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IDENTIFICATION AND ANNOTATION OF PUTATIVE LONG NONCODING RNAS 

INVOLVED IN MESENCHYMAL-EPITHELIAL TRANSITION 

 

Doğa Eskier, İzmir International Biomedicine and Genome Institute, Dokuz Eylul 

University Health Campus, Balcova 35340 - Izmir / TURKEY 

 

ABSTRACT 

 Mesenchymal-epithelial transition (MET) is a key process of multicellular organisms, 

involved in development and wound healing, as well as coopted by cancer metastasis. As recent 

studies have shown, the regulation of MET is a more involved cellular reprogramming event 

than removal or inhibition of epithelial-mesenchymal transition (EMT) promoting elements, 

but the exact mechanics are poorly studied as of yet. Long noncoding RNAs (lncRNAs), RNA 

molecules that function in biological pathways independently of translation, are known to be 

involved in cellular reprogramming events. To bolster the limited information available on 

MET, we applied computational analysis and network construction methods to MET RNA-seq 

data to identify any previously unannotated lncRNA candidates, and to predict their potential 

biological functions. As a result, we have identified 608 transcripts as previously unannotated 

lncRNAs. Furthermore, we have shown that a number of them show meaningful expression 

patterns, such as timepoint specific expression, or upregulation during MET compared to 

mesenchymal phenotype. We have also constructed gene co-expression modules to identify the 

biological niches of the lncRNAs via enrichment of gene ontology terms of previously 

annotated genes in the modules. We have shown that previously unannotated lncRNAs are 

likely involved in crucial cellular reprogramming events such as chromatin remodeling or 

cellular localization. 

 

Keywords: MET, cellular reprogramming, lncRNA, RNA-seq, weighted gene co-expression 

network analysis 
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MEZENKİMAL EPİTELYAL DÖNÜŞÜMDE YER ALAN OLASI UZUN PROTEİN 

KODLAMAYAN RNALARIN TANIMLANMASI VE ANOTASYONU 

 

Doğa Eskier, İzmir Uluslararası Biyotıp ve Genom Enstitüsü, Dokuz Eylül 

Üniversitesi Sağlık Yerleşkesi, Balçova 35340 - İzmir / TÜRKİYE 

 

ÖZET 

 Mezenkimal epitelyal hücre dönüşümü (MET) gelişim ve yara iyileşmesi gibi 

süreçlerde yer alan, ve kanser metastazı tarafından ele geçirilen, çok hücreli canlılar için anahtar 

bir süreçtir. Yakın zamanda yapılan çalışmalar, MET’nin düzenlenmesinin, epitelyal 

mezenkimal hücre dönüşümünün (EMT) promotörlerinin kaldırılması veya susturulmasından 

daha ayrıntılı bir hücresel programlama süreci olduğunu göstermiştir, ancak MET 

düzenlenmesinin mekanikleri henüz ayrıntılı olarak bilinmemektedir. Uzun protein 

kodlamayan RNAlar (lncRNAlar), protein translasyonundan bağımsız olarak biyolojik 

fonksiyonlara sahip RNA molekülleridir. lncRNAların hücresel programlamada yer aldıkları 

bilinmektedir. MET süreci hakkındaki kısıtlı bilgileri desteklemek amacıyla, bu süreçten elde 

edilmiş RNA-seq verilerini hesaplama tabanlı analiz ve ağ kurumu yöntemleriyle inceledik ve 

daha önce anotasyonu yapılmamış lncRNA adaylarını tanımlamaya ve onların biyolojik 

yolaklardaki olası görevlerini tahminlemeye çalıştık. Sonuç olarak, 608 transkript daha önce 

anotasyonu yapılmamış lncRNA olarak tanımlandı. Dahası, bu transkriptlerin bir kısmının 

zamana özgü ifade veya mezenkimal fenotipe göre MET sürecinde yükselen ifade seviyesi gibi 

anlamlı ifade değişiklikleri gösterdiği belirtildi. Ayrıca, lncRNAların biyolojik anlamlarını 

belirlemek için, gen eşifade ağları kuruldu ve modüllerdeki anotasyonu yapılmış genlerin gen 

ontoloji terimleri zenginleştirildi. Sonuç olarak, daha önce anotasyonu yapılmamış 

lncRNAların, kromatin düzenlenmesi ve hücresel lokalizasyon gibi önemli hücresel 

programlama süreçlerinde yer alabilecekleri gösterildi. 

 

Anahtar Sözcükler: MET, hücresel programlama, lncRNA, RNA-seq, ağırlıklı gen eşifade ağı 

analizi 
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1. INTRODUCTION AND AIM 

 

1.1. Statement and Importance of the Problem 

The two cellular reprogramming events, epithelial-mesenchymal transition (EMT) and 

mesenchymal-epithelial transition (MET), are complementary, but not opposite processes. 

These two processes are involved with a variety of events in multicellular organisms, such as 

wound healing, embryogenesis and gastrulation. In addition, they are also hijacked by tumor 

cells during neoplasia and metastasis. Initial studies on MET indicated and operated under the 

assumption that the two processes share a common regulatory network, and MET occurs as a 

natural outcome of EMT suppression or the removal of EMT inducing factors. Today, we 

recognize that MET is controlled by a core regulatory network distinct from EMT, which shows 

that it is a more complex and involved process than previously thought. 

To date, the limited number of studies performed on the regulation of MET have focused 

on protein-coding genes and transcription factors regulating their expression, and there has been 

no in-depth examination and analysis of the noncoding transcriptome during the process. Given 

the impact of long noncoding RNAs (lncRNAs) in chromatin remodeling, a key factor of 

cellular reprogramming events, as well as other modes of gene upregulation and silencing, 

understanding the changes that occur in lncRNA levels during the MET process can yield 

invaluable information regarding its regulation. 

 

1.2. Aim of Study 

The study aims to determine the potential importance of noncoding transcriptome, 

specifically lncRNAs, for the MET process, as well as expand on the previously identified 

transcription network regulating MET. Therefore, we have used transcriptome assembly 

techniques to identify previously unannotated lncRNAs, and computational analysis methods 

to annotate the putative roles of the lncRNAs involved in the process. 

 

1.3. Hypothesis of Study 

The hypothesis of the study is that clusters of lncRNAs are preferentially expressed and 

potentially involved in MET, and their predicted functions in this process can be annotated via 

associations with previously annotated transcripts.  
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2. GENERAL INFORMATION 

 

2.1. Epithelial-Mesenchymal Transition (EMT) 

 Cellular morphology and differentiation is an important concept in the study of 

multicellular organisms, which, during their developmental process, grow from a single cell to 

a much higher number of specialized cells and the intercellular connections permitting their 

functions (Frankfurt, 1996; Hindley and Philpott, 2012). 

 Two major classes of cellular morphology are called epithelial cellular morphology and 

mesenchymal cellular morphology (Duval and 1844-1907, 1889). These distinct morphologies 

are established early during the development (Rossant and Tam, 2009), with epithelial cells 

being polarized and tightly bound to the extracellular matrix as well as surrounding cells, and 

mesenchymal cells having no polarized cellular directionality, and having the capacity to break 

down extracellular matrix and maintain mobility within the matrix. However, these established 

morphologies are not static throughout an organism’s lifetime once established (Maccarty and 

Caylor, 1922; Slack and Tosh, 2001). The ability of a cell to transition between morphologies 

or lineages is called phenotypical plasticity, which is a vital trait for the survival of multicellular 

organisms. 

 Epithelial-mesenchymal transition (EMT) is a process that is a part of cellular plasticity. 

During EMT, the major phenotypical changes are loss of cellular junctions (Le Bras, 

Taubenslag and Andl, 2012) and apical-basal polarity (Ozdamar et al., 2005; Aigner et al., 

2007; Moreno-Bueno, Portillo and Cano, 2008), reorganization of the cytoskeleton, and 

increase in cellular motility. Underlying these changes are a number of cellular reprogramming 

events and alterations to gene expression (Reik, Dean and Walter, 2001). The genes upregulated 

during EMT are considered to be mesenchymal morphology markers. 

 One of the key events of EMT is the cleavage and subsequent degradation of epithelial 

cadherin (E-cadherin) at the plasma membrane (Peinado, Portillo and Cano, 2004). Coupled 

with the loss of further regular E-cadherin expression and localization of any ectopically 

expressed E-cadherin to the membrane, this causes a breakdown of cell-cell junctions. Changes 

to E-cadherin are considered to be the primary marker of a bona fide EMT process, as 

determined by changes in transcript levels (via microarray or RNA sequencing) and cellular 

localization (via immunostaining, Fig. 1). 
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Fig. 1.Fluorescent microscopy images of epithelial and mesenchymal cells. 

The images are before TGFB treatment, 72 hours after TGFB treatment and 72 hours after 

TGFB is removed. Vehicle cells display epithelial morphology, with E-cadherin expressed and 

localized in the membrane. TGFB3 cells display mesenchymal morphology after 72 hours of 

treatment with TGFB3, with intercellular connections and membrane localized E-cadherin not 

observed. PT (post-treatment) cells display a return to epithelial phenotype after TGFB3 is 

removed from the environment. 

 

 Cellular reprogramming events are maintained and regulated by core gene networks, 

and many of the genes in such networks share master transcription factors. The core regulating 

transcription factors of the EMT process include the SNAIL, TWIST and ZEB transcription 

factors (Lamouille, Xu and Derynck, 2014).  

 EMT is a major component of cellular plasticity in developmental biology, but it also 

has key roles in adult organisms. One process where EMT is involved in is wound healing. 

Early stages of wound healing show events typical of EMT (Kim et al., 2017), and both 

processes share one possible inducer agent, transforming growth factor beta (TGFB) (Tan, 

Olsson and Moustakas, 2015; Gilbert, Vickaryous and Viloria-Petit, 2016). In both cases, 

aberrant TGFB signaling can lead to detrimental conditions, i.e. fibrosis and tumorigenesis.  

 EMT is a crucial step of tumor growth, invasion and metastasis. There have been 136 

publications in the last five years covering the relationship between EMT and carcinogenesis 

as of May 2018. Two noteworthy reviews on the topic are the 2014 publication by Puisieux et 

al., which explains the potential pro-oncogenic roles of EMT-inducing transcription factors 

(Puisieux, Brabletz and Caramel, 2014), and the 2013 publication by Cervantes-Arias et al., 
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about the EMT as a critical process underlying tumor formation (Cervantes-Arias, Pang and 

Argyle, 2013). 

 

2.2. Mesenchymal-Epithelial Transition (MET) 

 Another important part of cellular plasticity, mesenchymal-epithelial transition (MET) 

is the complementary process to EMT. The phenotypical changes in MET are largely a direct 

reversal of the EMT process, such as relocalization of E-cadherin to the cytoplasmic membrane, 

reorganization of the cellular skeleton away from cortical actin stress fibers, formation of cell-

matrix adhesions and reassertation of cortical-basal polarity; however, the underlying gene 

regulation is more complex than the removal of EMT-inducing factors, and not as simple as 

reverse-EMT (Kim, Jackson and Davidson, 2017). 

 Previous studies regarding MET as a distinct event than the reversal of EMT are limited 

in both number and scope. Various studies have examined its importance during the re-

epithelialization step of wound repair (Hader, Marlier and Cantley, 2010), stem cell 

differentiation (Li et al., 2011) and metastasis (Han et al., 2012), but these studies have focused 

on the phenotypical changes of the cells rather than the epigenetic regulation of the 

programming. One noteworthy study on such regulation was conducted by Gregoire et al. in 

2016, which has been limited to the SMART pool siRNA library targeting 729 chromatin-

modifying genes in breast cancer (Gregoire et al., 2016). 

 This lack of in-depth examination makes dedicated studies of MET highly important for 

accurate understanding of the aforementioned processes. 

 

2.3. Long Noncoding RNAs (lncRNAs) 

RNA molecules are one of the primary identifiers of a cell’s biological identity, along 

with DNA molecules and proteins (Sul et al., 2009). The role of proteins in a cell and other 

biological systems is well-documented, as is the role of genomic DNA and messenger RNA in 

protein synthesis. As a result, most studies on biological systems focus on the properties of 

these three classes of molecules. Changes in protein abundance and localization in particular 

confer a great deal of information. 

With the advent of next-generation sequencing (NGS) methods, far more information 

regarding the content of the genome and the transcriptome is accessible to the scientific 

community than was with earlier methods. The relative ease, low cost and accessibility of NGS 
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in biological studies has led to the understanding that the coding genome and transcriptome are 

only a fraction of a larger, functional whole. Today, we know that the cell expresses a high 

number of mature transcripts from the genome that are not translated into proteins, yet have 

functions in the cell. These transcripts are collectively called the noncoding RNAs (Mattick, 

2001; Djebali et al., 2012). 

One family of noncoding RNAs is named long noncoding RNAs (lncRNAs). The 

members of this family are currently defined as transcripts of at least 200 nucleotides in length, 

possessing little to no protein coding ability (Rutenberg-Schoenberg, Sexton and Simon, 2016). 

Although this description is somewhat arbitrary and still under discussion, as shorter RNA 

chains have been classified as lncRNAs due to their roles in the cell, and some lncRNA 

transcripts contain open reading frames that are translated to short-lived peptides, it serves to 

differentiate them from shorter noncoding RNA families, such as microRNAs and short 

interfering RNAs, which serve other distinct roles in biological systems (Cech and Steitz, 

2014). 

Although the molecular functions of lncRNAs that have been discovered to date are not 

as varied as those of proteins, they still affect a variety of biological processes (Wang and 

Chang, 2011). One interesting feature of lncRNAs is their involvement in seemingly 

unconnected, sometimes antagonistic processes. One example of an early discovered lncRNA 

is Xist, which is known for its dosage compensation effect in mammals, silencing any extra X 

chromosomes in cells with multiple X chromosomes. It performs this function via polycomb 

repressive complex recruitment, transcriptionally inactivating the entire chromosome. Aberrant 

transcriptional activation of silenced X chromosomes via Xist knockout is implicated in certain 

cancers (Weakley et al., 2011). However, a study by Liang et al in 2017 has shown that actively 

transcribed Xist can promote tumorigenesis by binding two microRNAs, miR-140 and miR-

124, whose downregulation act as potential markers for pancreatic duct adenocarcinoma due to 

translational repression of inhibitor of apoptosis-stimulating protein of p53 (iASPP) (Liang et 

al., 2017). The activity of lncRNAs can be classified as cis-acting and trans-acting, as well as 

product-dependent and product-independent. Product-independent lncRNAs function through 

recruitment of the transcription complex, making the chromatin structure around the lncRNA 

gene locus more accessible, and are cis-acting lncRNAs, affecting the expression of genes 

proximal to its genomic position. Product-dependent lncRNAs can be either cis- or trans-acting, 

and can function via nucleic acid binding as well as protein binding (He et al., 2016). 
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A crucial trait of lncRNAs that makes them of specific interest for the EMT and MET 

processes is that a majority of lncRNAs are localized in the nucleus, and are involved with 

events such as chromatin remodeling or gene silencing, which indicates their potential 

importance in cellular reprogramming events (Bonasio and Shiekhattar, 2014; Zhang et al., 

2014). 

 

2.3.1. lncRNAs in EMT 

There have been previous studies on lncRNAs involved in or partnered with regulators 

of the EMT process. While these studies are at a relatively primitive stage compared to the 

studies focused on protein-coding genes, they have still provided a sizable amount of 

knowledge on the topic (Heery et al., 2017; Liao et al., 2017). 

The functions of lncRNAs involved in EMT are largely classifiable into two groups, 

although the memberships of these groups are not exhaustive. The members of the first group 

are polycomb recruiters, which recruit the polycomb repressive complex 2 (PRC2) to targeted 

areas on the genome, silencing the expression of genes in the region (Gupta et al., 2010; Kotake 

et al., 2011; Beckedorff et al., 2013). The second group comprises competing endogenous 

RNAs. The members of this group have high numbers of miRNA binding site repeats, acting 

as preferential binding targets for the miRNAs even in relatively low transcript counts. Their 

presence in the cell prevents miRNAs from binding to mRNA molecules, allowing their 

translation to proceed uninhibited (Tay et al., 2011; Pan et al., 2017; Tong et al., 2017). 

Depending on the interactions with partner molecules, and the specifics of the EMT 

process, lncRNAs can act as either pro-EMT or anti-EMT agents, with some examples capable 

of both promoting and inhibiting EMT in different conditions. 

Due to the limited number and scope of studies on MET, there is no comparable body of 

knowledge on lncRNAs in MET. 

 

2.3.2. Computational methods for lncRNA discovery and annotation 

2.3.2.1. Difficulties in experimental approaches in lncRNA research 

 One of the key reasons for the slow progress of lncRNA research is the difficulty of 

applying established experimental methods to lncRNA annotation. lncRNA transcripts are 

often highly condition- or tissue-specific, and tend to have low expression levels compared to 

mRNAs even under the conditions they show biological activity (Cabili et al., 2011). In 
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addition, lncRNA genes exist in higher numbers in mammalian genomes in comparison to 

protein-coding genes, but relatively few of them are expressed under any given condition (Iyer 

et al., 2015). 

 lncRNA genes and protein-coding genes can have overlapping regions, especially in the 

case of the antisense lncRNAs (Milligan et al., 2016; Raju, Tsinoremas and Capobianco, 2016), 

making methods such as site-directed mutagenesis infeasible, and associating other factors of 

the genomic region, such as transcription factor binding or chromatin structure, to the lncRNA 

instead of the protein-coding gene expression can be challenging. 

 Furthermore, due to the higher number of unannotated lncRNAs that might be 

candidates of interest for any biological phenomenon (Quek et al., 2015), and the frequent lack 

of a direct connection between lncRNA transcript sequence and lncRNA function (Washietl, 

Kellis and Garber, 2014; Hezroni et al., 2015), methods used for protein-coding gene 

annotation, such as overexpression, mutagenesis, or gene knockdown, can be costly and time-

consuming, and may not yield useful information on individual candidates (Signal, Gloss and 

Dinger, 2016). 

 It is therefore invaluable to narrow down the list of lncRNAs of interest as well as their 

properties before using experimental validation. Computational analysis of a cell’s 

transcriptome can help identify expressed lncRNA transcripts, even at low activity levels. Using 

the differential expression of such transcripts across a number of conditions provides further 

details about the lncRNA’s biological role in the cellular systems (He et al., 2016; Signal, Gloss 

and Dinger, 2016). 

 

2.3.2.2. Overview of predictive lncRNA annotation methods 

 The primary method utilized during lncRNA annotation is differential expression 

analysis. While it is insufficient by itself for detailed annotation of the genes, it is helpful for 

zeroing in on candidates, and is often necessary for the more common annotation methods. One 

such method is the “guilt-by-association” method, which is based on the idea that if two or 

more genes show similar expression patterns, they are likely to share regulators, and possibly 

an evolutionarily conserved relationship, or they might have similar functions and pathways 

(Stuart et al., 2003). Genome-wide clustering of the expression levels of putative lncRNAs and 

previously annotated genes will result in groups of genes that are enriched for a shared set of 

biological processes and functions, resulting in revealing information on the possible properties 
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of the unannotated transcript. In their 2018 article, de Jong et al. have described the use of the 

guilt-by-association method for identification of druggable targets in diffuse large B-cell 

lymphoma samples, identifying potential partners of CD20 in a genome-wide study in patients 

who had shown resistance to therapy including monoclonal antibodies targeting CD20 (De Jong 

et al., 2018). 

lncRNAs show much higher specificity compared to other RNAs, either in temporal 

expression (i.e. expression under specific conditions) or spatial expression (i.e. expression in 

specific tissues), and this specificity can point towards the biological context of the lncRNAs. 

In multiple tissue or timepoint experiments, methods such as the tau score can point out the 

sample showing preferential expression for the transcript of interest, which yields further 

insight than differential expression alone (Kryuchkova-Mostacci and Robinson-Rechavi, 

2017). 

 The epigenetic status of a lncRNA can also be highly informative, especially with 

intergenic lncRNAs, dividing them into promoter and enhancer lncRNAs, with the former 

having enriched H3K4me3 in their promoter region, and the latter having enriched H3K4me1 

instead of me3 (Marques et al., 2013). 

 An overview of the computational methods of lncRNA annotation are available in Fig. 

2. 
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Fig. 2. Overview of computational. lncRNA annotation methods. 

Figure adapted from Computational Approaches for Functional Prediction and 

Characterisation of Long Noncoding RNAs (Signal, Gloss and Dinger, 2016), under license 

number 4363511186842 (see Appendix 1). 

 

2.4. Next Generation Sequencing (NGS) 

 In nucleotide sequencing, one of the earliest breakthroughs was the advent of Sanger 

sequencing, described by Frederick Sanger and colleagues in 1977 (Sanger, Nicklen and 

Coulson, 1977). Based on the DNA polymerase inhibitory activity of dideoxyribonucleotides 

(ddNTP) when incorporated in a nucleotide chain in place of unmodified nucleotides (dNTP), 

Sanger sequencing allows for accurate sequencing of nucleotide chains by the synthesis of 
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prematurely terminated chains in an environment containing both dNTPs and a specific type of 

ddNTP, and examining the length of the chains by use of gel electrophoresis to determine the 

position of sites where the ddNTP substitution occurred. 

 Later advancements in sequencing technology have greatly increased the efficiency of 

sequencing in terms of both time and cost. Collectively referred to as “next generation 

sequencing”, these methods have greatly expanded the potential uses of nucleotide sequencing 

and the number of applicable systems where they can be utilized. For comparison, the Human 

Genome Project, which started in 1990, cost 2.7 billion USD and was completed in thirteen 

years in 2003 (Human Genome Project Completion: Frequently Asked Questions - National 

Human Genome Research Institute (NHGRI), no date). Today, the same amount of genomic 

data can be sequenced for less than 2000 USD and takes less than a week to perform, with the 

numbers rapidly lowering for “production-scale” sequencing (Specification Sheet: Sequencing, 

no date). 

 

2.4.1. Sequencing technologies and their applications 

There are multiple NGS approaches available today, based on various chemistries and 

analysis methods. One of the most widely used methods is the sequencing-by-synthesis (SBS) 

method utilized by Illumina sequencing technologies. Like Sanger sequencing, it is based on 

use of terminator nucleotides. However, unlike Sanger sequencing, the terminators used in SBS 

are reversible and bound to fluorescent labels unique for each base. While new strands of DNA 

are being synthesized based on the template to be sequenced, the sequencing instrument detects 

the fluorescent label added to the strand, and the sequence is thus identified (Specification 

Sheet: Sequencing, no date) (Fig. 2). 
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Fig. 3. Overview of Illumina “sequencing-by-synthesis” next-generation sequencing 

technology. 

Image courtesy of Illumina, Inc.’s primer to next-generation sequencing (An introduction to 

Next-Generation Sequencing Technology, no date). 

 

Alternative approaches include ion semiconductor sequencing and pyrosequencing, both 

based on the detection of the release of radicals from the added base during DNA strand 
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synthesis (hydrogen ions for ion semiconductor sequencing and pyrophosphate ions for 

pyrosequencing). 

The major advantage of these methods compared to Sanger sequencing is the ability to 

run sequencing reactions in a massively parallel fashion, greatly reducing the time required for 

large nucleotide sequences, such as whole genome or transcriptome sequencing. 

Different NGS technologies and platforms have various advantages and disadvantages. 

Among Illumina sequencers, the benchtop MiniSeq system has targeted gene expression 

profiling as a key application, but it cannot perform whole-transcriptome sequencing, which 

the benchtop NextSeq series can perform and the production-scale HiSeq series has as a key 

application (Sequencing Platforms | Compare NGS platforms (benchtop, production-scale), no 

date). 

The earliest application of NGS was as an alternative to Sanger sequencing for whole 

genome or whole exome sequencing. Today, the use of NGS in genome sequencing is most 

useful for SNP identification and individual genome sequencing, whether it is the genome of a 

patient in personalized medicine or a cell line of a previously sequenced model organism. Non-

model organism genome sequencing is also performed, although not as frequently as the above 

uses (da Fonseca et al., 2016). 

NGS can also be used to identify epigenetic modifications to a genome. DNA 

immunoprecipitation sequencing (DIP-seq) can be used to identify sites of cytosine methylation 

and hemimethylation on the genome (Weber et al., 2005; Shen et al., 2013), while ChIP-seq 

with antibodies targeted to modified histones can reveal promoter, enhancer or actively 

transcribed regions (Neff and Armstrong, 2009). 

One of the more common uses of NGS in recent years is transcriptome assembly and 

analysis, supplanting the previous use of microarray for gene expression research. The major 

advantage of NGS-based transcriptome research is the possibility of identifying novel 

transcripts and receiving data on the complete transcriptome of the system of interest, instead 

of only a limited number of previously selected genes (Marques et al., 2013). 

 

2.4.2. Transcriptome research with NGS analysis 

2.4.2.1. Basic raw data pre-processing and quality assessment 

 Raw read data obtained from the sequencing instrument is not suitable to immediate 

alignment. The presence of low-quality reads, base call errors causing insertions and deletions, 
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and adapter contamination means that the reads have to undergo pre-processing steps before 

analysis steps. FastQC is a tool commonly used for quality control on reads obtained from 

Illumina platforms (Andrews, 2018), but platform-neutral alternatives such as NGSQC are also 

available (Patel and Jain, 2012). Any reads or bases that would reduce the quality of the 

sequencing data, as well as adapter sequences introduced during library preparation PCR steps, 

can be removed with tools including Trimmomatic (Andrews, 2018) or FASTX-Toolkit 

(Hannon, 2018). 

 

2.4.2.2. Alignment of sequencing reads 

 After the pre-processing steps are complete, the RNA-seq reads can then be aligned to 

a reference sequence, if one is available (reference-free cases are covered under the next 

heading). There are two kinds of reference sequences for alignment: reference genomic 

sequences and reference transcriptomes. The reference of choice informs the alignment tool of 

choice, as well as how the data should be interpreted. RNA alignments to the genome are 

performed with gapped aligners, such as TopHat2 (Hannon, 2018), HISAT2 (Kim, Langmead 

and Salzberg, 2015), or STAR (Hannon, 2018). Different gapped aligners have varying rates of 

accuracy when the read to be aligned contains splice sites, polymorphisms or indels, and these 

should be taken into consideration if the research requires variant analysis and discovery. 

 Alignment to reference transcriptome is generally faster and more accurate than 

alignment to reference genome, but is only suitable for analysis of known transcripts. Such 

alignments cannot be used for discovery of novel transcripts or splice junctions, and lack variant 

analysis power (Garber et al., 2011). When aligning to the transcriptome, ungapped aligners 

such as Bowtie are used (Hannon, 2018). Multiple mapping reads are more common in 

alignment to transcriptome as a result of gene isoforms sharing exons, but being represented by 

separate regions on the transcriptome sequence. 

 

2.4.2.3. Transcriptome assembly and novel transcript discovery 

When identifying novel transcripts for analysis, it is necessary to assemble the 

transcriptome of the cell of interest. There are two main approaches to transcriptome assembly. 

These approaches are classified as “reference-free” (AKA de novo) and “genome-guided” 

(AKA ab initio) (Fig. 3). 
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Fig 4. Genome-guided and reference-free transcriptome assembly methods. 

Left side of the figure displays genome-guided transcriptome assembly flowchart, while right 

side of the figure displays reference-free transcriptome assembly. Figure adapted from 

Computational methods for transcriptome annotation and quantification using RNA-seq 

(Garber et al., 2011) under license number 4363520183733 (See Appendix 2). 

 

In both cases, the reads obtained from RNA-seq, which are often a fraction of a full-length 

transcript, are assembled into transcripts via overlapping end regions of the reads. Reference-

free assembly, as the name indicates, constructs the transcriptome based solely on the RNA 

reads, often using de Brujin graphs to identify isoforms of genes and splicing sites (Robertson 

et al., 2010). While this approach can be used with no information other than the read 
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sequences, it is computing power intensive and has a higher error rate compared to genome-

guided assemblies, producing misleading initial results containing chimera genes, missing 

alleles, gene fragments, etc., that require a more thorough quality checking process (Cahais et 

al., 2012). As such, it is usually reserved for working with organisms that lack reliable reference 

sequences for their genome or transcriptome. When working with established organisms, such 

as Mus musculus, it is preferable to utilize previous sequence assemblies, both genome and 

transcriptome. 

Genome-guided transcriptome assembly, instead of read sequences and de Brujin graphs, 

requires alignment files, containing information on the mapping of reads to the genome. When 

assembling a transcriptome in this fashion, the choice of mapper algorithm is crucial. Mature 

transcripts found in the cell’s transcriptome lack intronic sequences present on the genome, and 

the 5’ end and the 3’ end of a single read can map onto two bordering exons of a single intron, 

possibly several kilobases apart. For accurate mapping of such reads to the genome, we must 

use gapped aligners, also known as splice-aware or gap-aware, that can recognize potential 

splice sites to prevent large intronic sequences from creating false negatives when calculating 

the alignment scores (Garber et al., 2011). Unlike with de Brujin graphs, the reads are only 

compared against the single sequence of the reference genome, albeit a very large one, instead 

of the large numbers of RNA-seq read sequences, with full-length transcript sequences inferred 

from sections of the genome with multiple overlapping RNA-seq reads mapped during 

alignment. It is therefore less computationally intensive, and has a lower error rate (Trapnell et 

al., 2010). 

Once the transcriptome is assembled, it can be compared against previous annotated 

assemblies to locate any identified, previously un-annotated transcript candidates. This 

candidate pool can be further refined into a pool of putative lncRNAs by applying several 

filters. These filters include removing any transcripts shorter than 200 nucleotides or possessing 

open reading frames coding for more than 100 aminoacids, as well as showing homology to 

known protein domains and housekeeping RNAs (Li et al., 2014; Liao et al., 2017). 

 

2.4.2.4. Transcript / Gene quantification and Differential Expression Analysis 

 For the majority of novel transcript annotation methods, the expression levels of the 

transcript in systems of interest must be calculated. The count of reads aligning to a given gene 

(if aligned to the genome) or transcript (if aligned to the transcriptome) can be potentially 
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misleading due to various factors. The primary skewing factor is the sequencing depth of the 

data (Liu et al., 2013; Kim et al., 2015). A uniform sequencing depth is preferable if the 

sequence data is produced during a single research, but it is not always feasible, especially when 

working with publicly available data. In addition, the length of the transcript will also affect the 

count of reads aligned, with longer transcripts naturally having a higher number of reads 

mapped compared to shorter transcripts, even at similar effective expression levels. 

 To solve these problems, the expression levels of transcripts are stated in alternative 

terms such as Fragments Mapped per Kilobase of Transcript per Million Mapped Reads 

(FPKM), normalizing the numerical values to more accurate representation of the transcript 

levels. Other normalized values are referred to as Reads Mapped per Kilobase of Transcript per 

Million Mapped Reads (RPKM) and Transcripts per Million Reads (TPM) (Mortazavi et al., 

2008). FPKM and RPKM are largely similar in terms of normalization method. The main 

difference between the two values arises from single-end read sequencing versus paired-end 

read sequencing. In paired-end reads, each fragment in FPKM equals the overlapping region of 

a read pair mapping onto the genome, and as such the FPKM value of any given transcript in 

paired-end sequencing is expected to be below half of the RPKM value; for single-end 

sequencing, the two values are expected to be equal (Pachter, 2011). 

 There is a high number of software available for transcript quantification, such as 

Cufflinks (Hannon, 2018), RSEM (Hannon, 2018), and StringTie (Pertea et al., 2015). These 

software are often designed to work optimally with specific aligners or types of aligners, such 

as HISAT and StringTie (Kim et al., 2016), or RSEM and ungapped aligners such as Bowtie 1. 

Once the quantification is complete, the resulting data can be analyzed with a number of 

statistics software or packages, such as DEseq (Love, Huber and Anders, 2014), which works 

with non-normalized data, or Ballgown (Frazee et al., 2014), which works with normalized 

data, to identify the differential expression patterns of the transcripts. 

 

2.4.2.5. Construction of co-expression networks for lncRNA research 

As previously stated, simple expression quantification and differential expression 

analysis is generally insufficient for lncRNA analysis. With multiple samples sequenced and 

quantified, however, genes showing similar expression patterns across the samples can be 

clustered together, based on the guilt-by-association principle explained above. 
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To form a co-expression network where the guilt-by-association principle can be applied, 

it is vital to normalize the fluctuations in expression levels of the transcripts across samples, 

such as by converting FPKM values into Z-scores, the distance of each sample from the mean 

in terms of the standard deviation of the transcript expression levels (Zhang and Horvath, 2005). 

This is to remove any bias that might stem from low levels of fluctuation in otherwise highly 

expressed genes. Afterwards, the distributions of each transcript can be compared with the rest 

by calculating the distance or correlation of each pair. 

Once the correlation scores are calculated, the genes can be formed into a co-expression 

network, with edges between the gene nodes based on the calculated scores (Stuart et al., 2003). 

There are two classes of such co-expression networks: unweighted networks and weighted 

networks. For unweighted networks, the predicted connections between the genes are identified 

in a straightforward fashion. As the correlation scores range from -1 to 1, with values further 

away from 0 (i.e. with a higher absolute value) indicating stronger relationships between the 

genes, either negative or positive, genes with absolute correlation scores higher than a cut-off 

value are considered connected (Fig. 3). 

 

Fig. 5. Representation of unweighted gene co-expression network formation based on toy 

data. 
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Figure courtesy of S. Mohammad H. Oloomi, shared under a GNU Free Documentation 

License. 

 

In comparison to unweighted correlation networks, weighted correlation networks do not 

implement a hard correlation threshold to determine potential gene relationships. Such 

weighted correlation networks are based on methods similar to those used in hierarchical 

clustering (Zhang and Horvath, 2005). One of the software tools used for weighted correlation 

network construction and analysis is WGCNA (Langfelder and Horvath, 2008), which allows 

users to group genes into modules based on their co-expression. These modules can then be 

further analyzed for more in-depth biological information. The major advantage of weighted 

correlation networks for novel transcript analysis is the possibility of predictive annotation 

based on module membership. Once the modules in a given transcriptome are identified, 

members lacking annotations in every module can be studied in terms of the module’s overall 

functional enrichment information based on the previously annotated members, intramodular 

connectivity, and hub gene identification. One  previous study that has included WGCNA as a 

core method has identified various transcriptional modules correlated with hepatocellular 

carcinoma using publicly available microarray datasets (Xu et al., 2016). 
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3. MATERIALS AND METHODS 

 

3.1. Type of Study 

The study pursues an analytical and computational approach. 

 

3.2. Time and Place of Study 

The study was conducted at İzmir Biomedicine and Genome Institute, between December 

2017 and May 2018. 

 

3.3. Materials of Study 

 The study was performed using raw RNA-seq reads obtained from a time course 

experiment spanning 72 hours of EMT and 72 hours of MET. The EMT process was induced 

in NMuMG cells in plated culture using 72 hours of TGBF3 treatment. The MET process was 

induced by washing TGFB3 from the cell medium and replating the mesenchymal cells. 

Samples were obtained at the beginning and at the end of the EMT process (hereafter referred 

to as Vehicle and TGFB72, respectively), as well as 3 hours, 6 hours, 9 hours, 18 hours, 24 

hours, 36 hours, 48 hours and 72 hours after the start of the MET process (hereafter referred to 

as PT3, PT6, PT9, PT18, PT24, PT36, PT48 and PT72, respectively). Reads were sequenced 

from whole transcriptome libraries of the samples depleted for ribosomal RNAs. The reads 

were produced prior to this study using an Illumina HiSeq 2500 platform, using a single-end 

sequencing method. 

  

3.4. Variables of Study 

The timepoints of the RNA-seq reads obtained from the NMuMG cell model of EMT and 

MET are independent variables. The expression values of identified transcripts are dependent 

variables. The transcripts identified as previously unannotated lncRNAs are also dependent 

variables. 

 

3.5. Tools for Data Collection 

All data collection and processing operations were conducted on an Intel® Core™ i7-

4820K Processor, 64 GB RAM and 256 GB hard disk computer with Ubuntu release 17.04 

operating system installed. 
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3.6. Study Plan and Calendar 

 
 

3.7. Data Evaluation 

3.7.1. RNA-seq run data quality control and adapter sequence removal 

The raw read data obtained was filtered for low-quality reads using the FastQC software, 

and adapter sequences were removed from the reads with the Trimmomatic software. 

 

3.7.2. Alignment of short reads to reference mouse genome 

 The whole genome FASTA sequence file of Genome Reference Consortium Mouse 

Build 38, under the name mm10 as used by the University of California, Santa Cruz, as well as 

associated reference and index files, were acquired from Illumina’s iGenomes reference 

website. To align reads from RNA-seq to the reference genome, HISAT2, a splice-aware 

December 2017 
Read alignment and transcriptome 

construction

January 2018
Differential Expression Analysis

January - February 2018
Putative lncRNA identification

February - April 2018
Network construction and lncRNA 

annotation

April - May 2018
Writing the thesis manuscript
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alignment tool, was selected for its speed, low memory requirements and accuracy (Kim, 

Langmead and Salzberg, 2015). The mm10 reference was genome was indexed from the whole 

genome FASTA file using hisat2-build indexer (hisat2-build <FASTA file> <index>), and each 

read file was aligned to the genome using the resulting index and hisat2 single-end alignment 

algorithm (hisat2 -x <index> -U <reads> --dta -S <SAM file> -p 6) , using the default alignment 

scoring settings. The resulting SAM files were converted to coordinate-sorted BAM files using 

samtools view and sort utilities (samtools view -b -o <BAM file> -@ 6<SAM file>; samtools 

sort -o <sorted BAM file> -@ 6 <BAM file>), and the final sorted BAM file was indexed with 

use of samtools index (samtools index <sorted BAM file> <BAI index file>). 

 

3.7.3. De novo transcriptome assembly and comparison to reference transcriptome 

StringTie, a software that can assemble aligned RNA-seq reads into potential transcripts, 

was used for identification of known and novel transcripts (Pertea et al., 2015). The reads in 

each alignment file obtained from the previous step was assembled into a GTF file containing 

information about possible transcripts, including any relevant annotation within the gene 

information file obtained from iGenomes (stringtie -G <reference GTF> -o <output 

transcriptome GTF> -p 6 <sorted BAM file>). The resulting transcript files were merged into 

a non-redundant genome-guided de novo transcript assembly using StringTie’s merge 

functionality (stringtie --merge -G <reference GTF> -o <merged transcriptome GTF> -p 6 <list 

of input transcriptome GTFs>). Using the gffcompare utility (Pertea and Kirchner, 2016), the 

assembled transcriptome was compared to the reference transcriptome information (gffcompare 

-r <reference GTF> -G -o <merge prefix> <merged transcriptome GTF>. Of special note were 

the transcripts marked with class codes u and x, representing intergenic and antisense 

transcripts, respectively. The transcript abundances were estimated and written into tables for 

downstream analysis (stringtie –e –B -p 6 -G <merged transcriptome GTF> -o <output 

transcriptome GTF> <sorted BAM file>). A flowchart of the computational steps performed up 

to this point are included in Figure 6. 
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Fig. 6. Flowchart of computational RNA-sequencing data processing methods. 

 

3.7.4. Applying filters to found transcripts to identify putative lncRNAs 

The transcripts marked u and x during the comparison to reference annotation were 

subjected to further filters to determine their potential status as putative lncRNA transcripts. 

The methodology used was adapted from Li et al.’s 2014 paper (Zhu et al., 2012). To reiterate, 

the transcripts were first selected for size, choosing only those that are 200 nucleotides or longer 

in length. Afterwards, the chosen transcripts were checked for open reading frames (ORF) 

coding for 100+ aminoacids, using TransDecoder, a coding region prediction software (Haas 

and Papanicolaou, no date). In addition, more than 90% of the proteins found in cells are longer 

than 100 aminoacids (Frith et al., 2006). Following the ORF filter, the transcripts were checked 

for homology against the Swiss-Prot database (Bateman et al., 2017) using a locally maintained 
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BLAST database mirror, using blastx with an E value cutoff of 0.01. Finally, the transcripts 

were aligned against the Rfam database of RNA families (Kalvari et al., 2018) using Infernal, 

an RNA alignment inference tool (Nawrocki and Eddy, 2013), to rule out housekeeping RNAs 

and microRNA precursors. 

 

3.7.5. Quantification of lncRNA expression levels 

The transcripts identified as putative lncRNAs, as well as the remaining transcripts in the 

StringTie output, were quantified and checked for differential expression using Ballgown, a 

transcript differential expression analysis toolkit (Frazee et al., 2014) housed in the R statistical 

computing environment. The previously annotated transcripts were further classified into 

protein-coding transcripts, annotated lncRNA transcripts, and other transcripts, using only the 

former two classes in addition to the putative lncRNA transcripts in further analysis. During 

this step, any transcripts that could be classified as transcriptional noise were also filtered out 

of the transcript pool used in downstream steps. For this purpose, transcriptional noise was 

arbitrarily defined as transcripts that do not show significant expression levels (³ .5 FPKM for 

lncRNA transcripts, ³ 1 FPKM for protein-coding transcripts) in both biological replicates of 

at least one time point.  

 

3.7.6. Weighted gene co-expression network analysis 

To identify potential partners of the putative lncRNAs, WGCNA, an R package that 

calculates weighted correlation networks based on gene expression values (Langfelder and 

Horvath, 2008), was used to analyze the expression data. A dendrogram of the samples was 

created using the UPGMA (“average”) hierarchical clustering to visualize the distance of 

samples from the others in terms of their gene expression profiles, and identify any potential 

outlying samples that could skew downstream analysis steps. All samples were found to be 

within expected distance of each other. Based on the scale-free topology fit index, a soft-

thresholding power of 5 was calculated for use in adjacency matrix formation. The genes were 

then placed into modules using the blockwiseModules function of WGCNA, based on their 

adjacency values in the unsigned correlation network. A total of 30 modules were identified, 

with genes that do not correlate to any modules placed into a 31st module that was not used for 

further analysis. The functional annotation enrichment of the modules was performed based on 
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their previously annotated gene members, using the DAVID annotation analysis database 

(Huang, Sherman and Lempicki, 2009b, 2009a). 

 

3.7.7. Identification of timepoint specific lncRNAs 

 A combination of ROKU and Tau scores were used to calculate the timepoint specificity 

of lncRNA expressions (Kryuchkova-Mostacci and Robinson-Rechavi, 2017). The ROKU 

command of the R package TCC was used for ROKU calculations (Sun et al., 2013), and 

lncRNAs having a value of 1 in only a single timepoint in the outlier output data frame were 

selected as being timepoint specifically upregulated. Tau scores for the genes were calculated 

using a custom script. 

 

3.8. Limitations of Study 

 The findings are limited to the transcriptomic content of the cell model used, as well as 

by the algorithms of the analysis software. In addition, any findings are predictive in nature, 

and will need to be validated in biological systems using experimental studies. 

 

3.9. Ethics Committee Approval 

 No ethics committee approval was required or requested due to the purely 

computational scope of the study. 
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4. RESULTS 

 

4.1. Alignment and transcriptome assembly 

Using the flagstat tool of the samtools toolkit, the alignment files produced by HISAT2 

were checked for read count of each sample, as well as mapped alignment percentages. The 

minimum mapped read percentage was 89.78%, within acceptable parameters, with a maximum 

mapped read percentage of 95.70% and a mean mapped read percentage of 93.42% The sample-

specific assembled transcriptomes were examined for the transcript counts of each sample. As 

a result, an alignment and transcriptome profile table of the samples was constructed (Table 1). 

Table 1. Evaluation of read alignment and transcriptome reconstruction for each sample of the 

EMT-MET time course experiment. 

Timepoint Replica 
Total Read 

Count 

Mapped Read 

Count 

Mapped Read 

Percentage (%) 

Identified 

Transcript Count 

Vehicle 
1 52398642 47670200 90.98 27270 

2 65219227 60733347 93.12 26921 

TGFB72 
1 54055483 51039095 94.42 26296 

2 49087043 45793849 93.29 26882 

PT3 
1 49184276 46098787 93.73 26264 

2 45094310 42360048 93.94 25845 

PT6 
1 46558670 43907693 94.31 25514 

2 50351163 47453710 94.25 26969 

PT9 
1 54743048 52035832 95.05 26742 

2 52603659 47422740 90.15 26074 

PT18 
1 49406248 46752389 94.63 26421 

2 65219227 60733347 93.12 26921 

PT24 
1 50080883 47490713 94.83 26296 

2 49087043 45793849 93.29 26882 

PT36 
1 56713869 54057626 95.32 27106 

2 47103170 43686797 92.75 26889 

PT48 
1 60911333 57289437 94.05 27212 

2 42842736 41000704 95.70 26400 

PT72 
1 68654537 61640017 89.78 27308 

2 61034582 55972681 91.71 27193 

Average 53517457.45 49946643.05 93.42 26670.25 

 

The merged transcriptome had a total transcript count of 57210 before comparison to the 

reference mouse genome annotation (UCSC mm10). After the use of gffcompare utility tool, 

the number was reduced to 56393 transcripts. Given that multiple transcripts can map onto the 

same gene on the genome, the resulting tmap file was examined in further detail. Of the 56393 
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transcripts, 53923 were found to align with a total of 24261 previously annotated genes, both 

coding and noncoding. The remaining 2470 transcripts were classified into 2359 previously 

unannotated genes, which are either intergenic in comparison to known genes, or found on the 

anti-sense strand of one or more previously annotated exons. 

 

4.2. Known and previously unannotated lncRNAs 

The 2359 transcripts identified in the previous section were then subjected to further 

filters, such as size selection and similarity to known housekeeping RNAs, as explained in 3.5.4. 

As a result, a final pool of 593 putative lncRNA genes coding for 608 transcripts was identified. 

The genomic context of the identified lncRNAs, both previously unannotated and known, 

were subjected to further analysis. The highest number of lncRNA genes was on chromosome 

2 (Fig. 7A) while the highest concentration of lncRNA genes (i.e. number of lncRNA genes per 

hundred million base pairs of chromosome) was in chromosome 11 (Fig. 7B). The number of 

lncRNA genes per chromosome has a 0.71 Pearson Correlation Coefficient with chromosome 

size (p < 0.001). 
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B.
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Fig. 7. Barplots showing count (A) and density (B) of lncRNA genes on canonical mouse 

chromosomes. 

“Normalized lncRNA Counts” value represents number of lncRNA genes per hundred million 

base pairs on chromosome. Number of lncRNA genes per chromosome has a 0.71 Pearson 

Correlation Coefficient with chromosome size (p < 0.001). 

  

In addition to the 608 putative lncRNA transcripts, there were 159 transcripts coding for 

annotated lncRNAs, for a total of 767. The majority of putative lncRNAs were single-exon 

transcripts, while the annotated transcripts clustered around 2- and 3-exon transcripts (Fig. 8). 

 

 

Fig. 8. Barplot representing the exon count distribution of lncRNAs expressed in at least 

one timepoint during the EMT-MET processes. 

Red bars indicate previously annotated lncRNA genes. Turquoise bars indicate putative 

lncRNA candidates. Majority of high exon count (exon number ³ 5) lncRNAs have previously 

been annotated. Largest fraction of previously unannotated genes are single exon transcripts, 

likely due to difficulty of experimental validation of such genes. 



 31 

One previously annotated lncRNA, 5430416N02Rik, was visualized on Integrated 

Genome Viewer to confirm the validity of read mappings (Fig. 9). As the figure indicates, the 

reads largely map onto exonic sequences, with much lower coverage of intronic sequences, 

showing that the alignment was largely successful. 

 

Fig. 9. Coverage and read mapping visuals of annotated lncRNA, 5430416N02Rik. 

Upper portion represents coverage, lower portion represents reads. Blue lines on the lower 

portion represent single reads from transcript covering two exons. Coverage is highest in exonic 

sequences. Blue lines between ends of sequencing reads align to intronic sequences, showing 

spliced out sites present on the genome, but absent in mature transcripts. 

 

4.3. Expression profiles of known and previously unannotated lncRNAs 

 The expression profiles of the samples were visualized, specifically in terms expression 

level distribution per gene type (Fig 10). As expected, the average expression levels of lncRNA 

transcripts were lower than protein-coding transcripts. However, given the high number of 

relatively lowly expressed protein-coding genes in cells, a number of outlier lncRNA transcripts 

had expressions much higher than the average of protein-coding gene expression. 
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 To visualize the expression patterns of the transcribed lncRNAs, a heatmap was 

constructed. As expected, a majority of the lncRNAs displayed dynamic expression patterns 

across the course of the EMT-MET process (Fig. 11) 

 

Fig. 11. Heatmap representing the expression variances of all lncRNA transcripts. 

Red cells represent high expression compared to other timepoints, while green cells represent 

low expression. Black cells indicate expression equal to the average of all time points, with 

bright red and bright green cells being up to 3 standard deviations higher or lower in expression 

than the mean, respectively. Dendrogram on the left generated by using Ward’s clustering. 

 

 Using principal component analysis and hierarchical clustering methods, the samples 

were analyzed in terms of the distance of their expression profiles from each other to identify 

any possible outliers. The clusters were formed using Euclidean distance. 

The dendrogram plot of the hierarchical clustering showed that the second replica of PT9 

was a strong outlier among the analyzed samples, with a merge point of 8000+, while the 

remaining samples had a maximal merge point of 5000+. (Fig. 12). The sample was removed 

from following analysis steps in order not to skew the results. 
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Fig. 12. Dendrogram representing clustering of analyzed samples based on their 

intersample distances. 

Samples were clustered using a hierarchical clustering of their Pearson correlations, using the 

average clustering method. PT9.2 sample was removed as an outlier using a cutoff excluding 

any samples with a height greater than 6000, as represented by the red line. 

 

The remaining samples were found to be arranged as expected on the primary principal 

component, with the timepoints displaying epithelial morphology (Vehicle and PT72) being on 

the opposite end of PC1 from the timepoint displaying mesenchymal morphology (TGFB72), 

with the remaining timepoints showing regression towards the epithelial end throughout the 

course of the MET process (Fig. 13). In the figure, PC1 accounts for the majority of the variance 

between samples, and 41.14% of the variance is unexplained. The distance between the Vehicle 
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samples and the PT72 samples likely indicates that the full epithelial morphology and 

expression profile is not yet present in PT72. The regression of the samples between Vehicle 

and TGFB72 indicates that the transition process occurs gradually across the 72 hours of the 

time course experiment, rather than taking place at a single timepoint.  

 

Fig. 13. Principal component analysis plot of variance between analyzed samples. 

Epithelial phenotype samples are located on the left (Vehicle.1, Vehicle.2, PT72.1, PT72.2), 

while mesenchymal phenotype samples are located on the right (TGFB72.1, TGFB72.2). PC1 

corresponds to the transcriptomic variance between epithelial and mesenchymal cells, as the 

largest contributor to total variance. The exact cause of PC2, primarily seen in the gap between 

Vehicle and PT72 cells, is unknown. 

 

 Of the lncRNAs expressed in the samples, the highest expression level belonged to 

Malat1, with a mean FPKM of 882.03 in the Vehicle samples, and an FPKM of 1634.54 in 

replica PT72.1 (Fig.14). However, the highest variance in sample averages was in putative 

lncRNA, NH.1987, with a standard deviation of 4.006, a transcript that is only commonly 

expressed in both replicas in the PT9 samples (Fig. 15). 
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Fig. 14. Expression profile of known lncRNA Malat1. 

Timepoints represent average expression of both replicas. Points on the line indicate log2-

transformed FPKM values at specific timepoints. Highest expression seen in Vehicle samples, 

with an average FPKM of 882.03. 

 

Fig. 15. Expression profile of previously unannotated lncRNA NH.1987. 
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Timepoints represent average expression of both replicas. Points on the line indicate log2-

transformed FPKM values at specific timepoints. Highest mean expression seen in PT9 

samples. 

 

Seven of the 50 lncRNAs with highest variance showed high downregulation or lack of 

expression in a single timepoint (Fig. 16). 

 

Fig. 16. Heatmap representing the expression variances of 50 lncRNA transcripts with 

highest variance. 

Red cells represent high expression compared to other timepoints, while green cells represent 

low expression. Black cells indicate expression equal to the average of all time points, with 

bright red and bright green cells being up to 3 standard deviations higher or lower in expression 

than the mean, respectively. Dendrogram on the left generated by using Ward’s clustering. 

 

 To predict lncRNAs that might positively contribute to the maintenance or reacquisition 

of the epithelial morphology, lncRNAs that show higher than 1.5 fold enrichment at any given 

timepoint compared to the expression level of TGFB72. A total of 221 lncRNAs were identified 

as upregulated in Vehicle or MET samples (Fig. 17). 
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Fig. 17. Heatmap representing lncRNAs with positive contributions to the epithelial 

phenotype. 

Red cells indicate transcripts upregulated in a timepoint compared to the mesenchymal 

phenotype. Cell values represent log2 of the ratio of transcript expression in timepoint 

compared to the expression of same transcript in TGFB72 samples. White cells indicate 

expression equal to the TGFB72 samples, with bright red and bright green cells being up to 20 

levels of magnitude higher or lower in expression than TGFB72 expression, respectively. 

Dendrogram on the left generated by using Ward’s clustering. 

 

 After the expression level analysis of the lncRNA genes were performed, the results 

were combined with genomic coordinate data to create a Circos plot representing the noncoding 

transcriptomic landscape of the time course experiment (Fig. 18). 
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Fig. 18. Circos plot displaying the genomic coordinates and expression patterns of 

putative and annotated lncRNAs during the EMT-MET experiment. 

From the innermost to the outermost (excluding the karyotype bands), the circles correspond to 

Vehicle, B72, PT3, PT6, PT9, PT18, PT24, PT36, PT48 and PT72. Bars in the inner circles 

represent lncRNA transcript location and expression level. Red bars represent highly expressed 

transcripts, while black bands represent lowly expressed transcripts.  

 

4.4. Differential expression analysis of total lncRNA 

 The lncRNA transcripts were examined with Ballgown’s stattest command for 

statistically noteworthy differentially expressed genes. As a result, 75 lncRNA genes were 
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discovered to have a differential expression pattern with a p- or q-value lower than .001, 70 of 

which were previously unannotated lncRNAs (Table 2). 

Table 2. lncRNA genes with high differential expression patterns during EMT-MET 

Gene ID P value q value 

3110009F21Rik 0.00023877 0.01995703 

B230217O12Rik 0.00965488 0.05063333 

C330013E15Rik 0.00564824 0.04145879 

Gm19589 0.00366885 0.03735155 

Gm4961 0.00032066 0.02140844 

nmumgHani.10162 0.00225609 0.03222648 

nmumgHani.10185 0.00382036 0.03768978 

nmumgHani.10257 0.00062999 0.02451894 

nmumgHani.10532 0.003843 0.03769602 

nmumgHani.10866 0.0086361 0.04819055 

nmumgHani.1088 0.00230785 0.03234918 

nmumgHani.10917 0.00333275 0.03627914 

nmumgHani.11127 0.00565067 0.04145879 

nmumgHani.11293 0.00044881 0.02261959 

nmumgHani.1132 0.00804142 0.04700911 

nmumgHani.12572 0.00938812 0.04990896 

nmumgHani.12783 0.00766054 0.04628964 

nmumgHani.13622 0.00433424 0.03878368 

nmumgHani.13891 0.00077926 0.02554342 

nmumgHani.14060 0.00732248 0.04538037 

nmumgHani.14694 0.00232237 0.03239031 

nmumgHani.15138 0.00672403 0.04413224 

nmumgHani.16014 0.00492201 0.03963535 

nmumgHani.16378 0.00137129 0.0291501 

nmumgHani.1665 0.00313767 0.03563981 

nmumgHani.16736 0.00447879 0.03883637 

nmumgHani.16741 0.00038249 0.02209387 

nmumgHani.1682 0.00230732 0.03234918 

nmumgHani.197 0.0017416 0.03050853 

nmumgHani.2431 0.00623941 0.04302838 

nmumgHani.2616 0.00205647 0.03165211 

nmumgHani.272 0.00381136 0.03768978 

nmumgHani.2767 0.0030885 0.03534156 

nmumgHani.2792 0.00116415 0.02757942 

nmumgHani.3282 0.00219682 0.03197819 
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nmumgHani.3338 0.00309775 0.03538836 

nmumgHani.4179 0.00415485 0.03834572 

nmumgHani.4470 0.00429371 0.03874546 

nmumgHani.4472 2.48E-05 0.01460339 

nmumgHani.4795 0.00962549 0.05049209 

nmumgHani.4796 0.00029373 0.02048028 

nmumgHani.5507 0.00395745 0.03789225 

nmumgHani.5626 0.00516445 0.04012289 

nmumgHani.6031 0.00536981 0.04074583 

nmumgHani.6170 0.00986233 0.05111954 

nmumgHani.6185 0.00804736 0.0470241 

nmumgHani.6251 0.00704146 0.04477278 

nmumgHani.6562 0.00569142 0.04157463 

nmumgHani.6735 0.00755311 0.04600549 

nmumgHani.7296 0.00228692 0.03229758 

nmumgHani.7499 0.00880825 0.04863698 

nmumgHani.7532 0.00836554 0.04771724 

nmumgHani.7535 0.00525996 0.04041871 

nmumgHani.7665 0.00739564 0.04564122 

nmumgHani.7799 0.00560837 0.04134993 

nmumgHani.7944 0.00787302 0.04670577 

nmumgHani.7997 0.00874849 0.0485547 

nmumgHani.8206 0.00372536 0.03751077 

nmumgHani.8208 0.00215487 0.03192394 

nmumgHani.8297 0.00321663 0.03589248 

nmumgHani.8305 0.00600731 0.042435 

nmumgHani.844 0.000374 0.02209387 

nmumgHani.8440 0.00050491 0.02352634 

nmumgHani.8452 0.00091292 0.02614542 

nmumgHani.8509 0.00397318 0.03790111 

nmumgHani.852 0.00389772 0.03779624 

nmumgHani.8589 0.00146287 0.02963673 

nmumgHani.9018 0.00544646 0.04096799 

nmumgHani.9166 0.00014075 0.01808889 

nmumgHani.9356 0.00106469 0.0271125 

nmumgHani.9690 0.0011702 0.02762549 

nmumgHani.9857 0.00639436 0.04347181 

nmumgHani.986 0.00936704 0.04987277 

nmumgHani.989 0.00977599 0.05095293 

nmumgHani.9981 0.0077198 0.0464023 
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4.5. Weighted co-expression network formation and module membership 

Out of 31970 transcripts identified as belonging to protein-coding or lncRNA genes 

(putative or previously annotated) that showed notable expression in both replicas of at least 

one timepoint (³ .5 FPKM for lncRNAs, ³ 1.0 FPKM for protein-coding genes), 11261 of them 

were removed before clustering due to zero-variance observed in their expression values across 

samples. The remaining 20709 transcripts were assigned to 30 modules that display internal 

similarity in terms of their clustering, with 245 of these transcripts not showing strong 

correlation with the modules and being left out of module membership. An unsigned adjacency 

network was calculated from the remaining transcripts. maxBlockSize was arbitrarily set as 

25000, larger than the data set given, to create an unbounded module block size. The soft 

thresholding power was selected as 5. The minimum module size was set at 30 members (Fig 

19). Table 3 shows the gene membership properties of each module. 

 

Fig. 19. Dendrogram of all transcripts identified in the samples and their module 

membership represented by colors. 

Each branch in dendrogram represents expression profile of a specific transcript across the 

timecourse experiment. Module colors are assigned based on similarities between the 

connections of different genes with neighboring genes using average hierarchical clustering. 
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Table 3. Transcript count per module divided by gene type (protein-coding, annotated lncRNA, 

previously unannotated lncRNA, total lncRNA, total gene). 

 

4.6. Module-wise gene ontology enrichment 

To identify the potential niches of any previously unannotated lncRNAs found in the 

modules, the annotated members of each module were used for functional annotation 

Module 
Known 

lncRNA Count 

Putative 

lncRNA Count 

Protein Coding 

Gene Count 

Total lncRNA 

Count 

Total Gene 

Count 

Turquoise 53 126 2412 179 2591 

Blue 40 71 1520 111 1631 

Brown 43 57 1443 100 1543 

Yellow 34 44 1383 78 1461 

Green 14 30 823 44 867 

Red 11 48 794 59 853 

Black 28 24 666 52 718 

Pink 22 15 657 37 694 

Magenta 9 26 649 35 684 

Purple 22 13 635 35 670 

Greenyellow 23 20 607 43 650 

Tan 20 23 584 43 627 

Salmon 21 19 574 40 614 

Cyan 18 20 533 38 571 

Midnightblue 17 9 533 26 559 

Lightcyan 16 21 519 37 556 

Grey60 19 7 512 26 538 

Lightgreen 14 19 491 33 524 

Lightyellow 19 17 448 36 484 

Royalblue 18 13 448 31 479 

Darkred 18 20 409 38 447 

Darkgreen 11 11 412 22 434 

Darkturquoise 12 2 408 14 422 

Darkgrey 10 8 393 18 411 

Orange 11 11 358 22 380 

Darkorange 16 4 299 20 319 

White 8 10 260 18 278 

Skyblue 4 7 185 11 196 

Saddlebrown 5 15 150 20 170 

Steelblue 3 1 136 4 140 

Totals 559 711 19241 1270 20511 
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enrichment, with a background list of all mouse genes annotated in the mm10 assembly, and a 

Bonferroni threshold of 1e-4. Of particular note were modules enriched for terms relating to 

chromatin organization and remodeling, cell differentiation and cellular localization (Fig. 20). 

 

Fig. 20. Count plot showing partial GO term enrichment results for the identified 

modules. 

Size of circles indicate genes in that module enriched for the corresponding GO term; fill color 

indicates false discovery rate, with red indicating low FDR (i.e. higher statistical significance). 

Plot representing full enrichment results not included due to size constraints. 

 

4.7. Identification of modules with timepoint-specific upregulated average expression 

In order to identify peak activity periods for each module and its member genes, the 

average expression values of the modules were calculated and plotted (Fig. 21). Of interest are 

modules that display clear peaks at specific timepoints, such as the black module at PT48, and 

darkred module at PT6. 
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Fig. 21. Line plots showing average (dark line) and individual (light lines) gene expression 

levels of modules calculated by WGCNA. 

Peaks in the dark lines indicate increased module activity during specific timepoints, with genes 

in the corresponding module displaying increased or decreased expression in a coregulated 

manner. Modules with a large number of member genes show largely constant expression 

values. 

 

4.8. Identification of lncRNAs with timepoint-specific upregulation 

To further identify potential relationships between the lncRNAs and MET, the expression 

values of the genes were used to determine their timepoint-specificity, using the tissue-specific 

gene identification methods, ROKU and Tau. 116 putative lncRNA transcripts were over-

expressed outliers in a single timepoint according to the ROKU method, and 91 lncRNA 
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transcripts had a Tau score of > 0.6, with an overlap of 25 transcripts. Out of those 25 

transcripts, two putative and two annotated lncRNA transcripts had a Tau score of 1, indicating 

increased expression exclusive to a single timepoint (Fig. 22).  

 

Fig. 22. Heatmap representing gene expression Z-scores of timepoint specific transcripts. 

Red cells represent high expression compared to other timepoints, while green cells represent 

low expression. Black cells indicate expression equal to the average of all time points, with 

bright red and bright green cells being up to 3 standard deviations higher or lower in expression 

than the mean, respectively. The bar on the left of the heatmap represents clustering of gene 

expressions, displaying strong correlation with ROKU identified upregulation. 

 

 To confirm the validity of the timepoint specific expression predictions, the reads were 

visualized in IGV. Figure 23 shows the coverage of putative lncRNA NH.7997, which the 

ROKU method calculated to be specifically expressed at PT24, in three different timepoints 

(Vehicle, PT24 and PT36), with the exons of the transcript NH.7997.1 highlighted. 
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4.9. Prediction of potential partners of lncRNAs of interest 

Using the expression values of genes, an unsigned network adjacency matrix was 

calculated for the transcriptome expressed in the samples. Each pair of genes in the matrix had 

a score between 0 and 1, with 0 indicating no correlation, and values close to 1 indicating strong 

correlation, either positive, i.e. both genes are upregulated in the same samples, or negative, i.e. 

one gene is upregulated in the samples that the other is downregulated. Gene pairs with a 

correlation absolute value of >0.8 were considered connected for a stringent network definition. 

The module membership values of the genes were calculated using the signedKME 

command to identify any possible hub genes. Of these genes, 691 were identified as hub genes, 

24 of which were putative lncRNAs, and 19 of which were previously annotated lncRNAs. 

In addition, four modules identified were found to have a previously unannotated lncRNA 

as the top hub gene. These modules were darkturquoise, greenyellow, lightgreen and 

lightyellow. The enriched GO terms of these modules were largely involved with transcription, 

translation, protein modification and cellular localization of organelles and macromolecules 

(Table 4). 

Table 4. Gene ontology term enrichments for modules with putative lncRNAs identified as top 

hub gene 

Class Rank Data Set ID Data Set Name P Value 

darkturquoise 54 GO:0006464 cellular protein modification process 9.05E-17 

darkturquoise 55 GO:0036211 protein modification process 9.05E-17 

darkturquoise 72 GO:0034654 nucleobase-containing compound biosynthetic process 3.93E-15 

darkturquoise 75 GO:0019219 regulation of nucleobase-containing compound metabolic process 4.28E-15 

darkturquoise 76 GO:0018130 heterocycle biosynthetic process 6.95E-15 

darkturquoise 77 GO:0031326 regulation of cellular biosynthetic process 7.59E-15 

darkturquoise 78 GO:0019438 aromatic compound biosynthetic process 8.12E-15 

darkturquoise 80 GO:0009889 regulation of biosynthetic process 1.37E-14 

darkturquoise 81 GO:0051171 regulation of nitrogen compound metabolic process 1.66E-14 

darkturquoise 82 GO:1901362 organic cyclic compound biosynthetic process 2.21E-14 

darkturquoise 83 GO:0010556 regulation of macromolecule biosynthetic process 2.61E-14 

darkturquoise 84 GO:0006950 response to stress 2.94E-14 

darkturquoise 86 GO:2000112 regulation of cellular macromolecule biosynthetic process 3.78E-14 

darkturquoise 89 GO:0010468 regulation of gene expression 8.93E-14 

darkturquoise 90 GO:0006351 transcription, DNA-templated 1.06E-13 

darkturquoise 91 GO:0048869 cellular developmental process 1.14E-13 

darkturquoise 93 GO:0097659 nucleic acid-templated transcription 1.25E-13 
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darkturquoise 95 GO:0032774 RNA biosynthetic process 1.45E-13 

darkturquoise 99 GO:0051252 regulation of RNA metabolic process 2.01E-13 

darkturquoise 101 GO:0006355 regulation of transcription, DNA-templated 2.11E-13 

darkturquoise 102 GO:1903506 regulation of nucleic acid-templated transcription 2.50E-13 

darkturquoise 103 GO:2001141 regulation of RNA biosynthetic process 2.69E-13 

darkturquoise 108 GO:0048731 system development 1.16E-12 

darkturquoise 109 GO:0030154 cell differentiation 1.55E-12 

darkturquoise 114 GO:0051246 regulation of protein metabolic process 1.73E-11 

darkturquoise 120 GO:0032268 regulation of cellular protein metabolic process 4.57E-11 

darkturquoise 121 GO:0033036 macromolecule localization 4.96E-11 

greenyellow 135 GO:0051128 regulation of cellular component organization 2.76E-16 

greenyellow 136 GO:0044248 cellular catabolic process 6.15E-16 

greenyellow 142 GO:0009056 catabolic process 3.23E-15 

greenyellow 145 GO:0033554 cellular response to stress 4.82E-15 

greenyellow 146 GO:0032879 regulation of localization 5.62E-15 

greenyellow 151 GO:0031325 positive regulation of cellular metabolic process 4.12E-14 

greenyellow 152 GO:0032268 regulation of cellular protein metabolic process 4.39E-14 

greenyellow 153 GO:0098609 cell-cell adhesion 5.12E-14 

greenyellow 154 GO:0051239 regulation of multicellular organismal process 8.29E-14 

greenyellow 155 GO:0007155 cell adhesion 1.05E-13 

greenyellow 158 GO:0022610 biological adhesion 1.33E-13 

greenyellow 159 GO:0010604 positive regulation of macromolecule metabolic process 1.39E-13 

greenyellow 162 GO:0051246 regulation of protein metabolic process 1.66E-13 

greenyellow 164 GO:0050793 regulation of developmental process 1.68E-13 

greenyellow 165 GO:0065009 regulation of molecular function 2.03E-13 

greenyellow 166 GO:0002376 immune system process 2.29E-13 

greenyellow 167 GO:0010033 response to organic substance 2.61E-13 

greenyellow 168 GO:0042592 homeostatic process 2.66E-13 

greenyellow 169 GO:1901564 organonitrogen compound metabolic process 3.00E-13 

greenyellow 170 GO:0033036 macromolecule localization 3.00E-13 

greenyellow 171 GO:1902578 single-organism localization 3.63E-13 

greenyellow 172 GO:1901575 organic substance catabolic process 4.83E-13 

greenyellow 173 GO:0043933 macromolecular complex subunit organization 4.85E-13 

greenyellow 174 GO:0009968 negative regulation of signal transduction 4.95E-13 

greenyellow 175 GO:1902531 regulation of intracellular signal transduction 5.23E-13 

greenyellow 176 GO:0070727 cellular macromolecule localization 5.33E-13 

greenyellow 177 GO:0006928 movement of cell or subcellular component 5.93E-13 

greenyellow 184 GO:0010648 negative regulation of cell communication 1.64E-12 

greenyellow 185 GO:0023057 negative regulation of signaling 1.79E-12 

greenyellow 186 GO:0034613 cellular protein localization 2.09E-12 

greenyellow 187 GO:0048585 negative regulation of response to stimulus 2.42E-12 
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greenyellow 189 GO:0051649 establishment of localization in cell 2.95E-12 

greenyellow 190 GO:0040011 locomotion 3.03E-12 

greenyellow 191 GO:0031324 negative regulation of cellular metabolic process 3.30E-12 

greenyellow 192 GO:0009653 anatomical structure morphogenesis 3.32E-12 

greenyellow 194 GO:0051173 positive regulation of nitrogen compound metabolic process 5.71E-12 

greenyellow 195 GO:0009891 positive regulation of biosynthetic process 6.53E-12 

greenyellow 196 GO:0048878 chemical homeostasis 7.09E-12 

greenyellow 198 GO:0006366 transcription from RNA polymerase II promoter 7.73E-12 

greenyellow 199 GO:0044085 cellular component biogenesis 9.08E-12 

greenyellow 200 GO:2000026 regulation of multicellular organismal development 1.06E-11 

greenyellow 202 GO:0008104 protein localization 1.25E-11 

greenyellow 203 GO:0009892 negative regulation of metabolic process 1.44E-11 

greenyellow 204 GO:0010941 regulation of cell death 1.74E-11 

greenyellow 205 GO:0016477 cell migration 3.20E-11 

greenyellow 206 GO:0043067 regulation of programmed cell death 4.56E-11 

greenyellow 207 GO:0012501 programmed cell death 4.86E-11 

greenyellow 209 GO:0018193 peptidyl-amino acid modification 4.98E-11 

greenyellow 210 GO:0048870 cell motility 5.32E-11 

greenyellow 211 GO:0051674 localization of cell 5.32E-11 

greenyellow 212 GO:0031328 positive regulation of cellular biosynthetic process 6.64E-11 

greenyellow 213 GO:0072359 circulatory system development 8.42E-11 

greenyellow 214 GO:0009605 response to external stimulus 8.85E-11 

greenyellow 215 GO:0008219 cell death 9.06E-11 

greenyellow 216 GO:0006915 apoptotic process 1.20E-10 

lightgreen 109 GO:0006366 transcription from RNA polymerase II promoter 3.16E-16 

lightgreen 110 GO:0006357 regulation of transcription from RNA polymerase II promoter 5.46E-16 

lightgreen 115 GO:0010557 positive regulation of macromolecule biosynthetic process 1.32E-14 

lightgreen 116 GO:0045935 positive regulation of nucleobase-containing compound metabolic process 3.62E-14 

lightgreen 117 GO:0051173 positive regulation of nitrogen compound metabolic process 3.89E-14 

lightgreen 118 GO:0051254 positive regulation of RNA metabolic process 8.46E-14 

lightgreen 119 GO:0045893 positive regulation of transcription, DNA-templated 1.65E-13 

lightgreen 120 GO:1903508 positive regulation of nucleic acid-templated transcription 1.65E-13 

lightgreen 121 GO:1902680 positive regulation of RNA biosynthetic process 1.78E-13 

lightgreen 122 GO:0009891 positive regulation of biosynthetic process 2.31E-13 

lightgreen 123 GO:0045944 positive regulation of transcription from RNA polymerase II promoter 5.55E-13 

lightgreen 124 GO:0031328 positive regulation of cellular biosynthetic process 6.40E-13 

lightgreen 125 GO:0032879 regulation of localization 1.28E-12 

lightgreen 127 GO:0010628 positive regulation of gene expression 1.65E-12 

lightgreen 129 GO:0006464 cellular protein modification process 2.86E-12 

lightgreen 130 GO:0036211 protein modification process 2.86E-12 

lightgreen 132 GO:0031325 positive regulation of cellular metabolic process 5.43E-12 
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lightgreen 136 GO:0048583 regulation of response to stimulus 8.31E-12 

lightgreen 138 GO:0010604 positive regulation of macromolecule metabolic process 1.86E-11 

lightgreen 143 GO:0009893 positive regulation of metabolic process 4.81E-11 

lightgreen 144 GO:1902578 single-organism localization 5.11E-11 

lightgreen 145 GO:0065008 regulation of biological quality 5.16E-11 

lightgreen 146 GO:0044710 single-organism metabolic process 5.78E-11 

lightgreen 147 GO:0044765 single-organism transport 6.39E-11 

lightgreen 148 GO:0006396 RNA processing 8.42E-11 

lightgreen 150 GO:0009653 anatomical structure morphogenesis 1.33E-10 

lightgreen 154 GO:0071702 organic substance transport 1.48E-10 

lightgreen 155 GO:0035556 intracellular signal transduction 1.49E-10 

lightyellow 70 GO:0006464 cellular protein modification process 1.77E-15 

lightyellow 71 GO:0036211 protein modification process 1.77E-15 

lightyellow 81 GO:0051252 regulation of RNA metabolic process 7.98E-15 

lightyellow 89 GO:0044281 small molecule metabolic process 6.47E-14 

lightyellow 96 GO:2000112 regulation of cellular macromolecule biosynthetic process 5.82E-13 

lightyellow 98 GO:0006351 transcription, DNA-templated 1.11E-12 

lightyellow 99 GO:0097659 nucleic acid-templated transcription 1.32E-12 

lightyellow 100 GO:0032774 RNA biosynthetic process 1.53E-12 

lightyellow 102 GO:0010556 regulation of macromolecule biosynthetic process 1.70E-12 

lightyellow 105 GO:0031326 regulation of cellular biosynthetic process 2.33E-12 

lightyellow 106 GO:0009889 regulation of biosynthetic process 4.07E-12 

lightyellow 108 GO:1901564 organonitrogen compound metabolic process 7.17E-12 

lightyellow 109 GO:0006355 regulation of transcription, DNA-templated 7.54E-12 

lightyellow 112 GO:1903506 regulation of nucleic acid-templated transcription 8.91E-12 

lightyellow 115 GO:2001141 regulation of RNA biosynthetic process 9.58E-12 

lightyellow 130 GO:0065008 regulation of biological quality 1.42E-10 
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5. DISCUSSION 

 The importance of individual lncRNAs for cellular reprogramming events, both 

artificially induced and topically present in organisms, as well as the maintenance of cellular 

phenotypes, has been established since 2013 (Pádua Alves et al., 2013; Payer et al., 2013). 

However, the number of studies on transcriptome-wide analysis of lncRNAs in cellular 

reprogramming is quite lacking. As of May 2018, using “RNA, Long Noncoding” as a major 

MeSH topic filter in a literature search, there are 170 articles covering cell differentiation, 116 

articles covering epithelial-mesenchymal transition, and 13 articles covering cellular 

reprogramming, with one article shared under both cell differentiation and EMT. Adding in 

filters focused on transcriptome profiling or whole exome sequencing brings the total number 

down to 15. The literature search also reveals that there have been no published studies 

regarding the noncoding transcriptome of cells undergoing mesenchymal-epithelial transition. 

 lncRNAs do not work alone in biological pathways. Much like proteins, their functions 

in the cell are informed by their interactions with other biological molecules and structures, as 

well as genomic loci (Marchese, Raimondi and Huarte, 2017). Therefore, it is possible, and 

indeed crucial, to identify potential partners of lncRNA transcripts in networks of biological 

activity and regulation. For a large number of product-dependent lncRNAs, construction of 

such networks might be the only available method of annotation, due to the poorly understood 

connection between lncRNA sequence and structure and lncRNA function (Necsulea et al., 

2014; Hezroni et al., 2015). 

 Recent findings on MET and EMT suggest that regulation of gene expression via 

noncoding genetic elements, such as enhancers, play a major role in such cellular 

reprogramming events (Alotaibi et al., 2015; Schnappauf et al., 2016). Given the established 

associations of enhancer elements and lncRNAs in transcriptional regulation, whether the 

lncRNA regions acting as enhancers via product-independent transcription (Aune et al., 2017; 

Fanucchi and Mhlanga, 2017), or binding to enhancer regions on the genome (Soibam, 2017), 

it is an important avenue of research that requires further exploration. 

 This is the first known study to analyze the noncoding transcriptome during the MET 

process with this level of detail. As dedicated studies of MET are a very recent phenomenon, 

integrating information on lncRNAs to our growing body of knowledge at such an early stage 

will be beneficial for future research. 
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The highlight of this study is the application of the transcript abundance estimation and 

lncRNA identification pipelines to previously produced RNA-seq data. While the reads were 

originally produced for the purposes of studying the transcription factors active in MET 

regulation, the use of rRNA depletion as the library selection method, instead of other common 

methods such as polyA selection, allows reads originating from lncRNAs, which often lack 

features that are present in protein-coding transcripts, to be included in the library, making the 

identification of novel lncRNA transcripts possible. Furthermore, previous computational 

analysis of the data in the context of transcription factors has been consistent with features of 

the MET regulatory network that had been identified using experimental methods and 

microarray data by Alotaibi et al. (unpublished data). 

The findings of this study confirm the suspected presence of lncRNAs during the MET 

process and their potential partnerships with known transcription factors. Furthermore, they are 

in line with the multistage progression of cellular reprogramming events, shown by the high 

number of lncRNAs that display notable expression levels only in a limited number of 

timepoints, instead of across all samples. This supports the idea that MET is a full-fledged 

cellular programming event, and cannot be confined to the realm of being defined as “anti-

EMT”, as was previously indicated by Kim et al. (Kim, Jackson and Davidson, 2017). 

The scarcity of lncRNAs expressed during the MET process, their relatively low levels 

of expression compared to the coding transcriptome, outliers notwithstanding, and the number 

of lncRNAs that display significant expression spikes or drops in at most two timepoints is 

consistent with the body of knowledge on lncRNAs. 

It is worth noting that the correlation between chromosome size and the number of 

lncRNA loci on the chromosome, while consistent, is not a universal trait of lncRNAs. 

Mammalian genomes usually have uniform distribution of lncRNA genes across the genome 

(Liu et al., 2017), but other organisms, such as plants, can have zero or negative correlation 

between lncRNA count and chromosome size (Li et al., 2014). 

One unexpected finding of the study is the low number of modules enriched for chromatin 

remodeling. This finding can be explained by the remaining modules operating in the cytoplasm 

and cytoplasmic organelles, as well as around the membrane. This is consistent with earlier 

findings about the changes in cytoskeleton, and E-cadherin expression and localization, which 

is affected by multiple cytoplasmic factors during its downregulation in EMT (Peinado, Portillo 

and Cano, 2004; Le Bras, Taubenslag and Andl, 2012). Due to the relative minority of such 
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modules, their importance to the MET process must be carefully examined. Another possibility 

is that modules not enriched for terms integral to cellular reprogramming include genes that are 

involved in the basal metabolism of the cell, but nevertheless show varying expression levels 

as influenced by factors such as the specific stage of the cell cycle the cells are in, or 

extracellular conditions such as cell confluence and signals received from surrounding cells. 

Genes showing zero or near-zero variance across all samples would not be included in the 

WGCNA analysis, due to the inability of the algorithm to calculate their correlations with other 

genes, thus the regulation of housekeeping genes would already be excluded from the modules. 

In addition, the findings of this process are limited to a single inducer of MET in only one 

cell model. Previous EMT studies, such as the 2016 study by Liao et al. have shown that the 

expression of lncRNAs during a single process, even in the same organism, can be highly 

variable, depending on the inducing signal used, such as TGFB induction versus Snail 

overexpression, or the epithelial cell type of origin, such as two different non-tumorigenic 

human mammary epithelial cell lines, HMLE and MCF10A (Liao et al., 2017). Follow-up 

studies need to be performed on different MET transcriptomes to hone in on the core lncRNA 

regulators and enhancers of the universal MET network. 

It bears repeating that the findings of this study are computational, and have not been 

confirmed with experimental approaches, such as PCR, as of yet. While the findings have a 

high probability of being accurate, the presence of the transcripts in the transcriptomes of any 

timepoint samples suggested by the previous RNA-seq analyses have to be confirmed 

empirically. Possible filters to apply when selecting any candidates would include the lncRNA 

transcript being expressed in multiple subsequent timepoints, to ensure that highly transiently 

expressed lncRNAs are not missed; high intramodular connectivity, to increase the likelihood 

of any functional modifications to transcript structure or expression level would significantly 

affect the outcome of the MET process; and multiple exon transcripts with splice sites detected 

by HISAT2 and StringTie, to minimize the likelihood of reads misaligning to a region in the 

genome rather than accurately reflecting the biological conditions of the transcriptome. 

Once experimental validation studies are performed, future directions in the field will 

likely require confirmation of the partners of discovered lncRNAs, as well as their method of 

function, such as competing endogenous RNAs being analyzed for the miRNAs they act as 

sponges for. 
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6.CONCLUSION AND SUGGESTIONS 

• A total of 593 previously unannotated lncRNA genes were found to be expressed during 

MET. 

• Of these lncRNAs, 70 were found to be differentially expressed during MET. 

• Among the putative lncRNAs, 116 were found to be expressed in a timepoint specific 

manner in EMT and MET, with two of these 116 genes having zero expression in other 

timepoints. 

• Gene co-expression network of 20709 transcripts was constructed to identify gene 

modules and gene expression correlations. Thirty modules were constructed as a result. 

Putative lncRNA content of these modules was identified, and the previously annotated 

module members were used for GO term enrichment to assign biological context to the 

putative lncRNAs. Four modules identified were discovered to have a putative lncRNA 

as the gene with highest degree of intramodular connectivity, defining them as hub genes 

of great import in the modules. Among the genes identified as putative lncRNAs, 24 were 

identified to have a KME of > 0.8, marking them as potential hub genes in the MET 

process as a whole. 

• Modules with enriched GO terms of importance to MET and other cellular 

reprogramming, such as chromatin remodeling, were identified. 

• It is apparent that lncRNA involvement in the MET process is significant, and given the 

high number of previously unannotated lncRNA transcripts expressed during MET, 

further research on these lncRNAs is necessary. 

• Putative lncRNAs showing high correlation with previously identified protein-coding 

genes involved in MET regulation, such as Cebpa or Nfya1, were identified, but not yet 

examined in detail. Information on their genomic or transcriptomic context, such as 

distance to and identity of neighboring genes, or expression patterns during the MET 

process, need to be analyzed further. 

• In future research, a number of putative lncRNAs of highest possible involvement in 

MET, as indicated by gene connectivity and module GO term enrichment, must be 

selected, in order to validate their transcription during MET using further experimental 

methods, as well as identify their direct biological partners or genomic binding sites.  
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