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ABSTRACT

ANALYSING EFFECTS OF GLOBAL WARMING ON EARTH

USING DATA MINING METHODS

Kiligcer, Kivang

M.S. Department of Information Technologies

Supervisor: Asst. Prof. Dr. Adem Karahoca

July 2006, 89 pages

In recent years, many geographical and atmospherical incidents are
observed on earth because of climate changes, where the global
warming has the most important role. The aim of this research is to
search the possible effects of global warming on earth and to build
a relationship between meteorological variables, by examining the
changes from past to today, using data mining methods. Firstly, the
climate changes in the past and the attributes behind these changes
are determined. For each attribute 70 years daily data is found and
the data 1is merged into a new dataset covering all attributes.
Through analyzing the data in computer, correlation coefficients
between variables are found for different time periods. As an
example, the daily past-values of attributes like sea level, soil
moisture and snow depth for different regions on earth are
processed 1in order to understand what kind of anomalities can
global warming bring out in the future.

Key Words: Global warming, temperature, soil moisture,
precipitation, data mining, cloud cover, snow depth, climate,
glacier, weka, linear regression, humidity
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Son vyillarda kiiresel 1sinma basta olmak {lzere dinyadaki iklim
degisiklikleri sebebiyle vyerkiirede bir c¢ok cografi ve atmosferik
olaylar go®zlenmektedir. Bu calismanin amaci, iklim degisikliklerin
yer kiire {zerindeki olasi etkilerini arastirmak ve gecmisten
glinimiize meteorolojik degiskenlerin dedisimini inceleyerek Dbu
degiskenleri veri madenciligi yontemi ile iliskilendirmektir.
Oncelikle gecmiste gerceklesen iklim degisiklikleri ve bu
degisikliklere yol acan degdiskenler saptanmistir. Bu deJiskenlerin
70 yi1llik verileri toplanmis ve bu veriler birlestirilerek yeni bir
dataset haline getirilmistir. Datasetlerin Dbilgisayar ortaminda
analizi yapilarak cesitli zaman periyotlarindaki diger
degiskenlerle aralarindaki korelasyon katsayilari c¢ikartilmistir.
Ornedin, deniz seviyesi, toprak nemliligi, kar kalinlidi gibi
degiskenlerin gecmisten glnimiize c¢esitli bodlgelerdeki degerleri
toplanarak kiiresel 1sinmanin artisinin gelecekte ne gibi etkilere
sahip olacadi irdelenmistir.

Anahtar Kelimeler: kiiresel isinma, sicaklik, toprak nemliligi,
yagdis, veri madenciligi, bulut biuyukligi, kar kalinligi, iklim,
buzul, weka, lineer regresyon, nem
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1 INTRODUCTION

On a global scale, there is increasing evidence that climate is changing. Increased
concentrations of greenhouse gases in the atmosphere due to human activities are
believed to be the underlying cause of the change in global climate. The
atmospheric concentrations of greenhouse gases, mainly carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N20), have risen significantly since the pre-
industrial era. Current estimates indicate that the CO2 concentrations in the
atmosphere have reached to almost 370 ppmv3, which is a 30 percent increase from
its pre-industrial levels. (Keeling, Ralph, Stephen Piper, Martin Heimann, 1996)
The model simulations indicate that global average surface temperatures will rise
by 1.5-4.5°C over the next 100 years assuming that no action is taken to reduce
emissions. Scientists expect that the average global surface temperature could rise
1-4.5°F (0.6-2.5°C) in the next fifty years, and 2.2-10°F 1.4-5.8°C) in the next
century, with significant regional variation. Instrumental temperature records
provide some evidence that the warming is already begun. Average world surface
temperatures appear to have risen by 0.3-0.6°C over the past 100 years. The
warming is even more prominent in the last three decades. The global average
surface temperature in 2001 was the second warmest on record, 0.42°C above the
1961-1990 average. Some climatologists, however, believe that these observed
warming is still within the range of natural variability. (Information Unit on

Climate Change, 2001)

Rising global temperatures are expected to raise sea level, and change precipitation
and other local climate conditions. Changing regional climate could alter forests,

crop yields, and water supplies. It could also affect human health, animals, and



many types of ecosystems. Evaporation will increase as the climate warms, which
will increase average global precipitation. Soil moisture is likely to decline in many

regions, and intense rainstorms are likely to become more frequent.

1.1 Literature Survey

Climate change issue has been observed and projected in the past studies. Some

examples of these studies are as follows:

1) “Probabilistic Climate Change Projections Using Neural Networks”

The research presents a neural network based climate model substitute that increases
the efficiency of large climate model ensembles by at least an order of magnitude.
Using the observed surface warming over the industrial period and estimates of
global ocean heat uptake as constraints for the ensemble, this method estimates
ranges for climate sensitivity and radiative forcing that are consistent with
observations. In particular, negative values for the uncertain indirect aerosol forcing
exceeding -1.2 W m[-2] can be excluded with high confidence. A parameterization
to account for the uncertainty in the future carbon cycle is introduced, derived
separately from a carbon cycle model. This allows us to quantify the effect of the
feedback between oceanic and terrestrial carbon uptake and global warming on
global temperature projections. Finally, probability density functions for the surface
warming until year 2100 for two illustrative emission scenarios are calculated,
taking into account uncertainties in the carbon cycle, radiative forcing, climate
sensitivity, model parameters and the observed temperature records. The research
finds that warming exceeds the surface warming range projected by IPCC for almost

half of the ensemble members. Projection uncertainties are only consistent with



IPCC if a model-derived upper limit of about 5 K is assumed for climate sensitivity.

(Knutti R., Stocker T. F., Joos F., Plattner G.-K., 1986)

2) “Rainfall Forecasting Using Soft Computing Models and Multivariate Adaptive
Regression Splines”
Long-term rainfall prediction is a challenging task especially in the modern world
where we are facing the major environmental problem of global warming. In
general, climate and rainfall are highly non-linear phenomena in nature exhibiting
what is known as the "butterfly effect". While some regions of the world are
noticing a systematic decrease in annual rainfall, others notice increases in flooding
and severe storms. The global nature of this phenomenon is very complicated and
requires sophisticated computer modeling and simulation to predict accurately. The
past few years have witnessed a growing recognition of Soft Computing (SC)
technologies that underlie the conception, design and utilization of intelligent
systems . In this paper, the SC methods considered are

1) Evolving Fuzzy Neural Network (EFuNN)

1) Artificial Neural Network using Scaled Conjugate Gradient Algorithm

1i1) Adaptive Basis Function Neural Network (ABFNN) and

1v) General Regression Neural Network (GRNN).
Multivariate Adaptive Regression Splines (MARS) is a regression technique that
uses a specific class of basis functions as predictors in place of the original data. In
this paper, it is reported a performance analysis for MARS and the SC models
considered. To evaluate the prediction efficiency, 87 years of rainfall data in Kerala
state, the southern part of the Indian peninsula is used. (Abraham A.., Steinberg D.,

Philip N., 2001)



3) “Neural Network Modeling of Climate Change Impacts on Irrigation Water
Supplies in Arkansas River Basin”

Climate change in the region that includes the Arkansas River basin may have
profound effects on water users. The potential impacts of climate change include
changes in snowfall, snowmelt and rainfall amount and intensities. Snowmelt is the
main source of water supply in the region. Water supply is a key factor in
determining agricultural potential. In scientific studies dealing with modeling
irrigation water budgets, water supply is usually assumed sufficient. The possible
effects of climatic changes on surface water supplies for irrigation in the Arkansas
River basin are investigated using Artificial Neural network (ANN). ANN models
have been found useful and efficient, particularly in problems for which the
characteristics of the process are difficult to describe using physically based
models. ANN is capable of identifying complex nonlinear relationships between
input and output data sets without prior knowledge of the internal structure of a
system. This study presents a procedure for modeling the impacts of climate change
on irrigation water supplies and demonstrates the potential of ANN models for
simulating such nonlinear hydrologic behavior. Precipitation over the mountains
and the basin area coupled with steam flow is used to quantify the impacts of
climate changes on surface water supply for irrigation. A feedforward neural
network is trained to map the relation between the water diverted for irrigation

(output) and the streamflow/precipitation (inputs).

The Research projects an increase in temperature (4 — 70 C) and winter precipitation
and a decrease in summer precipitation. Based on these projections the study region

is expected to get drier. These dry conditions have adverse effects on water supplies



in the region. Following the projected precipitation patterns, a decrease in water
supply will occur. In 2060 a reduction in water supplies will occur from midseason
(April/May) to the end of the season (June-Sept.). In 2090, based on the projections,
water will be short over the whole season. High projected temperature increases ET
and alters snowmelt time causing a shift in water availability to late winter and early
summer. The study region is one of the regions most vulnerable to climate change.
Water shortage is already a problem in the region. If precipitation amounts and
timing change as projected, the water resources in the region will be under more

stress. (Elgaali E., Garcia L., 2002)



2 BASIC CONCEPTS OF CLIMATE CHANGE

Climate is the average state of the atmosphere and is typically described by the
statistics of a set of atmospheric and surface variables, such as temperature,
precipitation, wind, humidity, cloudiness, soil moisture, and sea surface
temperature in terms of the long-term average. Although climate and climate
change are usually presented in global mean terms, there may be large local and
regional departures from these global averages. Factors that contribute to climate
and climate change are usually defined by climate forcing. A climate forcing can be
defined as an imposed perturbation of Earth’s energy balance. An increase in the
luminosity of the sun, for example, is a positive forcing that leads a warmer Earth.
A very large volcanic eruption, on the other hand, can increase the aerosols in the
lower stratosphere, and thereby reduces the solar energy delivered to Earth’s
surface. These examples are natural forcing. Human-made forcing result from, for
example, the gases and aerosols produced by fossil fuel burning, and alterations of
Earth’s surface from various changes in land use, such as the conversion of forests
into agricultural land. The observations of human-induced forcing underlie the
current concerns about climate change. (The National Academies Press, “Climate

Change Science: An Analysis of Some Key Questions, 2001)



3 OBSERVED CHANGES IN CLIMATE

Since 1860, mean global temperatures have risen by between 0.3°C and
0.6°C.Warming since the mid-1970s has been particularly rapid with nine of the ten
warmest years have occurred since 1990, including 1999 and 2000 despite cooling
influence of the tropical Pacific La Nifia which contributed to a somewhat lower
global average (0.29°C and 0.26°C above average, respectively).The warming trend
is spatially widespread and is consistent with the global retreat of mountain
glaciers, reduction in snow-cover extent, the accelerated rate of rise of sea level
during the 20th century relative to the past few thousand years, and the increase in
upper-air water vapor and rainfall rates over most regions. The ocean, which
represents the largest reservoir of heat in the climate system, has warmed by about
0.05°C averaged over the layer extending from the surface down to 10,000 feet,
since the 1950s. Sea ice in the central Arctic has thinned since the 1970s. A decline
of about 10% in spring and summer continental snow cover extent over the past
few decades also has been observed. (IPCC Technical Summary, Climate Change,

2001)

Satellite data on temperatures in the lower 4.8 miles of the atmosphere, spanning a
period from 1979 to the present, show little if any warming trend compared with
the surface-based record during the same period. However, the 1979-2000 satellite
data series may be too short to show a trend in atmospheric temperature. Balloon-
borne instruments used to measure temperatures in the lower 4.8 miles of the
atmosphere since 1958, show an overall warming trend from 1958-2000 similar to

that of the surface record. But when just the period 1979-2000 is considered, the



balloon data resemble the satellite data. (US Environmental Protection Agency web

site, 2006)

3.1 Observed Changes in Temperature and Precipitation

The global average surface temperature has increased by 0.6 - 0.2°C since the late
19th century. It is very likely that the 1990s was the warmest decade and 1998 the
warmest year in the instrumental record since 1861. Most of the increase in global
temperature since the late 19th century has occurred in two distinct periods: 1910 to
1945 and since 1976. The most recent period of warming (1976 to 1999) has been
almost global, but the largest increases in temperature have occurred over the mid-

and high latitudes of the continents in the Northern Hemisphere.

Annual land precipitation has continued to increase in the middle and high latitudes
of the Northern Hemisphere at a rate of 0.5 to 1% /decade), except over Eastern
Asia. Over the sub-tropics (10°N to 30°N), land surface rainfall has decreased on
average around 0.3% /decade, although this has shown signs of recovery in recent
years. Tropical land-surface precipitation measurements indicate that precipitation
likely has increased by about 0.2 to 0.3%/ decade over the 20th century, but
increases are not evident over the past few decades and the amount of tropical land
(versus ocean) area for the latitudes 10°N to 10°S is relatively small. Nonetheless,
direct measurements of precipitation and model predictions indicate that rainfall
has also increased over large parts of the tropical oceans. In contrast to the
Northern Hemisphere, no comparable systematic changes in precipitation have
been detected in broad latitudinal averages over the Southern Hemisphere.

(National Academiy Press, 1996)
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Figure 3.1 Variations of the Earth’s surface temperature over the last 140 years and the last
millennium. (UN Environment Program, 2006)

3.2 Observed Changes in Sea Level

Sea level has risen worldwide approximately 15-20 cm in the last century.
Approximately 2-5 cm of the rise has resulted from the melting of mountain
glaciers. Another 2-7 cm has resulted from the expansion of ocean water that
resulted from warmer ocean temperatures. The pumping of ground water and
melting of the polar ice sheets may have also added water to the oceans. Based on
tide gauge data, the rate of global mean sea level rise during the 20th century is in
the range 1.0 to 2.0 mm/yr. Based on the very few long tide-gauge records, the
average rate of sea level rise has been larger during the 20th century than during the

19th century. No significant acceleration in the rate of sea level rise during the 20th



century has been detected. This is not inconsistent with model results due to the

limited data.

Global sea level is currently rising as a result of ocean thermal expansion and
glacier melt, both caused by recent increases in global mean temperature.
Antarctica and Greenland, the world's largest ice sheets, make up the vast majority
of the Earth's ice. If these ice sheets melted entirely, sea level would rise by more

than 70 meters.

Although current estimates indicate that mass balance for the Antarctic ice sheet is
in approximate equilibrium, the Greenland Ice Sheet may have contributed
substantial mass to the ocean due to negative mass balance. Some areas of the
Antarctic have shown significant imbalance, e.g., Pine Island, Thwaites, and
glaciers in the Antarctic Peninsula. (There is still much uncertainty about

accumulation rates in Antarctica, especially the East Antarctic Plateau.)

Global mass balance data are transformed to sea-level equivalent by multiplying
annual average mass balance (approximately -190 millimeters for the period 1961
to 2003) by the surface area of these "small" glaciers (785,000 square kilometers).
When dividing this value by the surface area of the oceans (361.6 million square
kilometers), the final result is 0.4 millimeters of sea level rise per year. The Glacier
Contribution to Sea Level graph demonstrates how the contribution to sea level rise
from melting glaciers began increasing at a faster rate starting in the late 1980s.
This is in agreement with high-latitude air temperature records (US Environmental

Protection Agency web site, 2006).
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Glacier Contribution to Sea Level
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Figure 3.2 Glacier Contributions to Sea Level (National Snow and Ice Data Center web site,
2006)

Over the past 100 years, sea level has risen by 1.0 to 2.5 millimeters per year; thus
the contribution from melting small glaciers would be approximately 20 to 30
percent of the total. Climate models based on the current rate of increase in
greenhouse gases, however, indicate that sea level will rise at a rate of about two to
five times the current rate over the next 100 years from the combined effect of
ocean thermal expansion and increased glacier melt. Below graph indicates the

glacier contribution to sea level vs. annual global air temperature.
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Glacier Contribution to Sea Level and Air Temperature
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Figure 3.3 Glacier Contributions to Sea Level and Air Temperature (National Snow
and Ice Data Center web site, 2006)

3.3 Observed Changes in Sea Ice Extent and Concentration

Sea ice is important because it regulates exchanges of heat, moisture and salinity in
the polar oceans. It insulates the relatively warm ocean water from the cold polar
atmosphere except where cracks, or leads, in the ice allow exchange of heat and

water vapor from ocean to atmosphere in winter. The number of leads determines

12



where and how much heat and water are lost to the atmosphere, which may affect

local cloud cover and precipitation (ENN News Archive, 1998).

The seasonal sea ice cycle affects both human activities and biological habitats. For
example, companies shipping raw materials such as oil or coal out of the Arctic
must work quickly during periods of low ice concentration, navigating their ships
towards openings in the ice and away from treacherous multi-year ice that has
accumulated over many years. Many arctic mammals, such as polar bears, seals,
and walruses, depend on the sea ice for their habitat. These species hunt, feed, and
breed on the ice. Should the sea ice recede excessively, scientists worry that
increased nutritional stresses on the limited food chain may adversely affect these
populations, particularly polar bears who must store large amounts of fat to survive

arctic winters (Environmental News Network 1998).

Ice thickness, its spatial extent, and the fraction of open water within the ice pack
can vary rapidly and profoundly in response to weather and climate. Sea ice
typically covers about 14 to 16 million square kilometers in late winter in the
Arctic and 17 to 20 million square kilometers in the Antarctic Southern Ocean. The
seasonal decrease is much larger in the Antarctic, with only about three to four
million square kilometers remaining at summer's end, compared to approximately
seven to nine million square kilometers in the Arctic. The maps below provide
examples of late winter and late summer ice cover in the two hemispheres (National

Climatic Data Center web site, 2006).

13
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Figure 3.4 Arctic and Antarctic sea ice concentration climatology from 1978-2002, at the
approximate seasonal maximum and minimum levels. Image provided by National Snow and

Ice Data Center, University of Colorado, Boulder. (National Snow and Ice Data Center web site,
2000)

Figure 3.5 Sea ice conditions for September 2002, 2003, and 2004, derived from the Sea Ice
Index (National Snow and Ice Data Center web site, 2006)
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Sea ice thickness has shown substantial decline in recent decades. Using data from
submarine cruises, Rothrock and collaborators determined that the mean ice draft at
the end of the melt season in the Arctic has decreased by about 1.3 meters over the
past 30 to 40 years. These recent trends and variations in ice cover are consistent
with recorded changes in high-latitude air temperatures, winds, and oceanic
conditions. It is important to note though, that the ice cover responds to a variety of
climatic factors, and the available record of sea ice cover is relatively short. (UN

Environment Programme, 2006)

Satellite data from the SMMR and SSM/I instruments have also been combined
with earlier observations from ice charts and other sources to yield a time series of

arctic ice extent from the early 1900s onward.
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Figure 3.6 Decrease in Arctic Sea Ice Draft from 1958 to 1997. Graph derived from Rothrock et
al. 1999(National Snow and Ice Data Center web site, 2006).
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3.4 Observed Changes in Ozone

Global monitoring of ozone levels from space by the Total Ozone Mapping
Spectrometer (TOMS) instrument has shown statistically significant downward
trends in ozone at all latitudes outside the tropics. Measurements at several ground-
based stations have shown corresponding upward trends in CFCs in both the
northern and southern hemisphere. Ozone depletion and climate change are linked
in a number of ways, but ozone depletion is not a major cause of climate change.
The climate impact of changes in ozone concentrations varies with the altitude at
which these ozone changes occur. The major ozone losses that have been observed
in the lower stratosphere due to the human-produced chlorine- and bromine-
containing gases have a cooling effect on the Earth's surface. On the other hand, the
ozone increases that are estimated to have occurred in the troposphere because of
surface-pollution gases have a warming effect on the Earth's surface, thereby
contributing to the "greenhouse" effect (Ciesin, Colombia University web site,

2006).

Stratospheric ozone depletion, caused by increasing concentrations of human-
produced chemicals, has increased since the 1980s. The springtime loss in
Antarctica is the largest depletion. Currently, in nonpolar regions, the ozone layer
has been depleted up to several percent compared with that of two decades ago.
The magnitude of ozone depletion varies between the regions of the Earth. Since
the early 1980s, the ozone hole has formed over Antarctica during every Southern
Hemisphere spring (September to November), in which up to 60% of the total

ozone is depleted. Since the early 1990s, ozone depletion has also been observed
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over the Arctic, with the ozone loss from January through late March typically
being 20-25% in most of the recent years. WMO 2000 Antarctic Ozone Summary
reports an exceptionally large area of very low stratospheric temperatures over
Antarctica which set the stage for the earlier than usual development of the annual
Austral Spring ozone hole. By early September of 2000, the ozone hole was the
largest ever on record, and in late September and early October it was also the
deepest. During this period, losses of total column atmospheric ozone exceeded 50
percent within most of the area of the ozone hole (World Meteorological

Organization, Global Ozone Research and Monitoring Project, 1998).

4 DETECTION AND ATTRIBUTION OF CLIMATE
CHANGE SIGNALS

The purpose of the climate change detection and attribution activity is to identify
variability and trends in the climate system and to ascribe these changes to specific

factors, whether natural or man-induced.

The science of detection comprises several key elements: 1) understanding natural
change through the paleo record and model simulations; 2) development and
implementation of advanced statistical techniques for climate signal identification;
and 3) analysis of observations and model output to understand the limitations of
both data sources (i.e., uncertainty estimates) and to validate model hind casts of
climate system response to natural and anthropogenic forcing.  Although
temperature is usually the first variable considered in assessments of global climate
change, it is important to consider other data that integrate the state of the climate

system over space and time. These include temperature proxy data (such as tree
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ring records), borehole temperature measurements in soil, permafrost, and ice
sheets, and measurements of the mass balance of valley glaciers and ice caps.
Through analysis of paleo-proxy records (tree rings, ice cores, corals, etc.); past
climate variations in the pre-industrial era can be described and used to provide a
context for statements about present and future climate possibilities. Besides the
long-term data, general circulation models (GCMs) are the major tools in climate
change detection and attributions. However, predictions of future climate are

imperfect because they are limited by significant uncertainties (Miller C., 2000).

5 POTENTIAL IMPACTS OF CLIMATE CHANGE

Natural and human systems are expected to be influenced by climatic variations
such as changes in the average, range, and variability of temperature and
precipitation, as well as the frequency and severity of weather events. The

following section discusses impacts of climate change on various sectors.

5.1 Water Resources

The effect of climate change on stream flow and groundwater recharge varies
regionally and among scenarios, largely following projected changes in
precipitation. There are apparent trends in stream flow volumes—increases and
decreases—in many regions. However, confidence that these trends are a result of
climate change is low because of factors such as the variability of hydrological
behavior over time, the brevity of instrumental records, and the response of river

flows to factors other than climate change.

Higher temperatures mean that a greater proportion of winter precipitation falls as
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rain rather than snow and therefore is not stored on the land surface until it melts in
spring. In particularly cold areas, an increase in temperature would still mean that
winter precipitation falls as snow, so there would be little change in stream flow

timing in these regions.

Flood magnitude and frequency are likely to increase in most regions, and low
flows are likely to decrease in many regions. Changes in low flows are a function
of changes in precipitation and evaporation. Evaporation generally is projected to
increase, which may lead to lower flows even where precipitation increases or
shows little change. Projected climate change could further decrease stream flow
and groundwater recharge in many of these water-stressed countries—for example,
in central Asia, southern Africa, and countries around the Mediterranean Sea (IPCC

Technical Summary, 2001).

5.2 Agriculture and Food Security

It is established with medium confidence that a few degrees of projected warming
will lead to general increases in temperate crop yields, with some regional
variation. At larger amounts of projected warming, most temperate crop yield
responses become generally negative. In regions where some crops are near their
maximum temperature tolerance and where dry land agriculture predominates,
yields are expected to decrease generally with even minimal changes in
temperature. Also where there is a large decrease in rainfall, crop yields would be
even more adversely affected (medium confidence). Higher minimum temperatures
will be beneficial to some crops, especially in temperate regions, and detrimental to

other crops, especially in low latitudes (high confidence).
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In arid or semi-arid areas where climate change is likely to decrease available soil
moisture, agricultural productivity is expected to decrease. Increased CO2
concentrations may counteract some of these losses. However, many of these areas
are affected by El Nifio/La Nina, other climatic extremes, and disturbances such as
fire. Changes in the frequencies of these events and disturbances could lead to loss
of productivity thus potential land degradation, potential loss of stored carbon, or

decrease in the rate of carbon uptake (UN Environment Programme, 2006).

6 REGIONAL / LOCAL SCALE CLIMATE CHANGE
IMPLICATIONS

As global climate appears to be changing, we would expect that climate also will
change regionally and locally. Detection of climate change on this scale is,
however, extremely difficult as the high variability in local climates masks trends
in the 'noise' of natural fluctuations. Moreover, the short period of observations
makes the identification of clear trends difficult and creates uncertainty over the
scale of natural variability. No current climate model is capable of providing
realistic regional/ local scale climate change signals. Recent attempts have been
made to use nested regional GCMs to down scale global climate change signals to
regional levels. Following sections discusses observed and projected climate
change for the selected regions where water and agricultural sectors will be affected

significantly.

6.1 African Climate Trends and Projections

6.1.1 Climate Change Scenarios in Africa

With respect to temperature, land areas may warm by 2050 by as much as 1.6°C
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over the Sahara and semi-arid parts of southern Africa. Equatorial countries might
be about 1.4°C warmer. This projection represents a rate of warming to 2050 of

about 0.2°C per decade.

Sea- surface temperatures in the open tropical oceans surrounding Africa will rise
by less than the global average (i.e., only about 0.6-0.8°C); the coastal regions of
the continent therefore will warm more slowly than the continental interior.
Rainfall changes projected by most GCMs are relatively modest, at least in relation
to present-day rainfall variability. In general, rainfall is projected to increase over
the continent—the exceptions being southern Africa and parts of the Horn of
Africa; here, rainfall is projected to decline by 2050 by about 10%. Seasonal
changes in rainfall are not expected to be large.  Great uncertainty exists;
however, in relation to regional-scale rainfall changes simulated by GCMs. Parts of
the Sahel could experience rainfall increases of as much as 15% over the 1961-90
average. Equatorial Africa could experience a small (5%) increase in rainfall. These
rainfall results, however, are not consistent (Keeling R., Piper S., Heimann,

M.,1996).

Projected temperature increases are likely to lead to increased open water and
soil/plant evaporation. Exactly how large this increased evaporative loss will be
would depend on factors such as physiological changes in plant biology,
atmospheric circulation, and land-use patterns. As a rough estimate, potential
evapotranspiration over Africa is projected to increase by 5—10% by 2050. Rainfall
may well become more intense, but whether there will be more tropical cyclones

or a changed frequency of El Nifio events remains largely speculated (Marland G..,
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Pippin A., 1990).

6.2 Middle East and Arid Asia

6.2.1 Observed Temperature and Future Projections

The observed change in annual temperature in the region from 1955-74 to 1975-94
was 0.5°C. Annual temperatures in most of the Middle East region showed almost
no change during the period 1901-96, but a 1-2°C/century increase was discernible
in central Asia (based on the 5°x5° grid). There was a 0.7°C increase during 1901—

96 in the region as a whole.

Climate models that include the effects of sulfate aerosols (GFDL and CCC)
project that the temperature in the region will increase 1-2°C by 2030-2050. The
greatest increases are projected for winter in the northeast and for summer in part

of the region’s southwest. (UN Environment Programme, 2006)

6.2.2 Observed Precipitation and Future Projections

Rainfall is low in most of the region, but it is highly variable seasonally and
interannually. There was no discernible trend in annual precipitation during 1901—
95 for the region neither as a whole nor in most parts of the region— except in the
southwestern part of the Arabian Peninsula, where there was a 200% increase. This
increase, however, is in relation to a very low base rainfall (<200 mm/yr).
Precipitation tends to be very seasonal; in the Middle East countries, for example,
precipitation occurs during winter, and the summer dry period lasts for 5-9 months.
Winter precipitation is projected to increase slightly (<0.5 mm/day) throughout the

region; summer precipitation is projected to remain the same in the northeastern
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part of the region and increase (0.5-1 mm/day) in the Southwest (i.e., the southern
part of the Arabian peninsula). These projected changes vary, however, from model
to model and are unlikely to be significant. Soil moisture is projected to decrease in
most parts of the region because projected precipitation increases are small and

evaporation will increase with rising temperatures.

6.2.3 Water Resources

In an area dominated by arid and semi-arid lands, water is a very limited resource.
Droughts, desertification, and water shortages are permanent features of life in
many countries in the region. Rapid development is threatening some water
supplies through salinization and pollution, and increasing standards of living and
expanding populations are increasing demand. Water is a scarce resource—and will
continue to be so in the future. Projections of changes in runoff and water supply
under climate change scenarios vary. Some countries are developing programs to
conserve and reuse water or to achieve more efficient irrigation. (UN Environment

Programme, 2006)

6.3 Mediterranean Region

One key finding is that future climate change could critically undermine efforts for
sustainable development in the Mediterranean region. In particular, climate change
may add to existing problems of desertification, water scarcity and food production,
while also introducing new threats to human health, ecosystems and national
economies of countries. The most serious impacts are likely to be felt in North

African and eastern Mediterranean countries (Marland G.., Pippin A., 1990).
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6.3.1 Observed Changes

Sea surface temperature records for the Mediterranean region show clear
fluctuations in climate over the last 120 or so years, but little overall trend. This
record shows that temperatures rose sharply to a maximum around 1940 after
which they stabilized for around 20 years. After this, while global temperatures
continued to rise to unprecedented levels, the Mediterranean region experienced a
decade of rapid cooling. Warming resumed in the late 1970s, but still temperatures
remained below those experienced in the 1930s and 1940s up until 1989 at least.
Land records for the western and central Mediterranean do, however, suggest a
long-term warming trend. Recent changes in temperature across the Mediterranean
clearly fall within the range of natural variability. Since 1900, precipitation
decreased by over 5% over much of the land bordering the Mediterranean Sea, with
the exception of the stretch from Tunisia through to Libya where it increased
slightly. Within these overall trends, regular alternations between wetter and drier
periods are discernible. Records for both the western Mediterranean and the
Balkans indicate major moist periods sometime during the periods 1900 to 1920,
1930 to 1956, and 1968 to 1980 with intervening dry periods. Records for the
period 1951 onwards show a slight tendency towards decreasing rainfall in almost

all regions and in all seasons.

Both the unusual coldness of over the eastern Mediterranean over the last decade
and the dry conditions afflicting most of the region has been linked with
exceptionally high values in the NAO. From the 1940s to the early 1970s, NAO
values decreased markedly. This trend re-versed sharply 25 years ago, resulting in

largely unprecedented positive values of NAO values from 1980 onwards (with the
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notable exception of the 1995-96 winter). Changes in parts of the western and
central Mediterranean have been connected to the ENSO the phenomenon. The
prolonged 1990 to 1995 El Nifo event is the longest on record and would be
expected to occur less than once every 2000 years (Keeling R., Piper S., Heimann,

M.,1996).

6.3.2 Future Projections

The Mediterranean region is particularly vulnerable to climate change as over much
of the region, summer rainfall is virtually zero. The Mediterranean region is likely
to warm significantly over the next century and beyond in response to rising
concentrations of greenhouse gases. It is impossible to be certain over the precise
pattern or scale of warming, but it is likely that warming rates over some inland
areas will be much greater than the global average, while rates elsewhere may be
slightly lower than average. Warming will be accompanied by changes in
precipitation, moisture availability and the frequency and severity of extreme
events. Significant uncertainties remain over future precipitation patterns in the
region, but the balance of current evidence suggests annual precipitation may
decline over much of the Mediterranean region. Moisture availability may go down
even in areas where precipitation goes up due to higher evaporation and changes in
the seasonal distribution of rainfall and its intensity. As a consequence, the

frequency and severity of droughts could increase.

Sea level rise and a reduction in moisture availability would exacerbate existing
problems of desertification and water scarcity and substantially increase the risks

associated with food production. Coastal areas are directly threatened by rising sea
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levels, but the risks arising from changes in moisture availability and the intensity
of rainfall remain difficult to quantify because of the large scientific certainties and
the concurrence of ongoing trends in land degradation. Again the greatest adverse
impacts would arise from rising sea levels and the possible reduction in moisture
availability. The most serious impacts are likely to be experienced in North African

and the eastern Mediterranean countries. (UN Environment Programme, 2006)

7 THE UNFCCC AND KYOTO PROTOCOL
7.1 The UNFCCC

The Framework Convention the United Nations Framework Convention on Climate
Change (UNFCCC) was negotiated under United Nations to deal with the impacts
of human activities on the global climate system. The ultimate objective of the
Convention is stabilization of greenhouse gas concentrations in the atmosphere at a
level that would prevent dangerous anthropogenic interference with the climate
system. Such a level should be achieved within a time-frame sufficient to allow
ecosystems to adapt naturally to climate change, to ensure that food production is
not threatened and to enable economic development to proceed in a sustainable
manner. Developed countries which are parties to the UNFCCC (called "Annex 1
countries in the wording) agree to limit carbon dioxide and other human - induced
greenhouse gas emissions, and to protect and enhance greenhouse gas sinks and
reservoirs. Annex | parties are required to report periodically on the measures they
are undertaking to address the objective of the convention, and on their projected
emissions and sinks of greenhouse gases. There are also commitments to assist

developing countries that are particularly vulnerable to adverse effects of climate

26



change, with costs of adapting to adverse effects, and to facilitate transfer of

environmentally sound technologies to developing countries.

The Seventh Conference of the Parties (COP-7) to the United Nations Framework
Convention on Climate Change (UNFCCC) was held in Marrakech, Morocco, from
29 October - 10 November 2001. The meeting sought to finalize agreement on the
operational details for commitments on reducing emissions of greenhouse gases
under the 1997 Kyoto Protocol. It also sought agreement on actions to strengthen

implementation of the UNFCCC.

7.2 The Kyoto Protocol

At the first Conference of the Parties to the Convention, in April 1995, it was
decided that existing commitments in the UNFCCC were inadequate to achieve the
objective of avoiding dangerous human-induced interference with the climate
system. Further negotiations led to the Kyoto Protocol, which was agreed to in
December 1997. This is a legally binding protocol, under which industrialized
countries will reduce their collective emissions of greenhouse gases by 5.2%. The
5.2% reduction in total developed country emissions will be realized through
national reductions of 8% by Switzerland, many Central and East European states,
and the European Union, 7% by the US; and 6% by Canada, Hungary, Japan, and
Poland. Russia, New Zealand, and Ukraine are to stabilize their emissions, while
Norway may increase emissions by up to 1%, Australia by up to 8%, and Iceland
10%. The agreement aims to lower overall emissions from a group of six
greenhouse gases by 2008-12, calculated as an average over these five years. Cuts

in the three most important gases - carbon dioxide (CO2), methane (CH4), and
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nitrous oxide (N20) - will be measured against a base year of 1990. If compared to
expected emissions levels for the year 2000, the total reductions required by the
Protocol will actually be about 10%; this is because many industrialized countries
have not succeeded in meeting their earlier non-binding aim of returning their
emissions to 1990 levels by the year 2000, and their emissions have in fact risen
since 1990. Compared to the emissions levels that would be expected by 2010
without emissions-control measures, the Protocol target represents a 30% cut

(Wikipedia web site, 2000).

7.3 Recent Climate Change Debates

There are rising arguments among the scientist about legitimacy of the global
warming arguments. Some scientists believe that the observed warming in surface
temperatures is still within the range of natural variability. This section reflects
views of those who oppose global warming arguments laid out by the IPCC

findings.

A key finding of the IPCC’s recent Third Assessment Report (TAR) is that
temperature rose by 0.6 + 0.2 °C over the 20th century. This warming occurred
during two periods: 1910 to 1945 and 1975 to 2000. That increasing greenhouse
gas concentrations contributed to this warming is not in serious dispute. What is
subject to debate is whether those increases in greenhouse gas concentrations were
the dominant factor, specifically whether “most of the temperature rise over the last
50 years is attributable to human activities.” That assumption is the basis of the
TAR projections of 1.4 to 5.8 °C temperature rise between 1990 and 2100. The

wide range of projected temperature rise to 2100 is the result of uncertainties in
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both future levels of greenhouse gas and aerosol emissions, the human activities
that can affect climate and how changes in greenhouse gas and aerosol

concentrations might affect the climate system.

The IPCC concludes that human activities were responsible for most of the
temperature rise of the last 50 years. Their conclusion is based on a comparison of
observed global average surface temperature since 1861 with model simulations of
surface temperatures. However, these model simulations fail to reproduce the
difference in temperature trends in the lower to mid-tropospherel and at the surface
over the past 20 years. Some experts explain the difference between surface and
tropospheric temperature trends as a delayed response in surface temperature to
earlier warming in the troposphere. However, the tropospheric warming that
occurred rather abruptly around 1976 is not consistent with the gradual change in
tropospheric temperature that would be expected from greenhouse gas warming.
And since 1979, satellite measurements have not recorded any significant increase

in tropospheric temperature.

Some argues that the data for surface temperature are uncertain because of uneven
geographic coverage, deficiencies in the historical data base for sea surface
temperature, and the urban heat island effect. Similarly, the models simulations are
considered to be uncertain because of well-documented deficiencies in climate
models, including poor characterization of clouds, aerosols, ocean currents, the
transfer of radiation in the atmosphere and their relationship to global climate
change; the implicit assumption that the models adequately account for natural

variability; and uncertainties regarding clouds and the hydrological cycle and their
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representation in climate models.

The projections of temperature rise to 2100 are uncertain because they depend on
model projections and are subject to the acknowledged limitations on those models.
Climate models are one tool in advancing understanding of the climate system.
They can be useful in evaluating policy options, but they should be used with great
caution in scientific assessments of global warming (National Climate Centre web

site, 2006).

8 DEVELOPING AND APPLYING SCENARIOS

8.1 Land-Use and Land-Cover Change Scenarios

8.1.1 Methods of Scenario Development Future Projections

A large variety of LUC-LCC scenarios have been constructed. Many of them focus
on local and regional issues; only a few are global in scope. Most LUC-LCC
scenarios, however, are developed not to assess GHG emissions, carbon fluxes, and
climate change and impacts but to evaluate the environmental consequences of
different agro systems (e.g., Koruba et al., 1996), agricultural policies and food
security or to project future agricultural production, trade, and food availability.
Moreover, changes in land-cover patterns are poorly defined in these studies. At

best they specify aggregated amounts of arable land and pastures.

One of the more comprehensive attempts to define the consequences of agricultural
policies on landscapes was the "Ground for Choices" study (Van Latesteijn, 1995).
This study aimed to evaluate the consequences of increasing agricultural

productivity and the Common Agricultural Policy in Europe and analyzed the
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possibilities for sustainable management of resources. It concluded that the total
amount of agricultural land and employment would continue to decline—the
direction of this trend apparently little influenced by agricultural policy. Many
different possibilities for improving agricultural production were identified, leaving
room for development of effective measures to preserve biodiversity, for example.
This study included many of the desired physical, ecological, socioeconomic, and
regional characteristics required for comprehensive LUC-LCC scenario

development but did not consider environmental change.

Different LUC-LCC scenario studies apply very different methods. Most of them
are based on scenarios from regression or process-based models. In the global
agricultural land-use study of Alexandratos (1995), such models are combined with
expert judgment, whereby regional and disciplinary experts reviewed all model-
based scenarios. If these scenarios were deemed inconsistent with known trends or
likely developments, they were modified until a satisfactory solution emerged for
all regions. This approach led to a single consensus scenario of likely agricultural
trends to 2010. Such a short time horizon is appropriate for expert panels; available
evidence suggests that expert reviews of longer term scenarios tend to be
conservative, underestimating emerging developments (Rabbinge and van Oijen,

1997).

Most scenarios applied in climate change impact assessments fail to account
satisfactorily for LUC-LCC. By incorporating land-use activities and land-cover
characteristics, it becomes feasible to obtain comprehensive estimates of carbon
fluxes and other GHG emissions, the role of terrestrial dynamics in the climate

system, and ecosystem vulnerability and mitigation potential. Currently, the only
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tools for delivering this are IAMs (Weyant et al., 1996; Parson and Fisher-Vanden,
1997; Rotmans and Dowlatabadi, 1998), but only a few successfully incorporate
LUC-LCC, including Integrated Climate Assessment Model (ICAM—Brown and
Rosenberg, 1999), Asian-Pacific Integrated Model (AIM—Matsuoka et al., 1995),
Integrated Model for the Assessment of the Greenhouse Effect (IMAGE—Alcamo
et al., 1998b), and Tool to Assess Regional and Global Environmental and Health
Targets for Sustainability (TARGETS—Rotmans and de Vries, 1997). These
models simulate interactions between global change and LUC-LCC at grid
resolution (IMAGE, AIM) or by regions (ICAM, TARGETS). All of these models,

however, remain too coarse for detailed regional applications.

LUC-LCC components of IAMs generally are ecosystem and crop models, which
are linked to economic models that specify changes in supply and demand of
different land-use products for different socioeconomic trends. The objectives of
each model differ, which has led to diverse approaches, each characterizing a

specific application.

ICAM, for example, uses an agricultural sector model, which integrates
environmental conditions, different crops, agricultural practices, and their
interactions. This model is implemented for a set of typical farms. Productivity
improvements and management are explicitly simulated. Productivity levels are
extrapolated toward larger regions to parameterize the production functions of the
economic module. The model as a whole is linked to climate change scenarios by
means of a simple emissions and climate module. A major advantage of ICAM is
that adaptive capacity is included explicitly. Furthermore, new crops, such as

biomass energy, can be added easily. Land use-related emissions do not result from
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the simulations. ICAM is used most effectively to assess impacts but is less well
suited for the development of comprehensive spatially explicit LUC-LCC

scenarios.

IMAGE uses a generic land-evaluation approach, which determines the distribution
and productivity of different crops on a 0.5° grid. Achievable yields are a fraction
of potential yields, set through scenario-dependent regional "management" factors.
Changing regional demands for land-use products are reconciled with achievable
yields, inducing changes in land-cover patterns. Agricultural expansion or
intensification leads to deforestation or afforestation. IMAGE simulates diverse
LUC-LCC patterns, which define fluxes of GHGs and some land-climate
interactions. Changing crop/vegetation distributions and productivity indicate
impacts. Emerging land-use activities (Leemans et al., 1996a,b) and carbon
sequestration activities defined in the Kyoto Protocol, which alter land-cover
patterns, are included explicitly. This makes the model very suitable for LUC-LCC
scenario development but less so for impact and vulnerability assessment because

IMAGE does not explicitly address adaptive capacity.

8.1.2 Types of Land-Use and Land-Cover Change Scenarios

8.1.2.1 Driving Forces of Change

In early studies, the consequences of LUC often were portrayed in terms of the
CO2 emissions from tropical deforestation. Early carbon cycle models used
prescribed deforestation rates and emission factors to project future emissions.
During the past decade, a more comprehensive view has emerged, embracing the

diversity of driving forces and regional heterogeneity. Currently, most driving
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forces of available LUC-LCC scenarios are derived from population, income, and
agricultural productivity assumptions. The first two factors commonly are assumed
to be exogenous variables (i.e., scenario assumptions), whereas productivity levels
are determined dynamically. This simplification does not yet characterize all
diverse local driving forces, but it can be an effective approximation at coarser

levels.

8.1.2.2 Processes of LUC-LCC

The central role of LUC-LCC in determining climate change and its impacts has
not fully been explored in the development of scenarios. Only limited aspects are
considered. Most scenarios emphasize arable agriculture and neglect pastoralism,
forestry, and other land uses. Only a few IAMs have begun to include more aspects
of land use. Most scenarios discriminate between urban and rural population, each
characterized by its specific needs and land uses. Demand for agricultural products
generally is a function of income and regional preferences. With increasing wealth,
there could be a shift from grain-based diets toward more affluent meat-based diets.
Such shifts strongly alter land use. Similar functional relations are assumed to
determine the demand for nonfood products. Potential productivity is determined
by climatic, atmospheric CO2, and soil conditions. Losses resulting from improper
management, limited water and nutrient availability, pests and diseases, and
pollutants decrease potential productivity. Most models assume constant soil
conditions. In reality, many land uses lead to land degradation that alters soil
conditions, affecting yields and changing land use. Agricultural management,

including measures for yield enhancement and protection, defines actual
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productivity. Unfortunately, management is demonstrably difficult to represent in

scenarios.

Most attempts to simulate LUC-LCC patterns combine productivity calculations
and demand for land-use products. In this step, large methodological difficulties
emerge. To satisfy increased demand, agricultural land uses in some regions
intensify, whereas in others they expand in area. These processes are driven by
different local, regional, and global factors. Therefore, subsequent LCC patterns
and their spatial and temporal dynamics cannot be determined readily. For
example, deforestation is caused by timber extraction in Asia but by conversion to
pasture in Latin America. Moreover, land-cover conversions rarely are permanent.
Shifting cultivation is a common practice in some regions, but in many other
regions agricultural land also has been abandoned in the past or is abandoned
regularly. These complex LUC-LCC dynamics make the development of

comprehensive scenarios a challenging task.

The outcome of LUC-LCC scenarios is land-cover change. For example, the
IMAGE scenarios (Alcamo et al., 1998b) illustrate some of the complexities in
land-cover dynamics. Deforestation continues globally until 2050, after which the
global forested area increases again in all regions except Africa and Asia. Pastures
expand more rapidly than arable land, with large regional differences. One of the
important assumptions in these scenarios is that biomass will become an important
energy source. This requires additional cultivated land. (UN Environment

Programme, 2006)
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8.1.2.3 Adaptation

Adaptation is considered in many scenarios that are used to estimate future
agricultural productivity. Several studies assume changes in crop selection and
management and conclude that climate change impacts decrease when available
measures are implemented. Reilly et al. (1996) conclude that the agricultural sector
is not very vulnerable because of its adaptive capability. However, Risbey et al.
(1999) warn that this capability is overestimated because it assumes rapid diffusion

of information and technologies.

In contrast, most impact studies on natural ecosystems draw attention to the
assumed fact that LCC will increase the vulnerability of natural systems. For
example, Sala et al. (2000) use scenarios of LUC-LCC, climate, and other factors to
assess future threats to biodiversity in different biomes. They explicitly address a
biome's adaptive capacity and find that the dominant factors that determine
biodiversity decline will be climate change in polar biomes and land use in tropical
biomes. The biodiversity of other biomes is affected by a combination of factors,

each influencing vulnerability in a different way (IPCC Technical Summary, 2001).

8.1.3 Application of Scenarios and Uncertainties

LUC-LCC scenarios are all sensitive to underlying assumptions of future changes
in, for example, agricultural productivity and demand. This can lead to large
differences in scenario conclusions. For example, the FAO scenario (Alexandratos,
1995) demonstrates that land as a resource is not a limiting factor, whereas the
IMAGE scenarios (Alcamo et al., 1996) show that in Asia and Africa, land rapidly
becomes limited over the same time period. In the IMAGE scenarios, relatively

rapid transitions toward more affluent diets lead to rapid expansion of (extensive)
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grazing systems. In contrast, the FAO study does not specify the additional
requirement for pastureland. The main difference in assumptions is that animal
productivity becomes increasingly dependent on cereals (FAO) compared to
pastures (IMAGE). This illustrates how varying important assumptions may lead to
discrepancies and inconsistencies between scenario conclusions. In interpreting
LUC-LCC scenarios, their scope, underlying assumptions, and limitations should be
carefully and critically evaluated before resulting land-cover patterns are declared
suitable for use in other studies. A better perspective on how to interpret LUC-LCC
both as a driving force and as a means for adaptation to climate change is strongly
required. One of the central questions is, "How can we better manage land and land
use to reduce vulnerability to climate change and to meet our adaptation and
mitigation needs?" Answering this question requires further development of

comprehensive LUC-LCC scenarios. (UN Environment Programme, 2006)
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Table 8.1 : Some illustrative estimates of reference and future levels of atmospheric
constituents that typically are applied in model-based and experimental impact studies. Global
values are presented, where available. European values also are shown to illustrate regional
variations at the scale of many impact studies. (UN Environment Programme, 2006)

[SO,]" S- N-

[CO;]* (mgm™ Deposition® Deposition®

Ground-

Level [0;]°

Scenario (ppm) %) (meq m’a™) (meq m?a™) (ppb)
Reference/Control
367 0.1-10 26 32 40
Global/hemispheric
- Europe — 5-100+ 12-165(572) 11-135(288) 28-50 (72)
- Experiments 290-360 0-10 — — 10-25
Future
490- 50-
- Experiments — — 10-200
1350 1000
2010/2015
388-395 — 26 36 —
Global/hemispheric
- Europe — — 7-63 (225)  5-95(163) —
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2050/2060

463-623  — — — ~60
Global/hemispheric
- Europe — — 8-80 (280)  5-83 (205) —
2100
- 478-
— — — >70

Global/hemispheric 1099

- Europe — —  6-49(276)  4-60 (161) —

* Carbon dioxide concentration. Reference: Observed 1999 value

Experiments: Typical ranges used in enrichment experiments on agricultural crops.
Some controls used ambient levels; most experiments for future conditions used
levels between 600 and 1000 ppm (Strain and Cure, 1985; Wheeler ef al., 1996).
Future: Values for 2010, 2050, and 2100 are for the range of emissions from 35
SRES scenarios, using a simple model; note that these ranges differ from those
presented by TAR WGI .

> Sulphur dioxide concentration. Reference: Global values are background levels
(Rovinsky and Yegerov, 1986; Ryaboshapko et al., 1998); European values are
annual means at sites in western Europe during the early 1980s (Saunders, 1985).
Experiments: Typical purified or ambient (control) and elevated (future)
concentrations for assessing long-term SO, effects on plants (Kropff, 1989).

¢ Deposition of sulphur/nitrogen compounds. Reference: Global values are mean
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deposition over land areas in 1992, based on the STOCHEM model (Collins et al.,
1997; Bouwman and van Vuuren, 1999); European values are based on EMEP
model results (EMEP, 1998) and show 5th and 95th percentiles of grid box (150 km)
values for 1990 emissions, assuming 10-year average meteorology (maximum in
parentheses). Future: Global values for 2015 are from the STOCHEM model,
assuming current reduction policies; European values are based on EMEP results for
2010, assuming a "current legislation" scenario under the Convention on Long-
Range Transboundary Air Pollution (UN/ECE, 1998) and, for 2050 and 2100,
assuming a modification of the preliminary SRES Blmarker emissions scenario
Y Ground-level ozone concentration. Reference: Global/hemispheric values are
model estimates for industrialized continents of the northern hemisphere, assuming
2000 emissions; European values are based on EMEP model results (Simpson et al.,
1997) and show 5th and 95th percentiles of mean monthly grid box (150 km)
ground-level values for May-July during 1992-1996 (maximum in parentheses).
Experiments: Typical range of purified or seasonal background values (control) and
daily or subdaily concentrations (future) for assessing O3 effects on agricultural
crops (Unsworth and Hogsett, 1996; Krupa and Jager, 1996). Future: Model
estimates for 2060 and 2100 assuming the A1FI and A2 illustrative SRES emissions

scenarios.
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8.2 Environmental Scenarios

8.2.1 CO, Scenarios

8.2.1.1 Reference Conditions

Aside from its dominant role as a greenhouse gas, atmospheric CO, also has an
important direct effect on many organisms, stimulating photosynthetic productivity
and affecting water-use efficiency in many terrestrial plants. In 1999, the
concentration of CO; in the surface layer of the atmosphere (denoted as [CO,]) was
about 367 ppm (see Table 8-1), compared with a concentration of approximately
280 ppm in preindustrial times. CO; is well mixed in the atmosphere, and, although
concentrations vary somewhat by region and season (related to seasonal uptake by
vegetation), projections of global mean annual concentrations usually suffice for
most impact applications. Reference levels of [CO;] between 300 and 360 ppm have
been widely adopted in CO;-enrichment experiments (Cure and Acock, 1986;
Poorter, 1993; see Table 8-1) and in model-based impact studies. [CO;] has
increased rapidly during the 20th century, and plant growth response could be
significant for responsive plants, although the evidence for this from long-term
observations of plants is unclear because of the confounding effects of other factors
such as nitrogen deposition and soil fertility changes (Joan A.Kleypas et al.,

Science, 1999).

8.2.1.2 Development and Application of CO2 Scenarios

Projections of [CO,] are obtained in two stages: first, the rate of emissions from
different sources is evaluated; second, concentrations are evaluated from projected
emissions and sequestration of carbon. Because CO, is a major greenhouse gas, CO,
emissions have been projected in successive IPCC scenarios (Scenarios A-D—Shine
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et al., 1990; 1S92 scenarios—Leggett et al., 1992; SRES scenarios—Nakicenovic et
al., 2000). To obtain scenarios of future [CO;] from those of emissions, global
models of the carbon cycle are required (e.g., Schimel et al., 1995). Some estimates

of [CO;] for the SRES emissions scenarios are given in Table 8-1.

In recent years, there has been growing interest in emissions scenarios that lead to
[CO,] stabilization. Typically, levels of [CO,] stabilized between 350 and 1000 ppm
have been examined; these levels usually are achieved during the 22nd or 23rd
century, except under the most stringent emissions targets. Whatever scenarios
emerge, it is likely to be some time before a set of derivative CO,-stabilization
impact and adaptation assessments are completed, although a few exploratory

studies already have been conducted (Keeling R., Piper S., Heimann, M.,1996).

Experimental CO;-enrichment studies conventionally compare responses of an
organism for a control concentration representing current [CO,] with responses for a
fixed concentration assumed for the future. In early studies this was most commonly
a doubling (Cure and Acock, 1986), to coincide with equilibrium climate model
experiments. However, more recent transient treatment of future changes, along
with the many uncertainties surrounding estimates of future [CO,] and future
climate, present an infinite number of plausible combinations of future conditions.
For example, Table 8-1 illustrates the range of [CO,] projected for 2050 and 2100
under the SRES emissions scenarios, using simple models. To cover these
possibilities, although doubled [CO,] experiments are still common, alternative
concentrations also are investigated (Olesen, 1999)—often in combination with a
range of climatic conditions, by using devices such as temperature gradient tunnels

(Marland G.., Pippin A., 1990).
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8.2.2 UV-B Radiation Scenarios

8.2.2.1 Reference Conditions

Anthropogenic emissions of chlorofluorocarbons (freons) and some other substances
into the atmosphere are known to deplete the stratospheric ozone layer. This layer
absorbs ultraviolet solar radiation within a wavelength range of 280-320 nm (UV-
B), and its depletion leads to an increase in ground-level flux of UV-B radiation.
Enhanced UV-B suppresses the immune system and may cause skin cancer in
humans and eye damage in humans and other animal species. It can affect terrestrial
and marine ecosystems and biogeochemical cycles and may reduce the service life
of natural and synthetic polymer materials. It also interacts with other atmospheric
constituents, including GHGs, influencing radioactive forcing of the climate (Karl,

Thomas R., 1996)

Analyses of ozone data and depletion processes since the early 1970s have shown
that the total ozone column has declined in northern hemisphere mid-latitudes by
about 6% in winter/spring and 3% in summer/autumn, and in southern hemisphere
mid-latitudes by about 5% on a year-round basis. Spring depletion has been greatest
in the polar regions: about 50% in the Antarctic and 15% in the Arctic (Albritton
and Kuijpers, 1999). These five values are estimated to have been accompanied by
increases in surface UV-B radiation of 7, 4, 6, 130, and 22%, respectively, assuming
other influences such as clouds to be constant. Following a linear increase during the
1980s, the 1990s springtime ozone depletion in Antarctica has continued at about
the same level each year. In contrast, a series of cold, protracted winters in the
Arctic have promoted large depletions of ozone levels during the 1990s (Peters,

Robert L. and Thomas E. Lovejoy, eds. 1992).
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8.2.2.2 Development and Application of UV-B Scenarios

Scenarios of the future thickness of the ozone column under given emissions of
ozone-depleting gases can be determined with atmospheric chemistry models,
sometimes in combination with expert judgment. Processes that affect surface UV-B
flux also have been investigated via models (Alexandrov et al., 1992; Matthijsen et
al., 1998). Furthermore, several simulations have been conducted with coupled
atmospheric chemistry and climate models, to investigate the relationship between
GHG-induced climate change and ozone depletion for different scenarios of
halogenated compounds. It is known that potential stratospheric cooling resulting
from climate change may increase the likelihood of formation of polar stratospheric
clouds, which enhance the catalytic destruction of ozone. Conversely, ozone
depletion itself contributes to cooling of the upper troposphere and lower

stratosphere.

Serious international efforts aimed at arresting anthropogenic emissions of ozone-
depleting gases already have been undertaken—namely, the Vienna Convention for
the Protection of the Ozone Layer (1985) and the Montreal Protocol on Substances
that Deplete the Ozone Layer (1990) and its Amendments. The abundance of ozone-
depleting gases in the atmosphere peaked in the late 1990s and now is expected to
decline as a result of these measures, recovering to pre-1980 levels around 2050.
Without these measures, ozone depletion by 2050 was projected to exceed 50% in
northern mid-latitudes and 70% in southern mid-latitudes—about 10 times larger
than today. UV-B radiation was projected to double and quadruple in northern and

southern mid-latitudes, respectively (Newman S., 1998).
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There have been numerous experimental artificial exposure studies of the effects of
UV-B radiation on plants. There also have been a few investigations of the joint
effects of enhanced UV-B and other environmental changes, including climate. A
study of the impacts of UV-B on skin cancer incidence in The Netherlands and
Australia to 2050, using integrated models, is reported by Martens (1998), who
employed scenarios of future ozone depletion based on the IS92a emissions scenario
and two scenarios assuming compliance with the London and Copenhagen

Amendments to the Montreal Protocol.

8.2.2 Scenarios of Marine Pollution

8.2.3.1 Reference Conditions

Marine pollution is the major large-scale environmental factor that has influenced
the state of the world oceans in recent decades. Nutrients, oxygen-demanding
wastes, toxic chemicals (such as heavy metals, chlorinated hydrocarbons, potential
endocrine-disrupting chemicals, and environmental estrogens), pathogens,
sediments (silt), petroleum hydrocarbons, and litter are among the most important
contaminants leading to degradation of marine ecosystems. The following ranges of
concentrations of heavy metals are characteristic of open ocean waters: mercury
(0.3-7 ng I'"), cadmium (10-200 ng 1), and lead (5-50 ng 1™); levels of chlorinated
hydrocarbons are a few ng 1'. Chemical contaminants and litter are found
everywhere in the open ocean, from the poles to the tropics and from beaches to
abyssal depths. Nonetheless, the open ocean still remains fairly clean relative to
coastal zones, where water pollution and the variability of contaminant
concentrations are much higher (often by one to two orders of magnitude; specific

values depend on the pattern of discharge and local conditions).
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8.2.3.2 Development and Application of Marine Scenarios

Data characterizing the state of the marine environment have been obtained through
national as well as international monitoring programs in recent decades, and analysis
of tendencies may serve as an initial basis for developing environmental scenarios.
At present, expert judgment appears to be the most promising method of scenario
development because modeling methods are insufficiently developed to facilitate

prediction.

In qualitative terms, trends in marine pollution during the 21st century could include
enhanced eutrophication in many regions, enhancement of exotic algal blooms,
expanded distribution and increased concentration of estrogens, invasion of
nonindigenous organisms, microbiological contamination, and accumulation of
pathogens in marine ecosystems and seafood, and increases of chemical toxicants.

(UN Environment Programme, 2006)

8.3 Sea-Level Rise Scenarios

8.3.1 Global Average Sea-Level Rise

The major components of average global sea-level rise scenarios are thermal
expansion, glaciers and small ice caps, the Greenland and Antarctic ice sheets, and
surface and groundwater storage. These phenomena usually are modeled separately.
Using GCM output, the thermal component of sea-level rise has been estimated by
Bryan (1996), Sokolov et al. (1998), and Jackett et al. (2000). Contributions from
glaciers and ice sheets usually are estimated via mass-balance methods that use
coupled atmosphere-ocean and atmosphere-ice relationships. Such studies include:

for glaciers and the Greenland ice sheet, Gregory and Oerlemans (1998); for
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Greenland only, Van de Wal and Oerlemans (1997) and Smith (1998); for the
Antarctic ice sheet, Smith et al. (1998); and for Greenland and Antarctica, Ohmura

et al. (1996) and Thompson and Pollard (1997).

Simple models that integrate these separate components through their relationship
with climate, such as the upwelling diffusion-energy balance model of Wigley and
Raper (1992, 1993, 1995) used in Warrick et al. (1996), can be used to project a
range of total sea-level rise. De Wolde et al. (1997) used a two-dimensional model
to project a smaller range than in Warrick ef al. (1996); the major differences were
related to different model assumptions. Sokolov and Stone (1998) used a two-

dimensional model to achieve a larger range.

8.3.2 Regional Sea-Level Rise

Regional sea-level rise scenarios require estimates of regional sea-level rise
integrated with estimates of local land movements. Currently there are too few
model simulations to provide a range of regional changes in sea level, restricting
most scenarios to using global mean values. An exception is Walsh et al. (1998),
who produced scaled scenarios of regional sea-level rise for the Gold Coast of
eastern Australia on the basis of a suite of runs from a single GCM. Because relative
sea-level rise scenarios are needed for coastal impact studies, local land movements
also must be estimated. This requires long-term tide gauge records with associated
ground- or satellite-based geodetic leveling. Geophysical models of isostatic effects,
incorporating the continuing response of the Earth to ice-loading during the last
glaciations, also provide estimates of long-term regional land movements (Met

Office, 2000).

47



8.3.3 Scenarios Incorporating Variability

Most impacts on the coast and near coastal marine environments will result from
extreme events affecting sea level, such as storm surges and wave set-up. The
magnitude of extreme events at any particular time is influenced by tidal
movements, storm severity, decadal-scale variability, and regional mean sea level.
These phenomena are additive. Because it is impossible to provide projections of all
of these phenomena with any confidence, many assessments of coastal impacts
simply add projections of global average sea level to baseline records of short-term
variability. Moreover, several coastal processes also are stochastic, and locally
specific scenarios may have to be constructed for these (George C. Marshall

Institute, 2001).

Table 8-2: Illustration of importance of some different feedback processes. Values are for the
year 2100, obtained from a baseline scenario implemented in the IMAGE-2 integrated
assessment model (adapted from Alcamo et al., 1998a). The no-feedbacks case excludes CO,
fertilization and accelerated ice melt and includes an intermediate adaptation level of
vegetation. (UN Environment Programme, 2006)

Sea-

Net Ecosystem Temp. Level Vegetation

[CO;] Productivity Change  Rise Shift
Simulation (ppm) (Pga™)? (°C) (cm) (%)’
All feedbacks 737 6.5 2.8 43 41
No CO, fertilization 928 0.1 3.6 52 39
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Vegetation adapts

724 7.0 3.1 45 40
immediately
No adaptation of
762 5.3 3.2 46 41
vegetation
No land-use change 690 6.9 2.9 41 39
No feedbacks 937 0.0 3.5 29 45
No land-use
889 0.2 3.4 28 45
change/no feedbacks
690-
Range 0.0-7.0 2.8-3.6  28-52 39-45
937

*1Pga'=10" grams per year.

P Percentage of vegetated area for which climate change induces a change of

vegetation class.

49



8.4 Flood Scenarios

8.4.1 Changes in Flood Frequency

Although a change in flood risk is frequently cited as one of the potential effects of
climate change, relatively few studies since the early 1990s have looked explicitly at
possible changes in high flows. This largely reflects difficulties in defining credible
scenarios for change in the large rainfall (or snowmelt) events that trigger flooding.
Global climate models currently cannot simulate with accuracy short-duration, high-
intensity, localized heavy rainfall, and a change in mean monthly rainfall may not be

representative of a change in short-duration rainfall (New York Times, 1998).

A few studies, however, have tried to estimate possible changes in flood
frequencies, largely by assuming that changes in monthly rainfall also apply to
“flood-producing” rainfall. In addition, some have looked at the possible additional
effects of changes in rainfall intensity. Reynard et al. (1998), for example, estimated
the change in the magnitude of different return period floods in the Thames and
Severn catchments, assuming first that all rainfall amounts change by the same
proportion and then that only “heavy” rainfall increases. Table 1-3 summarizes the
changes in flood magnitudes in the Thames and Severn by the 2050s: Flood risk
increases because winter rainfall increases, and in these relatively large catchments
it is the total volume of rainfall over several days, not the peak intensity of rainfall,
is important. Schreider et al. (1996) in Australia assessed change in flood risk by
assuming that all rainfall amounts change by the same proportion. They found an
increase in flood magnitudes under their wettest scenarios—even though annual
runoff totals did not increase—but a decline in flood frequency under their driest

scenarios (Rothrock, D.A., 1999).
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Table 8-3: Percentage change in magnitude of peak floods in Severn and Thames
catchments by the 2050s (Reynard et al., 1998).

Return Period

Catchment 2-Year 5-Year 10-Year 20-Year 50-Year
Thames

— GGx-x* 10 12 13 14 15

— GGx-s° 12 13 14 15 16
Severn

— GGx-x* 13 15 16 17 20

— GGx-s° 15 17 18 19 21

* GGx-x = HadCM2 ensemble mean scenario with proportional change in rainfall.

 GGx-s = HadCM2 ensemble mean scenario with change in storm rainfall only.
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9 GLOBAL WARMING AND DATA MINING METHOD

9.1 Data Mining Method

Data mining method is widely used around the world for processing data via usage
of many classifying, clustering, associating tests on data attributes and instances.
Generally, data mining (sometimes called data or knowledge discovery) is the
process of analyzing data from different perspectives and summarizing it into useful
information - information that can be used to increase revenue, cuts costs, or both.
Data mining software is one of a number of analytical tools for analyzing data. It
allows users to analyze data from many different dimensions or angles, categorize it,
and summarize the relationships identified. Technically, data mining is the process
of finding correlations or patterns among dozens of fields in large relational

databases.

Data mining is primarily used today by companies with a strong consumer focus -
retail, financial, communication, and marketing organizations. It enables these
companies to determine relationships among "internal" factors such as price, product
positioning, or staff skills, and "external" factors such as economic indicators,
competition, and customer demographics. And, it enables them to determine the
impact on sales, customer satisfaction, and corporate profits. Finally, it enables them

to "drill down" into summary information to view detail transactional data.

While large-scale information technology has been evolving separate transaction
and analytical systems, data mining provides the link between the two. Data mining
software analyzes relationships and patterns in stored transaction data based on

open-ended user queries. Several types of analytical software are available:
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statistical, machine learning, and neural networks. Generally, any of four types of

relationships are sought:

Classes: Stored data is used to locate data in predetermined groups. For
example, a restaurant chain could mine customer purchase data to determine
when customers visit and what they typically order. This information could

be used to increase traffic by having daily specials.

Clusters: Data items are grouped according to logical relationships or
consumer preferences. For example, data can be mined to identify market

segments or consumer affinities.

Associations: Data can be mined to identify associations. The beer-diaper

example is an example of associative mining.

Sequential patterns: Data is mined to anticipate behavior patterns and
trends. For example, an outdoor equipment retailer could predict the
likelihood of a backpack being purchased based on a consumer's purchase

of sleeping bags and hiking shoes (Frand J., 2006).

9.2 Data Mining Software: WEKA

Weka is a collection of machine learning algorithms for data mining tasks. The

algorithms can either be applied directly to a dataset or called from your own Java

code. Weka contains tools for data pre-processing, classification, regression,

clustering, association rules, and visualization. It is also well-suited for developing

new machine learning schemes. Weka algorithms will help us to study the

relationship between our dataset attributes.
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9.3 Datasets

In order to process and analyze data, we need to combine meaningful datasets in
one file. In this research, datasets related with global warming will be needed. Our

datasets must include as much instance as possible to reach more concrete results.

It’s possible to find datasets through the World Wide Web service, however
analyzing global warming necessitates many different attributes for the same time
interval. What’s more, even if the time interval is same, the stations can be
different. Therefore, it is wiser to gather different attributes for the same station and

during the same time interval.

The dataset attributes needed for this research are very scarce for every location for
a specific time period. From National Climatic Data Center (NCDC), we can only
gather precipitation and temperature datasets which are not having enough
meaningful instances. From NASA, we can gather the dataset for surface
temperature for many locations in the world including Turkey, but again the

number of instances is very low.

The most helpful dataset center for this data mining research was European Climate
Assessment & Dataset (ECA&D). The necessary dataset attributes such as
humidity, surface temperature, precipitation, cloud cover, sunshine and snow depth
were present for many different locations. However, there are only 4-5 locations

which include all the datasets at the same time.
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Wien, Austria is one of these locations whose datasets includes daily humidity,
surface temperature, precipitation, cloud cover, sunshine and snow depth data from
1901 to 2004 which would be enough to process through Weka. The aim is to find
the relationship, if any, between these attributes and try to understand if global

warming is a trend that will continue or not.

9.3.1 Humidity
Humidity dataset includes the daily humidity in Wien in %1(HU)

Q _HU is the quality code for HU (0="OK'; 1="suspect'; 9="missing’)

SOUID, DATE, HU,Q HU
102163,19010101, 72, 0
102163,19010102, 73, 0

102163,19010103, 75, 9

9.3.2 Mean Temperature
Temperature dataset includes the daily mean temperature (TG) in Wien in 0.1 °C.

Q TG is the quality code for TG (0='OK'; 1="suspect'; 9="missing")

SOUID, DATE, TG,Q TG
100042,19010101, -83, O
100042,19010102, -112, 0
100042,19010103, -9999, 9

100042,19010104, -106, 0
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9.3.3 Cloud Cover

Cloud Cover dataset includes the daily cloud cover (CC) in Wien in octas.

Q_CC is the quality code for CC (0='OK'; 1="suspect’; 9="missing")

SOUID, DATE, CC,Q CC
102162,19010101, 3, -9
102162,19010102, 2, -9
102162,19010103, 3, -9
102162,19010104, 8, -9
102162,19010105, 5, -9

102162,19010106, 8, -9

9.3.4 Precipitation
Precipitation dataset includes the daily precipitation amount (RR) in Wien in 0,1

mm. Q RR is the quality code for RR (0='OK'; 1="suspect'; 9="missing'")

SOUID, DATE, RR,Q RR
100043,19010101, 0, O
100043,19010102, 0, O
100043,19010103, 13, O
100043,19010104, 4, 0

100043,19010105, 0, O
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9.3.5 Snow Depth
Snow Depth dataset includes the daily snow depth (SD) in Wien in 1 cm.

Q_SD is the quality code for SD (0='OK'; 1="suspect'; 9="missing')

SOUID, DATE, SD,Q SD
102164,19010101,-9999, 9
102164,19010102,-9999, 9
102164,19010103,-9999, 9
102164,19010104,-9999, 9
102164,19010105,-9999, 9

102164,19010106,-9999, 9

9.3.6 Sunshine
Sunshine dataset includes the daily sunshine (SS) in Wien for 0,1 hours.

Q_SS is the quality code for SS (0='OK'; 1="suspect'; 9="missing")

SOUID, DATE, SS,Q SS
102165,19280324, 39, 0
102165,19280325, 0, 0
102165,19280326, 82, 0
102165,19280327, 69, 0

102165,19280328, 3, 0



9.4 Dataset Combination and Grouping

Although all the datasets seems to start from year 1901, most of them have
meaningless or missing data until 1929. Therefore the instance range between 1901
and 1928 is removed from all datasets. Then, the datasets are transferred into
Microsoft Excel which makes it possible to combine the datasets in one dataset. All
the values in the Cloud Cover dataset are multiplied by 10 in order to make the data

more visible among the values of other attributes.

A class attribute named “season” is added manually and the data become like this:
Date, season, humidity, precipitation (0,1 mm), cloud cover (0,1 octas), snow depth

(cm), sunshine (0,1 hrs), temperature(0,1 °C)

19290101, Winter,68,34,70,2,0,6
19290102, Winter,93,172,80,16,0,-14
19290103, Winter,86,92,80,27,0,-31
19290104, Winter,85,1,80,30,0,-34

19290105, Winter,78,2,80,25,4,-28

Processing this database on Weka did not pass the first tests. The correlation
coefficient was near to zero and there were too many errored instances in

algorithms.

“Date” values for datasets are making misleading effects in relationship algorithms,
because the software analyzes them as numbers not dates. To overcome this

problem, daily date values are converted into year values. Plus the season
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classification did not give a desired affect since all the number of instances is same
for each season (91-91-91-91 instances for each year). Therefore this attribute is

also omitted.

Grouping the data needs a logical classification. Since the topic is global warming,
I added an attribute called “warmth”. In excel, I calculated average temperature

values for each year in Wien. When we take a close look at the temperature dataset:

DATA
YEAR Average Temp — Warmth
1929 8,769 — LOW
1930 10,313 — HIGH
1931 9,229 - NORMAL
1932 9,835 -NORMAL
1933 8,826 - LOW
1934 11,433 — HIGHER
1935 9,884 - NORMAL

The grouping is done as:
Yearly average temperature <9 °C. - LOW
9 °C < Yearly average temperature < 10 °C. - NORMAL
10 °C < Yearly average temperature < 11 °C. - HIGH
11 °C < Yearly average temperature < 12 °C. - HIGHER

Yearly average temperature > 12 °C. -VERY HIGH
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9.5 Final Dataset

After making the necessary adjustments the final dataset has 27606 instances with 8
attributes as shown below:

Year, humidity, precipitation (0,1 mm), cloud cover (0,1 octas), snow depth (cm),
sunshine (0,1 hrs), temperature(0,1 °C), warmth(class)

1929,68,34,70,2,0,6,low

1929,93,172,80,16,0,-14,low

1929,86,92,80,27,0,-31,low

1929,85,1,80,30,0,-34,low

1929,78,2,80,25,4,-28,low

1929,83,0,60,22,0,-38,low

1929,92,0,80,20,0,-10,low

1929,96,0,30,18,11,-41,low

9.6 Basic Relationship Between Attributes

Before continuing with data mining methods, examining the data and checking the
relationships with bare eyes can be useful. Below graphs are prepared in Microsoft

Excel using the annual data in final dataset.
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Figure 9-1: Average Yearly Precipitation Trend
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Figure 9-2: Average Yearly Humidity Trend
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Figure 9-3: Average Yearly Temperature Trend

Cloud Cover

56,00

ZZZ ]’, i MA‘AW -
50,00 NMTI\ ¢ 1L ! MV—

woo PILAL WL 11 ] e

| * v 1§ Y ——Dogrusal (CC)

46,00 -
) L 4

4400 - ¢

42,00

40,00 BRI AR NN A R AR AR R AR RN A AR AR R I AR AN A NA R AN ANAR AR AR AR AR RRER
O I ~ N M OO B «~ N MO O UV -
N O I I 0B W N~ O O O
o OO O OO OO OO0 OO0 O OO OO0 OO O O
~ Y Y T v Y Y ™ ™ v v« v« «

Figure 9-4: Average Yearly Cloud Cover Trend
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Figure 9-5: Average Yearly Snow Depth Trend
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Figure 9-6: Average Yearly Sunshine Trend
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Figure 9-7: Average Annual Values For All Attributes

According to the graphs the dataset seems reliable. At a glance it’s seen that as
temperature increases snow depth is going lower which is logical. Increase in

sunshine is also reliable.

9.7 Processing and Visualizing All Attributes in Weka

After converting the final dataset into “ARRF” format for Weka to process, the

situation is as shown in Figure 9-8:
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| | | ‘
L._ lonlnlowlwlvno nnInc 9 ol
] - )
warmth
[Er )

In figure 9-8, 8 different attributes are shown in different graphs. The colors are
indicating the classification of “warmth” attribute. Blue is “low”; red is “normal”;
cyan is “high”; green is “higher” and pink is “veryhigh” degree of warmth attribute.
As seen in the 1% upper left graph, as years pass from 1900s to 2000s there is a
remarkable increase in the mean temperatures. In 1980s the increase in obvious,
mean temperature rises up to 13-14 °C in Wien. Therefore pink color is only visible

after 80s.

9.7.1 Discretisizing

Before applying classification and clustering algorithms, discretisizing the data into
10 bins helps to understand and evaluate the data better (Figure 9-9). The numbers
on top of the graphs show the number of instances in each column. In the

precipitation graph, it can be seen that pink color (very high warmth) is only
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present when the precipitation is 0. This is meaningful because when warmth level

is very high, rain and snow is unlikely to happen.
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Figure 9-9: After Discretisizing The Data Into 10 Bins

9.7.2 Classification

Methods for analyzing and modeling data can be divided into two groups:
“supervised learning” and “unsupervised learning.” Supervised learning requires
input data that has both predictor (independent) variables and a target (dependent)
variable whose value is to be estimated. By various means, the process “learns” how
to model (predict) the value of the target variable based on the predictor variables.
Decision trees, regression analysis and neural networks are examples of supervised
learning. If the goal of an analysis is to predict the value of some variable, then

supervised learning is recommended approach.
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Unsupervised learning does not identify a target (dependent) variable, but rather
treats all of the variables equally. In this case, the goal is not to predict the value of a
variable but rather to look for patterns, groupings or other ways to characterize the
data that may lead to understanding of the way the data interrelates. Cluster analysis,
correlation, factor analysis (principle components analysis) and statistical measures

are examples of unsupervised learning (Detreg web site, 20006).

9.7.2.1 Naive Bayes Method

Why Naive Bayes? Naive Bayes is one of the simplest density estimation methods
from which we can form one of the standard classification methods in machine
learning. Its fame is partly due to the following properties:

* Very easy to program and intuitive

* Fast to train and to use as a classifier

* Very easy to deal with missing attributes

* Very popular in certain fields such as computational linguistics/NLP

Our only nominal attribute, warmth, will be the base of Naive Bayes classification.
According to the degrees of warmth level, a classification will be made through
learning by data. A Naive Bayes classifier is a simple probabilistic classifier. Naive
Bayes classifiers are based on probability models that incorporate strong

independence assumptions which often have no bearing in reality.

Depending on the precise nature of the probability model, Naive Bayes classifiers
can be trained very efficiently in a supervised learning setting. In many practical
applications, parameter estimation for naive bayes models uses the method of

maximum likelihood; in other words, one can work with the naive bayes model
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without believing in Bayesian probability or using any Bayesian methods.

In spite of their naive design and apparently over-simplified assumptions, naive
bayes classifiers often work much better in many complex real-world situations than
might be expected. Recently, careful analysis of the Bayesian classification problem
has shown that there are sound theoretical reasons for the apparently unreasonable

efficacy of naive bayes classifiers.

Let X be the data record (case) whose class label is unknown. Let H be some
hypothesis, such as "data record X belongs to a specified class C." For classification,
we want to determine P (H|X) -- the probability that the hypothesis H holds, given

the observed data record X.

P (H|X) is the posterior probability of H conditioned on X. For example, the
probability that a fruit is an apple, given the condition that it is red and round. In
contrast, P(H) is the prior probability, or apriori probability, of H. In this example
P(H) is the probability that any given data record is an apple, regardless of how the
data record looks. The posterior probability, P (H|X), is based on more information
(such as background knowledge) than the prior probability, P(H), which is

independent of X..

Similarly, P (X|H) is posterior probability of X conditioned on H. That is, it is the
probability that X is red and round given that we know that it is true that X is an
apple. P(X) is the prior probability of X, i.e., it is the probability that a data record

from our set of fruits is red and round. Bayes theorem is useful in that it provides a
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way of calculating the posterior probability, P(H|X), from P(H), P(X), and P(X[H).

[26] Bayes theorem is

P (H[X) = P(X|H) P(H) / P(X)

Below screen shows how the data is classified using Naive Bayes method through

Weka software. The classification of our nominal attribute “warmth” is like this:

Class “low” has %7 probability

Class “normal” has %26 probability

Class “high” has %50 probability

Class “higher” has %14 probability

Class “very high” has %3 probability
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Figure 9-10: Naive Bayes Classifier
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9.7.2.2 RBF Network Method

Radial basis function (RBF) networks have a static Gaussian function as the
nonlinearity for the hidden layer processing elements. The Gaussian function
responds only to a small region of the input space where the Gaussian is centered.
The key to a successful implementation of these networks is to find suitable centers
for the Gaussian functions. This can be done with supervised learning, but an
unsupervised approach wusually produces better results. For this reason,

NeuroSolutions implements RBF networks as a hybrid supervised-unsupervised

topology.

The simulation starts with the training of an unsupervised layer. Its function is to
derive the Gaussian centers and the widths from the input data. These centers are
encoded within the weights of the unsupervised layer using competitive learning.
During the unsupervised learning, the widths of the Gaussians are computed based
on the centers of their neighbors. The output of this layer is derived from the input

data weighted by a Gaussian mixture.

Once the unsupervised layer has completed its training, the supervised segment then
sets the centers of Gaussian functions (based on the weights of the unsupervised
layer) and determines the width (standard deviation) of each Gaussian. Any
supervised topology (such as a MLP) may be used for the classification of the

weighted input.

The advantage of the radial basis function network is that it finds the input to output

map using local approximators. Usually the supervised segment is simply a linear
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combination of the approximators. Since linear combiners have few weights, these
networks train extremely fast and require fewer training samples (NeuroDimension

web site, 2006).

9.7.2.3 Linear Regression Method

Just because we want to understand the relations between our attributes, choosing
regression method would be the best way to see these relations. Regression attempts
to model the relationship between two variables by fitting a linear or non-linear
equation to observed data. One variable is considered to be an explanatory variable,
and the other is considered to be a dependent variable. For example, a modeler
might want to relate the weights of individuals to their heights using a linear

regression model.
In statistics, linear regression is a method of estimating the conditional expected
value of one variable y given the values of some other variable or variables x.

Regression, in general, is the problem of estimating a conditional expected value.

It is often erroneously thought that the reason the technique is called "linear

regression” is that the graph of y = a + Bx is a line. But in fact, if the model is

i = a+Bri+ 71 + 6

, then the problem is still one of linear regression, even though the graph is not a

straight line. The rationale for this terminology will be explained below.
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Linear regression is called "linear" because the relation of the response to the
explanatory variables is assumed to be a linear function of some parameters.
Regression models which are not a linear function of the parameters are called
nonlinear regression models. A neural network is an example of a nonlinear
regression model (Yale university web site, 2006). Our attributes in our

“warmth”dataset state a linear function like:

Y=a0+ al*x1 +a2*x2 +...

In the below figure, our dataset after using linear regression gives the following

result:
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Figure 9-11: Linear Regression applied on “Warmth” dataset
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A valuable numerical measure of association between two variables is the
correlation coefficient, which is a value between -1 and 1 indicating the strength of

the association of the observed data for the two variables.

Correlation coefficient 0.7028
Mean absolute error 48.0009
Root mean squared error 59.1901
Relative absolute error 67.7809 %
Root relative squared error 71.1389 %
Total Number of Instances 27606

Table 9-1 Interpretation of the size of a correlation

Correlation Negative Positive

Small —0.29 t0o —0.10 0.10to 0.29
Medium —0.49 to —0.30 0.30to 0.49
Large —0.50 to —1.00 0.50 to 1.00

“0,7028” states a large correlation between our attributes, which also states that

daily temperature is dependent on other attributes.

9.7.2.4 Multilayer Perceptron Method

The Multi-layer perceptron is the most widely used type of neural network. It is both
simple and based on solid mathematical grounds. Input quantities are processed

through successive layers of "neurons". There is always an input layer, with a
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number of neurons equal to the number of variables of the problem, and an output
layer, where the perceptron response is made available, with a number of neurons
equal to the desired number of quantities computed from the inputs (very often only
one). The layers in between are called "hidden" layers. With no hidden layer, the
perceptron can only perform linear tasks (for example a linear discriminant analysis,
which is already useful). All problems which can be solved by a perceptron can be
solved with only one hidden layer, but it is sometimes more efficient to use 2 hidden
layers. Each neuron of a layer other than the input layer computes first a linear
combination of the outputs of the neurons of the previous layer, plus a bias. The
coefficients of the linear combinations plus the biases are called the weights. They
are usually determined from examples to minimize, on the set of examples, the
(Euclidian) norm of the desired output - net output vector. Neurons in the hidden
layer then compute a non-linear function of their input. In MLPfit, the non-linear
function is the sigmoid function y(x) = 1/(1+exp(-x))). The output neuron(s) has its
output equal to the linear combination. Thus, a Multi-Layer Perceptron with 1
hidden layer basically performs a linear combination of sigmoid function of the

inputs. A linear combination of sigmoids is useful because of 2 theorems:

a) A linear function of sigmoids can approximate any continuous function of 1
or more variable(s). This is useful to obtain a continuous function fitting a
finite set of points when no underlying model is available.

b) Trained with a desired answer = 1 for signal and 0 for background, the
approximated function is the probability of signal knowing the input values.
This second theorem is the basic ground for all classification applications

(Paw web site, 2006).
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Figure 9-12 is the output table of our dataset when data mined through multilayer

perceptron:
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Figure 9-12: Multilayer Perceptron output, applied on “Warmth” dataset

9.7.2.5 Comparing The Confusion Matrixes

The confusion matrix of Naive Bayes, RBF Network and Multilayer Perceptron
methods are as follows:

Naive Bayes Confusion Matrix:

53.7854 %
46.2146 %

Correctly Classified Instances 14848
Incorrectly Classified Instances 12758

a b c d e <--classified as
368 3 1455 0 0] a=low
233 720 5835 491 28| b=normal
226 684 11210 1688 70| c¢=high

43 72 1129 2550 70| d=higher

0 34 29 668 0| e=veryhigh
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RBF Network Confusion Matrix:

Correctly Classified Instances 13878 50.2717 %
Incorrectly Classified Instances 13728 49.7283 %

a b ¢ d e <--classified as

0 0 1826 0 O a=low

0 0 7307 0 O| b=normal

0 0 13878 0 0| c=high

0 0 3864 0 0| d=higher

0 0 731 O O] e=veryhigh

Multilayer Perceptron Confusion Matrix:

Correctly Classified Instances 16198 58.6757 %
Incorrectly Classified Instances 11408 41.3243 %
a b c d e <--classified as

1159 343 320 4 0| a=low
821 1087 5155 244 0] b=normal
791 964 11129 993 1| c=high
198 93 752 2821 O] d=higher
0 5 230 494 2| e=veryhigh
None of the three classification methods did correctly classified the warmth dataset
more than 59 percent. This means that the variables do not have common

characteristics as a single trend. It seems that they are not dependant on each other

much. Therefore, it may be more helpful to analyze the dataset through decision tree

method.

9.7.2.6 J48 Decision Tree Method

Decision trees represent a supervised approach to classification. A decision tree is a
simple structure where non-terminal nodes represent tests on one or more attributes
and terminal nodes reflect decision outcomes. J.R. Quinlan has popularized the

decision tree approach with his research spanning more than 15 years. The latest
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public domain implementation of Quinlan's model is C4.5. The Weka classifier

package has its own version of C4.5 known as J48 (Minnesota State University web

site, 2006). We are using decision tree method because, we need to see the tree

formation in order to determine a separation point within the

output of J48 when presented with the attributes:
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Figure 9-13: Decision Tree
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The tree shows the details of “warmth” attribute. Year 1942 differentiates low

warmth years from normal and high warmth years. What’s more, 1982 and 1987

are very crucial years indicating the real trend is starting.
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Figure 9-14: J48 tree view of warmth dataset

Before continuing to other methods, to check the real effects of global warming on
earth I prepared another dataset. I changed the nominal attribute “warmth” with

“snowdepth”. The dataset became:

1929,68,34,70,2,0,6,veryhigh
1929,93,172,80,16,0,-14,veryhigh
1929,86,92,80,27,0,-31,veryhigh
1929,85,1,80,30,0,-34,veryhigh
1929,78,2,80,25,4,-28,veryhigh
1929,83,0,60,22,0,-38,veryhigh
1929,92,0,80,20,0,-10,veryhigh

1929,96,0,30,18,11,-41,veryhigh

78



The grouping is done as:

Yearly snow depth < 1 cm. -VERY LOW

1 cm < Yearly snow depth <2 cm. - LOW

2 cm < Yearly snow depth <3 cm. - NORMAL
3 cm < Yearly snow depth <4 cm. - HIGH
Yearly snow depth >4 cm. —-VERY HIGH

After processing the new “snow dataset” with WEKA, the J48 tree results were

impressive:
éa Weka Classifier Tree Visualizer: 21:33:20 - trees..J48 (warming) :\,j\}_ E
Tree View
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Figure 9-15 J48 tree view of snow dataset

1987 is again the most crucial year separating the century. As seen in figure 9-15,

after 1987 snow depth is becoming extremely low.
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9.7.3 Clustering Method
Clustering can be considered the most important unsupervised learning problem; so,
as every other problem of this kind, it deals with finding a structure in a collection

of unlabeled data.

A loose definition of clustering could be “the process of organizing objects into
groups whose members are similar in some way” .A cluster is therefore a collection
of objects which are “similar” between them and are “dissimilar” to the objects

belonging to other clusters. We can show this with a simple graphical example:

Figure 9-16: Cluster examples (Politecnico di Italiano web site, 2006)

In this case we easily identify the 4 clusters into which the data can be divided; the
similarity criterion is distance: two or more objects belong to the same cluster if
they are “close” according to a given distance (in this case geometrical distance).

This is called distance-based clustering.

Another kind of clustering is conceptual clustering: two or more objects belong to

the same cluster if this one defines a concept common to all that objects. In other
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words, objects are grouped according to their fit to descriptive concepts, not

according to simple similarity measures (Politecnico di Italiano, 2006).

Coming to our dataset if we compare daily temperature with precipitation data, we

receive the following graph through Weka.

|
2
sl

£ Weka Clusterer Visualize: 23:43:17 - SimpleKMeans (warming)

% dailytemperature (Hum)

Colour: Cluster {Hom)

Clear Save

e |

Plot: warming_clustered

clusterd clusterl

Figure 9-17: Clustering using daily temperature vs. precipitation attributes

The graph again gives us a proof that the dataset is meaningful. As the temperature

rises precipitation decreases.

Here we compare humidity with daily temperature (Figure 9-18). As temperature
increase, humidity decreases which seems also meaningful. This creates 2 different

clusters in the graph.
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Figure 9-18: Clustering using daily temperature vs. humidity attributes
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Figure 9-19: Clustering using daily temperature vs. sunshine attributes
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Again temperature and sunshine is compared in figure 9-19. Sunshine is
proportionate with temperature, and therefore the graph is the opposite of figure 9-

18.

9.7.4 Prediction

By using Weka software, predictions can be made through different methods.

By adding the following line into our dataset, we will be able to predict the
snowdepth level under the following conditions:

Year: 2080, Humidity: 90, Precipitation: 50 (5 mm), Cloudcover: 70, Sunshine:

100, Daily temperature: 223 (22,3 C), Warmth: Very High
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Figure 9-20: Outputing “snow depth”prediction using RBF Network Classifier

Using RBF network classifier and training dataset, Figure 9-20 illustrates the fact
that, in year 2080, under certain conditions, it seems possible that snow depth would

be 1,884 cm.
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10 CONCLUSION

Global warming is evidently showing its impacts in the 21.century. According to
this research, it’s also apparent that warming started in the last 50-60 years and
increased its power in the last 20 years. We have seen that some years have quite
important roles for this sudden change. Especially in the 80s, snow depths in Wien,

Austria were much lower than expected because of high daily temperatures.

The global average surface temperature has increased by 0.6 - 0.2°C since the late
19th century while sea level has raised worldwide approximately 15-20 cm. Sea ice
thickness has shown substantial decline in recent decades. Ozone was depleted
around %60 in Antarctica in 1980s. These facts are clearly showing that strong

measures should be taken to prevent more warming.

The predicted impacts of climate change are depletion of water resources, decrease
in agriculture and food security, which are very crucial factors for our life. In the
future some specific regions, like the Mediterranean, are said to be most vulnerable
to climate affects. The Mediterranean region is likely to warm significantly over the
next century and beyond in response to rising concentrations of greenhouse gases.
Plus, sea level rise and a reduction in moisture availability would exacerbate
existing problems of desertification and water scarcity and substantially increase

the risks associated with food production..

Data mining methods also stressed out the fact that, temperature rise is related with

the humidity level, cloud cover, sunshine level, precipitation and affects the
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decrease in snow depth and glacier volumes. The data show that the increase is

more visible in the last decades.

To prevent global warming, we must achieve the objective of avoiding dangerous
human-induced interference with the climate system. Greenhouse effect, gas
emissions, is inevitable. The Kyoto Protocol target, compared to the emissions
levels that would be expected by 2010 without emissions-control measures,
represents a 30% cut in gas emissions. Maybe then, the climate returns back to its

normal position.
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