7)

All column vectors 𝐵𝑖 are joined in order to form C matrix as shown in Equation

6.8.

𝐶 =

[

0.52 0.62 0.51 0.51 0.42 0.35

0.13 0.16 0.21 0.21 0.24 0.23

0.11 0.08 0.10 0.10 0.12 0.15

0.11 0.08 0.10 0.10 0.12 0.15

0.07 0.04 0.05 0.05 0.06 0.08

0.06 0.03 0.03 0.03 0.03 0.04]

 (6.8)

Percentage importance distribution of each criterion is obtained by using C matrix.

Therefore, arithmetic average of row components, which is comprised C matrix, is

66

taken and then column vector W that is called priority vector is calculated. Using C

matrix, percentage importance distribution of criteria is calculated and W is illustrated

in Formula 6.9.

𝑊 = [𝑤1 𝑤1 … 𝑤𝑛]T, 𝑎𝑖𝑗 =
∑ 𝑐𝑖𝑗

𝑛
𝑗=1

𝑛⁄ (6.9)

Table 6.5 shows the elements of the priority vector obtained from the comparison

matrix constructed by averaging the pairwise comparison values of the three decision-

makers.

Table 6.5 Weights of the criteria

Category Priority Rank

C1 Class 50.0% 1

C2 Relationship 19.3% 2

C3 Attribute 10.8% 3

C4 Method 10.8% 3

C5 Relationship type 5.8% 5

C6 Many to many association 3.3% 6

The F-measure value obtained for each criterion in the Bozyiğit’s study (2016) (in

Table 5.2) is multiplied by the criteria weights determined according to the AHP result

as in Equation 6.10, and a new accuracy ratio is obtained. The F-measure value of a

criterion that is weighted by AHP but not evaluated in Auto Class is set to 0. As a

result, new accuracy rate is determined as 86%. Remark that the accuracy rate is

determined as 93% in AutoClass. by calculating precision, recall, and F-measure.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑤1 × 𝐶1) + (𝑤2 × 𝐶2) + ⋯+ (𝑤6 × 𝐶6)

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (0.5 × 1) + (0.19 × 0.88) + ⋯+ (0.03 × 0)

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0.86

(6.10)

Transformation of requirements into source code is a vital step in software

development. Although it is mostly done manually, there are available approaches to

automate this step of SDLC. Performance evaluation and validation process in the

67

studies which automatically transform requirement documents into source codes are

evaluated by commonly used measure methods such that recall, precision and F-

measure. The evaluation criteria are considered to be equal in these methods. However,

the priority of these criteria varies depending on views of users. Thus, we proposed a

novel approach in which accuracy rate calculated by using weights of criteria. The

weights of criteria are obtained by using opinion of the three experts, and then AHP

method. Our novel approach evaluated on the particular study, which is presented by

Bozyiğit et al. (2016). It is observed that our novel approach gives more realistic results

in the evaluation of studies generating OO-based source codes from requirements. This

is because; we base our approach on expert opinions while other studies do not include

them.

68

CHAPTER SEVEN

EXPERIMENTAL STUDY

7.1 Dataset

Datasets have a remarkable importance in scientific studies, so they must be well

formed, well formatted, and available to be used in other scientific studies. When the

studies covered in the literature are examined, it is observed that they have some

limitations in the dataset used. These limitations are explained as follows:

 The datasets used include a few number of requirements documents.

 The requirements in the datasets are simple structured and not exactly like

real-life scenarios.

 Publicly sharing the datasets commonly allows the researchers, who work

in the same field, to compare efficiency of their methods. It is realized that

there is no study that uses a common dataset shared on public platform.

The dataset (Bozyiğit et al.,2019) was constructed with the use of “SENG 2115 -

Object Oriented Programming (OOP)” course questions taught in Software

Engineering Department of Manisa Celal Bayar University (MCBU). Additionally, we

collected requirements used in case studies of the related works and translated them

into Turkish to enhance our dataset. The dataset contains twenty different requirements

in Turkish with their English translations. Twelve of twenty requirements were

prepared by the instructors of the Software Engineering Department between 2015 and

2018. The dataset was made publicly available to be used in the works of other

researchers. Table 7.1 shows detailed information about the dataset used in this study.

As is also seen from the information in Table 7.1, the requirements in our dataset

includes neither short nor so long texts. Thus, we can say that the text in our dataset is

mid-range and all contributed studies in this domain test their approach easily using it.

Table 7.2 represents a sample requirements named “Restoran (Restaurant)” that is

written both in English and Turkish languages.

69

Table 7.1 Some properties of created dataset

Property Value

Number of requirements documents 20

Supported languages Turkish and English

Supported diagrams Class

Average number of sentences in requirements 11

Average number of words in requirements 108

Average number of classes in requirements 8

Average number of attributes in requirements 4

Average number of methods in requirements 4

Table 7.2 A sample requirements in the dataset

T
u

rk
is

h

Yılmaz Restoran birden fazla çalışan ve servis masasına sahiptir. Restorana belirli

zamanlarda çalışan işe alınır veya işten çıkarılır. Her çalışan isim, yaş ve cinsiyet

bilgilerine sahiptir. Restoranda birden fazla bölüm bulunmaktadır. Bu bölümler mutfak,

servis ve kasa olmaktadır. Çalışanlar bulundukları bölüme göre iş yapmaktadırlar.

Çalışanlar aşçı, garson ve kasiyer olabilmektedir. Aşçı mutfakta bulunur ve sipariş hazırlar.

Aşçı siparişi hazırladığında sistem sipariş detayı ve masa numarasını gösterir. Serviste

bulunan garson müşteriye servis yapar. Garson servis yaptığında sistem garsonun adı ve

masa numarasını gösterir. Kasiyer kasada bulunur ve sistemdeki sipariş detayına göre

adisyon hazırlayıp hesap keser

E
n

g
li

sh

Yılmaz Restaurant has more than one personnel and dining tables. Personnel may be

employed or discharged at certain times. Each personnel have name, age and gender

information. The restaurant has more than one sections. These sections are kitchen, service

and cash. Personnel works according to their sections. Personnel can be cook, waiter and

cashier. The cook stays in the kitchen and prepares the orders. When the cook prepares the

order, the system shows the order details and table number. The waiter in the service

section serves the costumer. When the waiter serves, the system shows the name of the

waiter and the table number. The cashier prepares the check according to the order details

in the system.

7.2 A Case Study

Each requirement in the dataset is experimented to validate our proposed approach.

We selected the requirements named “Restoran” shown in Table 7.3 as a case study

for this section. First, the preprocessing phase is applied to the text parts of

requirements using basic NLP steps as mentioned in Chapter 3. The output of this

70

phase is a list of intermediate data including POS tags and keywords, which specify

the relationships. The list of data is shown in Table 7.3

Table 7.3 Intermediate data obtained through NLP methods on Restaurant requirements

POS tags & keywords Elements

Nouns

restoran (restaurant), çalışan (personnel), servis_masa (dining table),

isim (name), yaş (age), cinsiyet (gender), bilgi (information), bölüm

(section), mutfak (kitchen), servis (service), kasa (cashe), aşçı (cook),

garson (waiter), kasiyer (cashier), sipariş (order), sistem (system),

sipariş_detay (order detail), masa_numara (table number), müşteri

(customer), garson_ad (waitress's name), adisyon (check)

Proper Nouns Yılmaz

Adjectives -

Verbs

sahip_olmak (have), işe_almak (employee), işten_çıkarmak (discharge),

bulunmak, olmak (be), iş_yapmak (work), sipariş_hazırlamak(prepare

an order), göstermek (show), servis_yapmak (service),

adisyon_hazırlamak (prepare cash), hesap_kesmek (cash)

Relationship

keywords
sahip_olmak, olmak, bulunmak

Next, the list of intermediate data in Table 7.3 is processed by applying the first

four categories of the rule-based model (GR, CR, AR, and MR). Thus, classes and

their corresponding elements (attributes and methods) are determined to generate the

related class diagram. The results of this process for the case study is presented in

Table 7.4

Moreover, the associations between the specified classes are determined

performing the relationship rules and patterns to the “Restoran” requirements. Finally,

all design elements are extracted and the transformation process is accomplished.

Resulting relationships and used rules/patterns are shown in Table 7.5. As a result, our

proposed approach of indexing comes to the fore as enough effective because the

findings are coherent with the real results. Hence, it can be confidently stated that

matching proper design elements of class diagram in our architecture is successfully

utilized.

71

Table 7.4 Design elements in the “Restoran” requirements

 Classes Attributes Methods Keywords Used rules

1 restoran çalışan, servis_masa - sahip olmak GR1,CR1, CR4, AR4

2 restoran çalışan
işe_almak(),

işten_çıkarmak()
- GR1, GR4, GR5, CR1

3 çalışan isim, yaş, cinsiyet - sahip_olmak GR1, CR4, AR4

4 restoran bölüm - bulunmak GR1, GR4, CR4, MR1

5 bölüm mutfak, servis, kasa - olmak GR1,CR1, AR4, MR3

6 çalışan - - olmak GR1, CR1, AR4, MR3

7 aşçı mutfak - bulunmak GR1, GR4, CR1, MR3

8 sistem
sipariş_detay,

masa_numara
göstermek() - GR1, GR3, GR4

9 garson servis servis_yapmak() bulunmak GR4 , GR5, CR1, MR3

10 sistem
garson_ad,

masa_numara
göstermek() - GR1, GR4, GR5, CR1

11 kasiyer - hesap_kesmek() - GR4, CR1, MR1

Table 7.5 Relationships extracted from “Restoran” requirements

Sentence Class1 Class2 Relationship Used rules

1 restoran çalışan Composition CompP1

2 restoran bölüm Composition CompP2

3 çalışan çalışan, aşçı, garson,

kasiyer

Generalization GenP1

4 bölüm mutfak, servis, kasa Generalization GenP1

5 aşçı mutfak Aggregation AggR2

6 garson servis Aggregation AggR2

7 kasiyer kasa Aggregation AggR2

For the “Restoran” requirements, nine classes, nine attributes, three methods, and

eleven relationships are obtained performing proposed rule-based model. The

generated class diagram is illustrated in Figure 7.1. Participated experts confirm that

all the design elements are found correctly in the generated class diagram. The results

yielded by experimental study provide convincing evidence that our proposed study

effectively performs the transformation of requirements texts into the class diagrams.

72

F
ig

u
re 7

.1
 G

en
erated

 class d
iag

ra
m

 fo
r R

estau
ran

t ca
se stu

d
y

73

CHAPTER EIGHT

EVALUATION RESULTS

8.1 AHP-based Evaluation

Current research appears to validate that there is no related study in the literature

employing MCDM methods to evaluate the performance of the system. The evaluation

of a study transforming requirements into conceptual models is a comprehensive

process, because there are various criteria affecting the performance of the produced

model. Further, importance of the criteria may vary depending on the view and

preferences of the decision makers. Since the proposed method requires handling

various evaluation criteria, we developed a new evaluation model by applying AHP

that provide decision makers to prioritize criteria in order to deal with complex

decision making problems. The flow chart of AHP is showed in Figure 8.1.

Figure 8.1 Flow chart of AHP

 The decision-making problem is defined and the criteria affecting decision

points are determined.

 Decision makers perform pairwise comparison between the specified

criteria by using ranking scale proposed by Saaty (2008).

 Matrix calculations are performed with the following Saaty’s proposed

methodology and then weights/priority orders for each criterion are

specified.

74

Our AHP based evaluation model consists of three basic steps, which are explained

in the following:

Step 1 (Defining problem and determining criteria): The determined criteria for

the evaluation of our study are presented in Table 8.1.

Step 2 (Pairwise comparison): After specification of the problem statement and

the criteria, we asked three academicians (from MCBU and Dokuz Eylül University)

and head of software department at Commensis Software Company who are expert in

OO programming domain to be participants in the evaluation of our study. They

compared each of the determined criterion using ranking scale from one to nine.

Table 8.1 Definition of evaluation criteria

Criterion Definition

Criterion 1 Finding the classes completely

Criterion 2 Finding the relationships between the classes completely

Criterion 3 Finding the attributes on the classes completely.

Criterion 4 Finding the methods on the classes completely

Criterion 5 Specifying the relationship types correctly

Step 3 (Calculating weights of the criteria): The weights of criteria were

calculated by applying the matrix calculation following Saaty’s proposed study (Saaty,

2008) explained in Chapter 5. The results are shown in Table 8.2.

Table 8.2 Weight of each criterion calculated by AHP

Criterion Definition

Criterion 1 53.7

Criterion 2 21.1

Criterion 3 10.0

Criterion 4 10.0

Criterion 5 5.2

Results of AHP regarding feedbacks of the experts indicate that the criteria used for

the evaluation of conceptual models may have different weights. In the related studies,

75

weights of each evaluation criterion are considered as equal. This assumption may not

always yield accurate results. For instance, it is admitted that finding all the specified

classes correctly in a conceptual model is the most important factor according to AHP

results including view of the experts in our study.

8.2 Evaluation of System Performance

The evaluation process with respect to the specified criteria (stated in Section 8.1)

is performed by comparing the outputs of the system with the class diagrams generated

by the experts participated in this study. Assume that the set of design elements

specified in the experts' model are denoted by E and the set of elements revealed by

the system is denoted by S. The set of S and E are illustrated in Figure 8.2.

Figure 8.2 The illustration of S and E

 The cardinality of intersection of S and E gives the number of elements

correctly identified by the system (it is donated as Ncorrect).

 The cardinality of difference of S and E gives the number of incorrect

determined elements in the generated class diagram by the system (it is

donated as Nincorrect).

 The cardinality of difference of E and S gives the number of missing

elements that could not be extracted by the system (it is donated as Nmissing).

In this part, the proposed system is experimented and evaluated for each criterion

Ci (stated before in Section 8.1) using all the requirements documents in the dataset.

The detailed experimental results for each requirement are presented in Table 8.3.

76

Table 8.3 Detailed experimental results regarding each criterion (CiC: Number of correct elements providing Ci, CiM: Number of missing elements providing Ci, CiI:

Number of incorrect elements providing Ci)

Requirements C1C C1I C1M C2C C2I C2M C3C C3I C3M C4C C4I C4M C5C C5I C5M

R1 (Restaurant) 11 0 0 11 0 0 9 2 1 6 1 0 4 2 3

R2 (Company) 8 0 1 6 1 3 7 0 0 5 1 2 6 1 3

R3 (Library) 9 2 0 5 2 0 3 0 0 5 2 1 5 2 0

R4 (Game) 5 0 2 3 1 2 4 0 1 4 2 0 4 0 2

R5 (Music band) 7 0 1 6 1 0 4 3 1 3 1 0 3 0 0

R6 (Timetable) 7 2 0 5 0 1 10 2 2 6 1 0 3 1 2

R7 (Super market) 6 1 2 3 1 2 7 2 3 7 0 3 4 0 1

R8 (Hotel reservation) 9 0 2 5 2 0 12 0 4 5 1 1 5 1 1

R9 (Fitness center) 8 0 1 4 1 1 9 3 2 3 3 2 3 1 0

R10 (File manager) 7 0 0 6 0 0 4 1 1 3 0 2 5 1 2

R11 (Football team) 10 0 0 6 2 1 5 2 0 7 1 1 7 2 2

R12 (Car galery) 5 0 0 3 0 1 12 2 0 8 1 0 2 1 1

R13 (Enrollment) 6 1 0 8 1 1 8 1 2 9 2 2 10 2 3

R14 (ATM) 8 1 0 8 0 2 3 1 0 0 3 0 9 1 2

R15 (Video rental) 4 0 1 4 1 0 8 2 1 8 2 0 4 1 1

R16 (Cinema) 4 0 0 4 0 1 4 1 0 6 1 1 4 0 2

R17 (Timbered house) 9 0 0 7 1 0 3 0 0 1 1 0 3 3 1

R18 (Musical store) 6 0 0 9 1 1 4 0 1 8 2 1 8 2 3

R19 (Pressure) 4 1 1 4 1 2 5 1 1 3 1 0 3 0 3

R20 (Airport) 7 1 0 4 1 2 7 0 0 5 0 2 4 0 1

7
6

77

We calculated performance measure (precision, recall, and F-measure) for each

evaluation criterion to evaluate the system. Precision (Pr) refers to the accuracy of the

proposed system and gives information how much of the output extracted by the

system is correct. It is obtained by finding ratio of the correctly identified data to the

total extracted data, in the generated model. Its formula is given in Equation 8.1.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟) =

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 (8.1)

Recall (Re) indicates the ability of the system to generate all design elements

correctly. It is the ratio of the correct design elements extracted by the system to the

number of true elements in experts' model. The formula of recall is given in Equation

8.2.

 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒) =

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑚𝑖𝑠𝑠𝑖𝑛𝑔
 (8.2)

The F-measure (Fm) of the proposed system is obtained by calculating the weighted

harmonic mean of its precision and recall. The formula of (Fm) is given in Equation

8.3.

 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹𝑚) =

2 × 𝑃𝑟 × 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 (8.3)

Pr, Re, and Fm values for all requirements in the dataset regarding each evaluation

criterion are presented in Table 8.4.

The studies in the literature calculate the values of precision, recall and F-measure

metrics assuming that all evaluation criteria have the same weights (standard

calculation). However, considering these criteria as equally weighted may cause

misleading evaluation results, since the priority of each criteria varies depending on

views of users. Thus, we proposed a novel evaluation model including AHP to assign

a weight to each criteria in the direction of the experts’ opinions (as stated in Section

78

6.2). The F-measure value of each evaluation criterion (in Table 8.4) is multiplied by

the weights of criteria (Table 8.2), and a new accuracy ratio is calculated for generated

class diagrams. The formula for calculating weighted F-measure value is given in

Equation 8.4.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑤1 × 𝐶1) + (𝑤2 × 𝐶2) + (𝑤3 × 𝐶3) + (𝑤4 × 𝐶4) + (𝑤5 × 𝐶5) (8.4)

79

Table 8.4 Precision, Recall, and F-measure values (Reqs: Requirements)

Reqs
C1 C2 C3 C4 C5

Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm

R1 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.90 0.86 0.75 1.00 0.86 0.67 0.57 0.62

R2 1.00 0.88 0.94 0.86 0.67 0.75 1.00 1.00 1.00 0.86 1.00 0.92 0.87 0.67 0.76

R3 0.82 1.00 0.90 0.71 1.00 0.83 1.00 1.00 1.00 0.71 0.83 0.77 0.71 1.00 0.83

R4 1.00 0.71 0.83 0.75 0.60 0.67 1.00 0.80 0.89 0.67 1.00 0.80 0.67 1.00 0.80

R5 1.00 0.88 0.93 0.86 1.00 0.92 0.57 0.80 0.67 0.75 1.00 0.86 1.00 1.00 1.00

R6 0.78 1.00 0.88 1.00 0.83 0.91 0.83 0.83 0.83 0.86 1.00 0.92 0.75 0.60 0.67

R7 0.87 0.91 0.89 1.00 0.89 0.94 0.84 0.93 0.88 0.82 0.96 0.88 0.93 1.00 0.96

R8 1.00 0.82 0.90 0.71 1.00 0.83 1.00 0.75 0.86 0.83 0.83 0.83 0.83 0.83 0.83

R9 0.89 1.00 0.95 0.80 0.80 0.80 0.75 0.82 0.78 0.50 0.60 0.55 0.75 1.00 0.86

R10 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.80 1.00 0.60 0.75 0.83 0.71 0.77

R11 1.00 1.00 1.00 0.75 0.86 0.80 0.71 1.00 0.83 0.88 0.88 0.88 0.78 0.78 0.78

R12 1.00 1.00 1.00 1.00 0.75 0.86 0.86 1.00 0.92 0.89 1.00 0.94 0.67 0.67 0.67

R13 0.86 1.00 0.92 0.89 0.89 0.89 0.89 0.80 0.84 0.82 0.82 0.82 0.83 0.77 0.80

R14 0.89 1.00 0.94 1.00 0.80 0.89 0.75 1.00 0.86 1.00 0.75 0.86 0.90 0.82 0.86

R15 1.00 0.80 0.89 0.80 1.00 0.89 0.80 0.89 0.84 0.80 1.00 0.89 0.80 0.80 0.80

R16 1.00 1.00 1.00 1.00 0.80 0.89 0.80 1.00 0.89 0.86 0.86 0.86 1.00 0.67 0.80

R17 1.00 1.00 1.00 0.88 1.00 0.93 1.00 1.00 1.00 0.50 1.00 0.67 0.50 0.75 0.60

R18 1.00 1.00 1.00 0.90 0.90 0.90 1.00 0.80 0.89 0.80 0.89 0.84 0.80 0.73 0.76

R19 0.80 0.80 0.80 0.80 0.67 0.73 0.83 0.83 0.83 0.75 1.00 0.86 1.00 0.50 0.67

R20 0.88 1.00 0.93 0.80 0.67 0.73 1.00 1.00 1.00 1.00 0.71 0.83 1.00 0.80 0.89

7
9

80

Table 8.5 shows the comparison of performances which are calculated by

conventional and AHP based evaluation method in terms of precision, recall, F-

measure on twenty requirements in the dataset.

Table 8.5 Conventional and AHP based evaluation results

Requirements
Conventional evaluation Evaluation using AHP

Pr Re Fm Pr Re Fm

R1 0.87 0.88 0.88 0.95 0.92 0.94

R2 0.93 0.85 0.89 0.95 0.82 0.88

R3 0.79 0.97 0.87 0.80 0.98 0.88

R4 0.88 0.75 0.83 0.91 0.73 0.81

R5 0.84 0.93 0.87 0.90 0.91 0.90

R6 0.84 0.85 0.85 0.83 0.93 0.88

R7 0.88 0.76 0.79 0,87 0.90 0.87

R8 0.88 0.85 0.86 0.92 0.85 0.87

R9 0.74 0.84 0.86 0.92 0.85 0.85

R10 0.93 0.82 0.87 0.97 0.92 0.95

R11 0.82 0.90 0.86 0.90 0.95 0.92

R12 0.88 0.88 0.88 0.96 0.93 0.94

R13 0.85 0.85 0.85 0.86 0.92 0.89

R14 0.91 0.87 0.89 0.91 0.92 0.92

R15 0.84 0.90 0.87 0.91 0.87 0.89

R16 0.93 0.86 0.90 0.95 0.93 0.94

R17 0.78 0.95 0.85 0.90 0.99 0.94

R18 0.90 0.86 0.88 0.95 0.93 0.94

R19 0.84 0.76 0.80 0.81 0.78 0.79

R20 0.94 0.84 0.88 0.89 0.89 0.89

When we review the results in Table 8.5, it is seen that nearly all classes and

relationships in the generated Restoran (R1) class diagram are correctly determined.

This states that C1 and C2 criteria are successfully met by the system for R1. However,

it is seen that there are two incorrect and three missing relationship types determined.

That is, C5 criterion is not met properly in the generated Restoran model. As seen in

the Table 8.5, F-measure of Restoran model calculated with the AHP based evaluation

is 94%, however; it is measured as 88% by performing conventional evaluation. Since

evaluation criteria are assumed to be equal in conventional evaluation, elements which

81

don't meet the C5 considerably reduce the value of F-measure. Experts participated in

our study state that, the incorrect and missing elements for C5 (relationship type) do

not affect the system performance dramatically, because it has lower priority order

than the other evaluation criteria. Thus, they claim that evaluation using AHP gives

more realistic results than conventional method. For this reason, we can state that using

MCDM methods including expert opinions much possibly provide more realistic and

consistent evaluation results in the concept identification studies.

Additionally, as can be understood from the evaluation results in the table, our study

achieved a success rate of over 85% on a large majority of twenty requirements in the

dataset. However, the performance results on the R4 (81%) and R19 (79%)

requirements are significantly lower comparing to the others. It is because that both of

two requirements are not well-written in Turkish and the structure of sentences is

complex.

82

CHAPTER NINE

CONCLUSION AND FUTURE WORK

9.1 Conclusion

Transforming requirements into OO conceptual model is a vital but challenging

task in software development. Although mostly done manually, there are available

approaches to automate this step of SDLC. A clear majority of the reviewed

approaches deal with English and there is no study generating conceptual models for

agglutinative languages such as Korean, Finnish, and Turkish. Thus, the main

contribution of our study, automatically generating class diagrams from the Turkish

requirements, is accomplished by using NLP techniques and a novel rule-based model

including twenty-six transformation rules.

It is seen that all studies in this domain have a dataset containing a small number of

documents and there is no shared dataset that is publicly available on the online

repositories. This is definitely a gap that needs to be filled. Hence, we have prepared

an enhanced dataset that contains twenty software requirements in Turkish and

English. Additionally, it is publicly available on GitHub to be used by other

researchers in this domain.

The performance evaluation of concept identification studies is vague because there

is no definition for an accurate conceptual model. It is possible that two different

people differently evaluate the same requirements document, because the priorities of

evaluation criteria can be varied from person to person. However, it is seen that the

reviewed studies consider that the evaluation criteria have the same priorities, and do

not include expert opinions for performance measurement of the systems. This

approach can lead to inconsistent results in evaluation of the studies. For this reason,

the third contribution is achieved by using AHP based evaluation model and decision

makers' feedbacks. As the result of the evaluation, average accuracy of the proposed

model is measured as 89%.

83

We cannot compare our results with the other studies, because our work is the

primary study carried out on Turkish requirements in the literature. It is clearly seen

that the results of our study is motivating enough for the future works, although the

evaluation is performed against experts’ model including their assumptions and

implicit information.

9.2 Future Work

Considering studies in the literature, it is observed that most of the studies benefit

from lexical analysis which includes common techniques in the NLP frame such as

tokenization, stemming, and POS tagging. It is seen that there is a little study

implements semantic analysis which is critically task to understand the meaning of the

text and extract necessary OO design elements. In fact, semantic analysis is not hard

task in English, because there is a lexical database for the English language, WordNet,

providing the short definitions and synonyms of the words. However, determining

semantics of the text may be difficult, because there is no comprehensive dictionary

for textual analysis applications as WordNet for the other languages such as Turkish.

Thus, we would like to use word embedding which is non language related and widely

used to make sense out of the textual data. We believe that performing semantic

analysis using word embedding model will improve the performance in term of

accuracy of the generated model and running time.

As the future work, it is also aimed to design a novel system which extends our

study by the following functionalities:

 Specifying all types of relationships between the classes completely,

 Extracting more diagram types beside class diagrams,

 Generating source code.

84

REFERENCES

Abrial, J. R., Börger, E., & Langmaack, H. (1996). The steam boiler case study:

Competition of formal program specification and development methods. In Formal

Methods for Industrial Applications, 1-12.

Ambriola, V., & Gervasi, V. (2006). On the systematic analysis of natural language

requirements with circe. Automated Software Engineering, 13(1), 107-167.

An example: The lift (elevator) problem. (n.d.). Retrieved May 26, 2019, from

http://www-users.cs.umn.edu/heimdahl/formalmodels/elevator.htm.

Arellano, A., Carney, E., & Austin, M. A. (2015, April). Natural language processing

of textual requirements. In The Tenth International Conference on Systems (ICONS

2015), Barcelona, Spain, 93-97.

Aşlıyan, R., Günel, K., & Filiz, A. (February, 2006). Türkçe otomatik heceleme

sistemi ve hece istatistikleri. In Akademik Bilişim, Denizli, Turkey.

Bajwa, I. S., Samad, A., & Mumtaz, S. (2009). Object oriented software modeling

using NLP based knowledge extraction. European Journal of Scientific Research,

35(1), 22-33.

Ball, C. G. & Kim, R. L. (1991). An object-oriented analysis of air traffic control.

McLean: The MITRE Corporation.

Berry, D. M. (2000). From contract drafting to software specification: Linguistic

sources of ambiguity-a handbook version 1.0. Retrieved May 01, 2016, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7928.

http://www-users.cs.umn.edu/heimdahl/formalmodels/elevator.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7928

85

Bjork, R. (2004). An example of object-oriented Design: An ATM simulation.

Retrieved May 26, 2019, from

http://www.mathcs.gordon.edu/local/courses/cs211/ATMExample.

Bozyiğit, F., Aktaş, Ö., & Kılınç, D. (2016). AutoClass: Automatic text to OOP

concept identification model. International Journal of Computer Applications,

150(10), 29-34.

Bozyiğit F., Aktaş Ö., & Kılınç D. (December, 2017). A novel evaluation approach

for the systems transforming software requirements to object oriented source code.

In International Conference on Engineering Technologies, Konya, Turkey, 129-

134.

Bozyiğit F., Aktaş Ö., & Kılınç D. (2018). Adjective list. Retrieved May 26, 2019,

from

http://github.com/ftmBozyiğit/TurkishAutoConceptIdentifier/blob/master/Adjecti

veList.txt.

Bozyiğit F., Aktaş Ö., & Kılınç D. (2018). Compound verbs exceptions. Retrieved

May 26, 2019, from

https://github.com/ftmBozyiğit/TurkishAutoConceptIdentifier/blob/master/Comp

oundVerbsExceptions.txt

Bozyiğit F., Aktaş Ö., & Kılınç D. (2018). Verbs which do not indicating method.

Retrieved May 26, 2019, from

https://github.com/ftmBozyiğit/TurkishAutoConceptIdentifier/blob/master/Verbs(

notMethods).txt

Bozyiğit, F., Aktaş, Ö., & Kılınç, D. (2019). Automatic concept identification of

software requirements in Turkish. Turkish Journal of Electrical Engineering &

Computer Sciences, 27(1), 453-470.

http://www.mathcs.gordon.edu/local/courses/cs211/ATMExample
http://github.com/ftmbozyigit/TurkishAutoConceptIdentifier/blob/master/AdjectiveList.txt
http://github.com/ftmbozyigit/TurkishAutoConceptIdentifier/blob/master/AdjectiveList.txt
https://github.com/ftmbozyigit/TurkishAutoConceptIdentifier/blob/master/CompoundVerbsExceptions.txt
https://github.com/ftmbozyigit/TurkishAutoConceptIdentifier/blob/master/CompoundVerbsExceptions.txt

86

Brambilla, M. (2012). From requirements to implementation of ad-hoc social Web

applications: an empirical pattern-based approach. IET Software, 6(2), 114-126.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007).

Lessons from applying the systematic literature review process within the software

engineering domain. Journal of Systems and Software, 80(4), 571-583.

Can, F., Kocberber, S., Balcik, E., Kaynak, C., Ocalan, H. C., & Vursavas, O. M.

(2008). Information retrieval on Turkish texts. Journal of the American Society for

Information Science and Technology, 59(3), 407-421.

Capuchino, A. M., Juristo, N., & Van de Riet, R. P. (2000). Formal justification in

object-oriented modelling: A linguistic approach. Data & Knowledge Engineering,

33(1), 25-47.

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with

dependence trees. IEEE transactions on Information Theory, 14(3), 462-467.

Christiansen, H., Have, C. T., & Tveitane, K. (2007). From use cases to UML class

diagrams using logic grammars and constraints. In RANLP, 128-132.

Cysneiros, L. M., & do Prado Leite, J. C. S. (2004). Nonfunctional requirements: From

elicitation to conceptual models. IEEE transactions on Software engineering, 30(5),

328-350.

Daigle, L. (2004). WHOIS protocol specification. Retrieved May 26, 2019, from

http://www.ietf.org/rfc/rfc3912.txt.

Derr, K. W. (1997). Applying OMT: A Practical step-by-step guide to using the Object

Modelling Technique. UK: Cambridge University Press.

http://www.ietf.org/rfc/rfc3912.txt

87

Elbendak, M., Vickers, P., & Rossiter, N. (2011). Parsed use case descriptions as a

basis for object-oriented class model generation. Journal of Systems and Software,

84(7), 1209-1223.

El-Ghalayini, H., Odeh, M., & McClatchey, R. (2007). Engineering conceptual data

models from domain ontologies: a critical evaluation. International Journal of

Information Technology and Web Engineering (IJITWE), 2(1), 57-70.

Eryiğit, G. (2014). ITU Turkish NLP web service. In 14th Conference of the European

Chapter of the Association for Computational Linguistics, Gothenburg, Sweden 1-

4.

Fatwanto, A., & Boughton, C. (2008, December). Analysis, specification and

modeling of non-functional requirements for translative model-driven

development. In 2008 International Conference on Computational Intelligence and

Security, 405-410.

Gelhausen, T., & Tichy, W. F. (2007, September). Thematic role based generation of

UML models from real world requirements. In International Conference on

Semantic Computing (ICSC 2007), 282-289.

Giganto, R., & Smith, T. (2008, April). Derivation of Classes from Use Cases

Automatically Generated by a Three-Level Sentence Processing Algorithm. In

Third International Conference on Systems, 75-80.

Gülpınar, Ö., & Güçlü, A. G. (2013). How to write a review article? Turkish Journal

of Urology, 39(1), 44.

Harmain, H. M., & Gaizauskas, R. (2003). Cm-builder: A natural language-based case

tool for object-oriented analysis. Automated Software Engineering, 10(2), 157-181.

88

Herchi H., & Ben Abdessalem W. (July, 2012). From user requirements to UML class

diagram. In International Conference on Computer Related Knowledge

(ICCRK’2012), Sousse, Tunisia.

Ibrahim, M., & Ahmad, R. (2010, May). Class diagram extraction from textual

requirements using Natural language processing (NLP) techniques. In 2010 Second

International Conference on Computer Research and Development, 200-204.

Insfrán, E., Pastor, O., & Wieringa, R. (2002). Requirements engineering-based

conceptual modelling. Requirements Engineering, 7(2), 61-72.

Gervasi, V. (2000). Environment support for requirements writing and analysis, Phd

Thesis, University of Pisa, Pisa.

Habert, B. et al. 1998. Towards Tokenization Evaluation. In Proceedings of LREC. 98,

427-431.

Hunt, J. (2006). Guide to the Unified Process featuring UML, Java and Design

Patterns (2nd ed.). London, UK: Springer-Verlag.

Kaiya, H., & Saeki, M. (2005, September). Ontology based requirements analysis:

lightweight semantic processing approach. In Fifth International Conference on

Quality Software (QSIC'05), 223-230.

Kılınç, D., Özçift, A., Bozyiğit, F., Yıldırım, P., Yücalar, F., & Borandag, E. (2017).

TTC-3600: A new benchmark dataset for Turkish text categorization. Journal of

Information Science, 43(2), 174-185.

Kim, D. K., Lu, L., & Lee, B. (2017). Design pattern-based model transformation

supported by QVT. Journal of Systems and Software, 125, 289-308.

89

Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004, May). Evidence-based software

engineering. In Proceedings of the 26th international conference on software

engineering, 273-281.

Kiyavitskaya, N., Zeni, N., Mich, L., & Berry, D. M. (2008). Requirements for tools

for ambiguity identification and measurement in natural language requirements

specifications. Requirements Engineering, 13(3), 207-239.

Koehler, J., & Schuster, K. (2000, April). Elevator Control as a Planning Problem. In

AIPS, 331-338.

Kordon, F. (2008). Case study: Air traveling requirements. Berlin: Springer.

Kumar, D. D., & Sanyal, R. (2008, December). Static UML model generator from

analysis of requirements (SUGAR). In 2008 Advanced Software Engineering and

Its Applications, 77-84.

Landhäußer, M., Körner, S. J., & Tichy, W. F. (2014). From requirements to UML

models and back: how automatic processing of text can support requirements

engineering. Software Quality Journal, 22(1), 121-149.

Liu, D., Subramaniam, K., Eberlein, A., & Far, B. H. (2004, May). Natural language

requirements analysis and class model generation using UCDA. In International

Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems, 295-304.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation.

and Computational Linguistics, 11(1-2), 22-31.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).

The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd

90

annual meeting of the association for computational linguistics: system

demonstrations, 55-60.

Maynard, D., Peters, W., & Li, Y. (2006, May). Metrics for evaluation of ontology-

based information extraction. In International world wide web conference, 1-8.

Mich, L. (1996). NL-OOPS: from natural language to object oriented requirements

using the natural language processing system LOLITA. Natural Language

Engineering, 2(2), 161-187.

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the

ACM, 38(11), 39-41.

Montes, A., Pacheco, H., Estrada, H., & Pastor, O. (2008, June). Conceptual model

generation from requirements model: A natural language processing approach. In

International Conference on Application of Natural Language to Information

Systems, 325-326.

More, P., & Phalnikar, R. (2012). Generating UML diagrams from natural language

specifications. International Journal of Applied Information Systems, 1(8), 19-23.

Moreno, A. M. (1997, June). Object-oriented analysis from textual specifications. In

Ninth International Conference on Software Engineering and Knowledge

Engineering, Madrid, Spain.

Mu, Y., Wang, Y., & Guo, J. (2009, December). Extracting software functional

requirements from free text documents. In 2009 International Conference on

Information and Multimedia Technology, 194-198.

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language

processing: an introduction. Journal of the American Medical Informatics

Association, 18(5), 544-551

91

Nasiboglu, E., Bozyiğit, A., & Diker, Y. (2015). Analysis and evaluation methodology

for route planning applications in public transportation. In Application of

Information and Communication Technologies (AICT), Moscow, Russia, 477-481.

Overmyer, S. P., Lavoie, B., & Rambow, O. (2001, July). Conceptual modelling

through linguistic analysis using LIDA. In Proceedings of the 23rd international

conference on Software engineering, 401-410. IEEE Computer Society.

Paice, C. D. (1990). “Another stemmer”. In ACM SIGIR Forum, 56-61.

Perez-Gonzalez, H. G., & Kalita, J. K. (2002, November). GOOAL: a graphic object-

oriented analysis laboratory. In ACM SIGPLAN, 38-39.

Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques

(1st ed.). Berlin, Germany: Springer-Verlag.

Popescu, D., Rugaber, S., Medvidovic, N., & Berry, D. M. (2007, September).

Reducing ambiguities in requirements specifications via automatically created

object-oriented models. In Monterey Workshop, 103-124. Springer, Berlin,

Heidelberg.

Pressman, R. S. (2005). Software engineering: a practitioner's approach (8th ed.).

Palgrave: Macmillan.

Ramdhani, A., Ramdhani, M. A., & Amin, A. S. (2014). Writing a literature review

research paper: A step-by-step approach. International Journal of Basic and

Applied Science, 3(1), 47-56.

Rehman, Z., Anwar, W., Bajwa, U. I., Xuan, W., & Chaoying, Z. (2013). Morpheme

matching based text tokenization for a scarce resourced language. PloS one, 8(8),

1-8.

92

Rumbaugh, J. R., Blaha, M. R., Lorensen, W., Eddy, F. & Premerlani, W. (1990).

Object-oriented modelling and design (1st ed.). Englewood Cliffs, NJ: Prentice-

Hall.

Saaty, T. L. (2008). Decision making with the Analytic Hierarchy Process.

International Journal of Services Sciences, 1, 83-98.

Sagar, V. B. R. V., & Abirami, S. (2014). Conceptual modeling of natural language

functional requirements. Journal of Systems and Software, 88, 25-41.

Salbrechter, A., Mayr, H. C., & Kop, C. (2004). Mapping pre-designed business

process models to UML. In Software Engineering and Applications: Proceedings

of the Eighth IASTED International Conference.

Seresht, S. M., Ormandjieva, O., & Sabra, S. (2008, August). Automatic conceptual

analysis of user requirements with the requirements engineering assistance

diagnostic (READ) tool. In 2008 Sixth International Conference on Software

Engineering Research, Management and Applications, 133-142. IEEE.

Sharma, R., Gulia, S., & Biswas, K. K. (2014, April). Automated generation of activity

and sequence diagrams from natural language requirements. In 2014 9th

International Conference on Evaluation of Novel Approaches to Software

Engineering (ENASE),.1-9. IEEE.

Shinde, S. K., Bhojane, V., & Mahajan, P. (2012). NLP based object oriented analysis

and design from requirement specification. International Journal of Computer

Applications, 47(21).

Sighireanu, M. (1998). Requirement capture, formal description and verification of an

invoicing system. PhD thesis, INRIA, Bordeaux.

93

Song, I. Y., Yano, K., Trujillo, J., & Luján-Mora, S. (2005). A taxonomic class

modeling methodology for object-oriented analysis. In Information Modeling

Methods and Methodologies: Advanced Topics in Database Research, 216-240. IGI

Global.

Straková, J., Straka, M., & Hajič, J. (2014). Open-source tools for morphology,

lemmatization, POS tagging and named entity recognition. In Proceedings of 52nd

Annual Meeting of the Association for Computational Linguistics: System

Demonstrations, 13-18.

Şeker, G. A., & Eryiğit, G. (2017). Extending a CRF-based named entity recognition

model for Turkish well-formed text and user generated content 1. Semantic Web,

8(5), 625-642.

Tayal, M. A., Raghuwanshi, M. M., & Malik, L. (2014, January). Syntax Parsing:

Implementation Using Grammar-Rules for English Language. In 2014

International Conference on Electronic Systems, Signal Processing and Computing

Technologies, 376-381. IEEE.

The old new thing. MSDN blogs (2019). Retrieved May 26, 2019, from

http://blogs.msdn.com/b/oldnewthing.

Tripathy, A., Agrawal, A., & Rath, S. K. (2014, December). Requirement analysis

using natural language processing. In Fifth International Conference on Advances

in Computer Engineering, Kochi, India, 26-27.

Türk Dil Kurumu (2019). Büyük Türkçe sözlük. Retrieved May 26, 2019, from

http://tdkterim.gov.tr/bts.

Wahono, R. S., & Far, B. H. (2002). A framework for object identification and

refinement process in object-oriented analysis and design. In Proceedings First

IEEE International Conference on Cognitive Informatics, 351-360. IEEE.

http://blogs.msdn.com/b/oldnewthing
http://tdkterim.gov.tr/bts

94

Yamashita, T., & Matsumoto, Y. (2000, April). Language independent morphological

analysis. In Proceedings of the sixth conference on Applied natural language

processing, 232-238.

Yue, T., Briand, L. C., & Labiche, Y. (2010, June). An automated approach to

transform use cases into activity diagrams. In European Conference on Modelling

Foundations and Applications, 337-353. Springer, Berlin, Heidelberg.

Zelkowitz, M. V., & Wallace, D. (1997). Experimental validation in software

engineering. Information and Software Technology, 39(11), 735-743.

Zhou, X., & Zhou, N. (2004). Auto-generation of class diagram from free-text

functional specifications and domain ontology. Artificial Intelligence, 26.

