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RADAR PULSE REPETITION INTERVAL RECOGNITION AND REAL-
TIME DETECTION UNDER NON-GAUSSIAN NOISE

ABSTRACT

In this thesis study, feature extraction related with Pulse Repetition Interval (PRI)
modulation recognition, as one of the essential processes in Electronic Support (ES)
receivers, and the detection of PRI modulated signals under non-Gaussian noise is
investigated. The discriminative feature extraction methods in the thesis are primarily
based on autocorrelation and power spectral density similar to the literature. The main
contribution is the recovery of rectangular pulse onset under a —Stable noise

environment which exhibits impulsive non-Gaussian behavior.

The first proposed approach is to utilize robust estimators which give limited time
of arrival estimation performance depending on the impulsiveness of the channel noise
and used robust filter length. As another novel contribution, time-varying cumulative
summation (CUSUM) based quickest detection (QD) method is adapted to detect pulse
onset with minimum time delay. It is shown that raw PRI modulated waveforms under
non-Gaussian noise can be tracked to detect rising edge of the rectangular radar pulses
with minimum time delay depending on the selection of proper threshold which is

directly related with probability of false alarm.

Keywords: Electronic Support (ES), pulse repetition interval (PRI) modulation,
autocorrelation, power spectral density, robust estimators, quickest detection method,

time varying CUSUM algorithm



DARBE TEKRARLAMA ARALIGI TANIMASI VE GAUSS OLMAYAN
GURULTU ALTINDA GERCEK ZAMANLI TESPITI

0z

Bu tez calismasinda, Elektronik Destek (ED) alicilart i¢in 6nemli bir islem olan
Darbe Tekrarlama Araligin1 (DTA) tanimlama ve Gaussyen olmayan giiriiltii altinda
gercek zamanli tespit edilmesi incelenmistir. Tezdeki ayirt edici karakteristik ¢ikarim
yontemleri, literatiirdekine benzer bigimde, Ozelikle Ozilinti ve giic spektrum
yogunlugu tabanindadir. Tezin ana katkisi, Gaussyen olmayan diirtlisel davranis
gosteren o-kararli giiriiltii ortamindaki dikdortgen big¢imli darbe esiginin geri

kazanilmasidir.

Onerilen ilk yaklagim, kanal giiriiltiisiiniin diirtiiselli§ine ve kullanilan giirbiiz filtre
uzunluguna bagli olarak kisith bir varig zamanmin tahminine iliskin performansini
veren, glirbiiz kestiricilerden istifade etmektir. Bir bagka yeni katki olarak, minimum
zaman gecikmeli darbe esigi algilanmasi i¢in zamanla degisen kiimiilatif toplam
(CUSUM) tabanli en hizli algilama (QD) yontemi uyarlanmistir. Yanlhs alarm
olasiligiyla dogrudan iligkili uygun esik se¢imine bagli olarak minimum zaman
gecikmesiyle dikdortgen bicimli radar darbelerinin  yiikselme kosesinin
algilanmasinda, Gaussyen olmayan giiriiltii altindaki ham DTA kiplemininin dalga

formlarinin izlenebilecegi gosterilmistir.

Anahtar Kelimeler: Elektronik Destek (ED), Darbe Tekrarlama Araligi (DTA)
kiplenimi, 6zilinti, giic spektrum yogunlugu, giirbliz kestiriciler, en hizli algilama

(QD) yontemi, zamanla degisen CUSUM algoritmasi
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CHAPTER ONE
INTRODUCTION

1.1 Electronic Warfare (EW) and Chronicle

Sun Tzu highlighted the importance of intelligence regarding the battlefield as
follows: “If you know the enemy and know yourself, you need not fear the result of a
hundred battles. If you know yourself but not the enemy, for every victory gained you
will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb
in every battle.” (Giles, 1910). History repeatedly has demonstrated that an armed
force can win against an opposition of superior quality and quantity, if they make use
of accurate intelligence. Successful duty of modern weapons systems and innovative

combat techniques depend on swift, definite, accurate, and detailed intelligence.

Today's modern armed force structure is based on the technological superiority of
electronic systems rather than quantitative superiority. The electromagnetic
environment appears extensively in all operation areas, while the usage of the
electromagnetic spectrum is advanced due to technological developments and
therefore the precision of the systems and equipment’s in the electronic warfare (EW)

is increased.

In today’s battles, the initiative is on the side of the EW supremacy, and such
supremacy will play even more important roles in winning military victories in the
near future. With the developments in signal processing technology, intelligent
algorithms will start to be used in weapon systems and it will be difficult for electronic
attack activities such as deception. In this context, reverse engineering activities will
gain importance in solving algorithms for protection against weapon systems, and for

quick detection and identification of enemy elements.

First and most important phase of the war is to make the distinction thoroughly
between friendly, hostile and neutral elements. Thanks to proper identification in the

operational area, neutral elements can be prevented from attacking, the forces can be


http://www.proxyvideo.net/index.php?q=ztmn1qNwlWLGz2CtnKHP0ZrHm5Zfo9OgY9ycoM6Vss3V05jSj33Pn8bU

protected from friendly fire, and enemy elements can be actively engaged. The
identification process is carried out on the basis of the position determination,
recognition and classification stages. The intelligence obtained from the enemy
elements makes an important contribution to the identification process. In this context,
it is possible to classify enemy radar emitters on the basis of Nationality, Platform,
Type, Class and Unit by analysing electronic intelligence (ELINT) obtained through

Sensors.

One might count the U.S. Civil War in 1861 as the beginning of the history of EW.
In the historical journey of telegraph — invented by Samuel Morse in 1837 — an
important step was recorded with the establishment of the transatlantic telegraph line
in 1858. When American Civil War began in 1861, telegraph wires became one of the
most important targets for infantry and especially cavalry. Cavalry men changed
military telegraph traffic to the inaccurate destinations deliberately, and transmitted
false orders to Union commanders. These can be thought of as early applications of
modern “intelligence” activities in the military concept of “command, control,
communications, and intelligence”. Although telegraph technology is not considered
a part of the EW because it does not radiate electromagnetic energy, these tactics are
the first examples of signal intelligence, jamming and deception. Table 1.1 shows the
conspicuous case till end of the WWI, including technological developments that led
the way for EW.



Table 1.1 Conspicuous case till end of the WWI

Date Event

1837 S. F. B. Morse invents telegraph.

1858 The transatlantic undersea cable for communication is established between
U.S. and Britain.

1861 During the U.S. Civil War, the telegraph lines becomes an important target
for enemy cavalry.

1865 |J. C. Maxwell proved theoretically the existence of the electromagnetic

field.

Early J. C. Maxwell’s theory established the basis of propagation of

1870s electromagnetic waves in free space.

1888 H. Hertz demonstrated the existence of the electromagnetic waves.

1895 Captain H. Jackson’s radio system transmits Morse signal over 100 yards
in England.

1897 G. Marconi sent and received signals over two miles.

1899 G. Marconi radio sequences improvement the transmission range to 89
miles.

1901 The first recorded example of intentional radio jamming in the U.S.

1902 British Navy Fleet exercises in the Mediterranean.

1903 U.S. Navy Fleet uses jamming.

1904- Radio jamming is used in a war for the first time to obtain tactical advantage

1905 during the Russian-Japanese War.

1906 The U.S. Navy installed a direction finder on the coal ship Lebanon for trial
purpose.

1915 Royal Navy began establishing direction finder stations around the east
coast of England.

EW, for the purpose of attack or impede enemy attack, is every deliberate activity

including the use of the electromagnetic spectrum and directed energy. The three major

subdivisions within EW are electronic attack, electronic protection and electronic

support. Figure 1.1 shows the classification of EW.




Electronic Warfare (EW)

\ 4 A\ 4 v

Electronic Attact Electronic Support Electronic Protection
(EA) (ES) (EP)
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\ 4 \4
ELINT COMINT
» PASSIVE A.PASSIVE

Figure 1.1 EW Classification (Poise, 2013)

1.1.1 Electronic Attack

Electromagnetic or directed energy can be used to attack enemy facilities,
equipment or personnel, in order to degrade, neutralize or destroy their ability to use
electromagnetic spectrum. Examples of Electronic Attack (EA) are the usage of

jamming systems and anti-radiation weapons. EA consists of the following actions:

- All actions to impede or degrade an enemy's effective use of the electromagnetic

spectrum, such as jamming and electromagnetic deception.

- Usage of electromagnetic energy as destructive contraption, such as lasers, radio

frequency weapons, etc. (Poise, 2013).

1.1.2 Electronic Protection

Electronic Protection (EP) includes all active and passive actions taken to protect

personnel, facilities and equipment from enemy attacks that can impede, neutralize or



destroy. Examples include Emission Control (EMCON) plan, filtering out harmful
wavelengths of laser, EW reprogramming, and frequency switching (Poise, 2013).

1.1.3 Electronic Support

Electronic Support (ES) includes all actions to search for, intercept, locate, record,
identify and analyze enemy usage of the electromagnetic spectrum. The primary
purpose of ES during these activities is the threat recognition, prioritization and taking
precaution. These activities can also be used to produce Signal Intelligence (SIGINT).
SIGINT consists of Communications Intelligence (COMINT) and Electronic
Intelligence (ELINT), where COMINT activities supply intelligence derived from
intercept of enemy communications. Radio teletype, Morse code, facsimile,
multi-channel, and video signals can be analysed with COMINT. The subject of this
thesis is within the scope of the second subtype of ES, namely the ELINT, which is
the identification and classification of the enemy's communications electronic systems
and radar sensors. Such activities play an important advantage for friendly associations

in the field of operations (Poise, 2013).

Information can be gathered from electromagnetic transmitter systems such as
weapon systems, radars and other sensors. This is achieved for the purpose of
extracting information of some intelligence value, by the detection and analysis of

radiations from enemy electronic devices.

ELINT is the analysis of the incoming signals from threat radars, including
surveillance, targeting and missile guidance systems. Signals from radar systems are
intercepted by a warning receiver and are analyzed by a joint processor to give
frequency (fr), pulse width (PW), pulse repetition interval (PRI), scan pattern, scan
type, angle of arrival (AoA), and amplitude (A), as shown in Figure 1.2 below
(Gengol & Kara, 2016; Liu & Zhang, 2017; Ghani et al. 2017). These parameters are
generally sufficient to characterize the type of emitter. The recognition is then carried
out by comparing the analyzed signal with parameters of hostile, friendly and neutral

emitter characteristics stored in a library within the computer memory. Analysis of the



signals and warning of a threat must actually be abrupt, since there can be
countermeasures of jamming and/or decoys that can be initiated swiftly by the enemy.

ELINT

y \ 4 \4 v v

A \ 4 \4
| fr | [ Pw | [PRI][ScanPattern | | Scan Type| |AoA [A]

Figure 1.2 Parameters of an incoming signal obtained by an ELINT system

1.2 Radar Frequency Interval within Electromagnetic Spectrum

In this section, it is more convenient to provide a brief note on the electromagnetic
spectrum, for its application in EW systems is the main theme of this thesis.
Electromagnetic spectrum is a regular distribution of electromagnetic waves according
to their frequency (or wavelength), as depicted in Figure 1.3 The spectrum is divided
into bands ranging from radio frequencies at the low end to X-ray and gamma

frequencies at the high end.

EHT|SHIF{UHEFVHE [1F | MF| LLF | VL[
Radio

Microwave

X-ray

Milimeter

Ultraviplet Infrare
Typical
Visible Radar

Onptigal

Gllz | Milz 1 kiz 1
108 107 10° 10° 10%* 103 100 10 1 100 10 1 100 10 1

<+— TFrequency

Figure 1.3 Graphical depiction of the electromagnetic spectrum (Avionics Department, 2013; Joint
Chiefs of Staff, 2012; Skolnik, 1981)



The electromagnetic spectrum contains the following bands in increasing frequency
(or decreasing wavelength):
e Radio waves,
e Micro waves,
e Visible light,
o Xrays,

e Electromagnetic cosmic rays and gamma rays.

Depending on the operation purpose, radars operate within the frequency range of
3 Mhz to 300 Ghz of the electromagnetic spectrum (Skolnik, 1981; Skolnik, 1990).
Surveillance radars operate at low frequencies, search radars at intermediate
frequencies, and tracking radars at high frequencies (see Table 1.2). When the
frequency value of the radar with a fixed output power is increased, the coating range
is reduced. But after all, the trailing quality within the coating range increases with
increasing frequency. It is estimated that radar frequencies can be increased to 60-90
GHz in the mid-range, to 300 GHz in the long-term, but the atmosphere will continue

to be a major limiting factor at these high frequencies.



Table 1.2 Operational frequency bands for different radars (Skolnik, 1990)

Band Frequency Usage
HF 3-30 MHz HF Radars
VHF 300-1000 MHz | VHF Radars
UHF 300-1000 MHz | Airborne Early Warning Radars

L 1.2 GHz Land-Based Long-Range Air
Surveillance Radars

. e Long-Range Airborne Surveillance
Radars
Multifunction Phased Array Air Defense

C 4-8 GHz Radars
Medium-Range Weather Radars
Doppler Navigation Radars
Weather Avoidance Radars

X 8.19 GHy Shipboard Navigation and Piloting
Radars
Weapon Control (Tracking) Radars
Police Speed Meter Radars
Airport Surface Detection Radars

Ku 12-18 GHz Ground Traffic at Airports Radars

K 18-26.5 GHz | Little Use (Water Vapor)

Kn 26.5-40 GHz | Very High Resolution Mapping
Airport Survelliance

Milimeter 40-100+ GHz | Experimental




CHAPTER TWO
MEASUREMENT AND ANALYSIS OF PRI PATTERNS

As a general procedure, when signals are detected by ES systems, they are first
deinterleaved and clustered, and then identified. During the deinterleaving and
clustering step, incoming pulses are separated from the detected wave and associated
with separate sources. Therefore, before the identification process, incoming waves

have to be deinterleaved into distinct sources.

2.1 De-Interleaving

Deinterleaving the pulse trains has been studied by many researches in the past
decades (Moore & Krishnamurthy, 1994; Conroy & Moore, 1998; Orsi, Moore &
Mahony, 1999; Conroy & Moore, 2000; Davies & Hollands, 1982; Mardia, 1989;
Milojevic & Popovic; 1992). In a conventional modern operation area, typically
several complex PRI modulation types should be expected, and these PRI modulation
types may overlap. Therefore, deinterleaving has been an important aspect for the
recognition of a single PRI modulation for the detailed analysis. It is done by signal
sorting to separate each pulse from a signal flow of a large number of overlapping
pulses — some of which are random noise or jam — and then selecting the useful
“deinterleaved” signals. Several pulse characteristics including pulse width (PW),
radio frequency (RF), angle of arrival (A0A), and the inter-pulse time of arrival (TOA)
are clustered for a successful deinterleaving procedure. Figure 2.1 shows the typical

scheme of deinterleaving process.

antenna

— radar |
- — radar 2
Interleaved Deinterleavin Classifier » radar 3
ACAPW.TOA. CIMICTICVITES PRI ﬂllﬂ['\'.'i.' ol EULS LU
¥5l5
—— radar ...

Figure 2.1 Typical deinterleaving process scheme. Overlapping (interleaved) signals are received by an
antenna. The deinterleaving process separates different signals and classifies them according to signal

parameters such as AoA, PW, ToA, etc.



In the literature, it is also a common approach to concentrate on de-interleaved
signals or signals which are not interleaved, for PRI characterization. For this purpose,
CDIF and SDIF methods are assumed to be useful in extracting constant PRI and
staggered PRI modulations during pulse deinterleaving procedure (Mardia, 1989;
Kuang & Shi, 2005; Ghani et al. 2017).

2.2 Radar Parameters

Signal recognition allows the selection and extraction of properties of known signal
transducer properties. Data from the classifier sequentially compares specific signal
parameters with those in a library to determine possible identities of the received
signals. The radar parameters directly measurable by the Electronic Intelligence
(ELINT) systems are as follows (Avionics Department, 2013; Kumar & Dhananjayulu
& Kumar, 2014):

. Radio (Carrier) Frequency (RF),
. Pulse Width (PW),

° Scan Pattern,

. Angle of Arrival (AoA),

o Signal Amplitude (A),

. Polarization,

. Time of Arrival,

o Pulse Repetition Interval (PRI).

All parameters except PRI can be shortly described as follows:

i) Radio (Carrier) Frequency (RF)

Most radars are designed with frequency agility to make detection and identification

difficult. This change in the frequency may be at random times or at a specific period

of time, such as pulse to pulse or group to group period.

10



ii) Pulse Width (PW)

PW of a radar determines its resolution. Radars infrequently switch their PW for
not to be detected. The PW measurement precision is related to pulse amplitude. For
small pulse amplitude, the PW measurement may be incorrect even for high signal-to-
noise-ratio (SNR).

iii) Scan Pattern

Scan pattern is how radars direct their beam across their field of view to search for

targets. General scan patterns are:

e Circular scan,
e Linear scan,

e Conical scan.

iv) Angle of Arrival (AoA)

A0A is determined by the elevation and azimuth angle of received signals, and it is

also called the direction of arrival (DoA).
v) Pulse Amplitude (A)

The amplitude of the rectangular pulse is directly related with the detection
capability of the individual pulse and/or group of pulses under certain signal to noise
ration. This parameter is tuned to provide prescribed signal to noise ratio requirement.

vi) Polarization

Polarization is the oscillations that indicate the geometric direction of the waves of

radars and move along a sequence. It can be used as a parameter for identification.

11



vii) Time of Arrival (ToA)

Time of arrival (ToA), is considered to be the receiving time of a rectangular radar
pulse from a single transmitter to a remote single receiver. The measurable arrival time
of the radars is directly related to the PRI parameter. For this purpose, PRI values can
be changed in different types. Radars can change PRI modulations to prevent the

identification or to improve ES capabilities.

The ToA of a signal pulse is, as the name suggests, the instant that the pulse is
received. It might be taken as the time when the received amplitude exceeds a
predetermined threshold. Although such a measurement of ToA is threshold-
dependent and not super-precise in the presence of noise and distortion, it can still be

used for the determination of PRI up to an accuracy (Skolnik, 1990).
2.3 Pulse Repetition Interval (PRI)

PRI modulation can be used in the base processes by ES receivers for the purpose
of recognition. The recognized PRI modulation type usually reveals the emitter
identification and classification, and it can be used to determine the functional purpose

of the radar.

PRI is the time required for a radar’s complete transmission cycle. Alternatively, it
can be described as the time interval from the commencement of a pulse of energy to
the beginning of the next pulse, shown in Figure 2.2. The unit of PRI sequence is

assessed as microseconds.

—

<+— PR| —» «—PR| —> «— PRI—><«— PRI—» «— PRl —»«—PRI —»

Figure 2.2 A pulse train in time domain. PRI is the time between consecutive pulses
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In general, PRI of the nth pulse X,, can be defined as the function of ToA as

represented by (2.2)

Xp = ther — by n=12..,N—1 2.1)

where t,, is the ToA of the nth pulse received in a pulse sequence having length of
N samples, and X,, is the difference of ToAs of two consecutive pulses, i.e., nth and
(n + 1)th. (Mahdavi & Pezeshk, 2010).

Noting that PRI is determined by the interval between adjacent pulses, it constitutes
a distinctive signature o identify the PRI modulation type. In recent radar production
technologies, many types of PRI modulations are used. The most common PRI
modulation types are (Wiley, 2006, Logothetis & Krishnamurthy, 1998, Liu & Zhang,
2017):

J Constant,

J Jittered,

o Staggered,
o Sliding,

o Wobulated,

. Dwell & switch.

Since different modulation types are used for distinct purposes, they some
significant properties of their emitters. Information on the PRI modulation of a radar
signal plays an important role in defining the radar signal in terms of the effective use
of the ES system. Once the PRI modulation type is recognized, the information related

with type of the target can be achieved.

Emitters with monopulse parameters can be measured using a single pulse. All
parameters can be detected on a pulse-by-pulse basis by receivers. Carrier frequency
Is a proper parameter for emitter recognition, since most radars operate at a single
frequency. One can obviously consider pulse width as another parameter for emitter

13



recognition. However, in practice, it is sensitive to distortions due to effects of
reflections. Therefore, identifier effect of pulse width itself is considered to be limited.
ES systems use both frequency and AoA features to separate the incoming adjacent
pulses from the previously received ones. Amplitude cannot be directly used for
emitter recognition but it can be used for classification and for distance evaluation
using compiled emitter energy. Furthermore, amplitude and ToA can be used to
determine the emitter's scan characteristics. The potential utilization of radar
parameters are justified in Table 2.1 according to the deinterleaving and identification

performance (Avionics Department, 2013).

Table 2.1 Functionality of emitter parameters in radar signal processing (Avionics Department, 2013)

Parameter De-Interleavement Emitter Identification
Frequency Proper Proper
Amplitude Limited Improper

AOA Proper Improper

ToA Improper Improper

PW Proper Improper

Scan Pattern Improper Improper
PRI Proper Proper

In the following subsections, it is concentrated on the definitions and mathematical
expressions characterizing different PRI modulation types and illustrated the different
PRI modulations derived from exact rectangular pulse train signal generated at
MATLAB environment.
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2.3.1 Constant PRI Modulation

In this type of PRI modulation, time interval between each consecutive pulse is
constant, or variations are typically less than 1% of the average PRI value. The
constant PRI exhibiting strongly stable behaviour is generally used in moving target
indicator in pulse Doppler radar systems (Wiley, 2006). Typically, the nth PRI value
X5° in constant PRI modulation, is assigned to a constant value r in the order of
usec and formulated as in (2.2):

Xl =r n=123,..,N. (2.2)
where N is number of pulses in the observed data and the value of r lies in the specified

range in terms of samples for each independent realization. In Figure 2.3a and 2.3b,

the pulse train signals with noise and without noise are shown, respectively.
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Figure 2.3 Constant PRI modulation signal a) with Gaussian noise SNR = 18 dB b) Noise free
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Figure 2.3 continues

2.3.2 Jittered PRI Modulation

In jittered mode, the time interval between successive pulses is allowed to vary
randomly among predetermined minimum and maximum values. In a common jittered
mode, the PRI sequence X,{it oscillates up to 30% of the average PRI and is represented
by (2.3) (Noone, 1999).

X = || n=123,..,N (2.3)

where |r,] is rounded integer values of random variable r;, taken from specified
probability density function (pdf). Conventionally, the pdf is assumed to be Gaussian
shown as (u,0?) . Typically, the mean value p and standard deviation o ranges of
lu/10] < o < |u/2], respectively. As an illustrative example, the pulse train in the
time domain with and without noise associated with jittered PRI are given in

figure 2.4.
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Figure 2.4 Jittered PRI modulation signal a) with Gaussian noise SNR = 18 dB b) Noise free

2.3.3 Staggered PRI Modulation

In staggered PRI modulation, a fixed random PRI sequence of is repeated
periodically along with generated pulse train (Wiley, 2006). Typically, length k of the
fixed sequence has the range of 3 < k < 10 samples for each realization. The fixed
sequence that is repeated is expressed as (2.4)

Bi =T i = 1,2, ,k (24)

where r; is randomly chosen in the range 50 usec to 500 usec. The PRI sequence of

length N is then constructed from the base set and formulated by (2.5)

X3t = B1+mod(n-1) n=123..,N (2:9)
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In Figure 2.5, it is presented a simulated staggered PRI modulation with and without

noise.
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Figure 2.5 Staggered PRI modulation signal a) with Gaussian noise SNR = 18 dB b) Noise free

2.3.4 Sliding PRI Modulation

In sliding PRI modulation, PRI changes in a monotonically increasing or decreasing
behaviour. Sliding, takes place between two extremes of a base sequence, and the base
sequence is repeated throughout the main pulse train (Noone, 1999; Wiley, 2006). To
simulate such a sliding PRI modulation, we choose the length k of the fixed sequence
to be in the range 3 < k < 10 randomly for each simulation. So, we define the fixed

base set as formulated by (2.6)
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Bi = T'1 + E(rz - T'l) [ = 1,2, ,k (26)

where r; and r, are the first and last PRIs in the base sequence, randomly
chosen for each simulation in the ranges of 50 usec <r; < 200 usec and
250 psec < 1, < 500 psec. The main PRI sequence of length N is then constructed

from the base set as expressed by (2.7)
X3! = Biimod,(n-1) n=123,..,N (2.7)

In Figure 2.6, we present a simulated sliding PRI modulation with and without

noise.
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Figure 2.6 Sliding PRI modulation signal a) with Gaussian noise SNR = 18 dB b) Noise free
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2.3.5 Wobulated (Periodic) PRI Modulation

In a wobulated PRI modulation, the PRI is changed sinusoidally around a mean
value throughout the pulse train (Noone, 1999; Wiley, 2006). Hence, we write the PRI
sequence of length N as represented by (2.8)

Xy° =r+r, sin (271:—_11) n=12,.. N (2.8)
-

Here, r is the mean PRI, 7, is the amplitude and 7, is the period of the sine function,
which are random integers chosen in the ranges 50 usec <1 < 500 psec,
|r/5] <7, < |r/5],and |[N/32] <7, < |N/2]|. In Figure 2.7, we present a simulated

wobulated PRI modulation with and without noise.
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Figure 2.7 Wobulated PRI modulation signal a) with Gaussian noise SNR = 18 dB b) Noise free
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2.3.6 Dwell & Switch PRI Modulation

The base sequence in this PRI modulation is initiated by dwelling on a PRI for a
number of pulses, and then switching to another PRI. After dwelling on this PRI, it is
then switched to another PRI, and so on (Wiley, 2006). The main sequence is
constructed by the repetition of the base PRI sequence. Therefore, we construct the

base PRI and as represented in (2.9)

rl ) 1 S l S kl
<i<
B, = r, 1 +:k1 <i<k+k, (2.9)
v o, 1+ZMlk, <i<zIM_ k.,

The PRI values are chosen as random integers within the range
50 usec < 15, < 500 psec. For each distinct simulation, we randomly determine the
lengths of dwells in the range |N/32] < k,, <|N/16], for each dwell vym €
{1,2,---, M}, number of which is also randomly determined in the range 3 < M < 10.
Here, we can define the length of the base set as k = Y™ _, k., and hence the main

PRI sequence of length N formulated by (2.10)

quis = B1+m0dk(n—1) n=123..,N (2.10)
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In Figure 2.8, We present a simulated dwell & switch PRI modulation with and

without noise.
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Figure 2.8 Dwell & switch PRI modulation signal a) with Gaussian noise SNR = 18 dB b) Noise free

In this thesis, we propose a working algorithm for identifying an incoming PRI
modulation type as one of the six types described above. Although the constant and
staggered PRI modulations can be distinguished during the deinterleaving process
(Noone, 1999; Ryoo et al. 2007; Wiley, 2006), other types of PRI modulations are hard
to classify, and usually they cannot be distinguished from noise (Ahmadi &
Mohamedpour, 1998; Noone, 1999; Kauppi & Martikainen, 2007).
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CHAPTER THREE
METHODOLGY

3.1 Basic Methodology
The aim of this section is recognized of PRI by separating from each other’s through

by using created novel features which is obtained from modulated PRI’s mean,

autocorrelation, Fourier Transform and Power Spectral Density.

3.1.1 Mean PRI

Mean PRI expressed as in (3.1)

a1+ az+az+ ag+..+ ay

1
p=15n,a,= : (3.0)

where a; is PRI of the nth pulse X,, which is received in a pulse sequence having

length of N samples.

Deviation of each PRI value from mean of different PRI modulations is presented

in Figure 3.1 a-f in frequency domain.
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Figure 3.1 Deviation of each PRI value from mean of different PRI modulations: (a) constant, (b)

jittered, (c) staggered, (d) sliding, (e) wobulated, and (f) dwell & switch
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Figure 3.1 continues
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Figure 3.1 continues

Each of the different PRI modulations, plotted in Figure 3.1, are described
comprehensively in Refs. (Katsilieris et al. 2017; Hu & Liu, 2010).

3.1.2 Biased Autocorrelation

In PRI modulated signal analysis, autocovariance (r;,) and autocorrelation (uy)
functions are used to characterize the specified PRI type in order to perform feature
extraction. These features are based on variation of correlation between values of PRI

components at a certain time interval.
Typically, the covariance function is defined as variation of correlation between

samples at a lag k, for all different time instants. Under the noisy observation

conditions, the autocorrelation function is considered to give statistical information of
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a random process such as mean and/or variance that can be used to define random

signal in time domain.

Under the ergodicity assumption, sample autocorrelation analysis in PRI modulated
data as an effective method of identifying PRI modulation sequences is defined by
(3.2) and (3.3) (Broersen, 2006).

1 ¢N-1-k
N Zn:o Xn Xn+k

1 ¢N-1 y2
N Yn=0 Xn

u, = k=012 ...K, n=012....N—1 (3.2)

U, = :—’; (3.3)
Autocorrelations of different PRI modulated patterns are presented in
Figure 3.2 a-f below which are consistent with those studies (Logothetis &

Krishnamurthy, 1998) and (Shi et al. 2016).
1 .

o o o
ESN (@) (o]
T T T

1 1 1

Biased Autocorrelation
o
o
T
1

=)

-60 -40 -20 0 20 40 60 80

1
o0
(e

o
oo
T

I

o
N
T

1

b)

e
[}

Biased Autocorrelation
o
o ~
T T
I |

-60 -40 -20 0 20 40 60 80
Lag

S
1N
o0
o

Figure 3.2 Autocorrelation functions of different PRI modulations: (a) constant, (b) jittered,

(c) staggered, (d) sliding, (€) wobulated, and (f) dwell & switch
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Biased Autocorrelation
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Figure 3.2 continues

It is clearly seen that these functions have distinctive unique signature and they can
be considered as potential to characterize each different PRI signal. Alternatively,
frequency-based methods can also be utilized due to differing spectral behaviours of

each PRI modulated waveforms. In the sequel, spectral characteristics are described.

3.1.3 Fourier Transform and Power Spectral Density

Fourier transformation can be used to analyze any spectral feature of PRI waveform
if the PRI pattern has periodic structure. Even though the received signal is usually
represented as a function of time, the spectral features also characterize the PRI pattern

under investigation.

Due to computational complexity while evaluating the frequency content of a
function in practice, the algorithm known as "Fast Fourier Transform (FFT)" is used
to extract the spectral content of the observed data which reduces the computation time
of a Fourier transformation task, by reducing the number of multipliers. This algorithm
is primarily based on Discrete Time Fourier Transform (DTFT) where DTFT of a PRI
function X, is defined by (3.4)

F,= Y% _ X, e jon (3.4)
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Fourier transforms of different PRI modulated waveforms are illustrated in

Figure 3.3 a-f. One can see that each PRI waveform has a different spectral

concentration at different frequencies depending the PRI type.
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Figure 3.3 Fourier transforms of different PRI modulations: (a) constant, (b) jittered, (c) staggered, (d)

sliding, (e) wobulated, and (f) dwell & switch
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Figure 3.3 continues

In addition to spectral information extracted from direct PRI data, another spectral

content obtained from autocovariance function gives feature information that can be

used for characterization.
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The normalized power spectral density (PSD) can be thought of as the power
distribution of the signal over the frequency band. It is defined by (3.5) as the Fourier

transform of the autocorrelation function (Stoica & Moses, 2005):

PSD(w) = Y;2 U, e @k (3.5)

Power spectral densities of different PRI modulations are presented in Figure 3.4

below in frequency domains.
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Figure 3.4 Power spectral densities of different PRI modulations: (a) jittered, (b) staggered, (c) sliding,
(d) wobulated, and (e) dwell & switch

31



20

100

200 300 400 500
Frequency (Mhz)

= v

|

100

200 300 400 500
Frequency (Mhz)

100

200 300 400 500
Frequency (Mhz)

Figure 3.4 continues

32



3.2 Simulations

MATLAB is chosen as to the simulation environment due to its mathematical
applicability and relative ease of use. The algorithms developed in this section have
been tested in the MATLAB environment.

Simulations have been developed for each PRI modulation type, and have been run
under different and randomly chosen PRI parameters. In each of the simulations, the

following procedure is applied:

e Primarily, a signal representing radar pulse sequence is generated.

e White noise is added to the generated signal with different SNR values.

e From this generated signal, the pulse sequence with PRI values is obtained.

e Deviation of each PRI value from mean PRI are determined and the

classification-1 is performed by applying feature-1 described below.

e The autocorrelation of the PRI sequence is calculated and the classification-2

is performed by applying feature-2 described below.

e Power spectral density is calculated by the Fast Fourier Transform of the
resulting autocorrelation sequence and the classification 3 is performed by applying
feature-3 described below.

The simulation results are used to justify the proposed PRI determination and
classification algorithms. Different SNR values are applied in simulations, and it is
observed that the most suitable SNR values for best classification & determination
outputs are in agreement with the applied SNR values in the actual radar environment.
The acceptable minimum SNR, depends on the design of the receiver. Generally, for

auto-detection with amplitude, TOA, and frequency measurements the setting of an

33



acceptable minimum S/N is 14 to 18 dB (Avionics Department, 2013). Furthermore,
Skolnik expressed that the minimum detectable signal must be sufficient to higher than

noise, which is typically by 10 to 20 dB, at the point in the receiver (Skolnik, 1990).
3.2.1 Signal Construction in MATLAB Environment

Rectangular pulse train Y leave a space is characterized by individual pulse function
W, composed of kth rectangular pulse with amplitude A and fixed length s, which is

followed by null vector having variable length X,, for nth pulse given in (3.6):

A, n—1Ds+Y1X. <k<ns+Ylx;
Wkn={ (- Ds+2ja % Zj=1 % (3.6)

0, ns+ Y1 X <k<ns+ Y. X

where n = 1,2, ...., N. Note that X, = 0. The rectangular pulse and following null
signal for nth pulse is simply expressed by Y,, as a component of pulse train Y. The

total length of the pulse train Y is defined by (3.7)
L=Ns+YN_ X, (3.7

In presence of noise represented by noise sequence S, the local received signal R,,

which is defined (3.8) for nth pulse is observed at the receiver input as:
R,=Y,+S (3.8)

A typical jittered PRI modulated signal R with A=18 in presence of additive white
Gaussian noise with SNR=18 dB is shown in Figure 3.5. The amplitude A/2 is

indicated as the horizontal line which is considered as reasonable threshold value
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Figure 3.5 A typical noisy jittered PRI modulated pulse train, A = 30,SNR = 18 dB

The SNR is expressed in terms of as dB by (3.9)

SNR (dB) = 10 log -2t (3.9)
where Pg;gnq; is the average signal power and Py, ;s is the noise power, both of which

are measured in units of watts.

In order to determine the signal-to-noise ratio SNR, the Gaussian noise is
considered to have power N, and SNR can be defined for rectangular pulsed signal as

(3.10)

. 2
SNR = 2222 = 10 ]og 2= (3.10)
0

noise

Considering the noise having zero —mean, the power directly corresponds to its

. . . . . N, .
variance and the relation with variance can be established as o2 = 7" . The noise

. . P, . . .
variance can be determined as o2 = I~ and S, which is obtained from
2(1010)

SNR (db), is presented by (3.11):

S~N'(0,02) (3.11)
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It is only interested in the ordering of the consecutive pulse intervals under noise
contamination, there a new time series Z is obtained from the observed noisy data

signal by a signum function as expressed by (3.12)
Z = sgn(R—A/2) (3.12)

The signum function for each pulse interval change can be defined as (3.13)

- {1 , R>A/2 (3.13)

0,R<A/2

Practically, determining transition points from 0 to 1, PRI sequence
(X; fori =1,2,...,N) can be achieved.

3.3 Feature Selection

Once the PRI data is obtained under noise free environment or estimated under
additive noise, the features can be extracted to recognize PRI modulations. The main
goal is to recognize common PRI modulation types given in Section 2.3. For this
purpose, the features are extracted both in terms of statistical properties of PRI data or
the raw PRI data itself. Here, the motivation comes from the fact that the features can
be extracted from almost any pulse sequence rather than PRI data. The distinctive
requirement is to be able to have a potential satisfactory separation capability among

the wide variety of feature set as much as possible.
Statistical properties potentially carry significant intrinsic information in order to

extract distinguishable feature among different PRI data. In the sequel, the methods to

extract three features are described.
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3.3.1 Feature-1: Deviation of each PRI value from mean PRI

The aim of this feature is to characterize the PRI sequence by normalizing the PRI
sequence and subtracting each PRI X, from the mean PRI value (X), and
distinguishing the PRI modulation by subjecting the resulting sequence to the

classification criteria specified in feature-1.
First, the deviation of each PRI value from the mean PRI is calculated by (3.14):
m, =X, — (X) n=12,..N (3.14)

Then a sequence of ones and zeroes (M) is constructed from this deviation
sequence, which is defined by (3.15)

Mn= {O ) |mn+2|_|mn+1| = Imn+1|_|mn| Tl=1,2,....,N—2 (315)
1, else

Finally, feature-1 (f;), which is formulated by (3.16), is constructed as the number
of ones in the sequence M, normalized by the number of elements in M.

1

fi = S INZZ My, (3.16)

In Figure 3.6, we present the variation of f; for six types of PRI modulations, each
with 100 realizations of different randomly chosen parameters used to characterize
each PRI type. In all simulations SNR value is taken as 18 db which is reasonable
value to analyze the data. It is observed f; < 0.05 for constant, 0.05 < f; < 0.35 for
sliding PRI. More generally these two PRI patterns are collected to be f; < 0.35 for
constant and sliding PRI modulations. This serves as the first step of classification
algorithm. Furthermore, it is also observed that f; > 0.95 for most of the data

belonging to jittered and staggered PRI modulations.
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Figure 3.6 Variation of f; for six types of PRI modulations, each with 100 realizations of different

randomly chosen parameters at SNR = 18 dB

3.3.2 Feature 2: Comparison of Consecutive Values of Autocorrelated PRI
Sequence

Autocorrelation is significant when determining the overall statistics of the different
PRI modulation types. However, direct discrimination of wobulated PRI, dwell &
switch PRI, and sliding PRI from only autocorrelation value is found not to be possible.
Fortunately, it is observed that autocorrelation results are more discriminative to
separating staggered PRI and jittered PRI sequences from the other PRI modulations.
To obtain the second feature f,, autocorrelation of the PRI sequence (c) is calculated
by (3.17).

N-k
o = Sn=t MaMnyk k=012,..N-—1 (3.17)

N 2
Yn=1My

Once the autocorrelation is evaluated, a new time series K is obtained. According
to this approach, if two consecutive elements of the autocorrelation sequence are both

positive or both negative, then the corresponding K value is 1, and it is 0 otherwise
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(i.e., for consecutive elements of the autocorrelation sequence having different signs).
K,, is defined by (3.18).

1, ¢, =20 and ¢, =0
K, = 1, ¢, <0 and c,41 <0 n=12,.....N—1 (3.18)
0, otherwise

The mean number of ones in the array K gives the second feature f, and is expressed
by (3.19).

fo=—=INZ1Ky, n=12,...,N—1 (3.19)

In Figure 3.7, it is presented the variation of f, for six types of PRI modulations,
each with 100 realizations of different randomly chosen parameters at SNR = 18 db
(same as those in Figure 3.6). By using the f,, the rest of the four types PRI patterns
can be classified into two categories as jittered and staggered (f; > 0.95) in one
category, while wobulated and dwell & switch (f; < 0.95) in another category. Here,
in Figure 3.7, it is observed that f, is not capable of further classification of different
PRI modulations although it offers different local intervals for jittered and staggered
PRI patterns. For further analysis, another feature f5, is proposed to construct a

complete feature region than can be discriminated using classifiers in the literature.
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Figure 3.7 Variation of f, for six types of PRI modulations, each with 100 realizations of different

randomly chosen parameters at SNR = 18 dB

3.3.3 Feature 3: Maximum Value of Power Spectral Density

The power spectral density is an effective feature that can be used to distinguish
different types of autocorrelated PRI sequences. The third feature f;, calculates the
maximum peak value of the power spectral density obtained from the c,

autocorrelation sequence as calculated by the FFT calculated by (3.20).

fz = max (|FFT(c,)|) (3.20)

where FFT(-) denotes the Fast Fourier Transform operation. In Figure 3.8, it is
presented the variation of f; for six types of PRI modulations, each with 100
realizations of different randomly chosen parameters at SNR = 18 dB (same as those
in Figures 3.6 and 3.7). In Figure 3.8, it is observed that f; roughly divides PRI types
into three categories where the first category is composed by wobulated PRI, the
second class is collected as staggered, sliding, dwell & switch, the third class is
approximately constant and jittered PRI patterns.
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Figure 3.8 Variation of f; for six types of PRI modulations, each with 100 realizations of different

randomly chosen parameters at SNR = 18 dB
3.3.4 Compilation of PRI Patterns in Features Space

Although all of the features cannot give a satisfactory discrimination performance
individually, the set of features in increased dimension is observed in this section.
Figure 3.9 (a) and (b) shows the combined values of three features for 100 distinct
simulated signals with randomly chosen parameters for all six types of PRI
modulations. It should be remarked that the features f; and f; have a notable impact
on generating discriminative PRI patterns. According to these results, once the two
features f; and f; are calculated, PRI modulated patterns can be approximately
classified by applying appropriate threshold to these feature values. One can consider
an approximate decision boundary in terms of each feature itself by inspection. Firstly,
fi1 derived from the mean PRI, is restricted to be f; < 0.05 for constant PRI
modulation, and 0.05 < f; < 0.35, for sliding PRI modulation. However, if this
feature 0.35 < f; < 0.95, it may be either wobulated or dwell & switch PRI
modulation, while for f; > 0.95, it may be either jittered or staggered PRI modulation.
The feature f3, derived from the PSD of the autocorrelation of the mean PRI sequence,
if 15 < f3 <40 itis dwell & switch, and if f; > 40 it is wobulated for the selection
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of 0.35 < f; < 0.95. If f; <15 it is jittered, and if f; > 15 it is staggered for the
consideration of f; > 0.95.

60

40 0L Pho  apf oPBe 0, 9 8F°

o o o 5 0 %0

) o

60 -
o
o
8
40
o o
°, o o
b) m ggoog%go@ o@g)o Q;O PeBo 5 09,° Soo
20 OCBOOOOOOQ B0
° oooggo .
o
VB 7
°gos,0 o

60
f1

Figure 3.9 (a) and (b): Feature values for 100 distinct simulated signals with randomly chosen

parameters for all six types of PRI modulations. Same colour code as in Figures 3.6-3.8

The approximate decision block diagram is given as a block diagram shown in
Figure 3.10 below. It should be noted that there can be constructed an improved
classification performance by applying classification methods such as support vector
machine, artificial neural networks which are listed as literature search in the next

section.
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Figure 3.10 PRI classification algorithm according to the features, f; and f;

As can be observed from Tables 3.1, 3.2, the proposed classification algorithm
cannot give satisfactory results for 15 dB but the correct classification ratio increases
for higher SNR vlaue as 18 dB. Therefore, the feature selection algorithm needs to be
improved in order to ensure robustness against noise for lower SNR values.

Nevertheless, It is also noted that typical radar environments have SNR range.

Table 3.1 Classification percentages for different PRI modulations at SNR = 15 dB

Generated Signal
- =] 3 =
= gl ) o =
SNR = 15db b o o = < «
[ %2} <5} (@) o} > 025
c = [=)) = o
3 S I » S =
n = @)
Constant 89.30% 0.00% 0.00% 0.00% 0.33% 0.00%
= Jittered 0.00% 97.70% 25.80% 0.00% 0.00% 0.00%
c
(=2}
g Staggered 0.00% 0.00% 71.80% 0.00% 0.97% 0.04%
2
2 Sliding 0.70% 0.00% 0.00% 86.60% 0.01% 0.00%
O
% | Wobulated 0.00% 0.00% 0.00% 0.00% 82.40% 0.00%
Dw & Sw 10.70% 0.00% 0.15% 11.50% 10.40% 73.20%
Unclassified 0.00% 2.20% 2.25% 1.90% 8.89% 26.76%
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Table 3.2 Classification percentages for different PRI modulations at SNR = 18 dB

Generated Signal

= = g > D =
SNR = 18 db 8 o 5 £ = %
17 > o S > o3
= =] =) = o)
3 5 i 73 o =
o g = a)
Constant 99.80% 0.00% 0.00% 0.00% 0.53% 0.00%
= Jittered 0.00% 96.50% 0.63% 0.00% 0.00% 0.32%
c
=l
g Staggered 0.00% 0.00% 91.70% 0.00% 0.67% 0.25%
(<5}
:Z Sliding 0.02% 0.00% 0.00% 89.40% 0.01% 0.03%
o
2 Wobulated 0.00% 0.00% 0.02% 0.00% 85.90% 0.06%
Dw & Sw 0.00% 0.00% 0.15% 10.60% 0.29% 89.64%
Unclassified 0.18% 3.50% 7.50% 0.00% 12.63% 9.63%

Although it is demonstrated in (Liu & Zhang, 2017) that PRI modulated signals are

classified with 99% accuracy, this method does not consider staggered PRI. PRI

modulation classification except the staggered one is also applied in other methods,
(Conroy & Moore, 1998) and (Orsi, Moore & Mahony, 1999). Indeed, separation of

staggered PRI from other modulation types with high accuracy is reported to be the

most problematic classification (Conroy & Moore, 1998; Mahdavi & Pezeshk, 2010).

Although correct classification percentages higher than the method proposed in this

thesis exist, these are realized with multi-layer perceptron networks (Kauppi &

Martikainen, 2007), and such high values expressed to be obtained in the absence of

noise.

3.4 Other PRI Recognition and Classification Techniques:

3.4.1 Classification

In this section, other methods for PRI classification in the literature are briefly

explained. These methods are summarized as correlation-based classification

(Shi et al. 2016; Katsilieris et al. 2017), using multilayer perceptron (Noone, 1999),
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(Kauppi & Martikainen, 2007), wavelet transform based feature extraction (Gengol et
al. 2016). Similarly, PRI sequences are recognized in terms of time-frequency domain
(Hu & Liu, 2010). Alternatively, hierarchical clustering method by (Ahmadi &
Mohamedpour, 1998) is aimed of PRI recognition. As a different problem description,
(Ghani et al. 2016) analyzed spurious and missing pulses in PRI modulated signals. In
a recent study, decimated Walsh-Hadamard transform is used for PRI analysis (Ghani
etal. 2017).

3.4.2 Recognition

PRI recognition by using the features calculated from the autocorrelation of the PRI
sequences are explained by (Ryoo et al. 2007). However, since these features are
highly sensitive to signal imperfections, it is reported that missing pulses were

compensated and spurious pulses are removed prior to recognition process.

(Kauppi & Martikainen, 2007) used a neural network classifier, PRI modulations
are divided into three groups as first step. Then, using one-dimensional classifiers,
these groups are further binary classified. Some of the suggested features in the
procedure given by (Kauppi & Martikainen, 2007) used sequential difference (SDIF)
histograms in order to deinterleaving (Milojevic & Popovic, 1992).
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CHAPTER FOUR
ROBUST ESTIMATION UNDER NON-GAUSSIAN NOISE

The literature related with PRI analysis, the effect of noise contaminating to
rectangular pulses is not of interest in common or the SNR is assumed to be sufficiently
large to observe pulse onset without any notable time delay. However, the noise causes
PRI patterns to deviate from their actual values. Moreover, any non-Gaussian noise,
which is generally modelled to be impulsive, may cause spurious pulses yielding
different PRI pattern than actual one. Therefore, SNR is crucial in PRI
characterization. Within the PRI recognition problem, the time-of-arrival depends on
the detection of correct pulses where the rising edge of the rectangular pulses should
be correctly detected. The correct detection of the rising edge of a pulse strongly
misleading for low SNR. The impulsive character of noise may be due to channel
effects and/or jammers, which results in heavy-tailed noise distribution. The observed
signal under impulsive noise can be erroneously detected at time instants of rising
edges of pulses. The effect of impulsive @ —stable noise on radar signal processing are

investigated in earlier studies (Zaimbashi et al. 2013; Aalo et al. 2015)

This chapter is primarily based on detection of pulses under impulsive noise in order
to reconstruct PRI patterns and developing methods to overcome degrading effect of
noise using robust estimators as the contribution. The impulsive noise is properly
modelled with a —stable distributed noise. In the sequel, the a —stable distribution is

explained briefly with its important features.

4.1 Alpha-Stable Distribution

Among the several formal definitions “alpha-stable distribution” or “stable
distribution” is defined as follows (Arce, 2005): Any random variable X is said to have

stable distribution if the following equality given by (4.1) is hold

AX{ +BX, =CX+D 4.1)
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where A, B,C are positive numbers and D is any real number, X; and X, are
independent copies of X, “=" corresponds to equality in terms of distribution. The
probability density function f(x) of a —stable distribution is expressed by (4.2), in

terms of its characteristic function ¢(6).

fG) =% @®) e do. (4.2)

Since there is no closed form expression of f(x) except for special cases where
Gaussian (a = 2), Cauchy (¢ = 1,8 = 0) and Levy (a = 1/2,8 = 1) distributions
in (4.3) , the stable distribution can be generally characterized by its characteristic
function ¢(8) given by (4.3) (Arce, 2005)

¢(0;a,B,0,1) = explibu + o%(ibw(t; a, B) — |6]*)] (4.3)

where the function w(8; , B) is defined as (4.4).

BIHI“‘ltannz—a , a+1

w(0; a, =
( 2 —ﬁ%logl@l , a=1

(4.4)

The parameters characteristic exponent a € (0, 2], skewness parameter g € [—1,1],
scale parameter o >0 and the location parameter —oo < u < oo, tune the
impulsiveness, symmetry, intensity and location of the distribution, respectively. The
distribution is said to be symmetric for 8 = 0. The effect of skewness on probability
density function (pdf) is illustrated in Figure 4.1a. The tail probabilities shown in
Figure 4.1b indicate the effect of impulsiveness on pdf. The more impulsive noise (i.e.
less characteristic exponent) results in the tails of the pdf to be heavier, that is why

these distributions are also called as heavy tail distribution.
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Figure 4.1 Illustration of probability density function of o —stable distribution for several parameters
aya=12 0=1, u=0,b) Taildensity (83 =0, =1, u=0)

One of the most significant properties of a —stable distribution is that only the
fractional moments lower than o are finite. It can be expressed in terms of a stable

random variable X as

EIXIP< o ,
EXPP=w |

p<a
p=a

(4.5)
According to the property given by (4.5) the variance is finite only for Gaussian noise
where a = 2. Correspondingly the variance of the distribution is infinite for
0 < a < 2. On the other hand, the mean value is finite only for 1 <a <2
(Samorodnitsky & Taqqu, 1994). As a general property for 0 < a < 2, the p-th
moment of the alpha-stable distribution is finite only for 0 < p < a. That is why this
class of distribution is called as a —stable distribution. In the sequel, the mathematical

description and the function of the robust estimators in observed data is explained.
4.2 Robust Estimators

Major aim of utilizing robust estimators is to filter the outlier components from the
noisy observations. Since a —stable distributed noise inherently includes impulsive

components depending on its characteristic exponent, there exists significant outliers
which directly degrades the estimation accuracy of the PRI parameters. Basically,
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there are three different methods called as median, myriad and meridian, explained
respectively in the following subsections. These filters are commonly referred as
maximum-likelihood estimators (or M-estimators) developed within the theory of
robust statistics (Huber, 1981, Kassam & Poor, 1985). It is reported to use robust
estimators crucial for impulsive signal processing, especially for which the noises are
modelled by heavy-tailed distributions (Ilow, 1995; Nikias & Shao, 1995; Arce, 2005).
The observed PRI-modulated signal x[-] under additive a —stable noise is modelled

as
x[n] =s[n]+w[n] n=1,,N (4.6)

where s[-] is the noise free PRI-modulated signal including rectangular pulses with
amplitude A, apart from each other in time axis according to the given PRI type. The
noise samples w-] are taken from the density represented in terms of its symmetric
a —stable (SaS) noise parameters w[-]~S(a,B = 0,0,u = 0). Since the noise
variance is known to be infinite for a < 2, the metric for signal to noise ratio is

redefined as generalized signal to noise ratio (GSNR)
A2
GSNR = 10log— (4.7)

Noting that the instant detection of pulses constitutes the main motivation of this
thesis, differing from the conventional approach, the robust estimators are modified to
process only past values of observations with respect to selected window length M.

The mathematical formulization is given at the next subsections.
4.2.1 Median Filter

The filter output y,,.4[n] given by (4.8) of a Median filter at time instant n observed
from noisy measurements x[n] is expressed as determining the median value between

the samples of an observation interval having an even length of M arranged in

ascending or descending order.
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Ymealn] = MEDIAN (x[n — M], ..., x[n]) (4.8)

4.2.2 Myriad Filter

Myriad estimator, comprehensively described in (Kalluri & Arce, 2000; Kalluri &
Arce, 2001) is expressed as one of the robust estimators and the myriad estimator

output yp,y,-[n] at time instant n from noisy observations x[n] is given by (4.9).

Ymyr[n] = MYRIAD (K; x[n — M], ..., x[n]).

= argmin Yrn-mloglK? + (x[i] — p)?] (4.9)

where the linearity parameter K is recommended to choose as a function of «
K = /ﬁ under a —stable noise (Arce, 2005). The selection of K strongly large

(approximating to asymptotic limit K — o), the myrad filter turns into the simple
mean filter (Stork, 2010), and thus, would be in efficient in filtering the heavy-tailed
noises. On the other hand, selection of K as small value (approximating to K — 0) the
estimator leads to multiple local minima, and thus, cannot estimate the location
properly. Therefore, a predefined value for the linearity parameter K is significant for

the optimal filtering result.
4.2.3 Meridian Filter

Similar to myriad filter, meridian filter has an approximate identical structure
except the function expressing deviation from the actual value of the filter output. The

meridian filter output y,,..,-[n] at time instant n from noisy observations x[n] as given
(4.10):

YmerI] = MERIDIAN (4; x[n — M], ..., x[n])

= argmin Yicn-mlog [A + |x[i] —nl]. (4.10)
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where A is the medianity parameter, and the even number M is length of the filter. In
the case of the high values of A the filter behaviour converges to median filter for low
values mode (Aysal & Kenneth, 2007).

The performance of these filters is analysed in terms of different filter length or
different noise impulsiveness. Figure 4.2 illustrates the filtering performance in time
domain. Although one can see that all off the filters provide a certain signal denoising,
there is a time delay between the exact and estimated time instants on pulse onset.
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Figure 4.2 Time domain analysis of the robust estimators for a small segment of constant PRI data,
(a =15, M =5), GSNR = 14 dB (a) typical appearance, (b) zoomed in
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Figure 4.2 continues

Since the window function length M is relatively small, insufficient amount of data
is used to filter the noisy signal the filter output is observed to have a notable deviation
from exact data. In order to reduce this deviation which may cause to observe spurious
or missed pulses, the robust filter outputs obtained by increasing filter length is shown
in Figure 4.3. It is seen that increasing filter length ensures to prevent deciding spurious
and/or missing pulses since the increased amount of data is processed the deviation
from exact values decreases. However, the time delay to estimate pulse onset
dramatically increases which degrades the detection performance. This result indicates
that there is a trade-off between selection of filter length and the time delay from exact

starting points of the pulses.
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Figure 4.3 The effect of window length M on PRI data under a —stable noise, (@ = 1.5), GSNR =
14dBa)M =11,b) M =17

The effect of impulsiveness of the noise is analysed in Figure 4.4a and Figure 4.4b.
Since the impulsiveness of the noise decreases as the characteristic exponent «
increases, the ripples in filtered data is observed to weaken. On the other hand, there
IS no apparent difference between time delays between actual pulse onset for both
noise contamination. It can be said that noise impulsiveness can only an effect on

occurring spurious or missing pulses.
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Figure 4.4 The effect of impulsiveness of the noise on PRI data under a —stable noise, GSNR = 14 dB,
M=11,a)a =13,b)a =17
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Figure 4.5 Average time delay of constant PRI-modulated data after robust filtering, « = 1.5

Performance is analysed in terms of average time delay representing decision time
after a particular pulse onset occurred shown by Figure 4.5. Simulations are evaluated
on constant PRI waveform including two rectangular pulses having a length of 500
samples and ensemble averaging of 10 independent realizations. It can be clearly said
that, the increasing window length strongly increases amount of delay of the detection
timing, i.e. poor performance. On the other hand, due to robustness aspect against
outlier components in non-Gaussian noise, the robust estimator performance does not
apparently affect by variation of GSNR. Note that the characteristic exponent of the
noise which tunes impulsiveness, does not directly affect the amount of delay.
However, it is the reason of observing spurious pulses, and therefore an important
parameter should be taken into account in PRI analysis under a —stable noise

environment.

4.3 Quickest Detection

In most of the signal processing applications, instant detection of abrupt changes
has a vital importance. Basically, the quickest detection method determines the timing
of instant variation as quick as possible depending on the selection of threshold.
According to this method, two hypotheses represent the existence or absence of a
signal within a certain time interval. Therefore, the two different states related with

signal and noise probability density function are assumed to be known in advance.
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Noting this assumption, cumulative summation (CUSUM) algorithm given
comprehensively by (Page, 1954) is applied on observed data. In PRI recognition
problem under noise, major aim is to find the time t. corresponding to finding the
time-of-arrivals (rising edges) of incoming rectangular radar pulses, so that the PRI

pattern can be estimated.

In this problem, the CUSUM algorithm assumes two hypotheses H, and #; under
the prescribed probability distribution function (PDF) of the noise in the channel. H,,
assumes the observed signal contains only the noise, and H; assumes an existence of
a constant deterministic signal of amplitude A together with noise. Differing from off
line data analysis which formulates the problem considering time of arrival, the
problem is mathematically expressed as existence or absence of an incoming signal
according to the observation given by the two hypotheses above. The binary

hypotheses testing problem given by (4.11) includes varian of parameter ©

j'[o: ®:®0 fOI'lSlSk
}[1: ®=®1 fOI‘lSLSk !

(4.11)

where @ is a conditional density parameter and ©®, = 0 corresponding only noise
and ©, = A for existence of constant signal and noise. These hypotheses compose the
likelihoods formulated by probability density function of the channel noise represented
by fo(x) and f; (x), respectively. The log-likelihood ratio including observation from
the beginning until the end of the observation point k is defined as (Basseville &
Nikiforov, 1993)

_ vk f1(x[i])
Sk = i=1ln—f0(x[i]) (4.12)

which constitutes the skeleton of the cumulative summation (CUSUM). That is why

this method is also named as CUSUM method. Principally, the CUSUM algorithm

utilizes the information obtained from instantaneous log-likelihood ratio ln% and
0

detects the deviation within an observation interval having length k. In the time-

varying CUSUM approach, this observation interval is designed to slide when new
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data point is observed and the statistics is derived from the new data having the same
length. According to provide the same analogy, it can be accepted as k = M.
Considering step by step, when f,(x[i]) > f1(x[i]), the ratio is less than unity, and
thus, the logarithm is negative. Under the cumulative summation, the log-likelihood
S, decreases for increasing k, provided that the incoming signal is just a noise

(hypothesis H,). When observation includes data from deterministic signal, the

hypothesis #; becomes valid, i.e. f,(x[i]) < fi(x[i]). This gives ﬁx{g) > 1, and
hence In ?Ex[i]) > 0. Therefore, under the cumulative summation, the log-likelihood
0

S begins to increase with increasing k. One can detect the change between decresing
and increasing S, to determine the time-of-arrival 6 by defining a threshold h. For this

purpose, it is defined by (4.12) that a decision function (Basseville & Nikiforov, 1993).

1<j<k

The decision function lies in certain different ranges according to the absence or
existence of the deterministic signal, constant pulse having amplitude A, as in this
application. Variation of the decision function G, is compared with a predefined
threshold h, to determine the rising edge time 8. Under the absence of pulse, G, < h.
The estimated time-of-arrival is accepted to be the first time instant when decision
function becomes larger than the threshold, i.e., Gy > h. By tuning this threshold, the
false alarms rate can be arranged, where the false alarm causes the rises in the decision
function due to impulsive nature of the channel noise. Figure 4.6a illustrates noise free
constant PRI data and Figure 4.6b represents the variation of function G, analysed
within sliding time window k under SaS$ noise with « = 1.5 and GSNR = 14 dB. It
is seen that an abrupt change at starting point of pulses can be detected using only
present point k and past points up to k — M corresponding to the initial point of the

sliding window.

56



IN
T
Il

L
PRI Data
N

0 50 100 150 200 250 300 350 400

b)o

_20 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Sample Number

Figure 4.6 a) Noise free PRI waveform, b) Decision function G(k). A=5M =11,h=A
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Figure 4.7 Time varying CUSUM based quickest detected signals for Constant PRI modulated signal

The exact PRI data, noisy and detected PRI data are shown together in Figure 4.7
It is quite apparent that the CUSUM method yields instant detection of rising edges of
rectangular pulses compared with the robust estimators which do not use pdf of the
data and estimates rising edge times only from the observations. This can be one of
the reasons of CUSUM based quickest method to be more superior than robust

estimators.
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CHAPTER FIVE
CONCLUSION

In this thesis study, characterizing and detecting time of arrival of PRI modulated
signals are analysed. The first part of the thesis is based on describing three features
generated from correlation and power spectral density, like the methods given in the
literature. It is remarked that the different PRI pattern can be characterized and
classified by using basic signal processing tools to extract statistical behaviour of

different PRI patterns.

However, in radar signal processing related with PRI-modulated signals the
contaminated noise generally assumed to be Gaussian and the effect of its intensity is
not investigated in details. The main contribution of the thesis is the detection of PRI-
modulated signals under non-Gaussian noise environment. The proper and reasonable
selection for non-Gaussian noise is a —stable distributions. Once the time of arrival of
the rectangular radar pulses are determined by providing minimum time delay than its

actual value, the PRI patterns can be characterized easily.

As the first approach, robust M-estimators such as median, myriad and meridian
filters are utilized to filter impulsive noise. Since the main requirement is instant
detection of incoming radar pulse, differing from the literature, all of these robust
estimator designs are modified to use only present and past values whose length is
determined by window size. It is observed that the increasing window length provides
stronger filtering performance which is significant to avoid spurious pulses when the
noise impulsiveness is notable. However, on the other hand, the detection of time of
arrival of rectangular pulse has an increased time delay which is not required. One can
say that there is a trade-off between selection of window length and estimation delay.
when the performances of robust estimators are compared with each other when the
GSNR and window lengths are kept to be fixed, one can see that myriad and meridian

filters yields better performance than median filter which is simplest to implement.

58



In order to provide an instant detection of rising edges of the rectangular pulses, to
the best of our knowledge, quickest detection algorithm is applied for the first time in
the literature. The CUSUM algorithm is redefined to propose a time-varying nature so
that a time-varying CUSUM algorithm determines the time onset of the radar pulses
depending on the pre-defined threshold value. It is shown that time-varying CUSUM
based quickest detection method provides superior performance compared with robust
estimators. As key note, it should be taken into account that the quickest detection
method needs probability density function of the contaminated noise in order to
provide likelihood ratio test. Both robust estimator and quickest detection methods
assume the pulse amplitude is known in advance to tune the threshold and constructing

likelihood function, respectively.

The main challenge on quickest detection method is to tune the threshold value
which directly related with false alarm rate. Differing from the conventional receiver
operating characterization, the threshold varies with respect to observed data and an
adaptive method is needed to describe the performance of the proposed method in

terms of false alarm probability. This constitutes the future projections of this research.
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