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RADAR PULSE REPETITION INTERVAL RECOGNITION AND REAL-

TIME DETECTION UNDER NON-GAUSSIAN NOISE  

 

ABSTRACT 

 

In this thesis study, feature extraction related with Pulse Repetition Interval (PRI) 

modulation recognition, as one of the essential processes in Electronic Support (ES) 

receivers, and the detection of PRI modulated signals under non-Gaussian noise is 

investigated. The discriminative feature extraction methods in the thesis are primarily 

based on autocorrelation and power spectral density similar to the literature. The main 

contribution is the recovery of rectangular pulse onset under 𝜶 −Stable noise 

environment which exhibits impulsive non-Gaussian behavior.  

 

The first proposed approach is to utilize robust estimators which give limited time 

of arrival estimation performance depending on the impulsiveness of the channel noise 

and used robust filter length. As another novel contribution, time-varying cumulative 

summation (CUSUM) based quickest detection (QD) method is adapted to detect pulse 

onset with minimum time delay. It is shown that raw PRI modulated waveforms under 

non-Gaussian noise can be tracked to detect rising edge of the rectangular radar pulses 

with minimum time delay depending on the selection of proper threshold which is 

directly related with probability of false alarm. 

 

Keywords: Electronic Support (ES), pulse repetition interval (PRI) modulation, 

autocorrelation, power spectral density, robust estimators, quickest detection method, 

time varying CUSUM algorithm  
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DARBE TEKRARLAMA ARALIĞI TANIMASI VE GAUSS OLMAYAN 

GÜRÜLTÜ ALTINDA GERÇEK ZAMANLI TESPITI 

 

ÖZ 

 

Bu tez çalışmasında, Elektronik Destek (ED) alıcıları için önemli bir işlem olan 

Darbe Tekrarlama Aralığını (DTA) tanımlama ve Gaussyen olmayan gürültü altında 

gerçek zamanlı tespit edilmesi incelenmiştir. Tezdeki ayırt edici karakteristik çıkarım 

yöntemleri, literatürdekine benzer biçimde, özelikle özilinti ve güç spektrum 

yoğunluğu tabanındadır. Tezin ana katkısı, Gaussyen olmayan dürtüsel davranış 

gösteren α-kararlı gürültü ortamındaki dikdörtgen biçimli darbe eşiğinin geri 

kazanılmasıdır. 

 

Önerilen ilk yaklaşım, kanal gürültüsünün dürtüselliğine ve kullanılan gürbüz filtre 

uzunluğuna bağlı olarak kısıtlı bir varış zamanının tahminine ilişkin performansını 

veren, gürbüz kestiricilerden istifade etmektir. Bir başka yeni katkı olarak, minimum 

zaman gecikmeli darbe eşiği algılanması için zamanla değişen kümülatif toplam 

(CUSUM) tabanlı en hızlı algılama (QD) yöntemi uyarlanmıştır. Yanlış alarm 

olasılığıyla doğrudan ilişkili uygun eşik seçimine bağlı olarak minimum zaman 

gecikmesiyle dikdörtgen biçimli radar darbelerinin yükselme köşesinin 

algılanmasında, Gaussyen olmayan gürültü altındaki ham DTA kiplemininin dalga 

formlarının izlenebileceği gösterilmiştir. 

 

Anahtar Kelimeler: Elektronik Destek (ED), Darbe Tekrarlama Aralığı (DTA) 

kiplenimi, özilinti, güç spektrum yoğunluğu, gürbüz kestiriciler, en hızlı algılama 

(QD) yöntemi, zamanla değişen CUSUM algoritması 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Electronic Warfare (EW) and Chronicle 

 

Sun Tzu highlighted the importance of intelligence regarding the battlefield as 

follows: “If you know the enemy and know yourself, you need not fear the result of a 

hundred battles. If you know yourself but not the enemy, for every victory gained you 

will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb 

in every battle.” (Giles, 1910). History repeatedly has demonstrated that an armed 

force can win against an opposition of superior quality and quantity, if they make use 

of accurate intelligence. Successful duty of modern weapons systems and innovative 

combat techniques depend on swift, definite, accurate, and detailed intelligence. 

 

Today's modern armed force structure is based on the technological superiority of 

electronic systems rather than quantitative superiority. The electromagnetic 

environment appears extensively in all operation areas, while the usage of the 

electromagnetic spectrum is advanced due to technological developments and 

therefore the precision of the systems and equipment’s in the electronic warfare (EW) 

is increased. 

 

In today’s battles, the initiative is on the side of the EW supremacy, and such 

supremacy will play even more important roles in winning military victories in the 

near future. With the developments in signal processing technology, intelligent 

algorithms will start to be used in weapon systems and it will be difficult for electronic 

attack activities such as deception. In this context, reverse engineering activities will 

gain importance in solving algorithms for protection against weapon systems, and for 

quick detection and identification of enemy elements. 

 

First and most important phase of the war is to make the distinction thoroughly 

between friendly, hostile and neutral elements. Thanks to proper identification in the 

operational area, neutral elements can be prevented from attacking, the forces can be 

http://www.proxyvideo.net/index.php?q=ztmn1qNwlWLGz2CtnKHP0ZrHm5Zfo9OgY9ycoM6Vss3V05jSj33Pn8bU
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protected from friendly fire, and enemy elements can be actively engaged. The 

identification process is carried out on the basis of the position determination, 

recognition and classification stages. The intelligence obtained from the enemy 

elements makes an important contribution to the identification process. In this context, 

it is possible to classify enemy radar emitters on the basis of Nationality, Platform, 

Type, Class and Unit by analysing electronic intelligence (ELINT) obtained through 

sensors.  

 

One might count the U.S. Civil War in 1861 as the beginning of the history of EW. 

In the historical journey of telegraph – invented by Samuel Morse in 1837 – an 

important step was recorded with the establishment of the transatlantic telegraph line 

in 1858. When American Civil War began in 1861, telegraph wires became one of the 

most important targets for infantry and especially cavalry. Cavalry men changed 

military telegraph traffic to the inaccurate destinations deliberately, and transmitted 

false orders to Union commanders. These can be thought of as early applications of 

modern “intelligence” activities in the military concept of “command, control, 

communications, and intelligence”. Although telegraph technology is not considered 

a part of the EW because it does not radiate electromagnetic energy, these tactics are 

the first examples of signal intelligence, jamming and deception. Table 1.1 shows the 

conspicuous case till end of the WWI, including technological developments that led 

the way for EW. 
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Table 1.1 Conspicuous case till end of the WWI 

Date Event 

1837 S. F. B. Morse invents telegraph. 

1858 The transatlantic undersea cable for communication is established between 

U.S. and Britain. 

1861 During the U.S. Civil War, the telegraph lines becomes an important target 

for enemy cavalry. 

1865 J. C. Maxwell proved theoretically the existence of the electromagnetic 

field. 

Early 

1870s 

J. C. Maxwell’s theory established the basis of propagation of 

electromagnetic waves in free space. 

1888 H. Hertz demonstrated the existence of the electromagnetic waves. 

1895  Captain H. Jackson’s radio system transmits Morse signal over 100 yards 

in England. 

1897 G. Marconi sent and received signals over two miles. 

1899 G. Marconi radio sequences improvement the transmission range to 89 

miles. 

1901 The first recorded example of intentional radio jamming in the U.S. 

1902 British Navy Fleet exercises in the Mediterranean. 

1903 U.S. Navy Fleet uses jamming. 

1904-

1905 

Radio jamming is used in a war for the first time to obtain tactical advantage 

during the Russian-Japanese War. 

1906 The U.S. Navy installed a direction finder on the coal ship Lebanon for trial 

purpose. 

1915 Royal Navy began establishing direction finder stations around the east 

coast of England. 

 

EW, for the purpose of attack or impede enemy attack, is every deliberate activity 

including the use of the electromagnetic spectrum and directed energy. The three major 

subdivisions within EW are electronic attack, electronic protection and electronic 

support. Figure 1.1 shows the classification of EW. 
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Figure 1.1 EW Classification (Poise, 2013) 

 

1.1.1 Electronic Attack 

 

Electromagnetic or directed energy can be used to attack enemy facilities, 

equipment or personnel, in order to degrade, neutralize or destroy their ability to use 

electromagnetic spectrum. Examples of Electronic Attack (EA) are the usage of 

jamming systems and anti-radiation weapons. EA consists of the following actions: 

  

- All actions to impede or degrade an enemy's effective use of the electromagnetic 

spectrum, such as jamming and electromagnetic deception. 

 

- Usage of electromagnetic energy as destructive contraption, such as lasers, radio 

frequency weapons, etc. (Poise, 2013). 

 

1.1.2 Electronic Protection 

 

Electronic Protection (EP) includes all active and passive actions taken to protect 

personnel, facilities and equipment from enemy attacks that can impede, neutralize or 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 EW classification. 
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destroy. Examples include Emission Control (EMCON) plan, filtering out harmful 

wavelengths of laser, EW reprogramming, and frequency switching (Poise, 2013). 

 

1.1.3 Electronic Support 

 

Electronic Support (ES) includes all actions to search for, intercept, locate, record, 

identify and analyze enemy usage of the electromagnetic spectrum. The primary 

purpose of ES during these activities is the threat recognition, prioritization and taking 

precaution. These activities can also be used to produce Signal Intelligence (SIGINT). 

SIGINT consists of Communications Intelligence (COMINT) and Electronic 

Intelligence (ELINT), where COMINT activities supply intelligence derived from 

intercept of enemy communications. Radio teletype, Morse code, facsimile,  

multi-channel, and video signals can be analysed with COMINT. The subject of this 

thesis is within the scope of the second subtype of ES, namely the ELINT, which is 

the identification and classification of the enemy's communications electronic systems 

and radar sensors. Such activities play an important advantage for friendly associations 

in the field of operations (Poise, 2013). 

 

Information can be gathered from electromagnetic transmitter systems such as 

weapon systems, radars and other sensors. This is achieved for the purpose of 

extracting information of some intelligence value, by the detection and analysis of 

radiations from enemy electronic devices. 

 

ELINT is the analysis of the incoming signals from threat radars, including 

surveillance, targeting and missile guidance systems. Signals from radar systems are 

intercepted by a warning receiver and are analyzed by a joint processor to give 

frequency (fr), pulse width (PW), pulse repetition interval (PRI), scan pattern, scan 

type, angle of arrival (AoA), and amplitude (A), as shown in Figure 1.2 below  

(Gençol & Kara, 2016; Liu & Zhang, 2017; Ghani et al. 2017). These parameters are 

generally sufficient to characterize the type of emitter. The recognition is then carried 

out by comparing the analyzed signal with parameters of hostile, friendly and neutral 

emitter characteristics stored in a library within the computer memory. Analysis of the 
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signals and warning of a threat must actually be abrupt, since there can be 

countermeasures of jamming and/or decoys that can be initiated swiftly by the enemy. 
 

 

Figure 1.2 Parameters of an incoming signal obtained by an ELINT system 

 

1.2 Radar Frequency Interval within Electromagnetic Spectrum 

 

In this section, it is more convenient to provide a brief note on the electromagnetic 

spectrum, for its application in EW systems is the main theme of this thesis. 

Electromagnetic spectrum is a regular distribution of electromagnetic waves according 

to their frequency (or wavelength), as depicted in Figure 1.3 The spectrum is divided 

into bands ranging from radio frequencies at the low end to X-ray and gamma 

frequencies at the high end. 

Figure 1.3 Graphical depiction of the electromagnetic spectrum (Avionics Department, 2013; Joint 

Chiefs of Staff, 2012; Skolnik, 1981) 

 

 

 

 

 

 

Scan Pattern 

ELINT 

fr PW PRI AoA A Scan Type 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

The electromagnetic spectrum contains the following bands in increasing frequency 

(or decreasing wavelength): 

• Radio waves, 

• Micro waves, 

• Visible light, 

• X rays, 

• Electromagnetic cosmic rays and gamma rays. 

 

Depending on the operation purpose, radars operate within the frequency range of 

3 Mhz to 300 Ghz of the electromagnetic spectrum (Skolnik, 1981; Skolnik, 1990). 

Surveillance radars operate at low frequencies, search radars at intermediate 

frequencies, and tracking radars at high frequencies (see Table 1.2). When the 

frequency value of the radar with a fixed output power is increased, the coating range 

is reduced. But after all, the trailing quality within the coating range increases with 

increasing frequency. It is estimated that radar frequencies can be increased to 60-90 

GHz in the mid-range, to 300 GHz in the long-term, but the atmosphere will continue 

to be a major limiting factor at these high frequencies. 
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Table 1.2 Operational frequency bands for different radars (Skolnik, 1990) 

Band Frequency Usage 

HF 3-30 MHz HF Radars 

VHF 300-1000 MHz VHF Radars 

UHF 300-1000 MHz Airborne Early Warning Radars 

L 1-2 GHz 
Land-Based Long-Range Air 

Surveillance Radars 

S 2-4 GHz 
Long-Range Airborne Surveillance 

Radars 

C 4-8 GHz 

Multifunction Phased Array Air Defense 

Radars 

Medium-Range Weather Radars 

X 8-12 GHz 

Doppler Navigation Radars 

Weather Avoidance Radars 

Shipboard Navigation and Piloting 

Radars 

Weapon Control (Tracking) Radars 

Police Speed Meter Radars 

Ku 

K 

Kn 

12-18 GHz 

18-26.5 GHz 

26.5-40 GHz 

Airport Surface Detection Radars 

Ground Traffic at Airports Radars 

Little Use (Water Vapor) 

Very High Resolution Mapping 

Airport Survelliance 

Milimeter 40-100+ GHz Experimental 
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CHAPTER TWO 

MEASUREMENT AND ANALYSIS OF PRI PATTERNS 

 

As a general procedure, when signals are detected by ES systems, they are first 

deinterleaved and clustered, and then identified. During the deinterleaving and 

clustering step, incoming pulses are separated from the detected wave and associated 

with separate sources. Therefore, before the identification process, incoming waves 

have to be deinterleaved into distinct sources. 

 

2.1 De-Interleaving 

 

Deinterleaving the pulse trains has been studied by many researches in the past 

decades (Moore & Krishnamurthy, 1994; Conroy & Moore, 1998; Orsi, Moore & 

Mahony, 1999; Conroy & Moore, 2000; Davies & Hollands, 1982; Mardia, 1989; 

Milojevic & Popovic; 1992). In a conventional modern operation area, typically 

several complex PRI modulation types should be expected, and these PRI modulation 

types may overlap. Therefore, deinterleaving has been an important aspect for the 

recognition of a single PRI modulation for the detailed analysis. It is done by signal 

sorting to separate each pulse from a signal flow of a large number of overlapping 

pulses – some of which are random noise or jam – and then selecting the useful 

“deinterleaved” signals. Several pulse characteristics including pulse width (PW), 

radio frequency (RF), angle of arrival (AoA), and the inter-pulse time of arrival (TOA) 

are clustered for a successful deinterleaving procedure. Figure 2.1 shows the typical 

scheme of deinterleaving process. 

 

Figure 2.1 Typical deinterleaving process scheme. Overlapping (interleaved) signals are received by an 

antenna. The deinterleaving process separates different signals and classifies them according to signal 

parameters such as AoA, PW, ToA, etc. 
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In the literature, it is also a common approach to concentrate on de-interleaved 

signals or signals which are not interleaved, for PRI characterization. For this purpose, 

CDIF and SDIF methods are assumed to be useful in extracting constant PRI and 

staggered PRI modulations during pulse deinterleaving procedure (Mardia, 1989; 

Kuang & Shi, 2005; Ghani et al. 2017). 

 

2.2 Radar Parameters 

 

Signal recognition allows the selection and extraction of properties of known signal 

transducer properties. Data from the classifier sequentially compares specific signal 

parameters with those in a library to determine possible identities of the received 

signals. The radar parameters directly measurable by the Electronic Intelligence 

(ELINT) systems are as follows (Avionics Department, 2013; Kumar & Dhananjayulu 

& Kumar, 2014): 

 

• Radio (Carrier) Frequency (RF), 

• Pulse Width (PW), 

• Scan Pattern, 

• Angle of Arrival (AoA), 

• Signal Amplitude (A),  

• Polarization, 

• Time of Arrival, 

• Pulse Repetition Interval (PRI). 

 

All parameters except PRI can be shortly described as follows: 

 

i) Radio (Carrier) Frequency (RF) 

 

Most radars are designed with frequency agility to make detection and identification 

difficult. This change in the frequency may be at random times or at a specific period 

of time, such as pulse to pulse or group to group period. 

 



11 
 

ii) Pulse Width (PW) 

 

PW of a radar determines its resolution. Radars infrequently switch their PW for 

not to be detected. The PW measurement precision is related to pulse amplitude. For 

small pulse amplitude, the PW measurement may be incorrect even for high signal-to-

noise-ratio (SNR). 

 

iii) Scan Pattern 

 

Scan pattern is how radars direct their beam across their field of view to search for 

targets. General scan patterns are: 

 

• Circular scan, 

• Linear scan, 

• Conical scan. 

 

iv) Angle of Arrival (AoA) 

 

AoA is determined by the elevation and azimuth angle of received signals, and it is 

also called the direction of arrival (DoA). 

 

v) Pulse Amplitude (A) 

 

The amplitude of the rectangular pulse is directly related with the detection 

capability of the individual pulse and/or group of pulses under certain signal to noise 

ration. This parameter is tuned to provide prescribed signal to noise ratio requirement. 

 

vi) Polarization 

 

Polarization is the oscillations that indicate the geometric direction of the waves of 

radars and move along a sequence. It can be used as a parameter for identification. 
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vii) Time of Arrival (ToA) 

 

Time of arrival (ToA), is considered to be the receiving time of a rectangular radar 

pulse from a single transmitter to a remote single receiver. The measurable arrival time 

of the radars is directly related to the PRI parameter. For this purpose, PRI values can 

be changed in different types. Radars can change PRI modulations to prevent the 

identification or to improve ES capabilities. 

 

The ToA of a signal pulse is, as the name suggests, the instant that the pulse is 

received. It might be taken as the time when the received amplitude exceeds a 

predetermined threshold. Although such a measurement of ToA is threshold-

dependent and not super-precise in the presence of noise and distortion, it can still be 

used for the determination of PRI up to an accuracy (Skolnik, 1990). 

 

2.3 Pulse Repetition Interval (PRI) 

 

PRI modulation can be used in the base processes by ES receivers for the purpose 

of recognition. The recognized PRI modulation type usually reveals the emitter 

identification and classification, and it can be used to determine the functional purpose 

of the radar. 

 

PRI is the time required for a radar’s complete transmission cycle. Alternatively, it 

can be described as the time interval from the commencement of a pulse of energy to 

the beginning of the next pulse, shown in Figure 2.2. The unit of PRI sequence is 

assessed as microseconds. 

 

 

 

 

 

Figure 2.2 A pulse train in time domain. PRI is the time between consecutive pulses 

 

PRI PRI PRI PRI PRI PRI 
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In general, PRI of the 𝑛th pulse 𝑋𝑛 can be defined as the function of ToA as 

represented by (2.2) 

 

𝑋𝑛 =  𝑡𝑛+1 −  𝑡𝑛            𝑛 = 1,2, … . . , 𝑁 − 1    (2.1) 

 

where 𝑡𝑛 is the ToA of the 𝑛th pulse received in a pulse sequence having length of  

𝑁 samples, and 𝑋𝑛 is the difference of ToAs of two consecutive pulses, i.e., 𝑛th and 

(𝑛 + 1)th. (Mahdavi & Pezeshk, 2010). 

 

Noting that PRI is determined by the interval between adjacent pulses, it constitutes 

a distinctive signature o identify the PRI modulation type. In recent radar production 

technologies, many types of PRI modulations are used. The most common PRI 

modulation types are (Wiley, 2006, Logothetis & Krishnamurthy, 1998, Liu & Zhang, 

2017): 

 

• Constant, 

• Jittered, 

• Staggered, 

• Sliding, 

• Wobulated, 

• Dwell & switch. 

 

Since different modulation types are used for distinct purposes, they some 

significant properties of their emitters. Information on the PRI modulation of a radar 

signal plays an important role in defining the radar signal in terms of the effective use 

of the ES system. Once the PRI modulation type is recognized, the information related 

with type of the target can be achieved. 

 

Emitters with monopulse parameters can be measured using a single pulse. All 

parameters can be detected on a pulse-by-pulse basis by receivers. Carrier frequency 

is a proper parameter for emitter recognition, since most radars operate at a single 

frequency. One can obviously consider pulse width as another parameter for emitter 
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recognition. However, in practice, it is sensitive to distortions due to effects of 

reflections. Therefore, identifier effect of pulse width itself is considered to be limited. 

ES systems use both frequency and AoA features to separate the incoming adjacent 

pulses from the previously received ones. Amplitude cannot be directly used for 

emitter recognition but it can be used for classification and for distance evaluation 

using compiled emitter energy. Furthermore, amplitude and ToA can be used to 

determine the emitter's scan characteristics. The potential utilization of radar 

parameters are justified in Table 2.1 according to the deinterleaving and identification 

performance (Avionics Department, 2013). 

 

Table 2.1 Functionality of emitter parameters in radar signal processing (Avionics Department, 2013) 

 

 

 

 

 

 

 

 

 

 

In the following subsections, it is concentrated on the definitions and mathematical 

expressions characterizing different PRI modulation types and illustrated the different 

PRI modulations derived from exact rectangular pulse train signal generated at 

MATLAB environment. 

 

 

 

 

 

 

 

Parameter De-Interleavement Emitter Identification 

Frequency Proper Proper 

Amplitude Limited Improper 

AoA Proper Improper 

ToA Improper Improper 

PW Proper Improper 

Scan Pattern Improper Improper 

PRI Proper Proper 
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2.3.1 Constant PRI Modulation 

 

In this type of PRI modulation, time interval between each consecutive pulse is 

constant, or variations are typically less than 1% of the average PRI value. The 

constant PRI exhibiting strongly stable behaviour is generally used in moving target 

indicator in pulse Doppler radar systems (Wiley, 2006). Typically, the 𝑛th PRI value 

𝑋𝑛
co in constant PRI modulation, is assigned to a constant value 𝑟 in the order of 

𝜇𝑠𝑒𝑐 and formulated as in (2.2): 

 

𝑋𝑛
co = 𝑟                  𝑛 = 1,2,3, … , 𝑁.                                 (2.2) 

 

where 𝑁 is number of pulses in the observed data and the value of 𝑟 lies in the specified 

range in terms of samples for each independent realization. In Figure 2.3a and 2.3b, 

the pulse train signals with noise and without noise are shown, respectively. 

 

 

  

Figure 2.3 Constant PRI modulation signal a) with Gaussian noise 𝑆𝑁𝑅 = 18 𝑑𝐵 b) Noise free 

 

a) 
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Figure 2.3 continues 

 

2.3.2 Jittered PRI Modulation 

 

In jittered mode, the time interval between successive pulses is allowed to vary 

randomly among predetermined minimum and maximum values. In a common jittered 

mode, the PRI sequence 𝑋𝑛
𝑗𝑖𝑡

 oscillates up to 30% of the average PRI and is represented 

by (2.3) (Noone, 1999). 

 

𝑋𝑛
𝑗𝑖𝑡

= ⌊𝑟𝑛⌋                 𝑛 = 1,2,3, … , 𝑁    (2.3) 

 

where ⌊𝑟𝑛⌋ is rounded integer values of random variable 𝑟𝑛 taken from specified 

probability density function (pdf). Conventionally, the pdf is assumed to be Gaussian 

shown as (𝜇, 𝜎2) . Typically, the mean value 𝜇 and standard deviation 𝜎 ranges of 

⌊𝜇/10⌋ ≤ 𝜎 ≤ ⌊𝜇/2⌋, respectively. As an illustrative example, the pulse train in the 

time domain with and without noise associated with jittered PRI are given in  

figure 2.4. 

b) 
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b) 

  

 

 

 

 

 

 

 

Figure 2.4 Jittered PRI modulation signal a) with Gaussian noise 𝑆𝑁𝑅 = 18 𝑑𝐵 b) Noise free 

 

2.3.3 Staggered PRI Modulation 

 

In staggered PRI modulation, a fixed random PRI sequence of is repeated 

periodically along with generated pulse train (Wiley, 2006). Typically, length 𝑘 of the 

fixed sequence has the range of 3 ≤ 𝑘 ≤ 10 samples for each realization. The fixed 

sequence that is repeated is expressed as (2.4)  

 

 𝐵𝑖 = 𝑟𝑖                 𝑖 = 1,2, … , 𝑘    (2.4) 

 

where 𝑟𝑖 is randomly chosen in the range 50 𝜇𝑠𝑒𝑐 to 500 𝜇𝑠𝑒𝑐. The PRI sequence of 

length 𝑁 is then constructed from the base set and formulated by (2.5) 

 

𝑋𝑛
st = 𝐵1+mod𝑘(𝑛−1)                 𝑛 = 1,2,3, … , 𝑁  (2.5) 

a) 

b) 
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In Figure 2.5, it is presented a simulated staggered PRI modulation with and without 

noise. 

 

 

 

Figure 2.5 Staggered PRI modulation signal a) with Gaussian noise 𝑆𝑁𝑅 = 18 𝑑𝐵 b) Noise free 

 

2.3.4 Sliding PRI Modulation 

 

In sliding PRI modulation, PRI changes in a monotonically increasing or decreasing 

behaviour. Sliding, takes place between two extremes of a base sequence, and the base 

sequence is repeated throughout the main pulse train (Noone, 1999; Wiley, 2006). To 

simulate such a sliding PRI modulation, we choose the length 𝑘 of the fixed sequence 

to be in the range 3 ≤ 𝑘 ≤ 10 randomly for each simulation. So, we define the fixed 

base set as formulated by (2.6) 

 

a) 

b) 



19 
 

𝐵𝑖 = 𝑟1 +
𝑖−1

𝑘−1
(𝑟2 − 𝑟1)                 𝑖 = 1,2, … , 𝑘  (2.6) 

 

where 𝑟1 and 𝑟2 are the first and last PRIs in the base sequence, randomly  

chosen for each simulation in the ranges of 50 𝜇𝑠𝑒𝑐 ≤ 𝑟1 ≤ 200 𝜇𝑠𝑒𝑐 and 

 250 𝜇𝑠𝑒𝑐 ≤ 𝑟2 ≤ 500 𝜇𝑠𝑒𝑐. The main PRI sequence of length 𝑁 is then constructed 

from the base set as expressed by (2.7) 

 

𝑋𝑛
sl = 𝐵1+mod𝑘(𝑛−1)                 𝑛 = 1,2,3, … , 𝑁  (2.7) 

 

In Figure 2.6, we present a simulated sliding PRI modulation with and without 

noise. 

 

 

 

Figure 2.6 Sliding PRI modulation signal a) with Gaussian noise 𝑆𝑁𝑅 = 18 𝑑𝐵 b) Noise free 

 

 

a) 

b) 
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2.3.5 Wobulated (Periodic) PRI Modulation 

 

In a wobulated PRI modulation, the PRI is changed sinusoidally around a mean 

value throughout the pulse train (Noone, 1999; Wiley, 2006). Hence, we write the PRI 

sequence of length 𝑁 as represented by (2.8) 

 

𝑋𝑛
wo = 𝑟 + 𝑟𝑎  sin (2𝜋

𝑛−1

𝑟𝑝−1
)                         𝑛 = 1,2, … , 𝑁       (2.8) 

 

Here, 𝑟 is the mean PRI, 𝑟𝑎 is the amplitude and 𝑟𝑝 is the period of the sine function, 

which are random integers chosen in the ranges 50 𝜇𝑠𝑒𝑐 ≤ 𝑟 ≤ 500 𝜇𝑠𝑒𝑐,  

⌊𝑟/5⌋ ≤ 𝑟𝑎 ≤ ⌊𝑟/5⌋, and ⌊𝑁/32⌋ ≤ 𝑟𝑝 ≤ ⌊𝑁/2⌋. In Figure 2.7, we present a simulated 

wobulated PRI modulation with and without noise. 

 

 

 

 

Figure 2.7 Wobulated PRI modulation signal a) with Gaussian noise 𝑆𝑁𝑅 = 18 𝑑𝐵 b) Noise free 

 

 

 

 

a) 
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Figure 2.7 continues 

 

2.3.6 Dwell & Switch PRI Modulation 

 

The base sequence in this PRI modulation is initiated by dwelling on a PRI for a 

number of pulses, and then switching to another PRI. After dwelling on this PRI, it is 

then switched to another PRI, and so on (Wiley, 2006). The main sequence is 

constructed by the repetition of the base PRI sequence. Therefore, we construct the 

base PRI and as represented in (2.9) 

 

𝐵𝑖 = {

𝑟1 ,                    1 ≤ 𝑖 ≤ 𝑘1          
𝑟2 ,           1 + 𝑘1 ≤ 𝑖 ≤ 𝑘1 + 𝑘2

⋮
𝑟𝑀 , 1 + Σ𝑚=1

𝑀−1𝑘𝑚 ≤ 𝑖 ≤ Σ𝑚=1
𝑀 𝑘𝑚

   (2.9) 

 

The PRI values are chosen as random integers within the range 

 50 𝜇𝑠𝑒𝑐 ≤ 𝑟𝑚 ≤ 500 𝜇𝑠𝑒𝑐. For each distinct simulation, we randomly determine the 

lengths of dwells in the range ⌊𝑁/32⌋ ≤ 𝑘𝑚 ≤ ⌊𝑁/16⌋, for each dwell ∀𝑚 ∈

{1,2, ⋯ , 𝑀}, number of which is also randomly determined in the range 3 ≤ 𝑀 ≤ 10. 

Here, we can define the length of the base set as 𝑘 = ∑ 𝑘𝑚
𝑀
𝑚=1 , and hence the main 

PRI sequence of length 𝑁 formulated by (2.10) 

 

𝑋𝑛
ds = 𝐵1+mod𝑘(𝑛−1)                 𝑛 = 1,2,3, … , 𝑁         (2.10) 

 

b) 
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In Figure 2.8, We present a simulated dwell & switch PRI modulation with and 

without noise. 

 

 

 

Figure 2.8 Dwell & switch PRI modulation signal a) with Gaussian noise 𝑆𝑁𝑅 = 18 𝑑𝐵 b) Noise free 

 

In this thesis, we propose a working algorithm for identifying an incoming PRI 

modulation type as one of the six types described above. Although the constant and 

staggered PRI modulations can be distinguished during the deinterleaving process 

(Noone, 1999; Ryoo et al. 2007; Wiley, 2006), other types of PRI modulations are hard 

to classify, and usually they cannot be distinguished from noise (Ahmadi & 

Mohamedpour, 1998; Noone, 1999; Kauppi & Martikainen, 2007). 

 

 

 

 

a) 

b) 
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CHAPTER THREE 

METHODOLGY 

 

3.1 Basic Methodology 

 

The aim of this section is recognized of PRI by separating from each other’s through 

by using created novel features which is obtained from modulated PRI’s mean, 

autocorrelation, Fourier Transform and Power Spectral Density. 

 

 

3.1.1 Mean PRI 

 

Mean PRI expressed as in (3.1) 

 

𝝁 =  
𝟏

𝒏
  ∑ 𝒂𝒊

𝒏
𝒊=𝟏 =  

𝒂𝟏+ 𝒂𝟐+ 𝒂𝟑+ 𝒂𝟒+.…..+ 𝒂𝒏 

𝒏
       (3.1) 

 

where 𝑎𝑖 is PRI of the 𝑛th pulse 𝑋𝑛 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 received in a pulse sequence having 

length of 𝑁 samples. 

 

Deviation of each PRI value from mean of different PRI modulations is presented 

in Figure 3.1 a-f in frequency domain. 

 

  

Figure 3.1 Deviation of each PRI value from mean of different PRI modulations: (a) constant, (b) 

jittered, (c) staggered, (d) sliding, (e) wobulated, and (f) dwell & switch 

a) 
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Figure 3.1 continues 

 

 

 

 

b) 

c) 

d) 
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Figure 3.1 continues 

 

Each of the different PRI modulations, plotted in Figure 3.1, are described 

comprehensively in Refs. (Katsilieris et al. 2017; Hu & Liu, 2010). 

 

3.1.2 Biased Autocorrelation 

 

In PRI modulated signal analysis, autocovariance (𝑟𝑘) and autocorrelation (𝑢𝑘) 

functions are used to characterize the specified PRI type in order to perform feature 

extraction. These features are based on variation of correlation between values of PRI 

components at a certain time interval. 

 

Typically, the covariance function is defined as variation of correlation between 

samples at a lag 𝑘, for all different time instants. Under the noisy observation 

conditions, the autocorrelation function is considered to give statistical information of 

e) 

f) 

D
ev

ia
ti

o
n
 f

ro
m

 M
ea

n
 P

R
I 

D
ev

ia
ti

o
n
 f

ro
m

 M
ea

n
 P

R
I 



26 
 

a random process such as mean and/or variance that can be used to define random 

signal in time domain. 

 

Under the ergodicity assumption, sample autocorrelation analysis in PRI modulated 

data as an effective method of identifying PRI modulation sequences is defined by 

(3.2) and (3.3) (Broersen, 2006). 

 

𝑢𝑘 =  
1

𝑁
 ∑  𝑋𝑛 𝑋𝑛+𝑘

𝑁−1−𝑘
𝑛=0

1

𝑁
 ∑  𝑋𝑛

2 𝑁−1
𝑛=0

           𝑘 = 0,1,2, … . 𝐾,        𝑛 = 0,1,2 … … 𝑁 − 1    (3.2) 

 

𝑢𝑘 =  
𝑟𝑘 

𝑟0 
                                                             (3.3) 

 

Autocorrelations of different PRI modulated patterns are presented in  

Figure 3.2 a-f below which are consistent with those studies (Logothetis & 

Krishnamurthy, 1998) and (Shi et al. 2016). 

 

 

Figure 3.2 Autocorrelation functions of different PRI modulations: (a) constant, (b) jittered,  

(c) staggered, (d) sliding, (e) wobulated, and (f) dwell & switch 

a) 

b) 
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Figure 3.2 continues 

 

c) 

d) 

e) 
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Figure 3.2 continues 

 

It is clearly seen that these functions have distinctive unique signature and they can 

be considered as potential to characterize each different PRI signal. Alternatively, 

frequency-based methods can also be utilized due to differing spectral behaviours of 

each PRI modulated waveforms. In the sequel, spectral characteristics are described. 

 

3.1.3 Fourier Transform and Power Spectral Density 

 

Fourier transformation can be used to analyze any spectral feature of PRI waveform 

if the PRI pattern has periodic structure. Even though the received signal is usually 

represented as a function of time, the spectral features also characterize the PRI pattern 

under investigation. 

 

Due to computational complexity while evaluating the frequency content of a 

function in practice, the algorithm known as "Fast Fourier Transform (FFT)" is used 

to extract the spectral content of the observed data which reduces the computation time 

of a Fourier transformation task, by reducing the number of multipliers. This algorithm 

is primarily based on Discrete Time Fourier Transform (DTFT) where DTFT of a PRI 

function 𝑋𝑛 is defined by (3.4) 

 

𝐹𝜔 =  ∑ 𝑋𝑛
∞
𝑛=−∞  𝑒−𝑗𝜔𝑛                                           (3.4) 

 

f) 
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Fourier transforms of different PRI modulated waveforms are illustrated in  

Figure 3.3 a-f. One can see that each PRI waveform has a different spectral 

concentration at different frequencies depending the PRI type. 

  

 

 

 

Figure 3.3 Fourier transforms of different PRI modulations: (a) constant, (b) jittered, (c) staggered, (d) 

sliding, (e) wobulated, and (f) dwell & switch 

a) 

b) 

c) 
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Figure 3.3 continues 

 

In addition to spectral information extracted from direct PRI data, another spectral 

content obtained from autocovariance function gives feature information that can be 

used for characterization. 

 

d) 

e) 

f) 
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The normalized power spectral density (PSD) can be thought of as the power 

distribution of the signal over the frequency band. It is defined by (3.5) as the Fourier 

transform of the autocorrelation function (Stoica & Moses, 2005): 

 

𝑃𝑆𝐷(𝜔) = ∑ 𝑈𝑘 𝑒−𝑗𝜔𝑘+∞
𝑘=−∞                                             (3.5) 

 

Power spectral densities of different PRI modulations are presented in Figure 3.4 

below in frequency domains. 

 

 

 

Figure 3.4 Power spectral densities of different PRI modulations: (a) jittered, (b) staggered, (c) sliding, 

(d) wobulated, and (e) dwell & switch 

 

a) 

b) 
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Figure 3.4 continues 

 

 

 

 

 

c) 

d) 

f) 
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3.2 Simulations 

 

MATLAB is chosen as to the simulation environment due to its mathematical 

applicability and relative ease of use. The algorithms developed in this section have 

been tested in the MATLAB environment. 

 

Simulations have been developed for each PRI modulation type, and have been run 

under different and randomly chosen PRI parameters. In each of the simulations, the 

following procedure is applied: 

 

• Primarily, a signal representing radar pulse sequence is generated. 

 

• White noise is added to the generated signal with different SNR values. 

 

• From this generated signal, the pulse sequence with PRI values is obtained. 

 

• Deviation of each PRI value from mean PRI are determined and the 

classification-1 is performed by applying feature-1 described below. 

 

• The autocorrelation of the PRI sequence is calculated and the classification-2 

is performed by applying feature-2 described below. 

 

• Power spectral density is calculated by the Fast Fourier Transform of the 

resulting autocorrelation sequence and the classification 3 is performed by applying 

feature-3 described below. 

 

The simulation results are used to justify the proposed PRI determination and 

classification algorithms. Different SNR values are applied in simulations, and it is 

observed that the most suitable SNR values for best classification & determination 

outputs are in agreement with the applied SNR values in the actual radar environment. 

The acceptable minimum SNR, depends on the design of the receiver. Generally, for 

auto-detection with amplitude, TOA, and frequency measurements the setting of an 
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acceptable minimum S/N is 14 to 18 dB (Avionics Department, 2013). Furthermore, 

Skolnik expressed that the minimum detectable signal must be sufficient to higher than 

noise, which is typically by 10 to 20 dB, at the point in the receiver (Skolnik, 1990). 

 

3.2.1 Signal Construction in MATLAB Environment 

 

Rectangular pulse train 𝑌 leave a space is characterized by individual pulse function 

𝑊𝑘,𝑛 composed of 𝑘th rectangular pulse with amplitude 𝐴 and fixed length 𝑠, which is 

followed by null vector having variable length 𝑋𝑛 for 𝑛th pulse given in (3.6):  

 

𝑊𝑘,𝑛 = {
 𝐴  ,              (𝑛 − 1)𝑠 + ∑ 𝑋𝑗

𝑛−1
𝑗=1 ≤ 𝑘 ≤ 𝑛𝑠 + ∑ 𝑋𝑗

𝑛−1
𝑗=1

 0  ,           𝑛𝑠 + ∑ 𝑋𝑗
𝑛−1
𝑗=1 < 𝑘 ≤ 𝑛𝑠 + ∑ 𝑋𝑗

𝑛
𝑗=1                 

                    (3.6) 

 

where  𝑛 = 1,2, … . , 𝑁. Note that 𝑋0 = 0. The rectangular pulse and following null 

signal for 𝑛th pulse is simply expressed by 𝑌𝑛 as a component of pulse train 𝑌. The 

total length of the pulse train 𝑌 is defined by (3.7) 

 

𝐿 = 𝑁𝑠 + ∑ 𝑋𝑛
𝑁
𝑛=1                                                       (3.7) 

 

In presence of noise represented by noise sequence 𝑆, the local received signal 𝑅𝑛 

which is defined (3.8) for 𝑛th pulse is observed at the receiver input as: 

 

𝑅𝑛 =  𝑌𝑛 + 𝑆                                                              (3.8) 

 

A typical jittered PRI modulated signal 𝑅 with A=18 in presence of additive white 

Gaussian noise with SNR=18 dB is shown in Figure 3.5. The amplitude 𝐴/2 is 

indicated as the horizontal line which is considered as reasonable threshold value 
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Figure 3.5 A typical noisy jittered PRI modulated pulse train, 𝐴 = 30, 𝑆𝑁𝑅 = 18 𝑑𝐵 

 

The 𝑆𝑁𝑅 is expressed in terms of as 𝑑𝐵 by (3.9) 

 

𝑆𝑁𝑅 (𝑑𝐵) =  10 𝑙𝑜𝑔
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
                                      (3.9) 

 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 is the average signal power and 𝑃𝑛𝑜𝑖𝑠𝑒 is the noise power, both of which 

are measured in units of watts.  

 

In order to determine the signal-to-noise ratio 𝑆𝑁𝑅, the Gaussian noise is 

considered to have power 𝑁0 and 𝑆𝑁𝑅 can be defined for rectangular pulsed signal as 

(3.10) 

 

𝑆𝑁𝑅 =  
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
= 10 log

𝐴2

𝑁0
                                        (3.10) 

 

Considering the noise having zero –mean, the power directly corresponds to its 

variance and the relation with variance can be established as 𝜎2 =
𝑁0

2
 . The noise 

variance can be determined as 𝜎2 = √
𝑃𝑎𝑣𝑔

2 (10
𝑆𝑁𝑅

10 )

   and S, which is obtained from 

 𝑆𝑁𝑅 (𝑑𝑏), is presented by (3.11): 

 

𝑆~𝒩(0, 𝜎2)                                                     (3.11) 

𝐴

2
 

𝑅 

𝑘 
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It is only interested in the ordering of the consecutive pulse intervals under noise 

contamination, there a new time series 𝑍 is obtained from the observed noisy data 

signal by a signum function as expressed by (3.12) 

 

Z =  𝑠𝑔𝑛(R − A/2)                                            (3.12) 

 

The signum function for each pulse interval change can be defined as (3.13) 

 

𝑍 =  {
1    , 𝑅 > 𝐴/2
0   , 𝑅 < 𝐴/2

                                             (3.13) 

 

Practically, determining transition points from 0 to 1, PRI sequence  

(𝑋𝑖 for 𝑖 = 1,2, … , 𝑁) can be achieved. 

 

3.3 Feature Selection 

 

Once the PRI data is obtained under noise free environment or estimated under 

additive noise, the features can be extracted to recognize PRI modulations. The main 

goal is to recognize common PRI modulation types given in Section 2.3. For this 

purpose, the features are extracted both in terms of statistical properties of PRI data or 

the raw PRI data itself. Here, the motivation comes from the fact that the features can 

be extracted from almost any pulse sequence rather than PRI data. The distinctive 

requirement is to be able to have a potential satisfactory separation capability among 

the wide variety of feature set as much as possible. 

 

Statistical properties potentially carry significant intrinsic information in order to 

extract distinguishable feature among different PRI data. In the sequel, the methods to 

extract three features are described. 
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3.3.1 Feature-1: Deviation of each PRI value from mean PRI 

 

The aim of this feature is to characterize the PRI sequence by normalizing the PRI 

sequence and subtracting each PRI 𝑋𝑛 from the mean PRI value 〈𝑋〉, and 

distinguishing the PRI modulation by subjecting the resulting sequence to the 

classification criteria specified in feature-1. 

 

First, the deviation of each PRI value from the mean PRI is calculated by (3.14): 

 

𝑚𝑛 = 𝑋𝑛  −  〈𝑋〉                   𝑛 = 1,2, … 𝑁      (3.14) 

 

Then a sequence of ones and zeroes (𝑀) is constructed from this deviation 

sequence, which is defined by (3.15) 

 

𝑀𝑛 =  {
0  ,   |𝑚𝑛+2| − |𝑚𝑛+1| = |𝑚𝑛+1| − |𝑚𝑛|

 1  ,                                  𝑒𝑙𝑠𝑒                           
            𝑛 = 1,2, . . . . , 𝑁 − 2    (3.15) 

 

Finally, feature-1 (𝑓1), which is formulated by (3.16), is constructed as the number 

of ones in the sequence 𝑀, normalized by the number of elements in 𝑀.  

 

𝑓1 =
1

𝑁−2
∑ 𝑀𝑛

𝑁−2
𝑛=1         (3.16) 

 

In Figure 3.6, we present the variation of 𝑓1 for six types of PRI modulations, each 

with 100 realizations of different randomly chosen parameters used to characterize 

each PRI type. In all simulations 𝑆𝑁𝑅 value is taken as 18 𝑑𝑏 which is reasonable 

value to analyze the data. It is observed 𝑓1 < 0.05 for constant, 0.05 ≤ 𝑓1 < 0.35 for 

sliding PRI. More generally these two PRI patterns are collected to be 𝑓1 < 0.35 for 

constant and sliding PRI modulations. This serves as the first step of classification 

algorithm. Furthermore, it is also observed that 𝑓1 > 0.95 for most of the data 

belonging to jittered and staggered PRI modulations.  

 



38 
 

 

Figure 3.6 Variation of 𝑓1 for six types of PRI modulations, each with 100 realizations of different 

randomly chosen parameters at 𝑆𝑁𝑅 = 18 𝑑𝐵 

 

3.3.2 Feature 2: Comparison of Consecutive Values of Autocorrelated PRI 

Sequence 

 

Autocorrelation is significant when determining the overall statistics of the different 

PRI modulation types. However, direct discrimination of wobulated PRI, dwell & 

switch PRI, and sliding PRI from only autocorrelation value is found not to be possible. 

Fortunately, it is observed that autocorrelation results are more discriminative to 

separating staggered PRI and jittered PRI sequences from the other PRI modulations. 

To obtain the second feature 𝑓2, autocorrelation of the PRI sequence (𝑐𝑘) is calculated 

by (3.17). 

 

𝑐𝑘 =  
∑ 𝑚𝑛𝑚𝑛+𝑘

𝑁−𝑘
𝑛=1

∑ 𝑚𝑛
2𝑁

𝑛=1
                𝑘 =  0,1,2, . . . , 𝑁 − 1     (3.17) 

 

Once the autocorrelation is evaluated, a new time series 𝐾 is obtained. According 

to this approach, if two consecutive elements of the autocorrelation sequence are both 

positive or both negative, then the corresponding 𝐾 value is 1, and it is 0 otherwise 
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(i.e., for consecutive elements of the autocorrelation sequence having different signs). 

𝐾𝑛 is defined by (3.18). 

 

𝐾𝑛 =  {
1   ,          𝑐𝑛 ≥ 0   and   𝑐𝑛+1 ≥ 0 
1   ,          𝑐𝑛 < 0   and   𝑐𝑛+1 < 0 

      0   ,                        otherwise                
               𝑛 = 1,2, . . . . , 𝑁 − 1   (3.18) 

 

The mean number of ones in the array 𝐾 gives the second feature 𝑓2 and is expressed 

by (3.19). 

 

𝑓2 =
1

𝑁−1
∑ 𝐾𝑛

𝑁−1
𝑛=1   𝑛 = 1,2, . . . . , 𝑁 − 1       (3.19) 

 

In Figure 3.7, it is presented the variation of 𝑓2 for six types of PRI modulations, 

each with 100 realizations of different randomly chosen parameters at 𝑆𝑁𝑅 = 18 𝑑𝑏 

(same as those in Figure 3.6). By using the 𝑓2, the rest of the four types PRI patterns 

can be classified into two categories as jittered and staggered (𝑓1 > 0.95) in one 

category, while wobulated and dwell & switch (𝑓1 < 0.95) in another category. Here, 

in Figure 3.7, it is observed that 𝑓2 is not capable of further classification of different 

PRI modulations although it offers different local intervals for jittered and staggered 

PRI patterns. For further analysis, another feature 𝑓3, is proposed to construct a 

complete feature region than can be discriminated using classifiers in the literature.  
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Figure 3.7 Variation of 𝑓2 for six types of PRI modulations, each with 100 realizations of different 

randomly chosen parameters at 𝑆𝑁𝑅 = 18 𝑑𝐵 

 

3.3.3 Feature 3: Maximum Value of Power Spectral Density 

 

The power spectral density is an effective feature that can be used to distinguish 

different types of autocorrelated PRI sequences. The third feature 𝑓3, calculates the 

maximum peak value of the power spectral density obtained from the 𝑐𝑛 

autocorrelation sequence as calculated by the FFT calculated by (3.20). 

 

𝑓3 = max (|𝐹𝐹𝑇(𝑐𝑛)|)                                                 (3.20) 

 

where 𝐹𝐹𝑇(∙) denotes the Fast Fourier Transform operation. In Figure 3.8, it is 

presented the variation of 𝑓3 for six types of PRI modulations, each with 100 

realizations of different randomly chosen parameters at 𝑆𝑁𝑅 = 18 𝑑𝐵 (same as those 

in Figures 3.6 and 3.7). In Figure 3.8, it is observed that 𝑓3 roughly divides PRI types 

into three categories where the first category is composed by wobulated PRI, the 

second class is collected as staggered, sliding, dwell & switch, the third class is 

approximately constant and jittered PRI patterns. 
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Figure 3.8 Variation of 𝑓3 for six types of PRI modulations, each with 100 realizations of different 

randomly chosen parameters at 𝑆𝑁𝑅 = 18 𝑑𝐵 

 

3.3.4 Compilation of PRI Patterns in Features Space 

 

Although all of the features cannot give a satisfactory discrimination performance 

individually, the set of features in increased dimension is observed in this section. 

Figure 3.9 (a) and (b) shows the combined values of three features for 100 distinct 

simulated signals with randomly chosen parameters for all six types of PRI 

modulations. It should be remarked that the features 𝑓1 and 𝑓3 have a notable impact 

on generating discriminative PRI patterns. According to these results, once the two 

features 𝑓1 and 𝑓3 are calculated, PRI modulated patterns can be approximately 

classified by applying appropriate threshold to these feature values. One can consider 

an approximate decision boundary in terms of each feature itself by inspection. Firstly, 

𝑓1 derived from the mean PRI, is restricted to be 𝑓1 < 0.05 for constant PRI 

modulation, and 0.05 ≤ 𝑓1 < 0.35, for sliding PRI modulation. However, if this 

feature 0.35 < 𝑓1 < 0.95, it may be either wobulated or dwell & switch PRI 

modulation, while for 𝑓1 > 0.95, it may be either jittered or staggered PRI modulation. 

The feature 𝑓3, derived from the PSD of the autocorrelation of the mean PRI sequence, 

if 15 < 𝑓3 < 40 it is dwell & switch, and if 𝑓3 ≥ 40 it is wobulated for the selection 
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of 0.35 < 𝑓1 < 0.95. If 𝑓3 < 15 it is jittered, and if 𝑓3 ≥ 15 it is staggered for the 

consideration of 𝑓1 > 0.95. 

 

 

 

 

Figure 3.9 (a) and (b): Feature values for 100 distinct simulated signals with randomly chosen 

parameters for all six types of PRI modulations. Same colour code as in Figures 3.6-3.8 

 

The approximate decision block diagram is given as a block diagram shown in  

Figure 3.10 below. It should be noted that there can be constructed an improved 

classification performance by applying classification methods such as support vector 

machine, artificial neural networks which are listed as literature search in the next 

section. 

 

 

a) 

b) 
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Figure 3.10 PRI classification algorithm according to the features, 𝑓1 and 𝑓3 

 

As can be observed from Tables 3.1, 3.2, the proposed classification algorithm 

cannot give satisfactory results for 15 𝑑𝐵 but the correct classification ratio increases 

for higher 𝑆𝑁𝑅 vlaue as 18 𝑑𝐵. Therefore, the feature selection algorithm needs to be 

improved in order to ensure robustness against noise for lower 𝑆𝑁𝑅 values. 

Nevertheless, It is also noted that typical radar environments have 𝑆𝑁𝑅 range. 

 

Table 3.1 Classification percentages for different PRI modulations at SNR = 15 dB 

𝑺𝑵𝑹 = 𝟏𝟓𝒅𝒃 
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Constant 89.30% 0.00% 0.00% 0.00% 0.33% 0.00% 

Jittered 0.00% 97.70% 25.80% 0.00% 0.00% 0.00% 

Staggered 0.00% 0.00% 71.80% 0.00% 0.97% 0.04% 

Sliding 0.70% 0.00% 0.00% 86.60% 0.01% 0.00% 

Wobulated 0.00% 0.00% 0.00% 0.00% 82.40% 0.00% 

Dw & Sw 10.70% 0.00% 0.15% 11.50% 10.40% 73.20% 

Unclassified 0.00% 2.20% 2.25% 1.90% 8.89% 26.76% 
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Table 3.2 Classification percentages for different PRI modulations at SNR = 18 dB 

𝑺𝑵𝑹 = 𝟏𝟖 𝒅𝒃 
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Constant 99.80% 0.00% 0.00% 0.00% 0.53% 0.00% 

Jittered 0.00% 96.50% 0.63% 0.00% 0.00% 0.32% 

Staggered 0.00% 0.00% 91.70% 0.00% 0.67% 0.25% 

Sliding 0.02% 0.00% 0.00% 89.40% 0.01% 0.03% 

Wobulated 0.00% 0.00% 0.02% 0.00% 85.90% 0.06% 

Dw & Sw 0.00% 0.00% 0.15% 10.60% 0.29% 89.64% 

Unclassified 0.18% 3.50% 7.50% 0.00% 12.63% 9.63% 

 

Although it is demonstrated in (Liu & Zhang, 2017) that PRI modulated signals are 

classified with 99% accuracy, this method does not consider staggered PRI. PRI 

modulation classification except the staggered one is also applied in other methods, 

(Conroy & Moore, 1998) and (Orsi, Moore & Mahony, 1999). Indeed, separation of 

staggered PRI from other modulation types with high accuracy is reported to be the 

most problematic classification (Conroy & Moore, 1998; Mahdavi & Pezeshk, 2010). 

Although correct classification percentages higher than the method proposed in this 

thesis exist, these are realized with multi-layer perceptron networks (Kauppi & 

Martikainen, 2007), and such high values expressed to be obtained in the absence of 

noise. 

 

3.4 Other PRI Recognition and Classification Techniques: 

 

3.4.1 Classification 

In this section, other methods for PRI classification in the literature are briefly 

explained. These methods are summarized as correlation-based classification  

(Shi et al. 2016; Katsilieris et al. 2017), using multilayer perceptron (Noone, 1999), 

https://www.google.com/search?safe=active&q=TECHN%C4%B0QUE&spell=1&sa=X&ved=0ahUKEwjvq97ZwPvbAhXF0qQKHQPSCwcQkeECCCUoAA
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(Kauppi & Martikainen, 2007), wavelet transform based feature extraction (Gençol et 

al. 2016). Similarly, PRI sequences are recognized in terms of time-frequency domain 

(Hu & Liu, 2010). Alternatively, hierarchical clustering method by (Ahmadi & 

Mohamedpour, 1998) is aimed of PRI recognition. As a different problem description, 

(Ghani et al. 2016) analyzed spurious and missing pulses in PRI modulated signals. In 

a recent study, decimated Walsh-Hadamard transform is used for PRI analysis (Ghani 

et al. 2017). 

 

3.4.2 Recognition 

 

PRI recognition by using the features calculated from the autocorrelation of the PRI 

sequences are explained by (Ryoo et al. 2007). However, since these features are 

highly sensitive to signal imperfections, it is reported that missing pulses were 

compensated and spurious pulses are removed prior to recognition process. 

 

(Kauppi & Martikainen, 2007) used a neural network classifier, PRI modulations 

are divided into three groups as first step. Then, using one-dimensional classifiers, 

these groups are further binary classified. Some of the suggested features in the 

procedure given by (Kauppi & Martikainen, 2007) used sequential difference (SDIF) 

histograms in order to deinterleaving (Milojevic & Popovic, 1992). 
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CHAPTER FOUR 

ROBUST ESTIMATION UNDER NON-GAUSSIAN NOISE 

 

The literature related with PRI analysis, the effect of noise contaminating to 

rectangular pulses is not of interest in common or the SNR is assumed to be sufficiently 

large to observe pulse onset without any notable time delay. However, the noise causes 

PRI patterns to deviate from their actual values. Moreover, any non-Gaussian noise, 

which is generally modelled to be impulsive, may cause spurious pulses yielding 

different PRI pattern than actual one. Therefore, SNR is crucial in PRI 

characterization. Within the PRI recognition problem, the time-of-arrival depends on 

the detection of correct pulses where the rising edge of the rectangular pulses should 

be correctly detected. The correct detection of the rising edge of a pulse strongly 

misleading for low SNR. The impulsive character of noise may be due to channel 

effects and/or jammers, which results in heavy-tailed noise distribution. The observed 

signal under impulsive noise can be erroneously detected at time instants of rising 

edges of pulses. The effect of impulsive 𝛼 −stable noise on radar signal processing are 

investigated in earlier studies (Zaimbashi et al. 2013; Aalo et al. 2015) 

 

This chapter is primarily based on detection of pulses under impulsive noise in order 

to reconstruct PRI patterns and developing methods to overcome degrading effect of 

noise using robust estimators as the contribution. The impulsive noise is properly 

modelled with 𝛼 −stable distributed noise. In the sequel, the 𝛼 −stable distribution is 

explained briefly with its important features. 

 

4.1 Alpha-Stable Distribution 

 

Among the several formal definitions “alpha-stable distribution” or “stable 

distribution” is defined as follows (Arce, 2005): Any random variable 𝑋 is said to have 

stable distribution if the following equality given by (4.1) is hold 

𝐴𝑋1 + 𝐵𝑋2 = 𝐶𝑋 + 𝐷                                            (4.1) 
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where 𝐴, 𝐵, 𝐶 are positive numbers and 𝐷 is any real number, 𝑋1 and 𝑋2 are 

independent copies of 𝑋, “=” corresponds to equality in terms of distribution. The 

probability density function 𝑓(𝑥) of 𝛼 −stable distribution is expressed by (4.2), in 

terms of its characteristic function  𝜑(𝜃). 

 

𝑓(𝑥) =
1

2𝜋
∫ 𝜑(𝜃) 𝑒−𝑗𝑥𝜃 𝑑𝜃

∞

−∞
.                                               (4.2) 

 

Since there is no closed form expression of 𝑓(𝑥) except for special cases where 

Gaussian (𝛼 = 2), Cauchy (𝛼 = 1, 𝛽 = 0) and Levy (𝛼 = 1 2⁄ , 𝛽 = 1) distributions 

in (4.3) , the stable distribution can be generally characterized by its characteristic 

function 𝜑(𝜃) given by (4.3) (Arce, 2005) 

 

𝜑(𝜃; 𝛼, 𝛽, 𝜎, 𝜇) = exp[𝑖𝜃𝜇 + 𝜎𝛼(𝑖𝜃𝜔(𝑡; 𝛼, 𝛽) − |𝜃|𝛼)]                  (4.3) 

 

where the function 𝜔(𝜃; 𝛼, 𝛽) is defined as (4.4). 

 

𝜔(𝜃; 𝛼, 𝛽) = {
𝛽|𝜃|𝛼−1 tan

𝜋𝛼

2
, 𝛼 ≠ 1

−𝛽
2

𝜋
log|𝜃| , 𝛼 = 1

                           (4.4) 

 

The parameters characteristic exponent 𝛼 ∈ (0, 2], skewness parameter 𝛽 ∈ [−1,1], 

scale parameter 𝜎 > 0 and the location parameter −∞ < 𝜇 < ∞, tune the 

impulsiveness, symmetry, intensity and location of the distribution, respectively. The 

distribution is said to be symmetric for 𝛽 = 0. The effect of skewness on probability 

density function (pdf) is illustrated in Figure 4.1a. The tail probabilities shown in 

Figure 4.1b indicate the effect of impulsiveness on pdf. The more impulsive noise (i.e. 

less characteristic exponent) results in the tails of the pdf to be heavier, that is why 

these distributions are also called as heavy tail distribution.   
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Figure 4.1 Illustration of probability density function of 𝛼 −stable distribution for several parameters 

a) 𝛼 = 1.2, 𝜎 = 1, 𝜇 = 0 , b) Tail density  (𝛽 = 0, 𝜎 = 1, 𝜇 = 0) 

 

One of the most significant properties of α −stable distribution is that only the 

fractional moments lower than α are finite. It can be expressed in terms of a stable 

random variable X as 

 

𝐸|𝑋|𝑝 < ∞ , 𝑝 < 𝛼

𝐸|𝑋|𝑝 = ∞ , 𝑝 ≥ 𝛼
.                                          (4.5) 

 

According to the property given by (4.5) the variance is finite only for Gaussian noise 

where 𝛼 = 2. Correspondingly the variance of the distribution is infinite for 

 0 < 𝛼 < 2. On the other hand, the mean value is finite only for 1 < 𝛼 ≤ 2 

(Samorodnitsky & Taqqu, 1994). As a general property for 0 < 𝛼 < 2, the 𝑝-th 

moment of the alpha-stable distribution is finite only for 0 < 𝑝 < 𝛼. That is why this 

class of distribution is called as 𝛼 −stable distribution. In the sequel, the mathematical 

description and the function of the robust estimators in observed data is explained.  

 

4.2 Robust Estimators 

 

Major aim of utilizing robust estimators is to filter the outlier components from the 

noisy observations. Since 𝛼 −stable distributed noise inherently includes impulsive 

components depending on its characteristic exponent, there exists significant outliers 

which directly degrades the estimation accuracy of the PRI parameters. Basically, 

a) b)
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there are three different methods called as median, myriad and meridian, explained 

respectively in the following subsections. These filters are commonly referred as 

maximum-likelihood estimators (or M-estimators) developed within the theory of 

robust statistics (Huber, 1981, Kassam & Poor, 1985). It is reported to use robust 

estimators crucial for impulsive signal processing, especially for which the noises are 

modelled by heavy-tailed distributions (Ilow, 1995; Nikias & Shao, 1995; Arce, 2005). 

The observed PRI-modulated signal 𝑥[∙] under additive 𝛼 −stable noise is modelled 

as   

 

𝑥[𝑛] = 𝑠[𝑛] + 𝑤[𝑛]       𝑛 = 1, ⋯ , 𝑁    (4.6) 

 

where 𝑠[∙] is the noise free PRI-modulated signal including rectangular pulses with 

amplitude 𝐴, apart from each other in time axis according to the given PRI type. The 

noise samples 𝑤[∙] are taken from the density represented in terms of its symmetric 

𝛼 −stable (𝑆𝛼𝑆) noise parameters 𝑤[∙]~𝑆(𝛼, 𝛽 = 0, 𝜎, 𝜇 = 0). Since the noise 

variance is known to be infinite for 𝛼 < 2, the metric for signal to noise ratio is 

redefined as generalized signal to noise ratio (𝐺𝑆𝑁𝑅) 

 

𝐺𝑆𝑁𝑅 = 10 log
𝐴2

𝜎𝛼      (4.7) 

 

Noting that the instant detection of pulses constitutes the main motivation of this 

thesis, differing from the conventional approach, the robust estimators are modified to 

process only past values of observations with respect to selected window length 𝑀. 

The mathematical formulization is given at the next subsections.  

 

4.2.1 Median Filter 

 

The filter output 𝑦𝑚𝑒𝑑[𝑛] given by (4.8) of a Median filter at time instant 𝑛 observed 

from noisy measurements 𝑥[𝑛] is expressed as determining the median value between 

the samples of an observation interval having an even length of 𝑀 arranged in 

ascending or descending order.  
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𝑦𝑚𝑒𝑑[𝑛] = MEDIAN (𝑥[𝑛 − M], … , 𝑥[𝑛])                         () 
 

4.2.2 Myriad Filter 

 

Myriad estimator, comprehensively described in (Kalluri & Arce, 2000; Kalluri & 

Arce, 2001) is expressed as one of the robust estimators and the myriad estimator 

output 𝑦𝑚𝑦𝑟[𝑛] at time instant 𝑛 from noisy observations 𝑥[𝑛] is given by (4.9).  

 

𝑦𝑚𝑦𝑟[𝑛] =  MYRIAD (𝐾;  𝑥[𝑛 − 𝑀], … , 𝑥[𝑛]).                              

= arg min
𝜌∈ℜ

∑ log[𝐾2 + (𝑥[𝑖] − 𝜌)2]                         𝑛
𝑖=𝑛−𝑀 () 

 

where the linearity parameter 𝐾 is recommended to choose as a function of 𝛼  

𝐾 = √
𝛼

2−𝛼
 under 𝛼 −stable noise (Arce, 2005). The selection of 𝐾 strongly large 

(approximating to asymptotic limit 𝐾 → ∞), the myrad filter turns into the simple 

mean filter (Stork, 2010), and thus, would be in efficient in filtering the heavy-tailed 

noises. On the other hand, selection of 𝐾 as small value (approximating to 𝐾 → 0) the 

estimator leads to multiple local minima, and thus, cannot estimate the location 

properly. Therefore, a predefined value for the linearity parameter 𝐾 is significant for 

the optimal filtering result. 

 

4.2.3 Meridian Filter 

 

Similar to myriad filter, meridian filter has an approximate identical structure 

except the function expressing deviation from the actual value of the filter output. The 

meridian filter output 𝑦𝑚𝑒𝑟[𝑛] at time instant 𝑛 from noisy observations 𝑥[𝑛] as given 

(4.10): 

 

𝑦𝑚𝑒𝑟[𝑛] =  MERIDIAN (Δ;  𝑥[𝑛 − 𝑀], … , 𝑥[𝑛]) 

= arg min
𝜂∈ℜ

∑ log [Δ + |𝑥[𝑖] − 𝜂|]𝑛
i=𝑛−𝑀 .                              (4.10) 
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where Δ is the medianity parameter, and the even number 𝑀 is length of the filter. In 

the case of the high values of Δ the filter behaviour converges to median filter for low 

values mode (Aysal & Kenneth, 2007). 

 

The performance of these filters is analysed in terms of different filter length or 

different noise impulsiveness. Figure 4.2 illustrates the filtering performance in time 

domain. Although one can see that all off the filters provide a certain signal denoising, 

there is a time delay between the exact and estimated time instants on pulse onset.  

 

Figure 4.2 Time domain analysis of the robust estimators for a small segment of constant PRI data, 

(𝛼 = 1.5, 𝑀 = 5), 𝐺𝑆𝑁𝑅 = 14 𝑑𝐵  (a) typical appearance, (b) zoomed in 

 

a) 
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Figure 4.2 continues 

 

Since the window function length 𝑀 is relatively small, insufficient amount of data 

is used to filter the noisy signal the filter output is observed to have a notable deviation 

from exact data. In order to reduce this deviation which may cause to observe spurious 

or missed pulses, the robust filter outputs obtained by increasing filter length is shown 

in Figure 4.3. It is seen that increasing filter length ensures to prevent deciding spurious 

and/or missing pulses since the increased amount of data is processed the deviation 

from exact values decreases. However, the time delay to estimate pulse onset 

dramatically increases which degrades the detection performance. This result indicates 

that there is a trade-off between selection of filter length and the time delay from exact 

starting points of the pulses.  

b) 
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Figure 4.3 The effect of window length 𝑀 on PRI data under 𝛼 −stable noise, (𝛼 = 1.5), 𝐺𝑆𝑁𝑅 =

14 𝑑𝐵 a) 𝑀 = 11, b) 𝑀 = 17 

 

The effect of impulsiveness of the noise is analysed in Figure 4.4a and Figure 4.4b. 

Since the impulsiveness of the noise decreases as the characteristic exponent 𝛼 

increases, the ripples in filtered data is observed to weaken. On the other hand, there 

is no apparent difference between time delays between actual pulse onset for both 

noise contamination. It can be said that noise impulsiveness can only an effect on 

occurring spurious or missing pulses. 

 

Figure 4.4 The effect of impulsiveness of the noise on PRI data under 𝛼 −stable noise, 𝐺𝑆𝑁𝑅 = 14 𝑑𝐵, 

𝑀 = 11, a) 𝛼 = 1.3, b) 𝛼 = 1.7 

a) b)

a) b)
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Figure 4.5 Average time delay of constant PRI-modulated data after robust filtering, 𝛼 = 1.5 

 

Performance is analysed in terms of average time delay representing decision time 

after a particular pulse onset occurred shown by Figure 4.5. Simulations are evaluated 

on constant PRI waveform including two rectangular pulses having a length of 500 

samples and ensemble averaging of 10 independent realizations. It can be clearly said 

that, the increasing window length strongly increases amount of delay of the detection 

timing, i.e. poor performance. On the other hand, due to robustness aspect against 

outlier components in non-Gaussian noise, the robust estimator performance does not 

apparently affect by variation of 𝐺𝑆𝑁𝑅. Note that the characteristic exponent of the 

noise which tunes impulsiveness, does not directly affect the amount of delay. 

However, it is the reason of observing spurious pulses, and therefore an important 

parameter should be taken into account in PRI analysis under 𝛼 −stable noise 

environment.   

 

4.3 Quickest Detection 

 

In most of the signal processing applications, instant detection of abrupt changes 

has a vital importance. Basically, the quickest detection method determines the timing 

of instant variation as quick as possible depending on the selection of threshold. 

According to this method, two hypotheses represent the existence or absence of a 

signal within a certain time interval. Therefore, the two different states related with 

signal and noise probability density function are assumed to be known in advance. 
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Noting this assumption, cumulative summation (CUSUM) algorithm given 

comprehensively by (Page, 1954) is applied on observed data. In PRI recognition 

problem under noise, major aim is to find the time 𝑡𝑐 corresponding to finding the 

time-of-arrivals (rising edges) of incoming rectangular radar pulses, so that the PRI 

pattern can be estimated.  

 

In this problem, the CUSUM algorithm assumes two hypotheses ℋ0 and ℋ1 under 

the prescribed probability distribution function (PDF) of the noise in the channel. ℋ0 

assumes the observed signal contains only the noise, and ℋ1 assumes an existence of 

a constant deterministic signal of amplitude 𝐴 together with noise. Differing from off 

line data analysis which formulates the problem considering time of arrival, the 

problem is mathematically expressed as existence or absence of an incoming signal 

according to the observation given by the two hypotheses above. The binary 

hypotheses testing problem given by (4.11) includes varian of parameter Θ 

 

ℋ0:  Θ = Θ0 for  1 ≤ 𝑖 ≤ 𝑘       
ℋ1: Θ = Θ1 for  1 ≤ 𝑖 ≤ 𝑘       

,                           (4.11) 

 

where Θ is a conditional density parameter and Θ0 = 0 corresponding only noise 

and Θ1 = 𝐴 for existence of constant signal and noise. These hypotheses compose the 

likelihoods formulated by probability density function of the channel noise represented 

by 𝑓0(𝑥) and 𝑓1(𝑥), respectively. The log-likelihood ratio including observation from 

the beginning until the end of the observation point 𝑘 is defined as (Basseville & 

Nikiforov, 1993) 

 

𝑆𝑘 = ∑ ln
𝑓1(𝑥[𝑖])

𝑓0(𝑥[𝑖])

𝑘
𝑖=1                                                (4.12) 

 

which constitutes the skeleton of the cumulative summation (CUSUM). That is why 

this method is also named as CUSUM method. Principally, the CUSUM algorithm 

utilizes the information obtained from instantaneous log-likelihood ratio ln
𝑓1(𝑥[𝑖])

𝑓0(𝑥[𝑖])
 and 

detects the deviation within an observation interval having length 𝑘. In the time-

varying CUSUM approach, this observation interval is designed to slide when new 
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data point is observed and the statistics is derived from the new data having the same 

length. According to provide the same analogy, it can be accepted as 𝑘 = 𝑀. 

Considering step by step, when 𝑓0(𝑥[𝑖]) > 𝑓1(𝑥[𝑖]), the ratio is less than unity, and 

thus, the logarithm is negative. Under the cumulative summation, the log-likelihood 

𝑆𝑘 decreases for increasing 𝑘, provided that the incoming signal is just a noise 

(hypothesis ℋ0). When observation includes data from deterministic signal, the 

hypothesis ℋ1 becomes valid, i.e. 𝑓0(𝑥[𝑖]) < 𝑓1(𝑥[𝑖]). This gives 
𝑓1(𝑥[𝑖])

𝑓0(𝑥[𝑖])
> 1, and 

hence ln
𝑓1(𝑥[𝑖])

𝑓0(𝑥[𝑖])
> 0. Therefore, under the cumulative summation, the log-likelihood 

𝑆𝑘 begins to increase with increasing 𝑘. One can detect the change between decresing 

and increasing 𝑆𝑘 to determine the time-of-arrival 𝜃 by defining a threshold ℎ. For this 

purpose, it is defined by (4.12) that a decision function (Basseville & Nikiforov, 1993). 

 

𝐺𝑘 = 𝑆𝑘 − min
1≤𝑗≤𝑘

𝑆𝑗.                                        (4.12) 

 

The decision function lies in certain different ranges according to the absence or 

existence of the deterministic signal, constant pulse having amplitude 𝐴, as in this 

application. Variation of the decision function 𝐺𝑘 is compared with a predefined 

threshold ℎ, to determine the rising edge time 𝜃. Under the absence of pulse, 𝐺𝑘 < ℎ. 

The estimated time-of-arrival is accepted to be the first time instant when decision 

function becomes larger than the threshold, i.e., 𝐺𝜃 > ℎ. By tuning this threshold, the 

false alarms rate can be arranged, where the false alarm causes the rises in the decision 

function due to impulsive nature of the channel noise. Figure 4.6a illustrates noise free 

constant PRI data and Figure 4.6b represents the variation of function 𝐺𝑘  analysed 

within sliding time window 𝑘 under 𝑆𝛼𝑆 noise with 𝛼 = 1.5 and 𝐺𝑆𝑁𝑅 = 14 𝑑𝐵. It 

is seen that an abrupt change at starting point of pulses can be detected using only 

present point 𝑘 and past points up to 𝑘 − 𝑀 corresponding to the initial point of the 

sliding window. 



57 
 

 

Figure 4.6 a) Noise free PRI waveform, b) Decision function 𝐺(𝑘).  𝐴 = 5, 𝑀 = 11, ℎ = 𝐴 

 

 

Figure 4.7 Time varying CUSUM based quickest detected signals for Constant PRI modulated signal 

 

The exact PRI data, noisy and detected PRI data are shown together in Figure 4.7 

It is quite apparent that the CUSUM method yields instant detection of rising edges of 

rectangular pulses compared with the robust estimators which do not use pdf of the 

data and estimates rising edge times only from the observations. This can be one of 

the reasons of CUSUM based quickest method to be more superior than robust 

estimators. 

 

 

a)

b)
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CHAPTER FIVE 

CONCLUSION 

 

In this thesis study, characterizing and detecting time of arrival of PRI modulated 

signals are analysed. The first part of the thesis is based on describing three features 

generated from correlation and power spectral density, like the methods given in the 

literature. It is remarked that the different PRI pattern can be characterized and 

classified by using basic signal processing tools to extract statistical behaviour of 

different PRI patterns.  

 

However, in radar signal processing related with PRI-modulated signals the 

contaminated noise generally assumed to be Gaussian and the effect of its intensity is 

not investigated in details. The main contribution of the thesis is the detection of PRI-

modulated signals under non-Gaussian noise environment. The proper and reasonable 

selection for non-Gaussian noise is 𝛼 −stable distributions. Once the time of arrival of 

the rectangular radar pulses are determined by providing minimum time delay than its 

actual value, the PRI patterns can be characterized easily.  

 

As the first approach, robust M-estimators such as median, myriad and meridian 

filters are utilized to filter impulsive noise. Since the main requirement is instant 

detection of incoming radar pulse, differing from the literature, all of these robust 

estimator designs are modified to use only present and past values whose length is 

determined by window size. It is observed that the increasing window length provides 

stronger filtering performance which is significant to avoid spurious pulses when the 

noise impulsiveness is notable. However, on the other hand, the detection of time of 

arrival of rectangular pulse has an increased time delay which is not required. One can 

say that there is a trade-off between selection of window length and estimation delay. 

when the performances of robust estimators are compared with each other when the 

GSNR and window lengths are kept to be fixed, one can see that myriad and meridian 

filters yields better performance than median filter which is simplest to implement. 
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In order to provide an instant detection of rising edges of the rectangular pulses, to 

the best of our knowledge, quickest detection algorithm is applied for the first time in 

the literature. The CUSUM algorithm is redefined to propose a time-varying nature so 

that a time-varying CUSUM algorithm determines the time onset of the radar pulses 

depending on the pre-defined threshold value. It is shown that time-varying CUSUM 

based quickest detection method provides superior performance compared with robust 

estimators. As key note, it should be taken into account that the quickest detection 

method needs probability density function of the contaminated noise in order to 

provide likelihood ratio test. Both robust estimator and quickest detection methods 

assume the pulse amplitude is known in advance to tune the threshold and constructing 

likelihood function, respectively.  

 

The main challenge on quickest detection method is to tune the threshold value 

which directly related with false alarm rate. Differing from the conventional receiver 

operating characterization, the threshold varies with respect to observed data and an 

adaptive method is needed to describe the performance of the proposed method in 

terms of false alarm probability. This constitutes the future projections of this research. 
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