

DESIGNING A MULTILINGUAL CONTENT AUTHORING

AND

INFORMATION RETRIEVAL MODEL

SELVİHAN NAZLI YAVUZER

JULY 2005

 ii

DESIGNING A MULTILINGUAL CONTENT AUTHORING

AND

INFORMATION RETRIEVAL MODEL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL

OF
BAHÇEŞEHİR UNIVERSITY

BY
SELVİHAN NAZLI YAVUZER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF COMPUTER ENGINEERING

JULY 2005

 iii

Approval of the Graduate School of (Name of the Graduate School)

(Title and Name)

Director

I certify that this thesis satisfies all the requirements as a

thesis for the degree of Master of Science

 (Title and Name)

 Head of Department

This is to certify that we have read this thesis and that in our

opinion it is fully adequate, in scope and quality, as a thesis for

the degree of Master of Science.

 _________________ _________________

 (Title and Name) (Title and Name)

 Co-Supervisor Supervisor

Examining Committee Members

............................... _____________________

............................... _____________________

............................... _____________________

............................... _____________________

............................... _____________________

 iv

ABSTRACT

DESIGNING A MULTILINGUAL CONTENT AUTHORING

AND

INFORMATION RETRIEVAL MODEL

Yavuzer, Selvihan Nazlı

M.S. Department of Computer Engineering

Supervisor: Asst. Prof. Dr. Orhan Gökçöl

July 2005, 68 pages

Globalization through Internet has aroused the need for multilingual
presentations especially within medium-large scale businesses.
Although current practices on database-driven multilingual system
development manage to provide multilingual content management and
authoring, underlying database structures do not serve for the
optimum performance and for maximum content automation. The
objective of this thesis is to offer a database model, which
classifies the pieces of information according to language-
dependency and applies further normalization in order to provide
most convenient means of data organization. The thesis pays
attention to load on data source due to the number of users; as such
a meticulous multilingual implementation is likely to occur in
large-scale systems. The tests performed in the study employs a
simple desktop application that simulates multiple users connected
to the system, that is, the data source, each of which requests a
number of transactions from the server. The tests are performed on
two database models, replication model and normalized model offered
in the thesis. Collected data was mixed; however, the results were
enough to observe that offered model follows a rational rate of
increase where the replication model peaks at a point where the
number of users exceeds a certain value.

Key words: multilingual, cross-lingual, content management, content

authoring, information retrieval, XML, database design, benchmark

 v

ÖZET

ÇOKLU DİLDE
İÇERİK YÖNETİMİ VE BİLGİ BULMA

MODELİ TASARIMI

Yavuzer, Selvihan Nazlı

Yüksek Lisans, Bilgisayar Mühendisliği Bölumu

Tez Yöneticisi: Yrd. Doç. Dr. Orhan Gökçöl

Temmuz 2005, 68 sayfa

İnternet’in küreselleşmeye etkisi orta-büyük ölçekli işletmelerde
kaynakların bir çok dilde sunulması ihtiyacını ortaya çıkarmıştır.
Çoklu dilde sistem geliştirme uygulamaları üzerine şu an ki
pratikler, çoklu dilde içerik yönetimini mümkün kılmalarına rağmen,
veritabanı altyapısı ile optimum performans ve maksimum içerik
otomasyonunu sağlamamaktadır. Bu çalışma, sistemin sunacağı tüm
bilgilerin dil bağımlılıklarına göre guruplandırılarak veri
tabanında daha fazla normalizasyona gidilmesiyle veri organizasyonu
ve veri erişimi için daha uygun bir metod önermektedir. Veri modeli
değerlendirilirken, titiz bir çoklu dil çalışmasının büyük ölçekli
sistemlerde yapılması olasılığının daha yüksek olduğu düşünülerek,
kullanıcıların veri kaynağına gönderdikleri iş yüklerine önem
verilmiştir. Bu çalışmada yapılan testlerde, sisteme bağlanan ve
herbiri belli sayıda işlem talebinde bulunan kullanıcıları simüle
eden basit bir masaüstü uygulaması geliştirilmiştir. Testler iki
farklı veri modelinde üzerinde gerçekleştirilmiştir; şu anda çoklu
dil uygulamalarında kullanılan kopyalama modeli ve çalışmada
önerilen ayırma modeli. Toplanan veriler farklılık göstermesine
rağmen, ayırma modeli açıklanabilir bir artış grafiği çizerken,
kopyalama metodunun kullanıcı sayısı belli bir limiti aştığında ani
sıçramalar yapma eğilimini gözlemleye yeterlidir.

Anahtar Kelimeler: çoklu dil, diller arası, içerik yönetimi, içerik
oluşturma, bilgi bulma, XML, veritabanı tasarımı, karşılaştırma
testi

 vi

To My Parents

 vii

ACKNOWLEDGMENTS

This thesis is dedicated to my parents for their patience and

understanding during my master’s study and the writing of this

thesis. I am also grateful to my sister, who provided moral and

spiritual support.

I would like to express my gratitude to Asst. Prof. Dr. Orhan

Gökçöl, for not only being such a great supervisor but also

encouraging and challenging me throughout my academic program.

I also wish to thank Asst. Prof. Dr. Adem Karahoca, who helped me on

various topics in the area of database management systems, for his

advice and time.

 viii

TABLE OF CONTENTS

ABSTRACT.. IV
TABLE OF CONTENTS ...VIII
LIST OF TABLES ... IX
LIST OF FIGURES ...X
LIST OF ABBREVIATIONS ... XII
1 INTRODUCTION .. 1

1.1 MOTIVATION ... 3
1.2 RELATED WORK .. 4
1.3 ROADMAP .. 10

2 A MULTILINGUAL CONTENT MANAGEMENT SYSTEM ... 10
2.1 BACKGROUND.. 10
2.2 DATABASE MODELS & SYSTEMS ... 11

2.2.1 Data Modeling Using the Entity-Relationship Model .. 12
2.2.2 Relational Database Models and Systems.. 16
2.2.3 Object-Oriented and Extended Database Technologies... 18
2.2.4 RDBMS versus OODBMS – Deciding the Testing Model .. 21

2.3 MULTILINGUAL DATABASE MODEL... 22
2.3.1 Replication Model .. 23
2.3.2 SPLITTING - Normalizing Multilingual Database .. 25

2.4 REPLICATION VS. SPLITTING .. 27
3 TESTING FOR MULTILINGUAL DATABASE ... 28

3.1 TEST MODEL.. 29
3.2 TESTING ENVIRONMENT .. 30

3.2.1 Configuration Diagrams .. 30
3.2.2 Database Table Definitions.. 31
3.2.3 Cardinality of Tables.. 32
3.2.4 Test Procedures.. 33

3.3 TESTING SOFTWARE .. 34
3.4 TESTING PLAN ... 38

3.4.1 Primary Issues.. 38
3.4.2 Measurement Intervals ... 38
3.4.3 Database Interaction Percentages ... 39

4 RESULTS & DISCUSSIONS .. 41
4.1 CARDINALITY OF DATABASE TABLES.. 41
4.2 DATABASE INTERACTION RESPONSE TIMES... 42
4.3 REPRODUCIBILITY OF THE MEASUREMENT RESULTS ... 45
4.4 INTERPRETING THE TEST RESULTS... 46
4.5 FURTHER CONSIDERATIONS... 53

REFERENCES... 65
VITA.. 68

 ix

LIST OF TABLES

Table 1.1 Language-Neutrel Database Table ___ 6

Table 2.1 Replication applied to Hotel table ___ 24

Table 2.2 Hotel Entity Derived by Normalization _______________________________________ 26

Table 2.3 Hotel_Language Entity Derived by Normalization ______________________________ 26

Table 3.1 Database Server Configuration ___ 30

Table 3.2 Client Simulator Workstation___ 30

Table 3.3 Database Table Cardinality after Initial Population _____________________________ 32

Table 3.4 Stored procedures and their definitions used in database test______________________ 33

Table 3.5 Measurement Interval Start-End Times and Duration for Replication Test ___________ 39

Table 3.6 Measurement Interval Start-End Times and Duration for Split Test _________________ 39

Table 3.7 Database Interaction Percentages ___ 39

Table 4.1 Database Table Cardinality in Replication ____________________________________ 41

Table 4.2 Database Table Cardinality in Split__ 42

Table 4.3 Minimum, Maximum, Average and 90th Percentile Response Times for RETRIEVALS __ 43

Table 4.4 Minimum, Maximum, Average and 90th Percentile Response Times for INSERTIONS __ 43

Table 4.5 Minimum, Maximum, Average and 90th Percentile Response Times for UPDATES_____ 43

Table 4.6 Response Times and % Difference for RETRIEVALS ____________________________ 44

Table 4.7 Response Times and % Difference for INSERTIONS_____________________________ 44

Table 4.8 Average Response Times and % Difference for UPDATES ________________________ 44

Table 4.9 Total Response Times___ 45

 x

LIST OF FIGURES

Figure 1.1 Structure for a Bilingual Website with Page Translation... 1

Figure 1.2 Structure for a Bilingual Website with Page Translation and Directory Separation........... 2

Figure 2.1 Makeup of an Object-Oriented Database... 19

Figure 2.2 A simple Online Reservation Database Schema... 22

Figure 2.3 Multilingual Hotel Definition Diagram.. 23

Figure 2.4 Functional Dependencies for Replicated Hotel Table.. 26

Figure 3.1 Benchmarked Configuration .. 29

Figure 3.2 Replication Database Schema.. 31

Figure 3.3 Split Database Schema... 32

Figure 3.4 Structure of Collected Data.. 37

Figure 3.5 SimClient Application Snapshot ... 37

Figure 4.1 Average Response Times of 3 Runs for Replication Database ... 45

Figure 4.2 Average Response Times of 3 Runs for Split Database .. 46

Figure 4.3 Retrievals Average Response Times ... 48

Figure 4.4 Insertions and Updates Average Response Times .. 49

Figure 4.5 Disk RW vs. % ML Fields for SELECT Operation ... 50

Figure 4.6 Disk RW vs. % ML Fields for UPDATE Operation.. 50

Figure 4.7 Disk RW vs. % ML Fields for INSERT Operation.. 51

Figure 4.8 Disk RW vs. % ML Fields for DELETE Operation .. 51

Figure 4.9 The Coca Cola Company (Turkey) ... 57

Figure 4.10 The Coca Cola Company (China) .. 57

Figure 4.11 The Coca Cola Company (Australia) ... 57

 xi

Figure 4.12 The Coca Cola Company (USA)... 57

Figure 4.13 The Coca Cola Company (Egypt)... 57

Figure 4.14 FedEx Shipment Tracking (China) ... 57

Figure 4.15 FedEx Shipment Tracking (USA) ... 57

Figure 4.16 FedEx Shipment Tracking (Spain).. 58

Figure 4.17 Translating XSL file content for a simple input form ... 59

Figure 4.18 Output of login form for 'es' (Spanish) ... 59

Figure 4.19 Concept diagram for XML/XSL data presentation approach... 60

Figure 4.20 GetXMLFromDB Function... 60

Figure 4.21 ShowAuthorsView Function ... 61

Figure 4.22 XSL Contents (html style definitions and embedding script) .. 62

Figure 4.23 XSL Contents (representing the data fields)... 62

Figure 4.24 Authors Table on SQL Server... 63

Figure 4.25 Title_Author Table (SQL Server) ... 63

Figure 4.26 XML output file of GetXMLFromDB function.. 63

Figure 4.27 HTML output .. 64

 xii

LIST OF ABBREVIATIONS

ML Multilingual

MLIR Multilingual Information Retrieval

CLIR Cross-Lingual Information Retrieval

XML Extensible Markup Language

XSL Extensible Style Language

XSLT Extensible Style Language Transformations

XSD XML Schema Definition

 1

1 INTRODUCTION

Current practices on multilingual system development do not evidently address the

problems related to multilingual content management and authoring. Despite the

significance of multilingual development, previous implementations generally lack

performance in storage size, manageability, authoring automation, and structural

ability.

A simple method for multilingual web site development is to create translations of

each page in the native language and each file name has a language identification

suffix such as ‘index_tr.html’ for Turkish, ‘index_en.html’ for English, etc. Example

site created for bilingual content and crawled, the structure is shown in Figure 1.1.

Figure 1.1 Structure for a Bilingual Website with Page Translation

In a system using page name suffixes for multilingual support, if a modification is to

be done, n-1 complete translations (native language is ignored) and n updates (as

each page needs to be modified) are needed where n is the number of languages the

site supports. Furthermore, this method requires storage of multilingual images with

 2

proper suffixes, which along with the suffixed html files, creates a heap of files in the

root directory. Starting with this file mass problem, a derivation of the previous

method is to create a separate directory for each language that is accessible from top

level, and inside each language directory the same structure is replicated. Example

site created for bilingual content and crawled, the structure is shown below.

Figure 1.2 Structure for a Bilingual Website with Page Translation and Directory Separation

However, this change in file system does not eliminate the fact that this

implementation requires manual maintenance performed by the developer. The

developer should make sure that each link on each page points to the proper page in

the same language, and that each page is correctly linked to their translations in each

supported language. Besides, it is again the developer’s responsibility to assure that a

change in a language is propagated to all other languages.

Briefly, the above two methods based on replication of data are not proper solutions

to multilingual problem. The site structure as shown in above figures becomes

complicated even for bilingual development. It is, no doubt, not efficient to use any

 3

of these methods for a commercial site with 50 pages and supports 5 languages,

which makes a total of 250 files (5 replicates of each page) in the file system

excluding the number of replicated images and other related documents. In addition

to storage size and structure, such content is hard to maintain and manage.

1.1 Motivation

With the onset of the Internet, traditional constraints such as geographical barriers

have been abolished. Companies are no longer prevented from doing business simply

because they are located in different parts of the world. However, there still remain

barriers such as taxation, shipping, business practices, language and cultural

differences that still prohibit a true global marketplace. To best serve customers, it is

becoming increasingly important that companies address the wide range of business

practices, languages and cultures when doing business through the Internet. This can

be achieved by providing customers with content in multiple languages. As

searchable multilingual text databases have become available globally,

multilingualism and multilingual text retrieval have been a focus of research in the

past years. This thesis presents an evaluation for a database that supports multilingual

content in the best way possible. The motivation for such a work comes from the

diversity of language of the computer users, especially Internet users as well as the

diversity of the content and authors, and the fact that there are no definite answers to

stated multilingual system development problems.

 4

1.2 Related Work

More recent practices do not only focus on content management aspect, but they also

integrate content authoring process with multilingual support. Such systems referred

as MDA (Multilanguage Document Authoring) systems. Some early

implementations of MDA systems were interactive as they allowed users to

dynamically modify their internal representations; after any modification, the data is

regenerated to reflect the choice given by the author. This is especially important in

multilingual generation because a single change can be propagated to all other

supported languages without manual response. DRAFTER is an early system of this

type in which the authoring is performed at the semantic structure level (Paris et

al.1995). Power and Scott (1998) presents a newer idea and rather than having the

user modify the semantic representation directly, the generated text itself is used as

interface to the semantic representation. Certain parts of the content are associated

with menus presenting different choices for updating the semantic representation,

which provides that the user never needs to access to the semantic representation

directly.

Chevreau proposes a system that (2001) interactively generates weather reports in

various languages; the choices in this system are more of a syntactical nature because

of the semantic information is extracted directly from the weather forecast system.

Ranta (1994, 2002) had developed an MDA approach at XRCE (Xerox Research

Center Europe) which is a supporter of the Grammatical Framework (GF) and has

been used on small-scale pharmaceutical documents. A well-formed semantic

representation is the basis of GF-MDA. As MDA has a formal notion of well-

formed semantic structure, it has theoretical and practical advantages such as; it has

 5

direct connection to XML theory and practice as it has similar grammar to a DTD or

a Schema, it has both abstract and actual well-formed documents. MDA-XML, a

multilingual authoring prototype (XRCE) fits well into an XML framework, as it is a

variant representation of XML Schemas already in use where rules are implemented

in XML.

In another XML based variation of multilingual generation, Tonella introduces

MLHTML (2002). The technique proposed in MLHTML was to construct web sites

so as to align the information provided in different languages and to make it

consistent across languages. MLHTML extends XHTML with one additional tag

(<ml>) for multilingual representation. Construction of multilingual pages using

MLHTML involves two phases; first phase is page alignment which aims at aligning

the pages in different languages, in the second phase, the aligned pages are merged

into one MLHTML file where each multilingual contents is placed in a special <ml>

tag.

XML based implementations are useful when all page content is assumed to be

between html tags. However, no XML based technique has been able to include

relational data models for multilingual management where content is dynamically

generated and managed using data sources. Multilingual support for web driven

database applications, on the other hand, is implemented in a few different methods.

One method is to create a separate database for each supported language where the

language of the database is mentioned in database name. This may provide a simple

solution to multilingual web driven database applications, yet it is not easier to

manage multiple databases. Another implementation to provide the functionality of

data in the right language is to keep the database neutral in terms of language. And

 6

for an object, that is a database table, that includes multilingual items (attributes) a

predefined language code is included in the primary key. Using this method, each

table that has multilingual properties has an additional attribute for language code,

and the record number and language code represents the primary key pair. An

example is;

Table 1.1 Language-Neutrel Database Table

Record No Language Code Data
001 En Graduate Student

001 Tr Lisansüstü Öğrenci

001 Es Alumno de posgrado

Although this system considers categorization for monolingual data, this

categorization only includes individual names or other unique names. All other

information is categorized into multilingual tables.

Before designing a multilingual information system, the most important success

factors of a multilingual information system should be examined that are the degree

of authoring automation and cultural customization it offers and cross-lingual

processing capability.

Cross-Lingual Information Retrieval

Cross-lingual text retrieval is implemented with two dominant approaches 1)

dictionary translation using machine-readable multilingual dictionaries and 2)

automatic extraction of possible transition equivalents by statistical analysis of

parallel or comparable corpora [1]. At this stage, in most cross-lingual information

retrieval (CLIR) system, users are expected to formulate query specifying their

information need by producing appropriate keywords. However, producing the

 7

appropriate set of keywords is a difficult task considering the limited linguistic skills

of users.

To overcome the cultural and lingual barriers in multilingual information retrieval

data mining techniques for keyword classification and cross-lingual queries are

implemented in retrieval processes.

For multilingual text retrieval (MLTR), basic data-mining methods such as fuzzy

multilingual keyword classification in which fuzzy clustering (Fuzzy c-means) is

applied to obtain a classification of multilingual keywords by concepts are used.

Labeling each concept with native language of the target user and associating it with

relevant multilingual documents develop a multilingual concept directory.

A fuzzy clustering generates a partition of a multilingual keyword data set for

revealing cross-lingual conceptual relationship among keywords with additional

concept membership values.

The fuzzy c-means algorithm developed by Bezdek aims at minimizing the objective

function

under the constrains

(1)

(2)

 8

and

Where X = {x1, x2, ….,xn} ⊆ Rp is the set of objects, c is the number of fuzzy

clusters, µik ∈ [0, 1] is the membership degree of object xk to cluster I, vi is the

prototype (cluster center) of cluster i, and d(vi, xk) is the Euclidean distance between

prototype vi and object xk. The parameter m > 1 is called the fuzziness index.

Using cross-lingual queries allows the system users produce sets of keywords or

phrases where the keywords may differ in language although they serve for the same

search need. In systems where cross-lingual queries are supported, term extraction

and then term translation is applied in order to reduce the unnecessary online

translation processes. There are two types of term extraction methods employed. The

first is language-dependent linguistics based method that relies of lexical analysis,

word segmentation and syntactic analysis to extract named entities from documents.

The second method is the language-independent statistics-based method that extracts

significant lexical patterns without length limitation, such as the local maxima

method and the PAT-tree-based method.

Authoring Automation

The authoring process is monolingual but the results are multilingual. In a

multilingual information system, there are numerous issues related to content

management and authoring. Management focuses on the engineering side,

maintaining consistency of information (translations) across different parts of the

(3)

 9

system, which is time consuming and error prone. In a large system, it is vital that the

system can realize the missing information (translations) and can convey the

translation to related author. In semi-automatic system mostly used for large scale

content, the system is capable of generating the translations of newly added or

modified information using localization and globalization software and services such

as online translators. In both manual and semi-automatic systems, it must be assured

that even the author works in the language s/he knows, the system implicitly builds a

language-independent representation of the document content.

Cultural Customization

On the other hand, cultural customization of the system, that is, how information is

presented to the user is another issue on multilingual development. Current practice,

as previously mentioned, uses different techniques from separate cultural design for

each representation object (replicated content files) to XSLT and XML technology

based on the size and goal of the system. Cultural variations are mostly implemented

by the use of multilingual personalized information objects. The ultimate goal of

personalized information objects is to experiment with an approach to multilingual

generation that leverages on grammar commonalities across different languages,

therefore allowing for a faster resource development and easier maintenance. It is

observed that many languages share the same basic systems in functionality, but

differ in their realization, or the way specific predicates or relations are phrased.

Using multilingual objects, a separate rule-based component for each language is

defined to achieve inflectional morphology.

 10

1.3 Roadmap

This study examines a multilingual system in components in order to obtain an

improved database model required to achieve the system’s functionality. Motivation

to do such a work and previous research on multilingualism has been presented so

far. In the rest of this paper, we initially take a look at multilingual content

management issues. Then, the database perspective of a multilingual system is

introduced and two database implementations are described. The test performed on

both models is given in details including the testing environment and testing

software. Collected results are discussed. Finally, a simple model multilingual

content authoring system is proposed.

2 A MULTILINGUAL CONTENT MANAGEMENT
SYSTEM

2.1 Background

The problem of presenting multilingual content to a range of audiences involves

more than translating the text from one language to another. When translating text in

computer-based environments, additional problems arise, such as the size of text

blocks and field length in application software or databases, as the translated text can

expand by %40. For example, a character in a Roman language takes 1 byte, while a

character in Chinese takes two bytes. While the multilingualism of the content has an

impact on the size of application data blocks, providing multiple translations of the

content also requires interfaces to keep translation under control. In a multilingual

system, distinct records and translations of records must be accurate in terms of

information. In order to identify contents in original languages and corresponding

translations into other languages, a strict translation control must exist. Data integrity

 11

to be achieved, translation interfaces for control applications must be available.

These specifications yield characteristics to both the database model and to program

structures since both are language dependent.

2.2 Database Models & Systems

Databases and database technology are having a major impact on the growing use of

computers. It is fair to say that databases play a critical role in almost all areas where

computers are used, including business, engineering, medicine, law, education, and

library science, to name a few.

Several criteria are normally used to classify DBMSs, one of which is the data model

on which the DBMS is based. The two types of data models used in many current

commercial DBMSs are the relational data model and the object data model.

Conceptual modeling is an important phase in designing a successful database

application. Generally, the term database application refers to a particular database

and the associated programs that implement the database queries and updates. This

chapter concentrates on the database structures and constraints during the database

design. Section 2.2.1 presents the modeling concepts of the Entity-Relationship (ER)

Model, which is a popular high-level conceptual data model while defining key

database terms. In Section 2.2.2 and Section 2.2.3, Relational and Object-Oriented

database systems are introduced. Section 2.2.4 defines criteria for deciding a

Relational DBMS for this study instead of an Object-Oriented or a Hierarchical

DBMS.

 12

2.2.1 Data Modeling Using the Entity-Relationship Model

The ER Model and its variations are frequently used for the conceptual design of

database applications. The ER model describes data as entities, relationships, and

attributes.

2.2.1.1 Entities and Attributes

An entity is the basic object that the ER model represents. It is a “thing” in the real

world with an independent existence. An entity may be an object with a physical

existence – a hotel, or a room- or it may be an object with a conceptual existence – a

reservation, or an activity.

Each entity has attributes – the particular properties that describe it. A particular

entity has a value for each of its attributes. The attribute values that describe each

entity become a major part of the data stored in the database. Several types of

attributes occur in the ER model: simple versus composite; single-valued versus

multi-valued; and stored versus derived.

Composite attributes can be divided into smaller subparts, which represent more

basic attributes with independent meaning. Attributes that are not divisible are called

simple or atomic attributes. For example, a hotel phone number can be divided into

country code, area code and phone number. The value of composite attribute Phone

is the concatenation of the values of its constituent simple attributes.

Most attributes have a single value for a particular entity; such attributes are called

single-valued. For example, Address is a single-valued attribute of a hotel. In some

cases, an attribute can have a set of values for the same entity.

 13

In some cases, two (or more) attributes values are related –for example, the Age and

BirthDate attributes of a Customer. For a particular Customer entity, the value of

Age can be determined from the current date and the value of that customer’s

BirthDate. The Age attribute is hence called a derived attribute and is said to be

derivable from the BirthDate attribute, which is called a stored attribute.

In some cases a particular entity may not have an applicable value for an attribute.

For such cases, a special value called null is created. The meaning of the former type

of null is not applicable, whereas the meaning of the latter is unknown.

2.2.1.2 Entity Types, Entity Sets, Keys and Value Sets

A database usually contains groups of entities that are similar. An entity type defines

a collection of entities that have the same attributes. The collection of all entities of a

particular entity type in the database at any point in time is called an entity set. An

important constraint on the entities of an entity type is the key or uniqueness

constraint on attributes. An entity type usually has an attribute whose values are

distinct for each individual entity in the collection. Such an attribute is called a key

attribute, and its values can be used to identify each entity uniquely. For example,

Tax Identification Number or TR Identification Number would be a key of the

Customer entity type, as no two individuals are given the same Tax ID or TR ID

number. Sometimes, several attributes together form a key, meaning that the

combination of the attribute values must be distinct for each entity. If a set of

attributes possesses this property, then a composite attribute that becomes the key

attribute of the entity type can be defined. An entity type may also have no key, in

which case it is called a weak entity type, which is explained in following sections.

 14

Another important constraint on the entities is domain, that is, the set of values that

may be assigned to a specific attribute for each individual entity.

2.2.1.3 Relationships, Roles and Structural Constraints

Whenever an attribute of an entity type refers to another entity type, there exists

some relationship. A relationship is an association among two or more entities. A

relation type among n entity types defines a set of associations or a relationship set

among entities from these types. For example, we may have the relation that Hotel

Blue has suite rooms. A relationship can also have descriptive attributes that are used

to record information about the relationship, rather than about any one of the

participating entities; for example, we may wish to record that Hotel Blue has 10

suite rooms. A relationship must be uniquely identified by the participating entities,

without reference to the descriptive attributes. As another example of an ER

diagram, suppose that each hotel has different types of rooms and we want to record

available room quota for each room type. This relationship is ternary because we

must record an association between a room type, a hotel, and quota.

2.2.1.3.1 Relationship Constraints

Relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship set.

These constraints are determined from the mini-world situation that the relationships

represent. Relationship constraints can be distinguished in two main types:

cardinality ratio and participation.

The cardinality ratio for a binary relationship specifies the number of relationship

instances that an entity can participate in. For example, in the HotelRoom binary

 15

relationship type, a hotel can have many rooms, while a specific room can belong to

at most one hotel, meaning that it is of cardinality 1:N.

The participation constraint specifies whether the existence of an entity depends on

its being related to another entity via the relationship type. There are two types of

participation constraints – total and partial. Since it is not expected for a hotel to have

every kind of RoomType, the participation of the entity set RoomType in the

relationship set HotelRoom (Hotel:RoomType) is said to be partial. On the other

hand, if the database policy states that each hotel has to have rooms of each type,

then the participation of entity set RoomType would be total.

The underlying key constraint concept can be extended to relationship sets involving

three or more entity sets. If an entity E has a key constraint in a relationship set R,

each entity in an instance of E appears in at most one relationship in (a corresponding

instance of) R.

2.2.1.3.2 Weak Entities

Entity types that do not have key attributes of their own are called weak entity types.

Entities belonging to a weak entity type are identified by being related to specific

entities from another entity type –called identifying or owner entity type- in

combination with some of their attribute values. A weak entity type always has a

total participation constraint (existence dependency) with respect to its identifying

relationship, because a weak entity cannot be identified without an owner entity. For

example a HotelRoom entity cannot exist unless it is related to a Hotel entity.

 16

2.2.1.3.3 Aggregation

Aggregation allows indicating that a relationship set participates in another

relationship set. It is an abstraction concept for building composite objects from their

component objects. There are three cases where this concept can be related to ER

model. The first case is the situation where we aggregate attribute values of an object

to form the whole object. The second case is when an aggregation relationship is

represented as an ordinary relationship. The third case, which the ER model does not

provide for explicitly, involves the possibility of combining objects that are related

by a particular relationship instance into a higher-level aggregate object.

2.2.2 Relational Database Models and Systems

The relational data model was proposed by Codd in 1970. At that time, most

database systems were based on one of two older data models – the hierarchical

model and the network model. The relational is very simple and elegant: a database

is a collection of one or more relations, where each relation is a table with rows and

columns. The major advantage of the relational model over the older data models are

its simple data representation and the ease with which even complex queries can be

expressed. After the introduction of the relational model, there was a flurry of

experimentation with relational ideas. A major research and development effort was

initiated at IBM leading to the announcement of two commercial relational DBMS

products by IBM in the 1980s: SQL/DS for DOS/VSE and for VM/CMS (virtual

machine/conversational monitoring system) environment (1981) and DB2 for the

MVS (1983).Another relational DBMS, INGRES, was developed at the University of

California, Berkeley, in early 1970s and commercialized by Relational Technology,

Inc., in the late 1970s. Other popular relational DBMSs include Oracle of Oracle,

 17

Inc.; Sybase of Sybase, Inc.; RDB of Digital Equipment Corp (Compaq);

INFORMIX of Informix, Inc.; and UNIFY of Unify, Inc. Besides the RDBMSs

mentioned above, many implementations of the relational data model appeared on

the personal computer (PC) platforms. These systems were initially single-user

systems, but they have started offering client/server database architecture and

became compliant with Microsoft’s Open Database Connectivity (ODBC), a

standard that permits the use of many front-end tools with these systems.

The main construct for representing data in the relational model is a relation. A

relation consists of a relation schema and a relation instance. The relation instance

is a table, and the relation schema describes the column heads for the table. The

schema specifies the relation’s name, the name of each field (or attribute, or

column), and the domain of each field. A domain is referred to in a relation schema

by the domain name and has a set of associated values.

An instance of a relation is a set of tuples, also called records, in which each tuple

has the same number of fields as the schema. A relation instance can be thought of as

a table in which each tuple is a row; and all rows have the same number of fields. A

relation schema specifies the domain of each field or column in the relation instance.

The degree, also called arity, of a relation is the number of fields, and the

cardinality of a relation instance is the number of tuples in it.

An integrity constraint (IC) is a condition specified on a database schema and

restricts the data that can be stored in an instance of the database. The domain

constraints in the schema specify an important condition that we want each instance

of the relation to satisfy: The values that appear in a columns must be drawn from the

 18

domain associated with that columns. Thus, the domain of a field is essentially the

type of that field, in programming language terms, and restricts the values that can

appear in the field. Key constraint is a statement that a certain minimal subset of the

fields of a relation is a unique identifier. The statement has two parts; (1) two distinct

tuples in a legal instance (an instance that satisfies all ICs) cannot have identical

values in all the fields of a key, (2) no subset of the set of fields in a key is unique

identifier for a tuple. Sometimes the information stored in a relation is linked to the

information stored in another relation. The most common IC involving two relations

is a foreign key constraint. The foreign key constraint states that the foreign key in

referencing relation must match the primary key of the referenced relation.

Domain, primary key and foreign key constraints are considered to be a fundamental

part of the relational data model and are given special attention in most commercial

systems. Sometimes, however, it is necessary to specify more general constraints

such as an age field is probably an integer but assuming an Employee table where

employee information for a company is stored, the age field would be limited to a

value between –for example- 18 and 60. Current relational database systems support

general constraints in the form of table constraints and assertions. Table constraints

are associated with a single table and checked whenever that table is modified. In

contrast, assertions involve several tables and are checked whenever any of these

tables is modified.

2.2.3 Object-Oriented and Extended Database Technologies

Relational database systems support a small, fixed collection of data types, which has

proven adequate for traditional application domains such as administrative data

processing. In many application domains, much more complex kinds of data must be

 19

handled. As the amount of data grows, the many features offered by a DBMS

become increasingly attractive and, ultimately, necessary. To support such

applications, a DBMS must support complex data types. Object database systems –

grown with the need of more complex data types- have developed along two distinct

paths:

- Object-Oriented Database systems are proposed as an alternative to relational

systems and aimed at application domains where complex objects play a

central role. The approach is heavily influence by object-oriented

programming languages.

- Object-Relational Database Systems can be though of as an attempt to extend

relational database systems with the functionality necessary to support a

broader class of applications and provide a bridge between the relational and

object-oriented paradigms.

Figure 2.1 illustrates how programming and database concepts have come together to

provide what is now called object-oriented databases.

Figure 2.1 Makeup of an Object-Oriented Database

 20

Perhaps the most significant characteristic of object-oriented database technology is

that it combines object-oriented programming with database technology to provide

an integrated application development system. There are many advantages to

including the definition of operations with the definition of data.

First, the defined operations apply ubiquitously and are not dependent on the

particular database application running at the moment. Second, the data types can be

extended to support complex data such as multi-media by defining new object

classes that have operations to support the new kinds of information. The basic

problem confronting database designers is that they need support for considerably

richer data types than is available in a relational DBMS: User-defined data types to

create a specially designed and manipulated data type. User-defined abstract types

are manipulated via their methods. Along with the new structured types available

(i.e., array) in the data model, ORDBMS provide natural methods for those types.

Other strengths of object-oriented modeling are well known. For example,

inheritance allows one to develop solutions to complex problems incrementally by

defining new objects in terms of previously defined objects. Inheritance allows

taking advantage of the commonality between different types that increases as the

data types grow. In object database systems, unlike relational systems, inheritance is

supported directly and allows type definitions to be reused and refined very easily.

Object oriented databases have Object Identities to refer or ‘point’ to data from

elsewhere in the data, which underscores the need for giving objects a unique object

identity and prevents storing copies of objects. Use of reference types –called oids- is

especially significant when the size of the object is large, either because it is a

structured data type or because it is a big object such as an image or audio.

 21

Polymorphism and dynamic binding are powerful object-oriented features that allow

one to compose objects to provide solutions without having to write code that is

specific to each object. All of these capabilities come together synergistically to

provide significant productivity advantages to database application developers.

A significant difference between object-oriented databases and relational databases is

that object-oriented databases represent relationships explicitly, supporting both

navigational and associative access to information. As the complexity of

interrelationships between information within the database increases, the greater the

advantages of representing relationships explicitly. Another benefit of using explicit

relationships is the improvement in data access performance over relational value-

based relationships.

2.2.4 RDBMS versus OODBMS – Deciding the Testing Model

For Object-Oriented DBMSs, an initial area of focus has been the Computer Aided

Design (CAD), Computer Aided Manufacturing (CAM) and Computer Aided

Software Engineering (CASE) applications. A primary characteristic of these

applications is the need to manage very complex information efficiently. All of these

applications are characterized by having to manage complex, highly interrelated

information, which is strength of object-oriented database systems.

However, the focus of this study is to find the implementation to manage the content

and its multilingual representations. Considering the fact that content management

systems do not need such complex structures, and relational model is the common

practice in such content applications, this study uses the relation approach. The

Relational DBMS (RDBMS) provides a relatively full set of DBMS features: atomic

 22

transactions, full concurrency support, network architecture, and support for

journaling and recovery.

2.3 Multilingual Database Model

In terms of database model, specifications mentioned in the beginning of this chapter

require a model that enforces accuracy of data across multiple translations. The

model should also be able to tune data processing in terms of performance

considering the fact that both the structure and the overall size of system data

expands automatically when multiple languages are adopted by the system.

In this study, a simple online reservation system case is used to present database-

modeling issues. A simple database schema for monolingual version of an online

reservation system is shown in Figure 2.2.

Figure 2.2 A simple Online Reservation Database Schema

 23

The pattern described in Figure 2.3 shows in generic terms how to allow a hotel to be

described in different languages while implementing multilingualism. The same

pattern is used to implement presentations of various entities such as countries, cities,

zones and room types.

Figure 2.3 Multilingual Hotel Definition Diagram

This section first introduces the current replication model, that is, replication of

records with an extra language code. Then, an alternative model is offered, the split

model, in which an object (table) is split into two objects representing the

monolingual and multilingual portions of the object. For the two models, advantages

and disadvantages are discussed with basic comparison. Finally, load benchmarks

performed on two databases are documented and the results are analyzed.

2.3.1 Replication Model

Replication model aims to keep database neutral in terms of language, by placing a

predefined language code for each row in a table that identifies the language of the

record. This language prefix combined with actual primary key for the objects

uniquely identifies a piece of information in a specific language. Table 2.1 shows an

example of how replication can be applied in an online reservation system for Hotel

table.

 24

Table 2.1 Replication applied to Hotel table

Using this model, each record is replicated n times, where n is the number of

supported languages, and an instance of an item is identified by a unique identifier

for a specific item combined with a language code. Although this model seems to

succeed in implementing a multilingual database, it ignores the fact that an object

can be defined by a combination of both monolingual and multilingual fields. In

other words, in replication model, monolingual fields are also treated as multilingual.

To some extent, this redundant copying may seem an unimportant, however, for

larger databases; it is a critical factor on performance. Assuming that the field

capacities are fully used for variable length fields, each row shown in table is stored

in 892 Bytes, and to represent a hotel in all supported languages total storage needed

for each hotel item is 2676 Bytes.

In this database model, for example, the program contains the information that hotel

1 must be displayed. After the identification of the language parameter, the

information is retrieved using (hotel id, language id) pair.

 25

2.3.2 SPLITTING - Normalizing Multilingual Database

As in any database application, it is crucial that the data model for a multilingual

system is designed properly. A well-organized data model definitely simplifies the

business logic. It is important to identify the portions of the schema affected by

multilingual support. Replication method introduced in previous section treats each

database object as multilingual while claiming to keep the database language

independent. In such an implementation, which violates the rules of normalization, it

is inevitable to keep multiple copies of the same monolingual data.

The normalization process, as first proposed by Codd (1972), takes a relation schema

through a series of tests to certify whether it satisfies a certain normal form.

Normalization of data is a process of analyzing the given relation schemas based on

their functional dependencies and primary keys to achieve the desirable properties of

(1) minimizing redundancy and (2) minimizing the insertion, deletion, and update

anomalies. In a multilingual system, it is highly important to minimize possible

redundancies based on missing or inaccurate translations of data, and irregularities in

data processing, which is mostly related to content authoring component of such a

system.

Functional dependencies of replication hotel entity in Figure 2.4 shows the hotel

relation where primary key contains 2 attributes, the non-key attributes ZoneID,

Latitude, Longitude, Sea_Distance, Area_Size and Year of Establishment are

functionally dependent on a part of the primary key, that is, they are dependent on

HotelID.

 26

Figure 2.4 Functional Dependencies for Replicated Hotel Table

Table 2.2 and

Table 2.3 shows an example of how normalization can be applied to Hotel entity

presented in previous section by decomposing and setting up a new relation for each

partial key with its dependent attributes.

Table 2.2 Hotel Entity Derived by Normalization

Table 2.3 Hotel_Language Entity Derived by Normalization

Using this model, attributes identified as monolingual are placed in the actual

database table, and for all multilingual attributes of an object a separate table is used.

With this implementation, there are no records duplicated in Hotel entity and it is

treated as fully monolingual. In multilingual version of Hotel entity (named

 27

Hotel_Language) each record is replicated n times, where n is the number of

supported languages, and an instance of an item is identified by a unique identifier

for a specific item combined with a language code. Assuming that the field capacities

are fully used for variable length fields, a hotel in one language is stored in 896

Bytes, that is 4 bytes more than replication model, however to represent a hotel in all

supported languages total storage needed for each hotel item is 2612 bytes, 64 bytes

less than replication model. For 1000 records, only Hotel table creates a difference of

62.5 Mbytes less storage than replication implementation.

2.4 Replication vs. Splitting

To test performance differences of replication and a further normalized model –

splitting-, this study uses a simple online reservation system, which serves in 3

languages –English, Turkish and Spanish-. The system is first modeled with

replication, and then the model is normalized to obtain the splitting design. Database

schemas are given Chapter 3, Section 3.2.2.

As previously mentioned, normalization is essential to minimize data modification

inconsistencies. To evaluate the two models in terms of data manipulation

operations, using the online reservation system case, suppose that a hotel wants to

increase its quota for a specific type of room. In replication model, available quota of

a specific type of room for a specific hotel is stored in three rows (we are using a

trilingual assumption), and to increase the quota, an update to all three rows is

needed; otherwise information consistency would be corrupted. On the other hand,

the same operation costs one update in splitting model. Update to any multilingual

field is the same for both replication and split. For insert and delete operations,

 28

conversely, splitting model requires 1 additional row operation while replication

needs three inserts or deletes.

3 Testing for Multilingual Database

Performance is a major issue in the acceptance of object-oriented and extended

relational database systems. Measuring DMBS performance in a generic way is very

difficult, since every application has somewhat different requirements. The most

accurate measure of performance would be to run an actual application, representing

the data in the manner best suited to each potential DMBS. However, as a generic

measure is required, it is difficult or impossible to design an application whose

performance would be representative of many different applications. So, the test was

designed to be small and representative of multilingual systems.

In this study, an online reservation system is considered to explore the differences in

replication and split models presented in previous chapter. Assumed system stores

hotel information, defines various room types, each of which can be associated with

one or more hotel many times with different properties such as quota, price and

special services. The system also stores basic customer information and a reservation

entity is used to record reservations made by customers. In all entities, names and

descriptive fields are assumed to be multilingual where fields with numeric or list

domains are accepted as monolingual.

This chapter introduces the test performed on multilingual database models. In

Section 3.1, test model and basic test scenario is defined. Then in Section 3.2, testing

environment is discussed and test features are presented. Section 3.3 explains the

client simulation software used in this study.

 29

3.1 Test Model

As a part of this study both the replication and splitting databases are tested with a

special database stress utility developed with C#. As stated before, the test scenario is

based on an online reservation system. First, a simple database is implemented with

both replication and splitting methods. Next, the database stress software is used to

simulate a number of clients connected to the system, each requesting various

transactions to be executed. The requested operations include inserts, information

updates and deletions for both customers and reservation. There are also detailed

searching procedures and basic selects, which will probably be needed in actual

development of such a system. As the purpose of the test is to determine the strength

of the models, the rate at which procedures are executed is higher when compared to

a real system, which simulates the performance of approximately 3-5 users per client

modifying and retrieving data from the server.

Figure 3.1 Benchmarked Configuration

 30

3.2 Testing Environment

3.2.1 Configuration Diagrams

In order to reproduce comparable results, it is necessary to run the benchmarks and

DBMS on a similar configuration. Table 3.1 and Table 3.2 shows configuration for

both the database server machine and the client workstation where the remote

benchmark program ran.

Table 3.1 Database Server Configuration

Database Server

Model

Quantity One

Qty/Processes One 2.40GHz/ Xeon Processor MP

Qty/Physical Memory One 1GB

Disk Controller Two Adaptec AIC-7902 Ultra320 SCSI Adapters

Qty/Disk Drive One 34.22GB

LAN Connections 100Mbps Ethernet to internal network

Software Microsoft Windows 2000 Server with SQL Server
2000

Table 3.2 Client Simulator Workstation

Database Server

Model

Quantity One

Qty/Processes One 2.40GHz/ Pentium Processor

Qty/Physical Memory One 256MB

Qty/Disk Drive One 34.22GB

LAN Connections 100Mbps Ethernet to internal network

Software Microsoft Windows 2000

 31

3.2.2 Database Table Definitions
Figure 3.2 shows database schema used for testing replication model.

Figure 3.2 Replication Database Schema

Figure 3.3 shows database schema used for testing split model.

 32

Figure 3.3 Split Database Schema

3.2.3 Cardinality of Tables

The data sets used in testing are configured to allow comparisons across two

different models, besides, prior to each test, the data is restored and statistics are

updated. The following table contains defined tables and the number of rows for each

table used in the multilingual database benchmark as they were initially populated.

The numbers given are in actual monolingual count, i.e. there are 8 countries, 4 room

types, and 5007 hotels. Replication and splitting creates different row counts, which

is the focus of this test.

Table 3.3 Database Table Cardinality after Initial Population

Table Name # of Rows
Country 8
City 109
Zone 600
Hotel 5007
RoomType 4
HotelRoom 3688
Customer 11447
Reservation 6599

 33

3.2.4 Test Procedures

The stored procedure executed by client threads during the test includes a variety of

both simple and complex queries that may be used in an actual reservation system.

The procedure includes simple selects for country selection, city and zone selections,

and language selections. These statements are executed in a logical order so that the

procedure itself is similar to the actual usage of a reservation system. For example,

the procedure first selects the navigation language. Then, a country is selected and

city records are filtered according to the country identifier. The procedure then

creates random keywords according to which the zones are filtered along with the

previously set city identifier. One other scenario uses a detailed search case where

the user inputs some keywords for room features (such as TV, air-condition, cable

TV, etc.), a price range, the maximum distance of hotel from the sea, and matching

rooms along with the hotel and zone data is retrieved. Then, a room is randomly

picked from the resulting set and a reservation is made. Next, the previously inserted

reservation is updated (e.g. day extension).

The test procedure also calls batch update procedures such as increasing quota of a

specific room type for all hotels. Each test procedure execution results in a new

customer registration, a new reservation, reservation cancellation and customer

removal. Table 3.4 shows a list of procedures used in the test scenario and their

definitions.

Table 3.4 Stored procedures and their definitions used in database test

Stored Procedure Definition

dbo.Countries Retrieves country list

bbo.Cities Retrieves city list filtered by a random country

dbo.Zones Retrieves zone list filtered by a random city

 34

Dbo.NewReservation Inserts a new record in to reservation table with randomly
generated field values

Dbo.CancelReservation Selects a random reservation, deletes it and re-inserts the
reservation using dbo.NewReservation

Dbo.NewCustomer Inserts a new record in to Customer table with randomly
generated field values

Dbo.GeneralSearch Includes simple filtering queries such as zone filtering
according to country, hotel filtering by name or country with
randomly generated criteria

Dbo.DetailedSearch Sets price interval, display language, room description and
hotel distance (from sea) criteria and executes a detailed
search query. Randomly selects a hotel room record from the
result set and performs a reservation for a randomly selected
customer

Dbo.UpdateCustomer Generates a random criteria string and updates a randomly
selected customer’s address

Dbo.UpdateQuota Selects a random hotel room and decreases the quota by
%30

Dbo.UpdateQuota1 Selects a random hotel room and increases the quota by %5

Dbo.UpdateReservation Selects a random reservation record and modifies the
reservation with a random operation e.g. change number of
child, day extension

3.3 Testing Software

The tuning phase of any data access application development implies the analysis of

the database response time, possibly followed by a refinement of some database

design aspects (i.e. reviewing relations and some poorly coded stored procedures or

the adopted indexing strategies). In such an optimization, high load scenarios cannot

be ignored, so it's a good practice to test the application under "stressed" conditions.

When designing a system that provides information for many cultures, it is important

to measure the pure database response time for this complex data. This is true

especially during the development and testing of applications where you want to

measure the database response time to evaluate the database performance excluding

the influences of upper software layers.

 35

This study uses a simple database stress utility called SimClient that tries to address

performance problems, focusing on the database performance analysis and keeping

away any other application layers (data access, business logic, user interface

components) that might add noise to the database response time measurement.

SimClient is coded as a Windows Forms C#. NET application and it is designed to

work on an SQL Server 2000 database using the managed provider classes of

System.Data.SqlClient namespace.

SimClient simulates multiple database users submitting a T-SQL script that executes

a stored procedure designed for testing purposes. When you run SimClient, the

software asks for some execution options and if exists, it uses the default

configuration file to obtain these settings. The following properties can be configured

in SimClient:

 Number of clients to simulate (that is, the number of simultaneous threads to

create),

 Starting time (in order to provide the testing intervals, each application

instance is given a specific start time)

 The time between the start of the activity of a user and of the subsequent user

(this shift value is used to make sure that no process starves due to

simultaneous requests, each execution is slightly shifted by a small amount of

time while making sure that the total shifting time does not dominate total

testing duration),

 The interval between each command executed by each single simulated user

(Total time a client has to execute the test procedure once).

 36

When you start the stress test, a number of concurrent threads are created and each of

these begins the execution of the TestDB stored procedure on the database server.

The TestDB procedures executes many T-SQL statements including basic selects,

insert updates and other stored procedures such as New Customer, New Reservation,

Cancel Reservation, Detailed Search, etc. To assure that data does not change the test

procedure uses complementary statements, i.e. if an insert is executed, the inserted

records is deleted in the next execution. Each client uses the same connection string:

so, keeping into account the effects of database connection pooling, SimClient does

the following to provide pure execution data:

 A client does not start executing the test procedure until all other clients gets

a connection from the pool

 Test data is generated and stored on the database server instead of sending

data on an execution back to the owner thread, so the possible network effect

and the communication time between the database server and the client

machine is excluded

Before and after execution of each data manipulation command (insert, update,

delete and select statements), execution time in milliseconds is measured and the

result is stored in a test data table in master database along with process time, process

type, execution time and number of connected simulation users at the time of

execution for an easy post-processing of collected data. Figure 3.4 shows the

attributes of table where test data is stored.

 37

Figure 3.4 Structure of Collected Data

During the test, SimClient displays a status report including;

 The number of currently running client instances (incomplete)

 The number of the total executed commands (successful completions)

 The number of the total errors (instances failed to execute the procedure)

 Last error (details on the last error occurred during simulation)

Figure 3.5 shows the running SimClient application.

Figure 3.5 SimClient Application Snapshot

A test run has to be considered over when the given interval is complete even if there

is instances that have not completed its execution yet. This may create a difference in

 38

the number of data collected; however, by giving enough amount of time as test

interval, this difference is avoided.

3.4 Testing Plan

3.4.1 Primary Issues

No data may be cached at the time the benchmark is started. The database must be

closed and reopened before each benchmark measure, to empty cache. This is a

subtle point that can make a major difference in the results. Thus, in the general order

of executing a specific benchmark, first the caches are dropped to clear all related

pages out of buffers.

As the remote results are a more realistic model of related systems, the data is

located on a remote database server. The DBMS is implemented using client-server

architecture, i.e. every database call from the application must go over a network to

the DBMS server where data is stored. This is very inefficient for an application or

benchmark as there is no way to cache data locally. However, a stored procedure was

also defined for each of the benchmark measures, so the client/server interaction

consisted of a single customized call per user thread.

3.4.2 Measurement Intervals

Tables below contain the duration, start time and stop time of each Measurement

Interval reported from the same run. Each Measurement Interval is delayed to

demonstrate intervals are non-overlapping.

Table 3.5 shows intervals for test performed on replication database.

 39

Table 3.5 Measurement Interval Start-End Times and Duration for Replication Test

REPLICATION

Connections Start Time End Time Duration

1 10:07:28 10:08:12 0:00:44

50 10:11:13 10:18:08 0:06:55

100 10:31:26 10:43:26 0:12:00

200 11:07:22 11:31:39 0:24:17

300 12:14:46 12:48:53 0:34:07

500 13:48:51 14:54:56 1:06:05

Table 3.6 shows intervals for split database test.

Table 3.6 Measurement Interval Start-End Times and Duration for Split Test

SPLIT

Connections Start Time End Time Duration

1 10:13:40 10:14:24 0:00:44

50 10:25:35 10:32:30 0:06:55

100 10:55:16 11:07:16 0:12:00

200 11:44:39 12:08:56 0:24:17

300 13:03:39 13:37:46 0:34:07

500 15:03:21 16:09:26 1:05:25

3.4.3 Database Interaction Percentages

Table 3.7 shows the percentage of each Database interaction executed during each

measured interval.

Table 3.7 Database Interaction Percentages

Interactions %

Select 75,60

Insert 10,90

Update 13,50

 40

Test measures included inserting, modifying and looking up objects. As table shows,

the number of data retrieval commands is much higher than insertions and

modifications. The test procedure is designed so that the measures are executed

approximately in proportion to their frequency of occurrence in representative

applications (more reads than writes).

 41

4 RESULTS & DISCUSSIONS

As stated before, this study focuses on offering a method for better database design

in multilingual applications. This chapter presents the results obtained from the tests

performed on two different multilingual database models, where in the first model –

replication- each tuple that represent a unique item is replicated n times where n is

the number of languages supported. The second model was obtained by applying

further normalization to the replication model in order to increase the quality of the

database design. In Section 4.1, database table cardinality for both models is given.

Section 0 compares the complexity of queries each model requires. Average and total

response time data collected during the tests grouped by database operation types are

listed in Section 4.2, and in Section 4.3, reproducibility of the test results is

presented. After evaluating the models both according to the test results and database

design concepts in Section 4.4, a complete model for a multilingual system is offered

in Section 4.5.

4.1 Cardinality of Database Tables

Table cardinalities given in Section 3.2.3 are monolingual count of rows, that is, each

number show the actual number of objects represented in the database independent

of language. Table 4.1 shows the actual number of tuples needed in replication to

represent the number of objects given in Section 3.2.3.

Table 4.1 Database Table Cardinality in Replication

Table Name Tuples
Country 24
City 327
Zone 1800
Hotel 15021
RoomType 12
HotelRoom 11064
Customer 11447
Reservation 6599
Total 46296

 42

Table 4.2 show how these object counts are affected by the split model implemented.

As shown in table, split model requires 9414 extra tuples for the same data, however,

it is not would not be objective to jump to conclusion that replication of data is better

just because it creates less rows for exactly same data. The results are discussed in

Section 4.4.

Table 4.2 Database Table Cardinality in Split

Table Name Tuples
Country 8
Country_Language 24
City 109
City_Language 327
Zone 600
Zone_Language 1800
Hotel 5007
Hotel_Language 15021
RoomType 4
RoomType_Language 12
HotelRoom 3688
HotelRoom_Language 11064
Customer 11447
Reservation 6599
Total 55710

4.2 Database Interaction Response Times

The minimum, maximum, average and 90th percentile response times are given in

tables below for each database interaction and measurement interval. Response time

measured by the test is the real time elapsed from the point where the a particular

query statement in test procedure is called, until the results of the query, if any, have

been placed into the procedure’s variable. The kth percentile is the number which has

k% of the values below it. 90th percentile is included in results below to show the

value which has 90% of the values below it. Table 4.3 shows minimum, maximum,

average and 90th percentile response times measured for retrievals using both

replication and split models.

 43

Table 4.3 Minimum, Maximum, Average and 90th Percentile Response Times for
RETRIEVALS

SELECT REPLICATION SPLIT

Connections Minimum Maximum Average 90th Minimum Maximum Average 90th

1 0,0 970,0 109,1 250,0 0,0 860,0 102,0 340,4

50 0,0 25576,0 1567,0 3430,7 0,0 32076,0 1734,0 4769,0

100 0,0 46360,0 2752,0 6375,1 0,0 68403,0 3001,0 8784,0

200 0,0 92390,0 4665,3 10589,0 0,0 159593,0 4800,0 14656,0

300 0,0 175343,0 7628,6 15875,4 0,0 238110,0 7539,0 21830,0

500 0,0 289920,0 11207,4 22906,0 0,0 283343,0 11178,0 31341,7

Table 4.4 shows minimum, maximum, average and 90th percentile response times

measured for insertions in both replication and split models.

Table 4.4 Minimum, Maximum, Average and 90th Percentile Response Times for INSERTIONS

INSERT REPLICATION SPLIT

Connections Minimum Maximum Average 90th Minimum Maximum Average 90th

1 0,0 33,0 15,1 19,4 13,0 50,0 18,0 22,8

50 0,0 486,0 28,9 50,0 0,0 233,0 27,0 46,0

100 0,0 1250,0 49,7 92,1 0,0 1236,0 30,0 60,0

200 0,0 1983,0 96,8 234,8 0,0 1280,0 57,0 110,0

300 0,0 2360,0 130,2 280,0 0,0 1716,0 78,0 186,0

500 0,0 3263,0 151,5 433,4 0,0 2233,0 85,0 263,9

Table 4.5 shows minimum, maximum, average and 90th percentile response times

measured for update queries in replication and split models.

Table 4.5 Minimum, Maximum, Average and 90th Percentile Response Times for UPDATES

UPDATE REPLICATION SPLIT

Connections Minimum Maximum Average 90th Minimum Maximum Average 90th

1 0,0 33,0 15,3 30,0 0,0 16,0 7,0 16,0

50 0,0 656,0 59,5 127,4 0,0 390,0 22,0 46,0

100 0,0 3453,0 209,2 442,0 0,0 1173,0 39,0 76,0

200 0,0 3440,0 241,1 682,1 0,0 2543,0 107,0 250,0

300 0,0 5813,0 388,6 1250,6 0,0 3516,0 206,0 623,3

500 0,0 6890,0 556,6 1830,0 0,0 5326,0 246,0 610,0

 44

In Table 4.6, average response times for select queries and difference between two

models in percent is given.

Table 4.6 Response Times and % Difference for RETRIEVALS

SELECT REPLICATION SPLIT

Connections Average Average % Difference

1 109,1 102,0 -6,49%

50 1567,0 1734,0 10,66%

100 2752,0 3001,0 9,05%

200 4665,3 4800,0 2,89%

300 7628,6 7539,0 -1,18%
500 11207,4 11178,0 -0,26%

Table 4.7 shows average response times and difference between two models in

percent for insert operations.

Table 4.7 Response Times and % Difference for INSERTIONS

INSERT REPLICATION SPLIT

Connections Average Average % Difference

1 15,1 18,0 19,12%

50 28,9 27,0 -6,72%

100 49,7 30,0 -39,66%

200 96,8 57,0 -41,14%

300 130,2 78,0 -40,08%

500 151,5 85,0 -43,90%

Table 4.8 shows average response times and difference between two models in

percent for updates.

Table 4.8 Average Response Times and % Difference for UPDATES

UPDATE REPLICATION SPLIT

Connections Average Average % Difference

1 15,3 7,0 -54,10%

50 59,5 22,0 -63,02%

100 209,2 39,0 -81,36%

200 241,1 107,0 -55,63%

300 388,6 206,0 -46,98%

500 556,6 246,0 -55,80%

 45

Table 4.9 shows total response times (sum of select, insert and updates) and

difference between two models in percent.

Table 4.9 Total Response Times

Connections REPLICATION SPLIT Difference %

1 0,1395 0,127 -9,84%

50 1,6554 1,783 7,16%

100 3,0109 3,07 1,93%

200 5,0032 4,964 -0,79%

300 8,1474 7,823 -4,15%

500 11,9155 11,509 -3,53%

4.3 Reproducibility of the Measurement Results

Reproducibility is the variation in average measurements obtained in two or more

test runs using the same technique under same conditions. Figures Figure 4.1 and

Figure 4.2 show the results obtained in 3 different runs.

Select-Insert-Update Average Response Times for
Replication

0

1000

2000

3000

4000

5000

6000

1 50 100 200 300 500

Connections

Ti
m

e
(m

ili
se

co
nd

s)

RUN 1

RUN 2

RUN 3

Figure 4.1 Average Response Times of 3 Runs for Replication Database

 46

Select-Insert-Update Average Response Times for Split

0

1000

2000

3000

4000

5000

6000

1 50 100 200 300 500

Connections

Ti
m

e
(m

ili
se

co
nd

s)

RUN 1
RUN 2
RUN 3

Figure 4.2 Average Response Times of 3 Runs for Split Database

4.4 Interpreting the Test Results

Before expecting to get a good performance out of a system, it is essential to make

sure that both the logical and the physical designs of the database layer are right.

Otherwise, once the application development is started, it might be too late to fix

database design problems after the application has been implemented. In that case,

no amount of fast, expensive hardware can fix the poor performance caused by poor

logical database design.

Cardinalities listed in Section 4.1 shows that replication requires less tuples;

however, this does not always mean that there is less data. By normalizing the

replication model into split model, the total amount of redundant data based on

repeated language-independent data in the database is extremely reduced. The less

data there is, the less work the system has to perform, speeding its performance.

Splitting the object attributes into monolingual and multilingual tables helps to

reduce the number of columns in tables, which means that more rows can fit on a

 47

single data page, which helps to boost database server read performance. Splitting

also helps to maximize the use of clustered indexes, which are the most powerful and

useful type of index. The more data is separated into multiple tables because of

normalization, the more clustered indexes become available to help speed up data

access. By reducing the number of columns in tables, multiple indexes to retrieve it

is less needed. In addition, reducing the total number of indexes reduces the negative

effect of INSERTS, UPDATES and DELETES on performance.

When normalized design forces to create queries with many multiple joins,

denormalizing some of the tables is considered in order to reduce the number of

required joins. Denormalization is the process of selectively taking normalized tables

and re-combining the data in them in order to reduce the number of joins needed

them to produce the necessary query results. Sometimes the addition of a single

column of redundant data to a table from another table can reduce a 4-way join into a

2-way join, significantly boosting performance by reducing the time it takes to

perform the join. While denormalization can boost join performance, it can also have

negative effects. For example, adding redundant data to tables risks the following

problems:

 Increased amount of data means more data pages has to be read than

otherwise needed which decreases performance.

 Redundant data can lead to data anomalies and bad data.

 In many cases, extra procedures will have to be coded to keep data in synch,

which adds to database overhead.

 48

However, before considering whether to denormalize tables to speed joins, it should

be first assured that the proper indexes are available on the tables to be joined as it is

possible, in some cases, that join performance problem is related to a lack of

appropriate indexes instead of several table joins.

Figure 4.3 and Figure 4.4 shows graphs of average retrieval and modification times

measured in multilingual database models test. Figure 4.3 proves that the retrievals

are not that affected by the increased number of joins mentioned previously. This is

probably due to the simplicity of database model used to evaluate the effects of

normalization for multilingualism. As the only columns to be indexed are the

primary and foreign keys, the figure below actually confirms that the increased

number of joins is negated by the fact that replication model is larger in amount of

stored data because of unnecessarily duplicated data and replicated tables have more

columns which reduces the read performance.

Retrievals Average Response Times

0

2000

4000

6000

8000

10000

12000

1 50 100 200 300 500

Connected Users

A
vg

. R
es

po
ns

e
Ti

m
e

in
 M

se
c.

Replication Avg.
Split Average

Figure 4.3 Retrievals Average Response Times

 49

In Figure 4.4, the performance effect of normalization on modification operations

(inserts, updates and deletes) is obvious. As can be seen from the figure, after 100

users (in this test case this number can be perceived as 300 users as test procedures

simulates the performance of almost 3 users), replication model shows a peak and

the response times dreadfully increase as the number of users increase, while more

normalized split model show a stable and reasonable augmentation.

Modifications Average Response Times

0

100

200

300

400

500

600

1 50 100 200 300 500
Connected Users

A
vg

. R
es

po
ns

e
Ti

m
e

in
 M

se
c.

Replication Insert
Split Insert
Replication Update
Split Update

Figure 4.4 Insertions and Updates Average Response Times

This is the distinct indicator of fewer indexes on split database tables creates an

evident response time difference. The resulting response times are also effected by

the fact that, in some statements, a monolingual field update means 1 record update

for split database whereas in replication such an update results in 3 (the number of

languages assumed in this study) record updates.

 50

Considering the database performance issues introduced early in this section and the

outcome of the database load tests, it is possible to construct some criteria on

implementing split model.

As discussed before, normalization may lead to excessive table joins, which adds

extra time to perform table joins. As it is the primary focus of this study to find the

best database implementation for multilingual content, denormalization should be

considered at some point. Although the results obtained shows splitting improves the

database performance, it still can be enhanced by taking the amount of multilingual

data a table contains as a metric for deciding whether or not to normalize the table.

Figures Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8 show the number of total

disk read/writes caused by basic select, insert, update and delete commands executed

on two databases.

Figure 4.5 Disk RW vs. % ML Fields for
SELECT Operation

Figure 4.6 Disk RW vs. % ML Fields for
UPDATE Operation

 51

Figure 4.7 Disk RW vs. % ML Fields for
INSERT Operation

Figure 4.8 Disk RW vs. % ML Fields for
DELETE Operation

Figure 4.6 shows that update commands executed on normalized database require

less disk read/write than replicated database for all multilingual field percentages.

Similar to update command, based on Figures Figure 4.7, Figure 4.8, it is possible to

say that disk read/writes for normalized database are less than replicated database

regardless of multilingual field percentage for insert and delete command.

Although there is a consistently low read/write count for modification commands,

graph for select command shows that as percentage of multilingual fields increase,

read/write count also tends to increase at a reasonable rate.

According to the results, it would be fair to say that if the system is expected to

perform excessive data modification where there will be fewer select statements,

such as online newsletter sources, travel agency system where data is stored on a

central database and numerous reservations are created, modified and deleted by

agencies from various places, normalizing database may provide a performance

increase. However, for a system that will perform too many select operations (such

as search engines, online library catalogs, etc.) and fewer inserts, updates and deletes

using replication on basic database objects may speed up system processes.

 52

There are also other criteria that should be evaluated before deciding which parts of

the data should be normalized or replicated. One criterion should be the database

server software and its configurations. Data page size of database software differs

from one version to another as well as the software itself. As previously mentioned,

normalizing a table can reduce the row length and it means that more rows can fit on

a single data page which speeds up the server performance. To give an example,

SQL Server 7.0 and 2000 data pages are 8K (8192 bytes) in size. Of the 8192

available bytes in each data page, only 8060 bytes are used to store a row. The rest is

used for overhead. To optimize SQL Server performance, the rows should be

designed in such a way as to maximize the number of rows that can fit into a single

data page. The more densely rows are stored in data pages, the less I/O SQL Server

has to perform when reading data pages from disk, and the more rows it can squeeze

into the buffer. The more rows that are fitted into the buffer increases the likelihood

that the data needed is in the buffer and not on the disk, saving even more valuable

I/O resources [32].

For example, for a data page of 8060 bytes size, if a row is 4031 bytes long, then

only one row could fit into a data page, and the remaining 4029 bytes left in the page

would be empty. This is a great waste of space which can affect the I/O performance

of the server. In such a situation, the row can be redesigned (normalized), if possible,

so that the row is 4030 bytes or less. As a result, two rows can fit in each page and

I/O performance would be greatly enhanced. This can also apply to cases where

three, four, or more records should fit efficiently into a single data page. Briefly,

before deciding whether to replicate or normalize the database object, initial row

 53

length may be considered to calculate number of rows in a data page in each

implementation and the best fit can be used.

Next criterion is the storage capacity of the database server. As replication needs

more the disk space, using replication can cause a storage bottleneck on the database

server. Disk drives also have physical limitations on how many I/Os a disk is capable

of handling. Depending on the workload, this limit can be reached. When the number

of I/O requests exceeds the disks I/O capacity, the I/O requests will take longer and

be queued for its turn on the disk. For a database server where numerous concurrent

requests will be executed, either hardware upgrade or reducing disk access by

normalization should be considered if the disk IO capacity is insufficient.

4.5 Further Considerations

In a typical content management system there are four basic layers; creation, storage,

distribution and management layers. In the early days of computers, the creation

layer only consisted of word processors. Data was stored on a file system and data

distribution meant printing of those documents on paper. Workflow was managed by

habits or written or unwritten rules. Over the years, as the effects of technological

progress on each of these basic layers, word processors became more powerful tools,

documents were managed by specific document management systems and workflow

systems to track the status of documents on the system were introduced.

However, the advent of the Internet had a different effect on the distribution layer in

the sense that development of Internet technologies provided a wealth of

opportunities to service for a specific audience. Although it is not feasible to produce

 54

personalized documents on paper, it is quite easy to produce personalized output on

the worldwide web.

Personalization –according to language and culture- has been implemented using a

few basic methods. In some implementations, a directory for each language is

created and the same structure and content is replicated. One other implementation

uses the same directory for all languages; however, the directory contains a copy of

the content (page) for each language, where the files (pages) have the language

prefix in their names (e.g., en- for English, fr- for French). The third solution on the

file system is to translate the filenames along with the content, and the

correspondence depends on this translation. As a final point, other systems use a

disorganized mixed of above options with some additional options (e.g., multilingual

page numbering, etc.).

In all these cases, maintenance of different parts of the system is the responsibility of

the developer that is performed manually. While the consistency depends on the

reliability of the programmers, these practices are even more complicated in design,

quality check and evolution phases.

In a multilingual site every page in a certain language is expected to have a

corresponding page in each other language the system serves for, meaning a change

in a document must be propagated to all other parallel documents. As a result, not

only the site structure but also the information presented on the web site must be

consistent across multiple languages. Such models require extra effort to provide the

same information in the same presentation format with compliant intra and inter-

language hyperlinks in different languages.

 55

To overcome this lack of automatic support to multilingual content development,

recent practices use database support instead of using replicated content files. In this

method, regardless of the standard data model, the database includes additional data

objects for multilingual information storage and management. Using this model, the

number of objects in the data model is extended by the additional culture, language

region and system dictionary objects. Simply, the database implementation treats

each attribute and its value in each data object as a multilingual piece. After language

and culture data is updated, a dictionary composed of all pieces is created for each

language and appropriate relations are drawn between culture, language and

dictionary objects, which are then used to retrieve the corresponding translation of

information retrieved.

Although this technique seems to solve the multilingual content management

problem, it is not possible to claim that it is the optimum solution. The database

implementation lacks efficiency in the sense that it treats the entire database as

dynamic and multilingual. However, the content of a particular web site is never

completely dynamic and multilingual. Instead of translating every single piece of

information, the targeted content should be analyzed carefully to categorize the

content parts. For example, in its simplest form, a typical content may be composed

of (1) mono-lingual fields such as universal conventions (e.g., numeric values, date-

time values, private names, etc.), and (2) multilingual fields. Multilingual fields can

also be subdivided into 2 basic classes: (a) static fields (e.g., labels, list values), and

(b) dynamic fields (e.g., author inputs, documents). Considering this simple

classification, storing multiple copies of mono-lingual data and storing static values

on the database will add to data retrieval cycle leading to reduced system efficiency

 56

and significantly waste the storage, for an enterprise system for example, where

unclassified storage can bring thousands of additional rows.

Each technique mentioned above has its own strengths in a particular aspect of

multicultural content presentation. Thus, a better model can be a composition of

methods above, each implemented in a part where they would work best. Foremost,

pieces of information should be analyzed carefully and categorized according to their

dependence on culture and frequency of updates.

A typical web-based content management system will have a user interface and

information to represent and manage. User interface is culture dependent as

previously mentioned, because people from the different cultures and languages will

have a different behavior of using a system. The choices for colors, fonts, and

graphics are defined by the purpose and the type of site as well as the cultures of the

target audience. Technical considerations for user interface include average word

length, reproduction, font definitions, file locations, and embedded text. The user

must be presented with clear navigation methods. Ideally, these are content based

and synchronized across languages. This method requires editorial understanding of

the material. Another method is the icon approach. While the icon method does

work, it relies on nonverbal communication, which may not be effective in cross-

cultural settings or may not work at all for more complex and abstract ideas.

Figures Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13 show how

user interface design changes for The Coca Cola Company® web site according to

country and culture.

 57

Figure 4.9 The Coca Cola Company (Turkey)

Figure 4.10 The Coca Cola Company
(China)

Figure 4.11 The Coca Cola Company (Australia)

Figure 4.12 The Coca Cola Company (USA)

Figure 4.13 The Coca Cola Company
(Egypt)

Static labels are texts and images that are used to inform the system user on what

information to enter in a form field, error/warning/info messages or titles and

paragraphs that make up a page. These labels can either be monolingual or

multilingual. Figures Figure 4.14, Figure 4.15 and Figure 4.16 show how these static

labels differ in FedEx shipment tracking form from one culture to another.

Figure 4.14 FedEx Shipment Tracking (China)

Figure 4.15 FedEx Shipment Tracking
(USA)

 58

Figure 4.16 FedEx Shipment Tracking (Spain)

Therefore, for the general layout of the site, there should be some distinction between

templates of each country or culture. This can be achieved by creating a generic page

template for each culture and deciding programmatically which one to use when the

site is loaded. As this is not a dynamic but culture-dependent part, it would be

reasonable to store the templates contents such as images and labels in a culture

specific folder on the file system. It is essential to separate content from presentation

in order to provide an easy management workflow where a change in presentation

does not affect the content or vice versa. XSLT is a language for transforming the

structure of a data source. XSLT serves for the need to separate information (such as

a weather forecast) from details of the way it is to be presented on a particular device

and the need to transmit information (such as orders and invoices) from one

organization to another without investing in bespoke software integration projects

[33].

Figure 4.17 demonstrates use of XSL to create output for different languages. This

method can be used to design page templates for different countries. By designing a

style sheet for each culture, there will be no need for separate html documents. The

style sheet will get the parameter for language and will decide which attributes to

display on the page that calls the XSL. Sample output for Spanish is given in Figure

4.18.

 59

Figure 4.17 Translating XSL file content for a simple input
form

Figure 4.18 Output of login form
for 'es' (Spanish)

In this example, different elements are translated in-line using the xsl:choose

element. This technique is used best for documents that require only small sections to

be translated.

For a content management system, one of the most important issues is designing and

managing the way each part of the content is displayed in different cultures and

languages. Similar to general system layout, content presentation can be achieved by

using XML and its related technologies such as XSL, XSD, etc.

 60

To present a sample approach, data extracted from the data source can be converted

to XML using a predefined data structure and then XSLT style-sheet is applied.

Figure 4.19 Concept diagram for XML/XSL data presentation approach

In this case, the data has been completely removed from any presentation formatting

[34]. Sample code required to build the XML from the database is shown in figures

below.

Figure 4.20 GetXMLFromDB Function

 61

GetXMLFromDB function given in Figure 4.20 simply retrieves data from the data

source and converts the data to XML document.

Figure 4.21 ShowAuthorsView Function

ShowAuthorsView function shown in Figure 4.21 translates the data in XML format

to style defined in XSL document in Figure 4.22 and Figure 4.23. As previously

shown, using decide block for large size of data may cause extra load. Therefore,

using a separate XSL style document for each language (e.g. en.xsl or

en/default.xsl) will prevent overloads due to excessive use of decision operations in

XSL.

 62

Figure 4.22 XSL Contents (html style definitions and embedding script)

Figure 4.23 XSL Contents (representing the data fields)

 63

In this example, SQL Server database contains the authors and books tables. Data

stored in these tables are shown in Figures Figure 4.24 and Figure 4.25.

Figure 4.24 Authors Table on SQL Server

Figure 4.25 Title_Author Table (SQL Server)

When author data and books for each author is retrieved from the database,

GetXMLFromDB function converts the records in the result set as shown in Figure

4.26.

Figure 4.26 XML output file of GetXMLFromDB function

 64

Finally, XML data generated in previous step is combined with XSL document (that

is, XSL schema is applied) and HTML content is generated as shown in Figure 4.27.

Figure 4.27 HTML output

The last part of a multilingual content management system is the database design

issue, which has been discussed in detail in previous chapters. To summarize, before

designing the multilingual database, the first thing that should be done is to decide

what parts of the content should be stored on the database. After classifying the

content parts according to their language and culture dependency and the frequency

at which these parts will be changed, initial database objects can be identified.

Considering the database server’s physical and software capabilities, effect of

normalization and replication should be analyzed for each data object and the best

method should be implemented with object-based approach.

 65

REFERENCES

[1] G. Miller, “Five Papers on WordNet,” Int’l J. Lexicography, vol. 4, no. 3, 1990.

[2] R. Riloff, “Automatically Constructing A Dictionary for Information Extraction
Tasks,” Proc. 11th Nat’l Conf. Artificial Intelligence, AAAI/MIT Press, Menlo
Park, Calif., 1993, pp. 811–816.

[3] S. Sonderland et al., “Crystal: Inducing a Conceptual Dictionary,” Proc. 14th
Int’l Joint Conf. Artificial Intelligence, Morgan Kaufmann, San Francisco,
1995, pp. 1314–1319.

[4] R. Gaizauskas and K. Humphreys. “XI: A Simple Prolog-Based Language for
Cross classification and Inheritance,” Proc. 6th Int’l Conf. Artificial
Intelligence: Methodologies, Systems, Applications (AIMSA 96), 1996, pp.
86–95.

[5] K. Spark Jones and P. Willett, eds., Readings in Information Retrieval, Morgan
Kaufmann, San Francisco, 1997.

[6] S. Sanda Harabagiu and D. Moldovan, “Textnet: A Text-Based Intelligent
System,” Natural Language Engineering, vol. 3, 1997, pp.171–190.

[7] Fluhr, C., Schmit, D., Ortet, P., Elkateb, F. and Gurtner, K., SPIRIT-W3: A
Distributed Cross-Lingual Indexing and Search Engine. in Inet 97, (Kuala
Lumpur, 1997), The Internet Society.

[8] Aone, C., Charocopos, N. & Gorlinsky, J.: An Intelligent Multilingual
Information Browsing and Retrieval System Using Information Extraction,
Proceedings: (1997).

[9] P. Vossen, EuroWordNet: A Multilingual Database with Lexical Semantic
Networks, Kluwer Academic Publishers, 1998.

[10] R. Power, D. Scott, and R. Evans. What You See Is What You Meant: direct
knowledge editing with natural language feedback. In: Proceedings of the 13th
Biennial European Conference on Artificial Intelligence, pages 675 – 681,
1998.

[11] Barber, W., & Badre, A.: Culturability: The Merging of Culture and Usability.
Paper presented at the "Our Global Community": 4th Conference on Human
Factors & the Web: (1998).

[12] Franz, M., McCarley, J.S. and Roukos, S., Ad hoc and Multilingual
Information Retrieval at IBM. in NIST Special Publication 500-242: The
Seventh Text Retrieval Conference (TREC-7), (Gaithersburg, MD., 1998),
NIST.

 66

[13] K. Humphreys et al., “University of Sheffield: Description of the LaSIE-ii
System as Used for MUC7,” Proc. 7th Message Understanding Conf. (MUC-7),
Morgan Kaufman, San Francisco, 1998; www.saic.com.

[14] R. Power, D. Scott. Multilingual authoring using feedback texts. In:
Proceedings of the 17th International Conference on Computational Linguistics
and 36th Annual Meeting of the Association for Comp. Linguistics, pages 1053
– 1059, 1998.

[15] Braschler, M., Peters, C. and Schäuble, P., Cross-Language Information
Retrieval (CLIR) Track Overview. in NIST Special Publication 500 - 246: The
Eighth Text Retrieval Conference (TREC-8), (Gaithersburg, MD., 1999),
NIST.

[16] Halavais, A.: National borders on the World Wide Web. New Media & Society,
2(1), 7-28, (2000).

[17] C. Brun, M. Dymetman, and V. Lux: Document structure and multilingual
authoring. In Proceedings of First International Natural Language Generation
Conference (INLG '2000): (2000).

[18] M. Dymetman, V. Lux, A. Ranta: XML and Multilingual Document Authoring:
Convergent Trends. COLING 2000: 243-249, (2000).

[19] S. Schulz, and U. Hahn. Knowledge engineering by large-scale knowledge
reuse: experience from the medical domain. In: Proceedings of the 7th
International Conference on Knowledge Representation and Reasoning, pages
601 – 610, 2000.

[20] Huang, Shihong and Tilley, Scott: "Issues of Content and Structure for a
Multilingual Web Site". Proceedings of the 19th Annual International
Conference on Systems Documentation (SIGDOC 2001: Santa Fe, NM;
October 21-24, 2001): 103-110, (2001).

[21] Morgan, T., Luttrell, C. and Liu, Y.: Designing Multilingual Web Sites:
Applied Authoring Techniques, Proceedings of the 19th Annual International
Conference on Computer Documentation: 230-231, (2001).

[22] Zahedi, F., Pelt, W.V. van & Song, J.: A Conceptual Framework for
International Web Design. IEEE Transactions on Professional Communication:
44(2), 83-103, (2001).

[23] Sabarís, M.F., Alonso, J.L.R, Dafonte, C., Arcay, B.: Multilingual Authoring
Through an Artificial Language. MT SUMMIT-VIII, , (2001)

[24] Androutsopoulos, I., Calder, J., Not, E., Pianesi, F., Roussou, M.: Universal
Translation Language: a New Approach to Multilingual Human Assisted
Machine Translation. Proceedings of the International Workshop on
Information Presentation and Natural Multimodal Dialogue: 25-29, (2001).

 67

[25] D. Brandon Jr.: Localization of web content, Journal of Computing Sciences in
Colleges: 17(2), 345 – 358, (2001).

[26] R. Basili et al., “Multilingual Authoring: The Namic Approach,” Proc.
Workshop Human Language Technology and Knowledge Management (ACL-
EACL 2001), 2001.

[27] R. Basili and F.M. Zanzotto, “Parsing Enginering and Empirical Robustness,”
J. Natural Language Eng., vol. 8, nos. 2–3, 2002, pp. 97–120.

[28] Howlett S., Jennings D.: SQL SERVER 2000 AND XML, Developing XML-
Enabled Data Solutions for the Web. MSDN Magazine: 17(1), (2002).

[29] Tonella, P., Ricca, F., Pianta, E. and Girardi, C. : Restructuring Multilingual
Websites. Proceedings of the International Conference on Software
Maintenance (ICSM’02): 290-299, (2002)

[30] Dymetman, M.: Document Content Authoring and Hybrid Knowledge Bases.
Proceedings of the 2003 ACM symposium on Document Engineering: 193 –
202, (2003).

[31] G. Lapalme, C. Brun and M. Dymetman : XML Based Multilingual Authoring.
Proceedings of PACLING'03: 191-199, (2003)

[32] J. A. Rydberg-Cox, L. Vetter, S. Rüger, D. Heesch : Cross-lingual searching
and visualization for Greek and Latin and old Norse texts. Proceedings of the
4th ACM/IEEE-CS joint conference on Digital libraries: 4, 383 – 383, (2004).

[33] Sql-Server-Performance.Com. Tips on Optimizing SQL Server Database
Design. Internet WWW-page, URL: http://www.sql-server-
performance.com/database_design.asp (02.05.2005).

[34] TopXML. XSLT in Context. Internet WWW-page, URL:
http://www.topxml.com/xsl/articles/xslt_what_about/31290101.asp
(02.05.2005).

 68

VITA

Selvihan Nazlı Yavuzer was born in Ankara. She received his B.S. degree in

Computer Engineering from the Bahçeşehir University in 2003. Since then

she has been a research assistant in the Department of Computer

Engineering. Her main areas of interest are content management systems,

computer-aided learning and computer graphics.

